
o

o

DOMAIN System Call Reference
(Volume 1, ACLM - GPR)

Update 1

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 008856

Revision 00

Software Release 9.2

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: February, 1986

This document was produced using the SCRIDE document preparation system. (SCRIDE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26,
DOMAIN/PCI, DOMAIN/SNA, DOMAIN/VACCESS, D3M, DPSS, DSEE, GMR, and GPR are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIDED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIDILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRIDED IN TillS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

0 .. / "-..... ,./

o

o

o

o

Preface

This manual is part of a two-volume set that describes the DOMAIN® system calls. Each volume
consists of a section that introduces the system calls followed by sections that describe a separate
operating system manager (e.g., the process manager, stream manager, and variable formatting
package). The sections that describe the managers are in alphabetical order by manager
name and consist of a description of the data types used by the manager, the syntax of the
manager's programming calls, and the error messages generated by the manager.

For easy organization, we have numbered the pages of this two volume reference set by system
manager. For example, the third page in the ACLM section is page ACLM-3.

Volume 1 includes descriptions of the following managers:

ACLM
CAL
EC2
ERROR
GM
GMF
GPR

Volume 2 includes descriptions of the following managers:

IPC PROCl
MBX PROC2
MS RWS
MTS SIO
MUTEX SMD
NAME STREAM
PAD TIME
PBUFS TONE
PFM TPAD
PGM VEC
PM VFMT

You should use this manual with the programming handbooks listed under Related Documents.
These programming handbooks give detailed instructions about using these programming calls.

PREFACE-l

Audience

This manual is intended for programmers who are writing application programs using DOMAIN
system calls. Readers of this manual should be familiar with FORTRAN, Pascal, or C and the
operating system as described in the DOMAIN System User's Guide. This manual is not
intended as a tutorial document, but as a reference for programmers who need to use operating
system services.

Related Documents

The Programming With General System Calls handbook, order no. 005506, documents how to
write programs that use standard DOMAIN system calls including the ACLM, CAL, EC2,
ERROR, MTS, NAME, PAD, PBUFS, PFM, PGM, PM, PROCl, PROC2, RWS, SIO, STREAM,
TIME, TONE, TPAD, and VFMT calls.

The Programming With System Calls for Interprocess Communication handbook, order no.
005696, documents how to write programs that use the DOMAIN interprocess facilities including
the MBX, MS, IPC, MUTEX, and EC2 calls.

The Programming With DOMAIN 2D Graphics Metafile Resource handbook, order no. 005097,
documents how to write programs that use the DOMAIN 2D Graphics Metafile Resource.

The Programming With DOMAIN Graphic Primitives handbook, order no. 005808, documents
how to write graphics programs that use the DOMAIN Graphics Primitive Resource.

PREFACE-2

\ ./

------,
("

o

o

o

o

o

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

{ }

< >

CTRL/Z

Uppercase words or characters in formats and command
descriptions represent keywords that you must use
literally.

Lowercase words or characters in formats and command
descriptions represent values that you must supply.

Square brackets enclose optional items.

Braces enclose a list from which you must choose an
item.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the
keyboard.

The notation CTRL/ followed by the name of a key
indicates a control character sequence. Hold down
<CTRL> while you type the character.

Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.

Vertical ellipsis points mean that we have omitted
irrelevant parts of a figure or example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader's Response form is located at the back of each manual.

PREFACE-3

\., ~ _ .. /

\.

". "..-"

Contents

0
INTRODUOTION INTRO-l

AOLM AOLM-l

OAL OAL-l

E02 E02-1

ERROR ERHOR-l

GM GM-l

GMF GMF-l

0 GPR GPR-l

o

o

o
CONTENTS-l

'-. /

(/"~'.
I

\

o

o

o

o

o

Introduction

This introductory section describes the DOMAIN system insert files and the format of the
information found in the sections that follow. Each of these sections consist of a description of
the data types used by a system manager, the syntax of the manager's programming calls, and
the error messages generated by the system manager. We have arranged the sections of this
manual alphabetically, by system manager name.

DOMAIN Insert Files

The DOMAIN system provides insert files that define data types, constants, values, and routine
declarations. The insert files also define the exact form of each system call or routine. (Even the
FORTRAN version does this using comments, although the FORTRAN compiler doesn't check
the forms that you use.)

The DOMAIN system routines are divided, by function, into several subsystems. Each subsystem
is controlled by a system manager. The routines of each subsystem are prefixed for easy
indentification. A subsystem prefix consists of a number of identifying characters followed by the
special underscore and dollar-sign characters, .. _ $. .. For example, the routines that perform
stream functions are prefixed with STREAM_ $. These subsystem prefixes are also used to
distinguish DOMAIN data types and constants that are used by the subsystem routines.

Insert files are located in the directory jSYS JINS j. There is one insert file per subsystem for
each programming language. Include the appropriate insert file for your programming language.
For example, if you are using error routines in a Pascal program, you include the insert file,
jSYSjINSjERROR.INS.PAS. Using the same routines in a FORTRAN program, you include
jSYSjINSjERROR.INS.FTN. All insert files are specified using the syntax

jSYS JINS j subsystem-prefix.INS .language-abbreviation

where language abbreviation is PAS (Pascal), FTN (FORTRAN), or 0 (0). The listing on the
next page shows all the available insert files.

In addition to including required subsystem insert files in a program, you must always include the
BASE insert file for your programming language. You specify BASE insert files using the syntax

jSYS JINS jBASE.INS.language-ab breviation

These files contain some basic definitions that a number of subsystem routines use.

INTRO-l

Summary of Insert Files

Insert File

/SYS/INS/BASE.INS.lan

/SYS/INS/ACLM.INS.lan
/SYS/INS/CAL.INS.lan
/SYS/INS/ERROR. INS. Ian
/SYS/INS/EC2.INS.lan
/SYS/INS/GM.INS.lan
/SYS/INS/GMF.INS.lan
/SYS/INS/GPR.INS.lan
/SYS/INS/IPC.INS.lan
/SYS/INS/KBD.INS.lan
/SYS/INS/MBX.INS.lan
/SYS/INS/MS.INS.lan
/SYS/INS/MTS.INS.lan
/SYS/INS/MUTEX.INS.lan
/SYS/INS/NAME.INS.lan
/SYS/INS/PAD.INS.lan
/SYS/INS/PBUFS.INS.lan
/SYS/INS/PFM.INS.lan
/SYS/INS/PGM.INS.lan
/SYS/INS/PM.INS.lan
/SYS/INS/PROC1.INS.PAS
/SYS/INS/PROC2.INS.lan
/SYS/INS/RWS.INS.lan
/SYS/INS/SIO.INS.lan
/SYS/INS/SMDU. INS. Ian
/SYS/INS/STREAMS.INS.lan
/SYS/INS/TlME.INS.lan
/SYS/INS/TONE.lan
/SYS/INS/TPAD.INS.lan
/SYS/INS/VEC.INS.lan
/SYS/INS/VFMT. INS. Ian

Operating System Component

Base definitions -- must always be included

Access control list manager
Calendar
Error reporting
Eventcount
Graphics Metafile Resource
Graphics Map Files
Graphics Primitives
Interprocess communications datagrams
[Useful constants for keyboard keys]
Mailbox manager
Mapping server
Magtape/streams interface
Mutual exclusion lock manager
Naming server
Display Manager
Paste buffer manager
Process fault manager
Program manager
User process routines
Process manager (Pascal only)
User process manager
Read/write storage manager
Serial I/O
Display driver
Stream manager
Time
Speaker
Touchpad manager
Vector arithmetic
Variable formatter

The suffix lI.lan II varies with the high-level language that you're using; it IS either II.FTNII,
II.PASII, or II.CII.

Organizational Information

This introductory section is followed by sections for each subsystem. The material for each
subsystem is organized into the following three parts:

1. Detailed data type information (including illustrations of records for the use of
FORTRAN programmers).

2. Full descriptions of each system call.
alphabetically.

3. List of possible error messages.

Each call within a subsystem IS ordered

INTRO-2

C~'

\..... ./

\ -,,.,.,,,-'

o

o

o

o

o

Data Type Sections

A subsystem's data type section precedes the subsystem's individual call descriptions. Each data
type section describes the predefined constants and data types for a subsystem. These
descriptions include an atomic data type translation (i.e., TIME _ $REL _ABS _ T = 4-byte
integer) for use by FORTRAN programmers, as well as a brief description of the type's purpose.
Where applicable, any predefined values associated with the type are listed and described.
Following is an example of a data type description for the TIME _ $REL _ABS _ T type.

TIME $REL ABS T A 2-byte integer. Indicator of type of time. One of
the following pre-defined values:

TIME $RELATIVE

Relative time.

TIME _ $ABSOLUTE

Absolute time.

In addition, the record data types are illustrated in detail. Primarily, we have geared these
illustrations to FORTRAN programmers who need to construct record-like structures, but we've
designed the illustrations to convey as much information as possible for all programmers. Each
record type illustration:

• Clearly shows FORTRAN programmers the structure of the record that they must
construct using standard FORTRAN data type statements. The illustrations show the
size and type of each field.

• Describes the fields that make up the record.

• Lists the byte offsets for each field. These offsets are used to access fields
individually.

• Indicates whether any fields of the record are, in turn, predefined records.

INTRO-3

The following is the description and illustration of the OAL _ $TIMEDATE _REO _ T predefined
record:

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

Readable time format. The
diagram below illustrates the
CAL_$TIMEDATE_REC_T data type:

field name

integer year

integer month

integer day

integer hour

integer minute

integer second

Field Description:
year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour
(24 hr. format).

minute
Integer representing the minute.

second
Integer representing the second.

FORTRAN programmers, note that a Pascal variant record is a record structure that may be
interpreted differently depending on usage. In the case of variant records, as many illustrations
will appear as are necessary to show the number of interpretations.

INTRO-4

./~
I I

." •.... /.

,,_ ... '

o

o

o

o

o

System Call Descriptions

We have listed the system call descriptions alphabetically for quick reference. Each system call
description contains:

• An abstract of the call's function.

• The order of call parameters.

• A brief description of each parameter.

• A description of the call's function and use.

These descriptions are standardized to make referencing the material as quick as possible.

Each parameter description begins with a phrase describing the parameter. If the parameter can
be declared using a predefined data type, the descriptive phrase is followed by the phrase II ,in
:xxx: format, II where :xxx: is the predefined data type. Pascal or C programmers, look for this
phrase to determine how to declare a parameter.

FORTRAN programmers, use the second sentence of each parameter description for the same
purpose. The second sentence describes the data type in atomic terms that you can use, such as
"This is a 2-byte integer. 1I In complex cases, FORTRAN programmers are referenced to the
respective subsystem's data types section.

The rest of a parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

access
New access mode. in MS_$ACC_MODE_T format. This is a 2-byte integer.
Specify only one of the following predefined values:

MS_$R Read access.

MS_$WR Read and write access.

MS_$RIW Read with intent to write.

An object which is locked MS_$RIW may not be changed to MS_$R.

INTRO-5

Error Sections

Each error section lists the status codes that may be returned by subsystem calls. The following
information appears for each error:

• Predefined constant for the status code .

• Text associated with the error.

INTRO-6

/--~
/ '

I"

"-./

Q

o

o

o

ACLM

This section describes the call syntax for the ACLM programming calls. The ACLM calls do not
use special data types or produce unique error messages. Refer to the Introduction at the
beginning of this manual for a description of the call syntax format.

ACLM-l ACLM

ACLM $DOWN

ACLM $DOWN

Deasserts a program's subsystem manager rights.

FORMAT

ACLM_$DOWN

USAGE

This call deasserts a program's rights to gain access to an object in a protected subsystem,
which were asserted by a previous call to ACLM_$UP.

ACLM ACLM-2

/-~

!

o

o

o

o

o

ACLM $UP

ACLM $UP

Asserts a program's subsystem manager rights.

FORMAT

ACLM_$UP

USAGE

This call asserts a program's rights to gain access to an object in a protected subsystem,
until a corresponding call to ACLM_ $DOWN is made.

Access Control List manager (ACLM) calls are used by subsystem manager programs in
DOMAIN protected subsystems. A protected subsystem is a feature of the operating system
that ensures that access to certain objects is restricted to certain programs which are called
the managers of the subsystem that contains those objects.

In fact, even a subsystem manager, which has the right to gain access to the protected
objects, must call ACLM_ $UP to assert its rights before it can actually use a protected
object. Calling ACLM_ $DOWN deasserts a program's rights as a subsystem manager.

We recommend that you activate your rights as a subsystem manager for the minimum
amount of time you will need them using ACLM_$UP and ACLM_$DOWN to bracket
high-level statements or functions for which you need these rights. This ensures against
inadvertent use of the protected objects.

Calling ACLM_ $UP increments a counter in your process; calling ACLM_ $DOWN
decrements it. Subsystem manager operations are enabled whenever the counter is nonzero.
Having a counter instead of a flag ensures that if one routine enables subsystem manager
rights, and calls a routine that enables and disables subsystem manager rights, the calling
routine does not inadvertently lose its rights.

Calling ACLM_ $UP obtains all the subsystem rights to which you are entitled. If a
program that is not a subsystem manager calls ACLM_ $UP, it produces no effect, but does
not return an error. Likewise, calling ACLM_ $DOWN when subsystem manager rights
were already deasserted has no effect.

Protected subsystems and the reasons for using them are discussed completely in the
Administering Your DOMAIN System.

ACLM-3 ACLM

(~
, \

r--~

(
\

o

o

o

o

o

CAL

This section describes the data types, the call syntax:, and the error codes for the CAL
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data type diagrams and call syntax format.

CAL-l CAL

CAL DATA TYPES

CONSTANTS

CAL $STRING SIZE

DATA TYPES

CAL $DPVAL T

CAL $STRING T

CAL

80 Size of an ASCII string.

A double-precision floating point value. A 2-element
array of 4-byte integers. (REAL*8 for FORTRAN
programs.)

An array of up to CAL _ $STRING _ SIZE (80)
characters. An ASCII string.

CAL-2

o

o

o

o

o

CAL $TlMEDATE_REC T

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

CAL DATA TYPES

6 integer, readable time format. The diagram
below illustrates the cal $timedate rec t data
type:

field name

integer year

integer month

integer day

integer hour

integer minute

integer second

Field Description:

year
Integer representing the year.

month
Integer representing the month.

day
Integer representing the day.

hour
Integer representing the hour (24 hr.).

minute
Integer representing the minute.

second
Integer representing the second.

CAL-3 CAL

CAL DATA TYPES

CAL $TlMEZONE REC T

predefined
type

CAL $TZ NAME _ T

CAL $ WEEKDAY _ T

CAL

byte:
offset

0:

2:

(

6'

'10:

integer

char I char

Specifies time difference and timezone name. The
diagram below illustrates the
cal_ $timezone _ rec _ t data type:

field name

utc_delta

char I char

integer

integer
drift

Field Description:

utc delta
Number of minutes difference from UTe.

tz_name
Time zone name.

drift
Drift adjustment.

An array of up to 4 characters. Time zone name.

A 2-byte integer. Specifies the day of the week.
One of the following pre-defined values:

CAL_$SUN
Sunday

CAL_$MON
Monday

CAL_$TUE
Tuesday

CAL_$WED
Wednesday

CAL_$THU
Thursday

CAL_$FRI

Friday

CAL_$SAT
Saturday

CAL-4

/ "\

c

STATUS $T o

o

o

o

o

byte:
offset 31

0:

0:

1 :

CAL DATA TYPES

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name o
integer all

or

fail

subsys

mode
t-----.L...-.....,O

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

mode
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

CAL-5 CAL

CAL $ADD CLOCK

CAL $ADD CLOCK

Computes the sum of two times.

FORMAT

INPUT/OUTPUT PARAMETERS

clockl

Upon input

Upon output

The Coordinated Universal Time clock value to be added to clock2, in
TIME_$CLOCK_ T format. This data type is 6 bytes long. See the
CAL Data Types section for more information.

The sum of clock! and clock2, in TIME_$CLOCK_ T format. This
data type is 6 bytes long. See the CAL Data Types section for more
information.

INPUT PARAMETERS

clock2

CAL

The Coordinated Universal Time clock value to be added to clock!, in
TIME $CLOCK T format. This data type is 6 bytes long. See the CAL Data Types for
more information.

CAL-6

,~
(,
1,"-- __ /

~,
I

\." ._, "

~\
I
',,-, ,/

\" -'

o

o

o

o

o

CAL $APPL Y LOCAL OFFSET

OAL $APPL Y LOOAL OFFSET

Oomputes the local time from a UTO time.

FORMAT

INPUT/OUTPUT PARAMETERS

clock

Upon input

Upon output

USAGE

Ooordinated Universal Time clock value to which a local time zone offset
will be added, in TIME _ $OLOOK_ T format. This data type is 6 bytes
long. See the OAL Data Types section for more information.

Adjusted clock value, representing the local time equivalent of the input
parameter, in TIME_$OLOOK_ T format. This data type is 6 bytes
long. See the OAL Data Types section for more information.

OAL_$APPLY _LOOAL_OFFSET adds the local time zone offset to the supplied clock
value.

To set the local time zone offset, you may either execute the Shell command TZ
(TIME_ZONE) as described in the DOMAIN System Command Reference Manual, or
you may use the OAL _ $WRITE _ TIMEZONE procedure.

CAL-7 CAL

CAL $CLOCK TO SEC

CAL $CLOCK TO SEC

Converts system clock units to seconds.

FORMAT

RETURN VALUE

seconds
The computed equivalent of clock, in whole seconds. This is a 4-byte integer.

If the number of seconds calculated from the input value does not represent a whole
number, the fractional portion is truncated.

INPUT PARAMETERS

clock
The value to be converted, in TIME_$CLOCK_ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

USAGE

CAL

CAL_$CLOCK_ TO_SEC converts a value in system clock representation (UTC) to an
equivalent value in whole seconds.

The system clock value represents a time in units of 4 microseconds.

CAL-8

r~

~ '

\,----,,/

o

0

o

o

o

CAL $CMP CLOCK

CAL $GMP CLOCK

Compares the values of two times.

FORMAT

integer = CAL_$CMP_CLOCK (clock1, clock2)

RETURN VALUE

integer
The result of the logical compare of clock! to clock2. This is a 2-byte integer.

Integer
returned

1 if clock1 > clock2
0 if clockl = clock2

-1 if clock1 < clock2

INPUT PARAMETERS

clock!
The Coordinated Universal Time clock value to be compared to clock2, in
TIME $CLOCK T format. This data type is 6 bytes long. See the CAL Data Types
section for more information.

clock2
The Coordinated Universal Time clock value to be compared to clock!, in
TIME $CLOCK T format. This data type is 6 bytes long. See the CAL Data Types for
more information.

CAL-g CAL

CAL $DECODE ASCII DATE

CAL $DECODE ASCII DATE

Decodes an ASCII string containing a date specification.

FORMAT

CAL_$DECODE_ASCII_DATE (string, stringlength, year, month, day, status)

INPUT PARAMETERS

string
An ASCII character string, of length "stringlength" and in the form "year/month/day".
This is an array of up to 80 characters.

stringlength
The number of characters in the string. This is a 2-byte integer.

OUTPUT PARAMETERS

year
The year decoded from the string. This is a 2-byte integer.

month
The month decoded from the string. This is a 2-byte integer.

day
The day decoded from the string. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CAL
Data Types section for more information.

Possible values are:

CAL $BAD SYNTAX
The string provided is not in "year/month/day" format.

CAL $EMPTY STRING
The string length is zero or the string contains only spaces.

CAL $OUT OF RANGE
The value for month or day is invalid.

USAGE

CAL

CAL_$DECODE_ASCII_DATE translates the ASCII date in the supplied string into
three integers representing the year, month, and day. The string must contain a year, a
month, and a day, separated by slashes.

If a year between 80 and 99 is specified, CAL_$DECODE_ASCII_DATE adds 1900 to it
before returning. If a year between 0 and 79 is specified, 2000 is added.

Leading and trailing spaces are ignored.

CAL-lO

f~'
\,--/"

i-"

'\, /

o

o

o

o

o

CAL $DECODE ASCII TIME

OAL $DEOODE_ASOII TIME

Translates an ASCII string containing a time into integers.

FORMAT

CAL_$DECODE_ASCII_TlME (string. stringlength. hour. minute. second. status)

INPUT PARAMETERS

string
An ASOII character string of length "stringlength" in the form "hour:minute" or
"hour:minute:second ", in 24-hour format. This is an array of up to 80 characters.

stringlength
The number of characters in the string. This is a 2 -byte integer.

OUTPUT PARAMETERS

hour
The hour decoded from the string. This is a 2-byte integer.

minute
The minute decoded from the string. This is a 2-byte integer.

second
The second decoded from the string. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the OAL
Data Types section for more information. Possible values are:

OAL $BAD SYNTAX
The string is not in either "hour:minute:second II or "hour:minute"
format.

OAL $EMPTY STRING
String length is zero or the string contains only spaces.

OAL $OUT OF RANGE
The supplied ASOII value for hour, minute, or second is invalid.

USAGE

OAL_$DEOODE_ASOII_ TIME translates the ASOII string into three integers,
representing hours, minutes, and seconds.

If the string specifies only hours and minutes, the value returned for seconds is zero.

Leading and trailing spaces are ignored.

CAL-11 CAL

CAL $DECODE ASCII TZDIF

CAL $DECODE_ASCII TZDIF

Translates an ASCII string specifying a time zone into an offset from UTC.

FORMAT

CAL_$DECODE_ASCII_TZDIF (string. stringlength. tz-dif. tz-name. status)

INPUT PARAMETERS

string
An ASCII string containing a time zone name or time zone difference. This is an array of
up to 80 characters.

A time zone name is one of the following strings: (EST) Eastern Standard Time ,(EDT)
Eastern Daylight Time, (CST) Central Standard Time, (CDT) Central Daylight Time,
(MST) Mountain Standard Time, (MDT) Mountain Daylight Time, (PST) Pacific Standard
Time, (PDT) Pacific Daylight Time, (GMT) Greenwich Mean Time, and (UTC)
Coordinated Universal Time. These are the eight standard U.S. time zone names, plus
those for Greenwich Mean Time and Coordinated Universal Time.

A time zone difference is a value which, when added to Coordinated Universal Time,
produces the local time. Specify a time zone difference in the following form:

[+ I -]hour:minute

The hour must be a number between 0 and 12; the minute must be 0 or 30. The sign is
optional. For example, Eastern Daylight Time may be represented as -4:00.

stringlength
The number of characters in the string. This is a 2-byte integer.

OUTPUT PARAMETERS

tz-dif
The difference, in minutes, between the time zone specified in string and UTC. This is a
2-byte integer.

The value of tz-dif is negative for time zones west of the Greenwich Meridian and positive
for time zones east of the Greenwich Meridian.

tz-name

CAL

The time zone name, in CAL _ $TZ _ NAME _ T format. This is an array of up to 4
characters.

If the ASCII string contains a time zone name, this procedure returns that name in tz-name.
If the ASCII string contains a time zone difference, this procedure returns spaces in tz-name.

CAL-12

(~,
'\,._-/"

\
........ ~.--. /

c

o

o

o

o

o

CAL $DECODE ASCII TZDIF

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CAL
Data Types section for more information. Possible values are:

CAL $E1v1PTY STRING
String length is zero or the string contains only spaces.

CAL $UNKNOWN TIMEZONE
The string contains a time zone name that is unknown to this procedure.

CAL $BAD SYNTAX
The string appears to contain a time zone difference but is syntactically
incorrect.

CAL $INVALID TZDIF

USAGE

The string contains a time zone difference, but the number of hours is
greater than 12 or the number of minutes is not 0 or 30.

CAL_$DECODE_ASCII_ TZDIF translates the supplied ASCII string into an offset from
UTC, in units of minutes. The ASCII string can contain a time zone name or a time zone
difference.

CAL-13 CAL

CAL $DECODE _ LOCAL TIME

CAL $DECODE LOCAL TIME

Returns the local time in integer format.

FORMAT

OUTPUT PARAMETERS

decoded _ clock
The local time, in CAL_$TIMEDATE_REC_ T format. This data type is 12 bytes long.
See the CAL Data Types section for more information.

USAGE

CAL

CAL_$DECODE_LOCAL_ TIME returns the local time in II year, month, day, hour,
minute, second II format.

CAL-14

o

o

o

o

o

CAL $DECODE TIME

CAL $DECODE TIME

Translates an internal system clock value into a readable date and time.

FORMAT

INPUT PARAMETERS

clock
The value to be translated, in TIME _ $CLOCK_ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

OUTPUT PARAMETERS

decoded clock
A date and time, in CAL_$TIMEDATE_REC _ T format. This data type is 12 bytes
long. See the CAL Data Types section for more information.

USAGE

CAL $DECODE_ TIME translates a time in TIME_$CLOCK_ T form into
CAL_$TIMEDATE_REC _ T ("year, month, day, hour, minute, second") form.

This routine translates clock values, such as those returned from the TIME _ $CLOCK,
CAL _ $GET _ LOCAL _ TIME, CAL _ $APPL Y _ LOCAL _ OFFSET, and
CAL $ENCODE TIME routines.

CAL-I5 CAL

CAL $ENCODE TIME

CAL $ENCODE TIME

Translates a date and time from integer format into a system clock representation.

FORMAT

INPUT PARAMETERS

decoded _ clock
A date and time, in CAL _ $TIMEDATE _REC _ T format. This data type is 12 bytes
long. See the CAL Data Types section for more information.

OUTPUT PARAMETERS

clock
The system clock equivalent value of decoded_clock, in TIME_$CLOCK_ T format. This
data type is 6 bytes long. See the CAL Data Types section for more information.

USAGE

CAL

CAL _ $ENCODE _ TIME translates the date and time specified by decoded_ clock into the
equivalent system representation.

CAL-16

.. /

c:'

u

o

o

o

o

CAL $FLOAT CLOCK

CAL $FLOAT CLOCK

Converts a system clock representation to the equivalent number of seconds, in
double-precision floating-point format.

FORMAT

INPUT PARAMETERS

clock
The value to be converted, in TIME _ $CLOCK_ T format. This data type is 6 bytes long.
See the CAL Data Types section for more information.

OUTPUT PARAMETERS

float _ seconds
The converted value of clock, in seconds. This is in double-precision floating-point
(REAL*8) format.

USAGE

CAL _ $FLOAT _ CLOCK converts a clock value in UTC format to the equivalent number
of seconds expressed as a double-precision floating-point number.

Unlike CAL_$CLOCK_TO_SEC, CAL_$FLOAT_CLOCK does not truncate the
fractional portion of the conversion.

CAL-17 CAL

CAL $GET INFO

CAL $GET INFO

Returns local time zone information.

FORMAT

OUTPUT PARAMETERS

timezone info
A record containing the name of the local time zone and its offset from UTC, in
CAL_$TIMEZONE_REC_ T format. This data type is 12 bytes long. See the CAL Data
Types section for more information.

USAGE

CAL

CAL $GET _INFO returns the name of the local time zone and the difference between
local time and Coordinated Universal Time (UTC).

CAL-18

c

C)

o

o

o

o

CAL $GET _ LOCAL TIME

OAL _ $GET _LOOAL _ TIME

Returns the current local time in system clock representation.

FORMAT

OUTPUT PARAMETERS

clock
The current local time, in TIME _ $OLOOK_ T format. This data type is 6 bytes long. See
the OAL Data Types section for more information.

This is the number of 4-microsecond periods that have elapsed since January 1, 1980, 00:00.

CAL-19 CAL

CAL $REMOVE _LOCAL OFFSET

CAL $REMOVE LOCAL OFFSET

Computes the UTC time from local time.

FORMAT

INPUT/OUTPUT PARAMETERS

clock

Upon input

Upon output

Local time from which the local time offset will be removed, in
TTh1E _ $CLOCK_ T format. This data type is 6 bytes long. See the
CAL Data Types section for more information.

Adjusted clock value, representing the UTC equivalent of the input
parameter, in TIME_ $CLOCK_ T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

USAGE

CAL

CAL $REMOVE _ LOCAL OFFSET subtracts the local time zone offset from the
supplied clock value.

To set the local time zone offset, you may either execute the Shell command TZ
(TIME_ZONE) as described in the DOMAIN System Command Reference, or you may
use the CAL _ $WRITE _ TIMEZONE procedure.

CAL-20

c

o

o

o

o

o

CAL $SEC TO CLOCK

CAL $SEC TO CLOCK

Converts seconds to system clock units.

FORMAT

INPUT PARAMETERS

seconds
The value to be converted. This is a 4-byte integer.

OUTPUT PARAMETERS

clock
The computed equivalent of seconds, in TIME_$CLOCK_ T format. This data type is 6
bytes long. See the CAL Data Types section for more information.

USAGE

CAL _ $SEC _ TO _ CLOCK converts a value representing seconds to an equivalent value in
4-microsecond units.

No overflow detection is performed.

CAL-21 CAL

CAL $SUB CLOCK

CAL $SUB CLOCK

Subtracts the values of two times.

FORMAT

value = CAL_$SUB_CLOCK (clockl. clock2)

RETURN VALUE

value
The Boolean result of the subtraction of clock2 from clockl. The returned value is TRUE if
the result is >= o.

INPUT/OUTPUT PARAMETERS

clock!

Upon input

Upon output

The Coordinated Universal Time clock value from which clock2 is
subtracted, in TIME_ $CLOCK_ T format. This data type is 6 bytes
long. See the CAL Data Types section for more information.

The difference between clockl and clock2, in TIME _ $CLOCK_ T
format. This data type is 6 bytes long. See the CAL Data Types section
for more information.

INPUT PARAMETERS

clock2

CAL

The Coordinated Universal Time clock value to be subtracted from clockl, in
TIME $CLOCK T format. This data type is 6 bytes long. See the CAL Data Types
section for more information.

CAL-22

I~

\
\ , .. ,/

--~-----

o

o

o

o

o

CAL $WEEKDAY

CAL $WEEKDAY

Computes the day of the week given a year, month, and day.

FORMAT

weekday = CAL_$WEEKDAY (year. month. day)

RETURN VALUE

weekday
The computed day of the week, in CAL_$WEEKDAY _ T format. This is a 2-byte
integer. Returns one of the following predefined values:

CAL $SUN. CAL $MON. CAL $TUE. CAL $WED.
CAL=$THU. CAL=$FRI. CAL=$SAT. -

Their ordinal values are 0 through 6.

INPUT PARAMETERS

year
The year for which the weekday is desired. This is a 2-byte integer.

month
The month for which the weekday is desired. This is a 2-byte integer.

day
The day of the month for which the weekday is desired. This is a 2-byte integer.

USAGE

CAL _ $WEEKDA Y computes the day of the week for any Gregorian date.

CAL-23 CAL

CAL $WRITE TIMEZONE

CAL $WRITE Tllv1EZONE

Writes local time zone information onto the boot volume.

FORMAT

CAL_$WRITE_TlMEZONE (t1mezone_info, status)

INPUT PARAMETERS

timezone _ info
The time zone information to be recorded, in CAL_$Tllv1EZONE_REC_ T format. This
data type is 12 bytes long. See the CAL Data Types section for more information.

The supplied time zone information includes the name of the time zone and its offset form
UTC.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CAL
Data Types section for more information.

USAGE

CAL

CAL _ $WRITE _ Tllv1EZONE writes the supplied time zone information onto the logical
disk volume from which the operating system was started.

This procedure is invalid on a diskless node, and returns a nonzero status.

The time zone information written by this procedure is used by subsequent calls to
CAL _ $DECODE _ LOCAL _ Tllv1E, CAL _ $GET _ LOCAL _ Tllv1E,
CAL_$APPLY _LOCAL_ OFFSET, and CAL_$GET _INFO.

A nonzero status indicates a system problem in reading or writing the volume.

CAL-24

o

o

o

o

o

ERRORS

STATUS $OK
Successful completion.

CAL $BAD SYNTAX
Invalid syntax for date or time specification.

CAL $E:MPTY STRING
An empty string was passed to a decode routine.

CAL $INV ALID TZDIF
Invalid time-zone difference.

CAL $OUT OF RANGE
Date or time specification invalid.

CAL $UNKNOWN TllvlEZONE
Timezone specified is unknown.

CAL-25

CAL ERRORS

CAL

0., '" /'

f"'\

i"
I
\.,,- ./

o

o

o

o

o

EC2

This section describes the data types, the call syntax, and the error codes for the EC2
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data type diagrams and call syntax format.

EC2-1 EC2

EC2 DATA TYPES

CONSTANTS

EC2 $ALWAYS _READY _EC 1

DATA TYPES

EC2 $EVENTCOUNT T

predefined byte:
type offset

0:

4:

EC2 $PTR LIST T

EC2 $PTR T

EC2 $V AL _ LIST T

EC2

Replaces an EC2 _ $PTR pointer to indicate that
the event is always ready.

An eventcount. The diagram below illustrates the
EC2 _ $EVENTCOUNT _ T data type:

field name

integer value

integer awaiters

Field Description:

value
The value of the eventcount.

awaiters
Reserved for internal use by the EC2 manager.

An array of up to 32 pointers to eventcounts. Each
pointer isa 4-byte integer in EC2_$PTR_ T
format.

A 4-byte integer. A pointer to an eventcount.

An array of trigger values for each of the
eventcounts in an eventcount pointer list. Each
trigger value is a positive, 4-byte in~eger.

EC2-2

._-----------------_ ... _----_ •.....•

0

STATUS $T

u

o

o

o

o

byte:
offset 31

0:

0:

1 :

EC2 DATA TYPES

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
~_-J..._.....,o

2: integer code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

EC2-3 EC2

EC2 $ADVANCE

E02 $ADV ANOE

Advances the specified user-defined eventcount by one.

FORMAT

EC2_$ADVANCE (eventcount. status)

INPUT/OUTPUT PARAMETERS

eventcount
Eventcount to be advanced, in E02 _ $EVENTOOUNT _ T format. This data type is 6
bytes long. See the E02 Data Types section for more information.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the E02
Data Types section for more information.

USAGE

EC2

E02 _ $ADV ANOE advances a user-defined eventcount; do not use this call to advance a
system-defined eventcount. A user-defined eventcount is one that a process establishes with
E02 $INIT.

In order to advance an eventcount, you must have read and write access to the emory
location where the eventcount is located. Typically, the eventcount is in a mapped file, and
you should use MS _ $MAPL to map this file.

When you map a file containing an eventcount, you should request a shared write lock.
Only processes on the same node can concurrently get shared write locks on the same file.
See MS _ $MAPL for more information about mapping a file.

EC2-4

~
I

\.... /

------- -----

o

o

o

o

o

EC2 $INIT

EC2 $INIT

Initializes a user-defined eventcount.

FORMAT

EC2_$INIT (eventcount)

INPUT PARAMETERS

None.

OUTPUT PARAMETERS

eventcount
Initialized eventcount, in EC2 _ $EVENTCOUNT _ T format. This data type is 6 bytes
long. See the EC2 Data Types section for more information.

USAGE

Use this call to initialize a user-defined eventcount. Initialize the eventcount within a file
that several programs will share. First, map the file for shared write access (by requesting a
shared write lock.) Then use EC2 _ $INIT to initialize the eventcount. All programs that
use the eventcount must first map the file containing the eventcount. See the Mapped
Segment (MS) calls for more information on mapping.

Do not use EC2 _ $INIT to initialize a system-defined eventcount; the system automatically
initializes eventcounts associated with system events. To use a system-defined eventcount,
use the system call that gets the address of the eventcount you want to wait on. For
example, use MBX_ $GET _EC to get the address of a mailbox eventcount.

EC2-5 EC!!

EC2 $READ

E02 $READ

Returns the current value of an eventcount.

FORMAT

ec-value = EC2_$READ (eventcount)

RETURN VALUE

ec-vaiue
Value of the eventcount. This is a positive, 4-byte integer.

INPUT PARAMETERS

eventcount
Eventcount, in E02 _ $EVENTOOUNT _ T format. This data type is 6 bytes long. See
the EC2 Data Types section for more information.

OUTPUT PARAMETERS

None.

USAGE

Use E02 $READ to read the value of an eventcount.

EC2 EC2-6

c

c

EC2 $WAIT

EC2 $WAIT o Waits until any of a list of eventcounts reaches a trigger value.

o

o

o

o

FORMAT

ec-satisfied = EC2_$WAIT (ec-plist, ec-vlist, ec-count, status)

RETURN VALUE

ec-satisfied
An ordinal number indicating the eventcount that is satisfied. This is a positive, 2-byte
integer.

INPUT PARAMETERS

ec-plist
Array of pointers to eventcounts. Each pointer is a 4-byte integer in EC2 _ $PTR _ T
format. The total number of eventcounts in ec-plist lists in anyone node cannot exceed 32.

ec-vlist
Array of trigger values for each of the eventcounts in the ec-plist. Each trigger value is a
positive, 4-byte integer. When any of the eventcounts from the ec-plist reaches its trigger
value, the EC2 _ $W AIT call returns.

ec-cQunt
Number of eventcounts in the ec-plist. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the EC2
Data Types section for more information.

USAGE

EC2 _ $W AIT waits until one of the eventcounts in the ec-plist reaches its trigger value in
the ec-vlist. When an eventcount reaches its trigger value, EC2 _ $W AIT returns an index
value indicating the position (in the ec-plist) of the eventcount that is satisfied. The index
starts from 1; that is, ec-satisfied equals 1 if the first eventcount in the ec-plist is satisfied.

Several eventcounts may have been satisfied by the time this call wakes your program. The
index number returned refers to only one of the eventcounts. If more than one eventcount
is satisfied, EC2 _ $W AIT returns the one with the smallest subscript.

EC2 _ $W AIT only returns when an eventcount advances, regardless of the asynchronous
fault handling setting. An asynchronous fault, such as a II quit II , is generated outside your
program. If an asynchronous fault occurs during an EC2 _ $W AIT call, your program's
response depends on the type of error handling that is in effect.

EC2-7 EC2

EC2 $WAIT

EC2

If asynchronous faults are enabled, a program can respond to an asynchronous fault with a
clean-up handler or fault handler. If. an asynchronous fault occurs during an EC2 _ $W AIT
call, and asynchronous faults are enabled, the program will perform one of the following:

• Execute the clean-up handler, if the program has one.

• Execute the fault handler, if the program has one. If the fault handler returns
control to the interrupted code, EC2 _ $W AIT continues waiting.

• If the program has neither a clean-up handler nor a fault handler, the program
aborts if an asynchronous fault occurs.

If a program disables asynchronous faults and such a fault occurs during an EC2 _ $W AIT,
then the program ignores the fault and continues waiting.

Note that the call EC2 _ $W AIT _ SVC responds differently to asynchronous faults.

EC2-8

o

o

o

o

o

EC2 $WAIT SVC

EC2 $W AIT SVC

Waits until any of a list of eventcounts reaches a trigger value.

FORMAT

ec-satisfied = EC2_$WAIT_SVC (ec-plist. ec-vlist. ec-count. status)

RETURN VALUE

ec-satistied
An ordinal number indicating the eventcount that was satisfied. This is a positive, 2-byte
integer.

INPUT PARAMETERS

ec-plist
Array of pointers to eventcounts. Each pointer in the array is a 4-byte integer in
EC2 $PTR T format. The total number of eventcounts in ec-plist lists in anyone node
cannot exceed 32.

ec-vlist
Array of trigger values for each of the eventcounts in the ec-plist. Each trigger value is a
positive, 4-byte integer. When any of the eventcounts from the ec-plist reaches its trigger
value, the EC2 _ $W AIT _ SVC call returns.

ec-cQunt
Number of eventcounts in the ec-plist. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the EC2
Data Types section for more information.

USAGE

EC2 _ $W AIT _ SVC waits until one of the eventcounts in the ec-plist reaches its trigger
value in the ec-vlist. When an eventcount reaches its trigger value, EC2 _ $W AIT _ SVC
returns an index value indicating the position (in the ec-plist) of the eventcount that is
satisfied. The index starts from 1; that is, ec-satisfied equals 1 if the first eventcount in the
ec-plist is satisfied.

Several event counts may have been satisfied by the time this call wakes your program. The
index number returned refers to only one of the eventcounts. If more than one eventcount
is satisfied, EC2 _ $W AIT _ SVC returns the one with the smallest subscript.

In certain cases, EC2 _ $W AIT _ SVC returns the error EC2 _ $W AIT _ QUIT if an
asynchronous fault occurs during the EC2 _ $W AIT _ SVC call. An asynchronous fault,
such as a II quit II , is generated outside your program. If an asynchronous fault occurs
during an EC2_$WAIT call, your program's response depends on the type of error
handling that is in effect.

EC2-9 EC2

EC2 $WAIT SVC

EC2

If asynchronous faults are enabled, a program can respond to an asynchronous fault with a
clean-up handler or a fault handler. If an asynchronous fault occurs during an
E02 _ $W AIT _ SVO call, and asynchronous faults are enabled, the program will perform
one of the following:

• Execute the clean-up handler, if the program has one.

• Execute the fault handler, if the program has one. If the fault handler returns
control to the interrupted code, E02 _ $W AIT _ SVO returns the error
E02 _ $W AIT _ QUIT.

• If the program has neither a clean-up handler nor a fault handler, the program
aborts if an asynchronous fault occurs.

If a program disables asynchronous faults and such a fault occurs during an
E02 _ $W AIT _ SVO, then the program does not handle the fault. However,
E02 _ $W AIT _ SVO returns the error E02 _ $W AIT _ QUIT.

Note that the call E02 _ $W AIT responds differently to asynchronous faults.

EC2-10

o

o

o

o

o

ERRORS

STATUS $OK
Successful completion.

EC2 $BAD EVENTCOUNT
Bad eventcount.

EC2 $INTERNAL ERROR
In ternal error.

EC2 $NO WAIT ENTRIES
Internal table exhausted.

EC2 _ $W AIT _ QUIT
Process quit while waiting.

EC2 ERRORS

EC2-11 EC2

f"
I

\ ... /'

c

o

o

o

C)

o

ERROR

This section describes the data types and the call syntax for the ERROR programming calls. The
ERROR calls do not produce unique error messages. Refer to the Introduction at the beginning
of this manual for a description of data type diagrams and call syntax format.

ERROR-l ERROR

ERROR DATA TYPES

DATA TYPES

ERROR $INTEGER32

ERROR $STRING PTR T

ERROR $STRING T

STATUS $T

byte:
offset 31

0:

0:

1 :

A 2-byte integer. Possible values are integers from
-1 through 2147483647.

A 4-byte integer. A pointer to an
ERROR _ $STRING _ T data type.

An array of up to 80 characters.

A status code. The diagram below illustrates the
STATUS_$T data type:

field name
o

integer all

or

fail

subsys

modc
1---.....1----,0

2: integer

ERROR

code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

ERROR-2

o

o

o

o

o

ERROR $CODE

ERROR $CODE

Returns the module-specific code from a status code.

FORMAT

code = ERROR_$CODE (status)

RETURN VALUE

code
The module-specific code component of the supplied status code. This is a 2-byte integer.

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $CODE extracts and returns the module-specific code from the supplied status
code. The module-specific code is the rightmost 16 bits of a STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR-3 ERROR

ERROR $FAIL

ERROR $FAIL

Returns the state of the fail bit of a status code.

FORMAT

fail = ERROR_$FAIL (status)

RETURN VALUE

fail
The value of the fail bit of the status code. This is a Boolean (logical) value.

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $F AIL extracts and returns the value of the fail bit of the supplied status code.
The fail bit is bit number 31 in the STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR ERROR-4

,~'-,

I" ,

'- ...'

(
\, .

o

o

o

o

o

ERROR $FIND TEXT

ERROR $FIND TEXT

Finds the text associated with a status code and returns pointers.

FORMAT

ERROR $FIND TEXT (status. sUbsys_p. sUbsys_l. module_p, module_I.
code_p, cOde_I)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

OUTPUT PARAMETERS

subsys_p
The returned pointer to the subsystem name, in ERROR_$STRING_PTR_ T format.
This is a 4-byte integer.

subsys_1
The number of characters in the string pointed to by subsys_p. This is a 2-byte integer.

module_p
The returned pointer to the module name, in ERROR_$STRING_PTR_ T format. This
is a 4-byte integer.

module I
The number of characters in the string pointed to by module_po This is a 2-byte integer.

code_p
The returned pointer to the diagnostic text, in ERROR _ $STRING _PTR _ T format.
This is a 4-byte integer.

code I
The number of characters in the string pointed to by code_po This is a 2-byte integer.

USAGE

ERROR _ $FIND _ TEXT looks up and returns pointers to the text associated with a status
code.

Text is associated with three components of the STATUS _ $T type: subsystem name
("subsys"), module name (limodule"), and error text ("code"). If
ERROR _ $FIND _ TEXT cannot find the text associated with a component in the status
code, a string length of zero is returned for the component. In this case, the pointer for
that component is not useable.

If the subsystem text length is zero, the status is invalid. If the module text length is zero,
both the module and code fields are invalid.

FORTRAN programs should use ERROR_ $GET _ TEXT instead of this routine.

ERROR-5 ERROR

ERROR $GET TEXT

ERROR $GET TEXT

Finds the text associated with a status code and returns strings.

FORMAT

ERROR $GET TEXT (status. subsys_t. subsys_l, module_t. module_I.
cOde_t. code_I)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

OUTPUT PARAMETERS

subsys_t
The text string containing the subsystem name, in ERROR _ $STRING _ T format. This is
an array of up to 80 characters.

subsys_1
The number of characters in the subsystem name. This is a 2-byte integer.

module t
The text string containing the module name, in ERROR _ $STRING _ T format. This is an
array of up to 80 characters.

module I
The number of characters in the module name. This is a 2-byte integer.

code t
The text string containing the diagnostic text, in ERROR _ $STRING _ T format. This is
an array of up to 80 characters.

code I
The number of characters in the diagnostic text. This is a 2-byte integer.

USAGE

ERROR _ $GET _ TEXT looks up and returns the text associated with a status code.

Text is associated with three components of the STATUS _ $T type: subsystem name
("subsys"), module name ("module"), and error text ("code ll

). If ERROR_ $GET _ TEXT
cannot find the text associated with a component in the status code, a string length of zero
is returned for the component.

If the subsystem text length is zero, the status is invalid. If the module text length is zero,
both the module and code fields are invalid.

The returned strings are not blank-filled. They contain only the number of characters
necessary to represent the names and diagnostic text.

ERROR ERROR-6

o

o

o

o

o

ERROR $INIT STD FORMAT

ERROR $INIT STD FORMAT

Establishes the values to be used in subsequent calls to ERROR_$STD _FORMAT.

FORMAT

ERROR_$INIT_STD_FORMAT (stream-id. prefix-char. command. length)

INPUT PARAMETERS

stream id
The stream on which to write the error output, in STREAM_ $ID _ T format. This is a
2-byte integer. This is usually STREAM_ $ERROUT (Stream ID = 3).

prefix-char
The prefix element of the error format. This is one character. For system messages, this
value is usually a question mark (1).

command
The command name, in ERROR _ $STRING _ T format. This is an array of up to 80
characters.

length
The length of the command name, in bytes. This value can be zero.

USAGE

This call establishes constant values for the standard error reporting format. Subsequent
calls to ERROR_ $STD _FORMAT cause error messages to use the values supplied in this
call.

Multiple calls may be made to ERROR_$INIT _STD _FORMAT, but the information is
kept on a per-process-Ievel basis. Thus, successive calls to
ERROR_ $INIT _STD _FORMAT on the same process level replace previous error format
definitions.

Oalling ERROR_ $INIT _STD _FORMAT and ERROR_ $STD _FORMAT is equivalent
to calling ERROR_ $PRINT _FORMAT. For program~ that use common subroutines, the
former method provides more flexibility. For example, if an application's command level
sets the command name with ERROR _ $INIT _ STD _ FORMAT, it automatically provides
the common lower-level modules with the correct command name for their error messages.
Also, because ERROR _ $STD _FORMAT has fewer parameters, it is easier to code using
the pair of calls instead of using ERROR_ $PRINT _FORMAT.

ERROR-7 ERROR

ERROR $MODULE

ERROR $MODULE

Returns the module component from a status code.

FORMAT

module = ERROR_$MODULE (status)

RETURN VALUE

module
The module component of the supplied status code. This is a 2-byte integer.

