
()

o

o

o

o

Programming With System Calls
For Interprocess Communication

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005696

Revision 00

Software Release 9.0

Copyright © 1985 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: July, 1985

This document was produced using the SCRIDE ® document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.) .

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DOMAIN/lX, DOMAIN/Dialogue, D3M, DPSS, DGR, GMR and DSEE are trademarks
of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

---------- -----------------

o

o

o

o

o

Preface

Programming With System Calls for Interprocess Communication describes the DOMAIN®
system calls you can use for interprocess communication. Interprocess communication can involve
data transfer, event notification, and synchronization.

Audience

This manual-is intended for programmers who write applications involving several programs that
run from separate processes. Before using this manual, you should be familiar with programming
concepts and terminology, and should know how to use general-purpose DOMAIN system calls.
You should also understand the DOMAIN implementation of the programming language you are
using.

This manual describes different techniques for providing interprocess communication, and uses
programming examples .to explain the techniques. However, the manual does not provide
complete reference information for each call that it demonstrates. For complete reference
information, see the DOMAIN System Call Reference (Volumes I and II).

Organization of This Manual

This manual contains six chapters and two appendices:

o Chapter 1 gives an overview of the programming calls for interprocess communication.

o Chapter 2 describes sharing data through mapping.

o Chapter 3 describes using user-defined eventcounts for interprocess synchronization
and event notification.

o Chapter 4 describes using mutex locks to control access to a shared resource.

o Chapter 5 describes interprocess communication using mailboxes.

o Chapter 6 describes interprocess communication using datagrams.

o Appendix A contains sample Pascal programs that show how to use the calls described
throughout the manual.

• Appendix B contains translations, written in C, of the programs in Appendix A.

This manual uses excerpts of Pascal programs to illustrate the narrative descriptions. Each
excerpt begins with the name of the program from which it was taken. To see the complete
Pascal program, find the corresponding program in Appendix A. To see the C translation, find
the corresponding program in Appendix B.

You can also view the programs on-line, as described in the next section.

iii Preface

On-Line Sample Programs

The programs from this manual are stored on-line, along with sample programs from other
DOMAIN manuals. We include sample programs in Pascal and C. All programs in each language
have been stored in master files (to conservedisk space). There is a master filefor each language.

In order to access any of the on-line sample programs you must create one or more of the
following links:

(For Pascal examples) $ CRL -COM/GETPAS /DOMAIN_EXAMPLES/PASCAL_EXAMPLES/GETPAS

(For C examples) $ CRL -COM/GETCC /DOMAIN_EXAMPLES/CC_EXAMPLES/GETCC

To extract a sample program from one of the master files, all you have to do is execute one of the
following programs:

(To get a Pascal program) $ GETPAS

(To get a C program) $ GETCC

These programs prompt you for the name of the sample program and the pathname of the file to
copy it to. Here is a demonstration:

$ GETPAS
Enter the name of the program you want to retrieve -- MS MAP
What file would you like to store the program in? -- MAPl.PAS

Done.
$

You can also enter the information on the command line in the following format:

For example, here is an alternate version of our earlier demonstration:

$ GETPAS MS_MAP MAPl.PAS

GETP AS and GETCC warn you if you try to write over an existing file.

For a complete list of on-line DOMAIN programs in a particular language, enter one of the
following commands:

(for Pascal)
(for C)

$ GETPAS HELP
$ GETCC HELP

Technical Changes

This manual is part of a new programming documentation set for SR9. The programming
documentation set includes the DOMAIN System Call Reference, plus the following
programming guidebooks:

o Programming With General System Calls

Preface iv

o

o

o

o

o

o Programming With System Calls for Interprocess Communication

o Programming With DOMAIN 2D Graphics Metafile Resource

o Programming with DOMAIN Graphics Primitives

The DOMAIN System Call Reference includes complete information on call syntax, data types,
constants, and error codes. The programming guidebooks describe how to use system calls within
programs. Although the guidebooks describe many pre-SR9 system calls, the material has been
significantly revised to include more usage information and examples.

Programming With System Calls for Interprocess Communication incorporates the following
information from the SR8 DOMAIN System Programmer '8 Reference Manual:

• Mapped segments

• Eventcounts

o Mailboxes

In addition, this guidebook includes new technical information regarding mapped segments,
mailboxes, and two new groups of system calls: mutual exclusion (MUTEX) and interprocess
communication (IPO). The following list describes the technical changes for SR9:

o The mapped segment (MS) manager includes four new calls:

MS_$ADVIOE
MS $ATTRffiUTES
MS $FW _FaE
MS $TRUNOATE

In addition, new there are two new MS data types for use with MS $ADVIOE:
MS $AOOESS T and MS $ADVIOE OPT T. See Ohapter 2 for more
information.

