
Engi . DSE,;;erzng in the

E . nvzronment
008790-AOO

apollo

------- -----

Engineering in the DSEE
Environment

Apollo Computer Inc.
330 Billerica Road

Chelmsford. MA01824

Order No. 008790-AOO

Confidential and Proprietary. Copyright 1988
Apollo Computer Inc., Chelmsford, Massachusetts.
Unpublished-rights reserved under the Copyright
Laws of the United States. All Rights Reserved.

First Printing:
Latest Printing:

July 1986
July 1988

This document was produced using the Interleaf Technical Publishing Software (TPS)
and the InterCAP Illustrator I Technical illustrating System, a product of InterCAP
Graphics Systems Corporation. Interleaf and TPS are trademarks of Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

UNIX Is a registered trademark of AT&T In the USA and other countries.

SCRIBE Is a registered trademark of Unlloglc, Ltd.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, 00-
maln/C, Domain/ComController, Domaln/CommonLlSP, Domain/CORE, Domain/De
bug, Domaln/DFL, Domain/Dialogue, Domaln/DQC, Domain/IX, Domaln/Laser-26,
Domain/LiSP, Domaln/PAK, Domaln/PCC, Domaln/PCI, Domaln/SNA, Domain X.25,
DPSS, DPSS/Mall, OSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel,
Network Computing System, Network License Server, Open Dialogue, Open Network
Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super Workstation,
Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trade
marks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other
Information contained In this publication without prior notice, and the reader should In
all cases consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC.
SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REP
RESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICA
TION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE , SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING
BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATING TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COM
PUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POS
SIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR
ITS LICENSORS.

Preface

Engineering in the DSEE Environment is written for experienced
users of the Domain@ Software Engineering Environment (DSEETM)
product. It presents an engineering perspective on the DSEE facili
ties and describes three engineering projects maintained by the
DSEE environment. By reading this book, you will increase your
understanding of how DSEE facilities work and are implemented.
You will see how other engineers have used DSEE facilities to solve
some of their engineering problems. With your enhanced knowl
edge of DSEE facilities, you'll also be able to extrapolate DSEE so
lutions for your own engineering problems.

The Organization of This Manual

We've organized the information in this manual as follows:

Chapter 1

Chapter 2

Describes the five DSEE managers,
their functional components, their uses,
and some details of their implementa
tion.

Presents a case study of an engineering
project converting to a DSEE environ
ment.

Preface iii

Chapter 3

Chapter 4

Appendix A

Appendix B

Appendix C

Presents a case study of an engineering
group using DSEE facilities to manage
the development of a multi-targeted
operating system.

Presents a case study of an engineering
group using DSEE facilities to manage
simultaneous development and mainte
nance of software.

Presents an abbreviated version of the
system model used by the CAD tools.
project (described in Chapter 2).

Presents an abbreviated version of the
system model used by the as project
(described in Chapter 3).

Presents an abbreviated version of the
system models used by the DSEE pro
ject (described in Chapter 4).

How to Use This Manual

Reading Chapter 1 will enhance your understanding of the DSEE
software and its functional components. You may appreciate the
insights into the product's implementation that this chapter pro
vides.

Each one of the case studies in Chapters 2 through 4 is designed to
stand alone. You can either read all three or you can read only the
ones that pertain to your own situation.

Each of these chapters contains "highlight" sections that examine
topics of general interest to DSEE users. These sections, which are
boxed and shaded, may provide you with quick answers to general
questions. A separate table of contents lists highlight sections.

As you read each case study, refer to the related appendix. There,
you will find a scaled-down version of the project's system model.
The sample models in the appendixes will not only help you under
stand the systems. they will also aid you in writing your own system
models.

iv Preface

Related Documents

For an introduction to DSEE facilities. read Getting Started with
the DSEE Environment (008788).

For detailed information on DSEE commands. the system model
and configuration thread languages. DSEE administration. and
definitions of DSEE terms. refer to the Domain Software Engineer
ing Environment (DSEE) Command Reference (003016).

For detailed information on the DSEE callable interface. refer to
the Domain Software Engineering Environment (DSEE) Call Refer
ence (010264).

For detailed information about the Domain system. consult one of
the following manuals:

• Getting Started with Domain/OS (002348) describes the
basics of the Domain system.

• Using Your Aegis Environment (0011021) is a detailed
guide to using the Aegis environment.

• Using Your BSD Environment (0011020) is a detailed
guide to using the BSD environment.

• Using Your SysV Environment (0011022) is a detailed
guide to using the SysV environment.

• Aegis Command Reference (002547) provides detailed in
formation about the Aegis ™ shell commands.

• BSD Command Reference (005800) describes the BSD
shell commands supported by Domain/OS.

• SysV Command Reference (005798) describes the SysV
shell commands supported by Domain/OS.

• Domain Display Manager Command Reference (011418)
describes the Domain Display Manager.

Preface v

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In
order to make it easy for you to communicate with us, we provide
the Apollo Product Reporting (APR) system for hardware and soft
ware-related comments, and the Reader's Response form for docu
mentation comments. By using these formal channels you make it
easy for us to respond to your comments.

You can get more information about how to submit an APR by
consulting the appropriate Command Reference manual for your
environment (Aegis, BSD, or SysV). Refer to the mkapr (make
apollo product report) shell command description. You can view
the same description online by typing:

$ man mkapr (in the SysVenvironment)

% man mkapr (in the BSD environment)

$ help mkapr (in the Aegis environment)

Alternatively, you may use the Reader's Response Form at the back
of this manual to submit comments about the manual.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

literal values

vi Preface

Bold words or characters in formats and
command descriptions represent com
mands or keywords that you must use
literally. Bold words in text indicate the
first use of a new term, a command or
keyword, or the name of a sample
DSEE object or pathname.

user-supplied values

command arguments,
configuration thread
text, and model text

user input

system model block types

< >

CTRLI

I
-------88-------

Italic words or characters in formats
and command descriptions represent
values that you must supply.

In examples, arguments to commands,
configuration thread text, and system
model text appear in this typeface.

User input to a prompt is presented in
color.

Within the text the names of system
model block types appear with initial
capital letters (Aggregate, Element, Ex
ternal, and Model). The word "ele
ment" with an initial lowercase letter re
fers to a DSEE library element.

Angle brackets enclose the name of a
key on the keyboard.

The notation CTRLI followed by the
name of a key indicates a control char
acter sequence. Hold down <CTRL>
while you press the key.

Horizontal ellipsis points indicate that
you can repeat the preceding item one
or more times.

Vertical ellipsis points mean that irrele
vant parts of a figure or example have
been omitted.

Change bars in the margin indicate
technical changes from the last revi
sion of this manual.

This symbol indicates the end of a
chapter.

Preface vii

Contents

Chapter 1 DSEE Concepts:
an Engineering Perspective

Introduction '. .. 1-1
What Is a Programming Environment? 1-2
OSEE Managers 1-3

History Manager 1-5
Components 1-5
Using the History Manager 1-7
Implementation Details 1-8

Storing Historical Information 1-8
Storing Element Versions , 1-8
History Manager Integration with the

Operating System 1-9
Recovering after Failures 1-11

Configuration Manager 1-11
What is OSEE Configuration Management? ;... 1-11
Components .. 1-13

System Model 1-13
The System Model Language 1-15
Configuration Thread 1-17
Model Thread 1-21

Contents ix

Bound Configuration Thread 1-22
Binary Pools 1-23

Using the Configuration Manager 1-26
The Build Process 1-26
Parallel Building 1-29
Promoting Derived Objects 1-31
Avoiding Unnecessary Builds 1-32

Implementation Details 1-34
Release Manager 1-35

Components 1-35
Using the Release Manager 1-36

Task Manager 1-36
Components .. 1-37

Tasks 1-37
Tasklists 1-38
Forms 1-38

Using the Task Manager 1-38
The Task Manager and the History Manager ... 1-39
Creating and Modifying Tasks 1-39
Using Tasklists 1-40

Implementation Details 1-40
Monitor Manager .. 1-41

Components 1-42
Using the Monitor Manager 1-42

Creating a Monitor 1-43
Activating a Monitor. .. 1-44

Implementation Details 1-44
Integration of the Managers 1-45
Security and Protection 1-48
Customizing the DSEE Environment 1-49

Command Files 1-50
Programmable Interface 1-51
DSEE Server 1-52

DSEE Concepts: Conclusion 1-52

x Contents

Chapter 2 Case Study 1: Converting to a
DSEE Environment

Introduction 2-2
Converting to a OSEE Environment 2-2

Project Structure 2-3
Libraries and Elements 2-5

Placing Existing Source Code in Elements 2-9
Tasks, Tasklists, and Monitors 2-11
Systems and System Models .. 2-11

Systems 2-12
Pools 2-14
Translation Rules 2-16
Dependencies 2-22
Using Built Include Files 2-23
Undeclared Include Dependencies 2-25

Working in the OSEE Environment 2-26
Releasing the Product 2-26

Chapter 3

How the CAD Tools Group Creates
a Product 2-26

Case Study 2: Developing a
Multi-Targeted Operating System

Introduction 3-2
Separate Products that Share Source Code 3-2

Representing the Software with
Multiple Systems. 3-2

Building the Software with One System Model .. 3-4
Working in a Multi-Target Environment 3-6

Project Structure 3-8
Libraries and Elements .. 3-8
Tasks, Tasklists, and Monitors 3-10

Contents xi

Systems and System Models .. 3-11
Pools 3-13
Translation Rules 3-17

Working in the DSEE Environment 3-20
Working as Individuals 3-20

Using Working Directories to Organize Jobs 3-21
Accessing Derived Objects 3-24

Working with Others 3-26

Chapter 4

Deciding Who Takes Responsibility 3-27
Creating Different System Configurations 3-27
U sing Lines of Descent to Protect Other Group

Members 3-28
Using Lines of Descent to Protect and Isolate

Yourself 3-32
Coordinating with Projects Outside of the

OS Group 3-33
Releasing an Operating System for Distribution . 3-36

Case Study 3: Maintaining
Released Software in a
DSEE Environment

Introduction 4-2
Simultaneous Maintenance and Development " 4-2

Project Structure 4-4
Libraries and Elements 4-4

Version and Branch Name Strategy 4-6
Tasks, Tasklists, and Monitors 4-11

Tasks and Tasklists .. 4-12
Monitors 4-13
Monitors on Other Projects' Libraries 4-13
Warning Monitors 4-13
Monitors that Keep Writers Abreast of

Product Changes 4-14
Systems and System Models 4-15

xii Contents

Working in the DSEE Environment 4-19
Creating a Special Distribution " 4-19
Merging Bug Fixes into the Main Line 4-22
Producing a Bug Fix Release 4-24

Appendix A CAD Tools Project System Model

Appendix B OS Project System Model

Appendix C DSEE Project System Models

DSEE Command Facility System Model C-l
DSEE System Model Compiler System Model C-12
Model Fragment dsee_default_trans.ins.sml C-21
Model Fragment dsee_common,ins.sml C-22

Index

Contents xiii

Highlights

The Role of the DSEE Environment Administrator 2-4
DSEE Performance and Library Structure 2-7
Automated Library Population 2-10
Pros and Cons of Imported Derived Objects 2-13
The Consistency of DSEE Environments 2-14
Using Multiple Physical and Logical Pools 2-15
Putting Derived Objects in Binary Pools 2-18
How Many Components Do You Need? 2-21
Listing a Tool as a Dependency 2-23
Nested Include Files 2-25
Should I Store Configuration Threads as Elements? 2-28
Relating a Released Product Back to Its

Constituent Source Versions 2-30

Where to Store Machine-Dependent Source Code 3-10
Why Should a System Model Be Stored

as a DSEE Element? 3-11
Reusing Parts of Builds 3-14
Pool Storage and Access .. 3-17
Scripts of DSEE Commands 3-22
Finding Out Why a Module Needs to Be Rebuilt 3-25
Using Releases for Development 3-30
An Update on Version Naming and Development Builds .. 3-31
Cleaning Up Older Branches 3-34
An Alternative to -force_all 3-37

Ensuring Consistency of Branch Names 4-7
Naming Versions from Build IDs 4-9
Standardized Element Evolution .. 4-11
Importing Derived Objects from Other Systems 4-17
Threads and Obsolete Branches 4-26

xiv Contents

Figures

1-1 DSEE Managers and Their Interaction 1-4
1-2 An Example of a System Model's Structure .. 1-15
1-3 Pictorial Representation of Configuration

Threads. .. 1-21
1-4 A Binary Pool 1-25
1-5 Overview of the Building Process 1-28
1-6 Pictorial Representation of an Equivalence ... 1-33
1-7a Interaction of DSEE Components 1-46
1-7b Interaction of DSEE Components 1-47

3-1 Releases Associated with Different Products .. 3-3
3-2 Lines of Descent of ast.pas 3-29

4-1 Derivation of Element cm_utl.pas 4-10
4-2 Evolution of bldcom.pas's inco Branch 4-23

Tables

2-1 CAD Tools Group Libraries and Their
Contents 2-6

3-1 OS Group Libraries and Their Contents 3-9

4-1 DSEE Group Libraries and Their Contents .. 4-5

Contents xv

Chapter 1

DSEE Concepts:
an Engineering Perspective

This chapter presents the components and functions of the DSEE
environment. Here we take an engineering perspective on the soft
ware, examining the components of the DSEE software, how you
use them, and some details of their implementation.

Introduction

The Domain Software Engineering Environment (DSEE) manages
large-scale development efforts involving engineers, technical writ
ers, managers, and field support personnel. The DSEE environ
ment provides source code control, configuration management, re
lease control, task management, form management, and user-de
fined dependency tracking with automatic notification. All DSEE
facilities are fully integrated with one another. You use the same
interface to perform all DSEE software development functions.

DSEE Concepts 1-1

I

Because the people that DSEE software supports and their data are
typically spread among many locations, the DSEE facility must rec
ognize and support distributed development environments. The un
derlying Domain architecture aids in the support of distributed de
velopment environments by providing network-wide virtual address
space, transparent remote file access, and remote paging. DSEE
software uses the following Domain facilities:

• D3M"" , a distributed database management system, to
store historical information

• Reliable, immutable files to store deltas and tasks

• Server processes to watch for asynchronous events

• spm, the server process manager, to distribute system
builds to remote nodes

• A store-and-forward interprocess communication mecha
nism to safeguard against problems occurring when the
network becomes temporarily partitioned

The dedicated window in which the DSEE software runs provides
you with most of the tools you need for a complete programming
environment.

What Is a Programming Environment?

The phrase programming environment, while used in many con
texts, generally refers to an operating system environment and a
collection of tools or subroutines. Different programming environ
ments have different goals. Some manage the complexities of
building releasable products. Others help engineers write, test, and
debug their software. Yet other systems track the evolution of soft
ware.

Our concept of a programming environment is a facility that has all
these tasks as its goal. The procedures of tracking software evolu
tion, developing working software, and generating useful products
are not isolated from one another. Most software engineers must
perform all of these functions. In addition, they must coordinate all
of their activities.

1-2 DSEE Concepts

The DSEE facility is a collection of five fully integrated components
of a total programming environment. Integrating these components
allows the DSEE facility to automate many of the tasks involved
with software engineering. This integration makes the whole DSEE
product more valuable than the sum of its parts. DSEE software fa
cilitates the peripheral tasks that can consume much of an engi
neer's time: tracking source evolution; structuring, building, and
rebuilding complex software systems in development; composing re
leases of software for bug fixes, beta test distributions, and major
upgrades; and making sure that each step that needs to be per
formed in the execution of a task is not forgotten.

The DSEE software separates these components from debuggers,
editors, compilers, and test software. As a result, the DSEE envi
ronment is extremely flexible. You can use DSEE facilities to aid in
the development of software in any language, for any target ma
chine, written with any Domain-supported editor.

DSEE facilities are useful for everyone involved with large-scale en
gineering projects, not just engineers. Technical writers, engineer
ing project managers, and the field support personnel involved with
projects managed with the DSEE environment can all use DSEE fa
cilities to assist them in their work. It aids them in their own tasks as
well as automating parts of their interaction with the engineers in
volved with the project.

DSEE Managers

The five components of the DSEE facility, called managers, are
listed below. Subsequent sections describe them in detail.

• The history manager controls source code and provides
complete histories of versions

• The configuration manager builds systems and compo
nents, detecting the need to rebuild components and per
forming the builds only when necessary

• The release manager saves configurations and helps re
late released software to the sources that built the configu
ration

DSEE Concepts 1-3

• The task manager relates source code changes made
throughout the network to particular high-level activities,
holds general project related information, and provides
templates for redoing common tasks

current task
automatically
Included In
hlsto Information

Figure 1-1. DSEE Managers and Their Interaction

1-4 DSEE Concepts

• The monitor manager watches user-defined dependen
cies and alerts users when such dependencies are triggered

The Figure 1-1 illustrates the DSEE managers and their interac
tion.

History Manager

The history manager provides source code control within the DSEE
environment. The history manager lets you store many versions of
a program module and access them easily, while the history man
ager records all information on the module's evolution. The history
manager is also the fundamental facility of the DSEE environment.
All other DSEE managers interact with and depend on the history
manager.

In this section we examine the history manager's components, use,
and some aspects of its implementation.

Components

The DSEE history manager stores related components of a soft
ware development effort in a database known as a library. A li
brary is a directory you create and manipulate with DSEE com
mands.

Each library contains elements. An element corresponds roughly
to a file. An element may represent a program source module, a
document that needs to be run through a formatting program, or
any similar unit of text that is created and modified with an editor.

The Domain system uses a unique DSEE history manager file type
to store elements. Unlike ordinary files, DSEE elements have suc
cessive versions. Each time you modify an element, the history
manager makes a new version of the element, assigning it a new
version number. Each version of an element has a unique version
number. (Because the Domain system understands the structure of
element files, you can read different versions of elements through
the Display Manager and access them with any tool that uses the
lOS streams facility, as we explain in "Implementation Details"
later in this section.)

DSEE Concepts 1-5

You can refer to a particular element version using its version num
ber. The history manager displays the version number whenever it
prints information about the version (for example, when you re
quest information concerning an element' s history).

Although the version numbers assigned by the history manager al
low access to specific versions of elements, they aren't very effec
tive at identifying particular versions for people. It's unlikely, for
example, that you will always remember that version 2 of the ele
ment sort. pas was the version was used in Software Release 1.45 of
a product. Even more unlikely is that you will remember all the dif
ferent numbers of the constituent versions of all the elements used
in Release 1.45: version 2 of sort. pas, version 5 of sqrt. pas, ver
sion 10 of~ alph.pas, and so on.

The history manager therefore allows you to assign a version name
to any version of an element. Using our previous example, you
could name all of Software Release 1.45's constituent element ver
sions SR_1.45. This allows you to access the shipped version of
every element used in the release with an easy-to-remember name.
You can assign the name SR_1.45 to version 2 of sort.pas, version
5 of sqrt.pas, version 10 of alph.pas, and so on.

So far, we have simplified our discussion of element versions by as
suming that each element's development is linear. This is frequently
not the case. The history manager supports competing lines of de
velopment within an element. Each one is called a line of descent.
If you view an element's development as a tree structure, the cen
tral path of development is called the main line of descent. Other
paths, or alternate lines of descent, are called branches.

You might create a branch from an old main line version in order to
fix a bug in that version without incorporating more recent changes
to the element. Alternatively, at the start of an extended period of
parallel development, you might create branches with the same
name off the most recent versions of a set of elements. Finally, you
might create a temporary branch in order to work on an element
that someone else has reserved currently.

1-6 DSEE Concepts

The history manager has a merge facility that you can use to incor
porate modifications made on one line of descent into ongoing
work on another line of descent. The history manager does much of
the merging automatically, determining what to incorporate in the
new version by checking changed sections of text against a common
ancestor of the versions being merged. When the history manager
cannot make an automatic decision in a merger, it asks you to tell it
what to do. It then lets you edit the new text before going on with
the merger process.

U sing the History Manager

You reserve a line of descent of an element when you want to cre
ate a new version of the element. When you reserve a line of de
scent, the history manager gives you an editable copy of the line of
descent's most recent version. The manager also ensures that no
one else can create another version on that line of descent of the
reserved element. If another user attempts to reserve the same line
of descent, the history manager reports that this cannot be done
and tells the other user that you have reserved this line of descent.

When you finish changing and testing the copy of the element, you
replace the element's line of descent. The replacement operation
creates the new version of the element.

Whenever you reserve or replace a line of descent, the history man
ager asks you to describe the changes you intend to make or have
made. The history manager records this information, along with the
date and time, the ID of the node you're using, and your user ID,
in the history database associated with the library.

At any time you can determine which elements in a library are re
served, by whom they are reserved, and why they are reserved. You
can also retrieve the history of one particular element. This history
consists of the sequence of replace operations that created succes
sive versions of the element as well as the operations that created
alternate lines of descent. Using the history manager, you can also
review the interleaved history for an entire library since a particular
date (for example, the date of an earlier release).

Another use of the history manager is version comparison. This fa
cility compares two versions of an element line by line and tells you
exactly what differences exist between them.

DSEE Concepts 1-7

Implementation Details

There are several aspects of the DSEE history manager's implemen
tation that are noteworthy. In this section we examine the following
aspects of the DSEE history manager:

• How historical information is stored

• How element versions are stored

• The integration of the history manager and the operating
system

• The history manager's ability to handle system failure

Storing Historical Information

The history manager stores all of the data concerning a library, in
cluding element histories and other control information, in a data
base associated with the library. The database is controlled by the
D3M database management system. This facility supplies the so
phisticated data structuring facilities needed to represent the data
concerning a library. Storing the information in a database also
guarantees that the history manager can recover if system problems
occur while the information is being updated. and ensures that
many users can access the information concurrently.

Storing Element Versions

Because DSEE is designed to support large systems over a long pe
riod of time. and on moderately sized disks, it stores only the incre
mental differences (known as deltas) between successive versions
of an element.

The use of deltas saves much space. Statistics on typical Pascal
modules managed by the history manager showed that each new
version makes the delta file about 1 % to 2% larger. In other words,
50 to 100 versions of a module can be stored in the same amount of
space as two plain text copies of that module.

1-8 DSEE Concepts

In addition to its use of deltas, the history manager saves space by
compressing leading blanks in source files to a single byte that con
tains a space count. Statistics on Pascal modules stored by the his
tory manager showed that 20% of each module consists of leading
blanks. The combination of storing deltas and compressing blank
spaces leads to an interesting phenomenon: an element maintained
by the history manager that has five to ten versions is often smaller
than a single text copy of that element.

The DSEE history manager uses interleaved deltas. In other
words, there is only one object containing all of the versions of the
element. Intermixed control records allow the history manager to
extract any version of the element in a single pass over the file.

History Manager Integration with the Operating System

The ability to construct any version in a single pass over the inter
leaved delta file (as discussed above) is critical to the history man
ager's management of DSEE objects. The file system offers ordi
nary, unmodified programs transparent access to any version of a
DSEE element via the Domain system's lOS streams facility. Per
formance studies showed that a program can read any version of a
typical DSEE element with less than 20% overhead relative to read
ing a plain text file.

Direct file system support is provided for the DSEE history man
ager. This enables the Display Manager, shells, and ordinary appli
cations (like compilers and text formatters) to read any version of a
source element directly from the library. No special step is needed
to copy the version into a plain text file. You can access element
versions from outside the DSEE environment in two ways:

• By specifying the particular version you want by line of de
scent and version number or by version name (called ex
tended version path names) .

• By using DSEE commands to establish a per-process ver
sion map that indicates that you want a particular version
of the element. (The DSEE configuration manager, which
we describe in the next section, relies upon this feature of
the history manager to build systems.)

DSEE Concepts 1-9

Element files, like all file system objects in the Domain system, are
stamped with an object type unique, identifier (a 64-bit type UID).
There are several predefined object type UIDs, including ascii_file,
object_file, bitmap, mailbox, and dsee_history_manager_file
(called casehm). For each object type there exists a corresponding
type manager implementing standard type operations on objects of
that type of file (for example, open, close, getJecord, put_record,
seek, etc). From the operating system, you can perform only read
operations on dsee_history_manager_file objects; updates to DSEE
elements can be performed only with DSEE commands.

When the Domain input/output subsystem receives a request to
open a stream on a system object, it allocates and initializes a file
descriptor and then alerts the appropriate type manager to com
plete the open operation. (The object's type UID determines the
appropriate type manager.) The dsee_history_manager_file stream
manager determines and records the desired version information in
the file-descriptor. As subsequent calls are made to obtain records
from the file, the DSEE type manager implements the appropriate
behavior, which includes applying deltas and determining the next
record in the desired version.

By default, the dsee_history_manager_file stream manager accesses
the most recent version on the main line of descent of an element.
However, you can use either of two procedures to access versions
other than the most recent on the main line of decent. One is to use
extended version pathnames which identify specific versions by line
of descent and version number (for example, //alpha/one/ps_lib/
ele_1.c/bugfix/[3]) or by version name (for example, //alpha/one/
ps_lib/ele_1.c/[srS]) in the pathname of the element file. Ex
tended version pathnames are supported by the Domain input/out
put subsystem and thus can be accessed by programs running out
side the DSEE environment.

The other way to access element versions other than the most re
cent on the main line of descent is to use DSEE commands to cre
ate a per-process version map that indicates that you want some al
ternate version of an element. Per-process version maps are in
herited by all child processes. (We discuss version maps, which are
created by the DSEE configuration manager, later in this chapter.)

1-10 DSEE Concepts

Recovering after Failures

The history manager coordinates updates to the library database
with updates to element files in such a way that a user-level opera
tion appears to be executed in one complete unit: it either suc
ceeds entirely or leaves no trace in the library.

In a distributed environment "partial" failures are more likely to
occur than in a local environment. For example, the node on
which your library is stored might fail while you are replacing an
element. The OSEE software provides reliable recovery for partial
failures. The database management system that the history man
ager employs uses journal files and semaphores to implement trans
actions.

Configuration Manager

Configuration management is an important aspect of a program
ming environment. However, different people have different ideas
of what configuration management is. Before describing the DSEE
configuration manager, we discuss the OSEE view of configuration
management and how it differs from other views.

After defining OSEE configuration management, we present the
configuration manager's components and their use, and some high
lights of the configuration manager's implementation.

What Is DSEE Configuration Management?

In general, software configuration management is thought of as
having three components:

• Source code modification control and tracking

• Product version identification

• System building

The OSEE history manager provides comprehensive source code
control, and the release manager oversees product version identifi
cation. The OSEE configuration manager's primary concern is sys
tem building.

DSEE Concepts 1-11

The DSEE concept of system building is the act of translating the
appropriate versions of the constituent elements. The configuration
manager relies on two things to build a system: a system model and
a configuration thread. A system model is a sort of blueprint of
the system's components, their interrelations, and their translation
rules. A configuration thread specifies which versions of elements
to use in the build.

This separation of version specification from component definition
is one of the DSEE configuration manager's distinguishing charac
teristics. The configuration manager builds programs from desired
element versions. When building a program with the configuration
manager, you specify only the desired element versions and transla
tor options; the blueprint of the constituent components needn't be
redefined for every build. The configuration manager finds the re
sults of previous builds that satisfy your specifications, executing the
appropriate translation rules to derive the remaining objects.

The configuration manager associates a record of the versions used
during the build with the derived objects (that is, the output of
translation rules) it produced. The configuration manager thus as
sumes responsibility for managing derived objects. The configura
tion manager can manage any type of derived object (object code,
listings, microcode, object code for other target machines, etc.).

The DSEE configuration manager is capable of building systems for
multiple target machines. It can distinguish between derived object
modules based on the versions of the sources that were used to
build them and the translator options used.

The DSEE configuration manager makes it possible to:

• A void the common error of building an inconsistent pro
gram by failing to rebuild components that were indirectly
affected by modifications to other elements

• Build different versions of a system without having to copy
versions of source files and derived objects

• Work simultaneously on development and maintenance
environments using common source libraries and a com
mon pool of derived objects

• Switch easily between development and maintenance ac
tivities

1-12 DSEE Concepts

•

•

•

•

•

•

•

•

Components

Establish concurrent and noninterfering multi-user debug
ging and testing environments

Create a permanent record of the element versions used in
a released configuration of a program

Use this permanent record to establish a process environ
ment for programs accessing DSEE elements

Repair bugs in a prior release while continuing develop
ment activities

Gain easy access to the source modules that make up a
particular system configuration and to precise documenta
tion about that configuration

Build systems configured with any desired versions of ele
ments managed by the history manager

Use multiple nodes to build system components concur- I
rently

Manage software projects in which several source modules
are used in multiple products by ensuring that all systems
requiring shared elements are built with the appropriate
versions of those elements

We have already introduced two of the components of the DSEE
configuration manager: system models and configuration threads.
In this section we explain both in greater detail and discuss three
other aspects of building a system: model threads. bound configu
ration threads, and binary pqols.

System Model

As we explained above. a system model is a kind of blueprint for a
system. In effect, the system model can be said to define the sys
tem. Thus, before you can build.a system, you must define its sys
tem model.

DSEE Concepts 1-13

Having a model of a system has several advantages. Describing, as
it does, the whole structure of a system, it serves as a reference on
the system for project members. It also frees individual members of
a project team from needing to remember all the details about the
structure of the project's software; they need only consult the
model for details. Finally, use of a uniform methodology of system
description (like that provided by system models) makes it easier
for engineers working on one project to understand the construc
tion of other projects' systems.

The system model gives a static description of the structure of the
system in terms of its buildable components, their constituent ele
ments, and their hierarchical relationships. The system model also
gives the translation rules to be used to produce the derived objects,
such as the object and listing files. Translation rules can include
translation options, which you can decide to use or not for any
given build of the system.

The system model is written in a block-structured system model
language. The block structure mirrors the hierarchical relationship
among buildable components and provides scoping for certain kinds
of declarations. The system model describes each component's de
pendencies (that is, the elements, files, and other components it
depends on; the source libraries it requires; and the translators it
requires). The model describes the necessary translation rules (the
compiler, binder, or formatter command lines DSEE must use to
derive, or build, the components). The dependency relationships in
the system model state the order in which DSEE must derive the
system's low-level and intermediate-level components.

Because the system model serves as a blueprint of your system, you
edit your model only when your system requires a structural
change.

Figure 1-2 demonstrates the hierarchical block structure of a sys
tem model. The brackets on the left-hand side of the text outline
the component blocks within the model. Note that some blocks are
nested within one another. This nesting results in the model's hier
archy. (This illustration does not present a working system model.
You can find several examples of system model source code in the
appendixes of this manual.)

1-14 DSEE Concepts

model c _compiler =

aggregate front_end =

element lexer. pas =

depends_source

token. ins. pas;

symbols.ins.pas;
end of lexer.pas;

[
eleme~~.~arser.pas =

end of parser. pas;

end of front_end;

aggregate back_end =

[eleme~~. ~Odegen. pas =

end of codegen.pas;

end of back_end;

end of c_compiler;

Figure 1-2. An Example of a System Model's Structure

The System Model Language

The system model language provides a syntax for describing the be
havior of translators. The translation rule for a component is es
sentially a stylized script of shell commands that contains the com
piler, binder, or formatter command lines needed to build the com
ponent. As a result, you can use any translator in a system model,
even a translator not supplied with the Domain system, provided
you use the proper system model syntax to express the translator's
behavior.

DSEE Concepts I-IS

The language has constructs for indicating where in a translation
rule the configuration manager should substitute the pathnames of
the relevant derived objects. Such embedded constructs are neces
sary for two reasons. First, only the configuration manager knows
the pathnames of derived objects, and even then only at build time.
Second, only you know where those pathnames should ultimately
appear in any shell script derived from the translation rule. (Re
member that the configuration manager has no special knowledge
of the translators used to build a system.) The language provides
similar constructs for indicating where translation options specified
by the user at build time should be substituted. Aside from these
embedded constructs, the configuration manager treats a transla
tion rule as uninterpreted text.

Here is an example of a translation rule. It shows the construct that
indicates where the configuration manager should substitute derived
object pathnames (%result) and the construct for specifying trans
lation options given at build time (%option). Another construct,
%source, indicates where in the translation rule the configuration
manager should substitute the name of the component being trans
lated.

translate
Icomlpas 'lI>source 'lI>option(-dbs) -b %result

%done;

As we indicate above. a system model describes two aspects of the
system in detail: how its components are translated, and how the
components relate to one another. The structure of the system is
indicated by the structure of the model, as described using the sys
tem model language. The system model language has syntax for de
scribing each system component's dependencies: the source files
and elements, the translation tools, and the other components on
which the individual component depends. The configuration man
ager uses this structure of dependencies to determine what derived
objects it needs to rederive at build time. A change to one of a
component's dependencies between otherwise identical builds
causes the configuration manager to rebuild the component and any
other system components that depend on it. (We discuss the con
figuration manager's build process in more detail later in this sec
tion.)

1-16 DSEE Concepts

The system model language allows declarations that are common to
a set of buildable components to be factored out. For example, if
every buildable subcomponent of component utilities depends on a
certain element (perhaps an include file), the system model can
state this succinctly with a declaration at the block level for utilities.
Placing the declaration at the block level for utilities defines the
scope of the declaration. The set of components to which a fac
tored declaration applies may be further restricted by a regular ex
pression for the component names. The regular expression is writ
ten just as it would be for use in any other Domain system operation
or application, using the same wildcards. Therefore, it is a simple
matter to specify a single translation rule to be used for every buil
dable component whose name ends with a certain extension (for
example •. pas or .c).

The system model language has a conditional compilation facility
that makes it possible to construct a system model that can be used
to build structurally variant configurations of the same system. This
feature is useful for such applications as systems that need to be
configured differently for different target machines. Conditional
compilation is controlled by switches that you supply when you set
your current system model.

Other system model language constructs enable you to modularize
your system model, breaking up the system model source code into
a root model, which represents the main body of the system model,
and model fragments, which are segments of system model source
code incorporated into the model when it is compiled. System
model modules can be maintained as DSEE elements and provided
with the same degree of version control as system model compo
nents through constructs known as model threads. Because model
threads share many characteristics with configuration threads, we
will discuss model threads and model modularity after we've ex
plained configuration threads.

Configuration Thread

The system model describes the structural aspects of the system. It
does not specify which versions to use for its constituent elements
during any given build. The configuration thread is a separate com
ponent that describes which versions of sources should be used to
build the system. The configuration manager uses the configuration
thread to bind a system model to a specific set of versions for your
builds.

DSEE Concepts 1-17

You write configuration threads using 11 high-level configuration
thread language. You don't have to (and typically won't) identify
the exact version that the configuration manager should use for
each and every element in the system. Thread syntax can indicate,
for example, that you want to build with the most recent version of
the main line of descent of every element in the system, with the
one line rule:

[]

Moreover, many configuration thread language constructs are un
bound to precise version specifications. Suppose, for example, you
have created a new version on the main line of descent of an ele
ment since you last used the configuration thread containing the
line in the example above. The configuration manager recognizes
that the new version is the most recent version of the element on
the main line of descent and uses that in the build rather than the
older version. You don't have to edit your thread for each build
(although you probably change your thread more often than you do
your system model). As a result of the high-level nature of the lan
guage, most configuration threads are only a few lines long.

A configuration thread consists of an ordered list of rules. Each rule
contains a predicate that identifies the elements to which it applies
and a specification of the version to use for those elements. The
predicate may stipulate that the rule applies only to the element
with a given name, or more generally to elements whose names
match a given regular expression. The version specifier may stipu
late that the rule applies only to elements that are currently re
served by the user from the history manager, or, alternatively, only
to elements having a branch with a given name. The version specifi
cation may be static (for example, one version specification might
tell the configuration manager "use version 42 of the element,"
or it might say "use the version named Release_9.0") or dynamic
(for example, rules that tell the configuration manager "use my
working copy of the reserved element" or "use the most recent
version of the element on the main line of descent").

The order in which rules appear in the configuration thread is sig
nificant. To determine which version to use for a given element,
the configuration manager selects the first rule whose predicate is
satisfied by the element. Configuration thread rules are therefore
usually listed in order of increasing generality of their predicates.

1-18 DSEE Concepts

Here are a couple of figurative examples of configuration threads to
illustrate the importance of order in configuration threads. Suppose
you are a developer working on the next release of a system. You
would typically want to use the most recent versions on the main
lines of descent of all elements. except that you would want to use
your working copies of any elements that you currently have re
served. Your configuration thread might state:

1. If I have the element reserved. then use my working copy.

2. Otherwise. use the most recent version of the element.

If you were working on a bug fix to a past release of the system. you
would probably also want to use your working copies of any ele
ments that you currently have reserved. However. instead of the
most recent versions of other elements. you would want to use the
same versions that went into the past release that you are fixing. un
less you had created a branch off of one or more of the elements in
order to fix the bug. In such a case you would want to use the
branch versions. Your configuration thread might state:

1. If I have the element reserved. then use my working copy.

2. If the element has a branch named Release_9.0_bug
fixes. then use the most recent version of that branch.

3. Otherwise. use the versions that were used in Release 9.0.

The last rule in the above example illustrates a useful capability of
the configuration thread language: you can specify that you want
the configuration manager to build your system using the same ele
ment versions used in an earlier release simply by referencing the
release by name. (Releases are created and named with the DSEE
release manager. discussed later in this chapter.)

DSEE Concepts 1-19

To simplify the discussion, we have assumed that a configuration
thread specifies, for each element used in the system, a single ver
sion to be used whenever the element is needed during a system
build. In fact, configuration threads may specify that different ver
sions of an element should be used in different contexts. For ex
ample, if buildable components set_grid. pas and init_design.pas
both depend on the element banner. ins. pas (an include file), the
configuration thread can specify that the configuration manager
should use one version of banner.ins.pas when building
set_grid. pas and a different version of banner.ins.pas when build
ing init_design.pas. This facility makes it possible to use a bug fix
version of an element in exactly those contexts that need the bug
fix, leaving the remaining contexts to use the element version that
doesn't contain the bug fix.

Figure 1-3 illustrates how two engineers can build entirely different
versions of the same system through configuration threads. Engi
neer A is using a thread that tells the configuration manager:

1. For the element color. pas, use the most recent version on
the main line of descent.

2. For every other element, use the version named V2.

Engineer B has element bit. pas's main line of descent reserved in
his working directory and is using a configuration thread that tells
the configuration manager:

1. For each element used in the system, if I have one of its
lines of descent reserved, use the version in my working
directory.

2. Otherwise, use the version named V2 of each element.

As Figure 1-3 shows, each engineer's builds use a different set of
element versions.

1-20 DSEE Concepts

9

color. pas construct. pas bit. pas

Figure 1-3. Pictorial Representation of Configuration Threads

We close this section by mentioning that configuration threads may
also specify translation options for some or aU buildable compo
nents. Thus. if you wanted to use a debugger option of a compiler
when building derived objects with all reserved source modules.
your configuration thread might include a rule that states "If the
component depends on a reserved element. compile with the -de
bug option."

Model Thread

In the same manner that you can fragment parts of your source
code into portions that are shared by several modules. you can frag
ment parts of your system model source and share the portions
among different systems. These system model fragments are re
ferred to in the root system model with %include directives.
When the configuration manager compiles your system model. it in
corporates the fragments in the compilation.

DSEE Concepts 1-21

Extracting certain parts of a system model into included fragments
not only lets you share parts of a system model among projects; it
also makes it easier to develop and maintain a system model. Just
as it's easier to debug and manage a program that is separated into
modules, it's easier to debug and manage a modularized system
model.

The DSEE environment gives you much the same control over
model fragments as it gives you over software modules. All portions
of a system model can (and should) be maintained as DSEE library
elements. When you compile your system model. the configuration
manager employs a model thread to identify the constituent ver
sions of model fragments to use in the compilation.

Since a model thread serves the same function in relation to a sys
tem model that a configuration thread does in relation to a system,
it's not surprising that model threads and configuration threads are
much alike. The model thread language for version specification is
nearly identical to the configuration thread language for version
specification. In general, the languages differ in those characteris
tics unique to their respective uses.

In addition to specifying versions, model threads can also identify
variables for conditional processing of the system model during
compilation. These "target" variables (named for the model thread
rules in which they appear) tell the system model which parts of the
model to compile, and which to ignore. during a given compilation.

Bound Configuration Thread

Configuration threads rarely specify explicit versions for every ele
ment in the system. Instead. they contain dynamic references to
versions like "the most recent version on the main line of descent. "
The configuration manager must evaluate the configuration thread
at build time in order to determine, for each element in the system,
which version to use. This "binding" of an element to a version at
build time is stored in a bound configuration thread. or BCT. A
BCT reflects the hierarchical nature of a system model, since your
build may call for different versions of the same element in differ
ent contexts.

1-22 DSEE Concepts

In addition to specifying explicit versions for all elements in the sys
tem, a BCT also specifies translation rules for each of its buildable
components, including any translation options called for by the
configuration thread. Model versioning information is part of the I
BCT, too; this and conditional compilation information (also in
cluded in the BCT) are derived from the model thread. A BeT is
thus a complete specification for building a configuration of a sys
tem.

The BCT serves as a valuable record of what went into such a con
figuration. As we shall see later, the configuration manager exam
ines existing BCTs to determine whether it needs to rebuild compo
nents during a build. Comparing the BCTs of two configurations
tells you how built systems differ from one another. You can also
refer to BCTs to see exactly which source versions and build op
tions were used to create particular builds. This is helpful when
you're debugging a system.

Binary Pools

The configuration manager places all the products of a system build
(BCTs and derived objects) in binary pools. Each system has one
or more binary pools associated with it.

An optional specification recognized by the system model language
tells the configuration manager where you want it to store a compo
nent's derived objects. Each system has one default pool associ
ated with it. However, you can, if you wish, define and use any
number of other binary pools in addition to, or instead of, the de
fault pool.