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $MODULE extracts and returns the module component of the supplied status
code. The module is found in bits 23 through 16 of the STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR ERROR-8

o

o

o

o

o

ERROR $PRINT

ERROR $PRINT

Prints error text associated with a status code.

FORMAT

ERROR_$PRINT (status)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR_ $PRINT looks up the text associated with the status code and writes it to the
error output stream.

If text is associated with all fields in the status code (subsystem, module, and code), a line is
output containing the subsystem and module names.

If the text for any of the three fields is not found, the status code is displayed in
hexadecimal, along with the subsystem and module names, if known.

The STeODE command, which can be used to view error messages, uses ERROR _ $PRINT
to output the error text.

ERROR-9 ERROR

ERROR $PRINT FORMAT

ERROR $PRINT FORMAT

Prints a status code in the given error format.

FORMAT

ERROR_$PRINT_FORMAT (status. stream-id. prefix-char. command. length.
control-string. al. a2 alO)

INPUT PARAMETERS

status
The status code to be displayed in standard error format, in STATUS _ $T format. This
data type is 4 bytes long. See the ERROR Data Types section for more information.

If the status code is zero, the dash and following error text are omitted from the message.

stream-id
The stream on which to write the error output, in STREAM_ $ID _ T format. This is a
2-byte integer. This value is usually STREAM_ $ERROUT (Stream ID + 3).

prefix-char
The prefix element of the error format. This is one character. For system error messages,
this value is usually a question mark (1).

command
The command name, in ERROR _ $STRING _ T format. This is an array of up to 80
characters.

length
Length of the command name, in bytes. This is a 2-byte integer. If length is zero, the
command name portion of the standard error format is omitted.

, control-string
A character string that contains text and control information for encoding the arguments
that follow. It is a VFMT-COM1v1ENT control string that must at least contain the two
special characters (%, $). For detailed information on VFMT control strings, see Chapter 3
of Programming With General System Calls.

aI, a2, ... alO
One-to-tensubstitution arguments that contain data for encoding using the control-string
parameter.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

ERROR ERROR-IO

.. ~,

\ .. ' '

o

o

o

o

o

ERROR $PRINT FORMAT

USAGE

ERROR_ $PRINT _FORMAT prints an error in the standard error format.

ERROR_$PRINT _FORMAT takes a variable number of arguments in the al. .. alO
parameters. However, all arguments up to and including the control string must be given.

This routine uses the same control string format as the variable formatting routine
VFMT $WRITE.

ERROR-ll ERROR

ERROR $PRINT NAME

ERROR $PRINT NAME

Prints error text associated with a status code, along with a user-supplied name.

FORMAT

ERROR_$PRINT_NAME (status. name. namelength)

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

name
The name to be printed. This is an array of up to 80 characters.

namelength
The length of the name to be printed, in bytes. This is a 2-byte integer.

USAGE

ERROR _ $PRINT _ NAME looks up the text associated with the status code and writes it
to the error output stream, along with the supplied name.

If text is associated with all fields in the status code (subsystem, module, and code), output
appears with the supplied name first, followed by a descriptive error message corresponding
to the status code, followed the subsystem and module names in parentheses.

If the text for any of the three fields is not found, the status code is displayed in
hexadecimal, along with the subsystem and module names, if known. The supplied name is
also displayed, in the form shown above.

ERROR ERROR-12

\..... __ . /

o

o

o

o

o

ERROR $STD_FORMAT

ERROR $STD FORMAT

Prints the status code in the standard error format using the values specified in the last call
to ERROR $INIT STD FORMAT.

FORMAT

ERROR_$STD_FORMAT (status. control-string. ai. a2 •... ai0)

INPUT PARAMETERS

status
The status to be printed in standard error format, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

control-string
A character string that contains text and control information for encoding the arguments
that follow. It is a VFMT-C01v1MENT control string that must at least contain the two
special characters (%, $). For more information on VFMT control strings, see Chapter 3 of
Programming With General System Calls.

ai, a2, •.• al0
One-to-ten substitution arguments that contain data for encoding using the control-string
parameter.

If you are encoding ASCII text strings, you must provide two variables for each text string:
a character string containing the string, and a 2-byte integer variable containing the length
of the string.

USAGE

Programs using ERROR_ $STD _FORMAT must first call
ERROR $INIT STD FORMAT to establish constant values for the standard error
reporting format.

This routine uses the same control string format as the variable formatting routine
VFMT $WRITE.

ERROR-13 ERROR

ERROR $SUBSYS

ERROR $SUBSYS

Returns the subsystem component from a status code.

FORMAT

subsys = ERROR_$SUBSYS (status)

RETURN VALUE

subsys
The subsystem component of the supplied status code. This is a two-byte integer.

INPUT PARAMETERS

status
A status code returned from DOMAIN software, in STATUS _ $T format. This data type
is 4 bytes long. See the ERROR Data Types section for more information.

USAGE

ERROR _ $SUBSYS extracts and returns the subsystem component of the supplied status
code. The subsystem is found in bits 30 through 24 of the STATUS _ $T data type.

This routine is intended for use by FORTRAN programs that need to check for specific
status codes. Pascal programs can refer to this component directly.

ERROR ERROR-14

~ ... -.... .-,.

~\

/'

o

o

o

GM

This section describes the data types, the call syntax, and the error codes for the GM
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data type diagrams and call syntax format.

GM-l GM

GM DATA TYPES

CONSTANTS

GM $MAX ACLASS

GM $MAX ARRAY_LENGTH

16

1000

40

The maximum number of attribute classes is 16.

The maximum number of elements in a
gm_$array ... _t is 1000.

The maximum number of attribute blocks is 40.

GM_$MAX_CURSOR PATTERN WORDS 16
The maximum number of words in a cursor pattern.

GM $MAX_DRAW PATTERN BYTES 8
The maximum number of bytes in a draw pattern.

GM_ $MAX_FILE 16 The maximum number of files is 16.

GM_$MAX_FILL_PATTERN_LWORDS 32

GM $MAX FONT FAMILY

GM $MAX GRID

GM $MAX INSTANCE DEPTH

GM $MAX PIXEL_ VALUE

GM_ $MAX PRIM ID

GM $MAX SEGMENT

GM $ MAX _ SEGMENT ID

32

8

4

32

255

7

16

65536

The max number of long words in a fill pattern.

The maximum number of font family identification
numbers is 32.

The maximum number of font families is 8.

The maximum number of grids that may be
associated with a vewport.

The maximum instancing depth.

The maximum value for color map entries; the
numbers are 0 through 255.

The maximum number of planes.

The maximum number of primitive commands is
16.

The maximum number of segments; the numbers
are 0 through 65536

16#7FFFFFFF
The largest possible segment id.

GM $MAX SEGMENT NAME LENGTH 12

GM $MAX STRING LENGTH

GM $ MAX _ VIEWPORT

GM_ $OUTI CmCLE

GM $OUTI CmCLE FILL

GM

12

64

16#40

16#41

Maximum length for segment names is 12.

The maximum length of a GM string is 12.

The maximum number of viewports is 64.

Opcode to format vector output.

Opcode to format vector output.

GM-2

('
\

o

o

o

o

o

GM $OUTI CURVE

GM_ $OUTI DRAW_STYLE

GM $OUTI DRAW VALUE

GM _ $OUTI EOF

16#50

16#81

16#80

16#00

GM $OUTl_FILL BACKGROUND_VALUE

GM _ $OUTI FILL PATTERN

GM $OUTI FILL VALUE

GM $OUTI FONT FAMILY

GM_ $OUTI PLANE_MASK

GM_$OUTI POLYLINE_2D

GM $OUTI POLYLINE CLOSE 2D

16#92

16#90

16#A3

16#82

16#20

GM $OUTI POLYLINE FILL 2D 16#22

GM $OUTI PRIMITIVE

GM $OUTI RECTANGLE

GM $OUTI RECTANGLE_FILL 2D

GM $OUTI TEXT

16#60

16#30

16#70

GM $OUTI TEXT_BACKGROUND VALUE

fd
GM $OUTI TEXT SIZE

GM $OUTI TEXT VALUE

DATA TYPES

GM_ $ACC CREATE _ T

16#A2

16#AO

GM DATA TYPES

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

16#91
Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

16#21
Opcode to format vector output.

Opcode to format veGtor output.

Opcode to format vector output.

Opcode to format vector output.

16#31
Opcode to format vector output.

Opcode to format vector output.

16#Al
Opcode to format vector output.

Opcode to format vector output.

Opcode to format vector output.

A 2-byte integer. Specifies the access mode. One of
the following predefined values:

GM $WRITE
An error is returned if the file already exists.

GM-3 GM

GM DATA TYPES

GM $ACC OPEN T

GM $ARRAY16 _ T

GM_ $ARRA Y32 T

GM_ $BORDER_ UNIT _ T

GM

GM_ $ OVERWRITE
The previous version is deleted if the file
already exists.

GM $UPDATE

The previous version is opened if the file
already exists.

A 2-byte integer. Specifies the read/write
accessibility. One of the following predefined
values:

GM $WR
Access is read or write.

GM_$R
Access is read only.

GM $CWR
Access is read or write; if the file does not
exist, create it.

An array of 2-byte integers with
MAX_ARRAY _LENGTH elements. A list of
coordinate points.

An array of 4-byte integers with
MAX_ARRAY _LENGTH elements. A list of
coordinate points.

An array of floating-point numbers with
MAX_ARRAY _LENGTH elements. A list of
coordinate points.

A 2-byte integer. The units for border size. One of
the following predefined values:

GM_$PIXELS

Expresses edge width in pixels.

GM_ $FRACTIONS
Expresses edge width as fractions of the total
GM bitmap size.

GM-4

c

.~\

GM_ $BOUNDSREAL T

o

byte:
offset

0:

4:

r--'. 8:

~)
12:

o

o

o

GM DATA TYPES

Defines the bounds of a rectangular area. The
diagram below illustrates the gm_ $boundsreal_ t
data type:

field name

real xmiri

real ymin

real xmax

real ymax

Field Description:

xmin
The x-coordinate of the bottom-left corner of
the rectangle.

ymin
The y-coordinate of the bottom-left corner of
the rectangle.

xmax
The x-coordinate of the top-right corner of the
rectangle.

ymax
The y-coordinate of the top-right corner of the
rectangle.

GM-5 GM

GM DATA TYPES

GM $COLOR _ENTRY T

GM $COLOR _ VECTOR _ T

GM

A 3-element array of real values. Specifies color
values in this order: red, green, blue.

An array of 4-byte integers, of up to 256 elements.
Specifies a list of color values.

A 2-byte integer. Specifies the command type as
follows: One of the following predefined values:

GM _ $TACLASS

Attribute class.

GM $TCmCLE 2D
Circle.

GM_ $TCURVE _ 2D

Curve.

GM $TDRAW_RASTER OP
Raster operations used in drawing.

GM $TDRAWSTYLE
Line style used in drawing.

GM_ $TDRA WV ALUE
Pixel value used in drawing.

GM $TFILLV ALUE
Fill value used in drawing.

GM _ $TFILLP ATTERN
Fill pattern used in drawing.

GM_ $TFONTFAMIL Y
Font family.

GM $TINSTANCE SCALE 2D
Scale and translate a segment instance.

GM _ $TINSTANCE _ TRANS 2D

Translate a segment instance.

GM_$TINSTANCE TRANSFORM 2D
Rotate and translate a segment instance.

GM $TPLANEMASK
Segment: change plane mask.

GM $TPOL YLINE
Draw a linked set of line segments.

GM $TPRIMITIVE
Draw a primitve.

GM $TRECTANGLE
Draw a rectangle.

GM-6

~

(
'''''---- -

c

o

GM_~CONC MODE_T

o

o

GM $CURVE T

o

GM_ $DATA TYPE T

o

GM DATA TYPES

GM_$TTAG

Insert a tag.

GM $TTEXT 2D
Write a text string.

GM_ $TTEXTBV ALUE
Background value for text.

GM _ $TTEXTSIZE

Size for text.

GM_ $TTEXTV ALUE
The pixel value for text.

A 2-byte integer. Defines the number of concurrent
users a file may have. One of the following
predefined values:

GM_$lW
N readers or 1 writer is allowed.

GM $COWRITERS
More than 1 writer is allowed, but all must be
on the same node.

A gm_ $max_ cursor _pattern_ words-element
array of 2-byte integers. Specifies the values that
set the cursor pattern.

A 2-byte integer. Specifies the type of cursor. One
of the following predefined values:

GM_$BITMAP
Only value is bitmap.

A 2-byte integer. Specifies the type of curve. One
of the following predefined values:

GM_ $ SPLINE CUBIC_P
Draw a smooth curve through n points.

GM_$ARC_3P
Draw an arc through three points.

A 2-byte integer. Specifies the form in which to
store data. One of the following predefined values:

GM_$16
Data is stored as 2-byte integers.

GM_$32
Data is stored as 4-byte integers.

GM $REAL

Data is stored as 4-byte integers.

GM-7 GM

GM DATA TYPES

GM _ $DISPLAY _ CONFIG T

GM_$DRAW_PATTERN_T

GM

A 2-byte integer. Returns the current display
configuration. One of the following predefined
values:

GM_$BW _800X1024
4-bit two-board black and white portrait.

GM _ $BW _1024X800

4-bit two-board black and white landscape.

GM _ $COLOR _1024X1024X4

4-bit two-board color configuration.

GM _ $COLOR l024X1024X8

8-bit three-board color configuration.

GM_$COLOR l024X800X4

4-bit two-board color configuration.

GM _ $COLOR _1024X800X8

8-bit three-board color configuration.

GM _ $COLOR 1280X1024X8

8-bit two-board color configuration.

GM _ $COLORl l024X800X8

8-bit two-board color configuration.

GM _ $COLOR2 l024X800X4

4-bit single-board color configuration.

A 2-byte integer. Specifies the mode of operation.
One of the following predefined values:

GM_$BORROW

Uses the entire screen.

GM_ $ MAIN _BITMAP

Displays within a bitmap allocated in main
memory.

GM_$DIRECT
Displays within a Display Manager window.

GM_ $NO _BITMAP
Allows editing of files without display.

GM_ $WITHIN GPR
Displays the output of the metafile within a
bitmap that you initialize using routines of
DOMAIN graphics primitives.

An array of up to
gm _ $max _ draw _pattern _ bytes characters.
Specifies the bit pattern to use in drawing lines.

GM-8

(,,'
1,-.,_",,,/

c'

GM_$EVENT T

o

o

o
GM_$FONT TYPE_T

o

o

GM DATA TYPES

A 2-byte integer. Specifies the type of input event;
same as gpr _ $event _ t. One of the following
predefined values:

GM $KEYSTROKE
Returned when you type a keyboard
character.

GM $BUTTONS
Returned when you press a button on the
mouse or bitpad puck.

GM_$LOCATOR
Returned when you move the mouse or hitpad
puck or use the touchpad.

GM $ENTERED WINDOW
Returned wh-en the cursor enters a window in
which the GM bitmap resides. Direct mode
only.

GM_ $LEFT WINDOW
Returned when the cursor leaves a window in
which the GM bitmap resides. Direct mode
only.

GM $LOCATOR STOP
Returned when you stop moving the mouse or
hitpad puck, or stop using the touchpad.

A gm_ $max_fill_pattern_lwords-element array
of 4-byte integers. Specifies the pattern to use in
filling areas.

A 2-byte integer. Specifies the type of font. One of
the following predefined values:

GM_$PIXEL
A font defined by pixels.

GM_$STROKE
A font defined by strokes.

A 2-byte integer. Specifies the type of grid style to
be displayed in a viewport. One of the following
predefined values:

GM _ $GRID POINT

The grid intersections are shown by points.

GM $GRID CROSS
The grid intersections are shown by cross
hairs.

GM_ $ GRID _BOX
The grid is shown as boxes

GM-9 GM

GM DATA TYPES

GM $GRID T

Predefined
Record:

gm_$pointreaLt

gm_$pointreaLt

gm_$grid_style_t

GM

byte:
offset

0:

4:

8:

12:

16:

20:

22:

24:

26:

28;

30:

32:

Specifies the characteristics of the grid. The
diagram below illustrates the gm _ $grid _ t data
type:

field name
31 o

real origin.x

real origin.y

real delta.x

real delta.y

integer32 color

integer style

Field Description:

origin
The x and y coordinates of the origin of the grid
in segment coordinates.

delta
The delta-x and delta-y of the grid in segment
coordinates.

color
The color of the grid.

style
The style of the grid display. This begins the
variant part of the data structure. The value of
style determines which fields require information
if you are establishing a grid, or which fields

GM-lO

c~

c

c~

o

o

o

Predefined
Record:

Predefined
Record:

gm_$draw_pattern_t

GM $GRID _ FLAGS T

byte:
offset

20:

22:

24:

byte:
offset

20:

22:

24:

26:

28:

30:

32:

GM DATA TYPES

contain information if you are inquiring about a
grid.

If the value of style is gm_$grid_point, do not
add or try to retrieve any more information.

If the value of style is gm _ $gHd _ cross, insert
or retrieve the cross width and and height in the
next two integer fields (address 22 and 24).

field name

integer style

cross_size.y

Field Description:

If the value of style is gm _ $grid _ box, insert or
retrieve "prepeat" (line repetition factor) at
address 22, II plength II (length of line pattern) at
address 24, and "pattern" (line pattern) at byte
addresses 26 - 33.

field name

integer style

integer prepeat

integer plength

pattern

A list of grid specifications. See gm _ $grid _ t for a
complete description and a diagram of one element
of the array. This array holds up to
gm--.;. $max_grid elements.

A 2-byte integer. Specifies whether the snap grid is
visible/invisible and/or whether snapping is

GM-ll GM

GM DATA TYPES

GM $IDGHLIGHT T

GM $KEYSET T

GM $MODELCMD MODE _ T

GM

enabled. Any combination of the following
predefined values:

GM _ $GRID_ VIsmLE

Indicates that the grid is visible.

GM _ $ GRID _ SNAP TO

Indicates that the grid uses snapping.

A 2-byte integer. Specifies the type of highlighting.
One of the following predefined values:

GM_ $ OUTLINE
Only value: Highlighting appears as an
outline.

Specifies the set of characters that make up a keyset
associated with the graphics input event types
GM_$KEYSTROKE and GM $BUTTONS. This
is a 16-element array of 2-byte integers. For a
FORTRAN subroutine to use in building a set of
characters, see the routine
GM_ $INPUT ENABLE in this volume.

A 2-byte integer. Specifies the type of lines. One
of the following predefined values:

GM _ $ SAME _ LINE _ STYLE

The line style does not change.

GM_$SOLID
The line style is solid.

GM_$DOTTED
The line style is dotted.

GM_ $PATTERNED
The line style is patterned.

A 2-byte integer. Specifies an editing mode for
modeling commands. One of the following
predefined values:

GM_ $MODELCMD INSERT
Modeling commands insert a command at the
current position in the currently open
segment. This is equivalent to
GM $REPLACE SET FLAG = false.

GM $MODELCMD REPLACE
Modeling commands replace the command at
the current position in the currently open
segment. This is equivalent to
GM $REPLACE SET FLAG = true.

GM-12

o

GM_ $PLANE _ LIST T

GM $PLANE_MASK_T

GM $POINT16 T

o

o

o GM $POINT32 T

o

byte:
offset

0:

2:

byte:
offset

0:

4:

GM DATA TYPES

GM_ $MODELCMD _RUBBERBAND
Modeling commands XOR the previous
modeling command on the screen, thus erasing
it, then XOR the given modeling command
onto the screen. Only bitplane 0 is used for
rubberbanding. No changes are made to the
metafile in this mode.

A 2-byte integer. Specifies a value between 0 and
gm_$max_plane_id inclusive, depending on the
type of node.

A 2-byte integer. Specifies a set of planes from
GM $PLANE_LIST T.

Specifies the X- and Y- coordinates of a point. The
diagram below illustrates the gm _ $point16 _ t data
type:

field name

integer y

integer x

Field Description:

x
The x-coordinate of the point.

y
The y-coordinate of the point.

Specifies the X- and Y-coordinates of a point. The
diagram below illustrates the gm _ $point32 _ t data
type:

31
field name

integer x

integer y

Field Description:

x
The x-coordinate of the point.

GM-13 GM

GMDATA TYPES

GM $POINTREAL . T

byte:
offset

0:

4:

GM$POINT ARRA Y32 T

GM $POINT ARRAYREAL T

GM $PRINT STYLE T

GM

y
The y-coordinate of the point.

Specifies the X- and Y-coordinates of a point. The
diagram below illustrates the gm _ $pointreal_ t
data type:

field name

real x

real y

Field Description:

x
The x-coordinate of the point.

y
, The y-coordinate of the point.

An array of GM_ $POINT16 _ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM_$POINT_16_ T illustrates a single
element.

An array of GM_$POINT32_ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM _ $POINT32 _ T illustrates a single
element.

An array of GM_$POINTREAL_ T with
MAX_ARRAY _LENGTH elements. The diagram
for GM_$POINTREAL_ T illustrates a single
element.

Pointer to procedure for user-defined primitive,
with the following argument protocol:

in N POINTS 2-byte integer
in POINTS array of GM_$POINT16_T,
in N PARAMETERS 2-byte integer
in PARAMETERS array of GM_$POINTREAL_T
out STATUS status_$T

A 2-byte integer. Specifies the type of output. One
of the following predefined values:

GM-14

c

o

o GM_$ROTATE REAL2X2 T

byte:
offset

0:

o 4:

8:

12:

o

o

GM DATA TYPES

GM $GMF
Output is a graphics map file.

GM_$OUTI
Output is a vector command file.

GM _ $POSTSCRIPT

Output file is a PostScript file.

Pointer to procedure for refreshing windows, with
the following argument protocol:

in UNOBSCURED boolean
in POS CHANGE boolean

Specifies x- and y-coordinates for rotation.
diagram below illustrates the
gm_ $rotate _ real2x2 _ t data type:

field name

real xx

real xy

real yx

real yy

Field Description:

xx
The xx-coordinates for rotation.

xy
The xy-coordinates for rotation.

yx
The yx-coordinates for rotation.

yy
The yy-coordinates for rotation.

The

A 2-byte integer. Specifies the steps of a command
search. One of the following predefined values:

GM-15 GM

GM DATA TYPES

GM

GM $CNEXT

Find the next command which falls within the
pick aperture, moving forward in the segment.

GM_$STEP
Find the next command in the segment,
independent of the pick aperture.

GM_$START
Move to the start of the segment, independent
of the coordinates of the pick aperture.

GM_$END

Move to the end of the segment, independent
of the coordinates of the pick aperture.

A 2-byte integer. Specifies the steps of a segment
search. One of the following predefined values:

GM_$SETUP

Make the top segment of the current viewport
the start of the list of picked segments. The
rest of the list is emptied.

GM_$DOWN
Find the first segment instanced by the
current segment, which when instanced falls
within the pick aperture.

GM $NEXT
Find the next segment within the segment one
higher in the list of picked segments, which
falls within the pick aperture.

GM_$UP
Move up one level in the list of picked
segments.

GM_$TOP
Proceed to top segment in the list of picked
segments, destroying the rest of the list of
picked segments.

GM_$CLEAR
Clear the entire list of picked segments,
allowing all segments to be edited or deleted.

GM_$BOTTOM
Perform GM_ $DOWN repeatedly until a
segment is reached for which GM _ $DOWN
finds nothing.

GM_ $NEXTBOTTOM
Perform GM _ $BOTTOM. If nothing is
found, perform GM _ $NEXT until a segment

GM-16

(;1
~/

C~I

o
GM_ $SEGMENT _ ID _ T

GM $ SEGMENT _ID _LIST T

GM _ $STRING T

GM_ $VIEW _REFRESH

o

o

o

STATUS $T

o

GM DATA TYPES

is found. An alternative to GM_ $NEXT is
one or more uses of GM _ $UP followed by a
GM_$NEXT. When a GM_$NEXT finds a
segment, perform a' GM_ $BOTTOM from
there.

A 4-byte integer. Specifies a value between 0 and
gm_$max_segment_id inclusive.

Specifies an array of GM _ $SEG~NT _ ID _ T
with MAX_ARRAY LENGTH elements.

An array of up to 256 characters. Specifies a string
of characters.

A 2-byte integer. Specifies the refresh state of the
viewport. One of the following predefined values:

GM _ $REFRESH _INHIBIT

When you change commands in the file, the
viewport is rewritten when you call
GM $VIEWPORT _REFRESH.
GM_$DISPLAY _REFRESH does not-affect
a viewport in this refresh state. Other
conditions are mode-dependent.

GM_ $REFRESH WAIT
When you change commands in the file, the
viewport is rewritten when you call
GM_$VIEWPORT REFRESH or
GM_ $DISPLAY _REFRESH. Other
conditions are mode-dependent.

GM_ $REFRESH_ UPDATE
Every time you change any command in the
file, this viewport is completely corrected if it
is the current viewport.

GM_ $REFRESH _ PARTIAL
Every time you change any command in the
file, the following occurs if this viewport is the
current viewport: Inserted primitive
commands are added, and deleted primitive
commands are erased, but underlying data is
not rewritten.

A status code. The diagram below illustrates the
STATUS_$T data type:

GM-17 GM

GM DATA TYPES

byte:
offset

0:

0:

1 :

2:

GM

field name
31 0

integer all

or

fail

subsys

modc
0

integer· code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that· identifies the type of error
that occurred (bits 0 - 15).

GM-18

C

c

--- .. __ ._--_ ..

o

o

o

o

c

GM $ABLOCK ASSIGN DISPLAY

GM $ABLOCK ASSIGN DISPLAY

Assigns an attribute block (by number) to an attribute class, for the entire display.

FORMAT

INPUT PARAMETERS

aclass id
The identification number of the attribute class to which the attribute block will be
assigned. This is a 2-byte integer.

ablock id
The identification number of the attribute block to be assigned to the attribute class. This
is a 2-byte integer.

To assign the default attributes to an attribute class for the display, use ablock _ id = 1.

To undo the asssignment of an attribute block to an attribute class for the display, use
ablock id = o.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_ASSIGN_DISPLAY to assign an existing attribute block to an
attribute class for all viewports in the display.

Use GM_$ABLOCK_INQ_ASSIGN_DISPLAY to inquire about the current attribute
block number assigned to a particular class for the display.

Assignments of attribute blocks to attribute classes for individual viewports using
GM_$ABLOCK_ASSIGN_ VIEWPORT will override assignments made by
GM $ABLOCK ASSIGN DISPLAY.

GM-19 GM

GM $ABLOCK ASSIGN VIEWPORT

GM $ABLOCK ASSIGN_VIEWPORT

Assigns an attribute block (by number) to an attribute class, for one viewport.

FORMAT

INPUT PARAMETERS

aclass id
The identification number of the attribute class to which the attribute block will be
assigned. This is a 2-byte integer.

To assign the default attributes to an attribute class for one viewport, use ablock_id = 1.

viewport _ id
The identification number of the viewport in which to assign the attribute block to the
attribute class. This is a 2-byte integer.

ablock id
The identification number of the attribute block to be assigned to the attribute class. This
is a 2-byte integer.

To undo the asssignment of an attribute block to an attribute class for one viewport, use
ablock id = o.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $ABLOCK_ASSIGN _ VIEWPORT to assign an existing attribute block to an
attribute class for one viewport in the display.

Use GM_$ABLOCI{_INQ_ASSIGN_ VIEWPORT to inquire about the current attribute
block number assigned to a particular class for a particular viewport.

Assignments of attribute blocks to attribute classes for individual viewports using
GM_$ABLOCK_ASSIGN_ VIEWPORT will override assignments made by
GM $ABLOCK ASSIGN DISPLAY.

GM-20

(~

\,._- /

(
\ ~

u

o

o

o

GM $ABLOCK COPY

GM $ABLOCK COPY

Copies all attributes from one existing attribute block to another.

FORMAT

INPUT PARAMETERS

source ablock id
The identification number of the existing attribute block from which attributes will be
copied. This is a 2-byte integer.

destination ablock id
The identification number of the existing attribute block to which the attributes of the
attribute block source _ block_id will be copied. This is a 2-byte integer.

You may not copy attributes into attribute blocks 0 and 1 (default). Attribute block 0 is a
list of no-change attribute values; attribute block 1 is a list of default attribute values.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $ABLOCK_ CREATE to establish a new attribute block identical to an existing
one. Use GM_ $ABLOCK_ COPY to copy attributes from an existing attribute block to an
existing one.

GM-21 GM

GM $ABLOCK CREATE

GM $ABLOCK CREATE

Creates an attribute block and initializes it equivalent to an existing block.

FORMAT

INPUT PARAMETERS

source ablock id
The identification number of the existing attribute block used as the source for the block
generated with GM_ $ABLOCK_ CREATE. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number assigned to the attribute block generated by
GM $ABLOCK CREATE. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $ABLOCK_ CREATE to establish a new attribute block identical to an existing
one. Use GM_ $ABLOCK_ COPY to copy attributes from an existing attribute block to an
existing one.

Currently, you are limited to 10 attribute blocks, including the two preassigned ones.

GM-22

o

o

o

o

o

GM_$ABLOCK_INQ_ASSIGN_DISPLAY

GM_ $ABLOCK_ INQ _ASSIGN _DISPLAY

Returns the current attribute block number assigned to a particular attribute class for the
display.

FORMAT

INPUT PARAMETERS

aclass_id
The identification number of the attribute class for which to return the current attribute
block assignment. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number of the attribute block currently assigned to the specified
attribute class for the display. This is a 2-byte integer.

If you have not assigned an attribute block to the specified attribute class for the display,
the returned value is 0 (no assignment).

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _ASSIGN_DISPLAY to assign an attribute block to a display.

GM-23 GM

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT

Returns the current attribute block number assigned to a particular attribute class for one
viewport.

FORMAT

INPUT PARAMETERS

aclass_id
The identification number of the attribute class for which to return the current attribute
block assignment. This is a 2-byte integer.

viewport _ id
The identification number of the viewport for which to return the current attribute block
identification number. This is a 2-byte integer.

OUTPUT PARAMETERS

ablock id
The identification number of the attribute block assigned to the attribute class for the
display. This is a 2-byte integer.

If you have not assigned an attribute block to the special attribute class for the display, the
returned value is 0 (no assignment).

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_SET _ASSIGN_VIEWPORT to assign an attribute block to a
viewport.

GM-24

o

o

o

o

o

Returns the raster operation code for drawing lines for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the raster operation
codes. This is a 2-byte integer.

OUTPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15, or -l.
The default value is 3. This sets all destination bit values to source bit values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $ABLOCK _ SET _ DRAW _ RASTER _ OP to change the draw raster operation
code in an attribute block.

GM-25 GM

GM_$ABLOCK_INQ_DRAW _STYLE

Returns the line style set for the specified attribute block.

FORMAT

GM_$ABLOCK_INQ_DRAW_STYLE (ablock id. style. repeat factor. pattern.
pattern length, status) -

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the drawing style. This
is a 2-byte integer.

OUTPUT PARAMETERS

style
The style of line, in GM_$LINE_STYLE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM $SOLID Specifies a solid line. If style = GM_$SOLID, then repeat_factor,
pattern, and pattern_length are ignored. The default draw style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_$DOTTED, then
pattern and pattern _length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat_factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is replicated before proceeding to the next bit
in the pattern. This is a 2-byte integer. The replication factor changes the scaling applied
to the pattern.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an array of 8 bytes
constituting a 64-bit pattern. Only the bits specified in the pattern-length parameter are
used.

pattern _length

GM

The length of the bit pattern, in bits. This is a 2-byte integer. The returned values range
from 1 to 64.

GM-26

\'-.- '

o

o

o

o

o

GM_ $ABLOCK_INQ_DRAW _ STYLE

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _DRAW _STYLE to change the line style in an attribute
block.

GM-27 OM

Returns the value for drawing lines set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the drawing value.
This is a 2-byte integer.

OUTPUT PARAMETERS

value
The line drawing value. This is a 4-byte integer. The default draw value is 1.

A value of -1 means that when this attribute block is selected, the draw value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_SET_DRAW _VALUE to change the line drawing value in an
attribute block. The effect is influenced by the plane mask and the raster op.

GM-28

c

c

o

o

o

o

GM_ $ABLOCK_ INQ_FILL _BACKGROUND _ VALUE

Returns the background value for filling areas in the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the fill background
value. This is a 2-byte integer.

OUTPUT PARAMETERS

value
The fill background value of the specified attribute block. This is a 4-byte integer. The
default value is -2, the same as the viewport background.

The value -1 means that fill background pixels are to be left unchanged; that is, the fill
background is II transparent. II

The value -3 means that when this attribute block is selected, the fill background value is
not to be changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$ABLOCK_INQ_FILL_BACKGROUND_V 1 ALUE

Use GM_$ABLOCK_SET _FILL_BACKGROUND _ VALUE to change the fill value in
an attribute block.

GM-29 GM

GM _ $ABLOCK _ INQ _ FILL _ PATTERN

Returns the pattern set for filling areas for the specified attribute block.

FORMAT

GM_$ABLOCK_INQ FILL PATTERN (ablock_id. scale. size. pattern. status)

INPUT PARAMETERS

abloek id
The identification number of the attribute block for which to return the fill pattern. This
is a 2-byte integer.

OUTPUT PARAMETERS

seale

size

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer.

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_SET_FILL_PATTERN to change the fill pattern in an attribute
block.

GM-30

C-----
. _-, " '

------------------------ ._---_ ... _._----------------------

o

o

o

o

GM_$ABLOCK_INQ_FILL_ VALUE

Returns the value set for filling areas for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablockid
The identification number of the attribute block for which to return the fill value. This is a
2-byte integer.

OUTPUT PARAMETERS

value
The value for filling areas. This is a 4-byte integer. The default fill value is 1.

A value of -1 indicates that when this attribute block is selected, the fill value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

Use GM_$ABLOCK_SET _FILL_ VALUE to change the fill value in an attribute block.

GM-31 GM

GM _ $ABLOCK _ INQ_ FONT _ FAMILY

Returns the font family identification number set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text font family.
This is a 2-byte integer.

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default value is 1.

A value of -1 indicates that when this attribute block is selected, the font family is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_SET _FONT _FAMILY to change the text font family
identification in this attribute block.

GM-32

C'

o

o

o

o

o

GM_ $ABLOCK_INQ_PLANE _MASK

GM_$ABLOCK_INQ_PLANE_MASK

Returns the value of the plane mask set for the specified attribute block.

FORMAT

GM_$ABLOCK_INQ PLANE MASK (ablock_id. change. mask. status)

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the plane mask values.
This is a 2-byte integer.

OUTPUT PARAMETERS

change
A Boolean (logical) variable that indicates whether the plane mask is to be changed when
the specified attribute block is selected. When true, the plane mask is to be changed to
II mask. II A value of change = false means that when this attribute block is selected, the
plane mask is not to be changed. In this case, the value of mask is undefined.

mask
The plane mask, specifying which planes are currently in use, in
GM_$PLANE_MASK_ T format. This is a 2-byte integer. This value may be any
combination of the set of integer values from 0 to 7. Each integer corresponds to a plane in
use. For example, if 0 and 7 are set, planes 0 and 7 are in use. The default is that all
planes are in use and can be modified.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Operations can occur only on the planes specified in the mask. A program can use this
routine, for example, to perform drawing operations only into certain planes in the bitmap.

Use GM_$ABLOCK_SET _PLANE_MASK to set the plane mask in an attribute block.

GM-33 GM

GM _ $ABLOCK_INQ_ TEXT _BACKGROUND _ VALUE

GM_$ABLOCK_INQ_TEXT_BACKGROUND_ VALUE

Returns the text background value set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text background
value. This is a 2-byte integer.

OUTPUT PARAMETERS

value
The value to use for the text background in this attribute block. This is a 4-byte integer.

The default text background value is -2. This specifies that the viewport background value
is used as the text background. For borrowed displays and main memory bitmaps, this is
always O.

A value from 0 to 255 means to use that value.

-1 means that text background pixels are to be left unchanged; that is, the text background
is II transparent. II

-3 means that when this attribute block is selected, the text background value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$ABLOCK_INQ_TEXT_BACKGROUND_V 1 ALUE

Use GM_$ABLOCK_SET _ TEXT_BACKGROUND _VALUE to set the text
background value in an attribute block.

GM-34

(~

\.. '

c

o

o

c

o

c

GM_ $ABLOCK_INQ_ TEXT _SIZE

Returns the size of text set for the specified attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block for which to return the text size. This is a
2-byte integer.

OUTPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value. The default text size is 10.0.

A value of -1 indicates that when this attribute block is selected, the text size is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The choice of a font from a font family is based on the specified text size. The largest font
in the font family that does not exceed the text size is used. The size of a font is defined as
the largest ascender height of any character in the font; the descender is ignored.

Use GM $ABLOCK SET TEXT SIZE to set the text size in an attribute block.

GM-35 GM

GM_$ABLOCK_INQ_TEXT_ VALUE

Returns the value for writing text for the specified attribute block.

FORMAT

INPUT PARAMETERS

abloek id
The identification number of the attribute block for which to return the text value. This is
a 2-byte integer.

OUTPUT PARAMETERS

value
The value to use for writing text. This is a 4-byte integer. The default text value is 1.

A value of -1 indicates that when this attribute block is selected, the text value is not to be
changed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM $ABLOCK SET TEXT VALUE to set the text value in an attribute block.

GM GM-36

I

\

"---

i""·
I

\

o

o

o

o

o

GM $ABLOCK SET DRAW RASTER OP

GM $ABLOCK SET DRAW RASTER OP

Changes the raster operation code for drawing lines for this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the drawing style. This
is a 2-byte integer.

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15. The
default value is 3. This sets all destination bit values to source bit values.

Assigning the value = -1 means that when this attribute block is selected, the draw raster op
value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_DRAW _RASTER_ OP to retrieve the current raster
operations in an attribute block.

GM-37 GM

GM $ABLOCK SET DRAW STYLE

GM $ABLOCK SET DRAW STYLE

Changes the value of the line style in this attribute block.

FORMAT

GM_$ABLOCK_SET_DRAW_STYLE (ablock_id. style. repeat_factor. pattern.
pattern_length. status)

INPUT PARAMETERS

ablock id

style

The identification number of the attribute block in which to change the drawing style. This
is a 2-byte integer.

The style of line, in GM_$LlNE_STYLE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $SOLID Specifies a solid line. If style = GM_$SOLID, then repeat_factor,
pattern, and pattern_length are ignored. The default draw style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_ $DOTTED, then
pattern and pattern_length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat_factor, pattern, and
pattern_length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Currently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an array of 8 bytes
constituting a 64-bit pattern. Only the first pattern_length bits are used.

pattern _length

GM

The length of the bit pattern, in bits. This is a 2-byte integer. Currently, pattern_length
is ignored and assumed to be 64.

GM-38

(~
\....

c

o

o

o

o

o

GM $ABLOCK SET ORA W STYLE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The following defines a line pattern with dashes and spaces, twelve and four pixels long,
respectively:

pattern
[CHAR(
· CHAR(
· CHAR(
· CHAR(
] ;

: STATIC gm $draw pattern t :=
2#11111111). CHAR(2#11110000)
2#11111111). CHAR(2#11110000)
2#11111111). CHAR(2#11110000)
2#11111111). CHAR(2#11110000)

Use GM_$ABLOCK_INQ_DRAW _STYLE to retrieve the current line style.

GM-39 GM

GM $ABLOCK SET DRA W VALUE

GM $ABLOCK SET DRAW VALUE

Changes the value for drawing lines in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the drawing value.
This is a 2-byte integer.

value
The value to use in drawing lines. This is a 4-byte integer. The default value is 1.

Assigning the value = -1 means that when this attribute block is selected, the draw value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_INQ_DRAW _VALUE to retrieve the current draw value in an
attribute block.

GM-40

,r-
I

--------_._------

o

o

o

o

o

GM $ABLOCK SET FILL BACKGROUND VALUE

GM $ABLOCK SET FILL BACKGROUND VALUE

Changes the background value for filling areas in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the fill background
value. This is a 2-byte integer.

value
The fill background value to use in the specified attribute block. This is a 4-byte integer.
The default value is -2, the same as the viewport background.

Assigning a value from 0 to 255 means to use that value.

Assigning a value of -1 means that fill background pixels are to be left unchanged; that is,
the fill background is "transparent."

Assigning the value = -3 means that when this attribute block is selected, the fill
background value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$ABLOCK_SET_FILL_BACKGROUND_V 1 ALUE

Use GM_$ABLOCK_INQ_FILL_BACKGROUND_ VALUE to retrieve the current fill
background value in an attribute block.

GM-41 GM

GM $ABLOCK SET_FILL_PATTERN

GM $ABLOCK SET FILL PATTERN

Changes the fill pattern in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id

scale

size

The identification number of the attribute block in which to change the fill pattern. This is
a 2-byte integer.

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern), 0 (when clearing a pattern), or -1 (when
specifying "no change ll

).

A value scale = 0 indicates that filled areas are to be filled with a solid color and that the
pattern is to be ignored. In this case, the fill value is assigned to every pixel in the interior
of the specified area.

Assigning the value scale = -1 means that when this attribute block is selected, the fill
pattern is not to be changed.

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINTI6 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32 x 32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$ABLOCK_INQ_FILL_PATTERN to retrieve the current fill pattern in an
attribute block.

GM-42

(
"---'/

o

o

o

o

GM $ABLOCK SET FILL VALUE

GM $ABLOCK SET FILL_VALUE

Changes the value for filling areas in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the fill value. This is a
2-byte integer.

value
The value for filling areas in the specified attribute block. This is a 4-byte integer. The
default value is 1.

Assigning the value = -1 means that when this attribute block is selected, the fill value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_FILL_ VALUE to retrieve the current fill value in an
attribute block.

GM-43 GM

GM $ABLOCK_SET FONT_FAMILY

GM $ABLOCK SET_FONT FAM~Y

Changes the font family in this attribute block.

FORMAT

INPUT PARAMETERS

abloek_id
The identification number of the attribute block in which to change the text font family.
This is a 2-byte integer.

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default text font family identification number is 1.

Assigning value = -1 means that when this attribute block is selected, the font family is not
to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

Use GM_ $ABLOCK_INQ_FONT _F AM~ Y to retrieve the current text font family
identification in an attribute block.

Use GM_ $FONT _FAM~ Y _INQ_ID to retrieve the identification number of a font
family for which you know the name.

GM-44

c

o

o

o

o

GM $ABLOCK SET PLANE MASK

GM $ABLOCK SET PLANE MASK

Changes the value of the plane mask in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the plane mask. This
is a 2-byte integer.

change
A Boolean (logical) variable that indicates whether the plane mask is to be changed when
the specified attribute block is selected. When change is set to true, the plane mask is to be
changed to "mask". Assigning change = false means that when this attribute block is
selected, the plane mask is not to be changed.

mask
The plane mask, specifying which planes to use, in GM_ $PLANE _MASK_ T format.
This is a 2-byte integer.

The default value is [0 ... 7], in GM_$PLANE_MASK_ T format, or 255 when expressed as
a 2-byte integer. The default is that all planes are in use and can be modified.

FORTRAN programmers should encode the plane mask in a 2-byte integer in the range of
0-255 (1 means plane 0 is on, 2 means plane I is on, 3 means planes 0 and 1 are on, 255
means planes 0 through 7 are on).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

GM-45 GM

................... _ _ -._-_ .. _-_ .. _ _----

GM $ABLOCK SET PLANE MASK

USAGE

GM

Operations can occur only on the planes specified in the mask. A program can use this
routine, for example, to perform drawing operations only into certain planes in the bitmap.

FORTRAN programmers might want to include the parameter definitions given below:

integer*2
+ bitO,
+ bit1,
+ bit2,
+ bit3,
+ bit4,
+ bitS,
+ bit6,
+ bit7

parameter (
+ bitO 16#0001,
+ bit1 16#0002,
+ bit2 16#0004,
+ bit3 16#0008,
+ bit4 16#0010,
+ bitS 16#0020,
+ bit6 16#0040,
+ bit7 16#0080)

Example:

In FORTRAN, to enable planes 2 and 5, use the following:

CALL GM_$PLANE_MASK(bit2 + bitS, status

In Pascal, to enable planes 2 and 5, use the following:

GM-46

\
\,,-,-,.'

(
'-._

\
',- .

o

o

o

o

o

GM_ $ABLOCK SET TEXT BACKGROUND VALUE

GM $ABLOCK SET TEXT BACKGROUND VALUE

Changes the background value for text in this attribute block.

FORMAT

INPUT PARAMETERS

ablock id
The identification number of the attribute block in which to change the text background
value. This is a 2-byte integer.

value
The value to use for the text background in this attribute block. This is a 4-byte integer.

The default text background value is -2. This specifies that the viewport background value
is used as the text background. For borrowed displays and main memory bitmaps, this is
always O.

Assigning a value from 0 to 255 means to use that value.

Assigning a value of -1 means that text background pixels are to be left unchanged; that is,
the text background is II transparent. II

Assigning the value = -3 means that when this attribute block is selected, the text
background value is not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$ABLOCK_SET_TEXT_BACKGROUND_V 1 ALUE

Use GM_$ABLOCK_INQ_ TEXT _BACKGROUND _ VALUE to retrieve the current
text background value in an attribute block.

GM-47 GM

GM $ABLOCK SET TEXT SIZE

GM $ABLOOK SET TEXT SIZE

Ohanges the size of text in this attribute block.

FORMAT

GM_$ABLOCK_SET TEXT SIZE (ablock_id. size. status)

INPUT PARAMETERS

ablock id

size

The identification number of the attribute block in which to change the text size. This is a
2-byte integer.

The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value. The default text size is 10.0.

The value of -1 indicates that when this attribute block is selected, the text size is not to be
changed.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The choice of a font from a family is based on the specified text size. The largest font in
the family that does not exceed this height is used. The size of a font is defined as the
largest ascender height on any character in the font; descender sizes are ignored.

Use GM_$ABLOOK_INQ_ TEXT _SIZE to retrieve the current text size in an attribute
block.

GM-48

o

o

o

o

GM $ABLOCK SET TEXT VALUE

GM $ABLOCK SET TEXT VALUE

Changes the value for writing text set for this attribute block.

FORMAT

INPUT PARAMETERS

abloek id
The identification number of the attribute block in which to change the text value. This is
a 2-byte integer.

value
The value to use for writing text. This is a 4-byte integer. The default text value is 1.

Assigning the value = -1 means that when this attribute block is selected, the text value is
not to be changed.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$ABLOCK_INQ_TEXT_ VALUE to retrieve the current text value in an
attribute block.

GM-49 GM

GM $ACLASS

GM $ACLASS

Inserts a command into the current segment: change to a different attribute class.

FORMAT

GM_$ACLASS (aclass_1d, status)

INPUT PARAMETERS

aclass_id
The identification number of the attribute class to use. This is 2-byte integer.

The maximum number of attribute classes is 16.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

GM-50

(~
'I
"'-- .

('
'.'-- -

o

o

o

o

o

GM_$CIRCLE_[16,32,REAL!

GM_$CIRCLE_[16,32,REAL]

Inserts a command into the current segment: draw a circle.

FORMAT

GM_$CIRCLE_16 (center, radius, fill, status)

GM_$CIRCLE_32 (center, radius, fill, status)

GM_$CIRCLE_REAL (center, radius, fill, status)

INPUT PARAMETERS

center
The point that is the center of the circle. This is a pair (x,y) of values in the appropriate
format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$INQ_ CIRCLE_16

GM $POINT32 T
A two-element array of 4-byte integers for GM _ $INQ _ CIRCLE _ 32

GM $POINTREAL
A two-element array of real values for GM _ $INQ _ CIRCLE _ REAL

See the GM_ $ Data Types section for more information.

radius
The radius of the circle, in the appropriate format:

A 2-byte integer for GM_$CIRCLE_16

A 4-byte integer for GM_$CIRCLE_32

A real value for GM $CIRCLE REAL

fill
A Boolean (logical) value which specifies whether to fill the circle.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-51 GM

GM _ $CIRCLE _116,32,REALJ

USAGE

GM

Use GM_$INQ_ CIRCLE_ [16,32,REAL] to retrieve the parameters of a circle command
inserted by GM_$CmCLE_[16,32,REAL].

Circles may be scaled, rotated, and/or reflected. However, when you apply a transform in
which one axis is stretched more than another, you get a circle of undefined size, not a
distorted circle.