• There is a new group of system calls that let programs share a file, or other resource,
with mutual exclusion. See Ohapter 4 for information on using the mutual exclusion
(MUTEX) system calls.

o Mailbox (MBX) calls now accept larger messages. A server can now put and get
messages that are up to 32767 bytes long; a client can now put and get messages that
are up to 32761 bytes long. However, if a server sends a message that is larger than
1158 bytes to a client on a remote node, the remote node's MBX_HELPER must be
able to handle the message. To handle the message, the remote node's
MBX_HELPER must have a queue data size that is at least as large as the message.

Also, three new MBX calls have been added:

MBX_ $OLIENT _ WINDOW
MBX_$PUT_OHR_OOND
MBX_ $SERVER WINDOW

Three new MBX error codes have been added:

v Preface

MBX_ $ SEQUENCED _ SEND _FAILED
MBX_ $CLIENT _NO _RIGHTS
MBX_ $HELPER NO RIGHTS

See Chapter 5 for information on using MBX calls.

• There is a new group of system calls that perform fast interprocess communication.
These calls let programs use communications buffers, called sockets, to send and
receive messages, called datagrams. See Chapter 6 for information on using the
interprocess communication (IPC) calls.

Suggested Reading Paths

Before you read this manual, you should be familiar with the following:

• Getting Started With Your DOMAIN System and DOMAIN System User's Guide.
These manuals provides general information about using your node.

o Programming With General System Galls. This manual provides general information
about using system calls. It also describes the general-purpose system calls.

• DOMAIN System Gall Reference. These manuals give complete reference
information on all DOMAIN system calls.

In addition, you should be familiar with the DOMAIN language manuals for your programming
language.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following conventions:

UPPERCASE

lowercase

[]

{ }

<>

CTRL/Z

Preface

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in format and
command descriptions. In simple Pascal statements, braces assume their Pascal
meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ fQllowed by the name of a key indicates a control
character sequence. You should hold down the < CTRL > key while typing the
character.

vi

r
\...-

o

o

o

o

o

-----~~---

Horizontal ellipsis points indicate that the preceding item can be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have
been omitted.

Pro blems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN>

For documentation comments, a Reader's Response form is located at the back of this manual.

vii Preface

c

o

o

o

o

o

Contents

Chapter 1 Introduction

1.1. Mapped Segm~nts
1.2. Eventcounts
1.3. Mutual Exclusion Locks
1.4. Mailboxes
1.5. Interprocess Communication Datagrams

Chapter 2 Sharing Data Through Mapping

2.1. Overview
2.2. MS System Calls, Insert Files, and Data Types
2.3. Steps For Mapping a File
2.4. Mapping a File

2.4.1. Creating a User-Defined Record
2.4.2. Using MS _ $MAPL and MS _ $CRMAPL
2.4.3. Providing Usage Advice
2.4.4. Obtaining File Attributes

2.5. Getting a Lock
2.5.1. Protected Read Locks
2.5.2. Protected RIW Locks
2.5.3. Shared Read Locks
2.5.4. Exclusive Write Locks
2.5.5. Shared Write Locks

2.6. Changing a Lock
2.7. Remapping a File
2.8. Truncating a File
2.9. Force Writing a File
2.10. Unmapping a File

Chapter 3 Using User-Defined Eventcounts

3.1. Overview
3.2. EC2 System Calls, Insert Files, and Data Types
3.3. Steps For Using User-Defined Eventcounts
3.4. Writing An Event Producer

3.4.1. Performing Basic Eventcount Operations
3.4.2. Synchronizing Reading and Writing

3.5. Writing An Event Consumer
3.6. Asynchronous Faults During Eventcount Waits

ix

1-2
1-2
1-2
1-3
1-3

2-1
2-2
2-3
2-3
2-4
2-5
2-8

2-10
2-12
2-13
2-14
2-14
2-15
2-15
2-15
2-18
2-20
2-22
2-22

3-1
3-2
3-2
3-3
3-4
3-9

3-14
3-17

Contents

Chapter 4 Using Mutual Exclusion Locks

4.1. Overview
4.2. Mutex System Calls, Insert Files, and Data Types
4.3. Steps For Using Mutex Locks
4.4. Initializing a Mutex Lock Record
4.5. Using Mutex Locks
4.6. Mutex Locks and Fault Handling