Different systems can share the same binary pools. For example,
the system for a Pascal compiler might use two pools, one to hold
the derived objects for its front-end components and another to
hold the derived objects for its back-end components. The
same back-end pool might also be used by the system for a C com
piler, assuming that the two compilers have a common back-end.

DSEE Concepts 1-23

In order to reuse derived objects produced by earlier builds, the
configuration manager must be able to tell what versions and trans
lation options were used to produce each derived object. One ap
proach to solving this problem would be to store such version and
option information in the derived objects themselves. This, how
ever, would require special cooperation between the configuration
manager and the translators, and would therefore effectively restrict
use of the configuration manager to translators supplied with the
Domain system. For this reason the configuration manager associ
ates with each derived object a BeT. As we pointed out above, the
BeT provides an exact specification of the versions and translation
options that were used to produce the derived object.

At any given time the binary pool may contain several sets of BeTs
and associated derived objects for the same buildable component.
This occurs when developers build different configurations of the
system, as our developers A and B did in Figure 1-3. Because A
and B are building the same system, they share the system's pools.
By sharing the pools, they build only those derived objects that
have unique configurations (like A's use of color. pas and B's use
of bit. pas) and share the derived objects that are identical for each
configuration. (In our example, this would be the derived objects
produced by translating element construct. pas.)

The configuration manager deletes derived objects from the pool as
they fall into disuse, in accordance with a user-specified limit on
the number of derived objects per component the pool can hold. If
inserting a new derived object for a given component would exceed
this per-component limit, the configuration manager first deletes
another of the component's derived objects, using a least-recently
used replacement algorithm. Should the deleted derived object be
needed again in the future. the configuration manager can rederive
it from its constituent element versions, which are always available
from the history manager.

In addition to identifying a limit on the number of derived objects
per component that a pool can hold. you also specify a minimum
age for deleted derived objects. This ensures that the configuration
manager will not delete a derived object unless it has resided in the
pool for more than a given period (for example, 24 hours).

1-24 DSEE Concepts

Figure 1-4 illustrates the concept of a binary pool.

c:::J component

D derived object

Figure 1-4. A Binary Pool

o BCT o binary pool

Derived objects built from working copies of reserved elements are
typically not of interest to anyone but the user who has those ele
ments reserved, so it makes little sense. taplace them in a central
pool devoted to sharing. Moreover, such derived objects cease to
be of interest even to the user who built them as soon as he or she
edits the working copies and builds new derived objects. Therefore,
such derived objects ought to be deleted more quickly than derived
objects in the central pool would be. For these reasons the configu
ration manager provides each user with a reserved pool, into which
it places all derived objects of co;mponents that depend on one or
more reserved elements (and, iIi turn, the derived objects of any

DSEE Concepts 1-25

components that depend on them). By default, a reserved pool has
a limit of one on the number of derived objects it can hold that are
produced by translating one component. Therefore, every time a
new derived object is inserted into the reserved pool it replaces any
existing derived object for the same component (if the age limit of
the pool has been reached).

The configuration manager controls the derived objects in binary
pools. If you want to access one or more derived objects, you can
export copies of, or links to, the derived objects.

Using the Configuration Manager

In this section we discuss how the components of the configuration
manager interact during the building process as well as several as
pects of the building process that you can control for optimal per
formance.

The Build Process

Once you have selected a current system model and a current con
figuration thread, you can issue a command to build all or part of
the system. When you do, the configuration manager first evaluates
your configuration thread in order to determine which element ver
sions and translation options to use. Any dynamic configuration
thread references (like "use the most recent version on the main
line of descent") are resolved to specific versions. The result is the
desired BeT. The desired BeT specifies version and translation
rules for the component being built, its subcomponents, their sub
components, and so on.

The configuration manager checks the desired BeT against the
BeTs in the system's binary pools to see whether there are any de
rived objects that it can reuse for your current build. The configu
ration manager reuses the derived objects whose BeTs match com
ponents of the desired BeT, then builds the remaining components
in accordance with your desired BeT.

1-26 DSEE Concepts

Notice that in the preceding discussion the configuration manager
determines what needs to be built based on desired versions; no
mention is made of elements having changed. The configuration
manager does not build something because some element or work
ing copy has changed, but only because the desired BCT calls for a
derived object that does not currently exist in the pool. This behav
ior enables the configuration manager to support multiple concur
rent configurations while sharing sources and denved objects when
ever possible.

There are two common reasons that the configuration manager
can't find an existing BCT to match all or part of the desired BCT.
The first is that you have just created a version of some element for
which your configuration thread requests the most recent version.
The second is that you have edited your working copy of a reserved
element called for in your configuration thread. However, the con
figuration manager does not distinguish these cases of changing the
targets of dynamic references from any other case (for example,
when you are trying to rebuild an old configuration whose original
derived objects have dropped out of the pool due to old age).

Once the configuration manager determines that it needs to build a
component it performs three steps. Figure 1-5 illustrates the proc
ess.

First, it forms an actual translation rule. This involves substituting
into the translation rule template (declared in the system model)
any pathnames of derived objects, such as those for subcom
ponents, pathnames of source elements being used and any transla
tion options you request. The actual translation rule is a script that
builds the component.

Second, the configuration manager creates a new process and es
tablishes a process context in which the desired element versions
are automatically retrieved whenever elements are read by pro
grams executing in that process. This is accomplished by setting up
a process-specific version map in accordance with the desired BCT.
The configuration manager cooperates with the lOS streams facility
to construct the version map. Because there is direct operating sys
tem support for process version maps, they function with any trans
lator (including translators not supplied with the Domain system)
that runs on the Domain system (provided the translator uses the
Domain system lOS streams facility to read files or the built-in lan
guage input/output facilities of C, FORTRAN or Pascal).

DSEE Concepts 1-27

System Model

model c _complier =
element lexer. pas =
depends source

x.lns.pas;
y.lns.pas;

Desired
BCT

lexer.pas lexp(3)
x.lns.pas (21)
y.lns.pas (17)
-debug

+

Configuration Thread

use reserved versions

If element has lexp
branch. use most recent
on that branch and the
-debug opt.

use versions named[rev2)

lexer.pas lexp(3)
x.lns.pas (21)

1-----4INI y.lns.pas (17)

o derived
object o library

O binary
pool

EJ BCT

Figure 1-5. Overview of the Building Process

1-28 DSEE Concepts

Third, the configuration manager invokes the actual translation rule
in the specially prepared process environment. If the translation
succeeds, as indicated by the exit status of the shell executing the
actual translation rule script, the configuration manager places the
BeT in the binary pool and associates it with the derived objects
just produced. If the translation fails the configuration manager
cleans up any partially built items and aborts the build. When a
build fails, the configuration manager continues to build other com
ponents that do not depend on the component that failed. This
might mean that the modules of a program that have no compila
tion errors are built, but the whole program is not bound together if
any module fails to compile.

Parallel Building

By default, the node at which you invoke a build is the same one
that performs the build. However, you have the option of choosing
another node to build your system. Even more significantly, you
can choose to have your system built by many different nodes;
when possible, the- builder nodes can execute your component
builds in parallel.

Parallel building on many nodes significantly reduces the time re
quired to build a system. You can expect a parallel build of your
system to be three to ten times faster than a serial build. (The de
gree of parallelism in your system influences the speed of a parallel
build versus a serial build. The degree of parallelism inherent in
your model-that is. the degree to which component builds are in
dependent of one another-is a major determinant of your system's
degree of parallelism. Another determinant is the length of your
translations. Longer translations provide more time for builds to be
started in parallel.)

Parallel building also maXImIzes use of network computing re
sources. In most networks, many nodes are more than 90% idle at
any given time. Their users are either not using the nodes at the
moment or are performing tasks that are not resource intensive,
such as editing. Parallel building takes advantage of this idleness by
putting nodes to work building system components. Foreground us
ers of the nodes rarely notice any disturbance. (We will discuss this
concept in more detail later in this section.)

DSEE Concepts 1-29

To build your system in parallel, you must first identify a list of can
didate builder nodes. This list can contain the names of as many as
1000 nodes. At the same time that you provide your list of builder
candidates, you identify the degree of parallelism (up to 20 simulta
neous builds) that you want to achieve.

When you subsequently initiate a build, the configuration manager
constructs a partial ordering of the components that need to be
built. This partial ordering specifies which builds can be performed
in parallel and which builds can't be started until other builds are
completed.

The next step is for the configuration manager to form a translation
script for the first component from the partial ordering. The con
figuration manager then examines the nodes on your list of builder
candidates and determines which node to use for the component
build based on idle time percentage-that is, the ratio of unused
compute cycles to total compute cycles-over the last minute or so.
Next the configuration manager creates a new process on the build
server with a version map that causes translators to transparently
read the desired versions of source elements. The translation
script is then executed in the new process, and its output is accumu
lated in a temporary file. (This output is accumulated before being
displayed in the output window to avoid confusing you. Otherwise,
translator messages issued during simultaneous builds would be in
terleaved in the output window, making them hard to sort out.)

Once the build is started, the configuration manager goes on to the
next component from the partial ordering. If it can be built in par
allel with the first build, the configuration manager repeats the
process. If the next component depends on a build in progress, the
configuration manager waits to submit the new build until the other
build completes.

During build execution, the configuration manager shows you the
accumulated output of translation rules and configuration manager
messages about invoking and completing builds. The configuration
manager also shows you the current status of the distributed build:
how many component builds are required, how many have com
pleted successfully, how many have failed, and how many are being
executed at the moment. This information is updated continuously
throughout the build.

1-30 DSEE Concepts

If a builder node crashes during a parallel build, the configuration
manager treats the situation like any failed build: it deletes any par
tial results from the binary pool and does not build any other com
ponents that depend on the unbuilt component.

When many nodes are executing translation rules, a primary con
cern is that pathname resolution is consistent: for example, you
probably want the same version of a C compiler to be compiling all
of your C source code. Rather than forcing you to incur the over
head of maintaining a consistent set of sources and tools on every
build server candidate, the configuration manager uses a reference
node, or common local file system root, that you choose, to resolve
relative pathnames. Use of the reference node ensures that, no
matter which node is performing a particular build, such references
as Ibin/cc and lusr/include in the translation rule will always be re
solved to a single, specific location.

Another important issue in parallel building involves node choice.
The configuration manager selects builder nodes on the basis of
their relative idleness: nodes that are more idle than others are se
lected first. However, nodes that are relatively idle when you initi
ate your build may become active later during the build.

The configuration manager avoids the problem of sending builds to
active nodes (and thereby inconveniencing other users of the net
work) by keeping statistics about the idle time percentage of each
candidate builder throughout the build. If a builder node becomes
busy with another resource-intensive process during a build, the
configuration manager will not submit another build to the node af
ter the current build is completed. (The impact of the build on the
other process running on that node is minimal, typically lasting less
than a minute.) If a once-busy node becomes idle during the build
process, the configuration manager realizes this and considers the
node a good candidate for upcoming builds.

Promoting Derived Objects

In our discussion of binary pools, we mentioned that the configura
tion manager creates a binary pool, called the reserved pool, to
hold the results of building components that depend on elements
that you have reserved. Placing the derived objects of elements un
der development in the reserved pool ensures that these derived
objects don't compete for system pool space with derived objects
that need to be shared.

DSEE Concepts 1-31

When you finish testing your changes to the elements that you have
reserved, you don't want to have to rebuild the components that
depend on them after you replace the elements' lines of descent.
Therefore, the configuration manager promotes the derived objects
and BeTs associated with an element you replace from the reserved
pool into the appropriate system pool when you issue the replace
command. The configuration manager updates the version descrip
tions in the associated BCTs to refer to the new version of the ele
ment in the library.

The configuration manager promotes a derived object from the re
served pool only if you've replaced all of the reserved lines of de
scent used to construct that derived object.

Avoiding Unnecessary Rebuilds

In a large system an element may be listed as a dependency for
hundreds of components. For example, an include file that con
tains global declarations may be needed by most of the source mod
ules in the. system. Changes to such an element would normally
cause the configuration manager to rebuild most of the system's
components if the configuration thread calls for the most recent
version of the element. This is frequently unnecessary because the
changes ar~ such that only a few components are affected. Addi
tions of new declarations to an include file like the one mentioned
above, for example, may affect only a few components that depend
on the file.

When testing your changes in such a situation, you wouldn't want
the configuration manager to rebuild every component of the sys
tem. That would take time and machine resources. Instead, you'd
want the configuration manager to rebuild only those components
that you know are affected by your changes. and to reuse existing
derived objects that you know are equivalent for the unaffected
components.

The configuration manager allows you to declare equivalences for
components that it would otherwise build. The configuration man
ager interprets your declared equivalences to mean that, for certain
components, derived objects built from the new element version are
interchangeable with ones built from another version.

1-32 DSEE Concepts

You can specify that an equivalence is in effect for either the dura
tion of your current build or until the equivalent derived objects are
purged from their binary pool. Equivalences in effect only for the
current build are called overrides.

The configuration manager stores long-term equivalences in the bi
nary pool as BeTs that have no derived objects of their own but re
fer to the derived objects associated with other BeTs. When you
build the system, the configuration manager treats the equivalent
BeT like any other BeT in the pool. If it matches all or part of the
desired BeT, the configuration manager reuses the derived object
to which it refers. Storing equivalences in the pool makes them
available to other users, too, who may not be in a position to deter
mine which components were affected by your changes. You can
request that the configuration manager ignore existing equivalences
for a particular build.

Figure 1-6 shows how an equivalent BeT stored in a binary pool
can point to another BeT's associated derived objects.

Ordinary BCT Equivalent BCT

Figure 1-6. Pictorial Representation of an Equivalence

DSEE Concepts 1-33

,
iii

The configuration manager provides another way to avoid unneces- !II

sary builds: by declaring noncritical dependencies. This capability ,;I

is provided by the system model language. It allows you to state
that, for almost all cases, the configuration manager shouldn't re-
build a component simply because the element listed as a noncriti-
cal dependency of the component has changed. If, while checking
a desired BeT against the BeTs in the system pool, the configura-
tion manager finds one that matches the component's desired BeT
in all respects except for the specification of the noncritical depend-
ency, the configuration manager uses the derived objects associated
with the closely matching BeT rather than rebuilding the compo-
nent.

Your development team might declare dependencies on global in
clude files to be noncritical, since you would not normally want the
configuration manager to rebuild all components when you add new
declarations to the include files. Usually, you have to change the
source modules that are affected by new declarations in the global
include files anyway, so that these modules use the new declara
tions. When you build your system, the only desired BeTs that dif
fer from existing BeTs by more than the change to the noncritical
dependency are the ones involving modules affected by the include
files' changes.

Implementation Details

The DSEE configuration manager is a sophisticated and complex
facility. It provides virtually comprehensive control over system
builds.

At first glance, it might seem that the configuration manager must
be very slow if it is providing all of the control described in this sec
tion. However, we have implemented several optimizations in the
manager to ensure that the capabilities it provides do not come at
too high a cost of speed.

The most important optimizations we incorporated in the configura
tion manager's design are based on the rate and magnitude of
change in your configurations from build to build. The configura
tion manager stores your last desired BeT because, under most cir
cumstances, each successive build you do differs from your last
build by only a few factors. Each time you do a build, the configu
ration manager reuses those parts of your last desired BeT that are
appropriate to the current build.

1-34 DSEE Concepts

Also, because you're likely to do many consecutive builds using the
same lines of descent, the configuration manager keeps track of
what the most recent versions are on those lines of descent. As a
consequence, the configuration manager doesn't have to spend a
lot of time during each build resolving "use most recent" specifica
tions in your configuration thread.

Release Manager

Most of the builds you perform during the normal course of devel
opment produce derived objects that are of short-lived utility. They
quickly become unused as new element versions are created, and
they and their BeTs eventually disappear from the binary pool.

The situation is very different when you build a system to release
for distribution. In this case, you want to have permanent copies of
some or all of the derived objects and a permanent record of the
element versions and translation rules used to build them.

The DSEE release manager stores derived objects that you want to
release, along with their associated BeTs. Using the release man
ager, you can preserve all or part of a build and keep copies of the
system's dependencies.

Integration of the configuration and release managers means that
you can, in your configuration thread, refer the configuration man
ager to the BeT of a released build for version and option specifica
tions. This is very useful when you are doing maintenance to a re
leased system, or when you simply need to rebuild a released sys
tem.

Components

The sole component of the release manager is the release area, a
directory that the release manager creates, at your request, to store
a build. A release area has two subdirectories: one to hold the de
rived objects and BeTs of each built component of build you are
releasing, and one to hold source copies of the dependencies you
want to retain.

DSEE Concepts 1-35

When we discussed the configuration manager above, we noted that
you cannot access derived objects directly unless you export them.
The configuration manager manipulates the objects for you. How
ever, when you release a build, you can access its derived objects.
The release manager copies them into the release area and uses
component names to name them.

U sing the Release Manager

As mentioned, the release manager creates a release area at your
request, structuring the subdirectory tree structures and placing de
rived objects, BCTs, and dependencies in the appropriate directo
ries. You can later add to the release and examine the release's
contents.

We have already discussed the primary uses of releases. The prin
cipal use is as distribution-ready software. Another important use
of a release is as a reference in later builds.

When we explained configuration threads, we noted that you can
refer to the BCT of a previous build in your configuration thread.
Such a configuration thread rule (known as a build-ID-based
rule) can refer to a build in a release area. This is particularly
helpful when you are fixing bugs in a prior release. You can struc
ture your thread to give you builds that use exactly the same ele
ment versions and translation options that went into a released
build for all the components of the system that don't require
changes simply by referring to the name of the released build.

Task Manager

The DSEE history manager provides a convenient way to record
descriptions of the modifications to an element when a new version
is created. In large systems, however, there are few modifications
that affect only a single element; most significant enhancements
and many bug fixes require changes to several elements. It is desir
able to have a mechanism for remembering all of the modifications
that were performed as part of one higher-level task.

1-36 DSEE Concepts

Many, but not all, of the steps taken to accomplish a task modify
elements. For instance, adding an enhancement to a system may
also require updating the system's design specification, user man
ual, and online help files, in addition to changing the program code
stored as elements. Some steps may involve offline activities, such
as giving a talk about the enhancement, constructing floppies for
the enhanced system, and telephoning customers. In short, the soft
ware development process involves much more than just program
ming. Therefore, a practical software development environment
should support more than just programming.

The DSEE task manager provides a way to plan and track the low
level steps involved in some high-level activity. The task manager
can maintain a record of these changes automatically, making it
easy to determine at a later time exactly what was done as part of
the task.

Components

The task manager has three components, which we define and dis
cuss in this section:

• Tasks

• Tasklists

• Forms

Tasks

A DSEE task is a structure used to plan and record the low-level
steps involved in a high-level activity. A task consists of a user-sup
plied title, which describes the high-level activity, a list of active
items. and a list of completed items (also known as the task tran
script).

Active items represent anticipated steps that are yet to be taken.
Together, these steps form a plan of action. Completed items rep
resent steps that have been taken. Many completed items are for
mer active items that you have checked off (marked as completed).
The history manager also signals the task manager to add com
pleted items to the task transcript automatically. as we discuss in the
section entitled "The Task Manager and the History Manager."

DSEE Concepts 1-37

TaskIists

DSEE tasklists contain references to tasks. A tasklist serves as a list
of high-level activities that need to be done. Each user has a per
sonal tasklist. Additionally, each library contains two tasklists-one
for active tasks and one used mainly for completed tasks. (The lat
ter tasklist is called the library's master tasklist.) You can also
create any number of additional tasklists.

Several tasklists can refer to the same task, since several people
might be involved in the completion of one task. In this case, each
user sees items completed by other users immediately, since
tasklists contain references to tasks, rather than tasks. You can add
task references to other users' tasklists, subject to access control
considerations (discussed later in this chapter under "Security and
Protection") .

Forms

The task manager lets you develop and use standard task forms.
Once you have written a form, you can use it to create new tasks,
editing the text as appropriate for each specific task. A form out
lines a series of steps that you must perform for a certain type of
task that you do frequently. For example, you may find that you
are executing the same sequence of procedures for each bug fix. If
so, you might create a form that lists these steps. You can use this
form as a basis for each distinct bug fix task that you have.

You can create a form from scratch, or you can use an existing task
as a foundation for a form.

U sing the Task Manager

The task manager automates a large part of your use of tasks and
tasklists. It works with the history manager, so that task steps that
involve element modifications can be recorded as completed items
automatically.

1-38 DSEE Concepts

Because accomplishing a task can involve more than just modifying
elements, you can't rely on the task manager to keep them up to
date automatically. Some things you will probably want to do your
self. The task manager provides the facilities you need to manipu
late tasks and tasklists. You create and modify tasks yourself with
the task editor, and you add and remove tasks from tasklists using
DSEE commands.

The Task Manager and the History Manager

The history and task managers work in close communication with
one another. In particular, when you replace a line of descent of
an element, the replacement operation affects the text of your cur
rent task, and the current task affects the information recorded in
the element's library's history database.

The task manager adds a completed item to the task whenever you
replace an element's line of descent in any library. Like the entry
that the history manager makes in the library's history database
when a line of descent is replaced, the completed item contains
your name and network location, the date and time, the name of
the element that you replaced and the version that was created, and
your description of the change. (Several users can have the same
current task simultaneously. In this case, the task transcript reflects
the activity of all such users.)

When you replace a line of descent, the history manager includes
the name of the current task in the record it makes in the library's
database as a result of the operation.

Creating and Modifying Tasks

You can create tasks in two ways: you can create them from exist
ing forms, and you can create them with the task editor. Once you
have created a task, you can modify it using the task editor.

You create a task from a form by adding an option to the create
task command. You specify, as an argument to the command op
tion, the form you want the task manager to use as a boilerplate for
the one you're creating.

DSEE Concepts 1-39

The task editor is an interactive, menu-based editor that you in
voke with OSEE commands. With it, you can create or modify a
task title, add, change or delete active items, assign active items to
particular people, change the priorities of active items, and move
active items to the completed items list. (This last procedure is
called checking off an item.)

Using Tasklists

Tasklists are ordered lists of tasks to complete. They serve as the
mechanism by which you refer to specific tasks. To set, edit, or de
lete a task, you refer to it by its number in your current tasklist.

Each time you create a task, the task manager asks you on which of
several tasklists you want the new task recorded. Later, you can
add the task to other tasklists: your own, or someone else's, as long
as your access rights permit it. (See the section on the OSEE pro
tection mechanism for more information on access rights.) For ex
ample, you might want to add a reference to a task that appears on
a tasklist of open bugs for an upcoming release to your own per
sonal tasklist, too, since you are responsible for fixing that particu
lar bug.

While you are working, you can examine tasklists to see which tasks
you still need to perform. When you finish your part of a task, you
remove the reference to the task from your tasklist. When no
tasklists refer to a task and all of its active items have been com
pleted and checked off, the task is completed. The master tasklist
that contained a reference to that task, however, keeps the task re
cord. This reference serves as a historical reference of the task.

Implementation Details

Because you use OSEE software in a distributed environment, we
gave close attention to the implementation of task and tasklist op
erations that may involve more than one node in the workstation
network. For example, if you create a new version of an element,
the event is recorded in the task transcript of your current task.
However, the library where the history manager creates the new
version may be on a different node than the library where the task
is stored. This could present a problem if the network is partitioned
when the new version is created: specifically, how is the task tran
script updated?

1-40 DSEE Concepts

The task manager uses a reliable (store-and-forward) message
passing utility to guarantee that the update occurs. There is a delay
between the creation of the new version and updating the task tran
script if the network is partitioned. Otherwise, the update occurs
immediately.

The store-and-forward mechanism is used similarly in other opera
tions that access objects on different nodes in the network. Besides
providing reliable delivery of messages to other nodes on the net
work, the store-and-forward utility provides the capability for
sending messages across inter-network gateways. Therefore, the
DSEE architecture allows the same task to be referred to by users
on more than one local network.

Monitor Manager

As we mentioned earlier, the DSEE configuration manager moni
tors system include dependencies and detects when parts of the sys
tem need to be rebuilt. These are syntactic dependencies, so
named because the syntax that outlines the structure of the· system
defines the dependencies.

There is. another type of dependency tracking, however, that is not
addressed by the configuration manager. This type of dependency
is more people-oriented than build-oriented. .It involves letting
people know what's happening to source code and text in which
they have an interest. Such dependencies are called semantic de
pendencies.

A good example of a semantic dependency arises in the interface
between a development team and the technical writers supporting
them. The writers need to know when functional specifications and
design notes change so that they can keep on top of the developing
product. Unfortunately, when changes are most critical, engineers
are at their busiest. Under these circumstances, it's likely that they
will occasionally forget to let writers know about design changes.

DSEE Concepts 1-41

As a second example of a semantic dependency, suppose you write
a module that depends on functions in another module, but this de
pendency isn't reflected by the system structure. It's not only use
ful for you to know when the module you depend on changes, it's
also worth notifying anyone who wants to change that module that
the changes might impact your work.

The OSEE monitor manager notifies users when particular elements
are changed. It also lets users know when elements they are modi
fying might affect others. The monitor manager works in concert
with the task manager and the operating system to provide a flexible
means of communication.

Components

The sole component of the monitor manager is a monitor. A moni
tor watches elements and lets users know when the elements are
modified. Activating a monitor can also trigger execution of a list
of shell commands.

A monitor consists of a title that describes its purpose, a list of the
elements that it monitors, a task template to be instantiated (that
is, copied as an instance of a task) when the monitor is activated, a
list of the tasklists to which the instantiated task should be added,
and a list of the shell commands that should be executed. However,
monitors needn't instantiate tasks; you might, for example, create a
monitor that simply sends mail to you or another user whenever it is
activated. (This is useful when you want to notify someone who
doesn't use OSEE facilities of a change to an element.)

U sing the Monitor Manager

For the most part, you work with monitors in two ways: you create
them, and you activate them. We discuss each separately.

1-42 DSEE Concepts

Creating a Monitor

When you create a monitor, you specify the following:

• Which elements you want to monitor

• Who you want to activate the monitor

• What you want to happen when someone activates the
monitor

The following paragraphs discuss these specifications.

The elements that you want a monitor to watch are called the tar
get elements of the monitor. Target elements of a monitor all re
side in the same library. You can use regular expressions and
wildcards in your list of target elements. This not only allows you to
monitor a group of elements in one library easily; it also ensures
that any element created in that library in the future whose name
matches your regular expression will be monitored.

When you create a monitor, you can specify that it can be activated
only when you replace a line of descent of a target element. Alter
natively, you can specify that the monitor can be activated only
when someone else replaces a line of descent of a target element.
If, for example, you want to set a monitor on an element to watch
for access by other users, but you also access the element frequently
yourself, you would want to specify that the monitor is only acti
vated when someone other than you reserves one of the element's
lines of descent.

Specifying what you want to happen when someone activates your
monitor is a matter of describing the task template (if any) that you
want instantiated when the monitor is activated and the tasklists the
new task is to appear on, and/or writing shell commands that you
want executed when the monitor is activated. Task templates are
quite similar to task manager components like forms and tasks.
Shell commands are passed directly to the shell. Therefore, you
can use conventional shell command syntax (including regular ex
pressions and wildcards) when composing them.

DSEE Concepts 1-43

Shell commands can also contain activation strings, which serve as
substitution arguments. The monitor manager defines unique acti
vation strings for such items as the name of the element whose use
triggered the monitor, the name of the user triggering the monitor,
and the number of the new element version created. When your
monitor is activated, the monitor manager replaces any activation
strings with the accurate information.

Activating a Monitor

When you reserve a line of descent of a monitored element, the
monitor manager informs you that the element is monitored and
shows you the description of the dependency that the person who
set the monitor is trying to track. This ensures that you don't mod
ify the element without first considering the dependency.

When you replace a line of descent of a monitored element, you
activate its monitor. This causes the task manager to create a new
task using the template (if any) that the person who set the monitor
created. The task manager adds a reference to this new task to
every tasklist listed in the monitor. The OSEE tasklist alarm server
can send notification to personal tasklist owners notifying them that
the task manager has added a new task to their tasklist.

When someone activates a monitor, the monitor manager passes
any shell commands in the monitor on to the shell. As mentioned,
the monitor manager first replaces all activation strings with the ap
propriate information (for example, the name of the person who
triggered the monitor). The shell then executes the commands as it
would any other command.

Implementation Details

As with certain task manager operations, monitor activation can in
volve accessing objects on different nodes in the network. Network
partitioning may cause some of the nodes to be temporarily inacces
sible. The store-and-forward message passing utility (which we de
scribed in the "Implementation Details" section of the discussion
on the task manager) handles this complication gracefully, allowing
monitor activation to work across network partitions. When the net
work is no longer partitioned, the store-and-forward mechanism
ensures that the monitor messages arrive at the correct destinations.

1-44 DSEE Concepts

Integration of the Managers

In the discussion of each manager, we note how it interacts with
other managers to provide you with a comprehensive work environ
ment. If you tum back to Figure I-I, you can see the lines of com
munication between the managers again. Now that you know more
about each manager's components and behavior, you'll appreciate
the integration depicted by Figure 1-1 more.

Figures 1-7a and 1-7b show the DSEE environment's integration
from a more detailed level. In them, you can see how each manag
er's components interface with other components.

The library code_lib shown in Figure 1-7a contains the elements la
beled bar.c; cxt.c. and dtty.c. (Element cxt.c has a branch line of
descent.) All version and branch activity is recorded in the library
history database). Monitor creation is also recorded in the data
base, as shown by the arrow from one ofthe two monitors that the
library owns. Monitors can add new task references to tasklists, as
the arrow between one of. the monitors and the personal tasklist
show. The current task is also part of the tasklist. Arrows between
the task and the database demonstrate the passing of information
between the two: when an element is replaced, the history data
base records it in the current task's transcript and records the name
of the current task in its own record of the replace operation.

DSEE Concepts 1-45

monitor on element
in another library

~
Library History I

Database.

element
bar.c

cxt.c

Current
Task

Title: SR20
Created:
Creator:

Active Item

-- .. _ .. --_. -_ -- .. -. --_. ----.. _ -_ --.... .. -_ .. .

Figure 1-7a. Interaction oj DSEE Components

1-46 DSEE Concepts

System
Model

element versions.
(binding of thread)

OJ
Version Map

cc dtty. c -nl
cc cxt.c -db
bind dtty. bin

Actual
Translation

Rule

+

Configuration
Thread

read
element
versions -+---16-+

Domain File
Management

Translator

Release Area

Figure 1-7b. Interaction of DSEE Components

Figure 1-7b depicts components of the configuration manager and
the release manager. When you build a system, the configuration
manager uses the system model and the configuration thread to cre
ate the desired BCT. Element version specifications in the configu
ration thread are resolved in the binding process. The configuration
manager looks in the binary pool for existing BCTs to satisfy all or
part of the build.

DSEE Concepts 1-47

From the desired BCT the configuration manager creates a version
map and the actual translation rule. The version map communi
cates with the OSEE type manager. which then reads the appropri
ate versions of elements and passes them along to the translators in
voked by the actual translation rule (note that the translators are
not OSEE objects). The BCTs and derived objects go into the bi
nary pool. When you release a build. the release manager creates a
release area and places BCTs and derived objects in it as files.

Security and Protection

The OSEE environment uses a protection mechanism based on 00-
main system access control lists (ACLs) to ensure that OSEE ob
jects (for example. libraries and tasklists) are secure and are acces
sible only by users with the appropriate access rights. The OSEE
protection mechanism defines four classes of users.

• Non-users. who are denied access to OSEE objects

• Readers. who can read protected objects and/or their
contents but cannot modify them

• Members. who can modify protected objects and/or their
contents but cannot delete them

• Administrators. who have full access rights to all OSEE
objects

The OSEE software creates this buffer between you and the 00-
main ACLs that protect OSEE elements. libraries. and other ob
jects to simplify protection for you. The implementation of a OSEE
environment is a much more complex structure than you actually
see. Therefore. you would find it very difficult (if not impossible)
to protect all of the files and directories that OSEE facilities use
consistently and correctly (that is. setting ACLs appropriately for
each directory and file in the structure). The OSEE protection
mechanism automates this procedure.

1-48 DSEE Concepts

To protect a OSEE object (for example, a library), you identify us
ers or groups of users with subject identifiers (SIOs), as you would
when creating or changing a Oomain system ACL. However, in
stead of dictating the specific types of acc.ess each user has, you as
sociate with each SIO a OSEE protection user class (one of the four
categories listed above). This causes the OSEE protection facility
to protect all the elements in the library consistently.

The OSEE protection mechanism prevents people who don't use
OSEE facilities from accessing OSEE objects, and prevents readers
from modifying OSEE objects, either intentionally or accidentally.
In addition, it prevents project members and administrators from
accidentally deleting elements that they did not intend to delete.

Customizing the DSEE Environment

While the OSEE command interface provides you with commands
to execute all OSEE facilities, there may be situations in which you
want to tailor the interface, or to change it altogether. You can
customize your OSEE environment by:

• Writing command files that perform mUltiple OSEE com
mands

• Using .the programmable interface to the OSEE environ
ment and. executing OSEE operations from C or Pascal
programs

• Embedding OSEE commands in shell scripts and passing
them to a OSEE server for execution

We describe all three methods in the following sections.

DSEE Concepts 1-49

Command Files

A DSEE command file is a script of DSEE commands that you in
voke through input redirection. You use DSEE command files very
much as you use shell command scripts, but you invoke DSEE com
mand files at the DSEE prompt rather than the shell prompt. Like
shell scripts, DSEE command files can contain parameters for argu
ments supplied when the scripts are invoked. Command files are
particularly useful when you have a series of DSEE commands that
you regularly perform, or when you must perform the same DSEE
command on many DSEE objects.

Several DSEE features facilitate DSEE command file programming.
An option to many history manager commands allows you to format
the output, embedding history manager information in strings also
containing DSEE commands. This formatted output can be redi
rected to a command file script. Using this technique, you can, for
example, issue one DSEE command that constructs a command file
to reserve all the elements in a library.

Another feature that aids command file programming is the ability
to specify the severity of error on which you want the command file
to abort. Abort severity is inherited by all nested command files by
default, but you can also specify different abort severities at each
level of nesting.

By default, the DSEE environment looks to an executing command
file to get responses to command queries. However, you can, if you
want to, write command files that execute interactively and accept
responses from standard input.

You can pass DSEE command files parameters from the command
line. You can use up to nine substitute parameters in a DSEE com
mand file.

1-50 DSEE Concepts

Programmable Interface

The DSEE programmable interface allows you to execute DSEE
commands. access DSEE library databases. and access and ma
nipulate system model information from Pascal and C programs.
Using specialized calls. you can write programs that reserve and re
place elements. build systems. and perform many other DSEE func
tions. Another call allows you to send any DSEE command to the
DSEE facility; you simply use the appropriate command syntax and
send the command as a string. Other calls let you change input
:md output streams.

Using calls to library databases. you can write programs that provide
yo~ with the kind of historical information that you require from
the databases. You can. for example. write programs that show
only one user's reservations. or write programs that scan comments
associated with various events in an element's history for a particu
lar word or phrase.

Other DSEE procedures allow you to manipulate sets of system
components. In this manner. you can obtain such information as
the names of aU the components that depend upon one particular
component and which components are shared dependencies of
multiple components.

In short. you can use the programmable interface to:

• Perform many DSEE functions that you perform interac
tively

• Tailor your access of the history database to meet your
specific needs

• Retrieve and manipulate information about system struc
tures

The Domain Software Engineering Environment (DSEE) Call Ref
erence provides complete details on using the callable interface.
Examples of programs that invoke DSEE routines are included in
DSEE software shipments. as well as instructions on how to use
them.

DSEE Concepts 1-51

DSEE Server

The DSEE server enables you to embed DSEE commands in shell
constructs. In this manner, you can perform DSEE operations
while taking advantage of the control flow inherent in shell lan
guages. You can execute DSEE commands from within conditional
constructs and loops, and pipe command output to shell com
mands.

There are actually two DSEE server utilities: dsee_server, which
enables you to combine DSEE commands with any shell supported
by Domain/OS (the Aegis, BSD, or SysV shells); and
dsee server c, which is tailored for use with UNIX * shell com
mands. We ship both dsee_server and dsee_server_c as examples
of programs using the DSEE programmable interface. The source
and executable code are included in DSEE software shipments.

DSEE Concepts: Conclusion

In this chapter we've attempted to give you an overview of how
DSEE facilities work. In the next three chapters we present exam
ples of how engineers use DSEE facilities to perform their own
work.

-------88-------

• UNIX is a registered trademark of AT&T in the USA and other countries.

1-52 DSEE Concepts

Chapter 2

Case Study 1:
Converting to a

DSEE Environment

,In this and the following two chapters •. we examine how engineers
use the OSEE system to facilitate their work. Each chapter focuses
on one particular engineering project that is managed with OSEE
software.

Each project we examine has some features that make it a unique
application of OSEE facilities as well as some that are of interest to
all OSEE users. By presenting both the unique and the widely appli
cable features of these projects. we hope to help you use the OSEE
environment in the most effective··manner.

The main body of each chapter discusses how the engineers in
volved in the project work, given those features that make their
project a unique OSEE application. We present information of po
tential interest to all OSEE users in special. shaded sections called
"highlights ...

In the appendixes. we present scaled-down versions of the system
models that the groups use. Appendix A contains a system model
related to this chapter's text. Chapters 3 and 4 discuss groups that
use the system models presented in Appendixes Band C. respec
tively.

Case Study 1 2-1

In this case study we focus on how an ongoing engineering project
changed its method of work to employ the OSEE environment. We
discuss the process of setting up a OSEE environment. In particu
lar. we examine the writing of a system model to represent an engi
neering project.

After we introduce the project and discuss its personnel and goals.
we present the OSEE objects. such as the libraries. monitors. and
system models. that structure the group's OSEE environment. Fi
nally. we observe how the engineers work using OSEE facilities.

Introduction

The project that we observe as it undergoes conversion to the OSEE
environment is our company's computer-aided design (CAO) tools
group. This group produces a software package that our in-house
logic designers use to design printed circuit boards (PCBS).

Briefly. the CAO tools group's product is a set of commands that
bridges the gap between data formats used by various vendors of
logic design tools and manufacturers of PCBs. Engineers use these
commands to translate logic designs in disparate formats into a sin
gle format and store the designs in a database. Later. using other
commands in the same package. the engineers can convert these
stored designs into data formats used by manufacturers of PCBs.

Although the product that the CAO tools group produces is for in
ternal use only. it must be maintained as any revenue-producing
product. and the group needs to change and develop aspects of the
software in response to user needs.

Converting to a DSEE Environment

The CAO tools project started in 1983 and converted to the OSEE
facilities in 1985. Before the project converted to a OSEE environ
ment. the number of commands in the product grew steadily. Even
tually. the product became unwieldy.

2-2 Case Study 1

The CAD tools group decided to use OSEE facilities to manage
their product because of the benefits derived from using the history
manager as well as the configuration and release managers. (We
explain the specific problems the CAD tools group had and the
ways that OSEE facilities solved them as we progress through this
case study.)

Once the CAD tools engineers determined that they should be
working in a OSEE environment, they had to change both their
source storage methods and work habits to employ DSEE facilities.

The CAD tools engineers converted to their OSEE environment in
two stages. First, they put all of their source code into OSEE librar
ies. They created all their libraries and elements at one time and
immediately started using them so that they could avoid the mainte
nance problems that are associated with attempting to work with
two parallel development structures simultaneously.

Once they'd migrated to OSEE history management for their source
code control, the CAD tools engineers developed an appropriate
system model. After the engineers wrote and debugged their model,
they started using it exclusively for their configuration management.

Project Structure

Much of the effort required to convert to a OSEE environment in
volves setting up the project structure (that is, establishing libraries,
writing models, creating system pools, etc.). Once you have de
signed the project structure, you can migrate to the OSEE environ
ment and use it with relative ease.

In this section, we address many of the design issues that you might
encounter when setting up a project structure. In particular, we ex
amine issues concerning libraries and elements, and we pay close
attention to the process of writing a system model.