Before supplying coordinate data to GM _ $CmCLE _ REAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-52

c

o

o

o

o

GM $COMMAND DELETE

GM $CON.fMAND DELETE

Deletes the current command.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

After you delete the current command, the command before it in the current segment
becomes the current command.

Use GM_ $PICK_ CON.fMAND to change the current command.

GM-53 GM

GM_ $COMMAND _INQ_BOUNDS

Returns the bounds of the current command in the current segment.

FORMAT

OUTPUT PARAMETERS

bounds
Bounds of the command in GM _ $BOUNDSREAL _ T format. This is a four-element array
of real numbers. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

Use this call to obtain the bottom left-hand and top right-hand coordinates of the current
command in the current segment.

Use GM_ $SEGMENT _INQ_BOUNDS to obtain the bounds of a segment.

Use GM_$FILE_INQ_BOUNDS to obtain the bounds of the primary segment in a file.

GM-53.1

c

~,
I,

"'----

o

o

o

o
GM-53.2 GM

GM $COORD _ BITMAP TO SEG 2D

GM $COORD BITMAP TO SEG 2D

Converts bitmap coordinates to segment coordinates.

FORMAT

INPUT PARAMETERS

bitmap _position
The bitmap coordinates to be converted to segment coordinates, expressed as an (x,y) pair
in terms of a fraction of the GM bitmap in GM_ $POINTREAL_ T format. This is a
two-'element array of real values. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

segment _ position
The converted segment coordinates, in GM_ $POINTREAL _ T format. This is a
two-element array of real values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

This routine converts the bitmap coordinates to segment coordinates of the current segment
in the current viewport.

In within-GPR mode, use GM_$COORD_PIXEL_TO_SEG_2D.

This routine is commonly used immediately after GM_ $INPUT _EVENT _ WAIT to
convert a GM bitmap location to segment coordinates, so that a new command can be
inserted into the metafile. For example:

GM $INPUT EVENT WAIT(false, etype, edata, bitmap pos,
- - - viewport_id, status); -

GM_$CIRCLE_REAL (segment_pos, radius, false, status);

GM-54

(~
..... _-"

------- --.. -- .. --- .. -.---

o

o

o

o

o

GM $COORD P~L TO SEG 2D

Converts GPR bitmap coordinates used in within-GPR mode to segment coordinates, using
a specified transformation.

FORMAT

GM_$COORD_PlXEL_TO_SEG_2D (rotate. translate. pixel_position.
segment_position. status)

INPUT PARAMETERS

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_ $POINTREAL _ T format. This
is a two-element array of real values. See the GM_ $ Data Types section for more
information.

pixel_ position
The pixel coordinates to be converted to segment coordinates, expressed as an (x,y) pair, in
GM_ $POINT16 _ T format. This is a 2-byte integer array of two elements. See the
GM _ $ Data Types section for more information.

OUTPUT PARAMETERS

segment _ position
The converted segment coordinates, in GM_$POINTREAL_ T format. This is a
two-element array of real values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

In modes other than within-GPR mode, use GM_$COORD _BITMAP _ TO _SEG_2D.

GM-55 GM

GM $COORD SEG TO BITMAP 2D

GM $COORD SEG TO BITMAP 2D

Converts segment coordinates to bitmap coordinates.

FORMAT

INPUT PARAMETERS

segment _ position
The segment coordinates to be converted to bitmap coordinates, in GM_ $POINTREAL_ T
format. This is a two-element array of real values. See the GM_ $ Data Types section for
more information.

OUTPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of a fraction of the
GM bitmap, in GM_ $POINTREAL _ T format. This is a two-element array of real
values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

This routine converts the segment coordinates of the current segment in the current
viewport to bitmap coordinates.

GM-56

o

o

o

o

o

GM $COORD SEG TO PIXEL 2D

GM $COORD SEG TO PIXEL 2D

Converts within-GPR segment coordinates to GPR bitmap coordinates, using a specified
transformation.

FORMAT

GM_$COORD_SEG_TO_PlXEL_2D (rotate. translate. segment_position.
pixel_position. status)

INPUT PARAMETERS
question

rotate
The rotation to be applied to coordinates in the segment, in
GM_ $ROTATE _REAL2x2 _ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_ $POINTREAL _ T format.
This is a two-element array of real values. See the GM_ $ Data Types section for more
information.

segment _ position
The segment coordinates to be converted to pixel coordinates, in GM_ $POINTREAL _ T
format. This is a two-element array of real values. See the GM_ $ Data Types section for
more information.

OUTPUT PARAMETERS

pixel_ position
The converted pixel coordinates expressed as an (x,y) pair, in GM_ $POINT16 _ T format.
This is a two-element array of 2-byte integers. See the GM_ $ Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

In modes other than within-GPR mode, use GM_$COORD _SEG_ TO _BITMAP _2D.

GM-57 GM

Returns the status of the cursor: displayed or not displayed.

FORMAT

OUTPUT PARAMETERS

active
A Boolean (logical) value that indicates whether or not the cursor is displayed. The
parameter is set to true if the cursor is displayed; it is set to false if the cursor is not
displayed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $CURSOR_SET _ACTIVE to change the display status of the cursor.

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM_$CURSOR_SET _POSITION to change the position of the cursor.

GM GM-58

o

o

o

o

o

GM _ $CURSOR _ INQ _ PATTERN

GM_$CURSOR_INQ_PATTERN

Returns the type, pattern, and origin of the cursor.

FORMAT

GM_$CURSOR_INQ PATTERN (style. pattern_size. pattern. origin. status)

OUTPUT PARAMETERS

style
The cursor style, in GM_$CURSOR_STYLE_ T format. This is a 2-byte integer.
Currently, the only valid value is GM _ $BITMAP.

pattern _ size
The size of the cursor pattern, in GM_ $POINT16 _ T format. This is a two-element array
of 2-byte integers. Currently, neither coordinate size may exceed 16. See the GM $ Data
Types section for more information.

pattern
The cursor pattern, in GM_$CURSOR_PATTERN _ T format. This is an array of
(pattern_size.y) 2-byte integers. The length of the array is determined by the y value of
pattern size.

origin
The offset from the pixel at the upper left of the cursor to the pixel at the origin of the
cursor, in GM_ $POINT16 _ T format. This is a two-element array of 2-byte integers. See
the GM _ $ Data Types section for more information.

When the cursor is moved using GM_$CURSOR_SET _POSITION, the pixel that is the
cursor's origin is placed at the specified location.

The first element (x) indicates the number of cursor pixels that will be displayed to the left
of the specified cursor location. The second element (y) indicates the number of cursor
pixels that will be displayed above the specified cursor location. Both numbers must be
between 0 and 15; only the first four bits are considered.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM_$CURSOR_SET _ACTIVE to change the display status of the cursor.

Use GM_$CURSOR_SET_POSITION to change the position of the cursor.

GM-59 GM

Returns the position of the cursor.

FORMAT

OUTPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of fractions of the
GM bitmap, in GM_$POINTREAL_ T format. This is a two-element array of real
values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$CURSOR_SET _POSITION to change the position of the cursor.

Use GM_$CURSOR_SET _PATTERN to change the pattern of the cursor.

Use GM_ $CURSOR_SET _ACTIVE to change the display status of the cursor.

GM GM-60

o

o

o

o

o

GM $CURSOR SET ACTIVE

GM $CURSOR SET ACTIVE

Specifies whether or not the cursor is displayed.

FORMAT

INPUT PARAMETERS

active
A Boolean (logical) value that indicates whether or not the cursor is displayed. The
parameter is set to true if the cursor is displayed; it is set to false if the cursor is not
displayed.

The default value for active is false.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $CURSOR_INQ_ACTIVE to retrieve the display status of the cursor.

GM-61 GM

GM $CURSOR SET PATTERN

GM $CURSOR SET PATTERN

Specifies a cursor pattern, type, and origin.

FORMAT

GM_$CURSOR_SET PATTERN (style, pattern_size, pattern, origin, status)

INPUT PARAMETERS

style
The cursor style, in GM_$CURSOR_STYLE_ T format. Currently, the only valid value
is GM $BITMAP.

pattern size
The size of the cursor pattern, in GM_ $POINTI6 _ T format. This is a two-element array
of2-byte integers. Currently, neither coordinate size may exceed 16. See the GM $ Data
Types section for more information.

pattern
The cursor pattern, in GM_$CURSOR_PATTERN_ T format. This is an array of
(pattern_size.y) 2-byte integers. The length of the array is determined by the y value of
pattern _ size.

The default cursor uses the standard Display Manager pattern.

origin
The offset from the pixel at the upper left of the cursor to the pixel at the origin of the
cursor, in GM_ $POINTI6 _ T format. This is a two-element array of 2-byte integers. See
the GM_ $ Data Types section for more information.

When the cursor is moved using GM_$CURSOR_SET_POSITION, the pixel that is the
cursor's origin is placed at the specified location.

The first element (x) indicates the number of cursor pixels that will be displayed to the left
of the specified cursor location. The second element (y) indicates the number of cursor
pixels that will be displayed above the specified cursor location. Both numbers must be
between 0 and 15; only the first four bits are considered.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-62

o

o

o

o

o

GM_$CURSOR SET PATTERN

USAGE

The default value is the standard Display Manager pattern.

Use GM_$CURSOR_INQ_PATTERN to retrieve the current pattern of the cursor.

You must place a cursor pattern smaller than 16x16 in the high-order bits of the first words
of the pattern:

VAR
{ note that a cursor pattern smaller than 16x16

starts in the high order bits. and starts
in word 1 of the array }

cursor_pattern1 : gm_$cursor_pattern_t
:= [16#8080.16#4100.16#2200.16#1400.

16#800.16#1400.16#2200.16#4100.16#8080];
cursor size: gm_$point16_t := [9.9];
cursor_origin: gm_$point16_t := [4.4];

gm_$cursor_set_pattern(gm_$bitmap.cursor_size.
cursor_patternl.cursor_origin. status);

GM-63 GM

GM $CURSOR SET POSITION

GM $CURSOR SET POSITION

Moves the cursor on the screen.

FORMAT

INPUT PARAMETERS

bitmap _ position
The converted bitmap coordinates, expressed as an (x,y) pair in terms of fractions of the
GM bitmap, in GM_$POINTREAL_ T format. This is a two-element array of real
values. See the GM _ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

Use GM_ $CURSOR_INQ_POSITION to retrieve the current position of the cursor.

GM GM-64

~,

~--,

o

o

o

o

GM _ $ CURVE _ 2D [16,32,REALj

GM_ $ CURVE _ 2D[16,32,REAL]

Inserts a command into the current segment: draw a curve.

FORMAT

GM_$CURVE_2D16 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2D32 (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$CURVE_2DREAL (curve_type, n_points, point_array, n_parameters,
parameter_array, status)

INPUT PARAMETERS

curve_type
The type of curve to be drawn, in GM_$CURVE_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM _ $ARC _ 3P Specifies an arc to be drawn through three points (n _ points) in the point
array (point_array). The value for n_points must equal 3.

GM $SPLINE CUBIC P

n_points

Specifies a smooth curve (parametric cubic spline) to be drawn through
the specified number of point (n_points) in the point array
(point _ array).

The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinate points, each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$CURVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$CURVE_2D32

GM $POINTREAL
A two-element array of real values for GM_$CURVE_2DREAL

See the GM_ $ Data Types section for more information.

n_parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters. This is an array of real values.

GM-65 GM

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Currently, n_parameters and parameter _array are not used.

Use GM_$INQ_ CURVE_2D[16,32,REAL] to retrieve the parameters of a curve command
inserted by GM_$CURVE_2D[16,32,REAL].

Curves are limited to 1000 (GM_$MAX_ARRAY _LENGTH) points.

Before supplying coordinate data to GM_$CURVE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-66

(" '"
\ '"'- ... '

o

o

o

o

o

- ------------- -----

Returns the data type to which real coordinates are converted.

FORMAT

OUTPUT PARAMETERS

data_type
The form in which to store data, in GM_ $DATA_ TYPE _ T format. This is a 2-byte
integer. Data sent to the package as real variables can be stored in another form.
Currently, the only valid value is GM_ $32.

You must set the data type to GM_ $32 because real data must be coerced to 32-bit data
before it can be stored.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$DATA_ COERCE_SET _REAL to force real variables that you send to the
package to be stored in another form.

GM-67 GM

GM $DATA COERCE SET REAL

GM $DATA COERCE SET REAL

Specifies the data type to which subsequent real coordinates are converted.

FORMAT

INPUT PARAMETERS

data_type
The form in which to store data, in GM_$DATA_ TYPE_ T format. This is a 2-byte
integer. Data sent to the package as real variables can be stored in another form.
Currently, the only valid value is GM_ $32.

You must set the data type to GM_ $32 because real data must be coerced to 32-bit data
before it can be stored.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$DATA_COERCE_INQ_REAL to retrieve the data type to which real
coordinate data is to be coerced.

Currently, supplying real coordinate data before calling this routine is an error.

GM-68

('

(~
\' , ..

o

o

o

o

o

GM $DISPLA Y FILE

GM $DISPLAY FILE

Displays the entire current file in the current viewport.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

This command changes the view transformation to a value which will cause the entire
metafile to be displayed as follows: one of the two dimensions fills 95 percent of the current
viewport, and the other dimension fills less than or equal to 95 percent of the current
viewport.

Note that the GM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display. You then display that
composite segment.

GM-69 GM

GM $DISPLAY FILE PART

GM $DISPLAY FILE PART

Displays part of the current file in the current viewport.

FORMAT

INPUT PARAMETERS

bounds
The part of the primary segment of this file to be displayed, in terms of segment
coordinates. This is a four-element array of real numbers (xmin, ymin, xmax, ymax), in
GM $BOUNDSREAL T format. See the GM_$ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

This command sets the view transformation to a value which causes the specified part of
the file to be displayed as follows: one of the two dimensions fills the viewport, and the
other dimension does not overflow the viewport.

The GM package clears the viewport before displaying a file or segment in the viewport.
To display more than one segment in a viewport, you must build a new segment which
contains an instance of each segment you wish to display. You then display that composite
segment.

GM-70

l
'- '

c

o Returns the values in the display color map.

FORMAT

INPUT PARAMETERS

start _ index
Index of first color value entry to be read. This is a 4-byte integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays o 1 - 16 For color displays in 4-plane configuration

1- 256 For color displays in 8-plane configuration

OUTPUT PARAMETERS

values

o Color value entries, in GM_ $COLOR_ VECTOR_ T format. This is an array of real
values. The array must be at least (3 * n_ entries) in length.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

o Use GM_ $DISPLAY _SET _ COLOR_MAP to change the value of the display color map.

o
GM-71 GM

GM $DISPLAY REFRESH

GM $DISPLAY REFRESH

Redisplays all uninhibited viewports of the display.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Viewports that are in the GM_ $REFRESH_INHIBIT refresh state are not displayed.

GM GM-72

~,
I

'''-- "

o

o

o

o

o

GM $DISPLAY SEGMENT

GM $DISPLAY SEGMENT

Displays the specified segment (and all called segments) in the current viewport.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to display, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

This command changes the view transformation to a value which will cause the entire
segment to be displayed as follows: one of the two dimensions fills 95 percent of the current
viewport, and the other dimension fills less than or equal to 95 percent of the current
viewport.

Use GM_$DISPLAY _FILE to display the entire file.

Note that the GM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display. You then display that
composite segment.

GM-73 GM

GM $DISPLAY _SEGMENT GPR 2D

GM $DISPLAY _SEGl\1ENT GPR 2D

In within-GPR mode, allows you to display a segment within a GPR bitmap.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to display, in GM_$SEGl\1ENT _ID _ T format.
This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in GM_$POINTREAL_ T format. This
is a two-element array of real values. See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

You must specify the transform which relates segment coordinates of your selected segment
to display coordinates (GPR coordinates). This is specified as a 2x2 rotation to be applied
to coordinates in the segment, then a translation to be applied after this rotation.

If you have put data into segments with y pointing up, you will have to insert negative
values into your transform.

The attributes you are currently using in your current GPR attribute block are used, until
modified by attribute commands in the file.

In direct mode, a program must acquire the display before calling
GM_ $DISPLAY _SEGl\1ENT GPR 2D. The graphics metafile package will not acquire
the display.

GM-74

c

o

o

o

o

o

GM $DISPLAY SEGMENT GPR 2D

Rotation: Use the following to display segment little_seg at (400,300), at triple size and
rotated 50 degrees:

rotate.xx 3.0 * cos(50.0 * 3.14159/180.0);
rotate.xy - 3.0 * sin(50.0 * 3.14159/180.0);
rotate.yx - -rotate.xy;
rotate.yy - rotate.xx;
rpoint.x := 400.0;
rpoint.y := 300.0;
GM_$DISPLAY_SEGMENT_GPR_2D(little_seg. rotate,

rpoint, status);

Distortion: Use the following to display segment distort_seg at (12.5, 14.5), with a scale of
1 in the x direction and a scale of 3 in the y direction, unrotated:

rotate.xx - 1.0;
rotate.xy 0.0;
rotate.yx - 0.0;
rotate.yy 3.0;
rpoint.x - 12.5;
rpoint.y - 14.5;
GM_$DISPLAY_SEGMENT_GPR_2D(distort_seg, rotate,

rpoint, status);

GM-75 GM

GM $DISPLAY SEGMENT PART

GM $DISPLAY SEGNIENT PART

Displays part of the specified segment (and all called segments) in the current viewport.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to display, in GM_ $SEGNIENT _ID _ T format.
This is a 4-byte integer.

bounds
The part of this segment to be displayed, in terms of segment coordinates. This is a
four-element array of real values (xmin, ymin, xmax, ymax), in GM_ $BOUNDSREAL _ T
format. See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

This command sets the view transformation to a value which causes the specified part of
the segment to be displayed as follows: one of the two dimensions fills the viewport, and
the other dimension does not overflow the viewport.

It is necessary that ymax be greater than ymin and that xmax be greater than xmin.

Note that the GM package clears the viewport before displaying a file or segment in the
viewport. To display more than one segment in a viewport, you must build a new segment
which contains an instance of each segment you wish to display. You then display that
composite segment.

GM-76

,~

('

o

o

o

o

o

GM $DISPLAY SET COLOR MAP

GM $DISPLAY SET OOLOR_MAP

Ohanges values in the display color map.

FORMAT

INPUT PARAMETERS

start_index
Index of first color value entry to be read. This is a 4-byte integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1 - 16 For color displays in 4-plane configuration

1 - 256 For color displays in 8-plane configuration

values
Oolor value entries, in GM_$OOLOR_ VEOTOR_ T format. This is an array of real
values. The array must be at least (3 * n_ entries) in length.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The GM package initializes the color map to 0 = black, 1 = white.

Use GM_$DISPLAY _INQ_ OOLOR_MAP to retrieve the value of the display color
map.

GM-77 GM

GM $DRAW RASTER OP

GM $DRA W RASTER OP

Inserts a command into the current segment: change the logical raster operations to be
performed when drawing.

FORMAT

INPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15.

The default raster op value is 3. This sets all destination bit values to source bit values.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$INQ_DRAW _RASTER_ OP to retrieve the parameters of a raster op
command inserted by GM _ $DRA W _RASTER _ OP.

GM-78

~,
I
\

.... -....

('

o

o

o

o

o

GM $DRAW STYLE

GM $DRA W STYLE

Inserts a command into the current segment: set the line style (solid, dotted).

FORMAT

GM_$DRAW_STYLE (style. repeat_factor. pattern. pattern_length. status)

INPUT PARAMETERS

style
The style of line, in GM_$LINE_STYLE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $SOLID Specifies a solid line. If style = GM _ $SOLID, then repeat _ factor,
pattern, and pattern_length are ignored. The default drawing style is
GM $SOLID.

GM $DOTTED Specifies a line drawn in dashes. If style = GM_$DOTTED, then
pattern and pattern_length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern_length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat_factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Ourrently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an 8-byte array
constituting of a 64-bit pattern. Only the first pattern_length bits are used.

pattern _length
The length of the bit pattern, in bits. This is a 2-byte integer. Allowed values are 1
through 64. Ourrently, pattern_length is ignored and assumed to be 64.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-79 GM

GM $DRAW STYLE

GM

The following defines a line pattern with dashes and spaces, twelve and four pixels long,
respectively:

pattern
[CHAR(
, CHAR (
, CHAR (
, CHAR(
] ;

: STATIC gm $draw pattern t :=
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)
2#11111111), CHAR(2#11110000)

When a styled line is drawn, pixels along the path which are not in the pattern are not
affected. In other words, the implicit draw background value is transparent.

Use GM_$INQ_DRAW _STYLE to retrieve the current line style.

GM-80

c

o

o

o

o

CJ

GM $DRAW VALUE

GM $DRAW VALUE

Inserts a command into the current segment: set the value used when drawing lines.

FORMAT

INPUT PARAMETERS

value
The value used in drawing lines. This is a 4-byte integer.

The default draw value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$INQ_DRAW _VALUE to retrieve the current draw value.

GM-81 GM

GM $FILE CLOSE

GM $FILE CLOSE

Closes the current file, saving revisions or not.

FORMAT

INPUT PARAMETERS

save
A Boolean (logical) value that indicates whether to save revisions. Set to true to save
revisions to the currently open segment; set to false not to save revisions.

Currently, save is always assumed to be true.

If a segment is open in this file, the segment is closed and then the file is closed. If no
segment was open, save is ignored.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

GM-82

/

o

o

o

o

-----.----.-.--.----.-.--.----------.-------.--.--------_ .. _. __ ._------ ._---------------

GM $FILE COMPACT

GM $FILE COMPACT

Creates a new compacted GM file.

FORMAT

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _ length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-83 GM

GM $FILE COMPACT

USAGE

GM

GM _ $FILE _ CO:rv1P ACT changes the name of the the input file from * to *. bak (deleting
any existing * .bak) and then creates a new compacted GM file named *.

With GM _ $FILE _ CO:rv1P ACT, you can develop a file compacting utility like the
following:

PROGRAM compact;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gmr.ins.pas';
%INCLUDE '/sys/ins/pfm.ins.pas';
%LIST;

VAR

name
length
size
status

name_$pname_t;
INTEGER;
gm_$point16_t
status_$t;

BEGIN

WRITE ('File name: ');
READLN(name);

length := LASTOF(name);

[0, 0];

WHILE (name[length] = ' ,) AND (length> 0)
DO length length - 1;

GM_$INIT
(gm_$no_bitmap

o
size
1
status

);
IF status.all <> status_$ok
THEN pfm_$error_trap(status);

GM_$FILE_COMPACT
(name
, length
, status
) ;

IF status.all <> status_$ok
THEN pfm_$error_trap(status);

GM_$ TERM I NATE
(status
) ;

IF status.all <> status_$ok
THEN pfm_$error_trap(status);

END.

GM-84

.

C)

o

o

o

o

GM $FILE CREATE

GM $FILE CREATE

Creates a new graphics metafile and makes it the current file.

FORMAT

GM_$FlLE_CREATE (name. name_length. access. concurrency. file_id. status)

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

access
The access mode, in GM_$ACC _ CREATE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $WRITE If the file already exists, an error message is returned.

GM $OVERWRITE
If the file already exists, the previous version is deleted.

GM $UPDATE If the file already exists, the previous version is opened.

concurrency
The concurrency mode, defining the number of concurrent users the file may have, in
GM _ $CONC _ MODE _ T format. This is a 2-byte integer. Specify only one of the
following predefined values:

GM $lW N readers or 1 writer is permitted.

GM $COWRITERS
More than 1 writer is permitted, but all users must be on the same node.

Only one segment in the file may be open at a time, and only one writer
may be writing to a segment at a time.

OUTPUT PARAMETERS

file id
The identification number assigned to the file. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-85

-------_ ... _----_._ .. ----

GM

GM _ $FILE _ CREATE

USAGE

GM

The GM_$UPDATE access mode of GM_$FILE_ CREATE and the GM_$CWR access
mode of GM_ $FILE OPEN produce identical results.

GM-86

(
\

o

o

o

o

GM _ $FILE _ INQ _ BOUNDS

GM_$FILE_INQ_BOUNDS

Returns the bounds of the primary segment of a file.

FORMAT

OUTPUT PARAMETERS

bounds
Bounds of the primary segment of the file in GM_ $BOUNDSREAL _ T format. This is a
four-element array of real numbers. See the GM_ $ Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use this routine to obtain the bottom left-hand and top right-hand coordinates of the
current file.

Use GM_ $SEGJ\1ENT _INQ_BOUNDS to obtain the boundary of the current segment.

Use GM_$COMMAND _INQ_BOUNDS to obtain the boundary of the current command.

GM-86.1 GM

GM GM-86.2

o

o

o

o

o

GM_ $FILE _INQ_PRIMARY _ SEGMENT

Returns the segment number assumed to be the start of the current file.

FORMAT

OUTPUT PARAMETERS

segment_id
The number of the primary segment of the current file, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

The primary segment is assumed to be the start of the picture.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

GM-87

GM $FILE OPEN

GM $FILE OPEN

Reopens an existing file and makes it the current file.

FORMAT

GM_$FILE_OPEN (name. name_length. access, concurrency. file_id. status)

INPUT PARAMETERS

name
The pathname of the file in NAME _ $PNAME _ T format. This is an array of up to 256
characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

access
The read/write accessibility, GM_$ACC_OPEN_T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $WR

GM $R

GM $CWR

Read or write. In this access mode, it is an error to attempt to open a
nonexistent file.

Read only. In this access mode, it is an error to attempt to open a
nonexistent file.

Read or write; if file does not exist, create it.

The GM_$UPDATE access mode of GM_$FILE CREATE and the
GM_ $CWR access mode of GM_ $FILE OPEN produce identical
results.

concurrency

GM

The concurrency mode, defining the number of concurren,t users the file may have, in
GM_ $CONC _MODE _ T format. This is a 2-byte integer. Specify only one of the
following predefined values:

GM $lW N readers or 1 writer is permitted.

GM $COWRITERS
More than 1 writer is permitted, but all users must be on the same node.

In GM_ $COWRITERS concurrency mode, only one segment in the file
may be open at a time, and only one writer may be writing to a segment
at a time.

GM-88

o

o

o

o

o

GM $FILE OPEN

OUTPUT PARAMETERS

file id
The identification number assigned to the file. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

In modes other than GM_ $CWR, it is an error to attempt to open a nonexistent file.

GM-89 GM

GM $FILE SELECT

GM $FILE SELECT

Makes the specified file the current file.

FORMAT

INPUT PARAMETERS

file id
The identification number of the file which is to become the current file. This is a 2-byte
integer.

A file identification number is assigned by the GM package when GM_$FILE_ CREATE
or GM $FILE OPEN is called.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

When a file is created or opened, it becomes the current file. Mter closing the current file,
you must select any other open file before you can use it.

GM-90

,r--"
(
\

o

o

o

o

o

GM $FILE SET PRIMARY SEGMENT

GM $FILE SET PRIMARY SEGMENT

Changes the segment number assumed to be the start of the current file.

FORMAT

INPUT PARAMETERS

segment_id
The number of the primary segment of the current file, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

The primary segment is assumed to be the start of the picture.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-91 GM

GM $FILL BACKGROUND VALUE

GM $FILL BAOKGROUND VALUE

Inserts a command into the current segment: set the value used for pixels not in the fill
pattern when filling an area.

FORMAT

INPUT PARAMETERS

value
The value used in filling areas. This a 4-byte integer.

The default value is -2. This sets the fill background value equal to the viewport
background value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$INQ_FILL_BACKGROUND_ VALUE to retrieve the parameters of a fill
background value command inserted by GM_ $FILL _BACKGROUND _ VALUE.

GM-92

C~

o

o

o

o

o

GM $FILL PATTERN

GM $FILL PATTERN

Inserts a command into the current segment: set the pattern used for the interior of filled
areas.

FORMAT

GM_$FILL_PATTERN (scale. size. pattern. status)

INPUT PARAMETERS

seale

size

The number of times each bit in this pattern is to be replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern) or 0 (when clearing a pattern).

A value scale = 0 indicates that filled areas are to be filled with a solid color and that the
pattern is to be ignored. In this case, the fill value is assigned to every pixel in the interior
of the specified area.

The default value is scale = 0 (solid fill).

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a two-element array of 2-byte integers. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default fill pattern is all ones.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_FILL_PATTERN to retrieve the parameters of a fill pattern command
inserted by GM_$FILL_PATTERN.

GM-93 GM

GM $FILL _ VALUE

GM $FILL VALUE

Inserts a command into the current segment: set the value used when filling an area.

FORMAT

INPUT PARAMETERS

value
The value used in filling areas. This is a 4-byte integer.

The default fill value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

Use GM_$INQ_FILL_ VALUE to retrieve the parameters of a fill value command
inserted by GM_$FILL_ VALUE.

GM-94

C'

o

o

o

o

o

GM_$FONT FAMILY

GM $FONT FAMILY

Inserts a command into the current segment: set the font family used when writing text.

FORMAT

INPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

The default font family ID is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

As is characteristic of other attribute commands, this command specifies the font family to
be used for subsequent text commands of the current segment and all segments instanced
from the current segment.

Use GM_$INQ_FONT_FAMILY to get the value stored for the current
GM $FONT_FAMILY command.

GM-95 GM

GM $FONT FAMILY EXCLUDE

GM $FONT FAMILY EXCLUDE

Undoes the inclusion of a font family.

FORMAT

INPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Attempting to exclude a font family which is referenced by a font family command (as
generated by GM _ $FONT _ FAMILY) is an error.

GM-96

c

c

o

o

o

o

c

GM $FONT FAMILY INCLUDE

GM $FONT FAMILY INCLUDE

Specifies a font family to use in this metafile.

FORMAT

GM_$FONT_FAMILY_INCLUDE (pathname. pathname_length. font_type.
font_family_id. status)

INPUT PARAMETERS

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the pathname. This is a 2-byte integer.

font_type
The type of font, in GM _ $FONT _ TYPE _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FONT_FAMILY _INQ_ID to retrieve the font family identification of a
previously included font family.

Currently, you must include at least one font family before text commands will be
displayed.

GM-97 GM

Returns the identification number of a previously included font family.

FORMAT

GM_$FONT_FAMILY_INQ_ID (pathname. pathname_length. font_type.
font_family_id. status)

INPUT PARAMETERS

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font_type
The type of font, in GM_ $FONT _ TYPE _ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FONT_FAMILY _INCLUDE to change a font family to use in this metafile.

GM GM-98

I~
\'-... /

o

o

o

o

o

GM $FONT FAMILY RENAME

GM $FONT FAMILY RENAME

Changes the font family file corresponding to this font family identification.

FORMAT

GM_$FONT_FAMILY_RENAME (font family id, pathname, pathname_length,
font=type, ~tatus)

INPUT PARAMETERS

font _ family _ id
The identification number previously assigned to a font family. This is a 2-byte integer.

pathname
The pathname of the font family file in NAME _ $PNAME _ T format. This is an array of
up to 256 characters.

pathname _length
The number of characters in the new pathname. This is a 2-byte integer.

font_type
The type of font, in GM_$FONT _ TYPE_ T format. This is a 2-byte integer. Specify
only one of the following predefined values:

GM $PIXEL A font described pixel by pixel, including all DOMAIN standard fonts.

GM $STROKE A font defined by stroke font metafiles. The characters in a stroke font
are usually made up of vectors.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-99 GM

GM $INIT

GM $INIT

Initializes the graphics metafile package and opens the display.

FORMAT

GM_$INIT (display_mode. unit. size. n_planes. status)

INPUT PARAMETERS

display _mode

GM

One of four modes of operation. Graphics metafile routines can operate by borrowing the
entire display, by using a Display Manager window, by creating a main memory bitmap but
no display bitmap, and by building a file without a main memory or display memory
bitmap. The value is in GM_$DISPLAY _MODE_ T format. Specify only one of the
following predefined values:

GM $BORROW
Uses the entire screen.

GM $DffiECT Displays within a Display Manager window.

GM $MAIN BITMAP
Displays within a bitmap allocated in main memory.

GM $NO BITMAP
Allows editing of files without display.

GM $WITHIN GPR
Displays the output of the metafile within a bitmap that you initialize
using routines of the DOMAIN graphics primitives.

To use the mode GM_$WITHIN_ GPR, you must initialize GPR before calling
GM_ $INIT. In this mode, you have full control of the screen, but you must handle
viewports and input yourself using GPR or other routines. In this mode, these parameters
are ignored: unit, size, and n _ planes.

GM_ $WITHIN _ GPR is useful when you already have a user interface and want to use it
rather than GM for viewing. GM_ $WITHIN _ GPR allows you to build sequences of
commands using the GM routines which change the contents of a metafile. You can then
display the file using GM_$DISPLAY _SEGMENT _ GPR_2D. This is the only GM
display routine you may use in this mode.

GM-IOO

c

(~"
\ '",- .. '

------------------------------------- _ .. _----_._-_. __ .. __ .. _-----------

o

o

o

o

o

unit

size

GM $INIT

This parameter has three possible meanings as follows:

The display unit, if the display mode is GM_$BORROW. This is a 2-byte integer.
Currently, the only valid display unit number for borrow-display mode is 1.

The stream identifier for the pad, if the display mode is GM_ $DffiECT. Use
STREAM_ $ID _ T format. This is a 2-byte integer.

Any value, such as zero, in GM_$MAIN_BITMAP, GM_$NO_BITMAP, or
GM $WITHIN GPR modes.

The size of the bitmap, in GM_ $POINT16 _ T format. This is a two-element array of
2-byte integers. The first element is the bitmap width in pixels; the second element is the
bitmap height in pixels. Each value may be any number between 1 and 4096 (limits are
reduced to the display or window size if necessary). See the GM_ $ Data Types section for
more information.

n_planes
The number of bitmap planes. This is a 2-byte integer. The following are valid values.

For display memory bitmaps:

1 For monochromatic displays
1 4 For color displays in two-board configuration
1 - 8 For color displays in three-board configuration

For main memory bitmaps: 1 - 8 for all displays

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-IOI GM

GM $INIT

USAGE

GM

The GM package currently sets color 1 to white on color nodes for portability of
applications developed on monochrome nodes. The viewport borders are drawn with color
1. For nonwhite cursors and viewport boundaries on color nodes, use
GM_$DISPLAY _SET _ COLOR_MAP to respecify color 1.

You can use the II unit II parameter to display metafiles in a window other than the window
from which you executed your GM program:

VAR
wndw : pad_$window_desc_t;
instid,stid stream_$id_t;
bitmap_size : gm_$point16_t

BEGIN {program}

wndw.top := 0;
wndw.left := 0;
wndw.width := 300;
wndw.height := 300;

- [1024,1024];

pad_$create_window (» ,0, pad_$transcript, 1,
wndw, stid, st);

pad_$create (" ,O,pad $input,stid, pad $bottom,
[pad_$init_raw] ,5, instid~ st);

{ The "unit" parameter is the stream id of the pad
in which you want to display metafiles. }

gm_$init (gm_$direct,stid,bitmap_size,8,st);

The graphics metafile package has its own II clean-up II handler that terminates GM
whenever faults are encountered. It is not necessary for an application to install its own
fault handler for this purpose. In fact, an application-installed fault handler will not work
because GM will no longer be initialized by the time the fault handler is called.

GM-102

o

o

o

o

o

GM $INPUT DISABLE

GM $INPUT DISABLE

Disables an input event type.

FORMAT

INPUT PARAMETERS

event_type
The input event type to be disabled, in GM_ $EVENT _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when you press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP
Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $INPUT _ENABLE to enable an input event type.

GM-I03 GM

GM $INPUT ENABLE

GM $INPUT ENABLE

Enables an input event type.

FORMAT

INPUT PARAMETERS

event_type
The event type to be disabled, in GM_ $EVENT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when you press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP

key _set

Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

The set of specifically enabled characters when the event type is GM_ $KEYSTROKE or
GM_ $BUTTONS, in GM_ $KEYSET _ T format. This is an array of up to 256
characters.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-I04

c

o

o

o

o

o

GM $INPUT ENABLE

USAGE

Use GM_ $INPUT _DISABLE to disable an input event type.

The routines GM _ $INPUT _ ENABLE and GM _ $INPUT _ EVENT _ WAIT may acquire
the display (in direct mode only). GM_ $INPUT _ENABLE will acquire the display when
locator events are enabled; GM_$INPUT _EVENT _ WAIT acquires the display before
waiting for an event (and releases it after waiting).

GM_ $INPUT _ENABLE expects a Pascal set of characters as one input argument. The
following subroutine provides a way to build a set of characters for a FORTRAN program
using this call.

BUILD SET -- Builds a Pascal set of characters for FORTRAN users.

INPUT ARGUMENTS

list

no of entries

OUTPUT ARGUMENTS

returned set

An integer*2 array, up to 256 entries long.
This array contains the ordinal values of the
characters to be included in the set. For
example, if you wish to include the capital
letters A through Z, make the array
26 entries long, including the values 65
through 90.

The number of entries used in list.
An integer*2 scalar.

The equivalent of the Pascal set of
characters. This can be of any type,
as long as it is 32 bytes long.
Use integer*4 returned_set (8) .

This program does not check for errors. Therefore, values
can be outside the range 0 to 255, although this can give
unpredictable results. The program does not check to see
if the value has already appeared in the list.

The subroutine builds the set anew each time; it does not allow
you to add new elements to an existing set.

GM-IOS GM

OM $INPUT ENABLE

OM

The following program builds a set of characters for FORTRAN users.

PROGRAM build set

subroutine bu1ld_set(l1st,no_of_entr1es,returned set)

1nteger*2l1st(1),no_of_entr1es,returned_set(0:15)
1nteger*2 1,mask(0:15),word,b1t
data mask/l,2,4,8, 16#10,16#20,16#40, 16#80,16#100,16#200,

1 16#400,16#800,16#1000,16#2000,16#4000,16#8000/

c A Pascal set of characters is a 256-b1t "array." The bit
c corresponding to the ordinal position of the character is
c 1 if the bit is in the set and 0 if the character is absent
c from the set. In this example, the set is initialized
c to 0, that is, no characters are present.

100
c

do 100 1=0,15
returned_set(1) = 0
continue

c Go through the list, setting the bits for each character listed.
c Note that Pascal numbers the bits right to left.
c Therefore, a set containing only char (0) , that is NULL, has
c only the least-significant bit set in the last word of the set.

c
c Set the appropriate bit.

word = 15 - (l1st(1)/16)
bit = mod(list(1) ,16)
returned_set(word) = or(returned_set(word),mask(b1t»

110 continue
c

return
end

OM-I06

~,
I

/'--,

,~
(
\..,- "

o

o

o

o

o

GM $INPUT EVENT WAIT

GM $INPUT EVENT WAIT

Checks for or waits until an occurrence of an enabled input event.

FORMAT

GM_$INPUT_EVENT_WAIT (wait. event_type. event_data. bitmap_position.
viewport_id. segment_position. status)

INPUT PARAMETERS

wait
A Boolean (logical) value that specifies when control returns to the calling program. Set to
true to wait for an enabled event to occur; set to false to return control to the calling
program immediately, whether or not an event has occurred.

OUTPUT PARAMETERS

event_type
The event type which occurred, in GM_ $EVENT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $KEYSTROKE
Returned when you type a keyboard character.

GM $BUTTONS
Returned when you press a button on the mouse or bitpad puck.

GM $LOCATOR
Returned when you move the mouse or bitpad puck, or the touchpad.

GM $ENTERED WINDOW
Returned when the cursor enters a window in which the GM bitmap
resides. Direct mode is required.

GM $LEFT WINDOW
Returned when the cursor leaves a window in which the GM bitmap
resides. Direct mode is required.

GM $LOCATOR STOP
Returned when you stop moving the mouse or bitpad puck, or stop using
the touchpad.

event data
The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This is a character. This parameter
is not modified for other events.

bitmap _position
The position in the display bitmap at which graphics input occurred, in
GM_ $POINTREAL _ T format. This is a two-element array of real values. See the
GM_ $ Data Types section for more information.

GM-I07 GM

GM $INPUT EVENT WAIT

viewport _ id
The identification number of the viewport in which the location II bitmap _position II is
found. This is a 2-byte integer.

segment _ position
The position at which graphics input occurred, converted to segment coordinates of the
viewport primary segment, in GM_ $POINTREAL _ T format. This is a two-element array
of real values. See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4' bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

If the location "bitmap_position" is not in any viewport, viewport_id is zero and
segment _position is undefined.

If the location II bitmap _position II is in a viewport which is not displaying,
segment_position is undefined.

The routines GM_ $INPUT _ENABLE and GM_ $INPUT _EVENT _ WAIT may acquire
the display (in direct mode only). GM_ $INPUT _ENABLE will acquire the display when
locator events are enabled; GM_ $INPUT _EVENT _ WAIT acquires the display before
waiting for an event (and releases it after waiting).

GM-I08

o

o

o

o

o

GM_ $INQ_ACLASS

Returns the value stored for the current (GM _ $ACLASS) command.

FORMAT

OUTPUT PARAMETERS

aclass id
The identification number of the attribute class to use. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Inquiring about a command that is not an GM_ $ACLASS command results in an error.

You can use GM _ $INQ _ CONIMAND _ TYPE to determine the type of the current
command.

GM-I09 GM

Returns the size of the GM bitmap in pixels.

FORMAT

OUTPUT PARAMETERS

size
The size of the GM bitmap created when the GM package was initialized, in
GM_ $POINT16 _ T format. This is a two-element array of 2-byte integers. See the
GM_ $ Data Types section for more information.

In direct mode, this routine returns the size of the part of the Display Manager window in
which the GM package was initialized, excluding the edges of the window reserved by the
Display Manager.

In borrow mode, this is the size of the part of the borrowed display in which the GM
package was initialized.

In main-bitmap mode, this is the size of the main memory bitmap which was created when
the GM package was initialized.

planes
The number of planes in the GM bitmap created when the GM package was initialized.
This is a 2-byte integer.

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

GM-110

c:-~

c

o

o

o

o

o

GM_ SINQ_ CIRCLE _ [16,32,REAL]

Returns the values stored for the current (GM_ $OIROLE) command.

FORMAT

GM_$INQ_CIRCLE_16 (center. radius. fill. status)

GM_$INQ_CIRCLE_32 (center. radius. fill. status)

GM_$INQ_CIRCLE_REAL (center. radius. fill. status)

OUTPUT PARAMETERS

center
The point that is the center of the circle. This is a pair (x,y) of values in the appropriate
format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$INQ_ OIROLE_16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$INQ_ OIROLE_32

GM $POINTREAL
A two-element array of real values for GM_$INQ_ OIROLE_REAL

See the GM_ $ Data Types section for more information.

radius
The radius of the circle, in the appropriate format:

A 4-byte integer for GM_$INQ_ OIROLE_32

A real value for GM _ $INQ _ OmOLE _ REAL

fill
A Boolean (logical) value which specifies whether the circle is filled.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The parameters are returned as they were supplied to the GM_ $OIROLE command that
inserted this command into the metafile.

Use $GM _ $INQ _ OOMMAND _ TYPE to get the command type and the data type of this
command.

GM-ll1 GM

._---_._._---_ .. _--_._--

GM _ $INQ _ CIRCLE _ [16,32,REALj

GM

Use $GM_$COMMAND_DELETE and GM_$CmCLE_[16,32,REAL] to change the
parameters of this command.

Inquiring about a command that is not a GM_ $CmCLE command results in an error.

Currently, you must use GM_$INQ_ CmCLE_16 if the stored data type is GM_$16;
you must use GM_$INQ_ CmCLE_32 or _REAL if the stored data type is GM_$32.

GM-112

o

o

o

o

o

- -----------------

GM_ $INQ_ COMMAND _ TYPE

Returns the command type and the data type of the current command in the current
segment.

FORMAT

OUTPUT PARAMETERS

command _ type
The type of command, in GM_$COMMAND_ TYPE_ T format. This is a 2-byte integer.
One of the following predefined values is returned:

data_type

GM_$TACLASS
GM_$TCIRCLE_2D
GM_$TCURVE_2D
GM_$TDRAW_RASTER_OP
GM_$TDRAWSTYLE
GM_$TDRAWVALUE
GM_$TFILLBVALUE
GM_$TFILLPATTERN
GM_$TFILLVALUE
GM_$TFONTFAMILY
GM $TINSTANCE SCALE 2D
GM=$TINSTANCE=TRANS=2D
GM_$TINSTANCE_TRANSFORM_2D
GM_$TPLANEMASK
GM_$TPOLYLINE_2D
GM_$TPRIMITlVE_2D
GM_$TRECTANGLE
GM_$TTAG
GM_$TTEXT_2D
GM_$TTEXTBVALUE
GM_$TTEXTSIZE
GM_$TTEXTVALUE

The data storage type, in GM_ $DATA_ TYPE _ T format. The possible values for this
parameter are the following:

GM $16 Data is stored as GM $POINT16 T

GM $32 Data is stored as GM $POINT32 T

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-113 GM

GM_ $INQ_ COMMAND _ TYPE

USAGE

GM

Use GM_$INQ_POLYLlNE, GM_$INQ_ TEXT, and other similar commands with data
storage types to get the parameters of the command.

Use GM_ $SEGMENT _ CREATE, GM_ $ SEGMENT _ OPEN and
GM_$SEGMENT _ CLOSE to change the current segment. Use
GM_ $PICK_ CO!vfl\1AND to change the current command.

If the current command is the blank space at the start of the segment, as it is after
GM_ $PICK_ CO!vfl\1AND(GM_ $START,STATUS), this routine returns a
GM $NO CURRRENT CO!vfl\1AND error.

GM-114

I~
I

''--.-/

c

o

o

o

o

Returns the current configuration of the display device.

FORMAT

GM_$INQ_CONFIG (configuration. status)

OUTPUT PARAMETERS

configuration
Current display configuration, in GM _ $DISPLAY _ CONFIG _ T format. This is a 2-byte
integer. One of the following predefined values is returned:

Returned Value Display Type

GM $BW SOOx1024 monochromatic portrait
GM=$BW=1024XSOO monochromatic landscape
GM $COLOR 1024x1024x4 color 1024 x 1024 (DN6xx) 2-board config
GM-$COLOR-1024X1024XS color 1024 x 1024 (DN6xx) 3-board config
GM-$COLOR-1024xSOOX4 color 1024 x SOO (DN5xx) 2-board config
GM-$COLOR-l024x1024xS color 1024 x SOO (DN5xx) 3-board config
GM=$COLOR1_1024XSOOXS color 1024 x SOO (DN570) 2-board config
GM_$COLOR_12S0X1024XS color 12S0 x 1024 (DN5S0) 2-board config
GM_$COLOR2_1024XSOOX4 color 1024 x SOO (DN3000) i-board config

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM_$INQ_ CONFIG is the only GM routine call that is usable when the graphics metafile
package is not initialized.

GM-115 GM

Returns the values stored for the· current (GM_ $CURVE) command.

FORMAT

GM_$INQ_CURVE_2D16 (curve_type. n_points. point_array. n_parameters.
parameter_array. status)

GM_$INQ_CURVE_2D32 (curve_type. n_points. point_array. n_parameters.
parameter_array. status)

GM_$INQ_CURVE 2DREAL (curve_type. n_points. point_array. n_parameters.
parameter_array. status)

OUTPUT PARAMETERS

curve_type
The type of curve, in GM_$CURVE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM_ $ARC _ 3P Specifies an arc to be drawn through three points (n_points) in the point
array (point_array). The value for n_points must equal 3.

GM $SPLINE CUBIC P
Specifies a smooth curve (parametric cubic spline) to be drawn through
the specified number of point (n_points) in the point array
(point_array).

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinate points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for G¥_$INQ_CURVE_2D16

aM $POINT32 T
A two-element array of 4-byte integers for GM_$INQ_ CURVE_2D32

GM $POINTREAL
A two-element array of real values for GM _ $INQ _ CURVE_ 2DREAL

See the GM _ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters. This is an array of reals.

GM GM-1l6

--------_ .. _-----_ .. __ .- .. _-----

o

c

I~-

(
\

------------------------------------ - --_ __ . _ .. _-

o

o

o

o

o

GM_ $INQ_ CURVE_2D[16,32,REAL]

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Currently, n_parameters and parameter _array are not used.

Inquiring about a command that is not a GM_ $CURVE command results in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

Use GM_$CURVE_2D[16,32,REAL] to change the parameters of this command.

Currently, you must use GM_ $INQ_ CURVE _16 if the stored data type is GM_ $16; you
must use GM _ $INQ _ CURVE _ 32 or _ REAL if the stored data type is GM _ $32.