Chapter 5 Using MailBoxes

5.1. Using Mailboxes To Transmit Messages
5.2. MBX System Calls, Insert Files, and Data Types
5.3. Mailbox Messages

5.3.1. Defining Message Buffers in a Server
5.3.2. Defining Message Buffers in a Client

5.4. Steps For Using Mailboxes
5.5. Writing a Mailbox Server

5.5.1. Creating and Closing a Mailbox
5.5.2. Getting Messages
5.5.3. Responding to Messages

5.5.3.1. Open Requests
5.5.3.2. End-of-Transmission Notices
5.5.3.3. Data and Partial Data Transmissions

5.5.4. Sending Long Messages
5.5.5. Closing a Channel

5.6. Writing a Mailbox Client
5.6.1. Opening and Closing Channels
5.6.2. Sending and Receiving Messages

5.7. Using Mailbox Eventcounts
5.7.1. Waiting to Get a Message
5.7.2. Waiting to Put a Message

5.8. Using The Mailbox Helper
5.8.1. Starting the MBX_HELPER
5.8.2. Adjusting the Buffer Size ,for Long Messages
5.8.3. Using MBX_ HELPER in a Secure Network

Chapter 6 Sending Datagrams

6.1. Overview
6.2. IPC System Calls, Insert Files, and Data Types
6.3. IPC Datagram Format
6.4. Using The IPC Calls

6.4.1. Creating a Handle File and Opening a Socket
6.4.2. Receiving Datagrams
6.4.3. Waiting for Datagrams
6.4.4. Sending Datagrams
6.4.5. Closing Sockets and Deleting Handle Files

6.5. Writing a Server

Contents x

4-1
4-1
4-2
4-3
4-5
4-8

5-1
5-2
5-4
5-5
5-6
5-6
5-7
5-8

5-10
5-13
5-14
5-16
5-19
5-22
5-22
5-23
5-23
5-25
5-27
5-28
5-32
5-37
5-38
5-39
5-39

6-1
6-2
6-3
6-4
6-4
6-5
6-7

6-10
6-11
6-12

(
\,

C

r
"-

('
I~-

------ --------------- - -------------- ------------------------

o

o

o

o

o

6.6. Writing a Client

Appendix A Sample Pascal Programs

A.1. MS_MAP.PAS
A.2. MS_ADVICE.PAS
A.3. MS_ATTRIBUTES.PAS
AA. MS_RELOCK.PAS
A.5. MS_REMAP.PAS
A.6. MS _ TRUNCATE.P AS
A.7. EC2_PRODUCER.PAS
A.8. EC2 CONSUMER.PAS
A.9. MUTEX_INIT.PAS
A.10. MUTEX_USER.PAS
A.1l. :MBX_SERVER.PAS
A.12. :MBX _ CLIENT.P AS
A.13. :MBX_ GET _EC.PAS
A.14. :MBX_PUT _EC.PAS
A.15. IPC_SERVER.PAS
A.16. IPC CLIENT.PAS

Appendix B Sample C Programs

B.l. MS_MAP.C
B.2. MS_ADVICE.C
B.3. MS ATTRIBUTES.C
BA. MS_RELOCK.C
B.5. MS REMAP.C
B.6. MS _ TRUNCATE.C
B.7. EC2_PRODUCER.C
B.8. EC2 _ CONSUMER.C
B.9. MUTEX_INIT.C
B.10. MUTEX_ USER.C
B.1l. :MBX_SERVER.C
B.12. :MBX_ CLIENT.C
B.13. :MBX_ GET _EC.C
B.14. :MBX_PUT _EC.C
B.15. IPC _SERVER.C
B.16. IPC \ CLIENT.C

Index

xi

6-18

A-3
A-5
A-7
A-9

A-II
A-13
A-15
A-19
A-22
A-24
A-27
A-31
A-33
A-37
A-42
A-47

B-3
B-5
B-7
B-9

B-11
B-13
B-15
B-18
B-21
B-23
B-25
B-29
B-31
B-35
B-40
B-44

Contents

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2-7.