Case Study 1 2-3

···.···.·~ighlik1tt:.·. fh.~~6t~bfthejj$ktElltironment ... ··.·.···· AdiitihfSifdior

~~~~~~~j~ct~t~~i~~~Bsl~~aeiliti~~h~v~8neon~Oenvij< 
rpt.lill~ritadmiriistt*c)rserigineer~wh(fhave a·· very de-. 
tajl¢4kIl(jwledgei)fth.e])S~Een\lirol'lmerit.These adminis~ ..... . 
tj-<I,tprs\1suaIlyta.l{¢OI'iS\1chresp0n.sipilitiesas setting up the 
apprc>pfj~te ·1ibran~s;pl'<>tectirigp~:ijf:()bjects,· and Writing 

.·.····.·sY$t¢rn.models;nA4Jriinistrators· •• alSg!requently· serve .. ·as the 
• prpjeCts;troubl¢sh.potersforptoblem,sfel,hed to DSEE use . 

•.•••.• ·.H~~~ ... ~~i •• ~h~.··n1~~~611~ •• tRat ••• fh;.··acl~iili~tr~tdr· •• ~ight perform: 

..... · •••••• • •• • ••••••• 1·; ••••• ·· ~Jter~ih~ ••••• ~h~ ••••• ~~~f~idat~ ••••• li6~~f~ ••.. ·struetur~·. ·.for th~.····· 
... ....... ... ptoJect'~m,69\iles,createari.41'totect· the libraries/ 

<\ andcreat¢th.eelements ..... ..•.....•.. ..... . 

...•.•••••••••••••.••• ~ •... •·· ... ·Wriie.··()tle ••• ~r ••• ~6re •• ··system •••• ~.~dWls •• ·that ••• ·construct.·the 
/ .. ···project t SP1'9dticts,andereateandpl'otect theneces-
. ···>sar)'systemdire¢tpr'ies ahd .9.edvedobj ect pools 

<$: <EstabIishh~~ihgc6rtventibh$fOrbfanehes . and re~ .•• 
leases(atiq,perhaps'establispadirectory to hold re~ 

........... l~aseal'~~~) ..... ................. ..... ........ .. ..... . . 

. ·······4·.·.··· D()cllJl1~Atth~ ••• liBrary·istl11~ttil"e,· 
.•....• <». rtaming~qnveriti(jns. ... . . 

..... ··· .•. · ...•••. 5,.·.· ·Write·· •• ·scfi~t~·· •• gf •• ·riSE~····com~~hds •• ·•••·• 
. ···6;Aci~sar~s6ur8~f~rco~brk~rsohDSEEinf6rma~ 

•........ don· andbehaviol' ...... .» ..•.......•..•..•••......•..... 
................ ....................... > .... :::.<::::::.-:.: .-:.-:.:. .... :. .... . 

• ··· ••••• 7·,.· .•. Mbnit(); ••••• ·.tli~ •.• · ..• el1~r§llrrtetlt.·. ···t() ••••••• ensur~·.···· that ..... proj eet 
.)< .•.••... members#r¢tisingthe str4cttire and ·naming conven

>. » •..•....•..•. ti(:>Tis c<>tl.si#eJldYandthaf th<f struCture is appropri~ 
atefoftl1epr(jject· . . 

.··.·.·s·. ·····M()dify.·.the •••• sffuctur~ •••• ·gt ••• ·na~ing·· conveniions····if •• ·they 
•..••...•...•..•••.....••.••..•...•.••..•..•••••.•••..•.•.•.....•••......•.... pl'ovetop¢iriadequateoriJlappropriate for current project activities ....... . 

.. .... ······ ...... ··.·9 ...•.... Edit··.·the •••• s~~~·~· •• tIlodel •••• as •• the ••• ~ysterll·· changes 

2-4 Case Study 1 



Libraries and Elements 

One of the group's chronic project management problems that 
drove them to convert to a OSEE environment was source code 
storage structure. During the two years that the engineers worked 
on the project before converting. to DSEE facilities, their source 
code storage method had evolved into a large. inconsistent direc
tory structure. Although each command had its own directory, 
these directories weren't at the same level in the storage tree. Find
ing the right directory involved a frustrating search up and down the 
structure. Working in such a complex structure was confusing. En..; 
gineers rarely knew the full structure of the source area and fre
quently made mistakes. 

Although the CAD tools group could have replicated their old stor
age technique by plaCing all the code relevant to one. command in 
one OSEE library, they chose not to. They took the opportunity 
provided by the conversion to simplify their storage technique. 
What was once stored in a labyrinth -of 70 nested directories now 
resides in eight OSEE libraries. Table 2-1 lists the libraries and 
their contents. 

The library IImax/cad/database contains source elements for the 
commands that create and manipulate the database in which de
signs are. stored. The library IImax/cad/library contains source 
elements for the commandsthat create and manipulate the libraries 
used by the database. The liource modules for other commands are 
stored in IImax/cad/applications and IImax/cad/utilities. The 
IImax/cad/ins library holds all the include files used by the mod
ules in the four libraries just described. Scripts of CAD tools com
mands that are included in each release of the product reside in 
//max/cad/scripts. 

The last two libraries listed in the table, IImax/cad/build and 
IImax/cad/tests, contain elements that are not source components 
of the product. The IImax/cad/build library contains the system 
models, DSEE command scripts, and some shell scripts that the en
gineers use. The IImax/cad/tests library holds source modules that 
the testing system uses to test the product. 

It's important to note that the CAD tools group didn't lose any of 
the organizational information provided by their old directory struc
ture by plaCing the code in only eight libraries. The history manag
er's library databases provide the same information in a much sim
pler, more readable form. 

Case Study 1 2-5 



Table 2-1. CAD Tools Group Libraries and Their Contents 

Library Name Contents 

!!max! cad! database Source files for CAD database 
management system 

!!max/cad/library Source files for CAD library-
related commands 

!!max!cad/applications Source files for applications-
oriented CAD commands 

/!max!cad!utilities Source files for CAD utilities 
routines, design interface routines, 
and several LIST commands 

//max/cad/ins Include files used by CAD source 
code in first four libraries 

!!max!cad!scripts General-purpose CAD shell 
scripts 

IImax!cad/build System models, DSEE command 
scripts, and miscellaneous shell 
scripts 

/!max/cad!tests Regression tests for all CAD 
commands 

2-6 Case Study 1 



Case Study 1 2-7 



.·····J.,i~kiighi·····(Cdhiih~~i2 .. ·.··.················ ............................................... . 
~h~*amplebi~~tll~s~it~m~Bd&c~tsa\ifirigcoAfigtitation/ 
thread·yalidatiqn,·Wienthe~()riAguratiOntnanagerva1i~··· 

. ·d~t¢~/y()tirconfigttratlqn· mread,anyVerSiol1 jules thafuse 
•. '@ICicardsintheJ1.llequalifiel"al1~id.entifythEf version to use 
.bYbranchpath,}:)rallch ···name; otY*'lrSion name may .. force. 
W¥c~>J:lfigtlratiorim§1ager ·~.looI(mthedatllbaseofevery .••• ••·· 

\ m~t~iy)isted inme~y~~~mtnoder~lj;,ttcorita.ins anele~ent 
···WhosenaIllematchesthe Wildcard' JThe more libraries that . 

tiit#t be sellrthect)tl1elohgerlhfea,ijvalidatioll can take . 

••••••• ·.nbll.t •• ·~~.~·I.···thotg~~ ••• th~~ •• y&tl·.·~~st ••• 11~v~· •• onIY.·.one librari·.·con~ 
. ·t~jrlingal1·· your· $OUrc~elemerits.lj{)gicargrouping olele" 
.... ments·· is always < helprul and . shquld:riot be avoided. ··Whaf 
y()ushPllld avoid iSt1i~llsehfagt~a.t many . libraries; . each 
With less than 20or$6elemerits. . .. 

• ·.·.~6~~e·· are •••• s~~eral •••• ~~rf6rtnanf~ •••• ~ohsldetatiohs ••• ·that····may· af-
...•. fectyourchoicedfstorage nodesfotlibraries. In· general; •.•• 
'th01.lgh, YOllcan take advantage Oflargearnounts .. of space . 
ay~lilable<ori fnes~rvetsJor1ibrarie§<contairiing mariy ele

.in:~nts an.d enhahc¢DSEEpeffo1'Irianc~;And there is . no opf 
...•. thli,ll directorytre~patternfdflibra.J:ystorage: if storing all 
•. ··yo\.irUbraries Wit:hinctIffetentdire<:tqrystructures facilitates 

yq1.lr·wotk, . then Yo1.lspould ··do so, •...... 

······11liIlk· carefuIli· ••• ~b6ut· ••• your·. ·librari~s ••••• and ..• their.· contents·· be- ..•••••.. 
foreyoll create them so i,natyducari#void the maintenance 
overhead invo}veClil1fu6Vlng eXistin~flibraries. When you 
Illovean eXistingliprary, you have to change all references 
byabsolutepathnafu~Wit. AIso,61gsystem models· that· re"; 
feri~othe Iibrafy:~ former' location >b}' .. absolute pathname 
wo!:l'fcoin:piIe/'TQ:l"ebuildanoldetcorifiguration of a sys
tem,youcari·tHl~teuse theolq~rversion of the system 
Illogelused irith*r¢<)iifiguration.Youhave to create a 
bfclnc:h line ofdescenfOfthesystemmodel element whose 

>d#gin is that versiorlj;lhd iricorpora~e the new library name 
ihtothe brancheqversion; or use links to make the old 
pathname point to the new library name; 

2-8 Case Study 1 



Placing Existing Source Code in Elements 

Once the CAD tools group decided on their library structure, they 
created the. libraries Clnd set about moving their existing source 
modules into the libraries in the form of new elements. They used 
the create element command to move their source code into the li
braries. 

The create element command's default behavior is to look in your 
current working directory for a . file of the same name as the new 
element you're creating; if such a file exists, the history manager 
uses that file as the first version of the new element and deletes it 
from the working directory. The CAD. tools engineers decided that 
they wanted to retain the. old source code files for a while after they 
created the elements. so they added the -keep option to their 
create element commands. They also used the -from option so 
that they could specify the location of the text for the first version 
of an element without having to change working directories. The 
-from option also allowed the engineers to give an element a differ
ent name from the filename that they had used. 

In some instances. the engineers had created several different cop
ies of the same source code. each corresponding toa version of the 
module. This had happened when they needed to make alterations 
to a module, but they wanted to keep the older text as well. Switch
ing to the DSEE environment. the CAD engineers stored these 
source modules by placing the different renditions of the same 
source into different versions of the same element. 

Case Study 1 2-9 



2-10 Case Study 1 



Tasks, Tasklists, and Monitors 

The CAD tools engineers create very few tasks. They do, however, 
set monitors. For example, Serge, one of the group's OSEE envi
ronment administrators, has monitors set on all the elements in 
every one of the group's libraries. Some of these monitors add 
tasks to his personal tasklist. Others send mail to him and to other 
members of the group. 

Systems and System Models 

Writing a system model is the key part of defining a OSEE configu
ration management environment. It involves describing the struc
ture and translation of your product in terms unique to the DSEE 
facilities. 

If you are converting a working project to a OSEE environment (as 
were the CAD tools engineers), writing a system model is an evolu
tionary process. Your existing build scripts are the bases for your 
translation rules. If you previously used tools that list required in
clude files, you can use these lists as starting points for your sys
tem's source dependency declarations. 

As you transpose your old working method into system model syn
tax, you will find that the block structure and scoping rules of the 
system model allow you to eliminate much of the redundancy that 
your old working method had. Nested blocks describe interde
pendencies for you, and default declarations serve to cut down on 
much of the repetition of information. 

In this section we address many of the questions and concerns that 
you may encounter while developing your model. In particular, we 
focus on translation rules and dependencies, the two most impor
tant parts of model design. 

For more information about writing models see the Domain Soft
ware Engineering Environment (DSEE) Command Reference. The 
chapters "Writing System Models" and "System Model Language: 
Declarations" of the Command Reference provide comprehensive 
information about the basics of system model syntax and composi
tion. 

Case Study 1 2-11 



Before we explore system model translation rules and dependencies 
in this section, we address two key ingredients in system configura
tion: systems and pools. 

Systems 

One of the initial questions that the CAD tools engineers asked 
themselves was whether it would be more appropriate to think of 
their product as one system or as several systems. 

The engineers decided to represent the whole set of commands as 
one system, with one system model, for a few reasons. For one 
thing, such a representation is more convenient. The entire set of 
commands is their largest distribution unit. Having it all in one sys
tem allows them to build the entire product with one build com
mand and to share easily those components that are used by more 
than one part of the product. 

Version control is another reason the CAD tools group chose to use 
one system and one system model to represent the product. They 
wanted to make certain that each build of any part of the system al
lowed them full control over all source dependencies. If the engi
neers had decided to represent a certain portion of their overall 
product as a system (with its own system model) that was built indi
vidually and then imported into the main system, a build of the 
main system would only allow version control over the elements 
fully described in that system. 

For example, the CAD tools group has a collection of utility pro
grams called the utilities library. If they decided to construct utili
ties as a separate system, they could declare a tools dependency in 
the main system on the outcome of building the utilities system. 
As a result, utilities would be treated as an imported derived 
object in the main system. If the CAD tools engineers did this, 
however, they would have no version control over the imported sys
tem's constituent element versions when they built the main system. 

In the next chapter we present a case study of a project that uses 
multiple systems. In this case, although the systems are built with 
the same source code, they are distributed as separate items. We 
examine the advantages of such a setup when we describe the prod
uct. 

2-12 Case Study 1 



Case Study 1 2-13 



Like libraries, system directories need no special storage considera
tions. If you choose to use the default system pool to hold any of 
your derived objects, make sure that the disk on which the system 
directory is stored has enough storage space to accommodate the 
greatest number of derived objects that might ever reside in the 
pool. This space requirement is determined by the default pool's 
parameters, the number of different components using the pool, 
and the sizes of the derived objects. 

Pools 

The CAD tools group uses one pool to store all of its derived ob
jects. This pool has an age parameter of one hour and a limit of two 
versions. The limit is set below the default of four because one full 
build of the system consumes a very large amount of space. 

2-14 Case Study 1 



Case Study 1 2-15 



2-16 

Translation Rules 

Before the CAD tools engineers wrote their system model, they 
built their system with shell scripts. The group had scripts that built 
individual components of the system (such as separate commands 
and utilities), scripts that built groups of components (such as a li
brary of utility programs used by many commands), and a script to 
build the entire set of commands. (This last script was known as 
the master builder.) Many of the lowest level scripts performed the 
same functions: they compiled source code. Higher level scripts 
invoked these low-level scripts and then bound the results together. 

When the engineers wrote their system model, they took advantage 
of the block structure of the model to streamline their translation 
rules. All of the scripts that compiled source code were rewritten as 
generic default translation rules. The engineers rewrote the higher
level scripts as translation rules that bound together the results of 
lower-level translations. 

The utilities Aggregate is a good example of how the CAD tools 
engineers used the block structure when transposing their scripts to 
translation rules. Here is the text of the old script that built the li
brary of utility procedures that many CAD tools commands use. 
The symbolic arguments (Ai, A2, and so on) represent options to 
compilers. 

#***********UTILITIES BUILD SCRIPT*********** 
# 
# call script to build the argument testing utility 
//max/utilities/args tester. bId ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·S ·9 
# call script to build the banner utility 
//max/utilities/banner.bld ·1 ·2 ·3 ·4 ·5 ·6 ·7 ·S ·9 
# call script to build the string equality utility 
//max/utilities/equ string. bId ·1 ·2 '3 ·4 ·5 ·6 ·7 ·S ·9 
# call script to build the exclusive or utility 
//max/utilities/exor.bld ·1 ·2 ·3 ·4 ·5 ·6 '7 ·S '9 
# call script to build the left justification utility 
//max/utilities/left just.bld ·1 '2 ·3 ·4 ·5 '6 ·7 ·S ·9 
# call script to build the rectangle overlap utility 
//max/utilities/overlap rect.bld ·1 ·2 '3 ·4 ·5 "6 "7 "s "9 
# call script to build the quick sort utility 
/Imax/utilities/qsort.bld '1 '2 ·3 '4 ·5 ·6 ·7 ·S ·9 
# call script to build lower- to uppercase converter 
//max/utilities/upper case. bId '1 '2 '3 '4 ·5 '6 '7 ·S '9 
# call script to build real number conversion utility 
//max/utilities/val real. bId ·1 ·2 ·3 '4 '5 ·6 ·7 ·S ·9 
# call script to build string writing utility 
//max/utilities/writeshort.bld '1 '2 ·3 '4 '5 '6 '7 ·S ·9 
# call script to build response verfication utility 
//max/utilities/verify.bld ·1 ·2 ·3 ·4 ·5 "6 ·7 ·S ·9 
# call script to build binary tree management utility 
//max/utilities/bin_tree.bld ·1 ·2 ·3 ·4 ·5 "6 "7 "S "9 

Case Study 1 



# now build the utilities.1br file 
//max/uti1ities/uti1ities.bui1d_1br 

All but the last of the low-level scripts that the above script called 
simply compiled either FORTRAN or Pascal source code. Here, 
for example, are the contents of the writeshort. bid script: 

pas //max/uti1ities/writeshort.pas • 
-b //max/uti1ities/writeshort • 
-1 //max/uti1ities/writeshort "1 "2 "3 "4 "5 "6 "7 "S "9 

In the CAD tools group's system model, the engineers eliminated 
all the separate translation rules for compilation by writing default 
translation rules: 

default for 1*. pas = 
depends tools 

, / /max/cad/src/build/pas' ; 
translate 

!/max/cad/src/bui1d/pas %source • 
%cr opt(-dba) %option(-dbs) %option(-comchk) • 
%optlon (-subchk) %opUon (-opt) %optlon (-nopt) • 
%optlon(-l, -1 %result) -b %result 

%done; 
end of 1*.pas; 

With most of the work done by the utilities. bid script taken over 
by the default translation rules, all that the utilities Aggregate's 
translation rule has to do is the translation formerly performed by 
utilities.build_lbr. Here is the text of the old script, which uses 
the Aegis librarian utility, Ibr. (The librarian, like the Aegis 
binder, groups binary modules together.) We follow the old script 
with the new utilities Aggregate's translation rule. 

The text ofutilities.build_lbr: 

IF EXISTF //max/uti1ities/utilities.lbr • 
THEN d1f I/max/utilities/utilities.1br ENDIF 

1br -create //max/uti1ities!uti1ities.1br • 
//max/utilities/args.bin • 
//max/uti1ities/banner.bin • 
//max/uti1ities/equa1 string~bin • 
/ /max/utili ties/exor. bin • 
//max/uti1ities/1eft_just.bin • 
//max/uti1ities/overlap rect.bin • 
//max/uti1ities/qsort.bIn • 
//max/uti1ities/upper case.bin • 
//max/utilities/val real. bin @ 
//max/utilities/verIfy.bin • 
//max/uti1ities/bin tree. bin @ 
//max/uti1ities/writeshort.bin 

Case Study 1 2-17 



The text of the utilities Aggregate's translation rule: 

translate 
/ /max/cad/src/build/lbr -create %resuIt.lbr -«! 
%result of(?*.pas) .bin 
%result-of(?*.ftn) .bin 
! -

%done; 

Note the use of the symbols %result and %result_of in the transla
tion rule for utilities and the default translation rules for compo
nents whose names end with the . pas extension. These two sym
bols are at the heart of DSEE derived object management. Using 
%result and %result_of, you can refer to translator output without 
ever having to know its exact location and pathname; you ask the 
configuration manager to access the appropriate derived object for 
you. You give the configuration manager control of translator out
put with the %result symbol. Elsewhere in your system model, you 
access that controlled output with the %result_of symbol. 

2-18 Case Study 1 



Case Study 1 2-19 



In the default translation rule shown earlier in this section, %result 
takes the place of the pathnames of the binaries and listings that the 
compiler produces. The compiler automatically adds the . bin ex
tension to the name of the binary output and the .Ist extension to 
the name of the listing. 

The utilities Aggregate's translation rule contains examples of a 
common use of the %result_of symbol. This translation rule makes 
symbolic reference to the results of translating utilities' result de
pendencies. Because the compiler automatically adds the . bin ex
tension to the name of its binary output, the Aggregate's translation 
rule has to refer to the translator's binary output as 
%result_ of(?*. ftn). bin and %result_of(?*. pas). bin. 

The symbols %result and %result_of serve the same purpose that 
variables do in any program: they free you from the need to know 
the true value of an expression. When you use %result_of to refer 
to the result of translating a component, the configuration manager 
knows what pathname to substitute for the symbol. 

Note, for instance, that utilities' translation rule doesn't include an 
Aegis dlf command to delete former builds of the Aggregate (as the 
utilities. build_lbr script does). That's because the OSEE configu
ration manager assigns a unique name to each build of the Aggre
gate. There's never any ambiguity about which build produced a 
given derived object, since you let the configuration manager name 
and access the derived object for you. 

You can see the actual pathnames with which the configuration 
manager replaces your symbols as your translation rules are exe
cuted. Include the -von option in your build command. 

Another interesting aspect of the utilities Aggregate's translation 
rule is the use of wildcard expansion in the rule's "here document" 
(that is, the text between the characters -«~I and !). In our exam
ple, the CAD tools engineers eliminated their original script's list of 
utility procedures in the new translation rule by taking advantage of 
the system model compiler's recognition of wildcards. As a result, 
adding a utility procedure to the library of utilities requires only the 
appropriate reference to the procedure as a dependency of the Ag
gregate-the translation rule doesn't have to be edited. 

2-20 Case Study 1 



Case Study 1 2-21 



Dependencies 

Declaring your system's dependencies is a fairly straightforward 
procedure. If you have been using build procedures that identify 
include files (as do makefiles, which are recognized by the UNIX 
system make facility), you can use these lists of dependencies when 
constructing your system model. 

If you don't have any such list of dependencies, you can run the 
make_model utility program that we supply with the OSEE software 
to identify all of your modules' dependencies. This program 
searches the text of your source code modules for include state
ments. For each module, it builds a rough version of a system 
model component declaration, listing include files as source de
pendencies. The make_model utility distinguishes between ele
ments and ordinary files, associating library names with elements 
and resolving full pathnames for links. 

Once you've run make_model for all of your modules, you should 
review the lists of dependencies and make any necessary changes. 
For example, you might want to eliminate references to an include 
file depended on by all modules from the individual module decla
rations and write a default depends_source declaration for that 
particular dependency. 

Sandy, one of the CAD tools group engineers responsible for writ
ing the system model, used make_model to determine the system's 
dependencies. Once she'd finished, she edited the resulting text as 
follows: 

• She wrote a default library declaration for all of the in
clude files and deleted the "@ library_name" declarations 
that make_model placed after the names of source de
pendencies that were OSEE elements 

• She added square brackets to the names of noncritical de
pendencies 

• She removed the link resolutions that make model had 
inserted in the names of dependencies that weren't OSEE 
elements, because she wanted to continue to refer to the 
files through links 

2-22 Case Study 1 



Itl~hlight:tz~tiilg4TJpiaib./5lpel1dJncy 

.••••••• It'.$ ••• ~l~;~ •• ·~··.~~O~ •. id~~ ••• tb •• ~~.bii~~ •• ;~Jf •• tr~~~lai6~··to·.be •• toril~· ••• •••• • 
. ·qepeItdehdes.¢y~ri,th()ughthec()rifigtirati()n . manager 

.•.• · •• ·clP¢~ri ·t •. ·.requii¢YP1l\to··.··do •• ·.so; •• · .• >·.I;isting •.•.• a·.··ttanslat6t ••. · ina •••• ·•· 

~i'ei&s£~~~~t~~~~~:$16ris~!:i:;ybr~~~~d!;~~a:~nB~~~:\ 
I· . Tljisiriformatiqn~y~~tial:>le whenyouafelfying . torec6ri;.··· 

·sihlCt· ·C:ln···Older···li\i1~cl .. · ••••••• lC.·.f6texarnple;ybu· received ··ll·· bug·.·.· •. 
...... r~p<>ri()n·a niodt1l¢OfyourSyStemwntteriiriFO RTRAN , . it .•••.... 
···.c941dbeverynelPfilljOkriowwhichWfsiori.of the'f'OR-····· 
. T~C()tnpnel'get'iero~¢dtheex~~4tableC6de. .. ..... . . .. 

·••••• •• j~ ••••• ~0~ ••••• (i8Il.t •••• ~~hi ••••• ~~ ••••• ~~~ii~faiiS~ •••• ~~h~~~r.·.to· •• ·.r~~~ild· ••• a ••••••••• · 
•.•• · •• (!qrnPorierit··.every •• ~imeitS··trarisla.tol'(:hariges.··.·you·· cari •• make ..•.. 
... th~~()()l.a ••• h()n~riti~~l •• i;I~pet'idericyq! •• ~he··cornponerit&y··en;.······· 

.•• ·.clqsirigtheriarn¢P(thetdtrislatofiijsquarebracketsin·.·the· •• ··· 
~~g~~~~;~o~lsA~S~~t~~i§~~< ... ... . .. . . ... ... ... ... . 

Using Built Include Files 

Several of the source components of the CAD tools group's system 
model contain include statements that refer to the output of trans
lating other source modules. These references to built (or 
preprocessed) include files have to be constructed using special syn
tax, since you can't know the exact pool pathname that the con
figuration manager will assign to the product of a build. 

For example. the system model contains an Element named 
cad.sch. One of the derived objects of cad.sch is a preprocessed 
include file that describes the design database. This preprocessed 
include file is a dependency of the Element design_database_de
clare. ins. pas. 

Below is a portion of the system model's declaration for 
cad.sch.The example contains a make_visible declaration. which 
tells the configuration manager to make the results of translating 
this element temporarily visible to other source code during the 
build. The example also contains the portion of the translation rule 
that produces the include file describing the design database. 

Case Study 1 2-23 



element cad. sch 0 database_lib 
make_visible; 

translate 

/com/chpat -0 <%source >%result'des define. base' • 
"M *RECORD *= *{[-.l*}.?*". -
'01 0: Define db_$Record_type_identifier;' 

/com/chpat -0 <%source »%result'des_define. base' @ 

"M *FIELD *= *{[-.l*}.?*" 0 
'01 0: Define db_$Field_Type_identifier;' 

/com/chpat -0 <%source »%result'des_define.base' @ 

"M *SET *= *{[-.l*}.?*" 0 
'01 0: Define db_$SET_Type_identifier;' 

%done; 

Later in the system model is the declaration of the Element whose 
primary source contains an include statement referencing the 
preprocessed include file: 

element design_database_define. ins .pas 

promote depends; 
depends -result 

cad. sch; 
end of design_database_define.ins.pas; 

Naturally, the source code of desigo_database_define.ins.pas has 
to contain an include directive referencing the preprocessed include 
file so that the compiler can read the preprocessed file in the com
pilation. This include directive uses a special syntax, as shown be
low, to stand in for the actual name of the preprocessed file. This 
syntax is parallel to the syntax you use when referencing the result 
of building a component within your system model: the %result_of 
symbol, followed by any extension that the translator appended to 
the output file. 

%INCLUDE '$(cad.sch)des_define.base'; 

The make_visible declaration tells the configuration manager to as
sign the pathname %result_of(cad.sch) to an environment variable 
named cad.sch. The include directive contains the appropriate 
syntax for dereferencing the environment variable, thus resolving 
the pathname. 

2-24 Case Study 1 



Undeclared Include Dependencies 

If you neglect to declare an include dependency in the system 
model, the configuration manager still builds your system. How
ever, the system'sBCT contains no information on the version or 
time stamp of the source dependency, making it difficult to trace an 
error in the dependency back to the original source code. Also, the 
configuration manager won't rebuild components that depend on 
the unlisted source dependency when someone changes that de
pendency. Finally, omitting a source dependency declaration for a 
OSEE element from your system model means that you will never 
be able to use any but the most recent version on the main line of 
descent of the element in your builds. Version specifications in the 
configuration thread apply only to elements declared as dependen
cies in the system model. 

The configuration manager will identify your undeclared dependen
cies on OSEE elements for you. It generates warning messages if it 
encounters undeclared dependencies on OSEE elements while 
building your system. Later, you declare these dependencies in 
your system model. (Note that this only happens for elements in li
braries listed in your library declaration.) 

Case Study 1 2-25 



Working in the DSEE Environment 

Because the focus of this chapter is the process of establishing a 
DSEE environment, we won't spend much time discussing how the 
CAD tools group uses the environment they have created. Their 
use of DSEE facilities is fairly straightforward. 

Therefore, we devote this section to one aspect of the CAD tools 
group's use of their DSEE environment: how they create and ma
nipulate releases. 

Releasing the Product 

The ability to use the DSEE release manager was one of the CAD 
tools group's principal reasons for converting to a DSEE environ
ment. Before they started using DSEE facilities to control their 
builds and releases, the engineers spent a substantial amount of 
time backtracking errors in their own production system. The 
group occasionally produced releases built with incorrect versions of 
source files and had trouble tracing bugs back to the constituent 
source code. 

The configuration and release managers eliminated many of the er
rors involved with the CAD tools group's production scheme. The 
configuration manager provides a degree of control over build 
specifications that the group never had before. Creating a system 
build for release became a matter of writing the correct thread . 

. How the CAD Tools Group Creates a Product 

The CAD tools group maintains a file that contains the names of all 
the buildable components that make up a product release. When 
the engineers are ready to generate a build that they want to distrib
ute, they update this file and name it cad_release_filesJelease, 
where release is the name of the release. 

2-26 Case Study 1 



The updated list of buildable components becomes the argument to 
the -export clause of the create release command. For example, 
when the CAD tools group generated Revision 5.1, they edited 
cadJelease_files_REVS.l to refer to all the buildable compo
nents of their system and then created a release with the following 
command: 

OSEE> ere rei -/sre/rel REV5.1 -fronn ead!16-Dee-1985.13:24:38 
-export */ead/src/build/cad_release_files_REv5.1 

(Of course, the entire command must actually be entered on one 
line.) 

The release manager creates a separate directory in the release area 
for each built component listed in cadJelease_files_REVS.l. 
However, this isn't the structure that the CAD tools group wants to 
use for its distribution. Therefore, the engineers execute a script 
called create_cad_release.ash that copies the contents of the new 
release area into a directory tree with the appropriate structure for 
distribution. Below is the text of create~cad_release.ash. 

eon 
IF EQS "2 THEN 
# Get the name of the OSEE release directory 
# and the name of the directory to create 

readln -prompt ' Enter release directory name: ' release dir 
read In -prompt ' Enter directory for CAD release: ' cad_dir 
ELSE 

release dir := "1 
cad_dir-:= "2 

ENDIF 
/com/args "Creating "cad_dir" 
/eom/crd "cad_dir 
# 
# Get copies of object files, shell scripts and help files 
# from this OSEE release directory (files will be copied 
# from the EXPORTS directory into COM and HELP directories) 
# 

Case Study 1 2-27 



2-28 

/com/crd 'cad dir/com 
/com/args "Creating 'cad_dir/com" 
/com/crd 'cad dir/help 
/com/args "Creating 'cad dir/help" 
/com/ld 'release dir/exports -ld -c -nwarn -nhd I @ 
WHILE READLN command DO 
ARGS "working with 'command" 

IF EXISTF 'release_dir/exports/'command/'command THEN 
/I 
/I get the CAD objects 
/I 

/com/args" OBJ file" 
/com/cpf 'release_dir/exports/'command/'command 'cad_dir/ 

com -1£ 

ELSE 
/I 

/I get CAD HELP files 
/I 
IF EXISTF 'release dir/exports/'command/?*.hlp THEN 

/com/args" .HLP file" 
/com/cpf 'release dir/exports/'command/?*.hlp 

'cad_dir/help -If -

ELSE 
/I 
/I get CAD shell scripts 
/I 
script := 
/com/args "cad script or no file" 
/com/ld -c -nwarn -nhd 'release dir/exports/'command @ 

I /com/fpat [.J -x I READLN script 
/com/cpf 'release dir/exports/'command/'script @ 

'cad dir/com -If >?/dev/null 
ENDIF /I ~hlp file or shell script 

ENDIF /I object file 
ENDDO /I all files exported 

Case Study 1 



Once the engineers have created their distributable directory struc
ture, they perform a couple of steps to "tidy up." First, they give 
all the versions of elements used in the release the name of the re
lease; for example, after releasing Revision 5.1, the engineers exe
cuted the following command: 

DSEE> name version cad! I /max/cad/src/rel_REV5.1 REV5.1 

Case Study 1 2-29 



I 
Not only does this command assign the name [REVS. I] to all ele
ment versions used in the system build; it also assigns the name to 
all versions of system model elements (the root model and any 
model fragments) used to construct the build. 

To signal the completion of one release and the beginning of work 
on the next release, the engineers reserve, edit, and replace the ele
ment banner. ins. pas, which resides in the include files library. 
The text of this element changes so that the banner identifying the 
release of the product (which users of the product can access by 
executing the banner command) displays the name of the next re
lease (in our example, Revision 5.2). 

----88----

2-30 Case Study 1 



Chapter 3 

Case Study 2: 
Developing a Multi-Targeted 

Operating System 

The subject of this chapter is Apollo's operating system (OS) devel
opment project. This project illustrates an application of the OSEE 
product that uses a single source file to represent several OSEE sys
tem models and systems to produce software products that run on 
several different hardware configurations. However, in the course 
of their work, the project's personnel encounter difficulties that are 
common to many development projects. 

As we did with our previous case study, we will present the group 
and its goals, the OSEE objects they use (for example, their librar
ies, systems, and system models), and the way they work in the 
OSEE environment. Our discussion will focus on how the OS engi
neers use DSEE facilities to implement their multi-target develop
ment. For example, we will examine the branches they create, 
when and why they create releases, and how they coordinate simul
taneous subprojects. 

As you read this chapter, you may want to refer to Appendix B. 
This appendix contains the text of an abbreviated version of the OS 
group's system models. 

Case Study 2 3-1 



Introduction 

The as project is a large-scale engineering project. The as group's 
work focuses specifically on the operating system. Other groups 
handle local area and heterogeneous networking, integrating lay
ered products, and other operating system-related activities. 

Separate Products that Share Source Code 

The as group uses one set of sources to produce different executa
ble operating systems for different hardware configurations. When 
they started to use the OSEE configuration manager, the engineers 
had to find an effective representation of a structure in which com
mon source code produces multiple products. The engineers con
sidered possible representations of their system carefully. Nat, the 
principal OSEE environment administrator for the group, examined 
the alternatives and devised a satisfactory configuration. 

Representing the Software with Multiple Systems 

Nat opted to represent the as software with several separate sys
tems. This configuration had several distinct advantages that ap
pealed to the group. 

The first advantage lay in the organization of the software as it is 
distributed. A OSEE release area is associated with the system from 
which its contents are released. The as group wanted to tie to
gether various releases of one product. Therefore, it was natural to 
have a separate system for each target machine. Using this organi
zation, an engineer could see all the releases of one specific product 
by issuing the show releases command after setting the system to 
the one associated with the particular product. (Figure 3-1 illus
trates this point.) 

3-2 Case Study 2 



release release release 
SR20 SR20.1 SR20.2 

release 
SR20 

release 
SR20.1 

Figure 3-1. Releases Associated with Different Products 

The second advantage of using multiple systems involves the per
formance of system model and configuration thread validation. 
The configuration manager caches a limited number of validated 
system models and configuration threads for each system. When
ever a user sets the current system model or. current configuration 
thread, the configuration manager checks to see whether the new 
setting is one whose validated version is available. If so, the con
figuration manager doesn't need to validate the model or thread, 
and the configuration manager sets the model or thread relatively 
quickly. 

For many software systems, the configuration manager's cache of 
validated system models and configuration threads is large enough 
to be very useful. However, the as engineers knew that they would 
be using many different model and thread settings. The engineers 
knew they ran the risk of wanting more validated models and con
figuration threads than one system could hold. Each target ma
chine would require at least one different model setting; realisti
cally, one system couldn't be expected to hold any significant vari
ety of the model and thread settings that all the as engineers would 
require. Having separate systems meant that they could have sepa
rate caches for their validated model and threads. 

Case Study 2 3-3 



Because each product is built with a unique configuration, however, 
the OS engineers have to consider all the affected systems. They 
have to ensure that their changes are tested for all systems, and 
they want to reduce the rebuild impact for others. Suppose, for ex
ample, that an OS engineer changes an include file that's used in 
builds of the machine-specific aspects of two systems. When build
ing one of the affected systems, the engineer rebuilds all the af
fected components and declares equivalences for those components 
that don't need the newer version of the include file. Since the 
other affected system's BeT might be quite different from the 
first's, though, the configuration manager might not be able to 
reuse any of the builds or equivalences that the engineer created 
when building the first system. 

Building the Software with One System Model 

Once Nat decided to create one system directory for each product, 
he had to decide which it was better to have: 

• A separate system model source file for each product 

• One system model source file shared by all the products, 
with embedded conditional directives differentiating be
tween products 

Using multiple system model source files was not attractive to Nat 
because of the maintenance problems such a configuration would 
cause. Much of the operating system is identical for all supported 
hardware configurations. Each has the same elements and depend
encies-only their translation rules differ. Therefore, a large portion 
of each of the different system model source files would have to be 
identical. Altering any of the modules the systems shared (for ex
ample, listing a new include file as a source dependency) would re
quire identical edits to every copy of the module declaration. 

Therefore, Nat wrote one source file to provide a system model for 
all of the group's systems. Nat used conditional variables to control 
the model declarations· and the resolution of alias declarations. 
Using aliases in this manner lets an engineer use different pools, 
systems, translators, and other machine-dependent objects without 
having to specify these different objects each time they're used in 
the model. Thus, many differences between target models are iso
lated in one area of the text, which makes it easy to maintain them. 

3-4 Case Study 2 



To set the current model, an OS engineer sets the current model 
thread to one that includes a -target rule that appropriately estab
lishes the variable setting for the target operating system. For ex
ample, the model thread might have the following text: 

-target OPSYS1 
-reserved 
[ ] 

A subsequent set model command causes the configuration man
ager to validate the system model. The argument to the -target rule 
establishes variables that are referred to by conditional directives in 
the model. For OS engineers, the variable argument to the -target 
option determines which set of alias declarations will be expanded 
in the model. The results are target-specific declarations for the 
system the user is building and the storage pools for the machine
dependent derived objects, and target-specific parameters to pass 
to the translation script make_build_time. 

Below are some excerpts from a simplified version of the OS 
group's system model source file, one that produces only two differ
ent products. The excerpts illustrate the use of conditional direc
tives in an alias declaration. Notice that, in some instances, aliases 
are expanded within the declarations of other aliases. Aliases en
able you to isolate parts of a system model that might vary, and 
nested aliases provide even further isolation of variable parts. 

%var OPSYS1 OPSYS2 

%if not (OPSYS1 or OPSYS2) %then 
%error 'You must give a system name after. 

-TARGET on the SET MODEL command' 
%exit 

%endif 

%if OPSYS1 %then 
model operating_system1 
alias 

os = '1'; 
asmname = 'asm'; 
asmoptnuc = '-ndb -config os'; 
asmoptker = '-ndb -config os apollo_%exp(os)'; 
nucbin = 'bin'; 

Case Study 2 3-5 



%elseif OPSYS2 %then 
model operating system2 
alias -

os = ' 2' ; 
asmname = 'asm'; 
asmoptnuc = '-ndb -config os'; 
asmoptker = '-ndb -con fig os apollo_%exp(os)'; 
kerb in = 'bin%exp(os)'; 

%endif 
title 

'operating system %exp(os)'; 
system 

, //opera/op_sys/op_sys%exp (os) , ; 

pool 
opsysyool = 

'I/opera/op sys/pools/sr20.bl002/opsys%exp(os); 
nucyool = -

'//opera/op sys/pools/sr20.bl002/bin'. 
'//opera/op-sys/pools/sr20.bl001/bin'; 

keryool = -
'//opera/op sys/pools/sr2o.blo02/bin%exp(os)'. 
, //opera/op=:sys/pools/sr20. bloOl/bin%exp (os) , ; 

One advantage of the conditional structuring of the system model 
alias declarations for the as group is that it is parallel to the way 
that much of the group's machine-dependent software is written. 
Most of the machine-dependent modules are used to construct 
every product. Embedded in each one of these modules are condi
tional directives that control what aspects of the module are trans
lated for each particular machine. A logical development of the 
structure used in the code led to making the compilation of the sys
tem model source file conditional on the same variables used in the 
source code. 

Working in a Multi-Target Environment 

The engineers' activities fall into three general categories: incorpo
rating major enhancements into the operating system; adding sup
port for new kinds of workstations; and performing maintenance 
work. such as responding to Apollo Product Reports (APRs). 

3-6 Case Study 2 



The as engineers work on project teams. Each major enhancement 
or new workstation is an as group project. All engineers do mainte
nance work. An APR is generally assigned to the person or persons 
responsible for the related aspect of the operating system. 

Presently, there are many projects going on in the as group. Some 
involve adding support for new hardware configurations. Others in
volve upgrades for new communications and graphics hardware and 
software, enhancements for better support of layered products, im
portant fixes to bugs in the released operating system, and similar 
activities. 

Some projects, like the additional support for new hardware con
figurations, require changes to only one system. Others, like up
grades for new hardware, may involve changes to several, but not 
all, of the systems. A few projects (for example, enhancements in 
support of layered software) require modifications that affect all 
systems. 

Project coordination is critical to the as group. Each project must 
isolate itself from simultaneous development work. However, each 
engineer working on a project needs to be able to see the work of 
other engineers on the same project as it evolves. As work on a pro
ject progresses, its engineers need to integrate and test their work in 
each system. Finally, all isolated projects must integrate their work 
with all other projects when development and testing are complete. 

Achieving this level of coordination requires careful use of DSEE 
tools. The as engineers must consider carefully the configuration 
threads they use as well as the equivalences they declare and share. 
They must agree to work protocols, such as developing naming con
ventions for branches and determining the individual's degree of re
sponsibility to the group. 

Case Study 2 3-7 



Much of this chapter focuses on how the OS developers work on 
projects. In particular, we examine such aspects of the engineers' 
work as: 

• How their working directory setting impacts the building 
process, and what techniques they use to minimize some 
of the associated problems 

• How they declare equivalences within the context of multi
ple systems 

• What OSEE command scripts they use to facilitate their 
work 

• How they use releases to create an environment for use by 
engineers who are not using the OSEE configuration man
ager 

Project Structure 

This section presents the OSEE objects that the OS group uses to 
do their work. Here we show a static picture of the OS group's envi
ronment, explaining why they chose certain aspects of the environ
ment. In the following section, we illustrate how they use the OSEE 
objects presented here to perform their work. 

Libraries and Elements 

The OS group maintains five OSEE libraries. Table 3-1 contains 
the library names and summaries of their contents. 

All machine-independent source files are stored in the library 
lIopera/op_sys/nuc. These files and their associated derived ob
jects are known collectively as the "nucleus" of the operating sys
tems. 

3-8 Case Study 2 



The OS group maintains all of its machine-dependent source code 
in one library (llopera/op_sys/ker). Each system requires the same 
machine-dependent source files (collectively referred to as the 
"kernel"). However, the machine-dependent code's compilation 
or assembly differs with the machine type. Conditional compilation 
directives determine which sections of each machine-dependent 
module are compiled in a particular build. 

Two other libraries hold the include files used by the source mod
ules. The machine-independent modules' include files are stored in 
lIopera/op_sys/ins, and the machine-dependent modules' include 
files are stored in lIopera/op_sys/kins. 

Table 3-1. OS Group Libraries and Their Contents 

Library Name Contents 

lIopera/op_sys/nuc Source files for machine-
independent operating system 
modules 

II opera/op _ sys/ker Source files for machine-
dependent operating system 
modules 

lIopera/op_sys/ins Include files for machine-
independent operating system 
modules 

lIopera/op_sys/kins Include files for machine-
dependent operating system 
modules 

Ilopera/op_sys/scripts Scripts and the operating 
system's DSEE system model 
(root and fragments) 

Case Study 2 3-9 



The OS group's fifth library, !/opera/op_sys/scripts, contains the 
project's element that represents the system models and various 
OSEE scripts written by members of the OS group to facilitate their 
work. We discuss the elements containing the system models in 
"Systems and System Models," below. We discuss the scripts that 
the OS group uses in the section on "Working in the OSEE Envi
ronment," later in this chapter. 

Tasks, Tasklists, and Monitors 

The group's use of tasks, tasklists, and monitors is minimal. At pre
sent, they have set only one monitor. This monitor was set by a pro
ject team leader working on a project known as Phantom. The pro
ject team leader set a monitor on the element containing the system 
models. The monitor sends him mail whenever someone creates a 
new version of the system model. The mail helps the project leader 
keep abreast of the evolution of the system model element. 

3-10 Case Study 2 



Systems and System Models 

As mentioned earlier, the OS group uses one system model source 
file containing conditional directives to build all of the operating 
systems. In our scaled-down version of the operating system's situ
ation, there are two OS systems, both of which are subdirectories of 
//opera/op_sys: op_sysl and op_sys2. 

Each system model is flat; that is, it contains no Aggregate blocks. 
Each model consists of many Erements that are translated individu
ally and then bound together by the Model block's translation rule. 

A representation of the system model source file appears in Appen
dix B. Here we note a few significant aspects of its text. 

Case Study 2 3-11 

I 



· .•••••• 1-ii~~i{iht(foritih#~4JH)L •. )/) ....... . 
~~~~aW~teniffil~t~t&i~ai~~~~~l~ftiI~ll~~ridhi~torY 
~M9¢i~ted· with .. it;If:yl:)y •••• ~ore.·.a.· •• sptefu ••• ·m6deI .as··· a·.··DSEE.· •..•••

.~J~i#~nt ••• ·you ••• getwep~llefit ·of·· his(gry···management·for·.the/ •••••
~Y!lt~m· ·Jriodel .• ·.·.lri··~ •• c6rnplex •• ·de:ye16pment environmerit···like< •• •
gm(oftheOSproj~ct;thtfsystemmqderchanges ·frequently;·.·.··

•• •• ·N'~wdependen¢ie~ •• ~#9~eo/modul~areadded· ofteri.\Being
apl¢tom(mito~th#~y?ltlti()Jl?ftheSystem model is asvalu
·,d::Ma~beingapl~4Q)nQnitOfth~ ·~N()lUtiOrl of source ·code;}

•• • ••• ·.·~~~the; •••• advant~~¢ •• ·.6t •.. ~tSiih~ •••• t~~ •••• sy~te~ ••• ~6del· in· ·a.··.bSEE.···.· .••
lrPr~ryi~theabmtyt6cf~~t~altetri*e Jiries·. of· descent for>.
t1\#systetrlm()~ef.W(:)fkitigj.Yith~Wa~¢h\l'etSion.·oftllesys~ .••.