GM-117 GM

------- _._ _---

GM_ $INQ_DRAW _RASTER _ OP

Returns the values stored for the current (GM_ $DRAW _RASTER_ OP) command.

FORMAT

OUTPUT PARAMETERS

raster _op
Raster operation code. This is a 2-byte integer. Possible values are 0 through 15. The
default value is 3.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Use GM _ $DRA W _ RASTER _ OP to change the raster operation codes.

Inquiring about a command that is not a GM_$DRAW _RASTER_OP command results
in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

GM-118

---------- --------------------- - --------------- ----------------- ----------------------

o

o

o

o

o

GM_ $INQ_DRAW _ STYLE

Returns the values stored for the current (GM_$DRAW _STYLE) command.

FORMAT

OUTPUT PARAMETERS

style
The style of line, in GM_$LINE_STYLE_ T format. This is a 2-byte integer. One of the
following values is returned:

GM $SOLID Default. Specifies a solid line. If style = GM_ $SOLID, then
repeat_factor, pattern, and pattern_length are ignored. The default
draw style is solid.

GM $DOTTED Specifies a line drawn in dashes. If style = GM _ $DOTTED, then
pattern and pattern_length are ignored. The result is equivalent to a
patterned style, where the pattern is assumed to be one bit on and one bit
off; the pattern _length is assumed to be 2. The replication factor is used
to change the scaling applied to this pattern.

GM $PATTERNED
Specifies a patterned line, determined by repeat_factor, pattern, and
pattern _length.

GM $SAME DRAW STYLE
Specifies that when this attribute block is selected, the draw style is not
to be changed.

repeat _ factor
The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. Currently, repeat_factor is ignored and
assumed to be 1.

pattern
The bit pattern, in GM_$DRAW _PATTERN_ T format. This is an 8-byte array
constituting a 64-bit pattern. Only the first pattern_length bits are used.

pattern _ length
The length of the pattern. This is a 2-byte integer. Currently, pattern_length is ignored
and assumed to be 64.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-119 GM

USAGE

GM

Use GM_$SET _DRAW _STYLE to change the line style.

Inquiring about a command that is not a GM_$DRAW _STYLE command results in an
error.

You can use GM_$INQ_ OOMMAND _ TYPE to determine the type of the current
command.

GM-120

c

(~
'-'- .

(~
\ ..

c

o

o

o

o

c

Returns the value stored for the current (GM_$DRAW _ VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value used in drawing lines. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$DRAW _VALUE to change the line drawing value.

Inquiring about a command that is not a GM_$DRAW _VALUE command results in an
error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

GM-121 GM

GM_$INQ_FILL_BACKGROUND_ VALUE

Returns the value stored for the current (GM_$FILL_BACKGROUND_ VALUE)
command.

FORMAT

OUTPUT PARAMETERS

value
The fill background value used in this command. This is a 4-byte integer. The default
value is -2, the same as the viewport background.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Inquiring about a command that is not a GM_ $FILL _BACKGROUND _ VALUE
command results in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

Use GM_$FILL_BACKGROUND_ VALUE to change the fill background value.

GM-122

--------- ------ -------

c

(~
'-_. __ .'

\
'-

("

Q

o

o

o

o

GM _ $INQ _ FILL _ PATTERN

GM_$INQ_FILL_PATTERN

Returns the value stored for the current (GM_$FILL_PATTERN) command.

FORMAT

GM_$INQ_FILL_PATTERN (scale. size. pattern. status)

OUTPUT PARAMETERS

scale

size

The number of times each bit in this pattern is replicated (in both x and y directions)
before proceeding to the next bit in the pattern. This is a 2-byte integer. Currently, this
value must be 1 (when defining a pattern) or 0 (when clearing a pattern).

The size of the bit pattern, in bits, in the x and y directions; in GM_ $POINT16 _ T
format. This is a 2-byte integer array of two elements. Currently, these values must both
be 32. See the GM_ $ Data Types section for more information.

pattern
The 32x32 bit pattern to use in filling areas. This is a 32-element array of 4-byte integers.
Each 4-byte integer represents one horizontal line of the pattern, starting at the top of the
display. The default pattern is all ones.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$FILL_PATTERN to change the fill pattern.

Inquiring about a command that is not a GM_$FILL_PATTERN command results in an
error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

GM-123 GM

Returns the value stored for the current (GM_$FILL_ VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value used in filling areas. This is a 4-byte integer. The default fill value is 1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Use GM_$FILL_ VALUE to change the fill value.

Inquiring about a command that is not a GM_$FILL_ VALUE command results in an
error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

GM-124

~'
\ '-...

o

o

o

o

o

GM_$INQ_FONT _FAMILY

Returns the value stored for the current (GM_$FONT _FAMILY) command.

FORMAT

OUTPUT PARAMETERS

font _ family _ id
The identification number assigned to the font family. This is a 2-byte integer. The
default value is 1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $FONT _FAMILY to change the font family,

Inquiring about a command that is not a GM_ $FONT _FAMILY command results in an
error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

GM-125 GM

GM _ $INQ_INSTANCE _ SCALE_ 2D\16,32,REALI

GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL]

Returns the value stored for the current (GM_$INSTANCE_SCALE_2D) command.

FORMAT

OUTPUT PARAMETERS

segment_id

scale

The identification number of the segment to be instanced, in GM_$SEGMENT _ID _ T
format. This is a 4-byte integer.

A real number indicating the scaling factor.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE SCALE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE SCALE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE SCALE 2DREAL

See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Scaling is performed before translation.

Use GM_$INSTANCE_SCALE_2D[16,32,REAL] to change the segment instanced and its
scale and translation parameters.

Inquiring about a command that is not a GM_$INSTANCE_SCALE_2D command
results in an error.

GM-126

o

o

o

o

o

GM_ $INQ_INSTANCE _ SCALE _ 2D[16,32,REALI

You can use GM_$INQ_ C011MAND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_SCALE_2D16 if the stored data type
is GM_$16; you must use GM_$INQ_INSTANCE_SCALE_2D32 or _2DREAL if the
stored data type is GM_ $32.

GM-127 GM

GM_ $INQ_INSTANCE_ TRANSFORM_2DI16,32.REALI

GM_ $INQ _INSTANCE _ TRANSFORM_ 2D[16,32.REAL]

Returns the value stored for the current (GM_$INSTANCE_ TRANSLATE) command.

FORMAT

GM_$INQ_INSTANCE_TRANSFORM_2D[16.32.REAL] Csegment_id. rotate. translate.
status)

OUTPUT PARAMETERS

segment_id
The identification number of the segment to transform, in GM_ $ SEGMENT _ID _ T
format. This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of 4 real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation, in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSFORM 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSFORM 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSFORM 2DREAL

See the GM _ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSFORM_2DREA 1 L

GM-128

/
(
\

C)

o

o

o

o

Use GM_$INSTANCE_ TRANSFORM_2D[16,32,REAL] to change the segment instanced
and its translation and rotation parameters.

Inquiring about a command that is not a GM_$INSTANCE_ TRANSFORM_2D
command results in an error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_TRANSFORM_2D16 if the stored
data type is GM_$16; you must use GM_$INQ_INSTANCE_ TRANSFORM_2D32 or
2DREAL if the stored data type is GM $32.

GM-129 GM

GM_ $INQ_INSTANCE _ TRANSLATE _ 2D[16,32,REAL]

Returns the value stored for the current (GM_$INSTANCE_ TRANSLATE_2D)
command.

FORMAT

OUTPUT PARAMETERS

segment_id
The identification number of the segment to be instanced, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSLATE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSLATE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSLATE 2DREAL

See the GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$INQ_INSTANCE_TRANSLATE_2DREA 1 L

GM-130

----_ _ .. _-_

(
'~-,~_./

'\" ...

(~
I, ,-

----------------.------.-----. ---------------------------------

o

o

o

o

o

Use GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL] to change the segment instanced
and its translation parameters.

Inquiring about a command that is not a GM_ $INSTANCE _ TRANSLATE _ 2D
command results in an error.

You can use GM _ $INQ _ CO:rv11.1AND _ TYPE to determine the type of the current
command.

Currently, you must use GM_$INQ_INSTANCE_TRANSLATE_2D16 if the stored
data type is GM_$16; you must use GM_$INQ_INSTANCE_ TRANSLATE_2D32 or
2DREAL if the stored data type is GM$32.

GM-131 GM

GM

GM_ $INQ_PLANE_MASK

GM_$INQ_PLANE_MASK

Returns the value stored for the current (GM_ $PLANE_MASK) command.

FORMAT

OUTPUT PARAMETERS

mask
The plane mask, specifying which planes to use, in GM_$PLANE_MASK_ T format.
This is a 2-byte integer. (See the description under GM_$PLANE_MASK.)

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$PLANE_MASK to set the plane mask.

Inquiring about a command that is not a GM_$PLANE_MASK command results in an
error.

You can use GM _ $INQ _ COMMAND _ TYPE to determine the type of the current
command.

GM-132

"

o

o

o

o

o

GM_ $INQ_POL YLlNE_ 2D[16,32,REALj

GM_$INQ_POLYLlNE_2D[16,32,REAL]

Returns the values stored for the current (GM_$POLYLlNE_2D) command.

FORMAT

OUTPUT PARAMETERS

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array

close

fill

A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM_$INQ_POLYLlNE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM_$INQ_POLYLlNE_2D32

GM $POINTREAL
A two-element array of real values for
GM_ $INQ_POL YLlNE_2DREAL

See the GM_ $ Data Types section for more information.

A Boolean (logical) value which specifies whether the first and last points are connected.
Set the parameter to true to close the polygon. You must use close when you want to fill a
polygon.

A Boolean (logical) value which specifies whether to fill the polygon or not. Filled polygons
must be closed. Set the parameter to true to fill the polygon; set it to false for an unfilled
polygon.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

GM-133 GM

GM_ $INQ_ POLYLINE _ 2D[16,32,REALj

USAGE

GM

The parameters are returned as they were supplied to the command
GM_ $POL YLINE _ [16,32,REAL] which inserted this command into the metafile.

Currently, you must use GM_$INQ_POLYLINE_16 if the stored data type is gm_$16;
you must use GM_$INQ_POLYLINE_32 or _REAL if the stored data type is gm_$32.

Inquiring about a command that is not a GM_ $POL YLINE command results in an error.

You can use GM_ $INQ_ COMMAND _ TYPE to determine the type of the current
command.

GM-134

('
"'-.. /

o

o

o

o

o

GM_ $INQ_PRIMITIVE_2D[16,32,REAL]

GM_$INQ_PRIMITIVE_2D[16,32,REAL]

Returns the values stored for the current (GM_ $PRIMITIVE) command.

FORMAT

GM_$INQ_PRIMITIVE_2D16 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_PRIMITIVE_2D32 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$INQ_PRIMITIVE_2DREAL (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

OUTPUT PARAMETERS

primitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

n_points
The number of points in the list of points. This is a 2-byte integer.

point _ array
A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$PRIMITIVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM _ $PRIMITIVE _ 2D32

GM $POINTREAL
A two-element array of real values for GM _ $PRIMITIVE _ 2DREAL

See the GM_ $ Data Types section for more information.

n_parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters, in GM_$ARRAYREAL_ T format. This is an array of real values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-135 GM

USAGE

GM

Use GM_$PRIMITIVE_2D[16,32,REAL] to change the current value of the primitive
command.

Currently, you must use GM_$INQ_PRIMITIVE_2D16 if the stored data type is
GM_$16; you must use GM_$INQ_PRIMITIVE_2D32 or _REAL if the stored data
type is GM_$32.

GM-136

c

u

o

o

o

o

GM_ $INQ_RECTANGLE_ [16,32,REALj .

GM_$INQ_RECTANGLE_[16,32,REAL]

Returns the values stored for the current (GM_ $RECTANGLE) command.

FORMAT

GM_$INQ_RECTANGLE_1S (pointl. point2. fill. status)

GM_$INQ_RECTANGLE_32 (pointl. point2. fill. status)

GM_$INQ_RECTANGLE_REAL (pointl. point2. fill. status)

OUTPUT PARAMETERS

point!, point2
The coordinates of two diagonally opposite corners, each a pair (x,y) of integers in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_ $RECTANGLE _16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $RECTANGLE _ 32

GM $POINTREAL
A two-element array of real values for GM_ $RECTANGLE _REAL

See the GM_ $ Data Types section for more information.

The GM package sorts rectangle coordinates before storing them. The returned parameter
point! will contain the smaller x value and the smaller y value, regardless of the order in
which you supplied the data.

fill
A Boolean (logical) value which specifies whether to fill the rectangle or not. Set the
parameter to true to fill the rectangle; set it to false for an unfilled rectangle.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-137 GM

GM _ $INQ _ RECTANGLE _ [16,32,REALJ

USAGE

GM

Use GM_$RECTANGLE_[16,32,REAL] to change the values for this command.

Use GM_$INQ_RECTANGLE_[16,32,REAL] to retrieve the parameters of a rectangle
command inserted by GM_$RECTANGLE_[16,32,REAL].

Currently, you must use GM_$INQ_RECTANGLE_16 if the stored data type is
GM_$16; you must use GM_$INQ_RECTANGLE_32 or _REAL if the stored data
type is GM_$32.

GM-138

(-"
-,., /

o

o

o

o

----- ------------- ---------------- --- - ----------

Returns the value stored for the current (GM_ $TAG) command.

FORMAT

OUTPUT PARAMETERS

string
The text string stored, in GM_$STRING_ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM _ $ TAG to change the text string stored in this command.

GM-139 GM

GM_ $INQ_ TEXT _2D[16,32,REALj

GM_ $INQ_ TEXT _2D[16,32,REAL]

Returns the value stored for the current (GM_$TEXT _2D[16,32,REALD command.

FORMAT

GM_$INQ_TEXT_2D[16,32,REAL] (point, rotate, string, string_length, status)

OUTPUT PARAMETERS

point
The coordinates of the point at which to locate text. This is a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_ $ TEXT _2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$TEXT _2D32'

GM $POINTREAL
A two-element array of real values for GM_ $ TEXT _ 2DREAL

See the GM_ $ Data Types section for more information.

rotate
The angle at which this text string is to be written, in degrees. This is a real value. A
value of 0.0 degrees indicates left to right text. Other values indicate clockwise rotation.
For example, -90.0 degrees specifies bottom to top.

string
The text string to write, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $ TEXT _ 2D[16,32,REAL] to change the text string.

Inquiring about a command that is not a GM_$TEXT _2D[16,32,REAL] command results
in an error.,

You can use GM_$INQ_COMMAND_TYPE to determine the type of the current
command.

GM-140

,,------,
(,

\
' --.~,/

c

o

o

o

o

o

GM_$INQ_ TEXT _2D[16,32,REAL]

Use GM_$INQ_ TEXT _2D[16,32,REAL] to retrieve the parameters of a text command
inserted by GM_$TEXT _2D[16,32,REAL].

Currently, you must use GM_$INQ_TEXT_2D16 if the stored data type is GM_$16;
you must use GM_$INQ_ TEXT _2D32 or _2DREAL if the stored data type is
GM $32.

GM-141 GM

GM_ $INQ_ TEXT _ BACKGROUND _ VALUE

GM_$INQ_TEXT_BACKGROUND_ VALUE

Returns the value stored for the current (GM_$TEXT _BACKGROUND _VALUE)
command.

FORMAT

OUTPUT PARAMETERS

value
The background value to use when writing text. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $ TEXT _BACKGROUND _ VALUE to change the text background value.

Inquiring about a command that is not a GM_ $ TEXT _BACKGROUND _ VALUE
command results in an error.

You can use GM_ $INQ_ COMMAND _ TYPE to determine the type of the current
command.

GM-142

., ,'

o

o

o

o

o

Returns the value stored for the current (GM_ $ TEXT _SIZE) command.

FORMAT

OUTPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM _ $ TEXT _ SIZE to change the text size.

Inquiring about a command that is not a GM _ $TEXT _ SIZE command results in an error.

You can use GM_$INQ_ COMMAND _ TYPE to determine the type of the current
command.

GM-143 GM

GM_$INQ_TEXT_ VALUE

GM_$INQ_TEXT_ VALUE

Returns the value stored for the current (GM_$TEXT _ VALUE) command.

FORMAT

OUTPUT PARAMETERS

value
The value to use when writing text. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Use GM_$TEXT_ VALUE to change the text value.

Inquiring about a command that is not a GM_ $ TEXT _ VALUE command results in an
error.

You can use GM_$INQ_ C011rv1AND _ TYPE to determine the type of the current
command.

GM-144

. "

o

o

o

o

o

GM _ $INSTANCE _ SCALE _ 2D [16,32,REALj

GM_$INSTANCE_SCALE_2D[16,32,REAL]

Inserts a command into the current segment: instance the specified segment with the
specified scale and translation parameters.

FORMAT

GM_$INSTANCE_SCALE_2D16 (segment_id. scale. translate. status)

GM_$INSTANCE_SCALE_2D32 (segment_id. scale. translate. status)

GM_$INSTANCE_SCALE_2DREAL (segment_id. scale. translate. status)

INPUT PARAMETERS

segment_id

scale

The identification number of the segment to instance, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

A real number indicating the scaling factor.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE SCALE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE SCALE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE SCALE 2DREAL

See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Scaling is performed before translation.

Use GM_ $SEGMENT _ GET _ID to find the number of a previously defined segment for
which you know only the name.

GM-145 GM

GM_ $INSTANCE_SCALE_2DI16,32,REAL]

GM

Use GM_$INQ_INSTANCE_SCALE_2D[16,32,REAL] to retrieve the parameters of an
instance scale command inserted by GM_$INSTANCE_SCALE_[16,32,REAL].

Before supplying coordinate data to GM_$INSTANCE_SCALE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-146

(... '"

o

o

o

()

o

GM_$INSTANCE_ TRANSFORM_2D[16,32.REAL]

GM_ $INSTANCE _ TRANSFORM_2D[16,32.REAL]

Inserts a command to instance the specified segment with the specified rotation and
translation applied.

FORMAT

GM_$INSTANCE_TRANSFORM_2D16 Csegment_id. rotate. translate. status)

GM_$INSTANCE_TRANSFORM_2D32 Csegment_id. rotate. translate. status)

GM_$INSTANCE_TRANSFORM_2DREAL Csegment_id. rotate. translate. status)

INPUT PARAMETERS
I

segment_id
The identification number of the segment to transform, in GM_ $SEGMENT _ill _ T
format. This is a 4-byte integer.

rotate
The rotation to be applied to coordinates in the segment, in
GM_$ROTATE_REAL2x2_ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSFORM 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSFORM 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSFORM 2DREAL

See the GM _ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

GM-147 GM

GM _ $INSTANCE _ TRANSFORM _ 2D [16,32.REAL]

GM

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$INQ_INSTANCE_TRANSFORM_2DREA 1 L

Rotation is performed before translation.

Use GM_ $SEGMENT _ GET _ID to find the number of a previously defined segment for
which you know only the name.

Use GM_$INQ_INSTANCE_ TRANSFORM_2D[16,32,REAL] to retrieve the parameters
of an instance transform command inserted by
GM_ $INSTANCE _ TRANSFORM_ 2D[16,32,REAL].

You must call GM_$DATA_ COERCE_SET _REAL before supplying coordinate data to
GM_$INSTANCE_ TRANSFORM_2DREAL. This forces real variables that you send to
the package to be stored in 32-bit storage format.

Rotation: Use the following to include an instance of segment little_seg at (400,300), at
triple size and rotated 50 degrees:

rotate.xx := 3.0 * cos(50.0 * 3.14159/180.0);
rotate.xy := 3.0 * sin(50.0 * 3.14159/180.0);
rotate.yx := -rotate.xy;
rotate.yy := rotate.xx;
point.x := 400;
point.y := 300;
GM_$INSTANCE_TRANSFORM_2D16 (little_seg, rotate, point, status);

Distortion: Use the following to include an instance of segment distort_seg at (12.5, 14.5),
with a scale of 1 in the x direction and a scale of 3 in the y direction, unrotated:

rotate.xx := 1.0;
rotate.xy := 0.0;
rotate.yx := 0.0;
rotate.yy := 3.0;
rpoint.x := 12.5;
rpoint.y := 14.5;
GM_$INSTANCE_TRANSFORM_2DREAL(distort_seg, rotate, rpoint, status);

GM-148

\
'-.

-------------- - ------------------

c

o

o

o

c

GM_ $INSTANCE_ TRANSLATE_2DI16,32,REAL/

GM_ $INSTANCE _ TRANSLATE _ 2D[16,32,REAL]

Inserts a command into the current segment: instance the identified segment with the
specified translation.

FORMAT

GM_$INSTANCE_TRANSLATE_2DREAL <segment_id, translate, status)

INPUT PARAMETERS

segment_id
The identification number of the segment to instance, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

translate
An (x,y) pair indicating the amount of translation in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for
GM $INSTANCE TRANSLATE 2D16

GM $POINT32 T
A two-element array of 4-byte integers for
GM $INSTANCE TRANSLATE 2D32

GM $POINTREAL
A two-element array of real values for
GM $INSTANCE TRANSLATE 2DREAL

See the GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$INQ_INSTANCE_TRANSLATE_2DREA 1 L

GM-149 GM

GM_ $INSTANCE_ TRANSLATE_2DI16,32,REALj

GM

Use GM_$INQ_INSTANCE_ TRANSLATE_2D[16,32,REAL] to retrieve the parameters
of an instance translate command inserted by
GM_$INSTANCE_TRANSLATE_2D[16,32,REAL].

You must call GM_$DATA_COERCE_SET_REAL before supplying coordinate data to
GM_$INSTANCE_ TRANSLATE_2DREAL. This forces real variables that you send to
the package to be stored in 32-bit storage format.

GM-150

~\

o

o

o

o

o

GM_ $MODELCMD _INQ_MODE

GM_$MODELOlvID_INQ_MODE

Returns the values stored for the current (GM_ $MODELOlvID _SET _MODE) command.

FORMAT

OUTPUT PARAMETERS

gm _ modelcmd _ mode
The editing mode, in GM_ $MODELOlvID _MODE_ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $MODELOlvID INSERT
Modeling commands insert a command at the current position in the
currently open segment. This is equivalent to
GM $REPLAOE $SET FLAG = false.

GM $MODELOMD REPLAOE
Modeling command replaces the command at the current position in the
currently open segment. This is equivalent to
GM $REPLAOE $SET FLAG = true.

GM $MODELOlvID RUBBERBAND

status

Modeling commands XOR the previous command on the screen, thus
erasing it, then XOR the given command onto the screen. Only bit plane
o is used for rubberbanding. No changes are made to the metafile in this
mode.

Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM $MODELOMD SET MODE to set the model command mode.

GM-151 GM

GM $MODELCMD SET MODE

GM $MODELCMD SET MODE

Sets the modeling command mode.

FORMAT

INPUT PARAMETERS

gm _ modelcmd _ mode
The editing mode to use, in GM_ $MODELCMD _MODE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $MODELCMD INSERT
Modeling commands insert a command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = false.

GM $MODELCMD REPLACE
Modeling commands replace the command at the current position in the
currently open segment. This is equivalent to
GM $REPLACE $SET FLAG = true.

GM $MODELCMD RUBBERBAND
Modeling commands XOR the previous modeling command on the screen,
thus erasing it, then XOR the given modeling command onto the screen.
Only bitplane 0 is used for rubberbanding. No changes are made to the
metafile in this mode.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Rubberband mode provides an interactive capability. The mode uses a pointing device and
allows an application program to get information from a user. The application program
then uses the information to insert or replace the command with the changes the user has
specified.

You may still set or inquire the replace flag by calling GM _ $REPLACE _ $SET _ FLAG
GM _ $REPLACE _ $INQ _ FLAG, respectively. In new programs, use the
GM $MODELCMD... routines.

Use GM_$MODELCMD _INQ_MODE to get the values stored in this command.

GM-152

o

o

C)

o

o

GM $PICK COMMAND

GM $PICK COMMAND

Within the current segment, selects a command which contains a selected point on the
display.

FORMAT

INPUT PARAMETERS

search rule
The search rule to apply in selecting the command, in GM_$SEARCH_ COMMAND _ T
format. This is a 2-byte integer. Specify only one of the following predefined values:

GM $CNEXT Find the next command which falls within the pick apert.ure, moving
forward in the segment.

GM $STEP Find the next command in the segment, independent of the coordinates of
the pick aperture.

GM $START Move to the start of the segment, independent of the coordinates of the
pick aperture.

If search_rule = GM_ $START, the current command is changed to
equal beginning-of-segment (no current command), allowing commands to
be added at the beginning of the segment.

GM $END Move to the end of the segment, independent of the coordinates of the
pick aperture.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

The current command is changed to equal the picked command.

Instance commands are treated like any other command in their context. To pick "into" an
instanced segment, use GM_$PICK_SEGMENT.

Commands are picked only if the pick aperture intersects the drawn command. An
exception is the GM _ $ CURVE _ 2D ... commands. These commands are picked if the
bounding box of the command intersects the pick aperture.

GM-153 GM

GM $PICK HIGHLIGHT COMMAND

GM $PICK HIGHLIGHT COMMAND

Highlights the current command on the display.

FORMAT

GM_$PICK_HIGHLIGHT_COMMAND (highlight, time, status)

INPUT PARAMETERS

highlight

time

The method to be used for highlighting the command, in GM_ $HIGHLIGHT _ T format.
This is a 2-byte integer. Currently, the only possible value is GM_ $OUTLlNE. This
value draws a rectangular outline around the command, leaves it displayed for the specified
amount of time, and then erases it.

The number of seconds for which the command is to be highlighted. This is a real value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

This operation is performed only if the viewport primary segment of the current viewport is
the current segment.

The outline drawn around picked commands and picked segments is temporary. The
outline remains on the screen for the requested number of seconds and is then erased.

GM-154

C)

o

o

o

GM $PICK HIGHLIGHT SEGMENT

GM $PICK HIGHLIGHT SEGMENT

Within the current file, highlights the specified segment.

FORMAT

GM_$PICK_HIGHLIGHT_SEGMENT (highlight, time, status)

INPUT PARAMETERS

highlight

time

The method to be used for highlighting the segment, in GM_ $HIGHLIGHT _ T format.
This is a 2-byte integer. Currently, the only possible value is GM_ $OUTLINE. This
value draws a rectangular outline around the segment, leaves it displayed for the specified
amount of time, and then erases it.

The number of seconds for which the segment is to be highlighted. This is a real value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This operation is performed only if the viewport primary segment of the current viewport is
the first segment in the pick list.

The outline drawn around picked segments and picked commands is temporary. The
outline remains on the screen for the requested number of seconds and is then erased.

GM-155 GM

Returns the center of the pick aperture.

FORMAT

OUTPUT PARAMETERS

center
The (x,y) coordinates of the center of the pick aperture, in GM_$POINTREAL_ T format.
This is a two-element array of real values.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

A program must call GM_$PICK_SET_CENTER and GM_$PICK_SET_SIZE after
the use of the commands GM $FILE_DISPLAY or GM $SEGMENT DISPLAY.

GM-156

/~,

(
\.

o

o

o

o

o

-------- ----------------------------------

Returns the current list of picked segments.

FORMAT

INPUT PARAMETERS

max_length
The maximum length of list you are prepared to receive. This is a 2-byte integer.

OUTPUT PARAMETERS

length

list

The number of segment ID's returned. This is a 2-byte integer.

An array of segment ID's, each in GM_$SEGMENT _ID _ T format. This is a 4-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-157 GM

Returns the value of the mask used for segment pickable values during pick segment
operations.

FORMAT

OUTPUT PARAMETERS

mask
The pick mask value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

Use GM_$PICK_SET _MASK to change the current value of the pick mask.

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

GM-158

('
\,

o

o

o

o

o

GM_$PICK_INQ_SIZE

Returns the size of the pick aperture.

FORMAT

OUTPUT PARAMETERS

size
The x and y tolerances for the pick aperture, in segment coordinates of the current segment,
in GM_ $POINTREAL _ T format. This is a two-element array of real values. See the
GM_ $ Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_ $PICK_SET _SIZE to change the size of the pick aperture.

GM-159 GM

Returns the value of the threshold used for segment pickable values during pick segment
operations.

FORMAT

OUTPUT PARAMETERS

threshold
The pick threshold value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $PICK_SET _ THRESHOLD to change the current value of the pick threshold.

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable If two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

GM-160

o

o

o

o

o

GM $PICK SEGMENT

GM $PICK SEGMENT

Selects a segment which contains a specified point on the display.

FORMAT

INPUT PARAMETERS

search _ rule
The search rule to apply in selecting the command, in GM_$SEARCH_SEGMENT _ T
format. This is a 2-byte integer. Specify only one of the following predefined values:

GM $SETUP Make the top segment of the current viewport the start of the list of
picked segments. The rest of the list is emptied.

GM $DOWN Find the first segment instanced by the current segment which, when
instanced, falls within the pick aperture.

GM $NEXT Find the next segment within the segment one higher in the list of picked
segments, which falls within the pick aperture.

GM $UP

GM $TOP

Move up one level in the list of picked segments.

Proceed to top segment in the list of picked segments, destroying the rest
of the list of picked segments.

GM $CLEAR Clear the entire list of picked segments, allowing all segments to be edited
or deleted.

GM_ $BOTTOM Perform GM_ $DOWN repeatedly until a segment is reached for which
GM_ $DOWN finds nothing.

GM $NEXTBOTTOM
Perform GM_$BOTTOM. If nothing is found, perform GM_$NEXT,
or one or more GM_$UPs followed by a GM_$NEXT, until a
GM_$NEXT finds a segment. When a GM_$NEXT finds a segment,
perform a GM $BOTTOM from there.

OUTPUT PARAMETERS

segment_id
The identification number of the picked segment, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

n instances
The number of instances of this segment in the file. This is a 4-byte integer.

bounds
(Reserved for future extension.) A GM_$BOUNDSREAL_ T variable. This is an array of
4 real values.

GM-161 GM

GM $PICK SEGMENT

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$PICK_SEGMENT to set the current segment.

If a segment is picked, the picked segment becomes the last segment on the list of picked
segments. If no segment is picked, the list of picked segments is unchanged. While a
segment is in the picked list, it may not be deleted or edited.

Use GM_ $INQ_PICK_LIST to examine the current list of picked segments.

Each segment listed in the list of picked segments is instanced in the preceding segment.

GM-162

o

o

o

o

o

GM $PICK SET CENTER

GM $PICK SET CENTER

Changes the center of the pick aperture.

FORMAT

INPUT PARAMETERS

center
The (x,y) coordinates of the center of the pick aperture, in GM_$POINTREAL_ T format.
This is a two-element array of real values. See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

When picking commands, GM_ $PICK_ SET _ CENTER uses the segment coordinates of
the current segment.

When picking segments, in other than no-bitmap mode, GM_$PICK_SET _ CENTER
uses the segment coordinates of the viewport primary segment of the segment in which pick
segment operations were initialized.

When picking segments in no-bitmap mode, GM_ $PICK_SET _ CENTER uses the
segment coordinates of the primary segment of the file.

The PICK routines search for any segments/commands which fall into the following region:

(center.x - size.x to
center.y - size.y to

center.x + size.x,
center.y + size.y)

GM-163 GM

GM $PICK SET MASK

GM $PICK SET_MASK

Changes the value of the mask used for segment pickable values during pick segment
operations.

FORMAT

INPUT PARAMETERS

mask
The pick mask value. This is a 4-byte integer.

The pick mask is initialized to 16#7FFF (all segments with nonzero pickable values are
pickable).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

Use GM_ $PICK_INQ_MASK to retrieve the current value of the pick mask.

GM-164

o

o

o

o

o

GM $PICK SET SIZE

GM $PICK SET SIZE

Specifies the size of the pick aperture.

FORMAT

GM_$PICK SET_SIZE (size, status)

INPUT PARAMETERS

size
The x and y tolerances for the pick aperture, in segment coordinates of the current segment,
in GM_ $POINTREAL _ T format. This is a two-element array of real values. See t.he
GM_ $ Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See t.he
GM_ $ Data Types section for more information.

USAGE

Use GM_$PICK_INQ_SIZE to retrieve the size of the pick aperture.

When picking commands, GM_ $PICK_SET _ CENTER uses the segment coordinates of
the current segment.

When picking segments, in other than no-bitmap mode, GM_ $PICK_ SET _ CENTER
uses the segment coordinates of the viewport primary segment of the segment in which pick
segment operations were initialized.

When picking segments, in no-bitmap mode, GM_ $PICK_SET _ CENTER uses the
segment coordinates of the primary segment of the file.

The dimensions for the pick aperture are the following: (2 * size.x, 2 * size.y).

The PICK routines search for any segments/commands which fall into the following region:

(center.x - size.x to
center.y - size.y to

center.x + size.x,
center.y + size.y).

GM-165 GM

GM $PICK SET THRESHOLD

GM $PICK SET THRESHOLD

Returns the value of the threshold used in pick search operations in the current segment.

FORMAT

INPUT PARAMETERS

threshold
The pick threshold value. This is a 4-byte integer.

The pick threshold is initialized to 1 (all segments with nonzero pickable values are
pickable).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

Use GM_$PICK_INQ_ THRESHOLD to change the current value of the pick threshold.

GM-166

o

o

10

o

o

GM $PICK TRANSFORM POINT

GM $PICK TRANSFORM POINT

Transforms the coordinates of a point from the coordinate system of the viewport segment
to the coordinate system of the picked segment.

FORMAT

GM_$PICK_TRANSFORM_POINT (vsegment_position. psegment_position. status)

INPUT PARAMETERS

vsegment _ position
A point in viewport coordinates, in GM_ $POINTREAL _ T format. See the GM $ Data
Types section for more information.

OUTPUT PARAMETERS

psegment _position
A point in picked segment coordinates in GM_$POINTREAL_ T format. See the GM $
Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Strictly speaking, in this context IIpicked segment II means a selected instance of a segment.

GM-167 GM

GM $PLANE MASK

Inserts a command into the current segment: change the plane mask.

FORMAT

INPUT PARAMETERS

mask
The plane mask, specifying which planes to use, in GM_$PLANE_MASK_ T format.
This is a 2-byte integer.

The default value is [0 ... 7], in GM_$PLANE_MASK_ T format, or 255 when expressed as
a 2-byte integer. The default is that all planes are in use and can be modified.

FORTRAN programmers should encode the plane mask in a 2-byte integer in the range of
0-255 (1 means plane 0 is on, 2 means plane I is on, 3 means planes 0 and 1 are on; 255
means planes 0 through 7 are on).

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-168

('
\...,----,/

\'"

~---- --------

o

o

o

o

o

GM $PLANE MASK

USAGE

Use GM_$INQ_PLANE_MASK to get the value stored for the current
GM $PLANE_MASK command.

FORTRAN programmers might want to include the parameter definitions given below:

integer*2
+ bitO,
+ bit1,
+ bit2,
+ bit3,
+ bit4,
+ bit5,
+ bit6,
+ bit7

parameter (
+ bitO 16#0001,
+ bit1 16#0002,
+ bit2 16#0004,
+ bit3 16#0008,
+ bit4 16#0010,
+ bit5 16#0020,
+ bit6 16#0040,
+ bit7 16#0080)

Example:

In FORTRAN, to enable planes 2 and 5, use the following:

CALL GM_$PLANE_MASK(bit2 + bit5, status)

In Pascal, to enable planes 2 and 5, use the following:

GM-169 GM

GM _ $POL YLINE _ 2D [16,32,REAL]

GM_ $POL YLINE _ 2D[16,32,REAL]

Inserts a command into the current segment: draw a linked set of line segm~nts.

FORMAT

GM_$POLYLINE_2D16 Cn_points. point_array. close. fill. status)

GM_$POLYLINE_2D32 Cn_points. point_array. close. fill. status)

GM_$POLYLINE_2DREAL Cn_points. point_array. close. fill. status)

INPUT PARAMETERS

n_points
The number of points in the list of points. This is a 2-byte integer. Polylines are limited to
1000 (GM_$MAX_ARRAY _LENGTH) points.

point _ array

close

fill

A list of coordinate points, each a pair (x,y) of integers in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$POLYLINE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $POL YLINE _ 2D32

GM $POINTREAL
A two-element array of real values for GM_$POLYLINE_2DREAL

See the GM _ $ Data Types section for more information.

A Boolean (logical) value which specifies whether the first and last points are connected.
Set the parameter to true to close the polygon. You must use close when you want to fill a
polygon.

A Boolean (logical) value which specifies whether to fill the polygon or not. Filled polygons
must be closed. Set the parameter to true to fill the polygon; set it to false for an unfilled
polygon.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_ $INQ_POL YLINE _2D[16,32,REAL] to retrieve the parameters of a polyline
command inserted by GM_$POLYLINE_2D[16,32,REAL].

GM-170

("
1\

\ -.~,.- .. ,,;

r
\ '_ ...

------------------------_ .. _-_ _ ... _-----_ .. _ .. .

o

o

o

o

o

GM _ $POL YLlNE _ 2D[16,32,REALj

Currently, you must use GM_$INQ_POLYLlNE_2D16 if the stored data type is
GM_$16; you must use GM_$INQ_POLYLlNE_2D32 or _2DREAL if the stored data
type is GM _ $32.

Selecting close = false and fill = true results in an error.

Before supplying coordinate data to GM _ $POL YLlNE _ 2DREAL, you must call
GM _ $DATA _ COERCE _ SET _ REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-l71 GM

GM_ $PRIMITIVE_2D[16,32,REALJ

GM_$PRIMITIVE_2D[16,32,REAL]

Inserts a command into the current segment: draw a primitive.

FORMAT

GM_$PRIMITlVE_2D16 (primitive type, n points, point_array, n_parameters,
parameter=array, status)

GM_$PRIMITlVE_2D32 (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

GM_$PRIMITlVE_2DREAL (primitive_type, n_points, point_array, n_parameters,
parameter_array, status)

INPUT PARAMETERS

primitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

Each distinct value of primitive _ type corresponds to a different user-defined primitive
display routine. For each primitive _ type you use, you must write a user-defined display
routine to be used when displaying (GM_$PRIMITIVE_2D) commands of that primitive
type. You define a specified display routine to be used for displaying a specified primitive
type using the routine GM_$PRIMITIVE_DISPLAY _2D.

n_points
The number of points in the list of points. This is a 2-byte integer. The number of points
is limited to 1000 (GM_$MAX_ARRAY _LENGTH).

point _ array
A list of coordinates of points each a pair (x,y) of values in the appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$PRIMITIVE_2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_$PRIMITIVE_2D32

GM $POINTREAL
A two-element array of real values for GM_$PRIMITIVE_2DREAL

See the GM _ $ Data Types section for more information.

n _ parameters
The number of parameters in the list of parameters. This is a 2-byte integer.

parameter _ array
A list of parameters, in GM_$ARRAYREAL_ T format. This is an array of real values.

GM GM-172

~
\, •.•..... '

o

o

o

o

o

GM_ $PRIMITIVE_2D[16,32,REAL]

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Before supplying coordinate data to GM_$PRlMITIVE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-l73 GM

GM $PRIMITIVE DISPLAY 2D

GM $PRIMITIVE DISPLAY 2D

Assigns the specified user-defined routine to the specified user-defined primitive type
number.

FORMAT

INPUT PARAMETERS

primitive _ type
The user-defined type of primitive command. This is a 2-byte integer.

display _procedure_ptr

GM

Entry point for the application-supplied procedure that displays (GM _ $PRIMITIVE _ 2D)
commands of the specified primitive type, in GM_$PRIMITIVE_PTR_ T format. This is
a pointer to a procedure.

When a (GM_$PRIMITIVE_2D) command of the specified primitive type is encountered
during display operations, the graphics metafile package calls the application-supplied
procedure to display the command. Four input parameters are passed to the
application-supplied procedure:

n_points: the number of pOints in point_array. This is
a 2-byte integer.

point_array: the list of points. transferred to display
coordinates. This is an array of pairs
(x.y) of 2-byte integers.

n_parameters: the number of parameters in parameter_array.
This is a 2-byte interger.

parameter_array: the list of parameters. This is an
array of reals.

If you use a value of NIL for display _procedure _ptr, no routine is called at display time.
You can use this to undo an assignment of a procedure to a specified user-defined
primitive-type number.

In FORTRAN, pass procedure pointers as indicated in the description of
GM $REFRESH SET ENTRY. Use 0 (not NIL) to indicate a zero value.

GM-174

o

o

o

o

GM $PRIMITIVE DISPLAY 2D

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Successive calls to GM_$PRllvfITIVE_DISPLAY _2D for the same primitive type override
previously defined entry points.

The user-supplied routine may contain only GPR drawing routine calls.

GM-175 GM

GM $PRINT _FILE

GM $PRINT FILE

Converts the current metafile to the specified file for subsequent printing on a hard-copy
device.

FORMAT

GM_$PRINT_FlLE (file name. file name length. size. invert. print_style.
bpi.-status) - -

INPUT PARAMETERS

file name
Pathname of the output file, in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

H you specify a file name that already exists, the old contents of the file are overwritten.

file _ name _length

size

Number of characters in the pathname. This is a 2-byte integer.

Pair (x, y) of coordinates, in GM_ $POINT16 _ T. This is a two-element array of 2-byte
integers. See the GM Data Types section for more information.

invert

GM

Boolean (logical) value specifying whether to invert the file or not. Set to true to invert the
file. Set to false to print the file without inverting it.

GM-176

......_,

c

o

o

(j

o

o

GM $PRINT FILE

print _ style
Type of output file to be created, in GM_$PRINT_STYLE_ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $GMF

GM_$OUTI

Specifies that you want to copy a metafile to a bitmap for storage in a
graphics map file (GMF).

Specifies that you want to create a vector command file. Only one plane,
plane 0, is stored.

GM $POSTSCRIPT
Specifies that you want to create a PostScript file

For print_style = GM_ $OUTl, all coordinates are transformed to display coordinates in
accordance with the size parameter of the GM_ $PRINT _ ... routine that you 'used to
create the vector comman.d file. In the GM_ $OUTI file, the origin of coordinates is the
top left, not the bottom left as in the'metafile. TheGM _$OUTI file is sca1ed to the size
parameter using the standard 95% rule that one dimension fills 95% of the size block, and
the other dimension does not overflow the block.

For print_style = GM_$GMF, the bpi value sets the physical density of the image
represented in the GMF. If this parameter is nonzero, a device to which you output the
GMF may compress or expand the image to produce a result which is as close as possible to
the specified number of bits per inch. If this parameter is zero, an output device uses one
dot to represent each bit from the GMF, regardless of the resulting physical size of the
image.

GM-l77 GM

GM $PRINT _FILE

bpi
Number of bits per inch in the output GMF (graphics map file). This is a 2-byte integer. I,

OUTPUT PARAMETERS

status
Completion status, in· STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM

GM_ $PRINT _Fll.,E prints the primary segment of the file. To print some other segment,
you may make the desired segment the primary segment, call GM--.,; $PRINT _Fll.,E, and
then restore the previous value of the primary segment.

GM-178

c'

c\

(~
\,---,

o

o

o

o

G

GM_$PRINT FILE_PART

GM $PRINT FILE PART

Converts part of the current metafile to the specified file for subsequent printing on a
hard-copy device. .

FORMAT

GM_$PRINT_FlLE_PART (bounds. file name. file name length. size. invert.
print_style.-bpi. status) -

INPUT PARAMETERS .

bounds
Part of this file to be printed, in segment coordinates of the primary segment, in
GM_ $BOUNDSREAL T format. This is a four-element array of real values (xmin, ymin,
xmax, ymax).

file name
Pathname of the output file, in NA11E _ $PNA11E _ T format. This is an array of up to
256 characters.

file _ name _length

size

Number of characters in the pathname. This is a 2-byte integer.

If you specify a file name that already exists, the old contents of the file are overwritten.

Pair (x,y) of coordinates, in GM_ $POINT16 _ T. This is a two-element array of 2-byte
integers.

invert
Boolean (logical) value specifying whether to invert the file or not. Set to true to invert the
file. Set to false to print the file without inverting it.

print_style
Type of output file to be created, in GM _ $PRINT _ STYLE _ T format. This is a 2-byte
integer. Specify only one of the following predefined values:

GM $GMF

GM $OUTI

Specifies that you want to copy a metafile to a bitmap for storage in a
graphics map file (GMF).

Specifies that you want to create a vector command file.

GM $POSTSCRIPT
Specifies that you want to create a PostScript file.

For print _style = GM_ $OUTl, all coordinates are transformed to display coordinates in
accordance with the size parameter of the GM_ $PRINT _ ... routine that you used to
create the vector command file. In the GM _ $OUTI file, the origin of coordinates is the
top left, not the bottom left as in the metafile. The GM_ $OUTI file is scaled to the size
parameter using the standard 95% rule that one dimension fills 95% of the size block, and
the other dimension does not overflow the block.

GM-179 GM

bpi

For print_style = GM_$G:MF, the bpi value sets the physical density of the image
represented in the GMF. If this parameter is nonzero, a device to which you output the
GMF may compress or expand the image to produce a result which is as close as possible to
the specified number of bits per inch. If this parameter is zero, an output device uses one
dot to represent each bit from the GMF, regardless of the resulting physical size of the
image.

Number of bits per inch in the outputGMF (graphics mapf~le). This,is a .2~byteinteger.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM

GM_$PRINT _FILE_PART prints the primary segment of the file. To print some other
segment, you may make the desired segment the primary segment, call
GM_$PRINT _FILE_PART, and then restore the previous value of the primary segment.

GM-180

" _-

o

o

o

o

o

GM_ $RECTANGLE _ [16,32,REALj

GM_ $RECTANGLE _ [16,32,REAL)

Inserts a command into the current segment: draw a rectangle with sides parallel to the x
and y axes.

FORMAT

GM_$RECTANGLE_16 (pointl, point2, fill, status)

GM_$RECTANGLE_32 (pointl, point2, fill, status)

GM_$RECTANGLE_REAL (pointl, pOint2, fill, status)

INPUT PARAMETERS

point!, point2

fill

The coordinates of two diagonally opposite corners, each a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_ $RECTANGLE _16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $RECTANGLE _ 32

GM $POINTREAL
A two-element array of real values for GM_$RECTANGLE_REAL

A Boolean (logical) value which specifies whether to fill the rectangle or not. Set the
parameter to true to fill the rectangle; set it to false for an unfilled rectangle.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_RECTANGLE_[16,32,REAL) to retrieve the parameters of a rectangle
command inserted by GM_$RECTANGLE_[16,32,REAL).

Currently, you must use GM_$INQ_RECTANGLE_16 if the stored data type is
GM_$16; you must use GM_$INQ_RECTANGLE_32 or _REAL if the stored data
type is GM_$32.

Before supplying coordinate data to GM_$RECTANGLE_2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-ISI GM

GM $REFRESH SET ENTRY

GM $REFRESH SET ENTRY

Specifies a user-defined routine to be called when the display is refreshed as a result of a
DM refresh window or POP command.

FORMAT

INPUT PARAMETERS

refresh _ procedure _ ptr
refresh _ proced ure _ ptr

GM

Entry point for the application-supplied procedure to refresh the display, in
GM_$REFRESH_PTR_ T format. This is a pointer to procedure.

In direct mode, when the Display Manager refreshes the window in which the GM bitmap is
contained, the specified application-supplied procedure is called. Two input parameters are
passed to the application-supplied procedure:

unobscured When false, this Boolean value indicates
that the window is obscured.

position_changed
When true, this Boolean value indicates
that the window has moved or grown since
the display was released.

The "pointer to procedure II data type is an extension to the Pascal language. See the
DOMAIN Pascal Language Reference for an explanation of this extension.

This routine requires you to pass procedure pointers. To do so in FORTRAN programs,
use the following technique. First declare the subroutines to be passed as EXTERNAL.
Then pass their names using the IADDR function to simulate the Pascal pointer mechanism.
For example:

EXTERNAL REFRESH WINDOW

CALL GPR_$SET_REFRESH_ENTRY (IADDR(REFRESH_WINDOW),IADDR,
STATUS)

In FORTRAN, use 0 (not NIL) to indicate a zero value.

GM-182

'\ ,---

(
\, ~" .. -.

o

o

C)

o

o

GM $REFRESH SET ENTRY

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Successive. calls to GM_ $REFRESH_SET _ENTRY override previously defined entry
points.