Figure 2-8.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Illustrations

Getting a Pointer to a User-Defined Record

Using MS _ $MAPL and MS _ $CRMAPL

Using MS _ $ADVICE
Using MS _ $ATTRIBUTES

Relocking a File

Remapping a File

Truncating a File

Unmapping a File

Eventcount Synchronization Between Two Programs

Initializing User-Defined Eventcounts in a Producer

Advancing a User-Defined Eventcount in a Producer

Event Synchronization in a Producer

Sample Event Consumer

Handling Asynchronous Faults During Eventcount Waits

A Program That Initializes a Mutex Lock Record

A Program That Uses Mutex Locks

A Clean-Up Handler for Use After Calling MUTEX_ $LOCK

A Mailbox Server with Two Clients

A Mailbox Channel
Mailbox Message Formats

Figure 5-4. A Server That Creates and Closes a Mailbox

Figure 5-5. A Server That Gets Messages

Figure 5- 6. A Server That Responds to Open Requests

Figure 5-7. A Server That Responds to End-of-Transmission Notices

Figure 5-8. A Server That Responds to Data and Partial Data Transmissions

Figure 5-g. A Client That Opens and Closes Channels

Figure 5-10. A Client That Gets and Sends Messages

Figure 5-11. A Client That Uses MBX_$GETREC _EC lillY

Figure 5-12. A Client That Uses MBX $PUTREC EC lillY

Figure 5-13.

Figure 6-1.

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6-8.

Contents

How MBX_HELPER Assists Interprocess Communication

Using Sockets to Receive Datagrams

Opening a Socket

-Receiving a Datagram from a Socket

Waiting for Datagrams from Two Sockets

Sending a Datagram

Closing a Socket and Deleting a Handle File

An IPC Server

An IPC Client

xii

2-4

2-6
2-9

2-11

2-15

2-18

2-21

2-23

3-4

3-5

3-8

3-11

3-14

3-19

4-3

4-6

4-9

5-1

5-2
5-4

5-9

5-11

5-14

5-17

5-19

5-24

5-26
5-29

5-33

5-38

6-1

6-5
6-6

6-8

6-11

6-12

6-14

6-19

(
"'---

c

0 Tables

Table 1-1. Summary of DOMAIN System Calls for Interprocess Comm.unication 1-1

Table 2-1. Summary of MS Calls 2-2

Table 2-2. Types of MS Locks 2-13
Table 2-3. Concurrency and Access Modes for MS Locks 2-13

Table 2-4. MS Lock Combinations 2-14

Table 2-5. Ways to Relock a File 2-17

Table 3-1. Summary of EC2 System Calls 3-2
Table 3-2. Wait Actions When Asynchronous Faults Are Enabled 3-18

Table 3-3. Wait Actions When Asynchronous Faults Are Inhibited 3-18

Table 4-1. Summary of MUTEX System Calls 4-2

0 Table 5-1. Summary of MBX Calls 5-3

Table 5-2. Summary of MBX Get Calls 5-10

Table 6-1. Summary of IPC Calls 6-2

Table A-I. Summary of Programs in Appendix A A-I

Table B-1. Summary of Programs in Appendix B B-1

o

o

o
xiii Contents

o

o

o

o

c

Chapter 1
Introduction

Programming applications within a DOMAIN local area network often involve separate programs
that need to communicate. For example, a program may need to send data to another program
or may need to notify another program when an event has occurred. Programs may also need to
share code or data. Communication between programs is called interprocess communication when
the programs run from separate processes.

Related programs can run on the same, or on different, nodes. When an application involves
programs on different nodes, it is a distributed application (or program). Distributed
programming lets you share the resources of many nodes in support of a single application.

Your DOMAIN system includes several types of calls that let you perform interprocess
communication. Some calls are used primarily on a single node, while others can be used in a
distributed application.

This chapter gives an overview of the DOMAIN system calls for interprocess communication.
Table 1-1 summarizes the calls and shows some of their common uses; Sections 1.1 through 1.5
give additional information about each group of calls.

Table 1-1. Summary of DOMAIN System Calls for Interprocess Communication

Call

Mapped segment (MS)

Eventcount (EC2)

Mutual exclusion lock (MUTEX)

Mailbox (MBX)

Interprocess Communication (IPC)

Common Uses

Share a common file; transfer data between programs.
Used primarily by programs on the same node.

Indicate that an event has occurred; synchronize program
activities such as data transfer. Used by programs on the
same node.

Control access to a shared file. Used by programs on the
same node.