< J~ri1modelallo\\'~~i:l,gille~r:sonasi.l1:)l'roject to . modifypafts
()fm~mOdel. t()th~iiadyariiligeCl.rlc,i develol'theirO\Vli sys-

...• U~mWith6ut . distj#>tirig~riyoneelse~~work. ...•.•.. .

~g~~,{a~Ple,t~~~rtiih&~~;orkingOnOJle·sUb~rOjeCf
needed .·fo ·makemodifiCati6nstoafeWOS· ·incllldefiles;·· ••.
TI1.~se iriclUdefilesa.r~listediritl1¢systemmodel. as non
cdti2al deperid~l'lCies,be2aus~theQ$developers don'twarif
loliay~ to Teb9ild~()(m(}~>Chat'lge~t9Jh.e files (for example,

.}i;ti¢hchanges asaddil1.gfugr~pro~eq9tes). However ,tlie en~ ..•.
gi.h~ers6nt:h.is . suopr6jec(wer¢ch.apgingthe • procedures in .

•.. · .•. th¢b1clude •• fi1es,·atl.q·.theywantedih~·.·cbnfiguration·mariager·
tBieouild~callseQftll~charig¢~.X·

•••• •••• 'fhe ••• sul>~~ojeCt·s •••• en~~eeis· ••• creat~d •••• a •••• branch.···OffOf ••• the·· •• SyS-·· •••• •••
iemll1odel' smairili11eofdescenLlnthe first version . On the

. bl:'~l1ch,theel'lgin~~rsmaaethe iriclU.cie· files critical depend-·
¢ndes.Thischang~)ill(:)\\,~cl th.eepStiieeJ:'s to testandqebug
th.¢charigestheyw~l'emal(.irigtotheinc111defi1es, AfteJ; they····

··.·.filllsheddebuggingJh¢ipc1udefiIes.tlle ·engineers ·dec1ared
>tfi~systemm()q~rl?t~tl.§h(jl?solete.< ••.•.•.....

3-12 Case Study 2

Pools

Regardless of the system being built, its model has three logical
pools: opsysJ>0ol, Duc_pool, and kerJ>ool. NucJ>ool and
ker J>ool are used for the ma~hine-independent and machine-de
pendent derived objects, respectively. The remaining pool, op
sysJ>0ol, is used to hold the derived object of building the Model
block.

The following fragment of the system model element shows the pool
definitions.

pool
opsys..,pool
'//opera/op_sys/pools/sr20.bl002/opsys~exp(os)';

nuc..,pool =
'//opera/op sys/pools/sr20.blo02/bin',
'//opera/op=sys/pools/sr20.bl001/bin';

ker..,pool =
'//opera/op_sys/pools/sr20.bl002/bin~exp(os)',
, / /opera/op_sys/Pools/sr20. bl001/bin~exp (os) , ;

The OS group's pool declarations allow every system to share the
derived objects stored in DUCJ>00I. This sharing avoids unneces
sary rebuilding, because the derived objects this pool holds are built
from the same translation rules and are not specific to one hard
ware configuration.

Because the translation rules for each system differ, the machine
dependent derived objects stored in ker _pool cannot be shared
among systems. Therefore, ker_pool's declaration differs for each
system (the expansion of the os alias points the configuration man
ager toward a different pool for each target). The derived objects
unique to one system do not have to compete for space in the pool
with another system's derived objects.

Case Study 2 3-13

3-14 Case Study 2

The opsysJlQol is used to hold the Model block's derived objects.
The logical pool declaration of opsys yool contains an expansion
of an alias, which causes the configuration manager to use a differ
ent pool for each target. Although the Model block builds for each
target could coexist in the same pool without forcing each other out
(because each target operating system's Model block has a different
name, dependent on the -target rule in the model thread used),
the OS group chose to create a different pool for each target's
Model level build. This enables the engineers to set different age
and limit parameters on each of these physical pools, acknowledg
ing the varying usefulness in rebuilds of older builds for each target.

Case Study Z 3-15

I

3-16

Each pool's parameters have been set according to the pool's use.
All pools appearing as the first of two physical pools in declarations
have limit parameters of five versions and age parameters of 24
hours. The limit of five takes into account the number of concur
rent development activities that are likely to take place. The engi
neers set the age parameter to 24 hours because they do not want
the configuration manager to purge builds less than one day old
from the pool.

Pools appearing· as the second of two physical pools in logical pool
declarations have limit parameters of one version and age parame
ters of one hour. These parameters recognize that builds never add
derived objects to these pools.

Each opsysJ>0ol (that is, the physical pools pointed to by the ex
pansions of sr20.bI002/opsys%exp(os» has a different set of pa
rameters, depending on the requirements for the particular target
operating system. The physical pool that holds the builds for operat
ing system 1, sr20.bIO02/opsysl, has a limit parameter of 10 ver
sions and an age parameter of 24 hours. The OS engineers have set
the limit parameter this high because they do much experimenta
tion and testing on OPSYS1 and they know from experience that an
older build might form a good basis forfuture experimental work. If
they write a thread that refers to the older build in a build-ID
based rule, the configuration manager won't have to rebuild the
older configuration unless it has been purged from the pool. The
high limit parameter ensures that the older build they want to use is
likely to still be in the pool, despite the use of the pool by all engi
neers.

The physical pool that holds the builds for operating system 2, on
the other hand, has a much lower limit parameter: only two builds
over 24 hours old are permitted to live in the pool. This lower limit
recognizes the small likelihood that an older build of this operating
system will be reusable for a later build.

Case Study 2

Translation Rules

The as group uses several scripts in their translation rules. For ex
ample, the Model block's translation rule calls the script
make_build_time, passing it some parameters (including a value
determined by the system being built). This script places a time
stamp in the derived objects produced by building the model.

The time stamp is useful for tracing problems detected in released
software back to the constituent source code. When a customer de
tects a problem with the operating system, he or she relays the time
stamp of the operating system (determined by issuing a Icom/bldt
shell command) to Customer Service along with the description of
the problem. The as engineers can then match the time stamp of
the customer's software against the time stamps of the releases of
the operating system maintained in release areas. When they locate
the released system with the same time stamp as the one the cus
tomer is using, they issue an examine build command to discover
which versions of the source elements were used in that build.

Case Study 2 3-17

3-18

Here is a portion of the Model block's translation rule.

translate
von; eon; abtsev -p

//opera/op_sys/scripts/make_build_time ~exp(os) 0
~ result. bldt . ins. pas ..
~result. bldt. asm ..
~result.pbldt.bin 0
~result. bldt. bin.

~done;

Here is the text of that script.

voff
usage: make build time <mach id>
<print build time ins pathname>
<build:time source pathname>
<build_time obj pathname>
<print_build_time obj pathname>
[-build_string <Build string>]

This script is invoked by the DSEE os system model to
assign a build time to the operating system build.

Make "bldt.ins.pas" -- contains the "bldt"
string.

The "-build_string" option can be used to
override the header string.

bstring := "OPSYS 20.0+"

/com/date I /com/chpat "{?*} (?[SD]T)" 0
"CONST build_time = '"bstring, 01.%.';" >"2

Compile "print_build_time. pas". Note that
we create a link temporarily because of the
way the insert file is referred to.

/com/crl -r build_time"1.ins.pas "2
//opera/op_sys/pas //opera/op_sys/ker/print_build_time 0

-b "4 -ndb -idir //opera/op_sys -config os apollo_"1
/com/dll build_time"1.ins.pas

Case Study 2

Wake "bldt.asm" -- contains the
definition of "build_Stime".

/com/catf >"3 «I
module build time,WIRED PROC,WIRED DATA
entry.d build-Stime - -

1 -

/com/ld -u -nhd "2 I •
/com/chpat ·"'{111?11?1}. 1* 1*" "build_Stime •

dc.l $01" »"3
/com/catf »"3 «~I

end

Assemble "build_time.asm n •

//opera/op_sys/asm "3 -b "5 -nl

The OS group uses calls to scripts like make_build_time rather
than calls to actual shell commands in order to customize a build.
For example, one engineer might copy the text of
make build time into a file named make build time in his or
her working directory and then edit it. To use the edited copy of
the script in the next build, the engineer would add the following
rule to the beginning of the current configuration thread:

Note that this is possible because make_build_time, like all the OS
translation scripts, is declared to be a tools dependency in the sys
tem models.

One disadvantage of using such scripts is the potential loss of con
trol over programs called from the script. While the script itself is
declared in the model to be a tools dependency of the system. the
utilities that it calls are not. Thus, OSEE cannot record the identi
ties of the tools called by the script in the BCT. Thus, version stamp
information is lost.

Case Study 2 3...:19

To partially remedy this situation, the as group added the full path
name to the reference of each critical tool in a script. As you can
see from make_build_time, the Pascal compiler (/pas) called by
the script is the one residing in the /lopera/op_sys directory, which
is a protected directory monitored by the as group. This does not
record the time stamp in the build, but it does ensure that builds
use a consistent set of programs used by the script.

Another possible remedy would be to modify the system model to
include all of the important utilities called by the scripts as tools de
pendencies.

Working in the DSEE Environment

This section examines the tasks that as engineers need to perform
to accomplish their work, given the DSEE environment that they
created. Several of the explanations given earlier for certain choices
that the engineers made in determining an appropriate configura
tion for their system illustrate some of the behavior and habits of
the as engineers. This section focuses on the ways the engineers:

• Perform development work as individuals

• Work with each other and with other engineering projects

• Create and store builds of their products for distribution

Working as Individuals

Even on large projects, such as the subject of this chapter, engi
neers work, for the most part, on their own. They develop and en
hance code on their own, and they debug and unit test their own
code.

This section discusses the ways in which as engineers work on their
own and the concerns they have.

3-20 Case Study 2

Using Working Directories to Organize Jobs

Individual OS engineers generally use working directories to organ
ize their work. Usually, an engineer works on each different job in
a different working directory.

When the engineer is working on a job that involves modifications
to one system, working on the job in one working directory is
straightforward. The engineer simply reserves the lines of descent
required for the job, performs the necessary editing, building, de
bugging, and rebuilding, and replaces the line of descent. The con
figuration manager promotes all the appropriate derived objects in
the reserved pool to the appropriate pools.

When a job that requires changes to multiple systems dictates modi
fications to nucleus elements, using one working directory still pre
sents no problems. The translation rules for nucleus Elements are
the same for all systems. A build produces the same derived object,
regardless of the system that is built. When the engineer replaces
the nucleus element, the configuration manager promotes this one
derived object to the nuc.J>ool, where it is accessible for all sys
tems.

The situation is more complicated when an engineer is working on a
job that requires changes affecting more than one system and that
involves the kernel elements. The translation rules for kernel Ele
ments differ from system to system. Even if the engineer's focus is I
on how his or her modifications affect one particular system, he or
she is responsible for test building the modified Element for each
system to make sure that the build succeeds in all instances. Each
build of one Element for a different system produces a different de
rived object. These derived objects compete with one another for
space in the reserved pool.

To alleviate contention in the reserved pool, OS engineers working
under such circumstances reconfigure their reserved pools. For ex
ample, Alice, an OS engineer who is working on kernel changes
that will affect both OPSYS 1 and OPSYS2, reconfigures the re
served pool in IIlop/alice/grm to accommodate derived objects for
two systems at once with the following command:

DSEE> configure pool / /lop/alice/grm -limit 2

Case Study 2 3-21

I

I

Promoting the derived objects from the reserved pool, however,
presents another problem. As we mentioned earlier in the chapter,
the configuration manager automatically promotes only those de
rived objects associated with the current system when a line of de
scent is replaced. If Alice builds usable derived objects for both
OPSYS 1 and OPSYS2 in her working directory she promotes the
derived objects for one system with the promote command.

The sequence of events that OS engineers follow in these cases is as
follows:

1. Replace the elements. thereby automatically promoting de
rived objects for one system.

2. Set the current system to each other system one at a time.

3. Ensure that the current model setting is identical to the
one that produced the derived object being promoted.
(The show builds command provides this information.)

4. Issue the promote command.

/~¢ •• l")SE.E •• ~ri~f~rim¢fitiacllllirii~tf~t6l"~ •• afuollgthe···6S ••• eflgi- ••...•• ·.
9~~t~sbl'lplifie(l~~ty()ri~'sW()tk.py¢teating ·sctipts< of.. .

.>· ••••• p~:EE .···c:Ofi'irrian4$.'m~sestriptS,·.·Whichiare .• ·.stored·····iri the ••••..••..
••••••• ·ar,.fje .. a/opsyslsc~ip~~l~hrarytH()ngWith···the····system •• rnodel ..•.. ·