In within-GPR mode, use GPR_ $SET _REFRESH_ENTRY.

GM-183 GM

GM_$REPLACE_INQ_FLAG

Returns the current value of the replace flag (Obsolete). New programs use
GM_ $MODELCMD _ INQ_MODE.

FORMAT

OUTPUT PARAMETERS

yes_no
A Boolean value indicating whether the replace flag is set. True indicates that the flag is
set (new commands replace the current command); false indicates that the flag is cleared
(new commands are inserted after the current command). The default value is false.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

This routine is functional, but new programs should use
GM_ $MODELCMD _INQ_MODE.

GM-184

I

\",

'" -

o

o

o

o

o

GM $REPLACE SET FLAG

GM $REPLACE SET FLAG

Sets or clears a flag which causes subsequent commands to replace the current command
rather than being inserted after it (Obsolete). New programs use
GM $MODELCMD SET MODE.

FORMAT

INPUT PARAMETERS

yes_no
A Boolean value indicating whether the replace flag is set. Use true to set the flag (new
commands replace the current command); use false to clear the flag (new commands are
inserted after the current command).

The default value is false (new commands are inserted after the current command).

When the replace flag is set, and you call a routine which creates a command of the same
command type as the current command, the new command replaces the current command.

If you call a routine which creates a different command type, the replace flag is
automatically cleared and the new command is inserted after the current command.

Changing the current command (for example, by calling GM_ $C011MAND _DELETE)
automatically clears the replace flag.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

This routine is functional, but new programs should use
GM $MODELCMD SET MODE.

Only primitive and instance command types may be replaced. The replace flag may only be
set if the current command is a primitive or instance command.

GM-185 GM

GM $SEGMENT CLOSE

GM $SEGMENT CLOSE

Closes the current segment, saving revisions or not.

FORMAT

GM_$SEGMENT_CLOSE (save. status)

INPUT PARAMETERS

save
A Boolean (logical) value that indicates whether to save revisions. Set to true to save
revisions; set to false not to save revisions.

You must set save to true. Do not assume that it is true by default.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This da.ta type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-186

o

o

o

o

C)

GM $SEGMENT COpy

GM $SEGMENT COPY

Copies the entire contents of another segment into the current segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to be copied, in GM_ $SEGMENT _ID _ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The entire contents of the specified segment are copied into the current segment after the
current command. The current command is set equal to the last copied command.

You' cannot copy a segment from one file to another file.

Use the following procedure to make a new segment named "newcopy, II which is an exact
copy of an existing segment. The identification of the existing segment is 'source_seg_id':

GM_$SEGMENT_CREATE ('newcopy'. 7. segment_id. status);
GM_$SEGMENT_COPY (source_seg_id. status)
GM_$SEGMENT_CLOSE (true. status)

The two copies may then be edited independently and instanced independently.

GM-187 GM

GM $SEGMENT CREATE

GM $SEGMENT CREATE

Creates a new segment.

FORMAT

INPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is a character string.

Currently, the segment name is truncated to twelve characters.

Segments in the same file must have different segment names. Note that "SEGI! and "seg"
are different segment names; the comparison is case-sensitive.

Verification that each name is unique carries a performance penalty. Therefore, you have
the option of no~ naming segments and using the the segment identification number to
reference segments. To create an unnamed segment, set the value for name to 0:

You can use GM_$SEGMENT _RENAME to give a name to an unnamed segment or to
remove the name of a segment.

name_length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

segment_id
The identification number assigned to the segment, in GM_ $ SEGMENT _ID _ T format.
This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The segment name is of arbitrary length; however, currently only the first twelve characters
are stored to differentiate one segment from another

You must close the current segment before creating a new segment.

When a segment is created, its pickable and visible values are set to 255.

GM-188

\ ..

o

o

o

o

GM $SEGMENT CREATE

For a segment name, you can use any collection of byte values of length 1 through 12.
Trailing blanks in segment names are not discarded.

If you are careful, you may use a number for the segment name:

VAR
number: integer32;

GM-189 GM

GM $SEGMENT DELETE

GM $SEGMENT DELETE

Deletes the current segment.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

There must be no references to the deleted segment.

If you delete a segment, its identification number will be reassigned. The smallest unused
identification number is reassigned first.

You may not delete the file's primary segment. If you attempt to do so, you will get this
error message: gm _ $illegal_ value.

GM-190

o

(J

()

o

GM $SEGMENT ERASE

GM $SEG1vfENT _ ERASE

Deletes all commands in the current segment.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Mter this routine is performed, the current segment is still the current segment, but it
contains no commands.

GM-191 GM

Returns the bounds of a segment.

FORMAT

INPUT PARAMETERS

seg_id
Segment ID in GM_$SEGMENT _ID _ T format. This is a positive 4-byte integer.

OUTPUT PARAMETERS

bounds
Bounds of the segment in GM _ $BOUNDSREAL _ T format. This is a four-element array
of real numbers. See the GM Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

GM

Use this call to obtain the coordinates of the bottom left-hand boundary and the top
right-hand boundary of the segment.

Use GM_ $FILE_INQ_BOUNDS to obtain the bounds of the primary segment of a file.

Use GM_$COMMAND _INQ_BOUNDS to obtain the bounds of the current command.

GM-191.1

o

o

o

o

o
GM GM-191.2

GM_$SEGMENT _INQ_ COUNT

Returns the number of segments in this metafile and a segment number guaranteed to be
greater than or equal to the largest segment number.

FORMAT

GM_$SEGMENT_INQ COUNT (count. max_segid. status)

OUTPUT PARAMETERS

count
The number of segments in the metafile, in GM_ $ SEGMENT _ID _ T format. This is a
4-byte integer.

max_segid
A number greater than or equal to the largest segment ID in the file, in
GM $SEGMENT ID T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

When you retrieve the count and maximum segment ID, you can then look at every
segment by checking segment numbers from 0 to this maximum value (0 is used).

GM-192

o

o

o

o

o

GM _ $SEGMENT _ INQ _ CURRENT

GM_ $SEGMENT _ INQ _ CURRENT

Returns the name, segment identification, and number of instances of the current segment.

FORMAT

GM_$SEGMENT_INQ CURRENT (name. name_length. segment_id.
n_instances. status)

OUTPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is an arra.y of up to
256 characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

segment_id
The identification number assigned to the segment, in GM_ $SEGMENT _ID _ T format.
This is a 4-byte integer.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The returned segment number must be used for creating references to this segment within
other segments.

GM-193 GM

GM_ $SEGMENT _INQ_ID

Returns the segment identification and the number of instances of the named segment.

FORMAT

INPUT PARAMETERS

name
The pathname of the segment. This is an array of up to 256 characters.

name _length
The number of characters in the pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

segment_id
The identification number assigned to the segment of specified name, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

In creating instances of (references to) this segment within other segments, you must use the
returned segment identification number.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

The name is 6f arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

GM_ $ SEGMENT _INQ_ID is complementary to GM_ $SEGMENT _INQ_NAME.

Only the current file is searched to identify the segment number and the number of
instances of the named segment.

GM-194

/----""
(
\,

o

u

o

o

o

GM_ $SEGMENT _INQ_NAME

Returns the name of the segment with the specified segment identification number.

FORMAT

INPUT PARAMETERS

segment_id
The identification number assigned to the segment, in GM_$SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

name
The pathname of the segment, in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

name _ length
The number of characters in the pathname. This is a 2-byte integer.

n instances
The number of instances of the segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

The name is of arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

GM_ $SEGMENT _INQ_NAME is complementary to GM_ $SEGMENT _INQ_ID.

GM-195 GM

GM_$SEGMENT _INQ_PICKABLE

Returns the pickable value of the specified segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the pickable value is to be retrieved, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

pickable
The pickable value of the specified segment. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The'segment is pickable if two conditions are met: the
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

GM-196

\ , - .,.~'

/~"

\
\

o

o

o

o

o

GM_ $SEGMENT _INQ_ TEMPORARY

Returns whether the specified segment is temporary or not.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the temporary/permanent status is to
be retrieved, in GM_ $SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

temporary
A Boolean (logical) value that indicates whether the segment is temporary. A value of true
indicates that the segment is temporary; false indicates that the segment is permanent.

Temporary segments are deleted when the file is closed.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-197 GM

GM_ $SEGMENT _INQ_ VIS IDLE

GM _ $SEGMENT _ INQ _ VISIBLE

Returns the visible value of the specified segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the visible value is to be retrieved, in
GM_ $SEGMENT _ID _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

visible
The visible value of the specified segment. This is a 4-byte integer.

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-198

/ -"

o

o

o

o

o

GM $SEGMENT OPEN

GM $SEGMENT OPEN

Reopens an existing segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to open, in GM_$SEGMENT _ID _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

You must close the current segment before opening another segment.

Use GM_ $ SEGMENT _INQ_ CURRENT to get the identification number of the current
segment.

Currently, you cannot open a segment in a file that is open for read access. To open a
segment, the file containing the segment must be open in write or read-write access mode.
Otherwise, this error message is returned: gm _ $illegal_ value.

GM-199 GM

GM $SEGMENT RENAME

GM $SEGMENT RENAME

Renames an existing segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to rename, in GM_$SEGMENT _ID _ T format.
This is a 4-byte integer.

The segment number remains the same when you rename the segment.

name
The new name of the segment in NAME _ $PNAME _ T format. This is an array of up to
256 characters.

If another segment already has the new name, you receive an error message, and the old
name is not changed.

name _length
The number of characters in the new name of the segment. This is a 2-byte integer.

Currently, the segment name is truncated to twelve characters.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Verification that each name is unique carries a performance penalty. Therefore, you have
the option of not naming segments and using the segment identification number to reference
segments. To create an unnamed segment, set the value for name to 0:

GM-200

~,
I
\ -

o

o

o

o

o

GM $SEGMENT RENAME

You can use GM_$SEGMENT _RENAME to give a name to an unnamed segment or to
remove the name of a segment.

,
The name is of arbitrary length; however, currently only the first twelve characters are
stored to differentiate one segment from another.

To find the segment_id of an existing segment for which you know the name, use
GM_ $SEGMENT _INQ_ID.

GM-201 GM

GM $SEGMENT SET PICKABLE

GM $SEG1v1ENT SET PICKABLE

Assigns a pickable value to the specified segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the pickable value is to be changed, in
GM_ $SEG1v1ENT _ID _ T format. This is a 4-byte integer.

pickable
The pickable value for the specified segment. This is a 4-byte integer.

When a segment is created, its pickable value is initialized to 255.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

The pick mask and threshold values are used during pick segment operations to determine
which segments are pickable. The segment is pickable if two conditions are met: the·
segment's pickable value is greater than or equal to the pick threshold; and the result of a
bitwise-AND of the segment pickable value and the pick mask is nonzero. If either
condition is not met, the segment is not picked.

GM-202

\

o

o

o

o

o

GM $SEGMENT SET TEMPORARY

GM $SEGMENT SET TEMPORARY

Makes the specified segment temporary or not. Temporary segments are deleted when the
file is closed.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment to make temporary, in
GM_$SEGMENT _ID _ T format. This is a 4-byte integer.

temporary
A Boolean value that indicates whether the segment is temporary. Set to true to make
temporary; set to false to make permanent.

When a segment is created, it is made permanent (temporary = false).

A temporary segment is useful for picture data that you want to display now but not st.ore
for future use.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

GM-203 OM

GM $SEGMENT SET VISmLE

GM $SEGlvlENT SET VIsmLE

Assigns a visible value to the specified segment.

FORMAT

INPUT PARAMETERS

segment_id
The identification number of the segment for which the visible value is to be changed, in
GM_ $SEGlvlENT _ID _ T format. This is a 4-byte integer.

visible
The visible value for the specified segment. This is a 4-byte integer.

When a segment is created, its visible value is initialized to 255.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM --'- $ Data Types section for more information.

USAGE

GM _ $SEGlvlENT _ SET _ VISmLE lets you display a picture without certain segments.

GM GM-204

\.

Ie

o

o

o

o

GM $TAG

GM $TAG

Inserts a comment into the current segment.

FORMAT

GM_$TAG (string. string_length. status)

INPUT PARAMETERS

string
The text string to write, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$INQ_ TAG to get the value stored for the current GM_$TAG command.

Descriptor tags in a stroke font file must be entered in the file in capital letters, for
example, WIDTH.

GM-205 GM

GM $TAG LOCATE

GM $TAG LOCATE

Looks for the specified tag in the specified range of segments and returns the segment ID of
the lowest numbered segment in which the tag is found.

FORMAT

GM_$TAG_LOCATE (string. string_length. min. max. segment_id. status)

INPUT PARAMETERS

string
The string to be searched for, in GM_ $STRING _ T format. This is an array of up to 120
characters.

The string to be matched is passed through the pathname wildcard parser, as described in
DOMAIN System Command Reference manual. To guarantee noninterference with the
wildcard parser, you may place an escape character (@) between every byte of the string
you wish to search for.

string _length

min

max

The length of the string to be searched for. This is a 2-byte integer.

The smallest segment number to search, in GM_ $SEGMENT _ID _ T format. This is a
4-byte integer.

The largest segment number to search, in GM_ $ SEGMENT _ID _ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

segment_id
The number of the segment in which the tag was found, in GM_$SEGMENT _ID _ T
format. This is 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

To find all occurrences of a tag, you must make successive calls to GM_ $ TAG _LOCATE.

GM GM-206

o

o

o

o

o

GM $TERMINAT

GM $TERMINATE

Terminates the graphics metafile package and closes the display.

FORMAT

GM_$TERMINATE (status)

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

When GM terminates, it currently resets color 1 to whatever it was when GM was
initialized. This is true of color nodes only. If you use GM in borrow mode, the entire
color map is reset when GM terminates. (The resetting is not by GM, but by GPR.)

Any open files are closed. Revisions to these files are saved.

Any open segments are closed, and revisions are saved.

GM-207

GM_ $ TEXT _2D[16,32,REAL/

GM_$TEXT_2D[16,32,REAL]

Inserts a command into the current segment: write a text string.

FORMAT

GM_$TEXT_2D[16.32.REAL] (point, rotate, string. string_length. status)

INPUT PARAMETERS

point
The coordinates of the point at which to locate text. This is a pair (x,y) of values in the
appropriate format:

GM $POINT16 T
A two-element array of 2-byte integers for GM_$TEXT _2D16

GM $POINT32 T
A two-element array of 4-byte integers for GM_ $ TEXT _ 2D32

GM $POINTREAL
A two-element array of real values for GM_$TEXT _2DREAL

See the GM_ $ Data Types section for more information.

The text is placed as follows: The first character of the text string is placed at the location
you specify. This means that the origin of this character, as defined in the font, is placed at
the specified location. Usually, the origin is the lower left-hand corner, excluding
descenders.

rotate
The angle at which this text string is to be written, in degrees. This is a real variable. Use
0.0 degrees to specify left to right text. Other values indicate clockwise rotation. For
example, -90.0 degrees specifies bottom to top.

string
The text string to write, in GM_ $STRING _ T format. This is an array of up to 120
characters.

string _length
The length of the string. This is a 2-byte integer.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-208

('
I,

'"

o

o

o

o

o

GM_$TEXT _2D[16,32,REAL]

USAGE

Use GM_$INQ_ TEXT _2D[16,32,REAL] to retrieve the parameters of a text command
inserted by GM_$TEXT _2D[16,32,REAL].

Before supplying coordinate data to GM_$TEXT _2DREAL, you must call
GM_$DATA_ COERCE_SET _REAL. This forces real variables that you send to the
package to be stored in 32-bit storage format.

GM-209 GM

GM $TEXT BACKGROUND _ VALUE

GM $TEXT BACKGROUND VALUE

Inserts a command into the current segment: change the background value used when
writing text.

FORMAT

INPUT PARAMETERS

value
The value to use for the text background. This is a 4-byte integer.

The default value is -2. This sets the text background value equal to the viewport
background value.

The value -1 makes the background transparent: the text background value is equal to the
current display pixel value.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

Use GM_$INQ_ TEXT _BACKGROUND _VALUE to get the value stored for the current
GM $TEXT BACKGROUND VALUE command.

GM-210

\.

o

o

o

o

o

GM $TEXT SIZE

GM $TEXT SIZE

Inserts a command into the current segment : use a different text size from the same font
family.

FORMAT

INPUT PARAMETERS

size
The maximum character height, in segment coordinates of the viewport primary segment,
which may be used to display text. This is a real value.

The default text size is 10.0.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information. ,

USAGE

Use GM _ $INQ _ TEXT _ SIZE to retrieve the parameters of a text command inserted by
GM $TEXT SIZE.

GM-211 GM

GM $TEXT VALUE

GM $TEXT_ VALUE

Inserts a command into the current segment: set the value used when writing text.

FORMAT

INPUT PARAMETERS

value
The value that specifies the new value to use when writing text. This is a 4-byte integer.

The default value is 1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

Use GM_$INQ_ TEXT _ VALUE to get the value stored for the current
GM $TEXT VALUE command.

GM-212

,--
I

o

o

o

o

o

GM $VIEWPORT CLEAR

GM $VIEWPORT CLEAR

Clears the current viewport.

FORMAT

GM_$VIEWPORT_CLEAR (value, status)

INPUT PARAMETERS

value
The value to which all pixels within the current viewport are to be set. This is a 4-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Only planes enabled by the current value of the plane mask are affected.

GM-213 GM

GM $VIEWPORT CREATE

GM $VIEWPORT CREATE

Creates an additional viewport and makes it the current viewport.

FORMAT

GM_$VIEWPORT_CREATE (bounds. viewport_id. status)

INPUT PARAMETERS

bounds
The bounds of the new viewport, in GM_$BOUNDSREAL_ T format. This is an array of
four real values (xmin, ymin, xmin, ymax). See the GM_ $ Data Types section for more
information.

OUTPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is assigned by the GM
package.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

GM_ $INIT initializes the GM package and viewports, creates one viewport called viewport
1 which fills the display bitmap and makes it the selected viewport. Currently, viewports
may not overlap, so you must change the bounds of viewport 1 befor~ creating additional
viewports. You must supply bounds for the new viewport, in bitmap coordinates. The GM
package assigns a number to the viewport.

Use this procedure to change the original viewport to fill only the left half of the screen and
create a second viewport in the center right of the screen:

bounds.xmin := 0.0; bounds.ymin := 0.0;
bounds.xmax := 0.5; bounds.ymax := 1.0;
GM_$VIEWPORT_SET_BOUNDS (bounds. status);
bounds.xmin := 0.6; bounds.ymin := 0.25;
bounds.xmax := 1.0; bounds.ymax := 0.75;
GM_$VIEWPORT_CREATE (bounds. viewport_id. status);

GM-214

'-

o

o

o

o

o

GM $VIEWPORT DELETE

GM $VIEWPORT DELETE

Deletes a viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number assigned by the GM package to the viewport you wish to delete. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Because viewports currently may not overlap, you must delete all but one viewport if a
single viewport is to be expanded to fill the entire GM bitmap.

GM-215 GM

GM_ $VIEWPORT _ INQ_BACKGROUND _ VALUE

GM_ $VIEWPORT _INQ _BACKGROUND _ VALUE

Returns the pixel value used for the background of the specified viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

OUTPUT PARAMETERS

value
The value to use for the viewport background. This is a 4-byte integer. '

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

USAGE

GM

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$VIEWPORT_INQ_BACKGROUND_VALU 1 E

Use GM_$VIEWPORT_SET_BACKGROUND_ VALUE to change the background
value of the specified viewport.

GM-216

(
\... /

o

o

o

o

o

------.-.--.--.-.--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--------~~~--

Returns the border size of the current viewport, in pixels or fraction-of-bitmap coordinates.

FORMAT

GM_$VIEWPORT_INQ BORDER SIZE (border_unit. border_size. status)

OUTPUT PARAMETERS

border unit
The units for border size, in GM_$BORDER_ UNIT _ T format. This is a 2-byte integer.
One of the following values is returned:

GM $FRACTIONS
Expresses edge width as fraction of the total 6M bitmap size.

GM $PIXELS Default border type. Expresses edge width in pixels.

border _ size
The size of the border, specified as left, bottom, right, top. This is an array of four real
values (left, bottom, right, top).

The default border type is in pixels, and the default width is 1,1,1,1.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM_$VIEWPORT _INQ_BORDER_SIZE returns the size of the four edges of the
current viewport. If border _ unit = GM_ $PIXELS, edge widths are expressed in pixels. If
border _ unit = GM_ $FRACTIONS, edge widths are expressed as fractions of the total Gi\1
bitmap size.

Use GM_$VIEWPORT _SET _BORDER_SIZE to change the size of the border.

GM-217 GM

GM_ $VIEWPORT _INQ_BOUNDS

Returns the bounds of the current viewport.

FORMAT

OUTPUT PARAMETERS

bounds
The bounds of the current viewport, in GM_ $BOUNDSREAL _ T format. This is a four
element array of real values (xmin, ymin, xmax, ymax). See the GM_ $ Data Types section
for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

GM

GM_$VIEWPORT _INQ_BOUNDS returns the bounds of the current viewport, as
fractions of the total GM bitmap size.

GM-218

c

o

o

C)

o

o

GM_ $VIEWPORT _INQ_ CURRENT

Returns the number of the current viewport.

FORMAT

OUTPUT PARAMETERS

viewport _ id "
The number of the viewport. This is a 2-byte integer. The number is assigned by the GM
package.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

IT there is no current viewport, a GM_ $NO _ CURRENT _ VIEWPORT error is returned.

GM-219 GM

GM_ $VIEWPORT _ INQ _ GRIDS

Returns the number and type of grids for a viewport.

FORMAT

GM_$VIEWPORT_INQ_GRIDS (flags. index. cnt. grid. status)

INPUT PARAMETERS

maxent
Length of the grid array. This is a 2-byte integer.

OUTPUT PARAMETERS

flags
Type of grid, in GM_ GRID _FLAGS _ T format. This is a 2-byte integer. Any
combination of the following predefined values can be returned:

GM $GRID _ VISIBLE
Specifies a visible grid.

GM $GRID SNAP TO
Specifies a snap grid. This may be visible or invisible.

sindex

ent

grid

GM

Index of the snap grid. This is a 2-byte integer.

Number of grids. This is a 2-byte integer.

Array of grids, in GM _ $ARRA Y _ T format. This is an array of [1 .. gm _ $max _ grid]
of GM $GRID T. See the GM Data Types section for more information.

GM-219.1

o

(~

o

o

C)

o

o

GM _ $VIEWPORT _ INQ _ GRIDS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_ $VIEWPORT _SET _ GRIDS to establish a grid for a viewport.

GM-219.2 GM

GM_$VIEWPORT _INQ_REFRESH_STATE

Returns the refresh state of the current viewport.

FORMAT

OUTPUT PARAMETERS

refresh _ state
The refresh state of the viewport, in GM _ $VIEW _ REFRESH _ T format. This is a
2-byte integer. One of the following values is returned:

GM $REFRESH INHIDIT
In borrow mode, changing commands in the file does not immediately
affect this viewport. The viewport is rewritten only when you call
GM_ $VIEWPORT _REFRESH. In direct mode, the viewport is
rewritten only when you call GM_ $VIEWPORT _REFRESH, or when
the display is refreshed as the result of a DM command which causes the
window to be redrawn. Thus, calling GM_$DISPLAY _REFRESH does
not affect a viewport in this refresh state.

GM $REFRESH WAIT
(Default) In borrow mode, changing commands in the file does not
immediately affect this viewport. The viewport is rewritten only when
you call GM_$VIEWPORT _REFRESH or
GM_ $DISPLAY _REFRESH. In direct mode, the viewport is rewritten
only when you call GM_$VIEWPORT_REFRESH or
GM_$DISPLAY _REFRESH or when the display is refreshed as the
result of a DM command which causes the window to be redrawn.

GM $REFRESH PARTIAL
Every time you change any command in the file, the following occurs if
this viewport is the current viewport: Inserted primitive commands are
added, and deleted primitive commands are erased, but underlying data
is not rewritten. This provides faster interactive drawing. You should,
however, periodically clean up the accumulating inaccuracies by calling
GM_ $VIEWPORT _REFRESH to redisplay the viewport.

GM $REFRESH UPDATE
Every time you change any command in the file, this viewport is
completely corrected if it is the current viewport.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

The viewport refresh states are defined under the routine
GM $VIEWPORT SET _REFRESH STATE.

GM-220

o

o

o

o

o

GM $VIEWPORT MOVE

GM $VIEWPORT MOVE

Translates the current viewport, carrying the view with it.

FORMAT

GM_$VIEWPORT_MOVE (translate. status)

INPUT PARAMETERS

translate
An (x,y) pair indicating the amount of translation, in GM _ $POINTREAL _ T format.
This is a two-element array of real values.

The translation is expressed as fractions of the display bitmap size.

Currently, values which would cause part of the viewport to be moved outside the GM
bitmap result in an error.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-221 GM

GM $VIEWPORT REFRESH

GM $VIEWPORT REFRESH

Refreshes the current viewport.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_$ Data Types section for more information.

GM GM-222

c

o

o

o

o

o

GM_$VIEWPORT _SEG_2DI16,32,REALI_ TO _PIXEL

GM_ $VIEWPORT _SEG _2D[16,32,REAL] _ TO _PIXEL

Converts segment coordinates to pixel coordinates.

FORMAT

OUTPUT PARAMETERS

p

q

Segment coordinates of any point in the viewport segment, in GM_ $POINTI6 _ T format.
This is a two-element array of 2-byte integers, 4-byte integers, or real numbers depending
on which form of the call is used.

Pixel coordinates of the screen location whose coordinates were entered in parameter lip".
This p~rameter uses GM_ $POINTI6 _ T format. This is a two-element array of 2-byte
integers, 4-byte integers, or real numbers depending on which form of the call is used.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

This routine allows the user to inquire about the pixel location of a particular point in a
segment. For example, if a rectangle is drawn from (0,0) to (100,100), the user can obtain
the screen location (pixel coordinates) of the point (0,0), or any other point in the segment.

This call is useful when drawing grids. For example, consider drawing the lines of a grid
every 100 segment coordinates. You can use this call to determine where the points (0,0),
and (100,0) will be drawn. This allows you to determine the density of your grid.

GM-222.1 GM

c
GM GM-222.2

-----.,- ., . .,., .. _.,-.,.,.,_ .. ., ... --.,---

o

o

o

o

o

GM $VIEWPORT SELECT

GM $VIEWPORT SELECT

Makes a viewport the current viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

You must create the viewport before you can select it.

GM-223 GM

GM $VIEWPORT SET BACKGROUND VALUE

GM $VIEWPORT SET BACKGROUND _ VALUE

Sets the pixel value used for the background of the specified viewport.

FORMAT

INPUT PARAMETERS

viewport _ id
The number of the viewport. This is a 2-byte integer. The number is the one assigned by
the GM package.

value
The value to use for the viewport background. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _,$ Data Types section for more information.

USAGE

GM

FORTRAN identifiers may be no longer than a maximum of 32 characters. In FORTRAN
programs, the name of this routine must be shortened to 32 characters as illustrated:

1

12345678901234567890123456789012 1 34567890

---------------------------------1---------
GM_$VIEWPORT_SET_BACKGROUND_VALU 1 E

Use GM_ $VIEWPORT _INQ_BACKGROUND _ VALUE to retrieve the background
value of the specified viewport.

GM-224

c

o

o

o

o

o

GM $VIEWPORT SET BORDER SIZE

GM $VIEWPORT SET BORDER SIZE

Specifies the border size of the current viewport, in pixels or fraction-of-bitmap coordinates.

FORMAT

INPUT PARAMETERS

border _ unit
The units for border size, in GM_ $BORDER_ UNIT _ T format. This is a 2-byte integer.
Specify only one of the following predefined values:

GM $FRACTIONS
Expresses edge width as fractions of the total GM bitmap size.

GM $PIXELS Default border type. Expresses edge width in pixels.

border _ size
The size of the border, specified as left, bottom, right, top. This is an array of four real
values (left, bottom, right, top).

The default border type is in pixels, and the default width is 1,1,1,1.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Viewport borders are drawn with color'value 1 for compatibility with monochrome nodes.
For the same reason, the graphics metafile package sets the color map for color value 1 to
white. With a color node, you may want to use the viewport background color to
differentiate viewports from the overall display or the window background. Changing the
color map to black is usually not practical because the cursor is also set to color value 1.
An alternative is to create the viewport, set the border width to 0 pixels, and then refresh
the viewport.

GM_ $VIEWPORT _SET _BORDER_SIZE sets the size of the four edges of the current
viewport. If border _ unit = GM_ $PIXELS, edge widths are expressed in pixels. If
border _ unit = GM_ $FRACTIONS, edge widths are expressed as fractions of the total GM
bitmap size.

Use GM_ $VIEWPORT _INQ_BORDER_SIZE to retrieve the size of the border.

GM-225 GM

GM $VIEWPORT SET BOUNDS

GM $VIEWPORT SET BOUNDS

Ohanges the display bounds for the current viewport.

FORMAT

INPUT PARAMETERS

bounds
The bounds of the new viewport, in GM $BOUNDSREAL T format. This is a
four-element array of real values (xmin, ymin, xmax, ymax)~ See the GM_ $ Data Types
section for more information.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

GM

GM_$VIEWPORT_SET_BOUNDS sets the bounds of the current viewport. You must
provide two diagonally opposite corners. Ooordinates are expressed as fractions of the total
display bitmap size: bottom left = (0.0, 0.0); top right = (1.0, 1.0).

Ourrently, viewports may not overlap.

Use this procedure to change the bounds of the current viewport to fill only the left half of
the screen.

bounds.xmin := 0.0; bounds.ymin := 0.0;
bounds.xmax := 0.5; bounds.ymax := 1.0;
GM_$VIEWPORT_SET_BOUNDS (bounds, status);

GM-226

o

o

o

o

o

GM $VIEWPORT· SET GRIDS

GM $YmWPORT SET GRIDS

Specifies the number and type of grids for a viewport.

FORMAT

GM_$VIEWPO~T_SET_GRIDS (flags. index. cnt. grid. status)

INPUT PARAMETERS

flags
Attributes of the snap grid, in GM_ $ GRID _FLAGS _ T format. This is a 2-byte integer.
Specify any combination of the following predefined values:

GM $GRID VIS IDLE
Specifies a visible snap grid.

GM $GRID SNAPTO
Specifies a snap grid. This may be visible or invisible.

sindex

cnt

grid

Index of the snap grid. This is a 2-byte integer.

Number of grids. This is a 2-byte integer between 1 and GM_ $MAX_ GRID.

Array of grids, in GM_$ARRAY _ T format. This is an array of [1 .. cnt] of
GM $GRID T. See the GM Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GM
Data Types section for more information.

USAGE

Grids' are input aids; they are not part of the metafile -- they are strictly attributes of a
viewport.

If snapping is enabled for a particular viewport (for which a grid is also defined), then
positions reported by GM_ $EVENT _ WAIT in that viewport will be snapped to the
nearest grid point.

A given viewport may have an array of grids associated with it (up to 4 grids, currently).
This allows the user to define major and minor grids, or even to define more complicated
grids.

Use GM_ $YmWPORT _INQ_ GRID to inquire grids for the current viewport.

GM-226.1 GM

GM $VIEWPORT SET GRIDS

The snap grid index indicates which of the grids in the array is to be used for snapping.

The flag array is relevant only to the grid given by the snap grid index. c
To determine grid density use GM_$VIEWPORT _SEG_2D[16,32,REAL]_ TO _PIXEL .

. A call to GM_$VIEWPORT _SET _ GRIDS causes the viewport to be refreshed if the
viewport is being displayed. .

GM GM-226.2

o

o

o

GM $VIEWPORT SET REFRESH STATE

GM $VIEWPORT SET REFRESH STATE

Sets the refresh state of the current viewport.

FORMAT

INPUT PARAMETERS

refresh _ state
The refresh state of the viewport, in GM_$VIEW _REFRESH_ T format. This is a
2-byte integer. Specify only one of the following predefined values:

GM $REFRESH INHIBIT
In borrow mode, changing commands in the file does not immediately
affect this viewport. The viewport is rewritten only when you call
GM_ $VIEWPORT _REFRESH. In direct mode, the viewport is
rewritten only when you call GM_$VIEWPORT _REFRESH, or when
the display is refreshed as the result of a DM command which causes the
window to be redrawn. Thus, calling GM_ $DISPLAY _REFRESH does
not affect a viewport in this refresh state.

GM $REFRESH WAIT
(Default) In borrow mode, changing commands in the file does not
immediately affect this viewport. The viewport is rewritten only when
you call GM_ $VIEWPORT _REFRESH or
GM_ $DISPLAY _REFRESH. In direct mode, the viewport is rewritten
only when you call GM_$VIEWPORT _REFRESH or
GM_ $DISPLAY _REFRESH or when the display is refreshed as the
result of a DM command which causes the window to be redrawn.

GM $REFRESH PARTIAL
Every time you change any command in the file, the following occurs if
this viewport is the current viewport: Inserted primitive commands are
added, and deleted primitive commands are erased, but underlying data
is not rewritten. This provides faster interactive drawing. You should,
however, periodically clean up the accumulating inaccuracies by calling
GM_ $VIEWPORT _REFRESH to redisplay the viewport.

Partial refresh does not always update the viewport accurately. For
accuracy in incremental updating, use GM_ $REFRESH_ UPDATE.
Extensive use of partial refresh may necessitate use of
GM $VIEWPORT REFRESH.

GM $REFRESH UPDATE
Every time you change any command in the file, this viewport is
completely corrected.

GM-227 GM

GM $VIEWPORT SET REFRESH STATE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM GM-228

i
\
\ ..

-----------------------_ _ .. _------------_._-----------------------

I

I

1(""" ~)

o

o

o

GM $VIEW SCALE

GM $VIEW SCALE

Scales the view under the current viewport, keeping the specified point fixed.

FORMAT

GM_$VIEW_SCALE (scale, point, status)

INPUT PARAMETERS

scale
The value by which to multiply the view scale factor. This is a real value.

point
An (x,y) pair indicating the fixed point on screen, in GM_POINTREAL _ T format. This
is a two-element array of real values. See the GM_ $ Data Types section for more
information.

The point (point.x,point.y) on the screen (expressed in fraction-of-bitmap coordinates) is
kept fixed during this rescaling.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use the following to rescale the screen by a scaling factor II scale II AND move the point
(point.x,point.y) on the screen (in fraction-of-bitmap coordinates) to the center of the
viewport, all in one operation:

{assumes scale not equal to 1.0}

GM_$VIEWPORT_INQ_BOUNDS (vbounds, status);
vcenter_x := 0.5 * (vbounds.xmax + vbounds.xmin);
vcenter_y := 0.5 * (vbounds.ymax + vbounds.ymin);
pointl.x := (vcenter x - point.x * scale)/(1.0 - scale);
pointl.y := (vcenter=y - point.y * scale)/(1.0 - scale);
GM_$VIEW_SCALE(scale, pointl,status);

GM-229 GM

GM $VIEW TRANSFORM

GM $VIEW TRANSFORM

Rotates the view under the current viewport, keeping the specified point (in
fraction-of-bitmap coordinates) fixed.

FORMAT

GM_$VIEW_TRANSFORM (rotate, point, status)

INPUT PARAMETERS

rotate
The rotation to be applied to coordinates in the segment, in
GM_ $ROTATE _REAL2x2 _ T format. This is a four-element array of real values
(xx,xy,yx,yy), where the second element (xy) represents the dependence of the x-result on
the y-source. See the GM_ $ Data Types section for more information.

point
An (x,y) pair indicating the fixed point on the screen, in GM_ $POINTREAL _ T format.
This is a two-element array of real values. See the GM_ $ Data Types section for more
information.

The point (point.x,point.y) on the screen (expressed in fraction-of-bitmap coordinates) is
kept fixed during this transformation.

OUTPUT PARAMETERS

status

GM

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-230

o

o

o

o

o

GM $VIEW TRANSLATE

GM $VIEW TRANSLATE

Translates the view under the current viewport.

FORMAT

GM_$VIEW_TRANSLATE (translate, status)

INPUT PARAMETERS

translate
An (x,y) pair indicating the amount of translation, in GM_$POINTREAL_ T format.
This is a two-element array of real values. See the GM_ $ Data Types section for more
information.

The translation is specified in bitmap coordinates, that is, as fractions of the display
bitmap.

A positive x translation moves the viewport to the right over the view, so that the picture
on the display appears to move to the left. A positive y translation moves the viewport up
over the view, so that the picture on the display appears to move down.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

GM-231 GM

GM _ $VISIBLE _ INQ _ MASK

Returns the value of the visible mask.

FORMAT

OUTPUT PARAMETERS

mask
The visible mask value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$VISIBLE_SET _MASK to change the current value of the visible mask.

GM GM-232

c

o

o

o

o

o

GM _ $VISIBLE _ INQ _ THRESHOLD

Returns the value of the visible threshold.

FORMAT

GM_$VISIBLE_INQ_THRESHOLD (threshold. status)

OUTPUT PARAMETERS

threshold
The visible threshold value. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$VISIBLE_SET _ THRESHOLD to change the current value of the visible
threshold.

GM-233 GM

GM $VISIDLE SET MASK

GM $VISIBLE SET _MASK

Sets the value of the visible mask.

FORMAT

INPUT PARAMETERS

mask
The visible mask value. This is a 4-byte integer.

The visible mask is initialized to 16#7FFFFFFF (all nonzero segments visible).

The visible mask is BIT-ANDed with the segment visible number. If the result is nonzero,
the segment may be visible. Both the visible mask and visible threshold must be satisfied
for a segment to be visible.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM _ $ Data Types section for more information.

USAGE

Use GM_$VISIBLE_INQ_MASK to retrieve the current value of the visible mask.

GM GM-234

o

o

o

o

o

GM $VISffiLE SET THRESHOLD

GM $VISmLE SET THRESHOLD

Sets the visible threshold.

FORMAT

INPUT PARAMETERS

threshold
The visible threshold value. This is a 4-byte integer.

The visible threshold is initialized to 1 (all nonzero segments visible).

If the segment visible number is greater than or equal to the visible threshold, the segment
may be visible. Both the visible mask and visible threshold must be satisfied for a segment
to be visible.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the
GM_ $ Data Types section for more information.

USAGE

Use GM_$VISmLE_INQ_ THRESHOLD to retrieve the current value of the visible
threshold.

GM-235 GM

GM ERRORS

ERRORS

GM $ABLOCK ID INVALID
The ablock identification number is not valid. Use the number assigned when you
created the ablock.

GM $ABLOCK NOT CREATED
You must create an ablock before you can use it.

GM $ACLASS ID INVALID
The aclass identification number you used is not valid.

GM $ALREADY INITIALIZED
You initialize the GM package only once during a session of using it.

GM $ANOTHER SEGMENT IS OPEN
Only one segment may be open at a time.

GM $ATTRIBUTE VALUE INVALID
The attribute value is not valid.

GM $BOUNDS INVALID
The bounds specified for displaying part of a segment or file do not satisfy the
requirement that the minimum value be less than the maximum value.

GM $CANT DELETE FONT FAMILY IN USE
You cannot delete a font family that is referenced by the current file.

GM $CANT DELETE INSTANCED SEGMENT
You cannot delete a segment if it is instanced by other segments in the file.

GM $COMMAND TYPE DOESNT MATCH
The current command does not match the type specified in inquire operation.

GM $COORDINATE CONVERSION OVERFLOW
You have supplied a value to a coordinate conversion routine, GM_ $COORD ... ,
which cannot be converted.

GM $DATA COERCE NEEDED
To use the data in the format you have supplied, you must convert it.

GM $FILE ID INVALID
The file identification number you used is not valid.

GM $FILE NAME NOT FOUND
The file name you gave is not valid.

GM $FONT FAMILY ID INVALID
When you reference a font family, you must use the font family id.

GM $FONT FAMILY NAME ALREADY USED
You may not rename a font family to have the same name as another font family.

GM $FONT FAMILY NAME NOT FOUND
You must include a font family before you can use it.

GM $ILLEGAL VALUE

GM

One of the input parameters that you supplied to the GM package has an illegal
value.

GM-236

o

o

o

o

GM ERRORS

GM $ILLEGAL SELF INSTANCE
A segment may not instance itself, directly or indirectly.

GM $INPUT EVENT TYPE INVALID
You must use the event types associated with input routines.

GM $INVALID POLYLINE OPTIONS
The only options for a polyline are open, closed, or closed and filled. When you
speCify filled, you must also specify closed.

GM $NAME LENGTH INVALID
The limitation on the number of characters in a name is 12.

GM $MODULE CODE
GM module

GM $NEGATIVE CmCLE RADIUS
The radius of a circle must be a positive value.

GM $NO CURRENT CO~
For editing procedures such as picking, you must have a current command.

GM $NO CURRENT FILE
You must have a file open. If you have more than one file open and you close the
current file, you must select another current file.

GM $NO CURRENT SEGMENT
You must create or open a segment.

GM $NO CURRENT VIEWPORT
You must have a current viewport. The current viewport is the last viewport created
or selected.

GM $NO FONT FAMILY INCLUDED
You must include a font family before you can use it. See
GM $FONT FAMILY INCLUDE.

GM $NO GM BITMAP EXISTS
When you initialize the GM package, the bitmap size is not defined. The procedure
GM_ $INQ_BITMAP _SIZE cannot return a valid value until you define the size.

GM $NO PICK MATCHES FOUND
The command or segment that you searched for was not found.

GM $NOTHING DISPLAYED IN VIEWPORT
You must have displayed a segment in the specified or current viewport before calling
this routine. .

GM $NOT INITIALIZED
You must initialize the GM package before you can use it.

GM $OPERATION OK
Normal status

GM $PICK LIST EMPTY
Only picked segments are included on the pick list. Use GM $PICK SEGMENT to
list a segment.

GM $PICK LIST NOT INITIALIZED
To use a pick list, you must first initialize it.

GM-237 GM

GM ERRORS

GM $PICK LIST TOO LONG
The limitation on the number of segments is 32 in a pick list.

GM $SEGMENT ID INVALID
The segment identification number you used is not valid.

GM $SEGMENT LOCKED BY PICK
You may not delete or edit a segment included in a list of picked segments.

GM $SEGMENT NAME ALREADY USED
Each segment name must be unique.

GM $SEGMENT NAME NOT FOUND
The segment name is not in the file.

GM $TOO MANY ABLOCKS
The limitation on the number of ablocks is 40.

GM $TOO MANY FILES
The number of files is limited to 16.

GM $TOO MANY FONT FAMILIES
The limitation on the number of font families is 8.

GM $TOO MANY SEGMENTS
The limitation on the number of segments is 16384.

GM $TOO MANY VIEWPORTS
The limitation on the number of viewports is 64.

GM $VIEWPORT BOUNDS INVALID
Viewports may not overlap. Space outside of viewports is empty.

GM $VIEWPORT DOESNT EXIST
You must create a viewport before you can use it.

GM $VIEWPORT ID INVALID
You must use the viewport number assigned by GM_$VIEWPORT _ CREATE.

GM $WRONG DISPLAY MODE
Each display mode has its advantages and limitations. See GM_ $INIT.

GM $WRONG FILE ACCESS MODE
You must use the access mode specified in GM_ $FILE _ CREATE.

GM GM-238

\ ..

o

o

o

o

o

GMF

This section describes the data types, the call syntax, and the error codes for the GMF
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data type diagrams and call syntax format.

GMF-l GMF

GMF DATA TYPES

DATA TYPES

GMF $OPOS T

GMF $MEMORY T

GMF $MEMORY PTR T

STREAM $ID T

STATUS $T

byte:
offset 31

0:

0:

1 :

A 2-byte integer. Specifies the file opening
positions. One of the following pre-defined values:

GMF $OVERWRITE

Provides write access; truncates file to BOF if
it already exists.

GMF $APPEND

Provides write access if file exists.

GMF $READ
Provides read access only.

A 65535-element array of 131070-byte integers. An
array of two-byte integers.

A 4-byte integer. A pointer to an array of type
gmf _ $memory _ t.

A 2-byte integer. Open stream identifier.

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name
o

integer all

or

fail

subsys

modc
~---L---,O

2: integer

GMF

code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

GMF-2

f"
'\.. ,

c

o

o

o

o

o

GMF DATA TYPES

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

GMF-3 GMF

GMF $CLOSE

GMF $CLOSE

Closes a GMF.

FORMAT

GMF_$CLOSE <stream_id. status)

INPUT PARAMETERS

stream id
The stream ID of the GMF to be closed, in STREAM_ $ID _ T format. This is a 2-byte
integer . You obtain the stream ID from the call to GMF _ $OPEN that you used to open
the GMF.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To open a GMF, use GMF _$OPEN.

GMF GMF-4

('

- ----------------~------

GMF $COPY PLANE

GMF $OOPY PLANE

(~ Dumps a rectangular area of bits from virtual memory into a GMF.

o

o

o

o

FORMAT

GMF_$COPY_PLANE (stream_id. black_or_white. bpi. bit_pointer. x_dim. y dim.
width. status)

INPUT PARAMETERS

stream id
The stream ID of the GivIF into which the image is to be stored, in STREAM_$ID _ T
format. This is a 2-byte integer. You obtain the stream ID from the call to GMF $OPEN
that you used to open the GMF.

black or white

bpi

A Boolean variable. A value of TRUE means 11111 bits are black and 110 11 bits are white. A
value of FALSE means 11111 bits are white and 110 11 bits are black. In the GMF, 11111 bits
are assumed to mean black. Thus if this parameter is false, the bits will be inverted as they
are copied.

The number of bits per inch in the GMF. This information is stored in the GMF. It
indicates the physical density of the image represented in the GMF. If this parameter is
nonzero, a device to which you output the GMF may compress or expand the image to
produce a result which is as close as possible to the image's original size. If this parameter
is zero, an output device uses one dot to represent each bit from the GMF, regardless of the
resulting physical size of the image. This is a 2-byte integer.

bit _ pointer
A pointer to the upper left corner of the rectangular area to be stored, in
GMF _$MEMORY _PTR_ T format. This is a 4-byte integer. You obtain this value by
calling the routine GPR_$INQ_BITMAP _POINTER.

x dim
The x dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

y_dim
The y dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

width
The number of 16-bit words per scan line in the source bitmap. The value of this
parameter is usually 64. The width must be at least 1/16 of the specified x-dim. For
instance, if you are storing an area 400 bits wide in a GMF, the source bitmap must use at
least 25 words to represent each scan line (row of dots). This is a 2-byte integer. You
obtain this value by calling GPR_ $INQ_BITMAP _POINTER.

GMF-5 GMF

GMF $COPY PLANE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GMF

To store an image in a GMF, you must have opened the GMF with the GMF _ $OPEN call.

After storing an image in a GMF, close the GMF with the GMF _ $CLOSE call.

The GMF _$COPY _PLANE call is a special case of the GMF _$COPY _SUBPLANE
call.

GMF-6

c

GMF $COPY SUBPLANE

GMF $COPY SUBPLANE o Dumps a rectangular area of bits from virtual memory into a GMF.

o

o

o

o

FORMAT

GMF_$COPY_SUBPLANE <stream_id. black_or_white. bpi. bit_pointer. x_dim. y_dim.
x_offset. y_offset. width. status)

INPUT PARAMETERS

stream_id
The stream ID of the GW' into which the image is to be stored, in STREAM_ $ID _ T
format. This is a 2-byte integer. You obtain the stream ID from the call to GMF $OPEN
that you used to open the GMF.

black or white

bpi

A Boolean variable. A value of TRUE means "1" bits are black and "0" bits are whit.e. A
value of FALSE means "1" bits are white and "0" bits are black. In the GMF, "1" bit.s
are assumed to mean black. Thus if this parameter is false, the bits will be inverted as they
are copied.