Transfer data between programs. Used by programs on
the same, or on different, nodes.

Transfer data between programs. Used primarily by
programs on different nodes.

In addition to the calls described in this book, you may also find PGM_ $INVOKE useful when
you work with multi-process applications. PGM_ $INVOKE allows one program to invoke
another in a separate process. (The separate process is created on the caller's node.) Some of the
programs in this manual illustrate PGM_ $INVOKE. However, for additional information on
this call, see Programming With General System Calls.

1-1 Introduction

1.1. Mapped Segments

Mapping associates part of your address space with a disk file. After you map a file, you can
access it by supplying the appropriate address. The system brings the required pages of the file
into memory as needed.

For' a single program, mapping is useful because it provides quick access to a file. For multiple
programs that map the same file, mapping can provide a fast way to share or exchange data.
Chapter 2 describes how to use the mapped segment (MS) calls to share data through mapping.

Programs on the same node can map a common file for both reading and writing. However,
programs on different nodes can use mapping to share a file with read, but not write, access to
the file. Because of this restriction, mapping is most useful for programs running on the same
node.

Note that you must provide your own synchronization when several programs use mapping to
update a common file or to transfer data. You can use eventcounts or mutual exclusion locks to
provide this synchronization.

1.2. Eventcounts

An eventcount is a value that is incremented when an associated event occurs. The DOMAIN
system provides eventcounts that programs can use to wait for certain types of system-defined
events. In addition, the DOMAIN system provides eventcount calls that you can use to create
your own (user-defined) eventcounts. Chapter 3 describes how to use the eventcount (EC2) calls
to work with user-defined eventcounts. For information on system-defined eventcounts, see
Programming With General System Calls.

User-defined eventcounts are useful for event notification and interprocess synchronization. For
example, one program can establish an eventcount and advance the eventcount when a particular
event occurs. A waiting program can then be notified that the eventcount has advanced. In this
way, one program uses the eventcount to notify another that a relevant event has occurred, which
allows the programs to synchronize their activities.

In order for many programs to use the same eventcount, the eventcount must be located in a
memory location (such as a mapped file) that all the programs share. Because of the restrictions
on mapping files, only programs that run on the same node can use the same eventcount.

1.3. Mutual Exclusion Locks

A mutual exclusion, or mutex, lock provides controlled access to a shared resource. If you
associate a mutex lock with a resource, then programs must obtain the lock in order to use the
resource. Only the program with the mutex lock can use the resource; other programs must wait
until the lock is available. Chapter 4 describes how to use the mutual exclusion (MUTEX) calls
to control access to a shared resource.

Mutex locks are often used to control access to a shared file. The mutex lock ensures that only
one program at a time uses the file. In addition, the mutex lock provides a way to notify waiting
programs when the file becomes available.

Introduction 1-2

C.--

c

(
I

'''----

------------------------------ . ----.-.--- - ._-_._--_ ...

c

o

o

o

Programs use a mutex lock record to store information about whether the associated resource is
in use .. A mutex lock record, like an eventcount, must be located in a memory location (such as a
mapped file) that all the programs share. Because of the restrictions on mapping files, only
programs that run on the same node can use the same mutex lock.

1.4. Mailboxes

A mailbox is a file that programs use to send information to each other. A program that creates
a mailbox is called a server; a program that opens a channel to an existing mailbox is called a
client. Chapter 5 describes how to use the mailbox (11BX) calls for interprocess communication.

A mailbox provides a virtual circuit between a server and each of its clients. That is, the mailbox
provides a guaranteed connection that maintains the message sequence. Programs on the same,
or on different, nodes can communicate using a mailbox. However, if a server and a client are on
different nodes, then you must run a mailbox helper (jSYS/11BX/11BX_HELPER) on each
node.

Typically, programs use a mailbox for one-way data transfer (in which a client sends data to the
server) or two-way data transfer (in which a client sends a request to the server and the server
sends a response.) However, you can also use a mailbox for interprocess synchronization.

1.5. Interprocess Communication Datagrarns

A interprocess communication (IPC) datagram is a message that one program sends to another
through a communications buffer called a socket. Chapter 6 describes how to use the IPC calls to
send datagrams.

A datagram connection is a high-speed, but unguaranteed, connection between two programs.
That is, when one program sends a datagram to another, the system makes its best effort to
deliver it. The system does not, however, guarantee message delivery and does not guarantee the
message sequence. Therefore, programs that use IPC datagrams must verify that each datagram
is successfully received.