•••.••• •• f&~me~~t~~~~a%'t~~msf~t;Jri~~B~sthMt~n£~e~~~r~~: •••.•••..•.
•••••••••• ·~~~ •••• dr.le ••• grOu~·.~ ••• s~ripl, ••• bU~I~~ •••••• facilitates.·.the ···process ••• dr •••••••••

~~~t):)uitding .. for(:>tll,~f$Ystetn.s(~~gjsC:lissedabove) .• When· 
•.•••.••• ·4i~ellgitieers~}C(@lte4iebUi1dJ(.*6rnmarid ····script; .•••• they·.··.·· 

$PppIYther()of9~~()fth~.Etefu~#tthatrieeds to. be built > 
•.••.• ·•· •. fgr.eadi···system}'PW· ••• btiildl(script.lri·.turn,···C:alls·.al1.othet 
· •••••••• ~¢dPt·.·dilled •• ··b9n4K.§n~fo:r~a¢J:r.~pp()rted· ·operating···sys~ .···.··.··tem·).:···· ..... ......... . . .. ...... ... ..•...... .. ... . ......•........ 

••••••••••• ~).}~~e~~/~p~~~~)~~~~p~~)~~.~ld~£~~1· ••.• ~ ••••• J...... •••••••...••........... • ••.•••••••••••••••••••••••••.•••••••••.••••.•.•... 

II'1!t~ .. r.'li .. ~·>'1>/~9¥f"~~(bUildiC,~~"i'· .!. (c~~;IJiJj\i; 

3-22 Case Study 2 



Case Study 2 3-23 



Accessing Derived Objects 

A primary concern for the OS group is accessing listing files when 
testing and debugging modules. Because the DSEE configuration 
manager insulates derived objects, the OS engineers cannot access 
the expanded listings their translators produce directly. They need 
a method of viewing the files outside of the DSEE environment. 

Before the DSEE configuration manager was available, the engi
neers built configurations of the operating system with shell scripts. 
One of these scripts produced executable code and listings for the 
most recent versions of all main lines of descent of elements. Each 
new build produced with this script deleted the products of the pre
vious build. 

One function of this build script was to generate expanded listings 
for the operating system in a central directory. This technique gave 
the engineers easy access to all the listing files produced by the sys
tem build: all they had to do was to press <READ> and type in the 
name of the listing file. At this stage, their builds dealt only with the 
main lines of descent of elements and didn't use different versions 
of elements. Therefore, the engineers were satisfied with the limited 
access (that is, to the most recent build of the main lines of de
scent) that their technique provided. 

When they began using the configuration manager, the developers 
replicated their old style of accessing listing files by writing scripts 
that exported links to the expanded listings using the DSEE export 
command and its -link option. These links were maintained in a 
central directory, much as the old technique maintained the ex
panded listings in a central directory. As with the previous method, 
this scheme provided listings for builds of the main lines of descent 
of elements only. Also, each new link overwrote older links, giving 
users access to listings produced by the most recent build only. 

As the OS group became more familiar with the capabilities of the 
DSEE configuration manager, they started using branch lines of de
scent more. Moreover, engineers began building systems that had 
more complex sets of composite element versions. Soon their sim
ple script became inadequate. The script couldn't accommodate the 
flexibility of complex configurations because it had been written to 
replicate a situation where builds were almost always composed of 
the most recent versions of elements on the main lines of descent. 

3-24 Case Study 2 



Case Study 2 3-25 



The developers created many scripts, one geared toward each ma
jor line of descent. Each script used a private directory for its links. 
This technique solved the problem of accessing derived objects for 
different lines of descent, but it did nothing to handle access to 
more than one build for a line of descent. The outdated assumption 
that all builds would be produced using the most recent version on a 
line of descent was maintained by this scheme. 

The OS engineers eventually determined that a far better method of 
accessing their derived objects was not to export the listings but to 
read the listings as they were required, and they use this new 
method now. To do this, they issue the export command on the 
build they're interested in, using the -select option to identify the 
subcomponent whose listing they wish to view and the -read option 
to indicate that they only want to read the derived object. This 
method allows the engineers to identify the precise build whose ex
panded listings they want to access. Also, it doesn't tie the engi
neers to builds using the most recent versions on main lines of de
scent. Moreover, they needn't be concerned with overwriting and 
storing link names-they simply read the listings as they need them. 

Working with Others 

The DSEE software provides many tools that help people on a 
large, complex project like the operating system work together with
out confusion. To work in harmony, engineers can work on branch 
lines of descent of elements, declare equivalences, set monitors on 
dependencies, and write configuration thread rules that refer to 
BeTs in release areas. However, to produce a work environment 
that's effective for everyone, it's necessary to establish which tools 
all the engineers use, and when and how they use them. 

3-26 Case Study 2 



Deciding Who Takes Responsibility 

There are two ways that you, as part of a large and complicated en
gineering effort, can view your work in relationship to that of other 
engineers: 

• You can take the view that you are responsible for only 
your own work, protecting yourself from other people's 
work and assuming that other people protect themselves 
from your work 

• You can take the view that you are responsible for your 
work in the context of the entire group's work, and that 
you work in a way that doesn't hinder (and, if possible, 
helps) other group members 

The OSEE environment supports both styles of work. 

To make development go smoothly, every engineer on the project 
should take the same approach to their work. Otherwise, people 
who assume that they are protected from other work find their work 
hampered by engineers with a different attitude toward group mem
bers' responsibilities. 

The OS engineers take the second of the two views toward their 
work. They view all enhancements, modifications, and fixes to the 
software in the context of the entire group's work. 

Creating Different System Configurations 

In general, each OS engineer creates a different configuration of 
one or more systems for each job undertaken. Different configura
tions are the result of building with different configuration threads. 

When many engineers must work in harmony, it's vital that each 
configuration of the system be built with care. Therefore, each engi
neer must use configuration threads that make careful references to 
the element versions and build options needed, and do not acci
dentally result in incorrect builds. 

Case Study 2 3-27 



To provide the necessary level of organization, configuration 
threads have to take advantage of the organizational capabilities 
that the DSEE software provides. For example, many precise 
threads refer to alternate lines of descent. The branches referred to 
in these threads have to exist, however, for the thread to be effec
tive. 

Using Lines of Descent to Protect Other Group Members 

Establishing and following a protocol for working on various lines of 
descent is essential to avoiding confusion, errors, and unnecessary 
rebuilding on a large project like the operating system. 

The OS group adopts a straightforward protocol for determining 
which subprojects should work on main lines of descent and which 
should work on branch lines of descent. Development that affects 
the entire product line proceeds on the main lines of descent of the 
constituent elements. Maintenance work and development that af
fect a subset of the product line proceed on branch lines of descent. 

In Figure 3-2, which shows an abbreviation of the element 
ast.pas's lines of descent, you can see that engineers working on 
two projects, Phantom and Amazon, are performing modifications 
to ast.pas on branches. Phantom involves supporting a new hard
ware configuration. Amazon involves modifications to the graphics 
hardware of several of the target machines. The OS engineers use 
the third branch shown, sr20.1, for maintenance work on Software 
Release 20. 

Note the version name given to the version of ast.pas from which 
the phantom branch leaves the main line of descent. The Phantom 
team engineers used the [phantom_base] version name to mark 
each operating system element version that they wanted to use as a 
basis for their development work. When they were ready to start 
doing development work, they simply created the initial branch ver
sion of each element to be modified from the version named 
[phantom_base] . 

The Phantom team isolates its system builds by using the following 
configuration thread: 

-reserved 
... /phantom -when active 
[phantom_base] -

3-28 Case Study 2 



ast.pas 

[1] 

[sr20] 

[phantom_base] 

Figure 3-2. Lines of Descent of ast.pas 

As you can see, the Phantom team's thread relies on a version 
named [phantom_base] for each element. While this is often a 
useful way to build a configuration, you should bear in mind that 
version names can be changed easily. This can cause difficulties, 
particularly when many people are working on a project and all 
have DSEE administrator protection access to libraries. In fact, the 
Phantom team encountered problems when someone outside of the 
team misunderstood the purpose of the version name marker. The 
other engineer used the name version command to give the [phan
tom_base] name to another version of an element. 

If the Phantom team had replaced the last line of their thread with 
a rule that referred to a previously released build, they wouldn't 
have encountered difficulties when the version name was changed. 

Case Study 2 3-29 



Note that, while working on branches shields people working on 
other lines of descent from your changes, people who work on the 
same branch as you are affected by your changes. 

For example, Amazon team members' changes don't affect Phan
tom team members, but they do affect other members of their own 
group. Because the work for Amazon requires changes to multiple 
systems, kernel builds automatically promoted from one engineer's 
reserved pool won't be of use to another Amazon team member 
working on another system. 

3-30 Case Study 2 



Amazon team members handle this situation exactly as if they were 
responsible for all the work going on for the subproject. First. they 
test build the kernel element(s) for each system while they still have 
the element(s) reserved. using the buildk script we presented ear
lier. Next. they replace the kernel element(s) and systematically set 
their current system to each one in turn. promoting the derived ob
jects appropriate for each system. 

Case Study 2 3-31 



..... ......................... , 

Hlghlight(c6ijt{nued)· . 
............................. ........ .............. .................... .. .............. . 

...... :::: .. :- .. :-:-:-:- .. :-: : ...... :-.... -:........... .............. .... . .............................................................. . 
TlieOS eHgffieeis •• #ls§ •• how .• rely •• evehffiol'e.·.heavily··oh···devel
oPIlleIlt.buiIds.·· ••• (th,(lt:.is; ••••• buildsdori~ ••• ·irictementally)· .•••••••• · •• They·. 
f()llr#:ith,l:lt theil"lr:tcr¢~secrritimberscausedproblems.>par- ... 
H¢tilal'ly ••• Wheri.··m~ny ••• peoptewel'e·· •• ""Qrkirig ••. ol1··.the •• ·same. ·line 

· ofdesceritWh,eri()rieerigit1~er.replaced •. aline .. of descent 
. 0tl •••• all ..• ele.meIlt •• useclthr()tigllout·.the ••• systern;· •• the subsequent 

bAOdc6mmaricls6fa.llpftMbthetengineets working ·on 
· tlie~~m~line6fges¢~l1fWo\JldreCn.tire rebuilding of all the 
comp()riehtsdep~#d.~tltol1-thateleIllent ___ arioften unJ'leces'-
s(itycost.sincetMcha.rigesmaYMfbeVital tbthe other ·en-
gitleers'Work. ... . . . .. 

· : .... :::::\::::?::;::::.: .. ::.:<; .. : .. ;:.:-:.>:::::::::; .. (:<.;::::.).::\::::.::.?<:.::::::;:::':./.:\:::::;>:.:):./: :'.-::::):::::-: 

N"()w.everyhight,6#ee#girieefissuesbuiId··.· commands· for 
eaCh.systemandCte~teSreleaseareasfortheir BCTs· (using 
the"'bCtlonlyoptiof{t()thecrea.lereleasecommand). In 
the·.moming •• ··the.p()()ls •• ar¢··p()pulateg.·With·.·stable derived ob-

Iject.slhatalltlje~r:tgi#eerscan.use.Theysimply use con
figuratiorithread.$JHilttefettolhe ·13pr placed in thetelease 
ar¢a •• the·Ilight·befor¢ .•••• Beca1.1seJhe.·.d.eri\!ed.·6bjects··.fot •• these 
bti.iIgsstillresicleiritllepinaryp()ols.thtWclon't need to be 
repunt~ ••• ·.The ••• engin~en' ••• b1.1iIds ••. coritam>very.··recent material, 
\VjtljQut.·t.tn.tl~¢essaty ••• 1'~9uj1ging .•.•.•. 

. ':':-:.'::::::::::::::-::::::::::::::::>::':::::::'-: .. ::-:.<-:-::::::::::::::::-::>::::::::::::-::::::::::::/::-.-:-:::::::::-:::::'.: ::::::::::::-:::-'-:.-::::-::-:.:-: ... :-:-:.'.,." ' ........... -:-: 

H~f~,~~Aexatll~teBg~ti~r~tionthr~~~thatanOs~Jgineer· 
m~ghtllse .•••• ·.·N()t~ •• th~seCpncl •• fule;.sl1<:h •• fulesare . used···to· ob- .... 
taiijielemerits.·thatth.e.ellgmeers •• l<tl()W.they· ••• ha ve .···repla ted 

·.sipcethepreViot.tstlight'sbtiild,·· .. 

'"'reserved........> .•...•... 
..;fa rargsv.plI.$·· ,.,/phantom 

••..... ot:lSYS2!j/opera/l'~+E!a.~El$1()psys:()llaI',5 · ... "ers!ans-aptJahs 
......•.. .. 

Using Lines of Descent to Protect and Isolate Yourself 

... 

One point that we want to stress here is that, not only do you pro
tect other people when you decide to do development work on a 
branch, but you also protect yourself. Creating a branch for your 
own use, or for the use of a small group of people, gives you a more 
dependable environment in which to perform builds. 

3-32 Case Study 2 



On a large engineering project. using a configuration thread like the 
default thread is inconvenient. It means that your work must be 
constantly integrated with the work of everyone else who uses the 
main line of descent. If. for example. both the Amazon and Phan
tom teams worked on the main line of descent. every increment of 
each element version would require the integration of both teams' 
work as well as that of the people working on changes that affect 
the entire product line. 

By working on branches. the Phantom and Amazon teams can inte
grate with each other and the main line of descent at discrete points 
in their development. Development on each branch proceeds with
out the complication of constant integration. Whenever an interim I 
integration of work is required. the engineers merge a version from 
one line of descent into another line of descent. 

In certain situations. you might want to create a private branch line 
of descent for your own use. This provides you with a greater de
gree of isolation. In isolation. you can do things that might other
wise adversely affect other team members. If. for example. you 
want to replace an element before you fully test it. you might create 
a private branch and then include a reference to it in your configu
ration thread . 

. If one of the Phantom team members wants more isolation. this ex
ample thread might be useful: 

-reserved 
... /phantom/my branch -when active 
... /phantom -when active -
[phantom_base] -

Coordinating with Projects Outside of the OS Group 

Because the operating system software underlies and is tied to other 
software. non-operating system development projects need to ac
cess as group source code. However. it's important that the other 
groups access the right versions of the as elements. If other groups 
used modules under development. for example. the results could be 
quite unexpected. 

Case Study 2 3-33 



When another project that is managed by OSEE facilities needs to 
access OS elements. the OS group identifies the appropriate ver
sions of elements to use by marking them with a version name. By 
issuing the command 

OSEE> narnever os2!//opera/os2 rels/sr20 os2 sr20 
-library / /opera/op_sys/Ins -

for example, an OS engineer can name all the element versions in 
the ins library used in the build of os2 contained in the release di
rectory l/opera/os2Jels/sr20 [os2_sr20]. (Of course, the com
mand would have to be issued all on one line.) 

The other group of engineers requiring OS elements then uses a 
configuration thread that contains a rule indicating that the version 
named [os2_sr20] be used for the elements they require from the 
operating system's ins library. For example, this other group might 
use the following thread: 

3-34 Case Study 2 



-reserved 
-for "7*. ins .pas @ ins" [os2_sr20j -when_exists 
[] 

This thread ensures that the other group's builds use the right ver
sions of all Pascal include files required from the as group's ins li
brary. 

However, some projects that need to use as elements do not man
age their builds with the DSEE configuration manager. When the 
engineers involved with these projects need to use the appropriate 
versions of as elements, they and the as engineers have three op
tions: 

• As above, the as group can name versions from a build, 
and then either they or the other group can set an environ
ment for the other group's builds from the version names; 
for example, 

DSEE> set env 7*. ins. pas [os2_sr20j 

• Either the as group or the other group can create an envi
ronment from a build for the other group's work; for ex
ample 

DSEE> create env osZ!//opera/osZ_rels/srzo 

• The as group can name versions from a build, as above, 
and then simply communicate the name to the other 
groups. These other groups can then use extended naming 
to access the appropriate versions from outside the DSEE 
environment. For example, once another group knew the 
appropriate version name, they could read the right ver
sion of a particular insert file by pressing the READ key 
and typing 

Read file://opera/op_sys/ins/grp.ins.pas/[osZ_srZOj 

Using anyone of these techniques, the other group's references to 
as elements are resolved to the appropriate versions. 

Case Study 2 3-35 

I 



Releasing an Operating System for Distribution 

When the OS engineers are ready to release a version of one of 
their products for general distribution, they want to generate a build 
for the product's system that has 

• No reserved versions of elements 

• Only one version of an element used in all contexts 
(known as a "flat build") 

• A controlled set of options (both critical and noncritical) 
used in all contexts 

• A controlled set of versions for all elements, whether or 
not they are critical dependencies 

Generating this type of build is largely a matter of using the right 
thread and specifying the right options to the build command. 

To make certain that their build contains no reserved versions of 
elements, the engineers exclude the -reserved version rule from 
their configuration thread. They also eliminate any rules that re
strict the application of a version rule or a translation option rule to 
one particular context (rules with -under clauses). All options de
sired in the build, critical and noncritical, are specified in the 
thread. If they decide that they specifically do not want certain 
noncritical options in their released build, the engineers include the 
-exact specification in the thread's translation option rules. 

Issuing the build command with the -noequivalences option seems 
to make sense for the OS engineers' released build, since they do 
not want to use equivalent builds that might have been built with 
different versions of elements than they want in this build. How
ever, -noequivalences does not ensure a flat build, because the OS 
group's system model source file declares some dependencies to be 
noncritical. The -noequivalences switch does not ensure that the 
same version of a noncritical dependency is used throughout a sys
tem. 

To guarantee that the system and all of its components are rebuilt, 
regardless of whether they are noncritical, the engineers use the 
-force_all option. Because -force_all tells the configuration man
ager to rebuild everything, it makes -noequivalences redundant. 

3-36 Case Study 2 



Once they generate this build, the OS engineers double-check to 
make sure that it contains only one version of each element. They 
do this by issuing the examine build command with the -check op
tion, which examines the build for multiple versions of elements, 
files, and tools. Then, they create a release area to hold the build's 
derived objects, BeT, and dependencies that are not DSEE ele
ments. 

.... ............... ...... . .......... " ...... . 

Jiighlight: . AflAHe,.iiatiVeto4dft~ ___ ~II····· 
"':::: .. :::.:.:::::" . ::::::.:":::".:". . . 

oBedisadvantageo£usil1gthe~io"~e _aU sWitch is . it 
causes the configurati()rirnanager tOfebuildeverybtiiIdable . 

. systemcomponent.#venwhene#stihg builds coUld bEt 
. ·rel.lsed .>This . caric(}nsideTCibly .1engtl1erilheamountOf . time 

itlakes t()performtheouild; ... . . . .. . .. .... 

The8s····~l1giB~er~·.·h~ve~evi~ed~.~aytof6r2e··a·.·feb{dId. of· •• ··· 
thesystemthatrells¢sbtiilds whenpossiole/Theycreated·· 
two ..... dummy source .. dependeticies;the • elements 
tOl'celbuild. paifahd force _ build.35m. The· firStithey 
made a defaultsotifcedependencyior all the ouildablePaV· 
cal components of the system; thelllttertheymade adefatilt· 
soUrce dependency for all·· thebtiikla.bleassemblYlanguage 
components ofth~system; (Ineacl1case,the dummy file is> 
a¢ritical del'eridepcy.)< ...•... ••. .i<> 

when the· as·· engii1~eisWantt()mal(estirethat allth~Pa$"·· .... 
calmodulesgetl'ebuilt,theycreclte. a new version of.·.· 
f()rce __ build. p3s;Whel1.they\vantt(')mak~sure· that all the .••••••. 
assembly. languagemo.clules. ·.get ... rebtlilt;theycreatea new······ 

. version·· o.f forcelbuild.asrn;Theifc:()nfigtiration· thr¢ads· re~> 
quest the most recenfYersions()fthesKetements, so creating 
new versi.onsau!oll1atiCallyf()fcestlWconfiguration manager> to rebuild depenaent cOmponents; . . ... .... . ...... . 

Whilethismeth()clll1ay>ribtbla;propriateJOI" a·r~l~ase 
since it doesnotensute appropriatecontents,it is useful for 
other sitUations .. F' orcing builds this way rather than using 
~force all cutsinhalflhe number ofbtiilds that will be re
blJilt. -OriWPascarrrioduleswiU·befebuilt forcibly iri 
case; and only assembly language modules Will be rebuilt 
the other. . ......... . 

-------88-------

Case Study 2 3-37 





Chapter 4 

Case Study 3: 
Maintaining Released Software 

in a DSEE Environment 

In the previous chapter we examined the way that OSEE facilities 
help engineers control a large-scale development project. In this 
chapter, we focus on using OSEE software to control simultaneous 
maintenance and development. We investigate the ways that you 
can use OSEE facilities to maintain multiple releases of software 
while continuing to develop the product. We discuss the kinds of 
version and branch naming conventions that you should establish 
and how you can use them. 

The subject of this chapter's case study is the OSEE software pro
ject itself. The engineers on this project use the OSEE environment 
to develop new capabilities as well as to support multiple released 
versions of the software. This group's goals are similar to those of 
many on-going engineering project teams. The engineers must cre
ate and maintain a few different releases of the same product while 
going forward with development of the next generation of the soft
ware. 

In this chapter we present the. OSEE facilities that enable these en
gineers to do simultaneous development and maintenance. We also 
look at the protocols the OSEE engineers have adopted that facili
tate their work. 

Case Study 3 4-1 



One word about this case study and the OSEE software: Our pres
entation of the OSEE project will discuss the development of Ver
sion 2.1 of OSEE software. However, the methods that we present 
the OSEE engineers as using will be those of current OSEE software 
capabilities. In effect, our discussion presents what the OSEE engi
neers would have done when developing Version 2.1 if they'd had 
the capabilities of the current OSEE software. 

Abbreviated versions of the OSEE group's system models appear in 
Appendix C. 

Introduction 

Two major software programs provide the OSEE environment's ca
pabilities: the system model compiler and a binding of the executa
ble commands. Each of these two programs is represented by a 
separate system model. The command program consists of several 
parts: all the configuration management facilities; all the non-con
figuration management facilities; and the database management fa
cilities underlying the history manager. The command program's 
system model also builds several other programs: the make_model 
utility; the builder; the module that creates a shell in response to 
the create environment command; and a group of executable 
modules shared by the system model compiler. Of these separate 
programs built by the command system, only the first, 
make_model, is user-callable. The command system itself makes 
calls to the other three programs. 

The OSEE project has been managed with OSEE facilities ever 
since its inception in 1983. The OSEE project is a small-scale engi
neering effort, with all of its engineers working on both mainte
nance and development. 

Simultaneous Maintenance and Development 

Like many active software projects, the OSEE project is concerned 
with both the maintenance of several released versions of the prod
uct as well as new development for future release. OSEE software 
has been in use by our customers for several years. Inevitably, wide
spread use of the product turns up bugs that the engineers have to 
fix. Moreover, OSEE capabilities are still evolving. Version 2.0 
contains significant increases in capability over Version 1.0. Plans 

4-2 Case Study 3 



for DSEE Version 3.0 contain enhancements to Version 2.0's func
tions. The DSEE group is implementing Version 3.0 functions in 
stages called base levels. The group distributes base levels to cer
tain in-house users for testing every few months. In addition to new 
capabilities, each base level includes all bug fixes performed by the 
date of the base level release. This ensures that the bug fixes get 
tested thoroughly in-house before they are released to all custom
ers. 

In short, the DSEE team's work has three major aspects: 

• Developing new capabilities 

• Fixing bugs in released versions of the software 

• Releasing new versions of the software 

Because both developing new capabilities and fixing bugs ultimately 
lead to new releases of the software, the DSEE engineers focused 
on releases when establishing working methods. 

The DSEE engineers' first step in controlling their work with DSEE 
facilities was to define their release requirements. They determined 
that, at any given time, they had to support one major release of 
the product in the field and the most recent in-house base level. 
Maintaining the field release would involve accumulating bug fixes 
and eventually releasing and distributing an updated version con
taining bug fixes. Maintaining the in-house base level also involves 
releases for bug fixes, even though the time between base level re
leases is short, because some serious bugs need to be fixed quickly, 
before the next base level is ready. 

The DSEE team also determined that, in addition to major releases 
and base levels, they needed to be able to generate "specials"-re
leases tailored for one or two customers' needs. Specials would 
contain some of the bug fiXes to the last major release plus some 
subset of the new capabilities contained in base level releases. In 
certain cases, a special would also contain capabilities that would 
never be part of a major release. 

Case Study 3 4-3 



Eventually, the engineers knew, they would have to bring together 
the new development work and the field release bug fixes to form 
the next major release, Version 3.0. They wanted to make sure that 
their strategy to isolate development and maintenance work didn't 
make the eventual merge an arduous, error-filled process. 

Once the engineers had determined their requirements, they out
lined a management strategy that involved an ordered plan of ele
ment version and branch names and configuration threads to refer 
to the names. Most of this chapter is devoted to the examination of 
the DSEE team's naming strategy and the way the engineers use it. 

Project Structure 

We start our examination of the DSEE project team's use of their 
own product by presenting their 

• Libraries and elements 

• Tasks, monitors, and tasklists 

• Systems and system models 

Libraries and Elements 

The DSEE engineers store most of their source code in two librar
ies: Ilorange/case/case_l, which contains the history, task and 
monitor managers' sources and insert files; and Ilorange/casel 
case_cm, which contains the source modules and insert files for the 
configuration and release managers. Source modules for the system 
model compiler are stored in the library Ilblue/smc/smclib. The li
brary containing tools specific to the DSEE product is called lIor
ange/case/tools. Two other libraries, I/opera/ios/mgrs/case and 
/Iopera/ios/ins. hold the source modules and the inserts, respec
tively, for the dsee_history_manager_file type manager. 

As we mentioned in the introduction to this chapter, the system 
model compiler and the DSEE command program both have their 
own system models. The system model compiler's model is stored 
in /Iblue/smclsmclib, and the command program's system model is 
stored in /Iorange/case/case_cm. 

4-4 Case Study 3 



Table 4-1. DSEE Group Libraries and Their Contents 

Library Name Contents 

Ilorange/ease/ease_l Source modules and insert files 
for history, task and monitor 
managers 

II orangel easel case_em Source modules and insert files 
for configuration and release 
managers; system model 

Ilblue/sme/smclib Source modules and insert files 
for system model compiler; 
compiler system model 

II orangel easel tools Tools specific to the OSEE 
product 

II operalioslmgrsl case Source modules for 
dsee_history_manager_file type 
manager 

Iloperalioslins Insert files for type managers 

/lredl casel design Design notes 

II redl casel dsee _ tu torial Online graphic overview 

Ilredleasel dsee _ emd _ref Command reference text and 
system model 

Ilredl easel dsee _ call_ref Call reference text and 
system model 

IIred/ease/helpjiles Online help files 

Case Study 3 4-5 



The DSEE team and the technical writer associated with the project 
also use DSEE libraries to store their documentation. The engi
neers keep their design notes in a library called /Ired/case/design. 
The writer uses four libraries: " /lred/case/dsee_tutorial. which 
holds the online tutorial; /lred/case/dsee cmd ref. which holds 
the source modules for the manual. Domain Software Engineering 
Environment (DSEE) Command Reference as well as the system 
model that formats the book; /Ired case/dsee call ref. which 
holds the source modules and system model for the manual. Do
main Software Engineering Environment (DSEE) Call Reference; 
and /lred/case/help_fiIes. which holds the text for the DSEE help 
files. 

Table 4-1 summarizes the libraries that the engineers and writers 
use. 

Version and Branch Name Strategy 

Key to the DSEE group's management of their various types of re
leases are their version and branch naming conventions. The engi
neers have established guidelines for determining the version names 
that they employ for every element they use. 

The engineers use lines of descent to distinguish among various 
types of work and version names to mark the versions that consti
tute a particular release. Development of new capabilities for Ver
sion 3.0 is done on the main line of descent. and bug fixes are done 
on branch lines of descent. Development for special releases. when 
necessary. is done on branch lines of descent. 

The DSEE group uses the same strategy to name both versions and 
branches. Major distributions are known as "vn." where n is the 
release number. For example. the versions of source elements that 
constituted DSEE Version 2.0 are named [v2}. and the versions 
used in DSEE Version 2.1 are named [v2.1}. Base level distribu
tions are known as "vn.blm"; m is the base level number. and. 
again, n is the major version number. For example. the source ver
sions of elements used in the first base level distribution after DSEE 
Version 2.0 are named [v2.bll}. 

4-6 Case Study 3 



-:.:-:-» ..... :-:-:-:-... .:::;.;.;.;.;.:::::::.:<.:.:::.:.:-::::: ................................... . 

fi[ghlight: ... \Ens#ritfgCfollsisteiJcy ••• oJ.lJranch· Names 
:-:-:.:-:-:.:-:.:-... « .. <.: ..... :.:: .... : :.:.:.:.:.:::::::::.:::.:-: ... »»>::::: .... »>:::.-:.: .. : .. ::-:::«<:::::>:::::.::: «««<.:"-:;:::./ ... : .: .. :-:::::<:: .. :::.; ... ;.::. :::-:.;.;. 

Ac111eferl(:~t()br~flfhIlarI1irlg~gtl0Mltioi1sprovicl~~en~~ 
neers WithcofisisteJi¢Yafida depelldablej;tructure . foftheir 
WorK.·.·· ConsiSte1'lt •• ",ra1'lcl1.fiamingmakes··it·possible. f6[·.pro~····· 

•· ••• jeM •• tearri ••• rIlernbetsto sl1are.··c6fifigurati61'lIhreads···fOt •• puilds 
()fbrahch\'ersiohs.AI~6.wheI1yotm·ed6ing branch work. 
y()W.·job·· is···rriuch.easiefwheI1.there's.6hly.·orte·· branch .nCltrie 

.... y()tilleedJokn(jWf6f any6uti'esei'ye. replace.···andmei'ge 
coriimarids .•• Mdfepyet/consistentbfahch narningfriakes.it 
pOssible to che(;k.tlW stiltus (jfW()fk()nbrahch projects With 
tl1e-h a vil1g ....rrilssing....havil1g ... fuerge,/and •·· ... rnissillg> 
... ilterge.·.optiorts ••• tot.l1eshoWelerrie6tsc6frirIlafid .••.••.• ·lrishort, 
c()risistehtbraJi¢lil1~iltirigisanirIlp6ffant faCtor· instaridard-
#¢delementevolqt16Mwhichw¢(:fisctiSsirta highlight of 
t1j~ffiamelatefiril:hischapter. ... . .. . . . 

«::»:::::)·:::::':::::·::.::::>::::::;:::::·::<:::.i:<::::::::::::::\::)?:::::<?:::.:<::.::::::.:: :> .···:::::··:::«::::;:::}C·:C·\>:::: 

·······In •••••• ()rder ••• for ••••• any •••• hirf1ii1~ ••••• conv~nti6n ••• to. be.useful, •••• every ... 
.. ·rri~rriber()faprbj~c~lriustUsejt¢<)tisistently.· However.· 
t1i.ere's·· alwa ys·th~ ••• P6ssiqilitythat •• sorrie6neWiJl· friake··a··typOf ••••• · 
graphiCerror.()fforg~tWhethe(aI1uIlderscoreor apeJ"iod. is 
us~d· betweenpaTts§(ariame . 

................ -:::::::.-::::-.: ... <:-::::.'.-:.-; ........... <.-:-:::.: ..... :.:- .. -: .... ::::-< ..... :-:.:: ... -::::::.:: ...... . 

-:-:::.::::::::::::::::::}::>::::::::::::\::::::-::.:-:.:.: ....... :.:.:.:.:.: ... :.: ................. . 

Tohiinirniiethechli.Jj8esofl11Corr~ctbraI1ch narnes,Bob. 
theDSEEl'rojecten,gineet.writeSscnpts·forOther ertgineers 

,. to)use whentheY'¢ieai¢brancfies. For example,J:3ob's 
script .. (called>b12 .... btlgfix ... braricttc1see) for ··creatihg a 
qrarlch fofbugfb<es.tbVersibn<2.base level·· 2 ···createsCl 
brafich ·namedv2~1:>12bugfixf()ragiVerielernent.\Vhen~ 
tWer ••• the· •• DSEE •••• et'lgiJi~rsrieed···tO.Cteate···.a··bianch·f6r.··fixes·· .• 
t9\'ersion2 ,qaseI~~#2theyexecttte>thisscript . Here . is 
thtilext·of···the· •• s¢ript.·.Xwhich.·.·iri ••• reality,· •• ··aU··appears·.·.on·.··one 
nl1.e)~ ....................... . 

... ...... .. .. .. ..... ... ... ..... ::.::::::::::::::::::::<:::>:}:::::::::-:-:-: ...... :-:-: ...................... . 

crea tebranctlv2.b12$ugf3.k."i[v2.bJ2] 
-corInnen t· 'iBrarich(<r:rbase le"eT2btigfi.xes" 

............................................................................................... ,., ........................ . 

This· scriptdoe$lrioreilian ·el1SUre thatlhebrartchiSco[
re(;dy· named. ItAls6enstiresthatthebrartchoriginatesfiom 
tlifappropriate\Tersiqnqfthe ··eleriletit. ·al1d that the com .. 
rnehtaryon . brilnchcteatiohincltided·· theinformatibh that 
the project engiI1eel' wants if to. 

. . ................ . 

Case Study 3 4-7 



Bug fix branch lines of descent originate from the versions used in 
the distribution that contained the bugs. These lines of descent are 
named for the distribution and the purpose of the branch. For ex
ample, fixes to bugs reported in base level 2 are done on branch 
v2. bl2 _ bugfix. 

As we discussed in the introduction to this chapter, base level re
leases contain all of the bug fixes performed by release time. Com
bining the bug fixes with the base levels ensures thorough testing of 
the fixes. Incorporating these bug fixes into the development work 
requires periodically merging the bug fix branch into the main line 
of descent. 

Periodic merging of the bug fix branch not only increases the 
amount of testing the bug fixes get, it also eases the difficulties in
herent in doing simultaneous work on code along several separate 
paths. The longer a branch lives without being merged into the 
main line of descent, the more likely it is to differ significantly from 
code on the main line. These differences make merging the branch 
into the main line of descent more difficult. The OSEE engineers' 
interim mergers of their branch work into the main line of descent 
keep the number of differences between the merged versions down 
to a tolerable level. 

The engineers assign version names in large groups, effectively tag
ging all of the versions used in a particular build of the system by 
identifying the build 10 in the name version command. Because 
not every element has every branch (for instance, an element that 
didn't have a bug in base level 2 won't have a v2.bI2_bugfix 
branch), engineers create branches (and, consequently, assign 
them names) only as needed. 

Figure 4-1 illustrates the evolution of the OSEE element 
cm_utl.pas. 

4-8 Case Study 3 



In addition to illustrating naming conventions we have discussed. 
Figure 4-1 presents an example of the engineers' version naming 
rules for " respins " -redistributions of base levels. augmented with 
bug fixes for the base level code. As you can see from the figure. 
the group distributed a respin of the first base level which contained 
all of the bug fixes done on the v2_bugfix branch up to the time of 
the respin plus some fixes to the code in the first base level. The 
engineers named all the versions used in the respin [v2. bit. 1] . 
The respin of the second base level was composed of the element 
versions named [v2.bI2.1]. 

Note that the respin of the first base level was created after the I 
v2.bl1_bugfix and v2_bugfix branches were merged into the main 
line of descent. However, the respin of the second base level was 

Case Study 3 4-9 



created on a branch. The merger was desirable for the first base 
level's respin because it allowed the engineers to incorporate bug 
fixes, which had been merged into the main line just before the 
respin, into the first base level's respin. Merging into the main line 
of descent wasn't desirable for the second respin because the engi
neers wanted to avoid picking up Version 3.0 development work in 
the respin. 

[v2] 

v2.bI2_bugflx 

[v2.bI2.1] 

[v2.bI1.1] 

[v2.1] 

branch names are in bold 

[version_names] are in brackets 

dashed lines indicate mergers 

arrows point to target lines of 
descent 

Figure 4-1. Derivation oj Element em_utl.pas 

4-10 Case Study 3 



. .......... ..... . ................... -:.:-:-:.-:-::-. . ......... :-................... . .. 

Rfghlight:···/ ... SttznJrdti1lzediEle1ne~t.'E)Jotution 

It'sWO~11110ti~gt~~t~i~re4-1coWdrepresenttheeVolu
U9nofaltriosfanyelt;iriehtthattheDS EE group· uses in its 
sY$t¢tri,nptsiiriplY~hel1iStoryoftm""utl. pas. As the words 
ir#ply,~riaming¢orNeotiolflikethfDSEEgroup'sal'p1ies .. 
~Qall.···tl1e •••. elemell.t$.·.ils~d ••• io.··th¢· •••• systeiri.· 

:-:.:.:.:.:.:.:.: ... : .. :::.: .::::::::-::::.::::.: .. :·::<·:::·:.:/i(}·\/:\::::C;·i.i:.:i··:--:/: . ...:.::("))!H:i//)/·:·:::::::::::i·C(::::-))/-:::: .:::.:./><::.:::.::: ... :. : ..... :.::.:.:::. 

'tijeh~~\lltBf8dris~t&Htuse()faHanHrigconVentioriisstan~ 
Cl~tcliiedelernent~V91\.ltioh·youneedonlflearnthecoo" 
··venti6ns·.tO· be ••• abJ¢Jo •• figtlre··out··what·btanthes ··are fdt'\vhich 

. ··l'1,l11,ose,>and··whlCPeleiriellt·.Versidri$.constituted ·a partitular 
release.WhilellQ~~llelemehtsmayhaveevery brahch ··(for·· 
e}(ample,OnW~I~l'I1entstha(need.Jobe· •• mddified. fat' bug 
fi}(es ••.• hav¢·.··bugfi}( ••• orllll.ches),eachil"equired··.·branch'spur-··· 
pgseconfortnst(jihellalT)irigc6nveotibrt.The .·same is true 
f8fversi?rInam~~:~~~I~rnehf5teate(t~itlCe Version.· 1 ••.••. 
wpn'thavea . ver~lortnamed· .• [vll,<butallltsother version 
names· •• will···confOfm •• t6the····conveotioo·. 

:::-:::·::!::::::.:::::c··:::>::.·!·/-::).::::::·::::;:·):> .~ .. ;::.{:.::::::-:>::..:<\.\;:;:<: .. :/:::.::.::;::</.::>: .. :.::.;«.~ ........ ;.:;.::;::;\::: .. :::.::;:::>.: .. :: ... : ... : .. ::::./ .. :.::. :: ... , ..... . 

'flji$ ••• startdardized •••• ~vBifrti611 ••• i~p()~si~Ie6etat1se···thenaming •••••. 
c911verttlop···doesh't.telY·.0ri·tl1e.· charllctetlstics·. of·. a···particular 
el!!1lient' sdeve1c>piriel1t.Yetsidnn\ll'l10ersareo· t . important . 

•••• rgl" ••• exampIe.··tl1~ye1"si6ri ••• 6f··cJn ••• ·\ltl.pas •.• l1arned [v2.bll.·ll 
··· •• ··Cg4Icl .. ·.oe ••• Vetsion •••• it4ful:>er ••• ·.·I121·Ph(jwever,· ••••• version·····number 

Il-51.· •••• ··of>the· •• elemeut ••• /bld· •• ·preylotis .• pas ••• ··could be.·.··hamed •.••.. 
. Brt.bJ·t •.• lj •. ···.Mbteqyer.it ••• rhlght •• bel1W·.·case·.that, ·in·. element 
l:>lclprevi()us,pa.~·s~\'()mti6n'VersiQll.hllmber· [251· is also . 
l1anIed····[v2.·bI2J.i •••••• Y~f~idnrial11es.·tiet()geth.er •• aII ··relate~··.ver~ 

····si()ris···with()rIe.·lqgtt~lfulletri()hitriatrIe ..... arI •• ·extrernely •• tiseful aostractiori; . .. . .. .. .. .............. ... . .. 
. .....• 

Tasks, Tasklists, and Monitors 

The DSEE engineers take advantage of the facilities of both the 
task and monitor managers to coordinate their work. First we ex
amine the group's use of tasks and tasklists, and then we look at 
some of the monitors they employ. 

Case Study 3 4-11 



Tasks and Tasklists 

The OSEE engineers share all of their maintenance and develop
ment work. Each engineer is responsible for some aspect of new 
development as well as some bug fixes. Work for special releases is 
also performed by all members of the group. 

Reflecting this distribution of responsibility, the engineers make lit
tle use of personal tasklists and use, instead, shared tasklists. For 
example, all of the engineers use the tasklist IIred/case/v3_tasks. 
This tasklist contains several tasks itemizing the work that the group 
needs to do to produce OSEE Version 3.0, such as: 

• Schedule Version 3.0 work 

• Fix bugs in Version 2.0 

• Enhance merge command 

For the most part, these tasks have relatively few active items. 
They serve as records of the work that is performed for a certain 
task; as such, their task transcripts are their most important compo
nents. For example, the task "Fix bugs in Version 2.0" contains no 
active items. (Open bugs are recorded elsewhere.) Its transcript, 
however, contains many entries like this one: 

~ Replaced bld-pass4.pas[l] 
As part of the task entitled: 
OSEE V2 bugfixes 

Fix "build -bct only -von" to not cause a 
system error when the component being built has 
NIL TRANSLATION. 

Completed: 12-Aug-1985 16:09 
Completor: Robert Eastwood at IIFIT (bob.none.r_d.4E) 

When Bob is fixing a bug in Version 2.0, he sets the "Fix bugs in 
Version 2.0" task as his current task. Every time he replaces an 
element, the history manager records the event in the task tran
script. This provides the engineers with a list of all versions created 
for Version 2.0 bug fixes. 

4-12 Case Study 3 



Monitors 

The OSEE engineers use many monitors. Several of these monitors 
demonstrate some interesting applications of the monitor manager, 
such as: 

• Watching other engineering projects' elements for changes 
that might affect the DSEE system 

• Issuing a warning to DSEE engineers when they change an 
element 

• Notifying technical writers of changes to the user interface 
or the product design 

Monitors on Other Projects' Libraries 

As we mention in Chapter 1, the DSEE facilities use the Domain/ 
OS store-and-forward facility. Use of this facility makes the DSEE 
software dependent on that facility's current capabilities. To auto
mate tracking this dependency, the OSEE engineers set a monitor 
that watches the interface description ofthe store and forward facil
ity. 

Warning Monitors 

The DSEE engineers outline the design, direction, and implementa
tion of the DSEE software in a series of design notes. One of these, 
titled "Notes on the Implementation of the Configuration Manag
er's Builder," describes how the system builder is implemented. It 
is required reading for an engineers modifying the source code of 
the system builder. 

To make sure that no one modifies the system builder's source 
code without reading this design note, one of the OSEE engineers 
set a monitor on all the pertinent elements. This monitor has an 