The number of bits per inch in the GW'. This information is stored in the GMF. It
indicates the physical density of the image represented in the GMF. If this parameter is
nonzero, a device to which you output the GMF may compress or expand the image to
produce a result which is as close as possible to the image's original size. If this parameter
is zero, an output device uses one dot to represent each bit from the GMF, regardless of the
resulting physical size of the image. This is a 2-byte integer.

bit _ pointer
A pointer to a bit which when offset by x_ offset and y _ offset gives the upper left corner
of the rectangular area to be stored. This is a 4-byte integer. You obtain this value by
calling the routine GPR_$INQ_BITMAP _POINTER.

x dim
The x dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

y_dim
The y dimension of the rectangular area to be stored in the GMF. This is a 2-byte integer.

x offset
The x starting position of the rectangular area to be stored in the GMF relative to the bit
whose address is given by bit_pointer. This is a 2-byte integer.

y _offset
The y starting position of the rectangular area to be stored in the GMF relative to the bit
whose address is given by bit_pointer. This is a 2-byte integer.

width
The number of 16-bit words per scan line in the source bitmap. The vaiue of this
parameter is usually 64. The width must be at least 1/16 of the specified x-dim. For
instance, if you are storing an area 400 bits wide in a GMF, the source bitmap must use at
least 25 words to represent each scan line (row of dots). This is a 2-byte integer. You
obtain this value by calling GPR_$INQ_BITMAP _POINTER.

GMF-7 GMF

GMF $COPY SUBPLANE

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GMF

To copy a plane into a GMF, you must have opened the GMF with the GMF _ $OPEN call.

After copying a plane into a GMF, close the GMF with the GMF _ $CLOSE call.

The GMF _ $OOPY _ SUBPLANE call is a more general form of the
GMF $COPY PLANE call.

GMF-8

~\

', .. - /'

('
\..-.... -

()

o

o

o

o

GMF $OPEN

GMF $OPEN

Opens or creates a GMF.

FORMAT

GMF_$OPEN (name, name_length, start, stream_id, status)

INPUT PARAMETERS

name
Pathname, in NAME _ $PNAME _ T format.

name _length

start

The length of the name. This is a 2-byte integer.

Desired position in the file after open, in GMF _ $OPOS _ T format. This is a 2-byte
integer. If you are opening the GMF to write data to it (to copy a plane or subplane into
it), use one of these two constants:

GMF_$APPEND
GMF_$OVERWRITE

sets the initial position to EOF.
truncates the object to length 0 and sets the initial
position to the beginning.

If you are opening the GMF to read data from it (restoring a plane), use this constant:

GMF_$READ sets the initial position to the beginning without
truncating the GMF.

If the specified GMF does not exist and you used GMF _ $OPEN to create it, it does not
matter what value this parameter has.

OUTPUT PARAMETERS

stream_id
The stream ID of the opened GMF, in STREAM_ $ID _ T format. This is a 2-byte integer.
You use this value in subsequent GMF calls that refer to the opened GMF.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GMF-g GMF

GMF $OPEN

USAGE

GMF

If the specified GMF does not exist, the call to GMF _ $OPEN creates it.

You must call GMF _ $OPEN before trying to read or write a GMF.

Mter opening a GMF with GMF _$OPEN, you must eventually close it by calling
GMF $CLOSE.

GMF-IO

~
(

\ ,.'

GMF $RESTORE PLANE

GMF $RESTORE PLANE o Copies an image back to the screen from a GMF.

o

o

o

o

FORMAT

INPUT PARAMETERS

stream id
The stream ID of the GMF which is to supply the image, in STREAM_ $ID _ T format.
This is a 2-byte integer. You obtain this parameter from the call to GMF _ $OPEN you
used to open the GMF.

x dim
The x-dimension in bits of the display to which an image is to be restored. This is a 2-byte
integer.

y_dim
The y-dimension in bits of the display to which an image is to be restored. This is a 2-byte
integer.

width

start

The number of 16-bit words per scanline in the destination bitmap. This is a 2-byte
integer.

The starting address in the destination bitmap. In Pascal this is a UNIV _PTR. See the
GPR Data Types section for more information.

OUTPUT PARAMETERS

bpi
Bits per inch as specified in GMF _ $COPY _PLANE. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GMF-ll GMF

GMF $RESTORE PLANE

USAGE

GMF

Before calling GMF _ $RESTORE _ PLANE, you must use GPR _ $INIT to place the node
in borrow-display mode.

The size of the area to be restored is the same as the size of the area you originally copied
into the GMF. This information is contained in the GMF.

The area to be restored is determined by the bit-pointer specified in the
GMF _ $RESTORE _ PLANE call and the size data in the GMF. If this area runs off the
right side or the bottom of the screen, the GMF manager restores only the portion of the
stored image that fits on the screen.

To restore a plane from a GMF, you must have opened the GMF with the GMF _ $OPEN
call.

After restoring a plane from a GMF, you should close the GMF with the GMF _ $CLOSE
call.

GMF-12

(
\

\.'--

GMF ERRORS

ERRORS

GMF $BAD BPI
Bits/inch parameter is negative.

GMF $BAD POS
Opening position parameter is illegal.

GMF $BAD WPL
16 bit words/line parameter is too small for x dim.

GMF $BAD X DIM
X-dimension parameter is not positive.

GMF $BAD Y DIM
Y-dimension parameter is not positive.

GMF $NOT GMF o Opened file not a GMF metafile.

STATUS $OK
Successful completion.

o

o
GMF-13 GMF

'- .'

".---

I

\ ..

/
I,

\.

o

o

o

o

GPR

This section describes the data types, the call syntax, and the error codes for the GPR
programming calls. Refer to the Introduction at the beginning of this manual for a description of
data type diagrams and call syntax format.

GPR-l GPR

GPR DATA TYPES

CONSTANTS

MNEMONIC Value Explanation

GPR $BACKGROUND -2 pixel value Cor window background

GPR $BLACK o color value Cor black

GPR $BLUE 16#0000FF
color value Cor blue

GPR $BMF _MAJOR_VERSION 1 major identiCier Cor a bitmap file

GPR $BMF MINOR_VERSION 1 minor identiCier Cor a bitmap Cile

GPR $CYAN 16#00FFFF
color value Cor cyan (blue + green)

GPR $DEF AUL T LIST SIZE 10

GPR $GREEN 16#00FFOO
color value for green

GPR $HIGHEST _PLANE 7 max plane number in a bitmap

GPR $MAGENTA 16#FFOOFF
color value for magenta (red + blue)

o max group in external bitmaps

GPR $MAX_ X_SIZE 8192 max bits in bitmap x dimension

GPR $MAX_ Y _ SIZE 8192 max bits in bitmap y dimension

o descriptor oC nonexistent attributes

o descriptor of a nonexistent bitmap

GPR $RED 16#FFOOOO
color value for red

GPR $STRING SIZE 256 number oC chars in a gpr string

GPR $TRANSP ARENT -1 pixel value for transparent (no change)

GPR $WHITE 16#FFFFFF
color value for white

GPR $YELLOW 16#FFFFOO
color value for yellow (red + green)

GPR $ROP ZEROS o

1

GPR GPR-2

GPRDATA TYPES

GPR $ROP SRC _ AND NOT DST 2

0 GPR $ROP SR 3

GPR $ROP NOT SRC_AND DST 4

GPR $ROP _ DST 5

GPR $ROP SRC XOR DST 6

GPR $ROP SRC OR DST 7

GPR $ROP NOT _ SRC AND NOT_DST 8

GPR_ $ROP _ SRC _ EQUN _DS 9

GPR $ROP NOT _ DST 10

GPR $ROP SRC OR NOT DST 11 -

0 GPR $ROP NOT SRC 12

GPR $ROP NOT SRC OR_DST 13

GPR $ROP NOT SRC OR NOT DS 14 -

GPR $ROP ONES 15

0

o

o
GPR-3 GPR

GPR DATA TYPES

DATA TYPES

GPR_ $ACCESS MODE_ T

GPR $ATTRmUTE _DESC _ T

GPR _ $BITMAP DESC T

predefined
type

GPR

byte:
offset

0:

2:

4:

6:

8:

10:

12:

14:

A 2-byte integer. The ways to access an external
bitmap. One of the following predefined values:

GPR _ $ CREATE
Create-a file on disk.

GPR _ $UPDATE
Update a file on disk.

GPR $WRITE
Write to a file on disk.

GPR _ $READONL Y
Read a file on disk.

A 4-byte integer. Identifies an attribute block.

A 4-byte integer. Identifies a bitmap.

The group header description for an external
bitmap. The diagram below illustrates the
GPR _ $Bl\1F _ GROUP _ HEADER _ T data type:

field name

integer n_sects

integer pixeLsize

integer allocated_size

integer

integer bytes_per _sect

integer

integer storage_offset

integer

GPR-4

o

o

o

o

o

GPR $BMF GROUP _HEADER_ARRAY T

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

12:

14:

GPR DATA TYPES

Field Description:

n_sects
The number of sections in a group.

pixel_size
The number of bits per pixel in each section of a
group.

allocated size

bytes_per _line
The number of bytes in one row of a bitmap.

bytes _per _sect
The number of bytes_per _line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage _ offset
A pointer to the group storage area.

A gpr _ $max _ bmf _ group-element array of
gpr _ bmf _ group _ header _ t record structures.
The diagram below illustrates a single element:

field name

integer n_sects

integer pixel size

integer allocated_size

integer

integer

integer

integer storage_offset

integer

GPR-5 GPR

GPR DATA TYPES

GPR $COLOR T

GPR $COLOR _ VECTOR_ T

GPR $COORDINATE_ARRAY _ T

GPR $COORDINATE T

GPR $DffiECTION T

GPR

Field Description:

n_sects .
The number of sections in a group.

pixel_size
The number of bits per pixel in each section of a
group.

allocated size

bytes_per _line
The number of bytes in one row of a bitmap.

bytes _ per _ sect
. The number of bytes_per _line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage _ offset
A pointer to the group storage area.

A 4-byte integer. Defines a color.

,A 256-element array of 4-byte integers. Stores
multiple color values. Arrays of this type are used
as input parameters of color values to be inserted
into consecutive slots of a color map. They are also
used as output parameters to store color values
when inquiries are performed on color maps.

A 10-element array of 2-byte integers. Specifies
several coordinates in a bitmap. Generally, x
coordinates are passed in one array and y
coordinates are passed in another array.

A 2-byte integer. Specfies one coordinate in a
bitmap.

A 2-byte integer. Specifies the direction of
movement from one text character position to
another in a bitmap. One of the following
predefined values:

GPR $UP

GPR $DOWN

GPR $LEFT

GPR $RIGHT

GPR-6

''--. .. ,

GPR $DISP CHAR T

o
predefined byte:
type offset

4:

6:

8:

10:

12:

14: .

16:

18:

o 20:

22:

24:

26:

o

o

GPR DATA TYPES

Stores display characteristics. The diagram below
illustrates the gpr _ $disp _ char _ t data type:

field name

integer controller_type

integer accelerator_type

integer

integer y_window_origin

integer

integer y window size - -

integer

integer

integer x_extension _size

integer y _extension_size

integer

integer

integer

integer

GPR-7 GPR

GPR DATA TYPES

GPR

predefined
type

Field Description:

CONTROLLER TYPE

byte:
offset

28:

30;

32:

34:

36:

40:

42;

44:

46:

48:

54:

field name

integer n_planes

integer n buffers

integer delta _x_per _buffer

integer delta _y _per_buffer

integer delta _planes _per_buffer

integer mem _overlaps

integer x_zoom_max

integer y_zoom_min

integer video _refresh_rate

integer n _primaries

integer lut_ width _per_primary

integer avail_formats

integer avaiL access

integer access_address_space

A 2-byte integer. The type of graphics hardware
controller. One of the following predefined
values:

GPR-8

GPR $CTL _NONE
none or not applicable.

GPR_$CTL_MONO 1

D~100/400/420/460

GPR_$CTL_MONO 2

D~300/320/330

C~:

~,

'-_ .. /

('
'-..

o

o

()

o

o

GPR _ $CTL _ COLOR 1

DN600/550/560

GPR _ $CTL COLOR 2

580/590

GPR _ $CTL COLOR _ 3

DN570

GPR_$CTL_COLOR 4

DN3000 color.

For gpr_$no_display mode. gpr_$ctl_none is returned.

GPR DATA TYPES

Note that code which makes use of these values may not automatically
extend to new node types, since as new controllers are released.
they will be given new values, and this list will be extended.

A 2-byte integer. The type of
graphics hardware processing
accelerator for the node. Only one of
the following values is returned. One
of the following predefined values:

NOTE: .

GPR $ACCEL NONE

none or not applicable.

Code which makes use of these values may not
automatically extend to new node types. since as
new controllers are released, they will be given
new values, and this list will be extended.

For gpr_$no_display mode, gpr_$accel_none is
returned.

x window _ origin
X origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the or.igin is (0,0).

y _ window _ origin
Y origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the origin is (0,0).

x_ window _size
X dimension of the frame or window in frame and direct mode respectively. For
borrow mode this is the x dimension of the screen. For no-display mode this is the x
dimension of the maximum legal bitmap.

y _ window _ size
Y dimension of the frame or window in frame and direct mode respectively. For
borrow mode this is the x dimension of the screen. For no-display mode this is the y
dimension of the maximum legal bitmap.

GPR-g GPR

GPR DATA TYPES

GPR

x _ visible size
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

y _ visible _ size
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

x _ extension _ size
The maximum x dimension of the bitmap after having been extended by
GPR_$SET_BITMAP _DIMENSIONS. For frame, direct and no-display modes,
this size is the same as X_VISIBLE _ SIZE. For borrow-mode, this size may be
bigger if the device has more display memory past the edges of the visible area.

y _ extension _ size
The maximum y dimension of the bitmap after having been extended by
GPR_$SET_BITMAP_DIMENSIONS. For frame, direct and no-display modes,
this size is the same as Y _VISIBLE _ SIZE. For borrow-mode, this size may be
bigger if the device has more display memory past the edges of the visible area.

x total size
X dimension of total bitmap memory. In particular, this is the number of
addressable pixel positions, in a linear pixel addressing space, between the first pixel
of a scan line and the first pixel of the next scan line. This value may be larger than
x _ extension _ size. For no-display mode this value is the x dimension of the
mamimum legal bitmap.

y _ total_size
Y dimension of total bitmap memory. This value may be larger than
y _ extension _ size. For rio-display mode this value is the y dimension of the
mamimum legal bitmap.

x _ pixels _ per _ cm
The number of physical pixels per centimeter on the screen in the x dimension. For
no-display mode, this value is set to zero.

y _ pixels _ per _ cm
The number of physical pixels per centimeter on the screen in the y dimension. For
no-display mode, this value is set to zero.

n_planes
The maximum number of planes of bitmap memory available on the device. For
no-display mode, this parameter is the maximum legal bitmap depth.

n buffers
The number of displayable refresh buffers available on the device, in borrow mode.
In frame, direct, and no-display modes, this parameter is set to one.

delta_x_per _ buffer
The "distance" in x, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

GPR-IO

--'-._ ... ". -----

\
'-.

o

o

o

o

GPR DATA TYPES

delta_y _per _buffer
The "distance" in y, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

delta_planes_per _buffer
This parameter gives the "distance" in pixel depth between refresh buffers on a
device with more than one buffer, in borrow mode. Currently no such device
capability is supported, but it may be in the future. For frame, direct and
no-display modes, and for devices with only one buffer, this parameter is set to
zero.

MEM_ OVERLAPS

x zoom max

A 2-byte integer. This parameter gives the kinds
of overlap situations that can exist between
refresh buffer memory that may be used for
different purposes in the device. Sometimes a
deviced comes with extra refresh buffer memory
beyond what is used to hold the screen image.
There are several recognized purposes for
particular parts of such memory, and sometimes
some memory locations may be available for
more than one purpose. If so, the program using
this memory will have to take care not to use the
same memory for two different purposes at the
same time. In order to decide whether this is a
possibility, the program can inspect this
parameter. For frame, direct and no-display
modes, this parameter is set to the null set. Any
combination of the following predefined values:

GPR_ $HDM_ WITH_BITM_EXT

Hidden display memory (HDM), used for
loaded text fonts and HDM bitmaps,
overlaps with the area into which a bitmap
can be extended by use of the
GPR $SET BITMAP DIMENSIONS
call.

GPR $HDM WITH BUFFERS

HDM overlaps with extra displayable
refresh buffers.

GPR $BITM _EXT WITH_BUFFERS

The bitmap extension area overlaps with
displayable refresh buffers.

The maximum pixel-replication zoom factor for x on a device in borrow mode. For
frame, direct and no-display modes, and for devices which do not support
pixel-replication zoom, these parameters are set to 1.

y _zoom_max
The maximum pixel-replication zoom factor for y on a device in borrow mode. For

GPR-ll GPR

GPR DATA TYPES

GPR

frmae, direct and no-display modes, and for devices which do not support
pixel-replication zoom, these parameters are set to 1.

video refresh rate
The refresh rate of the screen in Hertz. For no-display mode, this value is set to
zero.

n _ primaries
The number of independent primary colors supported by the video for the device.
For color devices, this value is three; for monochrome devices it is one. For
no-display mode, this value is set to zero.

lut_ width_per _primary
The value gives the number of bits of precision available in each column of a video
lookup table (color map) for representing the intensity of a primary color in an
overall color value. If a primary color can only be on or off, this value is one. If it
can have 16 intensities, this value will be four. If it can have 256 intensities, this
value will be eight. For no-display mode, this parameter is set to zero.

AVAIL_FORMATS

AVAIL ACCESS

A 2-byte integer. The set of available interactive
or imaging formats available on the device. Any
combination of the following predefined values:

GPR $INTERACTIVE

Interactive format

GPR $IMAGING 1024XI024X8

8-bit pixel format on a two-board
configuration

GPR $IMAGING 512X512X24

24-bit pixel format on a three-board
configuration

A 2-byte integer. This parameter gives the
possible legal pixel cell sizes, in bits, which are
available to a program making direct read or
write access to the refresh buffer. Currently, the
only supported pixel cell size is one bit. This
means that the refresh buffers can only be
accessed by plane. In the future, other pixel cell
sizes may be supported. Any combination of the
following predefined values:

GPR _ $ALLOC 1

One bit per pixel cell

GPR $ALLOC 2

Two bits per pixel cell

GPR _ $ALLOC _ 4

Four bits per pixel cell

GPR-12

o

o

o

o

o

GPR DATA TYPES

GPR_$ALLOC 8

One byte per pixel cell

GPR _ $ALLOC _16

Two bytes per pixel cell

GPR _ $ALLOC 32

Four bytes per pixel cell

access _ address _ space
This parameter gives the amount of address space available for making direct access
to the refresh buffer of the device, in units of lK-byte pages. For example, if the
address space is of a size sufficient to cover 1024 scan lines, each of 1024 bits, its
extent will be 128K bytes, thus the value of this parameter will be 128.

GPR $DISPLAY CONFIG T A 2-byte integer. Specifies the hardware
configuration. One of the following predefined
values:

GPR $BW _ 800XI024

A portrait black and white display.

GPR _ SBW _1024X800
A landscape black and white display.

GPR _ $COLOR _1024XI024X4

A four-plane color display.

GPR _ $COLOR _1024XI024X8

An r.ight-plane color display.

GPR _ $COLOR _1024X800X4

An four-plane color display.

GPR _ $COLOR _1024X800X8

An eight-plane color display.

GPR _ $COLOR _1280XI024X8
Two-board, eight-plane display.

GPR _ $COLOR1_I024X800X8

Two-board, eight-plane display.

GPR $COLOR2 l024X800X4

One-board, four-plane display.

A 2-byte integer. Specifies the mode of operation.
One of the following predefined values:

GPR $BORROW

Uses the entire screen.

GPR_$FRAME
Uses a frame of the Display Manager.

GPR-13 GPR

GPR DATA TYPES

GPR $EC KEY T

GPR $EVENT T

GPR

GPR $NO_DISPLAY
Uses a main-memory bitmap.

GPR $DffiECT
Uses a display-manager window.

GPR $BORROW NC
Uses the entire screen but does not clear the
bitmap.

A 2-byte integer. GPR_$INPUT _EO is a
predefined value.

A 2-byte integer. Specifies the type of input event.
One of the following predefined values:

GPR $KEYSTROKE
When keyboard character is typed.

GPR $BUTTONS
When you press button on the mouse or
bitpad puck.

GPR $LOCATOR
When you move the mouse or bitpad puck or
use the touchpad.

GPR $ENTERED WINDOW
When the cursor enters a window in which the
GPR bitmap resides. Direct mode is required.

GPR _ $LEFT _ WINDOW
When the cursor leaves a window in which the
GPR bitmap resides. Direct mode is required.

GPR $LOCATOR STOP
When you stop moving the mouse or bitpad
puck, or stop using the touchpad.

Defines the left- and right-hand x coordinates and
the y coordinate of a horizontal line segment. The
diagram below illustrates the gpr _ $horiz _ seg _ t
data type:

GPR-14

C
"

-- '

0 predefined byte:
type offset

0:

2:

4:

GPR $IMAGING_FORMAT T

C)

o GPR $KEYSET T

GPR $LINE _ PATTERN _ T

GPR $LlNESTYLE T

o

GPR DATA TYPES

field name

integer x_coord_1

integer x_coord_r

integer Y coord

Field Description:

x_coord_l
The left-hand x coordinate of the line.

x_coord_r
The right-hand x_ coordinate of the line.

y _coord
The y coordinate of the line.

A 2-byte integer. Specifies an imaging or
interactive display format. One of the following
predefined values:

GPR $INTERACTIVE
Specifies interactive format.

GPR _ $IMAGING _1024XI024X8
Specifies 8-bit imaging format.

GPR $IMAGING 5I2X5I2X24
Specifies 24-bit imaging format.

An 8-element array of 4-byte integers. Specifies the
set of characters that make up a keyset associated
with the graphics input event types
GPR $KEYSTROKE and GPR $BUTTONS.
The maximum number of elements in a keyset is
256. Each element of the set is represented by one
bit.

A 4-element array of 2-byte integers. Specifies the
line-pattern to use for line-drawing operation s

A 2-byte integer. Specifies the linestyle for
line-drawing operations One of the following
predefined values:

GPR $SOLID
Draw solid lines.

GPR-15 GPR

GPR DATA TYPES

GPR $OBSCURED OPT _ T

GPR $OFFSET T

predefined byte:
type offset

0:

2:

GPR $PIXEL_ARRAY _ T

GPR $PIXEL _ VALUE _ T

GPR

---_._.----_.-•.... ------

GPR_ .DOTTED

Draw dotted lines.

A 2-byte integer. Specifies a set of planes to be
used in a plane mask.

A 2-byte integer. Specifies the action when a
window is obscured. One of the following
predefined values:

GPR_$OK_IF _OBS

Acquire the display even though the window is
obscured.

GPR $ERROR IF OBS

Do not acquire the display; return an error
message.

GPR_$POP IF OBS

Pop the window if it is obscured.

GPR $BLOCK_IF _OBS

Do not acquire the display until the window is
popped.

Specifies the width and height of a window. The
diagram below illustrates the gpr _ $offset _ t data
type:

field name

integer x size

integer y_size

Field Description:

x_size
The width of the window in pixels.

y _size
The height of the window in pixels.

A 131073-element array of 4-byte integers. Stores
multiple pixel values.

A 4-byte integer. Defines an index into a color map
to identify the color of an individual pixel.

GPR-16

(~
,-.. ./

GPR $PLANE _ T

u GPR $POSITION T

predefined byte:
type offset

0:

2:

C)

GPR $RASTER OP ARRAY _ T

GPR $RASTER OP T

GPR $RWIN PR T

o GPR $STRING T

o

GPR DATA TYPES

A 2-byte integer. Specifies the number of planes in
a bitmap.

Specifies the x and y coordinates of a point in a
bitmap. The diagram below illustrates the
gpr _ $position _ t data type:

field name

integer x coord

integer y_coord

Field Description:

x_coord
The x_ coordinate of the point in the bitmap.

y _coord
The y _ coordinate of the point in the bitmap.

A 8-element array of 2-byte integers. Stores
multiple raster operation opcodes

A 2-byte integer. Specifies raster operation
opcodes.

A 4-byte integer. A pointer to a procedure used for
refresh-hidden display memory procedures.

A 4-byte integer. A pointer to a procedure used for
refresh-window procedures.

An array of up to 256 characters. Stores up to 256
characters.

GPR-17 GPR

GPR DATA TYPES

GPR $TRAP LIST T

predefined byte:
type offset

[
0:

Top 2:

4:

[
6:

Bottom 8:

10:

GPR

A IO-element array of gpr _ $trap _ t record
structures. The diagram below illustrates a single
element:

field name

integer

integer

integer

integer x_coord_1

integer

integer

Field Description:

top.x _ coord _1
The left-hand x_ coordinate of the top line.

top.x _ coord _ r
The right-hand x _ coordinate of the top line.

top.y _ coord
The y _ coordinate of the top line.
bot.x coord 1
The left-hand x coordinate of the bottom line.

bot.x _ coord _ r
The right-hand x_ coordinate of the bottom
line.

bot.y _ coord
The y _ coordinate of the bottom line.

GPR-17.1

GPR $TRAP T

o

predefined byte:
type offset

[
0:

Top 2:

4:

0 6:

Bottom 8:

10:

o

o

o

GPR DATA TYPES

Specifies the coordinates of the top and bottom line
segments of a trapezoid. The diagram below
illustrates the gpr _ $trap _ t data type:

field name

integer

integer

integer y_coord

integer

integer

integer

Field Description:

top.x_ coord_l
The left-hand x _ coordinate of the top line.

top.x _ coord _ r
The right-hand x_ coordinate of the top line.

top.y _ coord
The y _ coordinate of the top line.

bot.x _ coord_l
The left-hand x coordinate of the bottom line.

bot.x _ coord _ r
The right-hand x _ coordinate of the bottom
line.

bot.y _ coord
The y _ coordinate of the bottom line.

GPR-17.2 GPR

GPR DATA TYPES

GPR $VERSION T

GPR

predefined
type

---. ---_._---_ ... _------

byte:
offset

0:

2:

The version number of an external bitmap header.
The diagram below illustrates the gpr _ $version_ t
data type:

field name

integer major

integer minor

Field Description:

major
The major version number.

mmor
The minor version number.

GPR-17.3

.-------.-.... _ ... - ---

('
'--. '

o GPR $ WIND OW _LIST T

predefined byte:
type offset

0:
window base

2:

4:
window size

6:

~ \'-.-/

o

o
GPR $WINDOW T

o

GPR DATA TYPES

A lO-element array of gpr _ $window _ t record
structures. The diagram below illustrates a single
element:

field name

integer x_coord

integer y_coord

integer x_size

integer y size

Field Description:

window _ base.x coord
The x coordinate of the top left-hand corner of
the window.

window _ base.y _ coord
The y coordinate of the top left-hand corner of
the window.

window _size.x size
The width of the widow in pixels.

window _ size.y _ size
The height of the window in pixels.

Defines a rectanglar section of a bitmap. X_ coord
and y _ coord specify the coordinates of the top left
hand corner of a rectangle. X_size and y _size
specify the width and height of the rectangle. The
diagram below illustrates the gpr _ $window _ t
data type:

GPR-17.4 GPR

GPR DATA TYPES

predefined byte:
type offset

0:
window_base

2:

4:
window_size

6:

GPR

-----_._----

field name

integer x_coord

integer y_coord

integer x_size

integer y size

Field Description:

window _ base.x coord
The x coordinate of the top left-hand corner of
the window.

window _ base.y _ coord
The y coordinate of the top left-hand corner of
the window.

window _ size.x size
The width of the widow in pixels.

window _ size.y _ size
The height of the window in pixels.

GPR-17.5

r-''\
(

\,-_/

STATUS $T

o
Total
Size: 4

31

o

C)

o

o

GPR DATA TYPES

A status code. The diagram below illustrates the
STATUS _ $T data type:

: byte
offset field name

15 0

integer :0 all

or

:0 fail

:24 subsys

:16 mode

:31 code

Field Description:

all
All 32 bits in the status code.

fail
The fail hit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

GPR-17.6 GPR

GPR _ $ACQUIRE _DISPLAY

GPR_$ACQUIRE_DISPLAY

Establishes exclusive access to the display hardware and the display driver.

FORMAT

unobscured := GPR_$ACQUlRE_DISPLAY (status)

RETURN VALUE

unobseured
A Boolean value that indicates whether or not the window is obscured (false = obscured).
This parameter is always true unless the option GPR_$OK_IF _ OBS was specified to
GPR $SET OBSCURED OPT.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

While the display is acquired, the Display Manager cannot run. Hence, it cannot respond to
pad calls or to stream calls to input or transcript pads. If you need to call any of these
routines, you must release the display to do so.

Since no other display output can occur while the display is acquired, it is not a good idea
to acquire the display for long periods of time. The acquire routine automatically times out
after a default period of one minute; programs can change this time-out with the routine
GPR _ $SET _.ACQ_ TIME _ OUT.

Although this call is needed only in direct mode, it can be called from any of the other
display modes, where it performs no operation and returns the status code
GPR $NOT IN_DIRECT_MODE.

If the display is already acquired when this call is made, a count of calls is incremented such
that pairs of acquire/release display calls can be nested.

GPR-18

.- ... _--. __ .. ~----

c

C~

o

o

o

o

o

GPR $ADDITIVE BLT

GPR $ADDITIVE BLT

Adds a single plane of any bitmap to the current bitmap.

FORMAT

GPR_$ADDITlVE_BLT (source_bitmap_desc, source_window, source_plane,
dest_origin, status)

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

source _ plane
The identifier of the source plane.to add, in GPR _ $PLANE _ T format. This is a 2-byte
integer. Valid values are in the range 0 through the identifier of the source bitmap's
highest plane.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR_$POSITION_ T format. This data type is 4 bytes long. See the GPR Data Types
section for more information. Coordinate values must be within the limits of the current
bitmap, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BL T. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BL T to a display manager frame and the frame is
refreshed for any reason, the BLT is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

GPR-Hl GPR

GPR $ALLOCATE ATTRIDUTE BLOCK

GPR $ALLOCATE ATTRIDUTE BLOCK

Allocates a data structure that contains a set of default bitmap attribute settings, and
returns the descriptor for the data structure.

FORMAT

OUTPUT PARAMETERS

attrib _ block _ desc
Attribute block descriptor, in GPR_$ATTRIDUTE_DESC_ T format. This is a 4-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To associate an attribute block with the current bitmap, use
GPR $SET ATTRIDUTE BLOCK.

To deallocate an attribute block, use GPR_$DEALLOCATE_ATTRIDUTE_BLOCK.

GPR-20

~
I

\ __ .. _-

c

o

o

o

0-,,~

GPR $ALLOCATE BITMAP

GPR $ALLOCATE BITMAP

Allocates a bitmap in main memory and returns a bitmap descriptor.

FORMAT

INPUT PARAMETERS

size
Bitmap width and height, in GPR _ $OFFSET _ T format. Possible values for width and
height are 1 - 8192. This data type is four 4 long. See the GPR Data Types section for
more information.

hi_plane_id
Identifier of the highest plane which the bitmap will use, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib bloek dese
Descriptor of the attribute block which the bitmap will use, in
GPR $ATTRIBUTE DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
Descriptor of the allocated bitmap, in GPR _ $BITMAP _ DESC _ T format. This is a
4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To deallocate a bitmap, use GPR_$DEALLOCATE_BITMAP.

A program can not use a bitmap after it is deallocated.

To establish an allocated bitmap as the current bitmap, use GPR_$SET_BITMAP.

GPR-21 GPR

GPR $ALLOOATE BITMAP NO

GPR $ALLOCATE BITMAP NC

Allocates a bitmap in main memory without setting all the pixels in the bitmap to zero, and
returns a bitmap descriptor.

FORMAT

INPUT PARAMETERS

size
Bitmap width and height, in GPR _ $OFFSET _ T format. This data type is 4 bytes long.
The maximum size for a main-memory bitmap is 8192 x 8192. See the GPR Data Types
section for more information.

hi_plane_id
Identifier of the highest plane which the bitmap will use, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib block dese
Descriptor of the attribute block which the bitmap will use, in
GPR $ATTRIBUTE DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
Descriptor of the allocated bitmap, in GPR_ $BITMAP _DESC _ T format. This is a
4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To deallocate a bitmap, use GPR_$DEALLOCATE_BITMAP.

A program can not use a bitmap after it is deallocated.

To establish an allocated bitmap as the current bitmap, use GPR_$SET _BITMAP

GPR_$ALLOCATE_BITMAP sets all pixels in the bitmap to zero; this routine does not.
As a result, GPR_$ALLOCATE_BITMAP _NC executes faster, but the initial contents of
the bitmap are unpredictable.

GPR-22

'" /

o

o

o

o

o

GPR $ALLOCATE HDM BITMAP

GPR $ALLOCATE HDM BITMAP

Allocates a bitmap in hidden display memory.

FORMAT

GPR_$ALLOCATE_HDM_BITMAP (size. hi plane id. attrib_bloek_dese. bitmap_dese.
status) - -

INPUT PARAMETERS

size
The width and height of the bitmap, in GPR _ $OFFSET _ T format. This data type is 4
bytes long. See the GPR Data Types section for more information.

hi _ plane _ id
The identifier of the highest plane of the bitmap, in GPR _ $PLANE _ T format. This is a
2-byte integer.

attrib block dese - -
The descriptor of the bitmap's attribute block, in GPR_$ATTRmUTE_DESC_ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap in hidden display memeory, in GPR _ $BITMAP _DESC _ T
format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$ALLOCATE_HDM_BITMAP allocates a GPR bitmap in hidden display memory
for programs in borrow-display or direct mode. In frame mode, hidden display memory
bitmaps cannot be used.

In direct mode you must acquire the display before calling
GPR $ALLOCATE HDM BITMAP.

The maximum size allowed for hidden display memory bitmaps is 224 bits by 224 bits.

Use GPR_$DEALLOCATE_BITMAP to deallocate a hidden display bitmap.

GPR-23 GPR

GPR $ARC 3P

GPR $ARC 3P

Draws an arc from the current position through two other specified points.

FORMAT

INPUT PARAMETERS

point_2
The second point on the arc, in GPR _ $POSITION _ $T format. This data type is 4 bytes
long. See the GPR Data Type section for more information.

point_3
The third point on the arc, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The coordinates you specify are added to the corresponding elements of the coordinate
origin for the current bitmap. The resultant coordinate positions are the points through
which the arc is drawn.

Mter the arc is drawn, point _ 3 becomes the current position.

An error is returned if any of the three points are equal.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-24

o

o

o

o

o

GPR $ATTRIBUTE BLOCK

GPR $ATTRIDUTE BLOCK

Returns the descriptor of the attribute block associated with the given bitmap.

FORMAT

attrib block_desc = GPR_$ATTRIBUTE_BLOCK (bitmap_desc, status)

RETURN VALUE

attrib block dese
Descriptor of the attribute block used for the given bitmap, in
GPR $ATTRIDUTE DESC T format. This is a 4-byte integer.

INPUT PARAMETERS

bitmap-dese
Descriptor of the bitmap that is using the requested attribute block, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set an attribute block as the block for the current bitmap, use
GPR $SET ATTRIDUTE BLOCK.

GPR-25 GPR

GPR $BIT BLT

GPR $BIT BLT

Performs a bit block transfer from a single plane of any bitmap to a single plane of the
current bitmap.

FORMAT

GPR_$BIT_BLT (source_bitmap_desc. source_window. source_plane.
dest_origin. dest_plane. status)

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source _ window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

source _ plane
Identifier of the single plane of the source bitmap to move, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are in the range 0 through the identifier of the source
bitmap's highest plane.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

dest_plane
Identifier of the plane of the destination bitmap, in GPR _ $PLANE _ T format. This is a
2-byte integer. Valid values are in the range 0 through the identifier of the destination
bitmap's highest plane.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BLT. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

GPR-26

f'"
\
"-...•. ,

!'--'"
I
.~ .. '

o

o

o

o

o

GPR $BIT BLT

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BL T to a Display Manager frame and the frame is
refreshed for any reason, the BL T is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

GPR-27 GPR

CPR $CIRCLE

GPR $OIROLE

Draws a circle with the specified radius around the specified center point.

FORMAT

GPR_$CIRCLE(center, radius, status)

INPUT PARAMETERS

center
The center of the circle, in GPR_$POSITION_ T format. This data type is 4 bytes long.
See the GPR Data Types section for more information.

radius
The radius of the circle. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

CPR

The coordinates you specify for the paramenter "center" are added to the corresponding
coordinates of the origin for the current bitmap. The resultant coordinate position is the
center of the circle.

GPR _ $OmOLE does not change the current position.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-28

o

o

o

o

o

GPR $CIRCLE FILLED

GPR $OmOLE FILLED

Draws and fills a circle with the specified radius around the specified center point.

FORMAT

GPR_$CIRCLE_FILLED (center. radius. status)

INPUT PARAMETERS

center
The center of the circle, in GPR_$POSITION_ T format. This data type is 4 bytes long.
See the GPR Data Types section for more information.

radius
The radius of the circle. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify for the paramenter "center" are added to the corresponding
coordinates of the origin for the current bitmap. The resultant coordinate position is the
center of the circle.

GPR_$OmCLE_FILLED does not change the current position.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-29 GPR

GPR $CLEAR

GPR $CLEAR

Sets all pixels in the current bitmap to the given color/intensity value.

FORMAT

GPR_$CLEAR (index. status)

INPUT PARAMETERS

index
New color map index specifying a color/intensity value for all pixels in the current bitmap,
in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

o - 1 for monochromatic displays
0 15 for color displays in 4-bit pixel format
0 - 255 for color displays in a-bit or 24-bit pixel format
-2 for all displays.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

A special case occurs if the specified index is -2. A value of -2 specifies clearing the bitmap
to the current background color/intensity -value. For memory bitmaps and borrowed
displays, the background color/intensity index is zero. For Display Manager frames, the
background color/intensity value is the same as that used for the window background color.

For monochromatic displays, only the low-order bit of the color value is considered, because
bitmaps currently have only one plane. For color displays in 4-bit pixel mode, only the four
lowest-order bits of the color value are considered because these displays have four planes.

You can use GPR _ $SET _ COLOR _ MAP to establish the correspondence between color
map indexes and color/intensity values. This means that you can use
GPR_$SET _ COLOR_MAP to assign the pixel value 0 to bright intensity, and then use
GPR _ $CLEAR either to make the screen bright by passing the pixel value 0, or make the
screen dark by passing the value 1. This routine is subject to the restrictions of the current
clipping window and plane mask.

GPR-30

o

o

()

o

GPR $CLOSE_FILL PGON

Closes and fills the currently open polygon.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$CLOSE_FILL_PGON closes and fills the series of polygon boundaries created
with the routines GPR $START PGON and GPR _ $PGON POLYLINE.

GPR_ $CLOSE_FILL_PGON does not use the current raster operation setting.

Filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the decomposition technique set to either GPR _ $F AST _ TRAPS or
GPR $PRECISE TRAPS.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ overlapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR $F AST TRAPS or GPR $PRECISE TRAPS OVERLAP.

GPR-31 GPR

GPR $CLOSE_RETURN_PGON

GPR $CLOSE_RETURN PGON

Closes the currently open polygon and returns theJist of trapezoids within its interior.

FORMAT

INPUT PARAMETERS

list size
The maximum number of trapezoids that the routine is to return. This is a 2-byte integer.

OUTPUT PARAMETERS

trapezoid _list
The trapezoids returned. This is a GPR _ $ TRAP _ LIST _ T array of up to 10 elements.
See GPR Data Types section for more information.

trapezoid _Dumber
The number of trapezoids that exist within the polygon interior. This is a 2-byte integer.

status
Completion status, in STATUS ~ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR_$CLOSE_RETURN_PGON returns a list of trapezoids within a polygon interior
that the graphics program can draw at a later time with the routine
GPR $MULTITRAPEZOID.

The trapezoid _ number parameter is always the total number of trapezoids composing the
polygon interior. If this number is greater than the list-size parameter, some trapezoids
were left out of the trapezoid _list for lack of space.

GPR-32

C\

o

o

o

o

GPR $CLOSE RETURN PGON TRI

Closes the currently open polygon and returns a list of triangles within its interior.

FORMAT

INPUT PARAMETERS

list size
Maximum number of triangles that the routine is to return.

OUTPUT PARAMETERS

t list
Triangles returned. This is a GPR_ $TRIANGLE_LIST _ T array. See the GPR Data
Types section for more information.

n _ triangles
Number of triangles that exist within the polygon interior. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$CLOSE_RETURN_PGON_ TRI returns a list of triangles within a polygon
interior that the graphics program can fill at a later time with the routine
GPR $MUL TITRIANGLE.

GPR_$CLOSE_RETURN_PGON_ TRI returns a list of triangles when a polygon has
been defined using GPR_$START_PGON and GPR_$PGON_POLYLINE with the
decomposition technique set to gpr _ $non _ overlapping _ tris.

The n _ triangles parameter is always the total number of triangles composing the polygon
interior. If this number is greater than the list_size parameter, some triangles were left
out of the t _list for lack of space.

GPR-32.1 GPR

\.~ -. _.

GPR GPR-32.2

._--------_._--

C)

o

o

o

o

GPR SCOLOR ZOOM

GPR $COLOR ZOOM

Sets the zoom scale factor for a color display.

FORMAT

GPR_$COLOR_ZOOM (xfactor, yfactor, status)

INPUT PARAMETERS

xfactor
A 2-byte integer that denotes the scale factor for the x-coordinate, in the range 1 through
16.

yfactor
A 2-byte integer that denotes the scale factor for the y-coordinate, in the range 1 through
16.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If the x value is not equal to 1, then the y value must be not equal to 1.

GPR _ $COLOR _ ZOOM uses the integer zoom feature of the color hardware.

GPR _ $COLOR _ ZOOM works only in borrow-display mode.

GPR _ $COLOR _ ZOOM always zooms from the upper-left corner of the display.

GPR_$COLOR_ZOOM returns an error on models DN570/570A and DN3000 if any
values other than xfactor = 1, yfactor = 1 are entered.

DN580s allow the xfactor and yfactor to be 2.

GPR-33 GPR

GPR $COND EVENT_WAIT

GPR $COND EVENT WAIT

Returns information about the occurrence of any event without entering await state.

FORMAT

unobscured

RETURN VALUE

unobscured
A Boolean value that indicates whether or not the window is obscured; a false value means
that the window is obscured. This value is always true unless the program has called
GPR_$SET_OBSCURED_OPT and specified an option of GPR_$OK_IF _OBS.

OUTPUT PARAMETERS

event_type
The type of event that occurred, in GPR _ $EVENT _ T format. This is a 2-byte integer.
One of the following values is returned:

GPR_$KEYSTROKE
GPR_$BUTTONS
GPR_$LOCATOR
GPR_$ENTERED_WINDOW
GPR $LEFT WINDOW
GPR-$LOCATOR STOP
GPR=$NO_EVENT

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped
No event has occurred

event data
The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This parameter is not modified for
other events.

position
The position on the screen or within the window at which graphics input occurred, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

When called, this routine returns immediately and reports information about any event that
has occurred. Typically, this routine is called following return from an EC2 _ $W AIT call
involving the eventcount returned by GPR_$GET _EC. The routine allows the program
to obtain information about an event without having to suspend all of its activities.

GPR-34

o

o

o

o

o

aPR $COND EVENT WAIT

Unless locator data has been processed since the last event was reported, II position II will be
the last position given to GPR_$SET _ CURSOR_POSITION.

If locator data is received during this call, and GPR _ $LOCATOR events are not enabled,
the GPR software will display the arrow cursor and will set the keyboard cursor position.

Although this call never waits, it may release the display if it receives an unenabled event
that needs to be handled by the Display Manager.

The input routines report button events as ASCII characters. II Down II transitions range
from "a" to "d"; II up II transitions range from "A" to "0". The three mouse keys start
with (a/A) on the left side. As with keystroke events, button events can be selectively
enabled by specifying a button keyset.

aPR-3S aPR

GPR $DEALLOCATE ATTRmUTE_BLOCK

GPR $DEALLOCATE_ATTRIBUTE BLOCK

Deallocates an attribute block allocated by GPR _ $ALLOCATE _ ATTRIBUTE _ BLOCK.

FORMAT

INPUT PARAMETERS

attrib _ block _ desc
The descriptor of the attribute block to deallocate, in GPR_$ATTRIBUTE_DESC_ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To allocate an attribute block, use GPR_$ALLOCATE_ATTRIBUTE_BLOCK.

To associate an attribute block with the current bitmap, use
GPR $SET ATTRIBUTE BLOCK.

GPR-36

r
'---'/

(
\.. .'

c

()

o

o

o

GPR $DEALLOCATE_BITMAP

GPR $DEALLOCATE BITMAP

Deallocates an allocated bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ dese
Descript<?,r of the bitmap to deallocate, in GPR_$BITMAP _DESC _ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To allocate a bitmap, use GPR_$ALLOCATE_BITMAP,
GPR_$OPEN_BITMAP _F~E, or GPR_$ALLOCATE_HDM_BITMAP.

GPR-37 GPR

GPR $DISABLE INPUT

GPR $DISABLE INPUT

Disables a previously enabled event type.

FORMAT

INPUT PARAMETERS

event_type
The type of event to be disabled, in GPR _ $EVENT _ T format. This is a 2-byte integer
Specify only one of the following events:

GPR $KEYSTROKE
Input from a keyboard.

GPR $BUTTONS
Input from mouse or bitpad puck buttons.

GPR $LOCATOR
Input from a touchpad or mouse.

GPR $ENTERED WINDOW
Cursor has entered window.

GPR $LEFT WINDOW
Cursor has left window.

GPR $LOCATOR STOP
Input from a locator has stopped.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

This routine will release and reacquire the display.

Following this call, no events of the given event type will be returned by
GPR $EVENT WAIT or GPR $COND EVENT WAIT.

In borrow-display mode, disabled events received by the GPR software will be ignored.

In direct mode or frame mode, disabled keystroke or button events are processed by the
Display Manager.

When locator events are disabled, the GPR software will display the arrow cursor and will
set the keyboard cursor position when locator data is received.

GPR-38

o

o

o

o

o

GPR $DRA W BOX

GPR $DRAW BOX

Draws an unfilled box based on the coordinates of two opposing corners.

FORMAT

GPR_$ORAW_BOX (Xl. Yl. X2. Y2. status)

INPUT PARAMETERS

Xl
The x coordinate of the top left-hand corner of the box. This is a 2-byte integer.

YI
The y coordinate of the top left-hand corner of the box. This is a 2-byte integer.

X2
The x coordinate of the bottom right-hand corner of the box. This is a 2-byte integer.

Y2
The y coordinate of the bottom right-hand corner of the box. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify are added to the corresponding elements of the coordinate
origin for the current bitmap. The resultant coordinate positions are the top left-hand and
bottom right-hand corners of the box.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-39 GPR

GPR $ENABLE DIRECT ACCESS

GPR $ENABLE DffiECT ACCESS

Ensures completion of display hardware operations before the program uses the pointer to
access display memory.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

If a program uses the GPR_ $INQ_BITMAP _POINTER to get the address of display
memory for a monochromatic or color display, it should call
GPR_$ENABLE_DffiECT _ACCESS after any calls that change the display and before
using the pointer returned from the GPR_$INQ_BITMAP _POINTER.

GPR-40

(
'-' .. '

o

o

o

o

o

GPR $ENABLE INPUT

GPR $ENABLE INPUT

Enables an event type and a selected set of keys.

FORMAT

INPUT PARAMETERS

event_type
The type of event to be enabled, in GPR _ $EVENT _ T format. The types of events are:

key _set

GPR_$KEYSTROKE
GPR_$BUTTONS
GPR_$LOCATOR
GPR $ENTERED WINDOW
GPR-$LEFT WINDOW
GPR=$LOCATOR_STOP

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped

The set of specifically enabled characters when the event class is in GPR _ $KEYSET _ T
format. In Pascal, this is a set of characters. In FORTRAN and C this can be implemented
as an eight element array of 4-byte integers. This parameter is specified for event types of
GPR _ $KEYSTROKE and GPR _ $BUTTONS. See GPR Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is four bytes long. See the GPR
Data Types section for more information.

USAGE

This routine will release and reacquire the display.

This routine specifies the type of event and event input for which GPR _ $EVENT _ WAIT
is to wait.

This routine applies to the current bitmap. However, enabled input events are stored in
attribute blocks (not with bitmaps) in much the same way as attributes are. When a
program changes attribute blocks for a bitmap during a graphics session, the input events
you enabled are lost unless you enable those events for the new attribute block.

Programs must call this routine once for each event type to be enabled.

No event types are enabled by default.

GPR-41 GPR

GPR $ENABLE INPUT

GPR

The keyset must correspond to the specified event type. For example, use ['#' .. ,,-...,...,] (in
Pascal) to enable all normal printing graphics. Use [chr{O) .. chr{127)] to enable the entire
ASCII character set. Except in borrow-display mode, it is a good idea to leave at least the
CMD and NEXT _ WINDOW keys out of the keyset so that the user can access other
Display Manager windows.

The insert file /SYS/INS/KBD.lNS.PAS contains definitions for the non-ASCII keyboard
keys in the range 128 - 255.

Events and keyset data not enabled with this routine will be handled by the Display
Manager in frame or direct mode and discarded in borrow-display mode.

When locator events are disabled, the GPR software will display the arrow cursor and will
set the keyboard cursor position when locator data is received.

GPR-42

r
'-.. j

o

o

o

o

o

GPR $EVENT WAIT

GPR $EVENT WAIT

Waits for an event.

FORMAT

unobscured - GPR_$EVENT_WAIT (event_type, event_data, position, status)

RETURN VALUE

unobseured
A Boolean value that indicates whether or not the window is obscured; a false value means
that the window is obscured. This value is always true unless the program has called
GPR_ $SET _ OBSCURED _ OPT and specified an option of GPR_ $OK_IF _ OBS.

OUTPUT PARAMETERS

event_type
The type of event that occurred, in GPR_ $EVENT _ T format. This is a 2-byte integer.
One of the following predefined values is returned:

GPR_$KEYSTROKE
GPR_$BUTTONS
GPR_$LOCATOR
GPR $ENTERED WINDOW
GPR=$LEFT_WINDOW
GPR_$LOCATOR_STOP
GPR_$NO_EVENT

event data

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped
No event has occurred

The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This parameter is not modified for
other events.

position
The position on the screen or within the window at which graphics input occurred, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This routine suspends process execution until the occurrence of an event type enabled with
the GPR_$ENABLE_INPUT. If the event type is keystroke or button, this routine
reports only characters in the enabled keyset. Input routines report button events as ASCII
characters.

GPR-43 GPR

GPR $EVENT WAIT

GPR

In direct mode, time-out values do not apply to calls to GPR _ $EVENT _ WAIT; that is,
GPR _ $EVENT _ WAIT waits indefinitely.

The input routines report button events as ASCII characters. II Down II transitions range
from II a II to II d "; .. up" transitions range from II A II to II D ". The three mouse keys start
with (a/A) on the left side. As with keystroke events, button events can be selectively
enabled by specifying a button keyset.

Unless locator data has been processed since the last event was reported, II position II will be
the last position given to GPR_ $SET _ CURSOR_POSITION.

If locator data is received during this call, and GPR_$LOCATOR events are not enabled,
the GPR software will display the arrow cursor and will set the keyboard cursor position.

GPR _ $EVENT _ WAIT returns an error if the display has not previously been acquired.

This routine will implicitly release the display when the current process is waiting for an
event to occur, or when an event that has not been enabled occurs and that event must be
handled by the Display Manager.

GPR-44

C~

o

o

o

o

o

GPR $FORCE RELEASE

GPR $FORCE RELEASE

Releases the display regardless of how many times it has previously been acquired.

FORMAT

OUTPUT PARAMETERS

acquire _ count
The number of times the display has been acquired. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call releases the display regardless of how many times GPR _ $ACQUIRE _ DISPLAY
has been called.

GPR-45 GPR

GPR $GET EC

GPR $GET EC

Returns the eventcount associated with a graphic event.

FORMAT

INPUT PARAMETERS

gpr _key
The key that specifies which eventcount to obtain, in GPR_ $EC _KEY _ T format.
Currently, this key is always GPR _ $INPUT _ EC.

OUTPUT PARAMETERS

eventcount _ pointer
A pointer to the eventcount for graphics input, in EC2 _ $PTR _ T format.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

USAGE

GPR

GPR_ $GET _EO returns the eventcount pointer for the graphics input eventcount, which
is advanced whenever graphics input may be available.

When this eventcount is advanced, it does not guarantee that
GPR_$COND_EVENT_ WAIT will return an event, or that GPR_$EVENT_ WAIT
will not wait. The advance is merely an optimization of a simple polling loop that suspends
execution of the process until an event might be available.

GPR-46

C--.-.'
"

c

o

o

o

o

o

GPR $INIT

GPR $INIT

Initializes the graphics primitives package.

FORMAT

INPUT PARAMETERS

op_mode

unit

size

One of four modes of operation. Graphics primitives routines can operate in two
borrow-display modes, within a Display Manager window, within a frame of a Display
Manager pad, or without using the display. Use GPR_$DISPLAY _MODE_ T format for
this parameter. This is a 2-byte integer. Possible values for this parameter are:

GPR $BORROW
Program borrows the full screen and the keyboard from the Display
Manager and uses the display driver directly through GPR software.

GPR $BORROW NC
Same as GPR _ $BORROW except that all the pixels are not set to zero.
(screen is not cleared.)

GPR_ $DffiECT Program borrows a window from the Display Manager instead of
borrowing the whole display.

GPR $FRAME Program executes within a frame of a Display Manager Pad.

GPR $NO DISPLAY
GPR allocates a bitmap in main memory. No graphics is displayed on
the screen.

This parameter has three possible meanings, as follows:

1. The display unit, if the graphics routines are to operate in a borrowed display.
This is a 2-byte integer. Currently, the only valid display unit number for
borrow-display mode is 1.

2. The stream identifier for the pad, if the graphics routines are to operate in
frame or direct mode. Use STREAM_ $ID _ T format. This is a 2-byte integer.

3. Any value, such as zero, if the graphics routines do not use the display.

The size of the initial bitmap (and the size of the frame, in frame mode), in
GPR _ $OFFSET _ T format. This data type is 4 bytes long. See the GPR Data Type
section for more information. Possible values are listed below.

GPR-47 GPR

GPR $INIT

Borrow-display or direct mode
(limits are reduced to display
or window size if necessary) :
Display Manager Frame:
Main Memory Bitmap:

x

1 to 1024

1 - 32767
1 - 8192

y

1 to 1024

1 - 32767
1 - 8192

hi _ plane _ id
Identifier of the bitmap's highest plane, in GPR_ $PLANE _ T format. This is a 2-byte
integer. Valid values are:

For display memory bitmaps:

o for monochromatic displays
o - 3 for color displays in two-board configuration
o - 7 for color displays in three-board configuration

For main memory bitmaps:

o - 7 for all displays

OUTPUT PARAMETERS

init _ bitmap _ dese
Descriptor of the initial bitmap, in GPR_ $BITMAP _DESC _ T format. This is a 4-byte
integer that uniquely identifies the bitmap.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

USAGE

GPR

To use multiple windows, you must call GPR _ $INIT for each window.

GPR _ $BORROW _ NC allows you to allocate a bitmap in display memory without setting
all the pixels to zero.

In GPR_ $NO _DISPLAY mode, the program can manipulate only main memory bitmaps.

If a program executes in borrow-display mode or direct mode, the size of the initial bitmap
can be equal to or smaller than the display. If the program executes in a frame of a Display
Manager pad, IIsize ll specifies the size of both the frame and the initial bitmap. (In frame
mode, the frame and the bitmap must be the same size.) If the program does not use the
display, GPR _ $INIT creates a bitmap in main memory. The program specifies the size of
this bitmap.

To use imaging formats, a program must be initialized in borrow-display mode.

GPR-48

._--_._ .. _._-----_._------

/

GPR_ $INQ_BITMAP

c Returns the descriptor of the current bitmap.

FORMAT

OUTPUT PARAMETERS

bitmap _ dese
The descriptor of the current bitmap, in GPR_$BITMAP _DESC_ T format. This is a
4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

o
USAGE

To establish a bitmap as the current bitmap, use GPR_$SET _BITMAP.

o

o

o
GPR-49 GPR

GPR_ $INQ_BITMAP _DIMENSIONS

Returns the size and number of planes of a bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ desc
The descriptor of the bitmap, in GPR_ $BITMAP _DESC _ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

size
Width and height of the bitmap, in GPR _ $OFFSET _ T format. This data type is 4 byt.es
long. See the GPR Data Types section for more information.

hi _ plane _ id
The identifier of the bitmap's highest plane, in GPR _ $PLANE _ T format. This is a
2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

A program can use the information returned by this call to retrieve the actual bitmap size.
This could be useful, for example, if the program specified a bitmap size that was too large
for the display, causing a reduction in bitmap size.

GPR-50

c

(~.

'''"- ./

o

o

o

o

o

Returns a pointer to bitmap storage in virtual address space. Also returns offset in memory
from beginning of one scan line to the next.

FORMAT

INPUT PARAMETERS

bitmap _ dese
Descriptor of the bitmap, in GPR_ $BITMAP _DESO _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

storage _ ptr
Start address of bitmap in virtual address space. This is a 4-byte integer.

storage _line _ width
Number of 16-bit words in virtual memory between the beginning of one of the bitmap's
scan lines and the next. This is a 2-byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program can use the information returned by this call to access individual bits.

Each scan line (horizontal line of a bitmap) starts on a word boundary. The parameter
storage _line _ width gives the offset in memory from the beginning of one scan line to the
beginning of the next, in units of 16-bit words.

When a program uses the parameter storage_ptr to access the screen bitmap on a
monochrome system, pixels which are white have the value 1 and pixels that are black have
the value 0, regardless of any calls to GPR _ $SET _ OOLOR _MAP. Also, if the cursor is
active, the cursor pattern appears in the bitmap.

A program cannot use this routine on a bitmap which is a Display Manager frame.

GPR-51 GPR

Returns the position of the upper left corner of the specified bitmap. This is normally the
screen position; although, it does have some significance for main memory bitmaps.

FORMAT

INPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap in GPR_$BITMAP _DESC_ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

origin
The position of the upper left-hand corner of the bitmap in GPR _ $POSITION _ T format.
This data type is 4 bytes long. See the GPR Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

This call is not meaningful if the bitmap is a display manager pad (i.e., a frame mode
bitmap).

GPR-52

,~-~"

\.
'-.,----/

r

('
1,,- _ ",

o

o

o

o

o

GPR _ $INQ _ BM _ BIT _ OFFSET

Returns the bit offset that corresponds to the left edge of a bitmap in virtual address space.

FORMAT

INPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap, in GPR_$BITMAP _DESC_ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

offset
The number of bits between a 16-bit word boundary and the left edge of the specified
bitmap. This is a 2-byte integer in the range 0 - 15.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Each scan line (horizontal line of a bitmap) starts on a word boundary. For all scan lines,
this routine returns the number of bits in the most significant part of the first word that
are not part of the specified bitmap.

Currently, the offset will be zero for any bitmap other than a direct-mode window.

GPR-53 GPR

GPR _ $INQ _ CHARACTER _ WIDTH

CPR _ $INQ _ OHARAOTER _ WIDTH

Returns the width of the specified character in the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

character
The specified character. This is a character variable.

OUTPUT PARAMETERS

width
The width parameter of the specified character. This is a 2-byte integer. Possible values
are -127 to 127.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To set a character's width, use GPR _ $SET _ OHARAOTER _ WIDTH.

The initial character widths are defined in the font file.

This routine returns the character width in the local copy of the font. Initially, this is a
copy of the font file; but the local copy may have been changed. Ohange in the local copy
does not affect the font file or the use of the font by other processes.

GPR-54

c

o

c

o

o

Returns the current color map values.

FORMAT

INPUT PARAMETERS

start _ index
Index of the first color value entry, in GPR_$PIXEL_ VALUE_ T format. This is a
4-byte integer.

n entries
Number of entries. This is a 2-byte integer.

OUTPUT PARAMETERS

values
Color value entries, in GPR _ $COLOR _ VECTOR _ T format. This is a 256-element
array of 4-byte integers.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set the color map, use GPR_$SET _ COLOR_MAP.

GPR-55 GPR

GPR_$INQ_CONFIG

Returns the current display configuration.

FORMAT

GPR_$INQ_CONFIG (config. status)

OUTPUT PARAMETERS

config
Display configuration, in GPR_$DISPLAY _ CONFIG_ T format. This is a 2-byte
integer. One of the following predefined values is returned:

Returned Value Display Type

GPR_$BW_SOOxl024 monochromatic portrait
GPR $BW 1024xSOO monochromatic landscape
GPR-$COLOR 1024Xl024x4, color 1024 x 1024 (DN6xx) 2:-board config
GPR~$COLOR~1024Xl024XS color 1024 x 1024 (DN6xx) 3-board config
GPR-$COLOR-l024XSOOX4 color 1024 x SOO (DN5xx) 2-board config
GPR-$COLOR-l024XSOOXS color 1024 x SOO (DN5xx) 3-board config
GPR-$COLORl 1024XSOOXS color 1024 x SOO (DN570) 2-board config
GPR-$COLOR 12S0Xl024XS color 12S0 x 1024 (DN5S0) 2-board config
GPR=$COLOR2_1024XSOOX4 color 1024 x SOO (DN3000) i-board config

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR_$INQ_ CONFIG can be used before GPR_$INIT. This is useful to determine the
number of possible planes in bitmaps on color displays before initializing GPR.

GPR-56

~
I

"'--.-_/

('
\ /

o

o

o

o

o

GPR_ $INQ_ CONSTRAINTS

GPR _ $INQ _ CONSTRAINTS

Returns the clipping window and plane mask used for the current bitmap.

FORMAT

GPR_$INQ_CONSTRAINTS (window, active, plane_mask, status)

OUTPUT PARAMETERS

window
The clipping window, in GPR_$WINDOW _ T format. This data type is 8 bytes long. See
the GPR Data Type section for more information.

active
Boolean (logical) value which specifies whether the clip window is enabled. If the value is
false, the clip window is disabled; if the value is true, the clip window is enabled.

plane_mask
The plane mask, which specifies the active bitmap plane(s), in GPR_$MASK_ T format.
This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To establish a new clipping window for the current bitmap, use
GPR $SET CLIP WINDOW.

To enable the new clipping window, use GPR _ $SET _ CLIPPING _ ACTIVE.

GPR-57 GPR

._--------_ ... __ . __ ... _-.-..... _ _ _ .. -----

GPR _ $INQ _ COORDINATE _ ORIGIN

GPR _ $INQ _ COORDINATE _ ORIGIN

Returns the x- and y-offsets added to all x- and y-coordinates used as input to move,
drawing, and BLT operations on the current bitmap.

FORMAT

OUTPUT PARAMETERS

origin
The current coordinate origin for the bitmap, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Types section for more information.

status
Completion status, in STATUS $T format. This data type is 4 bytes long. See the GPR
Data Types section f~r more inf-;rmation.

USAGE

To set a new coordinate origin, use GPR _ $SET _ COORDINATE _ ORIGIN.

GPR GPR-58

i~
\.

o

o

o

o

o

Returns the current position in the current bitmap.

FORMAT

OUTPUT PARAMETERS

x

y

The x-coordinate of the current position, in GPR_$COORDINATE_ T format. This is a.
2-byte integer.

The y-coordinate of the current position, in GPR _ $ COORDINATE _ T format. This is a.
2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$INQ_ CP can be used to verify that the current position is at the desired location.
If it is not, use GPR _ $MOVE to move the current position without drawing a line.

GPR-59 GPR

GPR _ $INQ _ CURSOR

GPR _ $INQ_ CURSOR

Returns information about the cursor.

FORMAT

OUTPUT PARAMETERS

cursor _pat
Identifier of the cursor pattern bitmap, in GPR_ $BITMAP _DESC _ T format. This is a
4-byte integer.

cursor _ raster _ op
Cursor raster operation code, in GPR_$RASTER_ OP _ARRAY _ T format. This is an
eight-element array of 2-byte integers. The default value is three. (The operation assigns all
source values to the new destination).

active
A Boolean (logical) val~e which indicates whether the cursor is displayed. The parameter is
set to true if the cursor is displayed; it is set to false if the cursor is not displayed.

position
The cursor's current position on the screen, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Type section for more information.

origin
The pixel currently set as the cursor origin, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Type section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Cursor position: If a program calls this routine when in borrow-display mode, the x- and
y-coordinates represent an absolute position on the screen. If a program calls this routine
when the cursor is inside a frame of a display manager pad, the x- and y-coordinates are
relative to the top left corner of the frame.

GPR-60

f'"
I
'\..._- .

c._.

(
''---

o

o

o

o

o

To alter the cursor, use one of the following:

GPR $SET CURSOR PATTERN
GPR=$SET=CURSOR=ACTlVE
GPR_$SET_CURSOR_POSITION
GPR_$SET_CURSOR_ORIGIN

Currently, a program can not alter the cursor raster operation.

GPR-61

GPR _ $INQ~ CURSOR

GPR

GPR _ $INQ_DECO:MP _ TECHNIQUE

Returns the mode which controls the algorithm used to decompose and rasterize polygons.

FORMAT

OUTPUT PARAMETERS

decomp _ technique
Returns a mode which controls the algorithm used to decompose polygons into trapezoids in
GPR_$DECO:MP _ TECHNIQUE_ T format. This is a 2-byte integer. Only one of the
following predefined values is returned:

GPR $F AST TRAPS
This is the default value on DN3XX/4XXs, DN550/5608, and DN6XXs
which indicates that the faster but imprecise algorithm is to be used. This
is the only algorithm that existed prior to SR9.

GPR $PRECISE TRAPS
This value indicates that a slower but more precise version of the
decomposition algorithm is to be used.

GPR $NON OVERLAPPING TRIS
This is the default value on DN570/580s and DN3000s which indicates
that a triangle decomposition algorithm is to be used.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR. _ $INQ_DECO:MP _ TECHNIQUE returns a mode setting, not an attribute.

GPR GPR-61.1

---_.-------_.-

c

o

(J

o

o

o

GPR_$INQ_DISP _ CHARACTERISTICS

Allows the application program to obtain a variety of information about the nature of the
actual display device or external bitmap if the program is operating in no-display mode.

FORMAT

INPUT PARAMETERS

op
One of four modes of operation. Graphics primitives routines can operate in two
borrow-display modes, within a Display Manager window, within a frame of a Display
Manager pad, or without using the display. Use GPR_$DISPLAY _MODE_ T format for
this parameter. This is a 2-byte integer. Possible values for this parameter are:

GPR $BORROW
Returns information about to a borrowed display.

GPR $BORROW NC
Returns information about to a borrowed display.

GPR $DIRECT Returns information about to a direct-mode window.

GPR _ $FRAME Returns information about to a frame of a Display Manager Pad.

GPR $NO DISPLAY
Returns infomation about to a main-memory bitmap.

unit _ or _ pad
This parameter has three possible meanings, as follows:

1. The display unit, if the graphics routines are to operate in a borrowed display.
This is a 2-byte integer. Currently, the only valid display unit number for
borrow-display mode is 1.

2. The stream identifier for the pad, if the graphics routines are to operate in
frame or direct mode. Use STREAM $ID T format. This is a 2-byte integer.

3. For gpr _ $no _ display this parameter is ignored.

GPR-61.2 GPR

GPR_ $INQ_DISP _CHARACTERISTICS

disp_len
Size of the buffer (the DISP parameter described below) provided by the calling program,
which will contain the returned display or device information in bytes. For example, if the
buffer is ten 16-bit words in length, the program gives 20 as the value of this parameter.
No checking is (or can be) done to verify that this length is correct, so unpredictable results
are obtained if the program gives a size that is larger than the actual size of the buffer.
This parameter allows the calling program to request that less than the full set of
characteristics be returned. It also allows the program to continue to function correctly if
the list of returned characteristics is extended in the future.

OUTPUT PARAMETERS

disp
Returned display device characteristics in GPR _ $DISP _ CHAR _ T format. This is an
array of up 56 bytes. See the GPR data types section for more information.

disp _len _ ret
Actual number of bytes of data returned in the "disp" parameter. This is a 2-byte integer.
It will always be less than or equal to the "disp _len II input parameter value. Presently,
the length of the full set of characteristics is 28 16-bit words, or 56 bytes, so 56 is the
current maximum possible value for this parameter.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Prior to SR9.2, programs using GPR could only obtain a value that identified a particular
display type, for example, a monochrome display, 1024 by 800 pixels. Programs then
derived the particular display characteristics from this value. As a result, a program that
wanted to determine display characteristics had to assign a value to each device type that it
might want to obtain. Each time we added new display types, user programs had to be
modified to identify the new display types.

GPR_$INQ_DISP _ CHARACTERISTICS eliminates the need for user programs to
include values that identify display device characteristics. This call returns all of a node's
display characteristics as a data item in the II disp II parameter. If you use this call, you will
not need to extend your programs to support any future display types.

GPR-61.3

---- - -----------------

C~

o

o

o

o

o

You can call GPR_$INQ_DISP _ CHARACTERISTICS at any time, regardless of whether
or not GPR has been initialized. If you have initialized GPR, calling this routine has no
effect on the current bitmap or its attributes.

When the program calls GPR_$INQ_DISP _ CHARACTERISTICS, the values it specifies
in the first two parameters are the same as the values it specifies to GPR _ $INIT. These
parameters identify the display mode and unit or stream to the call, which can then return
specific information about. the window or bitmap to be used, as well as general information
about the display device. The application program must supply a buffer variable, typically
of a record type in Pascal, a structure type in C, or an array type in FORTRAN, in which
the data can be returned.

In the future, we may extend the list of data items that this call returns as we release new
display devices with new characteristics. However, programs written to use the existing. set
of characteristics will continue to operate correctly.

GPR-61.4 GPR

GPR_$INQ_DRAW_ VALUE

Returns the color/intensity value used for drawing lines.

FORMAT

OUTPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for drawing lines,
in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

-2

For monochromatic displays

For color displays in 4-bit pixel Format

For color displays in 8-bit or 24-bit pixel Format

For all displays. This specifies that the background is transparent; that
is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the line drawing value. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new draw value, use GPR_$SET_DRAW _VALUE.

GPR GPR-62

c

o

0

0

o

o

GPR _ $INQ _ FILL _ BACKGROUND _ VALUE

Returns the color/intensity value of the background used for tile fills.

FORMAT

OUTPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for tile fills, in
GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

-2

status

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies that the background is transparent; that
is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the tile fill background. For borrowed displays
and memory bitmaps, the fill background is always zero. For Display
Manager frames,. this is the pixel value in use for the window background.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new background value, use GPR_$SET _FILL_BACKGROUND _ VALUE.

GPR-63 GPR

GPR _ $INQ_ FILL _ PATTERN

GPR_$INQ_FILL_PATTERN

Returns the fill pattern for the current bitmap.

FORMAT

OUTPUT PARAMETERS

pattern

scale

The descriptor of the bitmap containing the fill pattern, in GPR_ $BITMAP _DESC _ T
format.

The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern in both the x and y directions. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To set a new fill pattern for the current bitmap, use GPR_$SET_FILL_PATTERN.

Currently, the tile pattern must be stored in a bitmap that is 32 x 32 pixels. The scale
factor must be one. Any other pattern size or scale value results in an error.

With a one-plane bitmap as the pattern, the pixel values used are those set by
GPR $SET FILL VALUE and GPR $SET FILL BACKGROUND VALVE. Pixels
corresponding to II 111 bits of the pattern are drawn in the fill value: pixels corresponding to
110 11 bits of the pattern are drawn in the fill background value.

GPR-54

~-

I

\

o

o

o

o

c

Returns the color/intensity value used to fill circles, rectangles, triangles, and trapezoids.

FORMAT

OUTPUT PARAMETERS

index
The color map index that indicates the current color/intensity fill value, in
GPR_$PIXEL_ VALVE_ T format. This is a 4-byte integer. Valid values a.re:

0-1 For monochromatic displays

0-15 For color displays in 4-bit pixel format

0-255 For color displays in 8-bit or 24-bit pixel format

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CPR
Data Types section for more information.

USAGE

To set a new fill value, use GPR_$SET _F~L_ VALVE.

GPR-65 GPR

GPR_$INQ_HORIZONTAL_SPACING

Returns the parameter for the width of spacing between displayed characters for the
specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

OUTPUT PARAMETERS

horizontal _ spacing
The parameter for horizontal spacing of the specified font. This is a 2-byte integer.
Possible values are in the range -127 - 127.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Use GPR_$SET _HORIZONTAL_SPACING to set the width of spacing for a font.

The initial width of horizontal spacing is defined in the font file.

This routine returns the horizontal spacing in the local copy of the font. Initially, this is a
copy of the font file; however, the local copy may have been changed. Change in the local
copy does not affect the font file or the use of the font by other processes.

GPR-66

(~

\-'--'

o

o

o

o

o

GPR _ $INQ _ IMAGING _ FORMAT

GPR _ $INQ _IMAGING _FORMAT

Returns the current imaging format.

FORMAT

OUTPUT PARAMETERS

format
Imaging format in GPR_ $IMAGING _FORMAT _ T configuration. This is a 2-byte
integer. If you are using an interactive format, the returned value is
GPR_$INTERACTIVE. If you are using the imaging 8-bit pixel format on a two-board
configuration, the returned value is GPR _ $IMAGING _1024xl024x8. If you are using the
imaging 24-bit pixel format, the returned value is GPR_$IMAGING_512x512x24.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GPR-67 GPR

GPR_ $INQ_LINESTYLE

GPR _ $INQ _ LlNESTYLE

Returns information about the current line-style.

FORMAT

GPR_$INQ_LINESTYLE (style, scale, status)

OUTPUT PARAMETERS

style

scale

The style of line, in GPR _ $LlNESTYLE _ T format. This is a 2-byte integer. One of the
following predefined values is returned:

GPR $SOLID For solid lines

GPR $DOTTED
For dotted lines.

The scale factor for dashes if the style parameter is GPR_ $DOTTED. This is a 2-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

When the line-style attribute is GPR _ $DOTTED, lines are drawn in dashes. The scale
factor determines the number of pixels in each dash and in each space between the dashes.

To set the line-style attribute, use GPR _ $SET _ LlNESTYLE.

GPR-68

c

c

o

o

o

o

o

GPR _ $INQ _ LINE _ PATTERN

GPR_$INQ_LINE_PATTERN

Returns the pattern used in drawing lines.

FORMAT

GPR_$INQ_LINE_PATTERN (repeat. pattern. length. status)

OUTPUT PARAMETERS

repeat
The replication factor for each bit in the pattern. This is a 2-byte integer.

pattern
The bit pattern, left justified, in GPR_$LINE_PATTERN_ T format. This is a
four-element array of 2-byte integers.

length
The length of the pattern in bits. This is a 2-byte integer in the range of 0 - 64.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$INQ_LINE_PATTERN returns the current line pattern set explicitly with
GPR_$SET _LINE_PATTERN or set implicitly with GPR_$SET _LINESTYLE.

Use GPR_$SET _LINE_PATTERN to specify a new line pattern. You can also use
GPR_$SET _LINESTYLE to set a line pattern within the limits of the parameter
GRP $DOTTED.

GPR-69 GPR

GPR _ $INQ _RASTER _ OPS

GPR_$INQ_RASTER_OPS

Returns the raster operations for the current bitmap.

FORMAT

OUTPUT PARAMETERS

raster _op
Raster operation codes, in GPR _ $RASTER _ OP _ARRAY _ T format. This is an
eight-element array of 2-byte integers. Each element corresponds to the raster operation for
a single plane of the bitmap. Possible raster op values are zero through fifteen.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new raster operation for the current bitmap, use GPR_$SET_RASTER_OP.

GPR GPR-70

c

o

o

o

o

o

GPR _ $INQ _ REFRESH _ ENTRY

Returns two pointers: one to the procedure which refreshes the window; one to the
procedure which refreshes hidden display memory.

FORMAT

OUTPUT PARAMETERS

window _procedure
Entry point for the application-supplied procedure that refreshes the Display 11anager
window, in GPR_$RWIN_PR_ T format. This is a pointer to a procedure.

disp _ mem _ procedure
Entry point for the application-supplied procedure that refreshes the application's hidden
display memory, in GPR_$RHDM_PR_ T format. This is a pointer to a procedure.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The returned routines apply to the current bitmap and current attribute block.

Applications can also direct the Display Manager to refresh the window automatically; see
the routine GPR $SET AUTO REFRESH.

GPR-71 GPR

GPR _ $INQ _ SP ACE _ SIZE

GPR _ $INQ _ SPACE _ SIZE

Returns the width of the space to be displayed when a character requested is not in the
specified font.

FORMAT

INPUT PARAMETERS

font_id
Identifier of the text font. This is a 2-byte integer.

OUTPUT PARAMETERS

space_size
The space size of the specified font. This is a 2-byte integer. Possible values are in the
range -127 to 127.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To set a font's space size, use GPR_$SET_SPACE_SIZE.

The initial space size is defined in the font file.

The space size is the number of pixels to skip in the horizontal direction when a character
not included in the font is written.

GPR-72

\'-

c

i"
I

\.

o

o

o

o

o

GPR _ $INQ _ TEXT

GPR _ $INQ_ TEXT

Returns the text font and text path used for the current bitmap.

FORMAT

OUTPUT PARAMETERS

font id
Identifier of the text font used for the current bitmap. This is a 2-byte integer.

direction
The direction of movement from one text character position to the next in the current
bitmap, in GPR _ $DIRECTION _ T format. This is a 2-byte integer. One of the following
predefined values is returned:

status

GPR_$UP.
GPR_$DOWN.
GPR_$LEFT.
GPR_$RIGHT

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new text font for the current bitmap, use GPR_$SET _ TEXT _FONT.

To change the direction of text, use GPR _ $SET _ TEXT _ PATH.

GPR-73 GPR

Returns the x- and y-offsets a string spans when written by GPR_$TEXT.

FORMAT

INPUT PARAMETERS

string
A string, in GPR _ $STRING _ T format. This is a 256 element chararacter array.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

size
Width and height of the area the written string will occupy, in GPR _ $OFFSET _ T
format. This'data type is 4 bytes long. See the GPR Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

CPR

When the text path is GPR _ $RIGHT or GPR _ $LEFT, the width is the x-offset. When
the text path is GPR_$UP or GPR_$DOWN, the height is the y-offset.

To change the direction of text, use GPR _ $SET _ TEXT _ PATH.

Figure GPR-l shows two examples of the extent of text in relation to offsets. For
horizontal text, use GPR_$RIGHT with GPR_$SET _ TEXT _PATH. For rotated text,
use GPR $UP with GPR $SET TEXT PATH.

GPR-74

C~

o

o

o

o

o

Horizontal Text

width = x-offset

f\ brown fox lumped over the fencel

width = x-offset

height = y offset

GPR _ $INQ _ TEXT _ OFFSET

height = y offset

Figure GPR-l. Height and Width for Horizontal and Rotated Text

GPR-75 GPR

--------~ ".------.----.----

GPR _ $INQ_ TEXT _ OFFSET

GPR _ $INQ _ TEXT _ OFFSET

Returns the x- and y-offsets from the top left pixel of a string to to the origin of the string's
first character. This routine also returns the x- or y-offset to the pixel which is the new
current position after the text is written with GPR_$TEXT.

FORMAT

INPUT PARAMETERS

string
A string, in GPR _ $STRING _ T format. This is a 256-element character array.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

start
X- and Y-offsets from the top left pixel of the string to the origin of its first character, in
GPR $OFFSET T format. This data type is 4 bytes long. See the GPR Data Type
section for more information.

xy _end
The X- or Y-offset from the top left pixel of the string to the pixel that will be the new
current position after the string is written with GPR_$TEXT. This is the X-offset when
the text path is specified as GPR_$RIGHT or GPR_$LEFT. This is The Y-offset when
the text path is specified as GPR_$UP or GPR_$DOWN. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

A program can use the information derived from the IIstartll output parameter to set the
current position to the character origin, rather than the top left corner of the string, before
writing the string with GPR _ $ TEXT .

When the text path is GPR _ $RIGHT or GPR _ $LEFT, the offset is to the x-axis. When
the text path is GPR _ $UP or GPR _ $DOWN, the offset is to the y-axis.

See GPR_$SET _ TEXT _PATH for use of GPR_$RIGHT, GPR_$LEFT, GPR_$UP,
and GPR $DOWN.

Figure GPR-2 shows an example of text offsets, after using GPR _ $RIGHT and
GPR $UP with GPR $SET TEXT PATH.

GPR-76

/-

(
'-.

o

o

o

o

o

Top left pixel of
character string

Origin of first
character

._---------_ .. -... _ .. _ __ .. _ _----

GPR_$INQ_ TEXT _PATH

Current Position
upon completion
of GPFL-$TEXT and
GPFL-$SET _TEXT_PATH
with GPR_$RIGHT

Current position upon completion of
GPR-$TEXT and GPFL-$TEXT_PATH with
GPR-$UP

Text path is up from origin,
letters reading up

Origin of first character

Figure GPR-2. Text Offsets

GPR-77 GPR

Returns the direction for writing a line of text.

FORMAT

OUTPUT PARAMETERS

direction
Direction for writing text, in GPR _ $DIRECTION _ T format. This is a 2-byte integer. One
of the following predefined values is returned: GPR_$UP, GPR_$DOWN,
GPR_$LEFT, GPR_$RIGHT

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set the current text path, use GPR_$SET _ TEXT _PATH.

GPR GPR-78

c

c

r
I
\

o

o

o

o

o

GPR _ $INQ _ TEXT _ VALVES

GPR_$INQ_TEXT_ VALUES

Returns the text color/intensity value and the text background color/intensity value used in
the current bitmap.

FORMAT,

OUTPUT PARAMETERS

text value
A color map index that indicates the text color/intensity value, in
GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer.

text_bkgd_ value
A color map index that indicates the text background color/intensity value, in
GPR_$PIXEL_ T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To establish the text color/intensity value, use GPR _ $SET _ TEXT _ VALUE. To
establish the text background color/intensity value, use
GPR $SET TEXT BACKGROUND VALUE.

GPR-79 GPR

GPR_$INQ_ VIS_LIST

GPR_$INQ_ VIS_LIST

Returns a list of the visible sections of an obscured window.

FORMAT

INPUT PARAMETERS

slots available
Size of the array of visible window sections. This is a 2-byte integer, which is the maximum
number of visible rectangles that can be returned. If you want to list all existing sections,
you must specify a number that is greater than or equal to the number returned in the
slots _ total argument (see output parameters).

OUTPUT PARAMETERS

slots total
Number of existing visible rectangles. This is a 2-byte integer. If this value is greater than
the slots _ available parameter, then only the number of rectangles specified in
slots available is returned.

vis list
List of visible window sections. This is an array in GPR _ $WINDOW _ T format. This
data type is eight bytes long. See the GPR Data Types section for more information.

There is no set limit to the number of visible regions that may be returned.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

If the display has been acquired but the target window is obscured, programs can call
GPR_$INQ_ VIS_LIST to locate any visible sections of the window.

If the target window is visible, this routine returns a base of (0,0) and the size of the entire
window.

If the window is obscured, the application should call GPR _ $SET _ CLIP _ WINDOW once
for each rectangle returned by GPR _ $INQ _ VIS _ LIST before making calls to drawing
routines. Clipping is to rectangles only. The GPR software will not perform clipping
automatically.

GPR_$INQ_ VIS_LIST implicitly releases and reacquires the display in order to
communicate with the Display Manager.

GPR-80

c

c

(~

o

o

o

o

o

GPR_$INQ_ WINDOW_ID

Returns the character that identifies the current bitmap's window.

FORMAT

OUTPUT PARAMETERS

character
The character that identifies the current bitmap's window.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This character is returned by GPR _ $EVENT _ WAIT and
GPR_$COND_EVENT_ WAIT when they return GPR_$ENTERED_ WINDOW
events. The character indicates which window was entered.

The character II A II is the default value of the window identification for all windows.

GPR-81 GPR

GPR $LlNE

GPR $LINE

Draws a line from the current position to the end point supplied. The current position is
updated to the end point.

FORMAT

GPR_$LINE (x,y, status)

INPUT PARAMETERS

x

y

The x-coordinate, which designates the end point of the line and then becomes the current,
x-coordinate. Use GPR_ $COORDINATE _ T format. This is a 2-byte integer. Its values
must be within the bitmap limits, unless clipping is enabled.

The y-coordinate, which designates the end point of the line and then becomes the current
y-coordinate. Use GPR_ $COORDINATE _ T format. This is a 2-byte integer. Its values
must be within the bitmap limits, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the line drawn.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

After the line has been drawn, its end point becomes the current position.

To set a new position without drawing a line, use GPR _ $MOVE.

GPR-82

I,~_/

c

o

o

o

o

o

GPR $LOAD FONT FILE

GPR_$LOAD _FONT _FILE

Loads a font from a file into the display's font storage area.

FORMAT

INPUT PARAMETERS

pathname
Pathname of the file containing the font, in NAME _ $PNAME _ T format. This is a
character string. Additional information on fonts can be found in the Command Reference
manual.

pathname _length
Number of characters in font file pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font id
Font identifier. This is a 2-byte integer. Available fonts are listed in the directory
/sys/dm/fonts.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use the font-id returned from this file as input for GPR _ $SET _ TEXT _FONT.

To unload fonts loaded with this routine, use GPR _ $UNLOAD _FONT _FILE.

GPR-83 GPR

GPR $MOVE

GPR $MOVE

Sets the current position to the given position.

FORMAT

GPR_$MOVE (x. y. status)

INPUT PARAMETERS

x

y

The x-coordinate, which becomes the current x-coordinate, in GPR_$COORDINATE_ T
format. This is a 2-byte integer. Its values must be within bitmap limits, unless clipping is
enabled.

The y-coordinate, which becomes the current y-coordinate, in GPR_$COORDINATE_ T
format. This is a 2-byte integer. Its values must be within bitmap limits, unless clipping is
enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The current position is the starting point for many drawing and text operations.

GPR _ $MOVE does not draw any lines.

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the move
operation.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-84

(
\., --

c:

o

o

o

o

o

GPR $MUL TILINE

GPR $MUL TILINE

Draws a series of disconnected lines.

FORMAT

GPR_$MULTILlNE (x. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive coordinate positions in
GPR_$COORDINATE_ARRAY _ T format. This is an array of 2-byte integers. The
values must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive coordinate positions in
GPR_$COORDINATE_ARRAY _ T format. This is an array of 2-byte integers. The
values must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $MUL TILINE alternately moves to a new position and draws lines: it moves to the
first given position, draws a line from the first to the second given position, updates the
current position, moves to the third position, etc. Mter the last line has been drawn or the
last move has been made, the endpoint becomes the current position.

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the multiline
drawn.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-85 GPR

GPR $MUL TITRAPEZOID

GPR $MUL TITRAPEZOID

Draws and fills a list of trapezoids in the current bitmap.

FORMAT

GPR_$MULTITRAPEZOID (trapezoid_list. trapezoid_number. status)

INPUT PARAMETERS

trapezoid _list
Trapezoids to fill, in GPR_$TRAP _LIST_ T format. This data type is 12 bytes long.
See the GPR Data Types section for more information.

trapezoid _ number
Number of trapezoids to fill. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR _ $MUL TITRAPEZOID fills in a list of trapezoids with the color/intensity value
specified with GPR_$SET_FILL_ VALVE.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALVE.

Filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the decomposition technique set to either GPR _ $F AST _ TRAPS or
GPR $PRECISE TRAPS.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non_ overlapping_ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR $FAST TRAPS or GPR $PRECISE TRAPS OVERLAP.

GPR-86

c

c

o

o

Cj

o

o

GPR $MUL TITRIANGLE

GPR $MUL TITRIANGLE

Draws and fills a list of triangles in the current bitmap.

FORMAT

INPUT PARAMETERS

t list
Triangles to fill in GPR _ $TRIANGLE _ LIST _ T format. This data type is a variable size
array where each element of the array contains 14 bytes. See the GPR Data Types section
for more information.

n _ triangles
Number of triangles to fill. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call fills a list of triangles with the color jintensity value specified with
GPR $SET FILL _ VALUE.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

When entering coordinates for each triangle, you must set a winding number. The winding
number must agree with filling criterion established with
GPR_$SET _ TRIANGLE_FILL_ CRITERIA. For example, if the filling criterion is
gpr _ $parity, the winding number of triangles to be filled must equal 1. The default filling
criterion is gpr _ $parity.

Individual triangles can be assigned different winding numbers making it possible to fill
specific triangles in the list using GPR _ $SET _ TRIANGLE _ FILL _ CRITERIA.

Filled areas rasterized when the decomposition technique is gpr _ $non_ overlapping_ tris
contain fewer pixels than filled areas rasterized with the decomposition technique set to
either gpr _ $fast _ traps or gpr _ $precise _ traps.

GPR-86.1 GPR

GPR $MUL TITRIANGLE

GPR

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ overlapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
gpr _ $ fast _ traps or gpr _ $precise _ traps overlap.

GPR-86.2

('

o

o

o

o

o

GPR $OPEN BITMAP FILE

GPR $OPEN BITMAP FILE

Opens a file for external storage of a bitmap.

FORMAT

GPR_$OPEN_BITMAP_FlLE (access. filename. name_size. version. size. groups.
group_header. attributes. bitmap. created. status)

INPUT PARAMETERS

access
One of four ways to access external bitmap objects, in GPR_$ACCESS_MODE_ T
format. This is a 2-byte integer. Specify only one of the following values:

GPR $CREATE
Allocates a new file on disk for storage of a graphic image.

GPR $UPDATE
Allows you to modify a previously created file or create a new one.

GPR $WRITE Allows you to write to an existing file.

GPR $READONL Y
Allows you to read a previously' created file.

filename
The pathname of the bitmap file, in NAME _ $PNAME _ T format.

name size
The length of the file name. This is a 2-byte integer.

INPUT/OUTPUT PARAMETERS

version
The version number on the header of the external bitmap file, in GPR _ $VERSION _ T
format. This is a two-element array of two 2-byte integers: a major version number a.nd a
minor version number. Currently, version is not used and is always returned as major
version 1, minor version 1.

size
Bitmap width and height, in GPR _ $OFFSET _ T format. This is a two-element array of
2-byte integers. The first element is bitmap width, in raster units; the second element is the
bitmap height, in raster units. Possible values for x are 1-4096; possible values for yare
1-4096.

groups
The number of groups in external bitmaps. This is a 2-byte integer. Possible values are
1..(GPR_$MAX_BMF _ GROUP +1). Currently, a bitmap can contain only 1 group.

GPR-87 GPR

GPR $OPEN BITMAP FILE

group _ header
Description of the external bitmap, in GPR_$BMF _ GROUP _HEADER_ARRAY _ T
format. This is an array [O .. GPR_$MAX_BMF _GROUP] of
GPR_ $BMF _ GROUP _HEADER_ T. A description of the fields in a group header and
the possible values are listed below.

N SECTS

PIXEL SIZE

The number of sections in the group. Currently, there must be 1 section
for each plane of a bitmap. N _ SECTS is a 2-byte integer which can have
a value in the range 1 - 8.

The number of bits per pixel in each section of a group. Since each
section currently can' contain only 1 plane of a bitmap, this value must be
1. PIXEL_SIZE is a 2-byte integer.

ALLOCATED SIZE
2-byte integer Currently, this value must be 1, but you can specify this
value as 0 and GPR will perform the necessary calculations.

BYTES PER LINE
The number of bytes in one row of one plane of the bitmap.
BYTES_PER_LINE is a 2-byte integer. The value must be a multiple
of 4, but can be specified as 0 and GPR will perform the necessary
calculations.

BYTES PER SECT
The number of BYTES_PER_LINE multiplied by the height of the
bitmap. This value must then be either rounded up to a page boundary,
or for small bitmaps rounded up to the next largest binary submultiple of
a page, for example, one-half, one-fourth, or one-eighth. One page equals
1024 bytes. BYTES_PER_SECT is a 4-byte integer. This value can be
specified as 0 and GPR will perform the necessary calculations.

STORAGE OFFSET
UNIV PTR format

INPUT PARAMETERS

attribs
The attributes which the bitmap will use, in GPR _ $ATTRIBUTE _DESC _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap
Descriptor of the bitmap, in GPR _ $BITMAP _ DESC _ T format. This is a 4-byte integer.

created

GPR

Boolean (logical) value which specifies whether the bitmap file was created. If the value is
true, the file was created.

GPR-88

/'"
\

\ /'

o

o

0

o

c

GPR $OPEN BITMAP FiLE

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Currently, a section is equivalent to one plane of a bitmap. N_SECTS may include up to
eight bit planes.

For ALLOCATED_SIZE, BYTES_PER_LINE and BYTES_PER_SECT, you can
specify values as 0, and the GPR package will calculate and return the appropriate values.

BYTES_PER_SECT is not necessarily a multiple of BYTES_PER_LINE. This means
that GPR will leave unused space at the end of one section to satisfy alignment constraints.
The result is that the next section starts on an alignment boundary, which is normally a
page boundary.

The access parameter specifies one of four ways to use external bitmaps. As shown in the
table below, the value given for this parameter determines whether four other parameters
are input (IN) or output (OUT). The values for these parameters are used to validate your
input with GPR_$CREATE and GPR_$UPDATE.

GPR_$CREA TE GPR_$UPDATE GPR_$WRITE GPR_$READONL Y
file exists
no yes

version,
size,

IN IN OUT OUT OUT groups,
gr01e-
hea ers

GPR_$CREATE indicates that you want a new external bitmap file. GPR $UPDATE
means that you want to create a new file or overwrite an existing one.

When you specify GPR_ CREATE as the access parameter and you specify a file name that
already exists, the file is superseded only if it is a bitmap file. If the file is not a bitmap
file, you get the error message NAME_$ALREADY _EXISTS.

Attributes are not stored with the bitmap. You assign attributes when you open the
bitmap file. See the routines GPR_$ALLOCATE_ATTRIBUTE_BLOCK and
GPR $ALLOCATE BITMAP.

Figure GPR-3 is a global view of one group.

GPR-89 GPR

GPR_$PGON_DECOMP _ TECHNIQUE

GPR

i
BYTES

PER
SECTION

1

BYTES PER LINE

~-:/E . / ,

I,~
~-/7)':.

'%/.~

~ :(;:/;
/;::~
%_~~r -... r/

.... /"·.<.r ., '/'
I:~~,

WITHIN A LINE

I I

/ \

< PIXEL>) SIZE
BOTH IN BITS

< ALLOCATED SIZE >

Figure GPR-3. View of One Group

GPR-90

SECTION 0

SECTION 1

ETC.
• • •

o

o

o

o

GPR _ $PGON _DECO:MP _ TECHNIQUE

Sets a mode which controls the algorithm used to decompose polygons into trapezoids.

FORMAT

INPUT PARAMETERS

decomp _ technique
Sets a mode that controls the algorithm used to decompose polygons into trapezoids in
GPR_$DECOMP _ TECHNIQUE_ T format. This is a 2-byte integer. Specify only one
of the following predefined values:

GPR $F AST TRAPS
This is the default value on DN3XX, DN4XX, DN550j560, DN600j660
which indicates that the faster but imprecise algorithm is to be used. This
is the only algorithm that existed prior to SR9.

GPR $PRECISE TRAPS
This value indicates that a slower but more precise version of the
trapezoid decomposition algorithm is to be used.

GPR $NON OVERLAPPING TRIS
This is the default value on the following models: DN570j570Aj580 and
DN3000.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$PGON_DECO:MP _ TECHNIQUE establishes a mode setting, not an attribute.
Setting the decomposition technique applies to all polygons drawn during a particular
session of GPR (within a GPR_$INIT and GPR_$TERMINATE), not just the polygons
drawn in the current bitmap.

Polygons without self-crossing and II normal H self-crossing polygons work with the
GPR _ $F AST _ TRAPS setting. Polygons with multiple self-crossings andj or vertices in
close proximity may not be filled correctly with the GPR _ $F AST _ TRAPS setting. Fill
these polygons using the GPR _ $PRECISE _ TRAPS setting.

GPR-91 GPR

GPR $PGON POLYLINE

GPR $PGON POLYLINE

Defines a series of line segments forming part of a polygon boundary.

FORMAT

GPR_$PGON_POLYLlNE (x, y, npositions, status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY":" T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR_$PGON_POLYLINE defines a series of line segments that comprise part of a
polygon to be filled in by either (1) GPR_$CLOSE_FILL_PGON or by (2)
GPR_$CLOSE RETURN_PGON and GPR_$MULTITRAPEZOID. The lines are not
drawn on the screen until the polygon is .filled in by either routines (1) or (2) above. To
draw a series of connected lines without filling the resulting figure, use GPR _ $POL YLINE.