empty activation list (that is, it creates no tasks and executes no 
shell commands). Its purpose is to remind engineers who activate 
the monitor that they should read the relevant design note. 

Case Study 3 4-13 



When an engineer reserves a monitored element, the monitor man
ager informs the engineer that the element is monitored and prints 
the purpose of the monitor. This purpose is the text written when 
the monitor was created. In this particular instance, the engineer 
who created the warning monitor inserted the following text in the 
edit pad for describing the monitor's purpose: 

Have you read the design note titled "Notes on the Implementa
tion of the Configuration Manager's Builder"? 

Monitors that Keep Writers Abreast of Product Changes 

As we note in the previous section, the OSEE engineers describe 
the goals and course of their work in design notes. These design 
notes are stored as elements in the library /Ired/case/design. 

The technical writer responsible for OSEE documentation has set a 
monitor on all existing and new elements in the design notes library. 
This monitor makes her aware of the presence of new design notes 
and changes to older design notes. The technical writer's monitor 
adds a task ~o her personal tasklist, so the historical information as
sociated with the monitor-triggering event becomes part of the new 
entry on her tasklist. Thus, she knows the details of the design note 
change. . 

Reading design notes keeps the technical writer up-to-date on the 
direction of the product's evolution. However, design notes occa
sionally don't contain specific details on how a change in product 
direction affects product use. Therefore, the technical writer has a 
second monitor set on the source code for the OSEE command line 
parser. Whenever the engineers change the parser to recognize 
new command syntax, this monitor lets her know of the event. 
Again, because this monitor adds a task to her personal tasklist, the 
writer can see the historical information associated with the trigger
ing event. This data generally includes details of the new command 
syntax and gives the writer a basis for discussion with the engineers 
about new syntax. 

4-14 Case Study 3 



Systems and System Models 

Although users see the DSEE software as one package, it has sev
eral parts. The command facility is the largest piece of the pack
age; other pieces include the make_model utility, the system 
builder, the facility that executes create environment commands, 
and the system model compiler. All the parts but the last are repre
sented by components of the system model stored as the element 
Ilorange/case/case_cm/dsee.smi. The system model compiler is 
larger than all parts of the DSEE software other than the command 
facility. For convenience, it is represented by a separate system 
model: Ilblue/smclsmclib/smc. sml. 

The system built by dsee.sml calls the compiler when you execute 
the set model command, passing it the pathname of the system 
model file that needs to be compiled. After a call, the compiler re
turns to the other DSEE system the binary result of compiling the 
system model. This interface from the compiler to the DSEE system 
is very stable, depending on a binary format that doesn't change 
often. 

The two models are largely independent of one another. Changes 
in one program are unlikely to affect the other. Only when the 
DSEE engineers are doing a build for a release do they build both 
systems at the same time, to ensure that the release has the most 
up-to-date built versions of both systems. 

There is a small subset of the DSEE system's software that the sys
tem model compiler system also requires. This subset consists of 
several utilities the systems have in common (for example, error re
porting functions). It also includes the description of the binary 
format that both systems require (discussed above). This package is 
collected in an include file called dsee common.ins.sml. Both 
dsee.sml and smc.sml contain %include directives that fold the 
shared utilities into both of the models. 

Case Study 3 4-15 



I 
The OSEE engineers would like the two systems to be able to reuse 
one another's builds of the components in dsee_common.ins.sml 
whenever possible. Doing this· requires some careful coordination 
between the two models. In order for systems to share builds, their 
models must have four things in common: 

• The dependency structures of the shared components 
must be identical 

• The translation rules for the shared components must be 
identical (with the exception of any noncritical options) 

• The logical, as well as physical, names of the libraries that 
contain the shared source modules must be identical 

• The logical, as well as physical, names of the pools used to 
hold the shared derived objects must be identical 

Model fragments can help the engineers meet all four requirements. 
The OSEE engineers take care of the first requirement by isolating 
the shared components in the include file dsee_common.ins.sml. 
which both of the models use. The engineers handle the require
ment of identical translation rules by isolating the translation rules 
into yet another include file called dsee_default_trans.ins.sml. 
This include file is included by both system models prior to the in
clusion of dsee_common.ins.sml. 

Currently, both system models contain identical logical pool and 
logical library declarations for dsee_common.ins.sml components. 
The physical pool and library pathnames contain references to links 
to ensure long-term accuracy if the engineers need to move objects 
later. They could create a hedge against future difficulties by plac
ing some commentary in the beginning of the dsee_com
mon.ins.sml fragment that warns all users of the fragment that cer
tain pool and library declarations are required. If they wanted to 
eliminate all possibility of disparate pool and library declarations, 
the engineers could also use a model fragment to isolate these dec
larations, as they do with the translation rules. 

4-16 Case Study 3 



Case Study 3 4-17 



4-18 Case Study 3 



Working in the DSEE Environment 

In this section we examine how the OSEE engineers use the con
ventions for branch and version naming they established to develop 
and maintain their product. Our examination focuses on several as
pects of the engineers' work procedures, including: 

• How they create a special distribut~on 

• Why and how they do interim merges of bug fix branches 
into the main line of descent, and how their naming con
ventions facilitate the merge process 

• How they produce a bug fix release of an existing shipped 
product 

Throughout these discussions we concentrate our attention on the 
building and releasing of the software represented by the system 
model dsee.sml only. The system model compiler isn't undergoing 
new development, so all bug fix modifications are occurring on the 
main lines of descent of compiler elements. Therefore, builds and 
releases of the system model compiler are uncomplicated by the va
riety of work involving the other OSEE software. 

Creating a Special Distribution 

As we mention in the introduction to this chapter, the OSEE engi
neers occasionally have to generate special versions of their system 
for one or two customers. These "specials" include subsets of the 
bug fixes being performed and the new capabilities being devel
oped. Some specials might contain functions that never become 
part of the official product. 

Case Study 3 4-19 



I 

To illustrate the way that the DSEE engineers handle a special re
lease, we will follow them through the development and release of 
one special distribution. This special version of DSEE was created 
for a company called INCa. The general outline for this release's 
structure can be summed up as follows: 

• DSEE Version 2.0 served as the basis for the INCa ver
sion 

• Several new capabilities were added 

• All available bug fixes were incorporated into the INCa 
version 

To produce the special version, the DSEE engineers created 
branches off of the main lines of descent of all elements in the sys
tem that need to be altered for the special release. This branch 
started at the versions named [v2) and is named inco. 

The engineers then created new versions on the inco branches as 
they added new capabilities to various elements. Then they were 
ready to add all available bug fixes. 

ance they'd done all the INCa-related work on the elements, the 
DSEE engineers merged the line of descent with bug fixes to Ver
sion 2.0 into the INCa special branch using the merge -reserve 
command. Their subsequent replace command used the text of the 
merge file to create a new version on the branch. 

ance the developers had done all the necessary work to elements 
with inca branches, they were ready to build the special version of 
DSEE software for INCa. 

First, the engineers set a model thread that would use all of the ap
propriate versions of dsee.sml, dsee_default_trans.ins.sml, and 
dsee_common.insl.sml: 

... /inco -when exists 

... /v2 bugfix -when exists 
dseel//orange/case/releases/v2 
-target dseel//orange/case/releases/v2 

4-20 Case Study 3 



This model thread used the most recent model fragment version on 
linco branches if they existed. If a fragment did not have an linea 
branch, the model thread used the most recent version on the 
Iv2_bugfix branch for that fragment, if there was such a branch. 
Had a fragment neither of these branches, the thread used the 
same version employed in building dsee!lIorange/ease/re
leases/v2. In all instances, model validation used the same -target 
specifications as used in dsee!lIorange/ease/releases/v2. 

The engineers used a configuration thread similar to the model 
thread to construct the special version . 

. . . /ineo -when active 

... Iv2 bugfix --;'hen active 
dsee! Ilorange/ease/releases/v2 -versions -options -exact 

Note that the last configuration thread rule refers to the BCT of the 
released build for Version 2.0 rather than referring to the versions 
named [v2]. This ensures that exactly the versions and options I 
used in the released product are incorporated in the special release, 
a particularly helpful safeguard when there's any possibility that the 
released build might have been constructed with different options 
or element versions in different contexts. 

Another noteworthy aspect of this configuration thread is the sec
ond rule, which tells the configuration manager to use the most re
cent version on the bug fix. line of descent should an element not 
have an active ineo branch. Not all the elements used in the sys
tem were modified for the INCO release; however, the unmodified 
elements may well have been fixed for bugs. The second rule in the 
configuration thread ensures that the bug fixes to these elements 
are incorporated in the build. 

The similarity between the model thread and configuration thread I 
points out the flexibility available when you use model threads. 
You can use all the history manager functions that allow you to do 
simultaneous maintenance and development in code work in model 
development as well. 

When the engineers completed the build for INCO. they decided 
that they wanted to incorporate the new capabilities they'd pro
duced for INCO in regular releases of the product. They decided to 
add the new capabilities to the main line development. 

Case Study 3 4-21 



Again, the engineers used the merge -reserve command to merge 
the most recent versions of the inca branches into the main lines of 
descent. Here is the command that produced a merged working di
rectory copy of element cst. pas. 

OSEE> merge est.pas/ineo[] -with est.pas -reserve 

Merging the most recent versions of the branches into the main 
lines of descent meant that the most recent bug fixes were also 
merged into the main line, since these fixes had been incorporated 
into the inca branch. This side effect presented no difficulties be
cause, as we've mentioned, the engineers periodically merged the 
bug fixes into the main line of descent anyway. In fact, the next 
formalized round of interim merges became simpler as a result of 
merging the inca branch into the main line: many of the bug fixes 
performed on the bug fix branch had already been incorporated 
into the main line of descent. To determine which bug fixes still 
needed to be merged into the main line at that point, the engineers 
executed the following command: 

OSEE> show elements -missing lineo 

The engineers then checked which of these elements had bug fix 
branches and then merged the bug fix branches of those elements 
directly into the main lines of descent. 

Figure 4-2 depicts the inca branch off of the element bldcom.pas. 

Merging Bug Fixes into the Main Line 

As we mentioned in our discussion of branch and version naming 
conventions, the DSEE engineers do interim merges of bug fix 
branches into the main line. These merges provide a means of test
ing bug fixes, and they help avoid the difficulties of merging two 
very disparate lines of descent later in their evolution. 

4-22 Case Study 3 



bldcom.pas 

[v2] 

Merge of new 
functions Into 
the main line 

Merge available 
bug fixes Into Inco branch 

Version to 
be Incorporated 
In INCO release 

Figure 4-2. Evolution of bldcom.pas's inco Branch 

The engineers merge in bug fixes just before they create a base le,{el 
release. Because of the many elements involved, the process of 
merging in each bug fix branch for the base level can become con
fusing. In order to find out which elements have bug fix branches 
that haven't been merged into the main line of descent, the engi
neers use the show elements command with the -missing and 
-merge options. For example, when Erica is doing an interim 
merge of the Version 2.0 bug fix branch, she can issue the com
mand 

DSEE> show elements -missing -merge /v2_bugfix 

to determine on which elements she still needs to perform merge 
commands. 

Case Study 3 4-23 



Producing a Bug Fix Release 

In effect, every release of the OSEE software is a release of bug 
fixes. As we've seen, each base level release is also a bug fix re
lease, since all available bug fixes are merged into the main line of 
descent before each base level release. Special releases, also, in
clude bug fixes, as our discussion of the INCO release illustrates. 
But there are two types of releases devoted to bug fixes: respins and 
bug fix releases. Respins contain bug fixes to a base level. A bug fix 
release contains fixes to bugs found in a version of OSEE software 
in general use. 

Since we've just discussed how the OSEE engineers do interim 
merges of the bug fix hranch, it would be interesting to see how 
they produce a bug fix release. Such a release draws its constituent 
versions from the bug fix branch. 

We will look at a release of bug fixes to Version 2.0 (named Ver
sion 2.1) using OSEE facilities. 

First, we'll locate the release area containing Version 2.1. A show 
releases command issued for the OSEE system produces the fol
lowing list of release areas: 

DSEE> show releases 
The following release areas currently exist: 

//black/case/releases/inco 
//black/case/releases/v2 
//black/case/releases/v2-plus_inco 
//black/case/releases/v2.1 
//black/case/releases/v2.bll 
//black/case/releases/v2.bll.l 
//black/case/releases/v2.bll.2 

4-24 Case Study 3 



The release that we're interested in is IIblack/case/releases/v2.1. 
We issue a examine release command to find out more about this 
release: 

OSEE> examine release / /black/case/releases/v2.1 
Release CREATED on 23-Feb-1986 13:32 

by Robert P. Eastwood at /IRED (bob.none.rd.4E) 
Command was: cre reI -/irel/v2.1 
-from dsee!21-feb-1986.21:32:36 -exp *-/dc/release_list 

Version 2.1 - Bug Fix Release for Version 2.0. 
Thread was: 
... /v2 bugfix -when active 
!//blaok/case/releases/v2 -ver -options -exact -when_exists 
[ ] 
*********************************** 
This release contains the following exported components: 

current timestamp 
length 

Component dsee 
(v2.1/exports/dsee/ ... ) 

dsee 
dsee.bct 

1165592 21-Feb-1986 21:30:25 
40544 

dsee.bld 275317 

Component create env shell 
(v2.1/exports/create:env_shell/ ... ) 

create env shell 5742 21-Feb-1986 18:39:02 
create-env-shell.bct 1584 
create - env -shell. bId 2440 

Component-dsee builder 
(V2.1/exports/dsee builder/ ... ) 

dsee builder - 8378 21-Feb-1986 15:44:21 
dsee -builder. bct 17.72 
dsee-builder.bld 3200 

Component library database.ddl 
(v2.1/exports/library database.ddl/ ... ) 

library_database. soh 11032 
library database. sub 22248 
library:database.uwa.pas 9751 
library database.bct 794 
library-database. bId 1065 

Component iiiake model 
(v2 .l/exports/iiiake_modeli ... ) 

make model 6892 21-Feb-1986 15:45:45 
make-model.bct 1228 
make:model.bld 1386 

In the comment area, the DSEE engineers included the text of the 
configuration thread that they used to build the release. 

Case Study 3 4-25 



4-26 Case Study 3 



There are a couple of interesting aspects of,the bug fix release that 
the examine release command doesn't reveal. One is that the 
OSEE engineers issued the examine build command with the 
-check option before they created the release area to make sure 
that the release contained only one version of every constituent ele
ment. (We discuss this in more detail in Chapter 3.) 

The OSEE system model's logical pool declarations are delimited 
by conditional constructs, as you can see in the following fragment 
from the system model's text. 

%If blJlool %then 
pool 

cmJlool = '//black/case/blJlool/cmbin'; 
hmJlool = '//black/case/blJlool/hmbin'; 

%elself bugfixJlool %then 
pool 

cmJlool '//black/case/bugfixJlool/cmbin'; 
hmJlool = '//black/case/bugfixJlool/hmbin'; 

%else 
pool 

cmJlool '//black/case/cmbin'; 
hmJlool '//black/case/hmbin'; 

%endif 

When the OSEE engineers were preparing to build Version 2.1, I 
they set their model thread to one like this: 

-target bugfixJlool 
/v2 bugfix -when exists 
dsee!//orange/case/releases/v2 

The first rule in this thread ensured that all the builds produced by 
their build command with the -force_all option wouldn't contend 
for space in the pools that other group members might be using for 
base level releases or other work and possibly cause the removal of 
the other group members' builds from the pools. 

Case Study 3 4-27 





Appendix A 

CAD Tools Project 
System Model 

Below is an abbreviated version of the system model used by our 
company's CAD tools group. Chapter 2 discusses the CAD tools 
project's use of the DSEE environment in detail. 

model CAD = 
title 'CAD SOURCE BUILD'; 
system '//MAX/CAD/SRC/SYSTEM'; 
shell ' /com/sh'; 

{declare all libraries} 
library 

help lib 
user-lib 
ins lib 
build lib 
tests -lib 
scripts lib 
library-lib 
database lib 
utilities lib 
applications_lib 

'//max/cad/doc/help'; 
'//max/cad/doc/user'; 
'//max/cad/src/ins'; 
'//max/cad/src/build'; 
'//max/cad/src/tests'; 
'//max/cad/src/scripts'; 
'//max/cad/src/library'; 
'//max/cad/src/database'; 
'//max/cad/src/utilities'; 
'//max/cad/src/applications'; 

pool cad-pool = '//max/cad/src/cad-pool'; 

CAD Tools Project System Model A-I 



{set all DEFAULTS} 
{----------------------------------------------------------} 
default for 1* = 

useJlool cadJlool; 
end of 1*; 

default for 1*. hlp src 
o help lib; -
depends tools 

'//rnax/cad/src/build/fmt'; 
depends source 

setup_help_macros.fmt 0 help_lib; 
translate 

N This translation rule creates links to formatted 
# help files in a directory called help. If the 
N directory doesn't exist, it generates an error 
# message. 
# 
//max/cad/src/build/fmt %SOURCE -out %RESULT.HLP 
eon 
IF existf help THEN @ 

/com/crl help/%source({1*}.hlp_src, 01.hlp, %Ieaf) @ 

%result.hlp -r 
ELSE wd >1/dev/null I readln where 

args "WARNING: ·where/help does not exist - link " 
args "%source({1*}.hlp_src, 01.hlp, %Ieaf) not" 
args "created" 

ENDIF 
%done; 

end of 1*.hlp_src; 

default for 1*. ins. pas 
@ ins lib; 

end of-1*.ins.pas; 

default for 1*. ins. ftn 
@ ins lib; 

end of-1*.ins.ftn; 

default FOR 1*. pas = 
depends_tools 

'//max/cad/src/build/pas'; 
translate 

//max/cad/src/build/pas %source @ 
%cr_opt(-dba) %optlon(-dbs) %option(-comchk) @ 

%optlon(-subchk) %option(-opt) %option(-nopt) @ 

%optlon (-1, -1 %result) -b %result 
%done; 

end of 1*.pas; 

A-2 CAD Tools Project System Model 



default for 7*. ftn = 
depends tools 

'//max/cad/src/build/ftn'; 
translate 

/ /max/cad/src/build/ftn %source @ 

%cr_opt(-dba) %option(-dbs) %cr_opt(-i*2) @ 

%option(-i*4) %cr_opt(zero) %option(-subchk) @ 

%option(-opt) %option(-nopt) @ 

%option (-1, -1 %result) -b %result 
%done; 

end of 7*. ftn; 

default for 7*. ash 
@ scripts lib; 
depends tools 

[' /com/cpf' 1 ; 
translate 

# This translation rule copies Shell scripts into the 
# binary pool and then creates links to them in the com 
# directory. 
# 
/com/cpf %source %result 
eon 
IF existf com THEN /com/crl @ 

com/%source({7*}.ash, %Ieaf) %result -r 
ELSE wd >7/dev/null I readln where 

args "WARNING: 'where/com does not exist - link " 
args "%source({7*}.ash, %Ieaf) not created" 

ENDIF 
%done; 

end of 7*.ash; 
{------~---------------------------------------------------} 

} 

use_pool cadyool; 
nil_translation; 

NIL TRANSLATION for the top-level component ensures 
that there's no single top-level derived object. 

depends_result 

{----------------------------------------------------------} 
{ cad shell scripts } 

element cad csr. ash; 
element create design database. ash; 
element expand-des. ash; 
element inl ib_rcom. ash; 

{----------------------------------------------------------} 
{help files} 

element create design database.hlp src; 
element inlib rcom.hlp src; -
element cad csr.hlp src; 
element commands.hlp src; 
element expand_des. hlp_src; 

CAD Tools Project System Model A-3 



{----------------------------------------------------------} 
{utilities} 

elennent writeshort.pas • utilities_lib 
depends source 

writeshort.ins.pas; 
end of wri teshort . pas; 

element args_tester.pas • utilities_lib 
depends source 

['/sys/ins/base.ins.pas']; 
['/sys/ins/pgm.ins.pas']; 
['/sys/ins/error.ins.pas'] ; 
['/us/ins/cl.ins.pas']; 
writeshort.ins.pas; 
args.ins.pas; 

end of args_tester.pas; 

element exor.ftn • utilities_lib; 

elennent equ_string.pas • utilities_lib 
depends source 

['/sys/ins/base.ins.pas']; 
constants.ins.pas; 
equal_string.ins.pas; 

end oC equ_string.pas; 

elennent upper_case. pas • utilities_lib 
depends source 

['/sys/ins/base.ins.pas']; 
upper_case.ins.pas; 

end of upper_case. pas; 

elennent banner.pas • utilities_lib 
depends_source 

['/sys/ins/error.ins.pas']; 
['/sys/ins/cal.ins.pas']; 
['/sys/ins/vfmt.ins.pas'] ; 
['/sys/ins/type uids.ins.pas']; 

, ['/us/ins/ms.ins.pas']; 
['/us/ins/mst.ins.pas']; 
['/us/ins/objmod.ins.pas']; 
['/us/ins/name.ins.pas']; 
['/us/ins/ubase.ins.pas'] ; 
banner.ins.pas ; 

end oC banner. pas; 

element left~ust.pas • utilities_lib 
depends source 

left~ust.ins.pas; 
end oC left_just. pas; 

elennent qsort.pas • utilities lib 
depends_source -

qsort.ins.pas; 
end of qsort. pas; 

A-4 CAD Tools Project System Model 



ele~ent overlap rect.pas @ utilities lib 
depends_source -

['/sys/ins/base.ins.pas'] ; 
constants.ins.pas; 
overlap_rectangles.ins.pas; 

end of overlap_rect.pas; 

ele~ent val real.pas @ utilities lib 
depends_source -

['/sys/ins/base.ins.pas']; 
constants.ins.pas; 
val real.ins.pas; 

end of val_real. pas; 

ele~ent verify.pas @ utilities_lib 
depends_source 

['/sys/ins/base.ins.pas']; 
['/sys/ins/pgm.ins.pas']; 
['/sys/ins/error.ins.pas']; 
['/sys/ins/vfmt.ins.pas']; 
['/us/ins/cl.ins.pas'] ; 
verify.ins.pas; 

end of verify.pas; 

ele~ent bin tree.pas @ utilities lib 
depends source -

['/us/1ns/ubase.ins.pas'] ; 
['/us/ins/rws.ins.pas'] ; 
['/us/ins/strl.ins.pas'] ; 
['/us/ins/bin tree.ins.pas']; 

end of bin_tree.pas; 

ele~ent net.pas @ utilities_lib 
declare only; 
depends_source 

['/sys/ins/base.ins.pas']; 
['/sys/ins/vfmt.ins.pas']; 
db_design.ins.pas; 
constants.ins.pas; {Common defs} 
utilities. ins. pas; {utility procedures} 
design_interface.ins.pas; 
net.ins.pas; {PROCEDURE defs (this module) 

end of net. pas; 

CAD Tools Project System Model A-S 



elenlent component.pas • utilities lib 
declare_only; -
depends_source 

['/sys/ins/base.ins.pas'); 
db_design_and_library.ins.pas; 
constants.ins.pas; {Kisc. constants} 
utilities.ins.pas; {utility procedures} 
design_interface.ins.pas; {Defs for design interface} 
pin.ins.pas; {Pin utility procedures} 
net.ins.pas; {Net utility procedures} 
library_general.ins.pas; 
component.ins.pas; {PROCEDURE defs (this mod) } 

end oC component. pas; 

elenlent pin. pas • utilities_lib 
declare only; 
depends_source 

['/sys/ins/base.ins.pas') ; 
db_design_and_library.ins.pas; 
constants. ins. pas; {Misc. constants} 
design_interface~ins.pas; {Defs for design interface} 
net.ins.pas; {Net utility procedures} 
pin.ins.pas; {PROCEDURE defs (this mod)} 
utilities.ins.pas; {Utility procedures} 
library_general.ins.pas; {Defs for lib interface} 

end oC pin.pas; 

elenlent gate. pas • utilities_lib 
declare only; 
depends_source 

['/sys/ins/base.ins.pas'); 
['/sys/ins/vfmt.ins.pas'); 
['/sys/ins/cal.ins.pas'); 
['/sys/ins/time.ins.pas']; 
bin_tree.ins.pas; 
db design and library.ins.pas; 
constants~ins~pas; {Kisc. constants} 
utilities.ins.pas; {Utility procedures} 
design_interface.ins.pas; {Defs for design interface} 
pin.ins.pas; {Pin utility procedures} 
net.ins.pas; {Net utility procedures} 
library general. ins. pas; 
component.ins.pas; {component design interface 
design_general.ins.pas; 
gate.ins.pas; 
gate intern.ins.pas; 

end oC gate. pas; 

A-6 CAD Tools Project System Model 



elennent default-pwr_gnd_names.pas • utilities_lib 
declare_only; 
depends source 

['/sys/ins/base.ins.pas']; 
db_design_and_library.ins.pas; 
constants.ins.pas; 
utilities.ins.pas; 
design interface.ins.pas; 
library_general.ins.pas; 
pin.ins.pas; 
default-pwr_gnd_names.ins.pas; 

end of default-pwr_gnd_names.pas; 

elennent design_general.pas • utilities_lib 
declare_only; 
depends_source 

['/sys/ins/base.ins.pas']; 
['/sys/ins/name.ins.pas'] ; 
['/sys/ins/pm.ins.pas']; 
db_design.ins.pas; 
constants.ins.pas; 
utilities.ins.pas; 
design_interface.ins.pas; 
component.ins.pas; 
design_general.ins.pas; 

end of design_general.pas; 

aggregate utilities = 

{Misc. constants} 
{utility procedures} 
{Defs for design interface} 
{component design interface 

{ This aggregate is a combination of utilities required 
by several other components. The individual 
utilities themselves are declared above. 

} 
declare_only; 
translate 

/ /max/cad/src/build/lbr -create %resuIt.lbr -«! 
%resuIt of(?*.pas) .bin 
%resuIt-of(?*.ftn) .bin 
I -

%done; 
depends_result 

args_tester.pas; 
banner. pas; 
bin_tree. pas; 
exor.ftn; 
left_just.pas; 
equ_string.pas; 
overlap_rect.pas; 
qsort.pas; 
upper_case.pas; 
val real.pas; 
verIfy.pas; 
writ,short.pas; 

end of utilities; 

CAD Tools Project System Model A-7 



aggregate design_interface = 
declare only; 
translate 

/lmax/cad/src/build/lbr -create %result. Ibr -«! 
%result_of(?* .pas) . bin 
I 

%done; 
depends result 

component. pas; 
pin.pas; 
net.pas; 
gate.pas; 
design_general.pas; 

end of design_interface; 

aggregate list_nets = 
translate 

/ /max/cad/src/build/bind -b 'f>result -«! 
%result ofC?*.pas) .bin 
%result-ofCutilities) .lbr 
! -

eon 
IF existf com THEN /com/crl com/list nets %result-r 
ELS2 wd >?/dev/null I read In where -

ENDIF 

args "WARNING: ·where/com does not exist - " 
args "link list_nets not created" 

%done; 

depends_result 
elennent list_nets.pas • utilities_lib 

depends_source 
['/sys/ins/base.ins.pas'] ; 
['/sys/ins/pgm.ins.pas']; 
['/sys/ins/error.ins.pas'] ; 
['/sys/ins/ms.ins.pas']; 
['/sys/ins/name.ins.pas']: 
['/sys/ins/streams.ins.pas']; 
db design.ins.pas; 
constants.ins.pas; 
design_interface.ins.pas; 
banner.ins.pas; 
writeshort.ins.pas; 
equal_string.ins.pas; 

end of list_nets. pas ; 
db interface. pas;
inIt database.pas; 
utilities; 

end of list_nets; 

A-8 CAD Tools Project System Model 



{----------------------------------------------------------} 
{database} 

element db interface.pas @ database lib 
depends_source -

['/us/ins/ubase.ins.pas'] ; 
['/sys/ins/streams.ins.pas'] ; 
['/sys/ins/error.ins.pas'] ; 
['/sys/ins/pgm.ins.pas'] ; 
['/sys/ins/vec.ins.pas'] ; 
['/us/ins/file.ins.pas'] ; 
['/us/ins/name.ins.pas'] ; 
['/us/ins/fu.ins.pas'] ; 
['/us/ins/ms.ins.pas']; 
['/us/ins/mst.ins.pas']; 
['/us/ins/asknode.ins.pas'j; 
upcase.ins.pas; 
writeshort.ins.pas; 
db interface.ins.pas; 

end of -db_interface. pas; 

element init database.pas @ database_lib 
depends_source 

['/sys/ins/base.ins.pas'); 
db interface.ins.pas; 
design_database_define.ins.pas; 

end of init_database.pas; 

element init_library_database.pas @ database_lib 
depends source 

['!sYS/ins/base.ins.pas'j; 
db interface.ins.pas; 
library database define.ins.pas; 

end of init=library_database.pas; 

aggregate db_$create = 
translate 

//max/cad/src/build/bind «~I 
%result of(%.pas) .bin 
%resuICof(utilities) .lbr 
-b %result 

eon 
IF existf com THEN /com/crl com/db $create %result -r 
ELSE wd >?/dev/null I read In where 

args "WARNING: 'where/com does not exist - " 
args "link db_$create not created" 

ENDIF 
%done; 

CAD Tools Project System Model A-9 



A-lO 

depends result 
ele~ent db_Screate.pas • database_lib 

depends_source 
['/sys/ins/base.ins.pas'); 
['/sys/ins/streams.ins.pas'); 
['/sys/ins/ms.ins.pas') ; 
['/sys/ins/name.ins.pas') ; 
['/sys/ins/pgm.ins.pas'); 
['/sys/ins/error.ins.pas') ; 
db_interface.ins.pas; 
banner.ins.pas; 
writeshort.ins.pas; 
upcase.ins.pas; 

end of db Screate.pas; 
db_interface.pas; 
utilities; 

end of db_Screate; 

aggregate initialize_design_database 
translate 

//max/cad/src/build/bind «I 
"'result of("'.pas).bin 
"'resulC of (utili ties) .lbr 
-b "'result 
! 
eon 
IF existf com THEN /com/crl • 

com/ini tialize_design_database "'result-r 
ELSE wd >?/dev/null I readln where 

args ·WARNING: ·where/com does not exist - " 
args "link initialize design database not created" 

ENDIF - -
"'done; 

depends_result 
element initialize_design_database.pas • database_lib 

depends source 
['/sys/ins/base.ins.pas'); 
['/sys/ins/pgm.ins.pas'); 
db_design.ins.pas; 
banner. ins. pas; 

end of initialize_design_database.pas; 
utilities; 
db_interface.pas; 
init_database.pas; 

end of initialize_design_database; 

aggregate db_$gen_type_ins = 
{ this aggregate defines the tool db_$gen_type_ins } 
declare_only; 
translate 

//max/cad/src/build/bind «~I 
"'result of("'.pas) .bin 
-b "'result 
1 

%done; 

CAD Tools Project System Model 



depends result 
elennent db Sgen type ins.pas • database_lib 

nnake visible; - -
depen-ds_source 

['/sys/ins/base.ins.pas']; 
['/sys/ins/name.ins.pas']; 
['/sys/ins/pgm.ins.pas'] ; 
['/sys/ins/error.ins.pas']; 
banner.ins.pas; 

end of db_Sgen_type_ins.pas; 
banner. pas; 

end of db_Sgen_type_ins; 

elennent cad.sch • database_lib = 
nnake visible; 
{ This Element is temporarily visible outside of the 

configuration manager so that Elements like 
design_database_define.ins.pas can reference it in their 
code. 

} 
depends tools 

[ , /com/chpat'] ; 
[' /com/cpf' 1 ; 

translate 
{ This translation rule uses .the binary produced by 

translating the Aggregate db Sgen type ins to translate 
the schema file cad.sch. Then it-edits with ed and 
chpat and creates a link. 

# 

} 
%result of (db Sgen type ins) %source • 

%result'des_type. ins. pas' 

# Change the name of the following because of DSEE 
# limitation of 16 characters for the user extension 
# (Code ref. follows) 
# design_type.ins.pas to des_type.ins.pas 
# 'S(cad.sch)des_type.ins.pas' 
# design database define. base to des define. base 
# 'S(cad.sch)des define. base' -
# design_database_extern.base to des_extern. base 
# 'S(cad.sch)des_extern.base' 
# init_database.ins.pas to init_des.ins.pas 
# 'S(cad.sch) init_des. ins.pas' 
# 

CAD Tools Project System Model A-U 



A-12 

ed -n %result'des_type.ins.pas' «~I 

/*)/ 
.+1 i 
%%IFDEF NOT design db types are defined %%THEN 
%%VAR design_db_types=are_defined; 
%%ENDIF 

w 
q 

/com/cpf %souree %result. sch 
# design database define. base 
/com/chpat -0 <%souree >%result'des define.base' @ 

"%% *RECORD *= *{[-.]*}.?*" @ -

'@1 @: Define db $Record type identifier;' 
/com/chpat -0 <%souree »%result'des define.base' @ 

"%% *FIELD *= *{[-.]*}.?*" @ -

'@1 @: Define db_$Field_Type_identifier;' 
/eom/chpat -0 <%souree »%result'des define. base' @ 

"%% *SET *= *{[-.]*}.?*" @ -

'@1 @: Define db_$SET_Type_identifier;' 
# design database extern. base 
/com/chpat <%resUlt'des define. base' @ 

>%result'des extern. base' 'Define' 'Extern' 
# in it database.ins.pas 
/com/chpat -0 <%souree >%result'init des.ins.pas' @ 

"%% *RECORD *= *{[-.]*}.?*" @ -
'db_$get_record_type_id (database_id, @'@1@',@1);' 

/com/chpat -0 <%souree »%result'init des. ins .pas' @ 

"%% *FIELD *= *{[-.]*}.?*" @ -

'db_$get_field_type_id (database_id, @'@1@',@1);' 
/com/chpat -0 <%souree »%result'init_des.ins.pas' @ 

"%% *SET *= *{[-.]*}.?*" @ 

'db_$get_set_type_id (database_id, @'@1@',@1);' 
eon 
IF existf com THEN /com/crl com/cad. sch %result. sch -r 
ELSE wd >?/dev/null I readln where 

ENDIF 

args "WARNING: 'where/com does not exist - " 
args "link cad.sch not created" 

%done; 
depends result 

db $gen type ins; 
end of cad.sch; -

element library.sch @ database_lib 
make visible; 
depends tools 

[' /com/chpat'] ; 
[' /com/cpf'] ; 

translate 
%result of (db $gen type ins) %souree @ 

-%resUlt' lib_type. ins .pas' 

CAD Tools Project System Model 



# 
# Change the name of the following because of OSEE 
# limitation of 16 characters for the user extension 
# library_type.ins.pas to lib_type.ins.pas 
# '$(library.sch)lib type.ins.pas' 
# library database define. base to lib define. base 
# '$(library.sch)lib define.base' -
# library database extern. base to lib extern. base 
# '$(library.sch)lib extern.base' -
# init library database.ins.pas to init_lib.ins.pas 
# '$(library~sch)init_lib.ins.pas' 
# 

ed -n %resuIt'lib_type.ins.pas' «~I 

1*)/ 
.+1 i 

w 
q 
! 

%%IFDEF NOT library_db_types_are_defined %%THEN 
%%VAR library_db_types_are_defined; 
%%ENDIF 

Icom/cpf %source %result. sch 
# library database define. base 
/com/chpat -0 <%source >%result'lib define. base' @ 

"%% *RECORD *= *{[-.J*}.?*" @ -

'@1 @: Define db_$Record_type_identifier;' 
/com/chpat -0 <%source »%result'lib define. base' @ 

"%% *FIELD *= *{[-.J*}.?*" @ -
'@1 @: Define db_$Field_Type_identifier;' 

/com/chpat -0 <%source »%result'lib define. base' @ 

"%% *SET *= *{[-.J*}.?*" @ -

'@1 @: Define db $SET Type identifier;' 
# library database extern. base 
!com/chpat <%resuii' lib define. base' @ 

>%result'lib extern. base' 'Define' 'Extern' 
# init_library_database.ins.pas 
Icom/chpat -0 <%source >%result'init lib. ins. pas' @ 

"%% *RECORD *= *{[-. J*}. ?*" 'db_$get_record_type_id @ 

(library database id, @'@1@',@1);' 
Icom/chpat =0 <%source »%resuIt' ini t lib. ins. pas' @ 

.,%% *FIELD *= *{[-.l*}.?*" 'db_$get='field_type_id @ 

(library database id. @'@1@',@1);' 
Icom/chpat =0 <%source »%result'init lib. ins.pas' @ 

"%% *SET *= * {[ -. ] *}.?*" 'db_$get_set_type_id @ 

(library_database_id, @'@1@' ,(1);' 
eon 

CAD Tools Project System Model A-13 



A-14 

IF existf com THEN /com/crl com/library.sch 0 
%result. sch -r 

ELSE wd >?/dev/null I read In where 

ENDIF 
%done; 

args "WARNING: 'where/com does not exist -
args "link library.sch not created" 

depends result 
db $gen type ins; 

end of lIbrary.sch; 

{----------------------------------------------------------} 
{library} 

element library general.pas Olibrary lib 
depends source -

['/sYS/ins/base.ins.pas'] ; 
db library.ins.pas; 
constants.ins.pas; 
upper case.ins.pas; 
library general.ins.pas; 

end of librarY_general.pas; 

element join library.pas @ library lib 
depends_source -

['/sys/ins/base.ins.pas']; 
db_design_and_library.ins.pas; 
design interface.ins.pas; 
library general.ins.pas; 
component.ins.pas; 
join_library.ins.pas; 

end of join_library.pas; 

{----------------------------------------------------------} 
{inserts} 

element db design.ins.pas = 
{ This is one of several insert files used by other 

components. Note that it is only declared here so that 
it can be widely used. and that its dependencies are 
promoted to be direct dependencies of all referencing 
components. 

declare_only; 
promote_depends; 
depends_source 

design database.ins.pas; 
db interface.ins.pas; 

end of-db_design.ins.pas; 

element design_database.ins.pas 
declare only; 
promote depends; 
depends -source 

design-database declare.ins.pas; 
depends -result -

cad. soh; 
end of design_database.ins.pas; 

CAD Tools Project System Model 



element design database define.ins.pas 
declare only;- -
promote depends; 
depends -source 

design~database_declare.ins.pas; 
depends result 

cad.sch; 
end of design_database_define.ins.pas; 

element db library.ins.pas 
declare only; 
promote_depends; 
depends_source 

library database.ins.pas; 
db interface.ins.pas; 

end of-db_library.ins.pas; 

element library database.ins.pas 
declare_only; -
promote depends; 
depends':source 

library database declare.ins.pas; 
depends_result -

library. sch; 
end of library_database.ins.pas; 

element library database define.ins.pas 
declare only; - -
promote depends; 
depends':source 

library database declare.ins.pas; 
depends_result -

library.sch; 
end of library_database_define.ins.pas; 

element db design and library.ins.pas 
declare_only; - -
promote_depends; 
depends source 

db interface.ins.pas; 
design database.ins.pas; 
library database.ins.pas; 

end of db_design_and_library.ins.pas; 

element utilities.ins.pas 
declare_only; 
promote depends; 
depends':source 

args.ins.pas; 
banner.ins.pas; 
upcase.ins.pas; 
upper case.ins.pas; 
writeshort.ins.pas; 
equal string.ins.pas; 

end of utilities. ins. pas; 

CAD Tools Project System Model A-IS 



A-16 

{----------------------------------------------------------} 
{applications} 

element asi conv.pas @ applications lib 
depends_source -

['/sys/ins/base.ins.pas'] ; 
['/sys/ins/vfmt.ins.pas'] ; 
db design.ins.pas; 

end of aSi_conv. pas; 

aggregate load_cad = 
translate 

//max/cad/src/build/bind «~I 
%result of(?*.pas) .bin 
%result-of(utilities) .lbr 
%result-of (design interface) .lbr 
-b %result -

eon 

IF existf com THEN /com/crl comlload cad %result-r 
ELSE wd >?/dev/null I readln where -

args "WARNING: 'where/com does not exist - " 
args "link load_cad not created" 

ENDIF 
%done; 
depends_result 
element load_cad. pas @ applications_lib 

depends source 
['/systins/base.ins.pas'] ; 
['/sys/ins/pgm.ins.pas'] ; 
['/sys/ins/error.ins.pas'] ; 
['/sys/ins/vfmt.ins.pas'] ; 
db_design_and_library.ins.pas; 
banner.ins.pas; 
writeshort.ins.pas; 
join library.ins.pas; 
design interface.ins.pas; 
library general.ins.pas; 
component.ins.pas; 
args.ins.pas; 
pin.ins.pas; 
gate.ins.pas; 
net.ins.pas; 
asi conv.ins.pas; 
design general.ins.pas; 

end of load cad.pas; 
utilities; -
db interface.pas; 
inIt database.pas; 
init-library database.pas; 
join=library~pas; 
library_general.pas; 
asi conv.pas; 
design interface; 

end of load_cad; 

CAD Tools Project System Model 



aggregate rcom_cad = 
translate 

eon 
/com/crl /arc -/arc -r 
args "/ARe link now points to -/ARC 
/com/ld //max/cad/arc -ld -c -nwarn >7/dev/null , @ 
WHILE READLN arc rev DO 

/com/crl -/arc-/cad/arc/"arc rev -r 
/com/ld -11 -nhd -It -en -/arc 
/ /max/cad/src/build/bind -b %result. "arc rev @ 

! 
eon 

-nound -«! -
-/arc/sys/lib/dfi.bin 
%result of(rcom to cad. pas) . "arc rev.bin 
%resuICof(db interface. pas) .bin
%result-of(init database.pas) .bin 
% result-of (in it -library database. pas) . bin 
%result-of(join -library -:-pas) . bin 
%result-of(library general. pas) .bin 
% result-of (utili tieS) .lbr 
%resulC of (design interface) .lbr 
%resul(of(defaultJlwr_gnd_names .pas). bin 

IF existf com THEN /com/crl @ 
com/rcom cad. "arc rev %result. "arc rev -r 

ELSE wd >7/dev/null-, read In where -
args "WARNING: "where/com does not exist -
args "link rcom_cad."arc_rev not created" 

ENDIF 
args "bind with arclib (test only) and " 
args "check for undefined globals" 
args "'Attempt to respecify start addr' message is ok" 
//max/cad/src/build/bind %result. "arc rev @ 

-/arc/arclib -
ENDDO 
RETURN -T 

%done; 
depends result 

elen1ent rcom to cad. pas @ applications lib 
depends tools - -

'//max/cad/src/build/pas'; 

CAD Tools Project System Model A-17 



A-IS 

translate 
eon 
/com/crl larc -/arc -r 
args "/ARC link now points to -/ARC" 
/com/ld //max/cad/arc -ld -c >?/dev/null @ 
WHILE READLN arc rev DO 

/com/crl -/arc-//max/cad/arc/Aarc rev -r 
/com/ld -nhd -11 -It -en -/arc -
//max/cad/src/build/pas %source @ 
%cr_opt(-dba) %option(-dbs) CiI 
%option(-comchk) %option(-subchk) @ 

%option (-opt) %option (-nopt) @ 

%option(-l, ,-1 %result. A arc_rev) @ 

-b %result. -arc_rev 
ENDDO 
RETURN -T 

%done; 

depends source 
['/sys/ins/base.ins.pas'); 
['/sys/ins/vfmt.ins.pas'); 
['/sys/ins/pfm.ins.pas') ; 
['/sys/ins/pgm.ins.pas'); 
['/sys/ins/error.ins.pas') ; 
db design and library.ins.pas; 
constants~ins~pas; 
design interface.ins.pas; 
library general.ins.pas; 
utilities.ins.pas; 
pin.ins.pas; 
net.ins.pas; 
gate.ins.pas; 
join library.ins.pas; 
defa~lt-pwr_gnd_names.ins.pas; 
design general.ins.pas; 

end of rcom_to_cad.pas; 

db_interface.pas; 
init_database.pas; 
init_library_database.pas; 
join_library.pas; 
library general.pas; 
design interface; 
utilities; 
default-pwr_gnd_names.pas; 

end of rcom_cad; 

end of cad; 

----88----

CAD Tools Project System Model 



Appendix B 

OS Project System 
Model 

This appendix presents an abbreviated version of the system model 
used by the as engineers at Apollo. For more information on the 
as project, see Chapter 3. 

%var OPSYSl OPSYS2 
%if not (OPSYSl or OPSYS2) %then 

%error 'You must have a -TARGET rule in your @ 
model thread' 

%exit 
%endif 

%if OPSYSl %then 
nnodel operating systeml 
alias -

os = '1'; 
asmname = 'asm'; 
asmoptnuc = '-ndb -config os'; 
asmoptker = '-ndb -config os apollo_%exp(os)'; 
kerbin = 'bin%exp(os)'; 
nucbin = 'bin'; 
pasname = 'pas'; 
pasoptnuc = '-cpu any -talign -info 3 -config os'; 

OS Project System Model B-1 



%elseif OPSYS2 %then 
O1odel operating system2 
alias -

os = '2'; 
asmname = 'asm'; 
asmoptnuc = '-ndb -config os'; 
asmoptker = '-ndb -config os apollo_%exp(os)'; 
kerbin = 'bin%exp (os) , ; 
nucbin = 'bin'; 
pasname = 'pas'; 
pasoptnuc = '-cpu any -talign -info 3 -config os'; 

%endif 

common aliases } 

title 

asm = ' / /opera/tools/%exp(asmname)'; 
pas = ' / /opera/tools/%exp (pasname) , 

'Operating System %exp (os) , ; 
syste01 

, / /opera/op_sys/opsys%exp (os) , ; 

pool 
opsysJ>0ol 

'//opera/op_sys/pools/sr20.bl002/opsys%exp(os)'; 
nucJ>ool = 

{ Both of the listed physical pools are searched for 
usable derived objects when the configuration 
manager builds components for nucJ>ool. If no 
suitable substitute exists, however, the 
configuration manager puts the new derived objects 
in the physical pool listed first. 

} 
'//opera/op_sys/pools/sr20.bl002/bin', 
'//opera/op sys/pools/sr20.bl001/bin'; 

ker pool = -
- , / /opera/op sys/pools/sr20. blo02/bin%exp (os) , ; 

, //opera/op:=sys/pools!Sr2o.blool/bin%exp(os)'; 

library 
nuc 
ker 
ins 
kins 
com 

shell 
, /com/sh' ; 

'//opera/op sys/nuc'; 
'//opera/op:=sys/ker'; 
'//opera/op sys/ins'; 
'//opera/op-sys/kins'; 
'//opera/op:=sys/scripts'; 

B-2 OS Project System Model 



{ Defaults for all Pascal source modules } 
default for %. pas = 

depends_source 
base.ins.pas @ ins; 
force build.pas @ nuc; 

depends tools 
['%exp(pas) ']; 
[crll @ com]; 

end; 

{ Defaults for all ASM modules} 
default for %. asm = 

depends_source 
base.ins.asm @ ins; 
force_build.asm @ nuc; 

depends tools 
['%exp(asm) ']; 
[crll @ com] ; 

end; 

use pool 
-opsysJ>ool; 

depends_tools 
['/com/bind']; 
['//opera/op_sys/rfc'] ; 
['//opera/op sys/rm']; 
[make_build_time @ com]; 
rfc_image @ com; 

Source dependencies for top level build ("make_build_time"l 

depends source 
kernel.ins.pas @ kins; 
base.ins.pas @ ins; 
print build time.pas @ ker; 
get build tIme.ins.pas @ ins; 
md If.ins~pas @ kins; 
buIld_string @ com; 

translate 
# This translation rule calls a script to give the 
# operating system a time stamp. Then it binds all the 
# system components. 
# 
von; eon; abtsev -p 

//opera/op_sys/scripts/make_build_time %exp(os) @ 
%result. bldt. ins. pas @ 

%resuIt. bldt. asm @ 

%result. pbldt. bin @ 

%result. bldt. bin @ 

OS Project System Model B-3 



# 
##### bind 
# 
bind -sys -b %result.bin -map >%resuU.bmap * «I 
{ 

} 

All result dependencies are mentioned by name in 
the following list instead of being referenced 
by a wildcard (e.g. %RESULT OF(?*.bin» in order to 
optimize the bind sequence and achieve better 
performance. 

%resuU of (crash record. asm) . bin 
%resuICbldt. bin-
%resuU of (addr. asm) . bin 
%resul(of (disk_buffers. asm) . bin 
%resuU of(ast .pas) . bin 
%resuICof(chksum.pas) .bin 
%resuU-of(crash system.asm) .bin 
%resuU-of(iodefs.asm) .bin 
%resuU-of(io tbls.asm) .bin 
%resuU-of(io-wired.pas) .bin 
%resulC of (net io. pas) . bin 
%resulC of(netbuf .pas) . bin 
%resuU-of(netlog asm.asm) .bin 
%resulC of (network. pas) . bin 
%resuU-of (gpu asm. asm) . bin 
%resulC of (stacks .asm) . bin 
%result-of (uid $hash. asm) . bin 
%resuU-of (uid-list. asm) . bin 
%resuU-of(ioinit.pas) .bin 
%resuU:-pbldt. bin 
%result of(svc catcher cm.asm). bin 
%result-of(uid:-pas) .bin 
%resuU-of(acl.pas) .bin 
%resuU-of (ringlog. pas) . bin 
%result-of(io.pas) .bin 
%resuU-of(dtty.pas) .bin 
%resulC of(dtty asm. asm) . bin 
%resuU-of (color. pas) . bin 
%resuICof(gpu.pas) .bin 
%resuU-of(lpr.pas) .bin 
%resuU-of(cbuf .pas) . bin 
%resuU-of(netlog start addr. asm) . bin 
%resuU-of (netlog:-pas) . bin 
%resuU-of(netlog end addr.asm) .bin 
%resul(of(bufferYages. asm) . bin 
-und 
-end 
1 

B-4 OS Project System Model 



if eqs %cr_opt(-xref) then 
# 
# The rfc script, used below, creates a special 
# object file format for the operating system. 
# 
I/opera/op sys/tools/rfc %result. bin %result. rfc @ 

>%resUIt. rmap «! 
-d absolute 0 
-d traP-9age 0 
-d prot 0 
-d ptt $700000 
-d crash record $EOOOOO 
-d cold - $101400 $101400 
-d dump2 *page 

%then %if OPSYS1 
-d dump 

%else 
$E00400 $102000 

-d dump 
%endif 

$e00400 $101cOO 

-d oS-9roc *page 
-d wired-9roc * 
-d wired data * 
-d net-9ort_table * 
-d rem file $data * 
-d page init *page 
-d os_init-9roc *page 
-d os init data * 
-d procedure$ *segment 
-d proc2_create-9roc * 
-d proc2_delete-9roc * 
-d oS-9roc_end * 
-d os data *page 
-d data$ * 
-d proc2 create data * 
-d proc2-delete-data * 
-d iic_aqwrd-9roc *page 
-d iic aqwrd data * 
-d rtwIred code *page 
-d rtwired-data * 
-d mt-9age- *page 
-d pbu-9age *page 
-d pbu_wired-9roc * 
-d pbu wired data * 
-d reloc - * 

OS Project System Model B-5 



%if OPSYS2 %then 
-reloc 

%endif 
* * * 

-d acl $data * 
-d file $lot data * 
-d ringlog_$data * 
-d proc2 $data * 
-d oS_data_end * 
-d os-page *segment 
-d page * 
-d os-page_end * 
-d unwired stacks *page 
-d disk buffers *page 
-d pbu tables *page 
-d oS_buffers_end *page 
-d netpool *page 
-d vm tables *page 
-d iodefs $FAOOOO 
-m 
-u 
-end 

# The rm sript, used below, builds a map of the 
# system. 
# 
args 'dsee full build name @ 

I edstr "s/{?*}@n/Build ID: @1/" >%result.map 
/ /opera/op_sys/tools/rm %result. rfc %result. bmap @ 

%result. rmap »%result. map 
endif 

# 
# These files can be deleted once used. 
# 
dlf %result. bldt. ins. pas @ 

%result. bldt. asm @ 

%result.pbldt.bin @ 

%result. bldt. bin 
%done; 

depends_result 

{*************************************************** 
******************* N U C ************************* 
*************************************************** 

default for 7* 

end; 

@ nuc; 
use pool 

-nuc-pool; 

B-6 OS Project System Model 



default for '!I..pas = 
translate 

%exp(pas) %source -b %result 0 
-1 %result.lst %exp (pasoptnuc) @ 

-abs -xrs -ndb -comchk -opt -align -exp @ 
-idir //opera/op_sys %option(-map) @ 

%cr_opt(-peb) %option(-dbs) %cr_opt(-dba) @ 

%option (-extra) %cr opt (-cpu) @ 

%cr opt(-cond) %cr opt(-subchk) @ 

%oPtion(-warn) -
%done; 

end; 

default for '!I.. asm 
translate 

%done; 
end; 

%exp (asm) %source -b %result @ 

-1 %result.lst -idir / /opera/op_sys @ 

%exp (asmoptnuc) 

element acl. pas = 

end; 

depends_source 
uid.ins.pas @ ins; 
file.ins.pas @ ins; 
mst.ins.pas 0 ins; 
rem file.ins.pas @ ins; 
ml.ins.pas @ ins; 
procl.ins.pas @ ins; 
network.ins.pas 0 ins; 
acl.ins.pas 0 ins; 
dbuf.ins.pas @ ins; 
ml.ins.pas @ ins; 
route.ins.pas 0 ins; 
iic.ins.pas @ ins; 

element addr. asm = 
depends_source 

os_or_sau.ins.asm @ ins; 
end; 

element crash_record.asm; 

element disk_buffers.asm; 

element dt ty asm. asm = 
depends source 

os_or_sau.ins.asm @ ins; 
end; 

element io wired. pas = 
depends_source 

io.ins.pas @ ins; 
end; 

OS Project System Model B-7 



) ; 

ele~ent netlog.pas = 
depends_source 

procl.ins.pas @ ins; 
mmap.ins.pas @ ins; 
mst.ins.pas @ ins; 
time.ins.pas 0 ins; 
io.ins.pas 0 ins; 
netbuf.ins.pas 0 ins; 
pkt.ins.pas @ ins; 
ring.ins.pas @ ins; 
netlog.ins.pas 0 ins; 
net_io.ins.pas 0 ins; 

end; 

ele~ent net log asm.asm 
depends_so"'iirce 

os_or_sau.ins.asm @ ins; 
end; 

ele~ent net log_end_addr. asm; 

ele~ent netlog_start_addr.asm; 

ele~ent ringlog.pas = 
depends_source 

end; 

io.ins.pas @ ins; 
wp.ins.pas @ ins; 
network.ins.pas @ ins; 
ring.ins.pas 0 ins; 
ringlog.ins.pas @ ins; 
pkt.ins.pas @ ins; 

ele~ent uid.pas = 

end; 

depends source 
time~ins.pas @ ins; 
time.pvt.pas 0 ins; 
uid.ins.pas @ ins; 

ele~ent uid $hash. asm = 
depends:source 

os_or_sau.ins.asm @ ins; 
end; 

ele~ent uid list. asm = 
depends:source 

os_or_sau.ins.asm 0 ins; 
end; 

B-8 OS Project System Model 



{*************************************************** 
******************* K E R ************************* 
*************************************************** 

default for 1* 
@ ker; 
use_pool 

keryoo1; 
end; 

default for %. pas = 
depends source 

kerne1.ins.pas @ kins; 
translate 

%exp(pas) %source -b %result @ 

-1 %result.1st -xrs -ndb -comchk -opt -nalign @ 

-cpu any -exp -idir //opera/op sys @ 
-config os apollo%exp(os) %optlon(-map) @ 

%cr_opt(-peb) %option(-dbs) %cr_opt(-dba) @ 

%option (-extra) %cr opt (-cpu) @ 

%cr_opt (-cond) %cr_opt (-subchk) @ 

%option (-warn) 
%done; 

end; 

default for %. asm = 

end; 

depends source 
kerne1.ins.asm @ kins; 

translate 

%done; 

%exp (asm) %source -b %result @ 

-1 %result. 1st -idir / /opera/op_sys @ 

%exp (asmoptker) 

element ast. pas = 
depends_source 

end; 

mmu.ins.pas @ ins; 
mmu.kins.pas @ kins; 
mmap.ins.pas @ ins; 
vol.ins.pas @ ins; 
mst.pvt.pas @ kins; 
ast.ins.pas @ ins; 
ast.pvt.pas @ ins; 
networkyage.ins.pas @ ins; 

element bufferyages. asm 
depends source 

cpu.ins.asm @ kins; 
end; 

OS Project System Model B-9 



B-IO 

element cbuf. pas = 
depends_source 

ec.ins.pas • ins; 
fim.ins.pas • ins; 
procl.ins.pas • ins; 
cbuf.ins.pas • ins; 

end; 

element chksum. pas = 
depends_source 

os_or_sau.ins.pas • ins; 
vm.ins.pas • kins; 
mmap.ins.pas • ins; 
mmap.pvt.pas • kins; 
mmu.ins.pas • ins; 
mmu.kins.pas • kins; 

end; 

element color. pas = 
depends_source 

end; 

procl.ins.pas • ins; 
mst.ins.pas • ins; 
wp.ins.pas • ins; 
vm.ins.pas • kins; 
mmu.ins.pas • ins; 
mmu.kins.pas • kins; 
io.ins.pas • ins; 
smdu.ins.pas • ins; 
iomap.ins.pas • kins; 
vector.ins.pas • kins; 
ec.ins.pas • ins; 
time.ins.pas • ins; 
testpage.ins.pas • ins; 
color.ins.pas • ins; 
color nuc.ins.pas • kins; 
color=ops.ins.pas • kins; 
vme.ins.pas • kins; 

element crash system.asm = 
depends_source 

end; 

vm.ins.asm • kins; 
iodefs_a.ins.asm • kins; 
cregs.ins.asm • kins; 
md if.ins.asm • kins; 
color4_regs.ins.asm. ins; 
cpu.ins.asm • kins; 
smd.ins.asm • kins; 

OS Project System Model 



element dtty.pas = 
depends_source 

procl.ins.pas • ins; 
vfmt.ins.pas • ins; 
ec.ins.pas • ins; 
fim.ins.pas • ins; 
term.ins.pas • ins; 
term.pvt.pas • kins; 
smd.ins.pas • ins; 
color.ins;pas. ins; 
color2.ins.pas • ins; 
color_nuc.ins.pas • kins; 
smdu.ins.pas • ins; 
color_ops.ins.pas • kins; 
dtty.ins.pas • ins; 

end; 

element gpu_asm. asm; 

element gpu. pas = 
depends source 

vol.ins.pas • ins; 
file.ins.pas • ins; 
ml.ins.pas • ins; 
mmap.ins.pas • ins; 
mmu.ins.pas • ins; 
mst.ins.pas • ins; 
procl.ins.pas • ins; 
proc2.ins.pas • ins; 
time.ins.pas • ins; 
wp.ins.pas • ins; 
fim.ins.pas • iris; 
vm.ins.pas • kins; 

end; 

element io. pas = 

end; 

depends source 
kernel.ins.pas • kins; 
name.ins.pas • ins; 
procl.ins.pas • ins; 
pbu.ins.pas at os ins; 
network.ins~pas .-ins; 
cal.ins.pas • ins; 
route.ins.pas • ins; 
mt.ins.pas • ins; 
io. ins. pas • ins; 

element iodefs. asm = 
depends source 

iodefs_a.ins.asm • kins; 
end; 

OS Project System Model B-U 



B-12 

element ioini t . pas = 
depends_source 

iomap.ins.pas @ kins; 
vector.ins.pas • kins; 
dma.ins.pas • kins; 
mmu.ins.pas • ins; 
io.ins.pas • ins; 
ct.ins.pas. ins; 
mI.ins.pas • ins; 
dbuf.ins.pas • ins; 

end; 

element io tbIs. asm = 
depends_source 

vector.ins.asm @ kins; 
disktape.pvt.asm • kins; 
ring.pvt.asm • kins; 
pbu.ins.asm • kins; 
disk.pvt.asm • ins; 
iOdefs_a.ins.asm • kins; 

end; 

element Ipr. pas = 
depends_source 

name.ins.pas @ ins; 
pbu.ins.pas_at_os_ins; 
pbu.pvt.pas • kins; 
cbuf.ins.pas @ ins; 
mst.ins.pas. ins; 
wp.ins.pas @ ins; 
time.ins.pas • ins; 
procl.ins.pas @ ins; 
proc2.ins.pas. ins; 
testpage.ins.pas • ins; 
Ipr.ins.pas • ins; 

end; 

element netbuf. pas = 
depends_source 

vm.ins.pas @ kins; 
mmu.ins.pas @ ins; 
mmu.kins.pas • kins; 
mmap.ins.pas. ins; 
wp.ins.pas • ins; 
vol.ins.pas • ins; 
network.ins.pas • ins; 
netbuf.ins.pas. ins; 

end; 

OS Project System Model 



elennent network.pas = 
depends_source 

vm.ins.pas 0 kins; 
os or sau.ins.pas 0 ins; 
procl~ins.pas • ins; 
vol.ins.pas • ins; 
file.ins.pas • ins; 
ast.ins.pas • ins; 
win.ins.pas .ins; 
io.ins.pas • ins; 
wp.ins.pas • ins; 
mmap.ins.pas • ins; 
mmap.pvt.pas • kins; 
pmap.ins.pas • ins; 
time.ins.pas • ins; 
ec.ins.pas • ins; 
ml.ins.pas • ins; 
vfmt.ins.pas 0 ins; 
network.ins.pas • ins; 
network-page.ins.pas • ins; 
cal.ins.pas • ins; 
rem file.ins.pas • ins; 
netbuf.ins.pas • ins; 
ring.ins.pas • ins; 
pkt.ins.pas • ins; 
net_io.ins.pas • ins; 

end; 

element net io. pas = 
depends-:'source 

end; 

io.ins.pas 0 ins; 
iomap.ins.pas • kins; 
iic.ins.pas 0 ins; 
ml.ins.pas 0 ins; 
mmap.ins.pas • ins; 
mmap.pvt.pas 0 kins; 
netbuf.ins.pas • ins; 
netlog.ins.pas • ins; 
network.ins.pas 0 ins; 
pkt.ins.pas 0 ins; 
procl.ins.pas • ins; 
ring.ins.pas • ins; 
ringlog.ins.pas 0 ins; 
route.ins.pas • ins; 
sock.ins.pas 0 ins; 
time.ins.pas • ins; 
net_io.ins.pas • ins; 

elennent stacks. asm; 

OS Project System Model B-13 



B-14 

) ; 

elenaent sve entries em @ kins 
naake visible; -
depen-ds tools 

['//opera/op sys/tools/preproe']; 
['//opera/op=sys/tools/sve-prep'] ; 

depends_source 
kernel.ins.asm @ kins; 

translate 
eon 
//opera/op sys/tools/preproe @ 

-eonfig os apollo_%exp(os) <%source @ 

I /opera/op_sys/tools/svc-prep @ 
>% result. codes. ins. asm @ 

-svc %result.lib. ins. asm 
%done; 

end; 

elenaent sve catcher cm.asm 
depends-source -

vm.ins.asm @ kins; 
fault.ins.asm at os_ins; 

depends result -
svc.:entries_cm; 

end; 

{*************************************************** 
******************* INS ************************* 
*************************************************** 

%include '//opera/op_sys/os_ins.ins.sml'; 

{*************************************************** 
****************** KIN S ************************ 
*************************************************** 

%lnclude '//opera/op_sys/os_kins.ins.sml'; 

end {of opsysN}; 

----- 88 -----

OS Project System Model 



Appendix C 

DSEE Project 
System Models 

The OSEE project uses two system models: one to build the OSEE 
command facility, and one to build the system model compiler. 
Abbreviated versions of both models are presented here. For de
tails on the OSEE engineering project and how these two system 
models are related to one another, read Chapter 4. 

Both models use %include directives to incorporate model frag
ments in them. These two fragments, dsee_defauIt_trans.ins.sml 
and dsee_common.ins.sml, are presented following the text of the 
system model root fragments. 

DSEE Command Facility System Model 

%var bllJlOol bugfixJlool 
model dsee = 
system "//orange/case/dsee"; 
title "Domain Software Engineering Environment System Model"; 

library 
ease_l = '//orange/ease/ease_l'; 
case_em = '//orange/ease/ease_em'; 

DSEE Project System Models C-l 



{ We use different pool declarations for forced builds, so 
that developmental builds don't get bumped out of the pool 

} 
%If bl1Jlool %then 

pool 
cmJlool = '//black/case/bl1Jlool/cmbin'; 
hmJlool = '//black/case/bl1Jlool/hmbin'; 

%elseif bugfixJlool %then 
pool 

cmJlool 
hmJlool 

%else 
pool 

'//black/case/bugfiXJlool/cmbin'; 
'//black/case/bugfixJlool/hmbin'; 

cmJlool '//black/case/cmbin'; 
hmJlool = '//black/case/hmbin'; 

%endlf 

shell "/com/sh"; 

default for 1* 
useJ>ool 

cmJlool; 
end; 

default for 1*. pas 
• case cm; 

end; -

Note how we make default dependencies be noncritical so that 
major rebuilds are not required when the dependency changes. 
If a change makes a global rebuild necessary, use 
BUILD -FORCE_ALL. 

%Include '//orange/case/case cm/dsee default trans.ins.sml'; 
default for "'.pas = - - -

depends_tools 
['/com/pas'] ; 

depends source 
[khronos_global_types.ins.pas • case_1]; 
['/sys/ins/base.ins.pas']; 

depends result 
[dpm.msg] ; 

end of "'. pas; 

default for 1*. msg 
• case_cm; 

end; 

default for 1*. asm 
• case_cm; 

end; 

C-2 DSEE Project System Models 



useJ»ool 
cmJlool; 

{ Here's the translation rule for DSEE Model block. It creates 
a version number for the resultant code, binds it and the 
other parts of the software, and creates a link to the 
software in the working directory. 

} 
translate 

//orange/case/tools/dsee version info.sh 
cpf //orange/case/precomp/dsee_version_info.pas • 

%result. version. pas 
/com/pas %result.version.pas -b %result.version 
bind -b %result -nomes - «! 

! 

%result of(".pas) .bin 
%result-of(".msg) .bin 
% result-of(". asm) . bin 
%resulC of (outside bins) 
% result-of(khr db)-
% result-of (not - cm) 
%result:-version. bin 
//orange/case/bin/current_dsee_license.bin 

/com/dlf %result. version. 1* -nq 
if eqs %option(-nl) then 

crl xcase %result -r 
args "link xcase created in your working directory" 

endif 
%done; 

depends tools 
{tools for dsee itself} 
dsee version info.sh • tools lib; 
string_length.sh • tools_lib; 

The structure of the DSEE software is as follows. First, 
there are the DSEE builder, MAKE MODEL, and the code that 
creates an environment; these are built as part of the 
system, but they aren't bound in with the managers. 
Following these three Aggregates in the system model are the 
elements that constitute the configuration manager and three 
other Aggregates: outside bins, which is a bound collection 
of binaries from outside the DSEE project; khr_db, the 
history database; and not_cm, which represents all other 
code (including the model fragment dsee_common.ins.sml, 
which contains Elements that are shared with the 
system model compiler). The configuration manager elements 
and these three Aggregates are bound together by the Model 
block's translation rule.} 

DSEE Project System Models C-3 



depends result 
aggregate dsee_builder 

default for 7*. pas 
• case cm; 
end of-7*. pas; 

translate 
/com/bind -b %result %result_of(7*.pas) .bin 
%done; 

depends_result 
element spab. pas 

depends source 
rock-settings.ins.pas; 
spab-utl.ins.pas; 
bldcom to spab.ins.pas; 

end of spab. pas; -

element spab ut 1. pas = 
depends_source 

spab utl.ins.pas; 
end of spab_~tl.pas; 

rock_settings.pas; 
end of dsee_builder; 

aggregate make_model 
translate 

/com/cpf %result of (make model.pas) .bin %result 
%done; --
depends_result 

element make model. pas @ tools_lib; 
end of make_model; -

aggregate create env shell 
default for 7* ~pas -= 

@ case cm; 
depends_source 

rock_settings.ins.pas; 
end of 7 * . pas; 

translate 
!com/bind -b %result - «! 

%result of (7*) . bin 
! -
%done; 

depends_result 
element create_env_shell.pas = 

depends source 
dsee~to_create_env_shell.ins.pas; 

end of create_env _shell. pas; 

rock settings.pas; 
end of create_env_shell; 

C-4 DSEE Project System Models 



element dem.msg @ case_cm 
make_visible; 

depends source 
bld_dem.sh • tools_lib; 

translate 
//orange/case/tools/bld demo sh %result 
%done; -

end of dem.msg; 

element dpm. msg 
make_visible; 

depends_source 
bld_dpm.sh • tools_lib; 

translate 
//orange/case/tools/bld dpm. sh %resuIt. bin 

%done; -
end of dpm. msg; 

element khronos_utl.ins.pas @ case_1 = 
promote_depends; {nested include files} 

depends_source 
[hf_sm_utl.ins.pas @ case_1]; 
[sort utl.ins.pas @ case 1]; 

end of khronos_utl. ins. pas; -

aggregate outside bins = 
depends_tools-

{ We make these tools dependencies so that 
their version stamps are recorded in BeTs 

} 
'/usx/lib/remote/remote.bin'; 
'/usx/lib/user info/user info.bin'; 
'//ylang/bind/objio.bin'; 
'//orange/case/sf_ipc!sflib_no_user_info'; 

translate 
/com/bind -b %resuIt - «! 
/usx/lib/remote/remote.bin 
/usx/lib/user info/user info. bin 
//ylang/bind/objio.bin -
//orange/case/sf ipc/sflib no user info 
%result of (case hm $data move-:-asm) -:-bin 
% result-of(khr xsm-:-pas). bin 

! - -

%done; 

DSEE Project System Models C-S 



depends result 
" element khr_xsm.pas • case_hm = 

depends source 
khr-xsm.ins.pas • case hm; 
case hm Shidden.ins.pas • case hm; 

end of khr_xsm.pas; -

case hm Sdata move.asm; 
end of outside_bins; -

element bld.pas = 
depends source 

khr_fault.ins.pas • case_1; 
[khronos_global_data.ins.pas • CaSe_1]; 
khronos_cl.ins.pas • case_1; 
cm_global_types.ins.pas; 
cm_,lobal_data.ins.pas; 
bp.ins.pas; 
bld_,lobal.ins.pas; 
bld-pass1.ins.pas; 
bld-pass2.ins.pas; 
bld-pass3 .ins.pas; 
bld-pass4.ins.pas; 
bld-prev_bct_utl.ins.pas; 

bld_utl.ins.pas; 
bld_blessing.ins.pas; 
bld-previous.ins.pas; 
bld.ins.pas; 
[khronos_utl.ins.pas • case_1]; 
lastbld.ins.pas; 

end; 

element bld-previous. pas 
depends_source 

cm_global_types.ins.pas; 
sm.ins.pas; 
fsm.ins.pas; 
bitvector_utl.ins.pas; 
bld-prev_bct_types.ins.pas; 
bld_utl.ins.pas; 
bld-previous.ins.pas; 

end; 

C-6 DSEE Project System Models 



element brm_text_utl. pas = 
depends_source 

[khronos_global_data.ins.pas • ease_11; 
khr_fault.ins.pas • ease_1; 
cm_global_types.ins.pas; 
fsm.ins.pas; 
bet~hashman.ins.pas; 
bitveetor_utl.ins.pas; 
sm.ins.pas; 
cm_ut 1. ins. pas; 
et.ins.pas; 
common bet.ins.pas; 
vbet.ins.pas; 
brm text.ins.pas; 
brm-text internal.ins.pas; 
[khronos:utl.ins.pas • ease_11; 

end; 

element em sys. pas = 
depends-:'source 

[khronos_global_data.ins.pas • ease_11; 
khronos el.ins.pas • case 1; 
khr fault.ins.pas • case 1; 
khr:lib.ins.pas • ease_1; 
etm_tasklist.ins.pas • ease_1; 
ctm task.ins.pas • case 1; 
session_memory.ins.pas i case_1; 
em_global_types.ins.pas; 
sm_driver.ins.pas; 
sm_switeh.ins.pas; 
emse.ins.pas; 
bp. ins .pas; 
em_sys.ins.pas; 
[khronos utl.ins.pas • ease_11; 

end; -

element lastbld. pas = 
depends source 

[khronos global data.ins.pas. case 11; 
[khronos:utl.ins.pas. ease_11; -
khr fault.ins.pas • case 1; 
em_global_types.ins.pas;
sm.ins.pas; 
em utl.ins.pas; 
common bet.ins.pas; 
vbet.ins.pas; 
bet_utl. ins. pas; 
bp. ins .pas; 
lastbld.ins.pas; 

end; 

DSEE Project System Models C-7 



element ereate env. pas = 
depends_source 

[khronos_global_data.ins.pas @ ease_1]; 
[khronos utl.ins.pas @ ease 1]; 
khr_fault.ins.pas @ ease_1;
em_global_types.ins.pas; 
em_global_data.ins.pas; 
bitveetor_utl.ins.pas; 

end; 

em utl.ins.pas; 
bp:-ins.pas; 
eommon bet.ins.pas; 
vbet.ins.pas; 
bet stringtab.ins.pas; 
bet=hashman.ins.pas; 
ereate_env.ins.pas; 
roek settings.ins.pas; 
dsee=to_ereate_env_shell.ins.pas; 

element ere. asm; 

element et. pas = 
depends_source 

em_global_types.ins.pas; 
em_global_data.ins.pas; 
bitveetor_utl.ins.pas; 
sm.ins.pas; 
[khronos global data.ins.pas @ ease_1]; 
et.ins.pas; .-
met.ins.pas; 
met ut 1. ins. pas; 
em utI. ins. pas; 
khr environment.ins.pas @ ease 1; 
[khronos_utl.ins.pas @ ease_1J: 

end; 

element data_zero.asm; 

element fsm. pas = 
depends_source 

[khronos global data.ins.pas @ ease_1]; 
khr_fault.ins.pas @ ease_1; 
em global types.ins.pas; 
fsm. ins. pas; 
[khronos_utl.ins.pas @ ease_1J; 

end; 

element roek_settings.pas = 
depends_source 

roek settings.ins.pas; 
end; -

C-8 DSEE Project System Models 



element rm. pas = 
depends source 

[khronos_global_data.ins.pas @ case_1]; 
[khronos utl.ins.pas @ case 1]; 
khr fault.ins.pas 0 case 1;
khronos_cl.ins.pas 0 case_1; 
sm. ins. pas; 
bitvector utl.ins.pas; 
cm_ut 1. ins. pas; 
common bct.ins.pas; 
vbct.ins.pas; 
cm_global_types.ins.pas; 
cmsc.ins.pas; 
rm_utl. ins. pas; 
rm.ins.pas; 

end; 

The following Aggregate builds all the non-configuration 
management managers (e.g. history manager, task manager) 

aggregate not_cm = 
default for 1* = 

use_pool 
hmJ>ool; 

end; 

default for ?*.pas 
o case_1; 

end; 

default for 1*. asm 
o case_1; 

end; 

use_pool 
hmJ>ool; 

translate 
Icom/bind -b %result -nomes -noundefined - «! 
%result of(1*.pas) .bin 
%resul(of(1*. asm) . bin 
! 
%done; 

depends result 
element ctm edit task. pas = 

depends source 
[khronos global data.ins.pas @ case_1J; 
khronos cl.ins.pas @ case 1; 
ctm edit uti.ins.pas; -
ctm-edit-task.ins.pas; 
[khronos-utl.ins.pas • case 1J; 

end; - -

DSEE Project System Models C-9 



C-IO 

element ctm task.pas = 
depends_source 

[khronos global data.ins.pas @ case_1]; 
khronos cl.ins.pas @ case 1; 
ctm_edit_utl.ins.pas; -
khr_fault.ins.pas @ case_1; 
case messages.ins.pas @ case 1; 
ctm Included on.ins.pas; -
ctm-tasklist~ins.pas; 
ctm-edit task.ins.pas; 
ctm=task=msgs.ins.pas; 
khr db.ins.pas; 
lsc~ins.pas; 
khr semaphore.ins.pas; 
khr-recovery.ins.pas; 
protect.ins.pas; 
session memory.ins.pas; 
ctm_task.ins.pas; 
[khronos_utl.ins.pas @ case_1]; 

end; 

element ctm tasklist.pas = 
depends_source 

case_messages.ins.pas; 
[khronos_global_data.ins.pas @ case_1]; 
khronos cl.ins.pas @ case 1; 
khr_Iib~ins.pas; -
khr_fault.ins.pas @ case_1; 
ctm_edit_utl.ins.pas; 
ctm_included_on.ins.pas; 
cqm.ins.pas; 
protect.ins.pas; 
ctm_task.ins.pas; 
ctm_task_msgs.ins.pas; 
ctm_tasklist.ins.pas; 
ctm tasklist msgs.ins.pas; 
lsc~ins.pas;
session_memory.ins.pas; 
[khronos utl.ins.pas @ case 1]; 
cm_globaI_types.ins.pas @ case_cm; 
bct hashman.ins.pas @ case_cm; 

end; -

element dem utl.pas = 
depends_source 

[khronos_global_data.ins.pas @ case_1]; 
[khronos utl.ins.pas @ case 1]; 

end; - -

element find help. pas = 
depends_source 

[khronos_global_data.ins.pas @ case_1]; 
find_help.ins.pas; 
[khronos_utl.ins.pas @ case_I]; 

end; 

DSEE Project System Models 



element hf_sm_utl. pas = 
depends_source 

end; 

lsc.ins.pas; 
[hf_sm_utl.ins.pas • case_I]; 

element his utl.pas = 
depends_source 

[khronos_global_data.ins.pas • case_I]; 
khr_db.ins.pas; 
khronos cl.ins.pas • case 1; 
khr fault.ins.pas • case 1; 
khr-semaphore.ins.pas; -
khr:show.ins.pas; 
case_messages.ins.pas; 
khr_msgs.ins.pas; 
lsc.ins.pas; 
khr_recovery.ins.pas; 
cmm.ins.pas; 
cmm_show.ins.pas; 
recov_utl.ins.pas; 
his_utl. ins. pas; 
case_hm_Shidden.ins.pas • case_hm; 
[khronos utl.ins.pas • case I]; 

end; - -

element khronos. pas = 
depends_source 

[khronos_global_data.ins.pas @ case_I]; 
khronos cl.ins.pas • case 1; 
khr_Iib~ins.pas; -
khr_show.ins.pas; 
khr_his.ins.pas; 
khr users.ins.pas; 
khr-recovery.ins.pas; 
ctm:tasklist.ins.pas; 
ctm task.ins.pas; 
khr:db.ins.pas; 
protect.ins.pas; 
session_memory.ins.pas; 
cmm_show.ins.pas; 
cfm_forms.ins.pas; 
khr_version.ins.pas; 
khr environment.ins.pas; 
cm global types.ins.pas .case cm; 
cm:global:data.ins.pas • case:cm; 
sm.ins.pas • case cm; 
cm_sys.ins.pas • case_cm; 
sm switch.ins.pas • case cm; 
bp:commands.ins.pas • case_cm; 
[khronos_utl.ins.pas • case_I]; 
sm init.ins.pas • case cm; 
create env.ins.pas @ case cm; 
ct commands.ins.pas @ case cm; 
ct:driver.ins.pas • case_cm; 
rm.ins.pas • case cm; 

end; -

DSEE Project System Models c-u 



element khr environment.pas = 
depends_source 

[khronos global data.ins.pas 0 case_11; 
khr fault.ins.pas; 
khr:=db. ins. pas; 
khr environment.ins.pas; 
case_hm_$user_calls.ins.pas 0 case_hm; 
cm_global_types.ins.pas 0 case_cm; 
sm.ins.pas 0 case_cm; 
common bct.ins.pas 0 case cm; 
vbct.ins.pas 0 case cm; -
bct hashman.ins.pas-o case cm; 
cm_utl.ins.pas 0 case_cm; -
rock settings.ins.pas @ case cm; 
rs utl.ins.pas 0 case cm; -
bitvector utl.ins.pas-o case cm; 
[khronos utl.ins.pas @ case 11; 

end; - -

element msg_text. pas = 
depends_source 

[khronos utl.ins.pas @ case_1J; 
end; -

element sort ut 1. pas = 
depends_source 

[khronos_global_data.ins.pas @ case_1J; 
[khronos utl.ins.pas @ case 11; 

end; - -

element compare 1 ines. asm = 
depends_source 

[khronos_utl.ins.pas @ case_11; 
end; 

element khronos_utl_asm.asm = 
depends_source 

[khronos_utl.ins.pas @ case_1J; 
end; 

%Include '//orange/case cm/dsee common.ins.sml'; 
end; { of not_cm -} -

end of dsee; 

DSEE System Model Compiler System Model 

model system model compiler = 
title ' System Model for the DSEE System Model Compiler'; 

system '//blue/smc/smcsys'; 

C-12 DSEE Project System Models 



library 
smclib = '//blue/smc/smclib'; 
case_l = '//orange/case/caSe_l'; 
case_cm = '//orange/case/case_cm'; 
lang = '//ylang/lang/source'; 

%if bllJ>ool "'then 
pool 

cmJ>ool = '//black/case/bllJ>0ol/cmbin'; 
hmJ>ool = '//black/case/bllJ>0ol/hmbin'; 

%elseif bugfixJ>0ol "'then 
pool 

cmJ>ool =. ' / /black/case/bugfixJ>0ol/cmbin'; 
hmJ>ool '//black/case/bugfixJ>0ol/hmbin'; 

%else 
pool 
cmJ>ool = '//black/case/cmbin'; 
hmJ>ool '//black/case/hmbin'; 

%endif 
smcJ>ool = '//orange/case/smcbin.new'; 

shell ' /com/sh' ; 

{ Default translation rules are defined in the following 
fragment 

} 
%include '//orange/case_cm/dsee_default_trans.ins.sml'; 

default for ?* = 
@ smclib; 
useJ>ool smcJ>ool; 
end of ?*; 

default for ".pas 

depends tools 
[' /com/bind' 1 ; 

use_pool smcJ>ool; 

DSEE Project System Models C-13 



C-14 

translate 
# generate build time stamp 
eon 
date I read In smc_date 
catf «~I >smc bldt.pas 
module smc bldt: 
var smc bldt : extern string: 
var smc-bldt len: extern integer; 
define smc bldt := "smc date', 

smc:bldt_len := sIzeof ("smc_date'); 
! 
/com/pas smc_bldt 
# 
# bind all pieces together. 
# 
/com/bind - «~I 
%result of(?*.pas) .bin 
%result-of(sml. cln) /symstrings. bin 
% result-of (sml. cln) /prodtostr. bin 
%result-of(sml. cln) /bast. bin 
smc bldt.bin 
-b %result 
-end 
! 
# once the system's built, the time stamp's no longer 

.# necessary. It is deleted below. 
# 
dlf smc_bldt.pas smc_bldt.bin 
# 
# The following link allows the person building the 
# compiler to test the build in his/her own working 
# directory. 
# 
crl system_mode I_compiler %RESULT -r 
args "Link SYSTE),-MODEL_COMPILER created " 
args "in your working directory" 
%done; 

depends_result 
{ This section builds macros and nested include files 

on which other components depend. Note the use of 
the DECLARE_ONLY declarations as well as MACRO and 
PROMOTE_DEPENDS. 

} 
aggregate case_global_types 

declare_only; 
macro; 
depends_source 

[khronos_global_types.ins.pas @ case_l); 
[cm global types.ins.pas @ case cm); 

end of case_global_types; -

DSEE Project System Models 



aggregate smc_data_structures = 
{ major data structures; these files must 

be included as a group 

declare_only; 

macro; 

depends_source 
smc global types.ins.pas; 
fest utl.ins.pas; 
list-utl.ins.pas; 
ast.Ins.pas; 

end of smc_data_structures; 

element khronos utl.ins.pas @ case_1 
declare_only; 

promote_depends; 

depends source 
[hf~m_utl.ins.pas @ case_1]; 
[sort utl.ins.pas @ case 1]; 

end of khronos_utl.ins.pas; -

Below are the buildable components of the system 
model. Their results are bound together by the 
Model block's translation rule. 

element sml. cln = 
depends_source 

{ This Element serves as initial input to 

} 

a series of parser generator tools. The 
results of the translation rule are several 
skeleton files plus some include files 
describe the system model grammar. The 
include files are required by several 
other elements (e.g. recognizer.pas); 
however. since the elements requiring the 
include files aren't owned by t.his project. 
they can't include environment variable 
references to the preprocessed include files 
Therefore. this Element's translation rule 
creates links to the include files. The 
elements requiring the include files use the 
link names to reference them. 

application.ins.pas; 
recognizer.ins.pas; 
bast.ins.pas; 
{ included by bast.ins.pas for bast.pas: } 
case global types; 
smc_data_structures; 

DSEE Project System Models C-lS 



C-16 

depends_tools 
['//orange/case/fest/fest') ; 
['//orange/case/fest1lexgen') ; 
['//orange/case/fest/pargen') ; 

translate 

} 

# Because this translation generates so many 
# files, %RESULT is actually a directory to 
# hold them all. 
# 
crd %resuIt 
args "run fest ... " 
//orange/case/fest/fest %source @ 

-out %resuIt @ 

-inc //blue/smc/smclib/bast.ins.pas 

args "Run LEXGEN ... " 
//orange/case/fest/lexgen %result/sml @ 

-out %result 

args "Run PARGEN 
if not //orange/case/ fest/pargen %result/sml @ 

-out %result %optlon (-debug) then 
cpf %resuIt/sml. prs -r 
args ·Search for 'conflict' in SML.PRS " 
args "in your working directory." 
return -e 
endif 

args "Compile generated sources 
crl appl$ //blue/smc/smclib -r 
crl fest$ //blue/smc/smclib -r 
crl pool$ %resuIt-r 
# 
# Now the include files are compiled 
# 
/com/pas %result/bast %optlon(-dbs) @ 

-b %result/bast -idir //blue/smc/smclib 
/com/pas %resuIt/symstrings @ 

-b %resuIt/symstrings 
/com/pas %resuIt/prodtostr @ 

-b %result/prodtostr 
dll appl$ pool$ fest$ 
%done; 

Make results temp visible so that other 
Elements' translation rules can reference via 
environment variables (to make sure 
MAKE_VISIBLE works) 

make visible; 
end of sml. cln; 

DSEE Project System Models 



} 

All modules in these parentheses make include 
references to files generated from SML.CLN. 
Therefore, this default declaration contains a 
result dependency on smc.cln. 

default for %.pas = 
depends source 

application.ins.pas; 
recognizer.ins.pas; 

translate 
# create links mentioned above. Note the 
# of the environment variable, possible 
# because of the MAKE VISIBLE declaration 
# above. -
# 
crl pool$ $@(sml.cln@) -r 
crl appl$ //blue/smc/smclib -r 
crl fest$ //blue/smc/smclib -r 
Icom/pas %source -comchk -opt @ 

%option(-dbs) -b %result 
dll appl$ pool$ fest$ 
%done; 

depends_result 
sml.cln; 

end of %.pas; 

element fest utI. pas 
depends _source 

fest utl.ins.pas; 
end of fest_utl. pas; 

element recognizer. pas = 
translate 

cr! pool$ $@(sml.cln@) -r 
crl appl$ //blue/smc/smclib -r 
crl fest$ //blue/smc/smclib -r 
/com/pas %source -comchk -opt @ 

%optlon(-dbs) -config blank_lines @ 
-b %resuIt 

dll appl$ pool$ ~est$ 
%done; 

end of recognizer. pas; 

DSEE Project System Models C-17 



C-18 

element prepdvr. pas = 
depends source 

[condcomp.ins.pas @ lang]; 

translate 
crl poolS $.(sml.clnG) -r 
crl appl$ //blue/smc/smclib -r 
crl festS //blue/smc/smclib -r 
/com/pas %source -comchk -opt G 

% option (-dbs) @ 

-config using condcomp blank_lines @ 
-b %result -

dll applS poolS fest$ 
%done; 

end of prepdvr. pas; 

element logerrors. pas; 
) ; 

element smc_main. pas; 

element smc. pas = 
depends source 

case-global types; 
[khronos_utI.ins.pas • case_1J; 
[fsm.ins.pas @ case cm]; 
sm.ins.pas • case cm; 
[condcomp.ins.pas-. lang]; 
smc_data_structures; 
smc.ins.pas; 
symbol.ins.pas; 
listing. ins. pas; 
semantic.ins.pas; 
component.ins.pas; 
build rule.ins.pas; 

end of sma. pas; 

element ast. pas = 
depends source 

case:global_types; 
[khronos utl.ins.pas @ case_l]; 
[bct stringtab.ins.pas @ case_cm]; 
smc_data_structures; 
smc.ins.pas; 
semantic.ins.pas; 
symbol.ins.pas; 
build rule.ins.pas; 

end of ast. pas; 

DSEE Project System Models 



element semantic. pas = 
depends_source 

case global types; 
[khronos_utI.ins.pas ~ case_1); 
[cmsc.ins.pas @ case_cm); 
sm.ins.pas @ case_cm; 
smc_data_structures; 
smc.ins.pas; 
component.ins.pas; 
semantic.ins.pas; 
symbol.ins.pas; 

end of semantic.pas; 

element symbol. pas = 
depends_source 

case global types; 
[khronos utI.ins.pas ~ case 1); 
[fsm.ins~pas @ case cm); -
[bct stringtab.ins.pas @ case cm); 
[bct=hashman.ins.pas @ caSe_Cm); 
sm.ins.pas @ case cm; 
smc_data_structures; 
smc.ins.pas; 
symbol.ins.pas; 
component.ins.pas; 

end of symbol. pas; 

element component.pas = 
depends_source 

case global types; 
[khronos utI.ins.pas ~ case 1); 
[fsm.ins~pas @ case cm); -
[bitvector_utl.ins.pas @ case_cm); 
sm.ins.pas @ case cm; 
smc_data_structures; 
smc.ins.pas; 
symbol.ins.pas; 
component.ins.pas; 

end of component.pas; 

element build rule.pas = 
depends_source 

case global types; 
[khronos_utI.ins.pas @ case_1); 
[fsm.ins.pas @ case_cm); 
[bitvector_utl.ins.pas @ case_cm); 
sm.ins.pas @ case_cm; 
smc_data_structures; 
smc.ins.pas; 
symbol.ins.pas; 
component.ins.pas; 
brr.ins.pas; 
build rule.ins.pas; 

end of build_rule. pas; 

DSEE Project System Models C-19 



C-20 

element brr. pas = 
depends source 

case:global_types; 
[khronos global data.ins.pas @ case 1); 
[khronos-utl.ins.pas @ case 1); -
[khr fault.ins.pas @ case 1]; 
[bitvector_utl.ins.pas @ case_cm); 
brm text internal.ins.pas @ case_cm; 
smc=global_types.ins.pas; 
build_rule.ins.pas; 
brr.ins.pas; 

end of brr. pas; 

element listing. pas = 
depends source 

case-global types; 
[khronos utI.ins.pas @ case 1); 
[fsm.ins~pas @ case cm); -
[bitvector_utl.ins.pas @ case_cm); 
sm.ins.pas @ case_cm; 
smc_data_structures; 
smc.ins.pas; 
symbol. ins. pas; 
component.ins.pas; 
listing.ins.pas; 

end of listing.pas; 

element binary.pas = 
depends_source 

case global types; 
[khronos utI.ins.pas @ case 1); 
[fsm.ins~pas @ case cm); -
[bct stringtab.ins.pas @ case cm); 
[bitvector_utl.ins.pas @ case=cm); 
sm.ins.pas @ case cm; 
sm_object.ins.pas-@ case_cm; 
smc_data_structures; 
smc.ins.pas; 
symbol.ins.pas; 
component.ins.pas; 
binary. ins. pas; 

end of binary. pas; 

element list utl.pas = 
depends_source 

list utl.ins.pas; 
end of lIst_utl.pas; 

element smc_fault.pas = 
depends_source 

[khronos global types.ins.pas @ case_1); 
[khr_fault.ins.pas @ caSe_1); 

end of smc_faul t. pas; 

DSEE Project System Models 



element condcomp.pas @ lang = 
depends source 

[condcomp.ins.pas @ lang]; 

translate 
crl condcomp.ins.pas @ 

//ylang/lang/source/condcomp.ins.pas -r 
/com/pas %source -comchk -opt @ 

%optlon(-dbs) -b %result 
dll condcomp.ins.pas 
%done; 

end of condcomp.pas; 

{ the following fragment contains elements shared with 
dsee.sml 

} 
%include '//orange/case_cm/dsee_common.ins.sml'; 

end of system_model_compiler; 

Model Fragment dsee_default_trans.ins.sml 

DSEE DEFAULT TRANS.INS.SML 
System model-fragment for common default translation rules. 

default for %.pas = 
depends_tools 

'/com/pas'; 
translate 

loom/pas %source -comohk -b %result @ 

%optlon (-nwarn) %optlon (-ninfo) %optlon (-nopt) @ 

%cr_opt( -oonfig) %optlon (-exp) %optlon (-pic) @ 

%ifdef blJlool %then 
%cr_opt(-dbs) %cr_optC-nb) 

%else 
% option (-dbs) % option (-nb) 

%endif 
%done; 

end of %. pas; 

default for ?*. asm 
depends_tools 

, /oom/asm' ; 
translate 

/oom/asm %source -nl -b %result 
%done; 

end; 

DSEE Project System Models C-21 



Model Fragment dsee_common.ins.sml 

C-22 

{ OSEE eOMMON.INS.SML 
System model tragment tor things used in both dsee.sml and 
sme.sml. } 
This detault grouping tor things in eM_POOL 
default for 1* .. 

use.J>ool em""pool; 
.. case em; 
end of-1*; 

default for ~.pas .. 
depends_source 

[khronos_global_types.ins.pas .. case_I]; 
end of ~.pas; 

element bet_hashman. pas 
depends_source 

[khronos global data.ins.pas • case_I]; 
khr tault.ins.pas .. case 1; 
em_global_types.ins.pas;-
tSID.ins.pas; 
bet stringtab.ins.pas; 
bet-hashman.ins.pas; 
[khronos_utl.ins.pas. case_I]; 

end; 

element bet_stringtab.pas = 
depends_source 

[khronos_global_data.ins.pas • case_I]; 
khr taul t . ins. pas • case 1; 
elD global types.ins.pas;-
tsi. ins. pas; 
bet_hashman.ins.pas; 
slD.ins.pas; 
em_utI. ins. pas; 
bet_stringtab.ins.pas; 
[khronos_utl.ins.pas • case_I]; 

end; 

element bi tveetor_utl. pas = 
depends_source 

elD_global_types.ins.pas; 
tSID.ins.pas; 
bitveetor utl.ins.pas; 
[khronos_utl.ins.pas • case_I]; 

end; 

DSEE Project System Models 



element khronos global data.pas = 
depends source -

[khronos_global_data.ins.pas @ case_1]; 
session_memory.ins.pas; 
ctm tasklist.ins.pas; 
cm_gIobal_types.ins.pas @ case_cm; 
em global data.ins.pas @ case cm; 
cm-sys.ins.pas @ case em; -
[khronos utl.ins.pas @ case 1]; 

end; - -

element khronos utl.pas = 
depends_source 

[khronos_global_data.ins.pas @ case_1]; 
khronos cl.ins.pas @ case 1; 
khr_fault.ins.pas @ ease_l; 
comment-pvt.ins.pas @ case_1; 
lsc.ins.pas; 
protect.ins.pas; 
khr_db.ins.pas; 
[khronos utl.ins.pas @ case_1]; 

end; -

element khronos_utI2.pas = 
depends source 

[khronos global data.ins.pas @ case_1]; 
khr fault.ins.pas @ ease 1; 
khr:=db. ins. pas; -
[khronos utl.ins.pas @ case_1]; 

end; -

{ This is the Aggregate that builds the database. 
} 

aggregate khr_db = 
default for 7* = 

use pool 
. hm-pool; 

end of 7*; 
default for 7 *. pas 

@ case 1; 
depends_source 

khr db.ins.pas; 
khr-db utl.ins.pas; 
lsc:-ins.pas; 

translate 
/com/pas %source -comchk -b %result @ 

-idir //orange/case %option (-dbs) @ 

% option (-nb) 
//dean/case/copy to bin. sh %result. bin %source 
%done; - -

depends_result 
library database.ddl; 

end of 7*.pas; 

DSEE Project System Models C-23 



C-24 

use_pool 
hmyool; 

translate 
/com/bind -b %resuIt -nomes - «! 
%result of(?*. pas) . bin 
! -
%done; 

depends_result 

element library database.ddl @ case_l 
depends_tools 

[' /com/sch'] ; 

This translation rule looks for the directories /d3m and 
/d3m/schemas and creates them if they don't already exist. 
It then creates a schema file. Finally. it moves several 
files into the binary pool. 

end; 

translate 
if existf /d3m then else crd /d3m endif 
if existf /d3m/schemas then @ 

else crd /d3m/schemas endif 
/com/sch %source({?*}.ddl) -s %result.sch @ 

-ss pas 
/com/mvf /d3m/schemas/library database $p.sub @ 

%result. sub --
/com/mvf library database $p.uwa.pas @ 

%result. uwa. pas -
%done; 

element khr db $$error handling. pas = 
depends source -

[khronos global data.ins.pas]; 
[khronos-utl.ins.pas] ; 

end; -

element khr db $$open close.pas 
depends source -

[khronos_utl.ins.pas] ; 
end; 

element khr_db_$elements.pas 
depends source 

[khronos_utl.ins.pas] ; 
end; 

element khr db $events. pas = 
depends _source 

[khronos_utl.ins.pas] ; 
end; 

DSEE Project System Models 



elefiOent khr db $monitors.pas 
depends_source 

[khronos_utl.ins.pasl; 
end; 

end; { of khr_db; } 

{ end dsee_common.ins.sml 

----88----

DSEE Project System Models C-2S 





A 
access control lists (ACLs), use in OSEE, 1-48 

access to OSEE objects, controlling, 1-48 

activation strings (monitors) 
definition of, 1-44 
how used when monitor activated, 1-44 

active items (in tasks) 
definition of, 1-37 
modifying list of, 1-40 

actual translation rule 
construction of, 1-27 
creation and use, 1-48 
definition of, 1-27 
invoking, 1-29 
and %result, 2-18 

address space, network wide support in DSEE, 1-2 

administrators 
definition of, 1-48 
DSEE environment adminstrator's role, 2-4 
writing OSEE scripts, examples, 4-7 

Aggregate, initial capital letter in word, xx 

Index 

Index-l 



alarm server (for tasklists), activated by monitor, 1-44 

alias declaration 
conditional directives embedded in, 3-5 

advantages, 3-6 
examples, 3-5 

for 'multi-targeted systems, 3-4 

aliases 
expansion of, 3-5 

within alias declaration, 3-5 
using in pool declarations, 3-13 

angle brackets (<», xx 

appendixes, how they correpond to the text, 2-1 

B 
base levels 

bug fixes to, 4-9 
definition of, 4-3 
naming convention for versions used in, 4-6 
respins 

definition of, 4-9 
merging, 4-10 

BCT. See bound configuration threads 

binary pools 
algorithm used to remove derived objects from, 3-15 
avoiding contention within, 4-27 
bug fix work pools, 4-27 
CAD tools group pools, 2-15 
containing multiple derived objects for a component, 1-24 
declarations for components shared by several systems, 4-16 
declaring multiple logical pools, example, 3-13 
declaring multiple physical pools, example, 3-13 
default pool, 1-23, 2-14, 2-15 
detailed discussion of, 1-23 
OSEE group pools, 4-27 
equivalences in, 1-33 
how many to use, 2-15 
how searched during builds, 3-14 

taking advantage of, 3-14 
how space is reserved in for derived objects, 2-18 
illustration, 1-2 5 

Index-2 



binary pools (continued) 
management of contents, 1-24 
for Model block derived objects, 3-15 
moving builds from for long-term storage, 1-35 
moving derived objects to when translator can't put them there, 2-19 
OS group pools, 3-13 
parameters 

changing, 3-21 
default parameters, 2-14 
reflecting reuse of contents, 3-15, 3-16 
setting to meet needs of the pool, 2-15 
used by OS group, 3-16 
when to set limit lower than default, 2-14 

parameters of, 1-24 
pool declaration, using conditional directives in, 4-27 
primary physical pool 

definition of, 2-15 
taking advantage of, 3-14 

promoting derived objects to, 1-31 
in multi-targeted environment, 3-22 

reserved pool, 1-25 
changing parameters of, 3-21 
parameters of, 1-26 

search-only pools 
creating, 3-14 
effect on performance, 3-15 
parameters of, 3-16 
when not useful, 3-15 
when useful, 3-15 

sharing between systems, 1-23 
sharing one pool between multiple systems, 3-13 
storage considerations, 2-14, 3-17 
using aliases in declaration of, 3-13 
using alternate pools, 1-23 
using links in physical pool pathnames, 3-17 
using multiple, 2-15 
using one pool, 2-15 
who creates them, 2-4 

blue ink (use in this book), xx 

bound configuration threads (BeTs) 
building without producing derived objects, 3-30 
comparing, 3-25 
detailed description of, 1-22 

Index-3 



bound configuration threads (continued) 
ensuring that they contain version information for source dependencies, 

2-25 
ensuring tools version stamps in, 2-23 
for equivalences, 1-33 
how configuration manager searches pools for, 3-14 
how created, 1-26 
illustration of in binary pool, 1-25 
as lists of derived objects' constituents, 1-24 
long-term storage of, 1-35 
model-related contents, 1-23 
and noncritical dependencies, 1-34 
placing in pools, 1-29 
promoting from reserved pool, 1-32 
protecting from purging, 3-30· 
of released builds, reusing in new builds, 2-29 
storage in pools, 2-15 
storing in release areas, 1-35, 3-32 
structure of, 1-22 
use in version naming, 4-9 
using from release areas, 3-30 

branches 
for bug fixes, origin of, 4-7, 4-8 
creating branches for personal use, 3-32, 3-33 

deleting when no longer useful, 3-34 
examples, 3-33 
referring to in configuration threads, 3-33 

creating only as needed, 4-8 
declaring obsolete, 3-34, 4-26 

meaning of, 4-26 
definition of, 1-6 
deleting, 3-34 
determining appropriate origin of, 4-20 
determining which elements don't have a particular branch, 4-22 
doing work for special releases on, 4-6 
OSEE group naming conventions for, 4-6 
ensuring consistency of names, 4-7 

advantages of, 4-7 
scripts to automate, 4-7 

establishing·a protocol for working on, 3-28 
fixing bugs on, 4-6 
identifying in configuration threads, 1-19 
merging, 1-7, 4-8 
naming conventions, illustration, 4-10 

Index-4 



branches (continued) 
obsolete branches 

and configuration threads. 4-26 
reactivating. 3-34. 4-26 

referring to in configuration threads. 3-28 
sharing a branch with coworkers. 3-30 
for special releases, 4-20 

when an element doesn't have one, 4-21 
uses for, 1-6 
using branches for system model development, 3-12 
using for protection and isolation, 3-32 
using version names to mark origins of, 3-28 
who works on them, 3-28 

bugs 
dedicated pools for fixes, 4-27 
fixing, setting current task appropriately, 4-12 
fixing on branches, 4-6 

ensuring testing of, 4-8 
origin of branch, 4-7, 4-8 

maintaining record of fixes, 4-12 
merging fixes 

into main line of descent, 4-22 
into special releases, 4-20 

producing bug fix releases, 4-24 
examing structure, 4-24 

tracking down tools used to generate, 2-23 
tracking down using releases, 2-26 
tracking source versions of, 2-30, 3-17 

build command, 3-32 
-bet_only option, 3-30 
-for~e_all option, 3-36 

alternative to, 3-37 
ensuring results won't contend for space with other builds, 4-27 

-noequivalences option, 3-36 
and pool searches, 3-14 
-von option, 2-20 

build maps, using to track source versions of bugs, 2-30 

build-ID-based rules (configuration threads) 
definition, 1-36 
example, 2-29 

buildable components, definition of, 1-14 

Index-5 



builder nodes (for parallel building) 
how chosen. 1-31 
identifying. 1-30 

building 
accessing results of. 3-24. 3-26 
with alternate sources for tools. 3-19 
avoiding incorrect builds. 3-27 
with branches. 1-19 

and without obsolete branches. 4-26 
for bug fixes in only one context. 1-20 
build process. detailed discussion of. 1-26 
building on multiple nodes. See building. distributed building 
comparing two builds. 1-23 
customizing builds. 3-19 
definition of. 1-12 
for development. 3-31 
with different versions in different contexts. 1-20 
distributed building 

detailed discussion of. 1-29 
how failed builds are handled. 1-31 