GPR_$PGON_POLYLINE must be called only when the line segments of a polygon are
being defined. See the routine GPR_ $ START _PGON for more information.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-92

- . ___ .. _._ •• __ • __ ·0 ___ .••.•. ~ __ ~o_ •• __________ •

;'

l_.

GPR $PIXEL BL T

GPR $PIXEL BL T o Performs a pixel block transfer from any bitmap to the current bitmap.

o

o

o

o

FORMAT

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source _ window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR _ $SET _ BITMAP to establish the current bitmap for this routine.

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BL T. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BL T to a Display Manager frame and the frame is
refreshed for any reason, the BLT is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

GPR-93 GPR

---------_ _-_ ... _.,-_._-_ .. _ ..•..

GPR $POL YLlNE

GPR $POL YLINE

Draws a series of connected lines: drawing begins at the current position, draws to the first
given coordinate position, then sets the current position to the first given position. This is
repeated for all given positions.

FORMAT

GPR_$POLYLINE (x. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the polyline
drawn.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-94

c

c

c

c

o

o

o

o

o

GPR $READ PIXELS

GPR $READ PlXELS

Reads the pixel values from a window of the current bitmap and stores the values in a pixel
array.

FORMAT

INPUT PARAMETERS

source _ window
Rectangular section of the current bitmap from which to read pixel values (color/intensity),
in GPR $WINDOW T format. This data type is 8 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

pixel_array
An array of the pixel values (color/intensity) in GPR_$PlXEL_ARRAY _ T format. This
is a 131,073-element array of 4-byte integers.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The pixel values from the source window of the current bitmap are stored in the pixel array
in row-major order, one in each 4-byte integer.

To write pixel values from an array to the current bitmap, use GPR_$WRITE_PlXELS.

A program cannot use this routine on a bitmap corresponding to a Display Manager frame.

A program cannot read pixels values in imaging formats.

GPR-95 GPR

GPR $RECTANGLE

GPR $RECTANGLE

Draws and fills a rectangle.

FORMAT

GPR_$RECTANGLE (rectangle. status)

INPUT PARAMETERS

rectangle
The rectangle in the current bitmap to be filled in. Rectangle is in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Type section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR _ $RECTANGLE fills in a rectangle with the color/intensity value specified with
GPR _ $SET _FILL _ VALUE. To retrieve the current fill value, use
GPR_$INQ_FILL_ VALUE.

To draw an unfilled rectangle use GPR_$DRAW _BOX or GPR_$POLYLlNE.

GPR-96

c

r
I

"-..

I

I

I

10

o

o

o

o

GPR $RELEASE DISPLAY

GPR $RELEASE DISPLAY

Decrements a counter associated with the number of times a display has been acquired.

FORMAT

GPR_$RELEASE_DISPLAY (status)

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the CPR
Data Types section for more information.

USAGE

GPR $RELEASE DISPLAY decrements a counter whose value reflects the number of
times the display has been acquired. If the counter value reaches zero, the routine releases
the display, allowing other processes, including the Display Manager, to use the display.

GPR_$RELEASE_DISPLAY automatically releases the keyboard when it releases the
display.

Programs that call GPR _ $EVENT _ WAIT may not need to call
GPR_$RELEASE_DISPLAY, since GPR_$EVENT _ WAIT releases the display
implicitly whenever the process waits for input.

GPR-97 GPR

GPR $REMAP COLOR MEMORY

GPR $REMAP COLOR MEMORY

Defines the plane in color display memory for which a pointer will be returned when using
GPR_ $INQ_BITMAP _POINTER. This allows a single plane of color display memory to
be accessed directly.

FORMAT

GPR_$REMAP_COLOR MEMORY (plane, status)

INPUT PARAMETERS

plane
The plane in color display memory in GPR_$PLANE_ T. This is a 2-byte int.eger. A
pointer can be returned to the plane using GPR_$INQ_BITMAP _POINTER. Valid
values are 0 - 7.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

When accessing color display memory directly (i.e. by dereferencing the pointer returned by
GPR_$INQ_BITMAP _POINTER), the program can access only one plane at a time.
This is unlike access to multi-plane memory bitmaps, in which the first scan line of a plane
immediately follows the last scan line of the previous plane in virtual memory, or access to
bitmaps stored in bitmap files where bytes _per _section specifies the address difference
between planes. Therefore, a program must use GPR_$REMAP _ COLOR_MEMORY to
establish which plane of color display memory will be accessible through the "storage_ptr"
returned by GPR_$INQ_BITMAP _POINTER.

GPR-98

('

o

o

o

o

o

GPR $REMAP COLOR MEMORY 1

GPR $REMAP COLOR MEMORY_l

Defines the plane in hidden color display memory for which a pointer is returned when
GPR_INQ_BITMAP _POINTER is used. This allows direct access to a single plane of
color display memory.

FORMAT

INPUT PARAMETERS

plane
The plane in hidden color display memory in GPR_$PLANE_ T. This is a 2-byte integer.
A pointer can be returned to the plane using GPR_$INQ_BITMAP _POINTER. Valid
values are 0 - 7.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $REMAP _ COLOR _ MEMORY _1 allows access to the normally hidden frame 1 of
color display memory. GPR_ $REMAP _ COLOR_MEMORY allows access to frame o.

GPR_$REMAP _COLOR_MEMORY _1 returns an error on the following machine
models: DN570/570A/580 and DN3000.

GPR-99 GPR

GPR $REPLICATE_FONT

GPR $REPLICATE_FONT

Creates and loads a modifiable copy of a font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the original text font. This is a 2-byte integer.

OUTPUT PARAMETERS

repl_ font _ id
Identifier of the copied text font. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To use routines which change fonts, you must first call GPR_ $REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR_$SET_CHARACTER_ WIDTH, GPR_$SET_HORIZONTAL_SPACING, and
GPR_$SET _SPACE_SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

GPR-lOO

o

o

o

o

GPR $SELECT COLOR FRAME

GPR _ $SELECT _ COLOR _FRAME

Selects whether frame 0 or frame 1 of color display memory is visible.

FORMAT

INPUT PARAMETERS

frame
This is a 2-byte integer. Denotes which frame is to be visible. Possible values are zero or
one. Normally, frame 0 is visible.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_ $SELECT _ COLOR_FRAME returns an error if any value other than 0 is entered
on the following models: DN570/570A/580 and DN3000.

GPR-IOl GPR

GPR _ $SET _ACQ_ TIME _ OUT

Establishes the length of time the display will be acquired.

FORMAT

INPUT PARAMETERS

timeout
The maximum real time, in TIME_$CLOCK_ T format, for which the program can
acquire the display.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

If the program has not released the display when the time-out expires and another process
(for example, the Display Manager) needs the display, an acquire time-out fault
(SMD _ $ACQUffiE _ TIMEOUT) is generated in the user process. The acquire time-out
fault is a warning fault that the program can intercept with a cleanup handler or static
fault handler. If the program does not release the display within a few seconds of the
acquire timeout fault, a second fault occurs (with the status code F AUL T _ ~QUIT) and the
program loses control of the display.

If this routine is not called, the default time-out value is one minute.

GPR-I02

('\
\
'-- '

o

o

o

o

o

GPR $SET ATTRmUTE BLOCK

GPR $SET _ATTRillUTE BLOCK

Associates an attribute block with the current bitmap.

FORMAT

INPUT PARAMETERS

attrib _ block _ desc
Descriptor of the attribute block, in GPR_$ATTRillUTE_DESC_ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To allocate and deallocate attribute blocks, use
GPR_$ALLOCATE_ATTRillUTE_BLOCK and
GPR $DEALLOCATE ATTRillUTE BLOCK.

To request the descriptor of the current bitmap's attribute block, use
GPR $ATTRillUTE BLOCK.

This routine may release and reacquire the display if the events enabled in the current and
new attribute blocks are different.

GPR-I03 GPR

GPR $SET AUTO REFRESH

GPR $SET _AUTO REFRESH

Directs the Display Manager to refresh the window automatically.

FORMAT

INPUT PARAMETERS

auto refresh
A Boolean value that indicates whether or not the Display Manager will automatically
refresh the application's window. A value of true means that auto-refresh is enabled; a
value of false (the default) means that auto-refresh is disabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Automatic refresh of windows can affect system performance and reduce the amount of disk
space available, especially if the application's windows are large.

As an alternative, the application program can also provide procedures that refresh the
screen and hidden display. See the routine GPR_$SET _REFRESH_ENTRY.

GPR _ $AUTO _ REFRESH implicitly releases and reacquires the display in order to
communicate with the Display Manager.

This routine applies to the current bitmap. When a program changes attribute blocks for a
bitmap during a graphics session, the auto refresh flag is lost unless you set it for the new
attribute block.

GPR-I04

o

o

o

o

o

GPR $SET BITMAP

GPR $SET BITMAP

Establishes a bitmap as the current bitmap for subsequent operations.

FORMAT

INPUT PARAMETERS

bitmap _ dese
A unique bitmap descriptor, in GPR_$BITMAP _DESC_ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The program can obtain the bitmap descriptor by using GPR _ $INQ _ BITMAP.

After a bitmap is established using GPR_$SET _BITMAP or GPR_$INIT, it is called the
"current bitmap."

GPR-I05 GPR

-------, -'--'--'--'-"-"

GPR $SET BITMAP DIMENSIONS

GPR $SET BITMAP DIMENSIONS

Modifies the size and the number of planes of a bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ dese

size

The descriptor of the bitmap, in GPR _ $BITMAP _DESC _ T format. This is a 4-byte
integer.

New width and height of the bitmap, in GPR_ $OFFSET _ T format. This data type is 4
bytes long. See the GPR Data Types section for more information.

hi_plane_id
The new identifier of the bitmap's highest plane, in GPR_$PLANE_ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

A program can use this call to change the size of a bitmap after the bitmap has been
created. This is useful if the program wishes to restrict itself to an upper-left subset of the
original bitmap or to use hidden memory on a borrowed display.

In direct mode when you allocate a bitmap, you request a size. You may get a smaller size
if the Display Manager window is smaller than the size you requested. These restrictions
apply to resizing bitmaps. Any bitmap can be shrunk from its original dimensions in x, y
or the highest plane. Once the bitmap has been shrunk, it can grow up to its requested size.
The maximum allowed sizes for x, y and the highest plane for the various DOMAIN
displays are given in the following table.

GPR-I06

0

o

o

o

o

GPR $SET BITMAP DIMENSIONS

max X max Y max high plane

Monochromatic display 1024 1024 0
(either portrait or landscape)

Color display--Interactive format
4-bit pixels 1024 2048 3
a-bit pixels 1024 2048 7

If a program uses hidden display memory, it must be careful not to modify areas that are
being used to store fill constants or text fonts. The following areas may be used by these
functions on the' various DOMAIN displays.

Fill constants:

Both monochromatic displays: 800 <= X <= 1023 and Y = 1023.

Color displays: none.

Stand-alone font:

Monochromatic portrait display:

Monochromatic landscape display:

Color displays:

800 <= X <= 1023 and 0 <= Y <= 39.

800 <=X <= 1023 and 983 <= Y <= 1022.

same as monochromatic portrait display, plane 0
only, Y offset by 1024.

User text fonts: (only if text fonts are loaded)

Monochromatic portrait display:

Monochromatic landscape display:

Color displays:

800 <= X <= 1023 and 40 <= Y <= 1022,
allocated from top to bottom.

o <= X <= 1023 and 800 <= Y <= 1023, in
columns 224 bits wide, allocated top to bottom
and left to right.

same as monochromatic portrait display, plane 0
only, Y offset by 1024.

Note that these areas may move, grow or shrink in future DOMAIN software releases.
Therefore, only limited use should be made of hidden display memory in conjunction with
text or cursor operations.

GPR-I07 GPR

GPR $SET CHARACTER WIDTH

GPR $SET CHARACTER WIDTH

Specifies the width of the specified character in the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

character
The specified character. This is a character variable.

width
The width parameter of the specified character. This is a 2-byte integer. Possible values
are -127 to 127.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To retrieve a character's width, use GPR _ $INQ _ CHARACTER _ WIDTH.

The initial character widths are defined in the font file.

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER _ WIDTH, GPR _ $SET _HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

GPR-I08

/

\,--

c

o

o

o

c

GPR $SET CLIPPING ACTIVE

GPR $SET CLIPPING ACTIVE

Enables/disables a clipping window for the current bitmap.

FORMAT

INPUT PARAMETERS

active
A Boolean (logical) value which specifies whether or not to enable the clipping window. Set
this value to true to enable the clipping window; set it to false to disable the clipping
window.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To specify a clipping window, use the routine GPR _ $SET _ CLIP _ WINDOW.

Initially, in borrow-display, the clip window is disabled. In direct mode, the clip window is
enabled and clipped to the size of the window. Clipping cannot be enabled in a bitmap
corresponding to a Display Manager frame.

To inquire whether the clip window is enabled, use GPR_ $INQ_ CONSTRAINTS.

GPR-I09 GPR

GPR $SET CLIP WINDOW

GPR $SET CLIP WINDOW

Changes the clipping window for the current bitmap.

FORMAT

INPUT PARAMETERS

window
The new clipping window, in GPR _ $WINDOW _ T format. This data type is 8 bytes
long. See GPR Data Types section for more information.

CURRENT
BITMAP

CLIPPING
WINDOW

CLIPPING
WINDOW
WIDTH

CLIPPING
~-WINDOW

HEIGHT

Clipping Window Origin, Width, Height

OUTPUT PARAMETERS

status

GPR

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GPR-110

\ ...

o

o

o

o

o

GPR $SET CLIP WINDOW

USAGE

The default clip window is the entire bitmap.

Pixels outside the clip window in the current bitmap are not modified by subsequent
operations.

To enable the clip window, use GPR_$SET _ CLIPPING_ACTIVE.

To request the dimensions of the current clip window, use GPR _ $INQ _ CONSTRAINTS.

This call is not allowed on the bitmap corresponding to the Display Manager frame.

GPR-l11 GPR

GPR $SET COLOR MAP

GPR $SET COLOR MAP

Establishes new values for the color map.

FORMAT

INPUT PARAMETERS

start index
Index of first color value entry, in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte
integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1 - 16 For color displays in 4-bit pixel format

1 - 256 For color displays in 8-bit or 24-bit pixel format

values
Color value entries, in GPR _ $COLOR _ VECTOR _ T format. This is a 256-element
array of 4-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

For the monochromatic display, the default start-index is 0, n-entries is 2, and the values
are GPR _ $BLACK and GPR _ $WHITE. Dark has the value GPR _ $BLACK, and bright
has the value GPR _ $WHITE. A program can use this routine to redefine the pixel values
corresponding to bright and dark intensity.

For the monochromatic display, if the program provides fewer than two values, or if the
first two values are the same (both black or both white), the routine returns· an error.

For the monochromatic display, the graphics primitives simulate a color map by modifying
the contents of display memory.

In direct mode, you must acquire the display before establishing new values for the color
map.

To retrieve the current color map, use GPR_$INQ_ COLOR_MAP.

GPR-112

GPR $SET COLOR MAP

On a monochrome display in direct mode, the color map can not be modified.

o

o

o

o

o
GPR-113 GPR

GPR $SET COLOR MAP

GPR $SET COLOR MAP

Establishes new values for the color map.

FORMAT

INPUT PARAMETERS

start _ index
Index of first color value entry, in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte
integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1 - 16 For color displays in 4-bit pixel format

1 - 256 For color displays in 8-bit or 24-bit pixel format

values
Color value entries, in GPR _ $COLOR _ VECTOR _ T format. This is a 256-element
array of 4-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

For the monochromatic display, the default start-index is 0, n-entries is 2, and the values
are GPR_$BLACK and GPR_$WHITE. Dark has the value GPR_$BLACK, and bright
has the value GPR _ $WHITE. A program can use this routine to redefine the pixel values
corresponding to bright and dark intensity.

For the monochromatic display, if the program provides fewer than two values, or if the
first two values are the same (both black or both white), the routine returns an error.

GPR-114

Lj

o

(J

o

o

GPR $SET COLOR MAP

For the monochromatic display, the graphics primitives simulate a color map by modifying
the contents of display memory.

In direct mode, you must acquire the display before establishing new values for the color
map.

To retrieve the current color map, use GPR_$INQ_ COLOR_MAP.

On a monochrome display in direct mode, the color map can not be modified.

GPR-115 GPR

GPR _ $SET _ COORDINATE _ ORIGIN

GPR $SET COORDINATE ORIGIN

Establishes x- and y-offsets to add to all x- and y-coordinates used for move, draw, text,
fill, and BLT operations on the current bitmap.

FORMAT

INPUT PARAMETERS

origin
The new coordinate origin for the bitmap, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current coordinate origin, use GPR_$INQ_ COORDINATE_ ORIGIN.

The default coordinate origin is (0,0).

This routine may not be used on a bitmap corresponding to a Display Manager frame.

GPR GPR-1l5.1

('
'---

c

o

o

o

o

GPR _ $SET _ CURSOR _ ACTIVE

GPR $SET CURSOR_ACTIVE

Specifies whether the cursor is displayed.

FORMAT

INPUT PARAMETERS

active
Boolean (logical) value that specifies whether to display the cursor. Set the parameter to
true to display the cursor; set it to false if you do not want to display the cursor.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Initially, the cursor is not displayed.

To inquire whether the cursor is currently displayed, use GPR _ $INQ _ CURSOR.

A program may call this routine only while operating in borrow-display or direct mode.

GPR-115.2 GPR

-------------------,

GPR $SET CURSOR_ORIGIN

GPR $SET CURSOR ORIGIN

Defines one of the cursor's pixels as the cursor origin.

FORMAT

INPUT PARAMETERS

origin
The position of one cursor pixel (the origin) relative to the entire cursor, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

A program uses GPR _ $SET _ CURSOR _ ORIGIN to designate one pixel in the cursor
pattern as the cursor origin. Thereafter, when the cursor is moved, the pixel designated as
the cursor origin moves to the screen coordinate designated as the cursor position.

The default cursor origin depends on the default cursor size, which depends on the size of
the Display Manager's standard font.

To inquire about the current cursor origin, pattern, position and whether the cursor is
enabled, use GPR_ $INQ_ CURSOR.

GPR-116

r
'''"--

o

o

o

o

o

GPR $SET CURSOR PATTERN

GPR $SET CURSOR PATTERN

Loads a cursor pattern.

FORMAT

INPUT PARAMETERS

cursor _ pattern
The descriptor of the bitmap which contains the cursor pattern, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Initially, the cursor pattern is a rectangle, which varies in size according to the size of the
Display Manager's standard font. A program can use
GPR_$SET _ CURSOR_PATTERN to redefine the cursor pattern. The bitmap that
represents the cursor pattern consists of one plane, which is a maximum of 16x16 pixels in
SIze.

To inquire about the current cursor pattern, use GPR _ $INQ _ CURSOR.

GPR-117 GPR

GPR $SET CURSOR POSITION

GPR $SET CURSOR POSITION

Establishes a position on the screen for display of the cursor.

FORMAT

INPUT PARAMETERS

position
Screen coordinate position for display of the cursor, in GPR _ $POSITION _ T format.
This data type is 4 bytes long. See the GPR Data Types section for more information.

The first element is the cursor position's x-coordinate; the second element is the
y-coordinate. Coordinate values must be within the limits of the display in use, as follows:

x y

Borrowed Display:

Monochromatic Portrait: 0 - 799 o - 1023

Monochromatic Landscape: o - 1023 o - 799

Color: o - 1023 o - 1023

Color 550 o - 1023 o - 799

Display Manager Frame: o - 32767 0 - 32767

OUTPUT PARAMETERS

status
Completion status, In STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Cursor position: If a program calls this routine when in borrow-display mode, the x- and
y-coordinates represent an absolute position on the screen. If a program calls this routine
when the cursor is inside a frame of a Display Manager pad, the x- and y-coordinates are
offsets from the top left corner of the frame.

GPR-118

\

(
,,-,

o

o

o

o

o

GPR $SET CURSOR POSITION

If the coordinate position would cause any part of the cursor to be outside the screen or
frame, the cursor moves only as far as the edge of the screen. The cursor is neither clipped
nor made to disappear.

To request the current cursor position, use GPR _ $INQ _ OURSOR.

In a Display Manager frame, this routine moves the cursor only if the cursor is in the
window viewing this frame when the call is issued. If not, a IInext window ll command
which moves to that window will move the cursor to its new position.

GPR-1l9 GPR

CPR $SET DRAW VALUE

GPR $SET DRAW VALUE

Specifies the color/intensity value to use to draw lines.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for drawing lines,
in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-2

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies using the color/intensity value of the
bitmap background as the line drawing value. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window
background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

CPR

To retrieve the current draw value, use GPR_$INQ_DRAW _VALVE.

The default draw value is 1.

For monochromatic displays, only the low-order bit of the draw value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the draw value
are considered, because these displays have four planes.

CPR-120

c

(
'-..,

o

0

0

o

o

GPR $SET FILL BACKGROUND VALUE

GPR $SET FILL BACKGROUND VALUE

Specifies the color/intensity value used for drawing the background of tile fills.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for tile fills, in
GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

-2

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies that the fill background is transparent;
that is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the fill background. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current background value, use
GPR_$INQ_FILL_BACKGROUND_ VALUE.

The default fill background value is -2.

This routine defines the background fill value for I-bit patterns. In all other fill patterns,
the values set with this routine are ignored.

GPR-121 GPR

GPR $SET FILL PATTERN

GPR $SET FILL PATTERN

Specifies the fill pattern used for the current bitmap.

FORMAT

GPR_$SET_FILL_PATTERN (pattern, scale, status)

INPUT PARAMETERS

pattern

scale

The descriptor of the bitmap containing the fill pattern, in GPR _ $BITMAP _DESC _ T
format. This is a 4-byte integer. See restriction below.

The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. See restriction below.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Currently, the tile pattern must be stored in a bitmap that is 32x32 pixels by n planes. The
scale factor must be one. Any other pattern size or scale value results in an error.

To retrieve the current fill pattern for the current bitmap, use
GPR_$INQ_FILL_PATTERN.

With a one-plane bitmap as the pattern, the pixel values used are those set by
GPR $SET FILL VALUE and GPR $SET FILL BACKGROUND VALUE.
Pixels corresponding to II 111 bits of the pattern are drawn in the fill value: pixels
corresponding to 110 11 bits of the pattern are drawn in the fill background value.

With a multiplane bitmap as the pattern, the pixel values used are those contained in the
pattern bitmap.

To re-establish solid fills, set the fill pattern descriptor to GPR_ $NIL_BITMAP _DESC.

GPR-122

(
\.....-.. /

(' ,,_ /

(
"'-...

o

o

o

o

o

GPR $SET FILL VALUE

GPR $SET FILL VALUE

Specifies the color/intensity value to use to fill circles, rectangles, triangles, and trapezoids.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current fill color/intensity value, in
GPR $PlXEL VALUE T format. This is a 4-byte integer. The default fill value is 1.
Valid values are:

o - 1 for monochromatic displays 0 - 15 for color displays in 4-bit pixel format 0 - 255 for
color displays in 8-bit or 24-bit pixel format

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

For monochromatic displays, only the low-order bit of the fill value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the fill value are
considered, because these displays have four planes.

II Index II is a color map index, not a color value.

GPR-123 GPR

GPR $SET HORIZONTAL SPACING

GPR $SET HORIZONTAL SPACING

Specifies the parameter for horizontal spacing of the specified font.

FORMAT

INPUT PARAMETERS

font id
The identifier of the text font. This is a 2-byte integer.

horizontal_ spacing
The horizontal spacing parameter of the specified font. This is a 2-byte integer. Possible
values are -127 - 127.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Use GPR_$INQ_HORIZONTAL_SPACING to retrieve a font's horizontal spacing.

The initial horizontal spacing is defined in the font file.

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR_$SET_CHARACTER_ WIDTH, GPR_$SET_HORIZONTAL_SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

Horizontal spacing is the space between each character in a string.

GPR-124

c

o

o

C)

o

o

GPR $SET IMAGING FORMAT

GPR $SET IMAGING FORMAT

Sets the imaging format of the color display.

FORMAT

INPUT PARAMETERS

format
Color format in GPR $IMAGING FORMAT T. This is a two-byte integer. Valid
values are:

GPR $INTERACTIVE
Either two- or three-board

GPR $IMAGING l024xl024x8
Two-board only

GPR $IMAGING 512x512x24
Three-board only

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current imaging format, use GPR_$INQ_IMAGING_FORMAT.

To use GPR_$SET _Th1A.GING_FORMAT, you must be in borrow display mode and be
using a color node.

Imaging formats support only limited GPR operations - displaying pixel data and changing
the color map. Other functions return error messages.

l024xl024x8 imaging format is not supported on a ~hree-board system because it offers no
advantages over interactive formats.

GPR_$SET _IMAGING_FORMAT accepts only GPR_$INTERACTIVE on the
following models: DN570/570A/580 and DN3000.

GPR-125 GPR

GPR $SET INPUT SID

GPR $SET INPUT SID

Specifies the input pad from which graphics input is to be taken.

FORMAT

INPUT PARAMETERS

stream_id
The stream-id that GPR software will use for input in frame mode, in STREAM _ $ID _ T
format. The stream must be a Display Manager input pad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Programs use this call only when they call input routines in frame mode
(GPR_$EVENT_ WAIT and GPR_$COND_EVENT_ WAIT).

If this routine is not called, the default stream ID is STREAM_ $STDIN (a stream id of
zero).

To work properly, the input pad must be the pad associated with the transcript pad passed
to GPR_$INIT. STREAM_$STDIN is associated with STREAM_$STDOUT in this way
in a normal Shell process window. Other process input pads derive their association from
the PAD $CREATE call that created them.

GPR-126

c

o

o

o

o

o

GPR $SET LINESTYLE

GPR $SET LINESTYLE

Sets the line-style attribute of the current bitmap.

FORMAT

GPR_$SET_LINESTYLE (style, scale, status)

INPUT PARAMETERS

style

scale

The style of line, in GPR _ $LINESTYLE _ T format. This is a 2-byte integer. Specify only
one of the following values:

GPR $SOLID For solid lines,

GPR $DOTTED
For dotted lines

The scale factor for dashes if the style parameter is GPR_$DOTTED. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

When the line-style attribute is GPR _ $DOTTED, lines are drawn in dashes. The scale
factor determines the number of pixels in each dash and in each space between the dashes.

For greater flexibility in setting line styles, use GPR_$SET _LINE_PATTERN.

Use GPR _ $INQ _LINESTYLE to retrieve the current line-style attribute.

GPR-127 GPR

GPR $SET LINE PATTERN

GPR $SET LINE PATTERN

Specifies the pattern to use in drawing lines.

FORMAT

GPR_$SET_LlNE_PATTERN (repeat_count. pattern. length. status)

INPUT PARAMETERS

repeat _ count
The replication factor for each bit in the pattern. This is a 2-byte integer. Specifying a
value of 0 results in a solid line.

pattern
The bit pattern, left justified, in GPR_$LINE_PATTERN_ T format. This is a
four-element array of 2-byte integers.

length
The length of the pattern in bits. This is a 2-byte integer in the range of 0 to 64.
Specifying a value of 0 results in a solid line.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR_$LINE, GPR_$POLYLINE, GPR_$MULTILINE use the pattern/style most
recently defined by either GPR_$SET _LINE_PATTERN or
GPR_$SET _LINESTYLE. The actual bits in the integers define the line pattern. You
should set the first bit in the pattern; otherwise, the vectors you draw will not show the
beginning of the line correctly.

Specifying the value of 0 for either repeat or length results in a solid line.

You may also set a line pattern with GPR_$SET _LINESTYLE. The pattern is defined by
the parameter GPR _ $DOTTED.

Within each element of the bit pattern, the bits are used in order of decreasing significance.
This starts with the most significant bit of entry 1 down to the least significant of entry 4.

Use GPR_$INQ_LINE_PATTERN to retrieve the current line pattern. This routine
returns the pattern set explicitly with GPR_$SET_LINE_PATTERN or set implicitly
with GPR $SET LINESTYLE.

GPR-128

c

,~
\

o

o

o

o

o

GPR $SET OBSCURED OPT

GPR $SET OBSCURED OPT

Establishes the action to be taken when a window to be acquired is obscured.

FORMAT

INPUT PARAMETERS

if _ obscured
If the window to be acquired by GPR_$ACQUIRE_DISPLAY is obscured, this argument.
specifies, in GPR _ $OBSCURED _ OPT _ T format, the action to be taken. This is a
2-byte integer. Specify only one of the following values:

GPR $POP IF OBS
Pop the window.

GPR $ERR IF OBS
Return an error and do not acquire the display.

GPR $BLOCK IF OBS
Block display acquisition until the window is popped.

GPR $OK IF OBS
Acquire the display even though the window is obscured.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If this routine is not called, the action to be taken defaults to GPR_ $ERR_IF _ OBS.

These options apply whenever the display is acquired, either by
GPR_$ACQUIRE_DISPLAYor implicitly by GPR_$EVENT_ WAIT.

If the program specifies the option GPR_$ERR_IF _ OBS, it must check the status code
returned from GPR _ $ACQUIRE _ DISPLAY or GPR _ $EVENT _ WAIT before calling
any drawing routines.

When a program specifies OK_ $IF _ OBS, the output is performed even when the window
is obscured. This output may overwrite other Display Manager windows.

Use GPR _ $INQ _ VIS _ LIST to retrieve a list of visible sections of an obscured window.

GPR-129 GPR

GPR $SET PLANE_MASK

GPR $SET PLANE MASK

Establishes a plane mask for subsequent write operations.

FORMAT

INPUT PARAMETERS

mask
The plane mask, which specifies which planes to use, in GPR _ $MASK _ T format. This is
a two-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The default mask specifies that all planes are used.

Operations occur only on the planes specified in the mask. A program can use this routine,
for example, to perform raster operations on separate planes or groups of planes in the
bitmap.

Using the mask, a program can partition the 8-bit pixels into subunits. For example, the
program can use planes 0 - 3 for one picture and planes 4 - 7 for another. Thus, one
bitmap may contain two color pictures. This does not, however, increase the number of
colors available for one bitmap.

To retrieve the current plane mask, use GPR_$INQ_ CONSTRAINTS.

GPR-130

c

c

c

.. _._--.--------------------------------_.

o

o

o

o

o

GPR $SET RASTER OP

GPR $SET RASTER OP

Specifies a raster operation for both BL Ts and lines.

FORMAT

INPUT PARAMETERS

plane_id
Identifier of the bitmap plane involved in the raster operation, in GPR _ $PLANE _ T
format. This is a 2-byte integer. Valid values are zero through the identifier of the
bitmap's highest plane. See GPR Data Types section for more information.

raster _op
Raster operation code, in GPR_$RASTER_ OP _ T format. This is a 2-byte integer.
Possible values are zero through fifteen.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_$INQ_RASTER_ OPS to retrieve the current BLT raster operation.

The initial raster operation is 3. This operation assigns all source bit values to new
destination bit values.

The following is a list of the op codes and logical functions of the sixteen raster operations
and a truth table of the raster operations.

GPR-I31 GPR

GPR $SET RASTER OP

GPR

Op Code
o
1
2
3
4
5
6
7
8

9
10
11
12
13
14

15

Source
Bit
Value

0
0
1
1

Raster Operations and Their Functions

Logical Function
Assign zero to all new destination values.
Assign source AND destination to new destination.
Assign source AND complement of destination to new destination.
Assign all source values to new destination.
Assign complement of source AND destination to new destination.
Assign all destination values to new destination.
Assign source EXCLUSIVE OR destination to new destination.
Assign source OR destination to new destination.
Assign complement of source AND complement of destination to

new destination.
Assign source EQUIVALENCE destination to new destination.
Assign complement of destination to new destination.
Assign source OR complement of destination to new destination.
Assign complement of source to new destination.
Assign complement of source OR destination to new destination.
Assign complement of source OR complement of destination to

new destination.
Assign 1 to all new destination values.

Raster Operations: Truth Table

Destination Resultant Bit Values for the following OP Codes:
Bit
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

GPR-132

C~

c

(
\...

o

o

o

o

o

GPR

GPR $SET REFRESH ENTRY

$SET REFRESH ENTRY

Specifies the entry points of application-supplied procedures that refresh the displayed
image in a direct window and hidden display memory.

FORMAT

INPUT PARAMETERS

window _ procedure
Entry point for the application-supplied procedure that refreshes the Display Manager
window, in GPR_$RWIN_PR_ T format. This is a pointer to a procedure.

disp _ mem _ procedure
Entry point for the application-supplied procedure that refreshes the application's hidden
display memory, in GPR_$RHDM_PR_ T format. This is a pointer to a procedure.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The Display Manager determines when the window needs to be redrawn based on the
amount of activity the user generates on the screen. When a redrawing operation is
necessary, the Display Manager calls the application-supplied procedure the next time that
the application acquires the display. Two input parameters are passed to the window
refresh procedure:

• unobscured -- When false, this Boolean value indicates that the window is
obscured .

• position _ changed -- When true, this Boolean value indicates that the window
has moved or grown since the display was released.

The Programming With General System Galls describes the pointer data type.

See Programming With DOMAIN Graphic Primitives for an algorithm using procedure
pointers.

GPR-133 GPR

GPR $SET SPACE SIZE

Specifies the size of horizontal spacing for the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

space_size
Space size is the number of pixels to skip in the horizontal direction when you include a
character that is not in the font. This is a 2-byte integer. Possible values are -127 to 127.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To retrieve a font's space size, use GPR_$INQ_SPACE_SIZE.

The initial character widths are defined in the font file.

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER _ WIDTH, GPR _ $SET _HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

The space size is the number of pixels to skip in the horizontal direction when you write a
character that is not in the font. Space size is not the size of the space character. To set
the size of the space character use GPR _ $SET _ CHAR _ WIDTH.

GPR-134

r---\

c

o

0

0

o

o

GPR _ $S.ET TEXT BACKGROUND VALUE

GPR $SET TEXT BACKGROUND VALUE

Specifies the color/intensity value to use for text background.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for the text
background, in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. This
parameter is an index into a color map; it is not a color value. Valid values are:

0-1 For monochromatic displays

0-15 For color displays in 4-bit pixel format

0-255 For color displays in 8-bit or 24-bit pixel format

-1 For all displays. This specifies that the text background is transparent;
that is, the old values of the pixels are not changed.

-2 For all displays. This specifies using the color/intensity value of the
bitmap background as the text background. For borrowed displays and
memory bitmaps, this value is always zero. For Display Manager frames,
this is the pixel value in use for the window background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current text background value, use GPR _ $INQ _ VALUES.

The default text background value is -2.

For monochromatic displays, only the low-order bit of the text background value is
considered, because monochromatic displays have only one plane.

For color displays in 4-bit pixel mode, only the four lowest-order bits of the text
background value are considered, because these displays have four planes.

GPR-135 GPR

GPR $SET TEXT FONT

GPR $SET TEXT FONT

Establishes a new font for subsequent text operations.

FORMAT

INPUT PARAMETERS

font id
Identifier of the new text font. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

Obtain the font-id when loading a font with GPR _ $LOAD _FONT _FILE.

To request the identifier of the current font, use GPR _ $INQ _ TEXT.

There is no default text font. A program must load and set the font.

Call GPR_$SET _ TEXT _FONT for each main memory bitmap. Otherwise, an error is
returned (invalid font id).

GPR-136

(~

" '---_

(
'-._-

o

o

o

o

o

GPR $SET TEXT _ PATH

GPR $SET TEXT PATH

Specifies the direction for writing a line of text.

FORMAT

INPUT PARAMETERS

direction
The direction used for writing text, in GPR_$DffiECTION_ T format. This is a 2-byte
integer. Specify only one of the following values:

GPR $UP

GPR $DOWN

GPR $LEFT

GPR $RIGHT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current text path, use GPR_$INQ_ TEXT _PATH.

The initial text path is GPR _ $RIGHT.

GPR-137 GPR

GPR $SET TEXT VALUE

GPR $SET TEXT VALUE

Specifies the color/intensity value to use for writing text.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for writing text,
in GPR $PIXEL VALUE T format. This is a 4-byte integer. The valid values are
listed below:

0-1 For monochromatic displays

0-15 For color displays in 4-bit pixel format

0-255 For color displays in 8-bit or 24-bit pixel format

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

To retrieve the current text value, use GPR_$INQ_ VALUES.

The default text value is 1 for borrowed displays, memory bitmaps, and Display Manager
frames on monochromatic displays; 0 for Display Manager frames on color displays.

For monochromatic displays, only the low-order bit of the text value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the text value are
considered, because these displays have four planes.

The color specification parameter is a color map index, not a color value.

GPR-138

c

c

c

o

o

o

o

o

GPR $SET WINDOW ID

GPR $SET WINDOW ID

Establishes the character that identifies the current bitmap's window.

FORMAT

INPUT PARAMETERS

character
The character that identifies the current bitmaps's window. This is a chara.cter variable.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This character is returned by GPR _ $EVENT _ WAIT and
GPR_$COND_EVENT_ WAIT when they return GPR_$ENTERED_ WINDOW
events. The character indicates which window was entered.

The character 'A' is the default value of the window identification for all windows.

You may assign the same character to more than one window. However, if you do so, you
cannot distinguish input from the two windows.

GPR-139 GPR

--- __ __ ._--_ .. _-_.---

GPR $SPLINE CUBIC P

GPR $SPLlNE CUBIC P

Draws a parametric cubic spline through the control points.

FORMAT

GPR_$SPLINE_CUBIC P (x. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR _ $SPLlNE _ CUBIC _ P draws a smooth curve starting from the current position,
through each of the specified points.

After the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any two consecutive points are equal.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-140

--- --.---

o

o

o

o

o

GPR $SPLINE CUBIC X

GPR $SPLINE CUBIC X

Draws a cubic spline as a function of x through the control points.

FORMAT

GPR_$SPLINE_CUBIC X (x. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $SPLINE _ CUBIC _X draws a smooth curve starting from the current position and
through each of the specified points.

After the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any x-coordinate is less than or equal to a previous x-coordinate.
The x-coordinate array must be sorted into increasing order.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-141 GPR

GPR $SPLlNE CUBIC Y

GPR $SPLlNE CUBIC Y

Draws a cubic spline as a function of y through the control points.

FORMAT

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byteintegers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR _ $SPLlNE _ CUBIC _ Y draws a smooth curve starting from the current position and
through each of the specified points.

After the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any y-coordinate is less than or equal to a previous y-coordinate.
The y-coordinate array must be sorted into increasing order.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR-142

~\
1\ .

... ... " "

o

o

o

o

o

GPR $START PGON

GPR $START PGON

Defines the starting position of a polygon.

FORMAT

INPUT PARAMETERS

x

y

The x-coordinate, in GPR_$COORDINATE_ T format. This is a 2-byte integer. Its
values must be within bitmap limits, unless clipping is enabled.

The y-coordinate, in GPR_$COORDINATE_ T format. This is a 2-byte integer. Its
values must be within bitmap limits, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_ $ START _PGON defines the first point in a polygon boundary. This routine is
used in conjunction with GPR _ $PGON _ POLYLINE to define a connected series of edges
composing one closed loop of a polygon's boundary. To see the polygon, you must fill it
using either GPR_$CLOSE_FILL_PGON or GPR_$CLOSE_RETURN_PGON and
GPR $MULTITRAPEZOID.

This routine closes any previously open loop of edges by connecting its last endpoint to its
first endpoint with an edge. Then, the routine starts the new loop.

GPR-143 GPR

GPR $TERMINATE

GPR $TERMINATE

Terminates the graphics primitives package.

FORMAT

GPR_$TERMINATE (delete_display. status)

INPUT PARAMETERS

delete _ display
A Boolean (logical) value which specifies whether to delete the frame of the Display
Manager pad. If the program has operated in a Display Manager frame and needs to delet.e
the frame at the end of a graphics session, set this value to true. If the program needs to
close, but not delete the frame, set this value to false. If the program has not used a
Display Manager frame, the value is ignored.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR_ $TERMINATE deletes the frame regardless of the value of the delete-display
argument in the following case. A BL T operation from a memory bitmap has been done to
a Display Manager frame since the last time GPR _ $ CLEAR was called for the frame.

GPR-144

(
'--

o

o

o

o

o

GPR $TEXT

GPR $TEXT

Writes text to the current bitmap, beginning at the current position.

FORMAT

GPR_$TEXT (string, string_length, status)

INPUT PARAMETERS

string
The string to write, in GPR _ $STRING _ T format. This is an array of up to 256
characters.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $ TEXT always clips to the edge of the bitmap, regardless of whether clipping is
enabled.

GPR _ $ TEXT writes the characters in the current font which correspond to the ASCII
values of the characters in the specified string. If the font does not have a character which
corresponds to a character in the string, GPR _ $TEXT leaves a space. The size of the
space is set by GPR _ $SET _ SPACE _ SIZE.

Text is written at the current position. The origin of the first character of the character
string is placed at the current position. Generally, the origin of the character is at the
bottom left, excluding descenders of the character.

Upon completion of the GPR _ $TEXT routine, the current position is updated to the
coordinate position where a next character would be written. This is the case even if the
string is partly or completely clipped. However, the current position always remains within
the boundaries of the bitmap.

GPR-145 GPR

GPR $TRAPEZOID

GPR $TRAPEZOID

Draws and fills a trapezoid.

FORMAT

GPR_$TRAPEZOID (trapezoid, status)

INPUT PARAMETERS

trapezoid
Trapezoid in GPR _ $TRAP _ T format. This data type is 12 bytes long. See the GPR
Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

GPR _ $TRAPEZOID fills in a trapezoid with the color jintensity value specified with
GPR_$SET_FILL_ VALUE or the pattern set by GPR_$SET_FILL_PATTERN. To
retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

The GPR routines define a trapezoid as a quadrilateral with two horizontally parallel sides.

To draw an unfilled trapezoid use GPR _ $POL YLINE.

Filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the decomposition technique set to either GPR _ $F AST _ TRAPS or
GPR $PRECISE TRAPS.

Abutting filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR $F AST TRAPS or GPR $PRECISE TRAPS OVERLAP.

GPR-146

C~

c

r
',,- .

o

o

o

o

o

_ .. _ _ _-_.- ._---,

GPR $TRIANGLE

GPR $TRIANGLE

Draws and fills a triangle.

FORMAT

INPUT PARAMETERS

vertex_l
First vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

vertex 2
Second vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

vertex 3
Third vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_ $TRIANGLE fills in a triangle with the color/intensity value specified with
GPR_$SET _FILL_VALUE or the fill pattern set by GPR_$SET _FILL_PATTERN.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALVE.

Filled areas rasterized when the decomposition technique is gpr _ $non _ overlapping _ tris
contain fewer pixels than filled areas rasterized with the decomposition technique set to
either gpr _ $fast _ traps or gpr _ $precise _ traps.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ overlapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
gpr _ $fast _ traps or gpr _ $precise _ traps overlap.

GPR-147 GPR

GPR $UNLOAD FONT Fll.E

GPR $UNLOAD FONT FILE

Unloads a font that has been loaded by GPR_$LOAD _FONT _FILE.

FORMAT

INPUT PARAMETERS

font id
Font identifier. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR

The font _ id is returned when a program loads a file with the routine
GPR $LOAD FONT FILE.

GPR-148

c

o

o

o

o

GPR $W AIT FRAME

GPR $W AIT FRAME

Waits for the current frame refresh cycle to end before executing operations that modify the
color display.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This routine is for use on color displays only.

Operations that modify the color display include block transfers and drawing and text
operations.

This routine is useful primarily for animation. It delays execution of display modifications
until the scan beam has completely covered the screen.

A program can also use this routine to synchronize changes to the color map with the
beginning of the frame.

GPR-149 GPR

OPR $WRITE PIXELS

GPR $WRITE PIXELS

Writes the pixel values from a pixel array into a window of the current bitmap.

FORMAT

GPR_$WRITE_PlXELS (pixel_array, destination_window, status)

INPUT PARAMETERS

pixel_ array
A 131,073-element array of 4-byte integers in GPR_$PIXEL_ARRAY _ T format from
which to write pixel values (color/intensity).

destination window
Rectangular section of the current bitmap into which to write the pixel values, in
GPR $WINDOW T format. This data type is 8 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

OPR

The pixel values in the pixel array, one in each 4-byte integer, are stored in the destination
window of the bitmap in row-major order.

For monochromatic displays, only the low-order bit of each pixel value is significant.

For color displays in 4-bit pixel format, only the four lowest-order bits of each pixel value
are considered because the bitmaps have four planes.

GPR_$WRITE_PIXELS overwrites the old contents of the bitmap.

To read pixel values from the current bitmap into an array, use GPR_$READ _PIXELS.

A program cannot use this routine on a bitmap corresponding to a Display Manager frame.

OPR-150

o

o

o

o

o

ERRORS

GPR $ALREADY INITIALIZED
Primitives are already initialized.

GPR $ARRAY NOT SORTED
Array must be in ascending order.

GPR $BAD ATTRIBUTE BLOCK
The attribute block descriptor is incorrect.

GPR $BAD BITMAP
The bitmap descriptor is incorrect.

GPR $BAD FONT FILE
Font file is incorrect.

GPR $BITMAP IS READ ONLY
Bitmap is read-only.

GPR $CANT DEALLOCATE
You cannot deallocate this bitmap.

GPR $CANT MIX MODES
You cannot mix display modes, for example, borrow and direct.

GPR $CHARACTER NOT IN FONT
Character is not in a font.

GPR $COORD OUT OF BOUNDS
Coordinate value is out of bounds.

GPR $DEST OUT OF BOUNDS
Destination window origin is out of bitmap bounds.

GPR $DIMENSION TOO BIG
The bitmap dimension is too big.

GPR $DIMENSION TOO SMALL
The bitmap dimension is too small.

GPR_$DISPLAY _NOT _ACQ
Display has not been acquired.

GPR $DUPLICATE POINTS
Duplicate points are illegal.

GPR $FONT TABLE FULL
Font table is full.

GPR $FONT IS READ ONLY

GPR $ILLEGAL FILL PATTERN
Illegal bitmap for' a fill pattern.

GPR $ILLEGAL FILL SCALE
Fill pattern scale must be one.

GPR $ILLEGAL FOR FRAME
Operation is illegal for DM frame.

GPR-151

GPR ERRORS

GPR

GPR ERRORS

GPR $ILLEGAL FOR PIXEL BITMAP

GPR $ILLEGAL PATTERN LENGTH

GPR $ILLEGAL PIXEL_VALUE
Pixel value range is illegal.

GPR $ILLEGAL SOFTWARE VERSION

GPR $ILLEGAL TEXT PATH

GPR $ILLEGAL WHEN IMAGING
Operation is illegal in imaging format.

GPR $INCORRECT ALIGNMENT
Bitmap layout specifications do not satisfy GPR alignment constraints.

GPR $INTERNAL ERROR
This is an internal error.

GPR $INV ALID COLOR MAP
The color map is invalid.

GPR $INVALID FONT ID
Font id is invalid.

GPR $INVALID IMAGING FORMAT
Format is invalid for display hardware.

GPR $INV ALID PLANE
The plane number is invalid.

GPR $INV ALID RASTER OP
The raster operation value is invalid.

GPR_$KBD_NOT_ACQ
Keyboard has not been acquired.

GPR $MUST BORROW DISPLAY
You must borrow the display for this operation.

GPR $MUST RELEASE DISPLAY
You must release the display for this operation.

GPR $NO ATTRIBUTES DEFINED
No attributes are defined for the bitmap.

GPR $NO INPUT ENABLED
No input events are enabled.

GPR $NO MORE SPACE
No more bitmap space is available.

GPR $NOT IN DIRECT MODE
Display is not in direct mode.

GPR $NOT IN POLYGON
No polygon is being defined.

GPR GPR-152

c'

---------------- --

o

o

o

o

o

GPR $NOT INITIALIZED
Primitives are not initialized.

GPR $SOURCE OUT OF BOUNDS
Source window origin is out of bitmap bounds.

GPR $TOO MANY INPUT WINDOWS

GPR $UNABLE TO ROTATE FONT

GPR $WINDOW OBSCURED
Window is obscured.

GPR $WINDOW OUT OF BOUNDS
Window origin is out of bitmap bounds.

GPR $WRONG DISPLAY HARDWARE
The display hardware is wrong for this operation.

GPR-153

-------.-----.-----.----

GPR ERRORS

GPR

'",-,--,/

~
I

\,

r
I