underlying support for. 1-2 

for distribution. 3-36 
desired characteristics of distribution build. 3-36 
what build command line to use. 3-36 
what type of thread to use. 3-36 
without -force_all. 3-37 

and OSEE type manager. 1-48 
ensuring consistency for coworkers. 3-31 
how failed builds are handled. 1-29 
generating base build for development. 3-30. 3-31 
generating nightly development builds. 3-32 
how handled by manager integration. 1-47 
illustration of building process. 1-28 
in which pool builds are stored. 2-15 
making results temporarily visible. 2-23 

example. 2-24 
managing output. 1-12 
maximizing the amount of reuse of older builds. 2-21 
for multiple systems. 3-21 

ensuring consistency for all systems. 3-4 
with most recent version on main line of descent. 1-18 
naming versions from builds. 4-9 
with obsolete branches. 4-26 
without obsolete branches. 4-26 

Index-6 



building (continued) 
with only one version of each element, 3-36 

double-checking, 3-37 
order in which things are built, 1-14, 1-30 
parallel building. See building, distributed building 
placing derived objects in pools, 2-18 
and pool searches, 3-14 
producing only BCTs, no derived objects, 3-30 
promoting derived objects for several systems, 3-22 
rebuilding 

avoiding by using one pool shared by several systems, 3-13 
avoiding rebuilding due to imported derived objects, 4-18 
avoiding rebuilding for new translators, 2-23 
avoiding unnecessary, 1-32, 1-34 
avoiding using development builds, 3-32 
common reasons for, 1-27 
disadvantages of forced rebuilding, 3-37 
ensuring that source depdencies cause, 2-25 
finding out why necessary, 3-25 
how rate and magnitude of change affect configuration manager, 1-34 
when performed, 1-27 

record of, 1-23 
reducing length of, 2-13, 3-37 
regenerating older builds, 2-28 

example, 2-29 
using older versions of system models, 3-11 

released builds, 1-35 
adding to, 1-36 
reusing, 1-35, 1-36, 3-30, 3-32 

with releases, 1-19 
for releases, ensuring results don't contend for pool space with other 

builds, 4-27 
requirements, 1-12 
with reserved versions, 1-19 
without reserved versions, 3-36 
reusing builds, 1-26, 3-37 

with noncritical dependencies, 1-34 
and pool parameters, 3-16 
reusing parts of builds, 3-14 

reusing derived objects from shared components, 4-16 
with shared binaries, 4-17 
how space is reserved for derived objects, 2-18 
specifying translation options for builds, 1-21 
storing builds for release. 1-35 

Index-7 



building (continued) 
tracking down tools used in code with bugs, 2-23 
unique pathnames for builds, 2-20 
variant systems, 1-17 
where results are stored, 1-23 

builds, reusing, 1-12, 1-24 

c 
C, writing DSEE programs in, 1-51 

CAD tools group 
discussion of the group's product, 2-2 
history, 2-2 
how they generate a release, 2-26 
libraries 

discussion of, 2-5 
structure, 2-5 

overview, 2-2 
pools, 2-14 
and product releases, overview, 2-26 
project structure, overview, 2-3 
system models 

overview, 2-11 
scaled-down full model, A-l to A-18 

systems, 2-12 
overview, 2-11 

translation rules, 2-16 
why converted to DSEE environment, 2-3 
working in the DSEE environment, overview, 2-26 

callable interface (to DSEE). See DSEE programmable interface 

cancel obsolete command, 3-34, 4-26 

case studies, explanation of, 2-1 

casehm object file type, description of, 1-10 

command files (DSEE) 
advantages of, 3-22 
imd commands expecting input, 1-50 
creating, examples, 2-10, 3-23 
customizing DSEE interface with, 1-50 
detailed discussion of, 3-22 
to ensure branch name consistency, 4-7 

Index-8 



command files (DSEE) (continued) 
executing, 3-23 

examples, 2-10, 3-23 
formatting output to produce, 1-50 
nesting, 1-50, 3-22 
passing arguments to, 1-50, 3-23 

example, 3-23 
scripts that establish settings, 3-23 
specifying error severity for, 1-50 
storing, 3-23 
using to automatically populate libraries, 2-10 
who writes them for a group, 2-4 

commentary, ensuring consistency of, 4-7 

compare builds command, 3-25 

compiler development, and code storage, 3-10 

compiling software, separated from DSEE facilities, 1-3 

completed items (in tasks). See task transcripts 

components 
See also system models, components 
describing interrelationships in model, 1-16 
identifying in translation rules, 1-16 

conditional compilation of system model, 1-17 
See also conditional directives (in system models) 

conditional directives (in source code), 3-9 
reflected in system model structure, 3-6 

conditional directives (in system models), 3-4, 3-5 
See also system models 
in alias declaration 

advantages of, 3-6 
example, 3-5 

in pool declarations, 4-27 

configuration management, description of, 1-11 

configuration manager 
components, 1-13 

binary pools. See binary pools 
bound configuration threads (BeTs). See bound configuration threads 
model threads. See model threads 
system models. See system models 

creating pathnames for derived objects, 2-20 

Index-9 



configuration manager (continued) 
giving it control of derived objects, 2-18 
and history manager, 1-47 
how it reserves space in pools for derived objects, 2-18 
how it searches for builds to reuse, 2-15 
how it searches pools during builds, 3-14 
how it validates a thread, 2-8 

taking advantage of, 3-14 
identifying undeclared source dependencies, 2-25 
implementation details, 1-34 
integration with other managers, 1-47 
introduction to, 1-3 
and library structure, 2-7 
optimizations, 1-34, 1-35 
overview, 1-11 
and release manager, 1-35 
speed of, 1-34 
using, 1-26 
watching it replace symbols in translation rules, 2-20 

configuration threads 
build-ID-based rules in, 3-30 

referring to released builds, 3-32 
containing dynamic thread rules 

why they don't regenerate older builds, 2-29 
and thread reuse, 2-28 

containing references to branches, example, 3-28 
default thread, when inconvenient, 3-33 
definition of, 1-12, 1-22 
detailed discussion of, 1-17 
dynamic rules, discussion of, 1-18 
-exact clause, 3-36 
figurative examples, 1-19 
for distribution builds, 3-36 
for people needing another projects' elements, example, 3-35 
-from clause. 3-19 
how used in build, 1-26 
identifying different versions in different contexts, 1-20 
illustration, 1-21 
language, 1-18 
and model threads, 1-22 
and obsolete branches, 4-26 
ordered nature of, 1-18 
recreating older builds with, 2-28 
referring to branches in, 3-28, 3-33 

Index-lO 



configuration threads (continued) 
referring to developmental build in, examples, 3-32 
referring to releases, 1-19 

advantages of, 4-21 
examples, 3-30, 4-21 

and released builds, 1-35, 1-36 
for releases, example, 2-29 
reusing, 2-28 
role in generating accurate builds, 2-26 
specifying alternate sources for versions, 3-19 
specifying most recent versions on main lines of descent, 1-18 
specifying translation options in, 1-21 
storing as elements, considerations, 2-28 
structure of rules, 1-18 
threads that isolate projects from one another, 3-28 
-under clause, 3-36 
used to create different system configurations, 3-27 
validation 

impact of shallow libraries on, 2-8 
storage of previously validated threads, 3-3 

version specification, 1-18 
-when_active clause, 4-26 
-when_exists clause, 4-26 

configure pool command, examples, 3-21 

converting to a OSEE environment 
overview, 2-2 
in several stages, 2-3 
why desirable, 2-3 

create element command, 2-9 
-from option, 2-9 
-keep option, 2-9 

create environment command, 3-35 

create release command 
-bet_only option. 3-30 
-export clause. keeping an up-to-date list for. 2-27 
example. 2-27 

create task command. 1-39 

CTRLI, xx 

Index-II 



D 
D3M, 1-2 

database 
for historical information, 1-8 
recording version creation, 1-7 

database management, provided by D3M, 1-2 

debugging 
advantages of modularized system when, 2-21 
software for separated from DSEE facilities, 1-3 
using BeTs, 1-23 

default declarations 
for library declarations, 2-22 
for source dependencies, 2-22 

deltas 
definition of, 1-8 
how stored, 1-2 

dependencies 
of components shared by several systems, 4-16 
declaring, 2-22 

using make_model utility, 2-22 
definition of, 1-14 
describing interrelationships in model, 1-16 
dummy dependencies for forced rebuilds, 3-37 
factoring out common dependencies, 1-17 
noncritical dependencies, 1-34 

changing to critical dependencies for development, 3-12 
declaring imported binaries to be, 4-18 
ensuring correct versions in build, 3-36 
identifying, 2-22 
when to use, 1-34 

not reflected in system model, 1-42 
promoting those of one component to a dependent component, 2-25 
source dependencies 

advantages of declaring, 2-25 
declaring with make_model, 2-22 
ensuring version control for, 2-12, 2-25 
undeclared, 2-25 

syntactic vs semantic, 1-41 

Index-12 



dependencies (continued) 
tools dependencies 

advantages of declaring, 2-23, 3-19 
declaring as noncritical, 2-23 
listing shared binaries as, 4-18 
treating imported derived objects as, 2-13 

using make files as basis for, 2-22 

depends_source declaration, writing default depends_source declarations, 
2-22 

derived objects 
accessing, 1-26 

outside of DSEE environment, 3-24, 3-26 
in release areas, 1-36 
in translation rules, 1-16 

algorithm used for removal from pool, 3-15 
automatically added extensions, 2-20 
avoiding rebuild after replace command, 1-32 
builds that don't produce, 3-30 
contention in reserved pool, 3-21 
creating links to, 1-26 
declaring equivalences for, 1-32 
definition of, 1-12 
when deleted from pools, 1-24 
determining why can't be reused, 3-25 
exporting, 1-26, 3-24 
illustration of in binary pools, 1-25 
imported derived objects 

and version control, 2-12 
definition of, 2-12 
detailed discussion of, 4-17 
pros and cons, 2-13 

how information about is stored, 1-24 
long-term storage of, 1-35 
making available as include files to other builds, 2-23 
maximizing the amount of reuse, 2-21 
minimizing contention when releasing product, 4-27 
moving to pools when translator can't put them there, 2-19 
for multi-targeted builds 

avoiding competition for pool space, 3-15 
where to store, 3-13 

pathnames for, 1-16, 2-20 
placing in pools, 1-29, 2-18 
placing in search-only pools, 3-14 

Index-I3 



derived objects (continued) 
promoting, 3-31 

definition of, 1-31 
for several systems, 3-22 

recreating deleted objects, 1-24 
referring to in translation rules, 2-18 
reusing, 1-24, 1-26, 1-32, 3-14 

maximizing amount of reuse, 2-21 
reusing those of a development build, 3-32 

shared by several systems, 4-15 
requirements, 4-16 

how space is reserved for in pools, 2-18 
where stored, 1-23 
where stored in release areas, 1-35 
storing multiple for one component in binary pools, 1-24 
using model fragments to facilitate sharing between systems, 4-16 

desired BCT 
definition of, 1-26 
how last one is reused, 1-34 
matching against BCTs in pools, 2-15, 3-14 

when it can't be matched (although you think it should). 3-25 
matching with equivalences, 1-33 
and noncritical dependencies, 1-34 
storing last for optimization, 1-34 
how used, 1-48 

development, and simultaneous maintenance, 4-1 

Display Manager, accessing versions with, 1-9 

distributed environments, and DSEE, 1-2 

documentation conventions, xix 

Domain system 
file object types, DSEE (casehm) file type, 1-10 
lOS streams facility, 1-9 
network-wide virtual address space, 1-2 

DSEE commands 
formatting output of, 1-50 
scripts of commands. See command files (DSEE) 

DSEE environment 
advantages of consistency, 2-14 
and attitudes toward responsibility, 3-27 

Index-14 



OSEE environment (continued) 
converting to 

overview. 2-2 
in several stages. 2-3 
why desirable. 2-3 

coordinating with other projects not using. 3-35 
coordinating with other projects using. 3-34 
customizing. 1-49 

with command files. 1-50 
with OSEE server. 1-52 
with programmable interface. 1-51 

documenting project structure. 2-4 
establishing library structure. 2-5 
setting up working environment. 2-4 
understanding another project's structure. 2-14 

OSEE group 
command facility system model. scaled-down full model. C-l to C-12 
common dependencies model fragment. C-22 to C-25 
default translate rule fragment. C-21 
goals of. 4-3 
history. 4-2 
how they work in OSEE environment. introduction. 4-19 
libraries. 4-4 
monitors. 4-13 
project structure. 4-4 
sharing maintenance and development work. 4-12 
system model compiler system model. scaled-down full model. C-12 to 

C-21 
system models. scaled-down full models. C-l to C-25 
systems and system models. 4-15 
tasklists. 4-12 
tasks. 4-12 

OSEE operations. executing from programs. 1-51 

OSEE performance. and library structure. 2-7 

OSEE programmable interface. 1-51 
online examples. 1-51, 1-52 

sees_convert. 2-10 
using for automatic library population. 2-10 

OSEE server. 1-52 
using for automatic library population. 2-10 

Index-IS 



OSEE software 
structure of, 4-2 

systems and models used to represent, 4-15 
who uses it, 1-3 

OSEE type manager, use in builds, 1-48 

OSEE users, four classes of, 1-48 

E 
editing software, separated from OSEE facilities, 1-3 

Element, initial capital letter in word, xx 

elements, 1-32 
accessing versions outside of OSEE, 3-35 
automatic creation of using scripts, 2-10 
branches 

See also branches 
declaring obsolete, 4-26 
definition of, 1-6 

building with different versions in different contexts, 1-2 0 
building with only one version of each, 3-36 

double-checking, 3-37, 4-27 
comparing versions of, 1-7 
configuration threads, when to store as elements, 2-28 
creating from existing source code 

creating multiple versions at once, 2-9 
redirecting source of first version, 2-9 
renaming the element, 2-9 
retaining original file, 2-9 
using OSEE command files, 2-10 
using OSEE programmable interface, 2-10 
using OSEE server, 2-10 

dedicated file type, 1-10 
definition of, 1-5 
determining which ones don't have a particular branch, 4-22 
determining which' still need to be merged, 4-23 
determining which versions used in build, 3-17 
ensuring use of correct versions by outside groups, 3-35 
how many to have in library, 2-8 
how information about is stored, 1-8 
initial, creating, 2-4 

Index-16 



elements (continued) 
lines of descent 

definition of, 1-6 
determining which are reserved, 1-7 
determining who has reserved, 1-7 
OSEE group naming conventions for, 4-6 
illustrations, 3-29, 4-10 
keeping tidy, 3-34 
merging, 1-7 

main line of descent, definition of, 1-6 
modification as part of larger job, 1-37 
modifying, 1-7 
monitoring. See monitors 
naming versions from builds, 4-9 
naming versions from released builds, 2-29, 2-30 
notifying non-OSEE users of changes to, 1-42 
obtaining. history of, 1-7 
how to rebuild when changed, 1-27 
recording creation of new versions, 1-7 
replacing 

replacing monitored elements, 1-44 
and tasks, 1-39 

reserving 
building without reserved versions, 3-36 
reserving a monitored element, 1-44 

safeguarding against inadvertent modification of, 4-13 
standardized evolution of, 4-11 
storing system models as, 1-22 

naming fragment versions from builds, 4-9 
system models, why store as elements, 3-11 
tracking down constituent versions of imported binaries, 4-18 
using lines of descent to organize work, 4-6 
version names. See versions, names 
versions 

See also versions 
accessing outside OSEE, 1-9 
accessing with extended version pathnames, 1-10 
how history manager retrieves, 1-9 
how stored, 1-8 
storage compaction, 1-8 

what can be stored as, 1-5 

ensuring only one of each element used in builds, double-checking, 4-27 

environment variables, use for make_visible declarations, 2-24 

Index-17 



environments 
creating, 3-35 
setting an environment for other groups, 3-35 

equivalences 
declaring, for multi-system projects, 3-4 
definition of, 1-32 
ensuring builds without, 3-36 
illustration, 1-33 
length of effect, 1-33 
where stored, 1-33 

error severity, specifying for DSEE command files, 1-50 

examine build command, 3-17, 4-18 
-check option, 3-37, 4-27 

examine release command, 4-25 

%expand (%exp) directive 
examples, 3-5 
in translation rule, example, 3-18 
used in pool declarations, 3-13 

export command 
called from DSEE command files, 3-24 
-link option, 3-24 
-read option, 3-26 
-select option, 3-26 

extended version pathnames 
definition of, 1-9 
detailed description of, 1-10 
example, 1-10 
use of, 3-35 

External, initial capital letter in word, xx 

F 
failures (network) 

how handled by history manager, 1-11 
how handled by monitor manager, 1-44 

forms (task management) 
definition of, 1-38 
using in task creation, 1-39 

Index-IS 



H 
here documents (in translation rules), 2-20 

highlight sections. xvii. 2-1 

history management. underlying support for. 1-2 

history manager 
advantages over complicated directory structures, 2-5 
compaction of storage space. 1-8 
components. 1-5 

branches. 1-6 
elements. 1-5 
libraries. 1-5 
lines of descent, 1-6 
versions. 1-5 

and configuration manager. 1-47 
database storage of information. 1-8 
file type, 1-10 
as fundamental manager. 1-5 
how information is stored. 1-8 
implementation details. 1-8 
integration with operating system. 1-9 
integration with other managers. 1-45 
introduction to. 1-3 
libraries as context for commands. 2-7 
and library structure, 2-7 
overview, 1-5 
recovering after failures, 1-11 
and task manager. 1-39 
using. 1-7 

I 
imported derived objects 

avoiding rebuilds due to. 4-18 
definition of, 2-12 
pros and cons, 2-13 
safeguarding against inconsistency, 4-18 
tracking down constituent versions of. 4-18 

%include directives in system models. 1-21 
and storing system models. 3-11 

Index-19 • 



include files 
as noncritical dependencies, changing to critical dependencies for test-

ing, 3-12 
nested include files, 2-25 
owned by another group, ensuring builds with right versions, 3-35 
prebuilt include files, 2-23 

example of %include directive to refer to, 2-24 
example of handling, 2-23 

undeclared include dependencies, 2-25 

input to OSEE commands in command files, 1-50 

instantiating a task, 1-42 

integration of managers 
example, 1-45 
illustrations, 1-4, 1-46, 1-47 

L 
leading blanks in element text, suppression of for storage, 1-9 

length of translations as determinant of degree of parallelism, 1-29 

libraries 
automatic population of, 2-10 
as context for history manager commands, 2-7 
definition of, 1-5 
OSEE group libraries, 4-4 
how many to use, 2-7 

for target-dependent code, 3-10 
how information about is stored, 1-8 
library declarations for components shared by several systems, 4-16 
for machine-dependent source code, 3-10 
monitoring elements in, 1-43 
monitoring those of other projects, 4-13 
moving, 2-8 
obtaining history of, 1-7 
obtaining information from, difficulties imposed by many libraries, 2-7 
optimal directory structure for, 2-8 
as group libraries, 3-9 
and performance, 3-10 
protecting, 1-48, 1-49 
recommended number of elements in, 2-8 
structure, and OSEE performance, 2-7 
using links to refer to in system model, 2-9 

Index-20 



libraries (continued) 
using many containing few elements 

impact on configuration thread validation, 2-8 
impact on performance, 2-7 

using one to hold all elements, disadvantages, 2-8 
where to store them, 2-8 
who sets them up, 2-4 

library databases 
how used in configuration thread validation, 2-8 
issuing programming calls to, 1-51 
removing need for complicated directory structure, 2-5 
task information recorded in, 1-39 

library declarations 
declaring as default declarations, 2-22 
effect on undeclared source dependencies, 2-25 

library tasklists, 1-38 

lines of descent 
branches 

for bug fixes, 4-6 
for special releases, 4-6 
for system models. 3-12 

creating new versions on, 1-7 
declaring obsolete, 3-34, 4-26 

and configuration threads. 4-26 
meaning of, 4-26 
reactivating, 4-26 

definition of, 1-6 
deleting, 3-34 
determining which are reserved, 1-7 
determining who has reserved, 1-7 
establishing protocol for working on, 3-28 
illustration, 4-10 
keeping tidy, 3-34 
main line of descent 

building with most recent version on, 1-18 
definition of, 1-6 
merging special work into, 4-22 
use for new development, 4-6 
who works on, 3-28 

merging, 1-7, 3-33, 4-8, 4-20, 4-22 
naming conventions, illustration, 4-10 
referring to in configuration threads, 3-28 
replacing. how affects task, 1-39 

Index-21 



lines of descent (continued) 
reserving, building without reserved versions, 3-36 
tracking those used in builds for optimization, 1-35 
using for protection and isolation, 3-32 

links 
and accessing derived objects, 3-24 
in library pathnames, 2-9 
notification when they change, 3-17 
removing resolutions generated by make_model, 2-22 
using in pool parameters, 3-17 

listing files, accessing outside OSEE environment, 3-24, 3-26 

M 
Model block, storing builds of in multi-targeted systems, 3-15 

Model, initial capital letter in word, xx 

machine-dependent source code 
storage considerations, 3-10 
where OS group stores, 3-9 

machine-dependent systems. See multi-targeted systems 

machine-independent source code, where OS group stores, 3-8 

main line of descent. See lines of descent, main line of descent 

maintenance 
and the OSEE environment, 4-1 
performing on branches, 3-28 
and simultaneous development, 4-1 

make_model utility, 2-22 
editing output of, 2-22 

make_visible declaration 
definition of, 2-23 
example, 2-24 

makefiles, writing models from, 2-22 

management of project, coordinating steps, 1-37 

Index-22 



managers (OSEE) 
See also configuration manager; history manager; monitor manager; re

lease manager; task manager 
integration of 

benefits of, 1-3 
detailed discussion of, 1-45 
illustrations, 1-4, 1-46, 1-47 

introduction, 1-3 

manual 
documentation conventions, xix 
how to use, xvii 
organization of, xvi 
related documents, xviii 

master tasklists, 1-38 
and completed tasks, 1-40 

members, definition of, 1-48 

merge command, 4-20 
and branches, 4-7 
example, 4-22 

merging 
bug fixes into the main line of descent, 4-22 
determining which elements still need mergers, 4-23 
illustration, 4-23 
integrating work of several project teams, 3-33 
interim mergers, 4-22 
overview, 1-7 
periodic merging, discussion of, 4-8 
and respins, 4-9 
side-effect mergers, 4-22 
special releases 

and bug fixes, 4-20 
and main line of descent, 4-22 

model fragments, 1-17 
benefits of, 1-22 
detailed discussion of, 4-15 to 4-16 
used by OSEE group, 4-15 
OSEE group common dependencies fragment, C-22 to C-25 
OSEE group default translate rule fragment, C-21 
ensuring version control for, 3-11 
facilitating sharing of derived objects between systems, 4-16 
naming versions from builds, 4-9 
naming versions from released builds, 2-30 

Index:-23 



model fragments (continued) 
sharing binaries without using, 4-17 
storage of, 3-11 

model threads 
and configuration threads, 1-22 
definition of, 1-17 
detailed discussion of, 1-21 
editing from DSEE command files, 3-23 
examples, 3-5, 4-27 
language, 1-22 
providing information for BeT, 1-23 
-target rule, 3-5 

preventing multi-target builds from competing for pool space, 3-15 

models. See system models 

monitor manager 
components, 1-42 
creating monitors, 1-43 
detailed discussion of, 1-41 
implementation details, 1-44 
integration with other managers, 1-45 
introduction to, 1-5 
and store-and-forward mechanism, 1-44 
and task manager, 1-44 
using, 1-42 

monitors 
that activate shell commands, 1-43 
activating, 1-44 

notice to activator, 4-13 
that create tasks, 1-43 
creating, 1-43 

monitors activated by other people, 1-43 
monitors activated only by you, 1-43 
specifying what happens when activated, 1-43 

definition of, 1-42 
DSEE group monitors, 4-13 
identifying elements to monitor, 1-43 
list of elements monitored, 1-42 
that send electronic mail, 3-10 
set by administrator on a group's libraries, 2-11 
for technical writers, 4-14 
title, 1-42 
warning monitors, 4-13 
that watch other projects' libraries, 4-13 

Index-24 



multi-targeted systems 
binary pools. 3-13 

parameters for, 3-16 
development affecting several systems, how to handle, 3-22 
development of only one system, 3-21 
development of several systems, 3-21 
example of system model code for, 3-5 
how builds won't compete for pool space, 3-15 
isolating differences in system model, 3-4 
machine-dependent source code, storage considerations, 3-10 
overview, 3-2 
promoting derived objects for, 3-22 
setting model for a specific target system, 3-5 
where to store machine-dependent builds, 3-13 
where to store machine-independent builds, 3-13 
work that affects all systems, 3-7 
work that affects only one system, 3-7 
work that affects several systems, 3-7 
working in environment for, 3-6 

N 
name version command, 4-8 

-library option, 3-34 

naming conventions 
for branches and versions, used by DSEE group, 4-6 
ensuring consistency of, 4-11 
establishing them, 2-4 
illustration, 4-10 
standardizing element evolution, 4-11 

network computing resources, improving use of, 1-29 

network failure 
how history manager handles, 1-11 
how task manager handles, 1-40 

network partitioning 
how handled by monitor manager, 1-44 
how handled by task manager, 1-40 
safeguarding against problems caused by, 1-2 

network-wide virtual address space, and DSEE, 1-2 

node failure, during parallel build. 1-31 

non-DSEE users, coordinating with, 3-35 

Index-25 



non-users, definition of, 1-48 

noncritical dependencies 
changing to critical for development work, 3-12 
declaring imported binaries noncritical dependencies, 4-18 
definition of, 1-34 
ensuring correct versions in build, 3-36 
identifying, 2-22 
when to use, 1-34 

noncritical options, ensuring absence in builds, 3-36 

o 
object types (Domain file system), 1-10 

obsolete command, 3-34 

operating system, integration with history manager, 1-9 

%option symbol, example of use, 1-16 

organization of the manual, xvi 

OS group 
activities, 3-6 
attitude toward responsibility, 3-27 
building for distribution, 3-36 
changes caused by growth of, 3-31 
coordinating with other groups, 3-33 
introduction, 3-2 
libraries, 3-8 
monitors used by, 3-10 
pools, 3-13 
project structure, overview, 3-8 
protocols for line of descent use, 3-28 
system models, 3-11 

scaled-down full model, B-1 to B-14 
structure of, 3-11 

systems, 3-11 
translation rules, overview, 3-17 
working directories, how used to organize work, 3-21 
working in DSEE environment, overview, 3-20 

overrides (temporary equivalences), 1-33 

Index-26 



p 

parallel building 
how builder nodes are chosen, 1-30, 1-31 
degree of parallelism, 1-29 
description of, 1-29 
display during building, 1-30 
identifying candidate builder nodes, 1-30 
how node failure handled, 1-31 
partial ordering for, 1-30 
pathname resolution during, 1-31 
preventing impedence of others' work during, 1-31 
reference node, 1-31 
requirements, 1-30 

partial ordering (for parallel building), 1-30 

Pascal, writing DSEE programs in, 1-51 

per-process version map. See version map 

performance 
and code storage schemes, 3-10 
for configuration thread validation, 3-3 

optimizing, 3-3 
effect of pool searching on, 3-15 
for system model validation, 3-3 

optimizing, 3-3 

personal tasklists, definition of, 1-38 

pool declarations 
using conditional directives in, 4-27 
examples, 3-13, 4-27 
using links in, 3-17 

pools. See binary pools 

primary physical pool 
definition of, 2-15 
taking advantage of, 3-14 

products, producing multiple from one set of code, 3-2 

programming, DSEE programmable interface, 1-51 

programming environment, definition of, 1-2 

project coordination, 3-7 

Index-27 



project management 
tracking dependencies. 1-41 
with the task manger. 1-37 

project managers. using DSEE facilities. 1-3 

project structure. using system models to understand another project's 
structure. 2-14 

promote command. 3-22 

promote_depends declaration. 2-25 

protection and security. discussion of. 1-48 

protocols. for working on lines of descent. 3-28 

R 
readers. definition of. 1-48 

reference node. 1-31 

release areas 
See also releases 
copying contents from into another directory structure. 2-27 
how created. 1-36 
definition of. 1-35 
examining contents of. 1-36. 4-25 
moving code from into appropriate structure for release. 2-27 
relationship to systems. 3-2 

illustration. 3-3 

release manager 
as motivation for using DSEE. 2-26 
component. 1-35 
and configuration manager. 1-35 
detailed diSCUSSion of. 1-35 
integration with other managers. 1-47 
introduction to. 1-3 
release area. definition of. 1-35 
using the release manager. 1-36 

releases 
See also release areas 
for bug fixes. 4-24 

examining construction of. 4-24 
building for distribution. 3-36 
creating. keeping an up-to-date components list for. 2-27 

Index-28 



releases (continued) 
defining requirements for, 4-3 
determining which ones are associated with a product, 3-2 
examining contents of a release, 4-25 
as focus for working methods, 4-3 
giving users ability to find name or number of, 2-30 
maintaining multiple, 4-3 
naming versions from, 4-6 
recording configuration thread used in, 4-25 
referring to in configuration threads, 1-19, 3-30, 3-32 

advantages of, 4-21 
example, 4-21 

relating back to source versions, 2-30 
showing which ones are associated with a system, 4-24 
special releases 

branches for, 4-20 
configuration threads for, 4-21 
creating, 4-19 
definition of, 4-3 

tracing source versions of, 3-17 
using BCTs of, 2-29 
using in development, 3-30, 3-32 

remote building. See building, distributed building 

remote paging, underlying support for, 1-2 

replace command 
and branches, 4-7 
causing promotion of derived objects in reserved pool, 1-32 
and monitors, 1-44 
to replace merged versions, 4-20 
and tasks, 1-39 

replacing lines of descent, 1-7 
how affects tasks, 1-39 

reserve command 
and branches, 4-7 
and monitors, 1-44 

reserved pools 
See also binary pools, reserved pool 
changing parameters of, 3-21 
definition of, 1-31 
promoting derived objects from, 1-31 

in multi-targeted environment, 3-22 
why useful, 1-31 

Index-29 



reserving lines of descent, 1-7 

respins 
and merging, 4-9 
definition of, 4-9 

responsibility, establishing for a group, 3-27 

%result symbol 
advantages of, 2-18, 2-20 
example of use, 1-16 
how substituted for in actual translation rule, 2-18 
watching configuration manager replace, 2-20 

%result_of symbol 
advantages of, 2-18, 2-20 
common use of, 2-20 
and prebuilt include files, 2-24 
watching configuration manager replace, 2-20 
and wildcard expansion, 2-20 

s 
sample system models, explanation of those in appendixes, 2-1 

sccs_convert, 2-10 

sees libraries, converting to OSEE libraries, 2-10 

scripts of OSEE commands. See command files (OSEE) 

search-only pools. See binary pools, search-only pools 

security and protection 
discussion of, 1-48 
who takes responsibility for, 2-4 

semantic dependencies, definition of, 1-41 

server process manager, used by OSEE, 1-2 

server processes used by OSEE, 1-2 

set environment command, 3-35 

set model command, 3-5 

set system command, -default option, 3-23 

setting up a OSEE environment, 2-4 

Index-30 



shell commands 
accessing versions using, 1-9 
combining with DSEE commands, 1-52 
containing activation strings (in monitors), 1-44 
executed by monitor activation, 1-44 

shell scripts 
for moving code from release areas, 2-27 
as translators, 3-17 

advantages of, 3-19 
disadvantages of, 3-19 
editing for particular builds, 3-19 

show builds command, 3-25 

show elements command 
and branches, 4-7 
-having -merge option, 4-7 
-having option, 4-7 
-missing -merge option, 4-7 

example, 4-23 
-missing option, 4-7, 4-22 

example, 4-22 

show releases command, 3-2 
example, 4-24 

show version command, -from option, 4-18 
example, 4-18 

source code control, how provided by DSEE, 1-5 

source dependencies 
advantages of declaring, 2-25 
declaring with make_model, 2-22 
ensuring version control for, 2-12, 2-25 

%source symbol 
example of use, 1-16 
watching configuration manager replace, 2-20 

special releases 
branches for, 4-20 

when an element doesn't have one, 4-21 
configuration threads for, 4-21 

examples, 4-21 
creating, 4-19 
definition of, 4-3 
illustration of evolution, 4-23 
merging bug fixes into, 4-20 
using branches for work on, 4-6 

Index-31 



spm. See server process manager 

storage considerations 
for binary pools, 2-14, 3-17 
for libraries, 2-8 
for systems, 2-14 

store-and-forward mechanism, 1-2 
and monitor manager, 1-44 
and task manager, 1-41 

support personnel (field), using DSEE software, 1-3 

syntactic dependencies, definition of, 1-41 

system building. See building 

system cJmponents, issuing calls to manipulate sets of, 1-51 

system models 
advantages of, 1-14 
alias declaration, for multi-targeted systems, 3-4 
alternate lines of descent for, examples, 3-12 
avoiding changes to when pools move, 3-17 
binding to a set of versions, 1-17 
block names, initial capital letters in, xx 
block structure of, 1-14 

appropriate depth, 2-21 
eliminating redundancy, 2-11 
illustration, 1-15 
using to streamline translation rules, 2-16 

CAD tools group model, scaled-down full model, A-l to A-18 
components 

components depended on by many other components, 1-32 
how many do you need, 2-21 

conditional processing of, 1-17, 3-4, 3-5 
containing link-relative pathnames, revalidating, 3-17 
controlling source code of, 1-22 
creating alternate lines of descent for, 3-12 
debugging, 1-22 
declaring nested include files in, 2-25 
definition of, 1-12 
detailed description of, 1-13 
DSEE command facility system model, scaled-down full model, C-l to 

C-12 

Index-32 



system models (continued) 
OSEE group models 

overview, 4-2 
scaled-down full models, C-l to C-25 

OSEE system model compiler system model, scaled-down full modeJ, 
C-12 to C-21 

factoring out parts of, 2-13 
flat system models, definition of, 3-11 
fragments. See system models, model fragments. 
%include directives in, 1-21, 4-15 

and system model storage, 3-11 
information about in BCT, 1-23 
isolating target-specific code with alias, 3-5 
isolating variable portions of with alias, 3-4 
language 

definition of, 1-14 
detailed description of, 1-15 

and library structure, 2-7 
model fragments 

benefits of, 1-22 
definition of, 1-17 
detailed discussion of, 4-15 to 4-16 
OSEE common dependencies fragment, C-22 to C-25 
OSEE default translate rule fragment, C-21 
ensuring version control for, 3-11 
facilitating sharing of derived objects between systems, 4-16 
naming element versions from released builds, 2-30 
naming from builds, 4-9 
sharing binaries without using, 4-17 
storage of, 3-11 
used by OSEE group, 4-15 

model threads. See model threads 
modifying, 1-14 
modularizing, 1-17, 1-21, 2-21 
one system model source and several systems, 3-4 
OS group model, scaled-down full model, B-1 to B-14 
parallelism, as determinants of degree of, 1-29 
pool declarations, 2-15 

embedding conditional directives in, 4-27 
project structure, models as definitions of, 2-11 
recording evolution of, 3-12 
reducing size of, 2-13 
referring to libraries by links in, 2-9 
root system model, 1-17, 1-21 

Index-33 



system models (continued) 
setting, for multi-targeted systems, 3-5 
sharing components, 4-16 

reusing derived objects from shared components, 4-16 
sharing portions of between systems, 1-22, 2-13, 4-15 
storage of, 3-11 
stored as elements, 3-11 
stored as files, 3-11 
structure of as group models, 3-11 
system model compiler, relationship to other DSEE software, 4-15 
translation rules. See translation rules 
used to define system structure, 1-14 
using older versions of, 3-11 
using to understand another project's structure, 2-14 
using wildcards in, 1-17, 2-20 
validation 

revalidating when links change, 3-17 
storage of previously validated models, 3-3 

why to store them as elements, 3-11 
writing 

as an evolutionary process, 2-11 
declaring dependencies, 2-22 
using existing build scripts, 2-11 
using make_model to determine dependencies, 2-22 
who writes them, 2-4 

systems 
associated validated models and threads for, 3-3 
avoiding overwriting stored working contexts, 3-23 
components, how many do you need, 2-21 
configurations for distribution, desired characteristics of, 3-36 
creating different configurations, 3-27 
describing components of, 1-12 
determining how many to use, 2-12 
examining contents of a release, 4-25 
factoring out parts of, 2-13 
imported derived objects 

detailed discussion of, 4-17 
pros and cons of, 2-13 

loosely coupled systems, shared components, 4-15 
modularizing, 2-21 
multiple systems sharing source code, drawbacks of multiple models, 

3-4 
relationship to release areas, 3-2 

illustration, 3-3 

Index-34 



systems (continued) 
sharing binary pools. 1-23. 4-16 
sharing components. 4-16 

reusing derived objects. 4-16 
without model fragments. 2-13. 4-17 

showing releases associated with a system. 4-24 
specifying versions for. 1-12 
storage considerations. 2-14 
storage of validated models and threads. 3-3 
using more than one for one set of source code. 3-2 

considering all affected systems. 3-4 
using one system model source for several. 3-4 
using one to represent product. 2-12 

ensuring version control. 2-12 
who creates directories. 2-4 

T 
target elements (monitors). definition. 1-43 

-target rule (in model threads). 3-5 
preventing multi-targeted builds from competing for pool space. 3-15 

task editor. definition. 1-40 

task manager 
components. 1-37 

forms. 1-38 
tasklists. 1-38 
tasks. 1-37 

detailed discussion of. 1-36 
and history manager. 1-39 
implementation details. 1-40 
integration with other managers. 1-45 
introduction to. 1-4 
and monitor manager. 1-44 
and multiple local area networks. 1-41 
using. 1-38 

automatic vs manual. 1-39 

task templates (for monitors). creating. 1-43 

task transcripts 
automatic addition of items to. 1-39 
definition of. 1-37 
example entry. 4-12 

Index-35 



task transcripts (continued) 
modifying, 1-40 
updating, 1-41 
using for record keeping, 4-12 

tasklists 
adding tasks to, 1-38, 1-40 

with monitors, 1-44, 4-14 
automatically created tasklists, 1-38 
as basis of reference to tasks, 1-40 
creating your own tasklists, 1-38 
current tasklist, 1-40 
definition of, 1-38 
DSEE group tasklists, 4-12 
examining, 1-40 
library tasklist, 1-38 
master tasklist, 1-38 
monitors that add tasks to, 1-44, 4-14 
protecting, 1-48 
removing tasks from, 1-40 
shared tasklists, 4-12 
using, 1-40 

tasks 
accessing through tasklists, 1-40 
active items 

definition of, 1-37 
modifying list of, 1-40 
tasks without active items lists, 4-12 

adding to tasklists, 1-40 
with monitors, 1-44, 4-14 

completed items. See task transcripts 
creating and modifying, 1-39 
creating forms for, 1-38 
creating from a form, 1-39 
definition of, 1-37 
editing, 1-40 
as records of work done, 1-39 
removing from tasklists, 1-40 
retrieving completed tasks, 1-40 
shared tasks, 1-39, 4-12 
stored on master tasklist, 1-40 
task editor, 1-40 
and tasklists, 1-38 
task template for monitors, 1-42 

Index-36 



tasks (continued) 
task title, 1-37 
task transcripts, 1-37 

automatic addition of items to, 1-39 
definition of, 1-37 
example entry, 4-12 
modifying, 1-40 
updating, 1-41 
using for record-keeping, 4-12 

used by OSEE group, 4-12 

technical writers 
coordinating with engineers, 4-6 
keeping abreast of code changes, 4-14 
using OSEE facilities, 1-3, 4-6 

testing software, separated from OSEE facilities, 1-3 

time stamp, script to generate, 3-17 

tools dependencies 
advantages of declaring, 2-23, 3-19 
declaring as noncritical, 2-23 
listing shared binaries as, 4-18 
tracking down constituent versions of, 2-14 
treating imported derived objects as, 2-13 
version control, and shell scripts. 3-19 

tracking project development, 1-37 

translation options 
identifying in translation rules, 1-16 
noncritical options, ensuring absence in builds, 3-36 
specifying in configuration threads, 1-21 

translation rules 
actual translation rule, 1-27 
CAO tools group translation rules, 2-16 
using to compress script size, 2-18 
containing shell scripts as translators 

advantages of, 3-19 
disadvantages of, 3-19 

correspondence to number of components, 2-21 
creating from existing scripts, 2-16 
default translation rules. 2-17 
definition of. 1-14 
detailed description of, 1-15 

Index-37 



translation rules (continued) 
examples, 1-16, 2-18 

rule that calls a shell script, 3-18 
rule that doesn't put derived objects in pools, 2-19 
rule that moves derived objects from working directory to pool, 2-19 
rule that puts derived objects in pools, 2-19 

factoring out common translation rules, 1-17, 2-16, 2-17 
for components shared by several systems, 4-16 
how interpreted by configuration manager, 1-16 
OS group translation rules, 3-17 
and parallel building, 1-31 
preventing from trying to do too much, 2-21 
referring to derived objects in, 1-16, 2-18, 2-20 
using %resuIt in, 2-18 
shell scripts as translators, 3-17 

editing shell scripts for particular builds, 3-19 
using system model block structure to streamline, 2-16 
watching configuration manager process, 2-20 
using wildcards to avoid listing components, 2-20 
writing from existing scripts, example, 2-16 
writing using existing build scripts, 2-11 

translators 
assuring consistency of during parallel build, 1-31 
that automatically add extensions to derived objects, 2-20 
building with non-Domain translators, 1-27 
declaring as tools dependencies, advantages of, 2-23 
that don't have output options, 2-19 
shell scripts as, 3-17 

advantages of, 3-19 
disadvantages of, 3-19 
editing for particular builds, 3-19 

transparent remote file access, support in DSEE, 1-2 

troubleshooting, who takes responsibility for, 2-4 

type manager, 1-10 

typewriter font, xx 

Index-38 



v 
version control 

ensuring, 2-12 
and imported derived objects, 2-13, 4-17 
and model fragments, 4-17 
for source dependencies, ensuring, 2-25 
for system models, 3-11 
for tools, called from shell scripts, 3-19 

version maps 
created during build, 1-27, 1-48 
definition of, 1-9 
used in parallel builds, 1-30 
using with actual translation rule, 1-29 

version names. See versions, names 

version stamps 
for tools, 3-19 

listing in BeTs, 2-23 
of imported binaries, 4-18 

versions 
accessing outside DSEE, 1-9, 3-35 

with extended version pathnames, 1-9, 1-10 
building with different versions in different contexts, 1-20 
building with only one version of each element, double-checking, 4-27 
comparing, 1-7 
creating multiple for a new element, 2-9 
creating new versions, 1-7 
definition of, 1-5 
determining which versions used in build, 3-17 
ensuring only one of each element used in build, 3-36 

double-checking, 3-37 
ensuring use of correct versions by outside groups, 3-35 
how history manager retrieves, 1-9 
names 

accessing outside of DSEE, 3-35 
advantages of, 4-11 
assigning to many versions at once, 4-8 
definition of, 1-6 
DSEE group naming conventions, 4-6 
how useful in tracking bugs, 2-30 
judicious use of, 3-31 
as markers for branching points, 3-28 

Index-39 



versions (continued) 
names (continued) 

moving, 3-29 
multiple names for one version, 4-11 
volatility of, 3-29, 3-31 

naming conventions, illustration, 4-10 
naming for other DSEE users, 3-34 
naming from builds 

benefits of, 4-9 
ease of, 4-9 
examples, 2-29, 3-34, 4-9 

naming from released builds, 2-29, 2-30, 3-31, 4-9 
examples, 2-29, 3-34, 4-9 
how useful in tracking bugs, 2-30 

numbers, limited usefulness of, 4-11 
overhead of reading, 1-9 
recording creation of, 1-7 
reserved versions 

building without, 3-36 
derived objects of, 1-25 

safeguarding against unadvised creation of, 4-13 
storage compaction, 1-8 
tracking down constituent versions of imported binaries, 4-18 

-von option (build command), 2-20 

w 
-when_active clause (configuration threads), discussion of, 4-26 

-when_exists clause (configuration threads), discussion of, 4-26 

wildcards 
expansion of in translation rule here documents, 2-20 
in monitor target element names, 1-43 
using in system models, 1-17 

working contexts, multiple working contexts for a system, 3-23 

working directories, using to organize work, 3-21 

writers. See technical writers 

Index-40 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Engineering in the DSEE Environment 
Order No.: 008790-AOO 
Date of Publication: July 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ___________ _ 

__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Domain system? ___________ _ 

What additional information would you like the manual to include? __ 

Please list any errors, omissions, or problem areas in the manual by page, 
section, figure, etc. _____________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN Tt-IE 

UNITED STATES 