You can use datagrams to send large amounts of data from one program to another. However,
you can also use datagrams for transaction-oriented applications in which one program sends a
request to another, and then waits for a response.

1-3 Introduction

(
'

c

o

o

o

o

o

----------- -_._."

Chapter 2
Sharing Data Through Mapping

This chapter describes how programs can share data by mapping a common file. This chapter
includes:

• An overview of mapping.

• A summary of DOMAIN system calls for mapping files.

• A description of the steps for mapping and working with shared files.

2.1. Overview

Mapping associates part of your address space with a disk file. When you map a file, the system
reserves part of your address space for the file. In addition, the system returns a pointer with
which you can access the file. As you reference different parts of the file, the system brings the
required pages into memory.

You should map files that contain data in a user-defined format; do not map a DOMAIN record
structured file, such as one created by a STREAM call. When you map a file, be sure that the
program understands the file's format.

A single program uses mapping for fast access to a file. However, if an application involves many
programs, each program can map the same file to share or exchange data. For example, several
programs can map a common file to:

• Transfer data from one program to another.

• Read from a common data file.

• Read and write to a common file.

When programs on the same node map the same file, they share the same memory for the same
pages of the file. Therefore, these programs can simultaneously map a file for reading and
writing. If one program writes to the file, the others can access the changes. Note, however, that
you must provide your own synchronization mechanisms when several programs write to the same
file. To synchronize file access, use user-defined eventcounts or mutex locks. See Ohapter 3 for
information on eventcounts; see Ohapter 4 for information on mutex locks.

When programs on different nodes map the same file, they do not share the same memory for
pages of the file. Instead, each node stores pages from the file in its own memory. For this
reason, programs on different nodes can map the same file only for reading. If programs on
different nodes need to write to a common file, you can use one of the following techniques:

• Allow one program at a time to map the file. For example, one program can map,
update, and unmap the file while programs on other nodes wait to map the file. To
determine when a file is available, a waiting program would periodically attempt a
map operation.

2-1 Sharing Data Through Mapping

• Write a program that controls access to the file. Let other programs send requests to
access the file, using mailbox (11BX) or interprocess communication (IPO) calls. See
Ohapter 5 for more information on 11BX; see Ohapter 6 for more information on IPO.

2.2. MS System Calls, Insert Files, and Data Types

To map a file, use MS system calls. These calls invoke the mapped segment (MS) manager, the
system component that is responsible for mapping. Table 2-1 summarizes the MS calls.

Table 2-1. Summary of MS Calls

Operation Call

Map and lock a file MS - $ORMAPL
MS $MAPL -

Provide file access MS $ADVIOE -
advice

Ohange how the MS - $RELOOK
file is mapped MS - $REMAP

Obtain/ change file MS - $ATTRIBUTES
attributes MS $TRUNOATE -

Force write a file MS $FW FILE - -

Unmap an object MS - $UNMAP

In order to use MS calls, you must include the appropriate insert file in your program. The MS
insert files are:

/SYS /INS /MS .INS. C
/SYS /INS /MS .INS .FTN
/SYS /INS /MS.lNS.P AS

(for 0)
(for FORTRAN)
(for Pascal)

Some of the MS calls require that you specify parameters using special DOMAIN data types.
These include:

MS $AOO MODE T An access mode.

MS $AOOESS T A file usage pattern.

MS $ADVIOE OPT T Reserved for future use.

MS $OONO MODE T A concurrency mode.

In FORTRAN, use a 2-byte integer to represent each of these data types.

For complete information on the MS system calls and data types, see the DOMAIN System Gall
Reference.

Sharing Data Through Mapping 2-2

'

c

I

\, ...

c

o

o

o

o

o

2.3. Steps For Mapping a File

To access a file by mapping it, follow these steps:

o Use MS _ $MAPL or MS _ $CRMAPL to map the file and get a pointer to the file's
location in your address space. MS _ $MAPL maps an existing file; MS _ $CRMAPL
creates and maps a new file.

o When you map the file, specify a lock. A lock determines the type of access you can
have to the file. The lock also affects the type of access that other programs can have
to the file. Once you have a lock, other programs can only get locks that are
compatible with yours.

o If you have a predicted pattern of file usage, use MS _ $ADVICE to provide advice to
the mapped segment (MS) manager. This helps the system provide better
performance when managing the file on your behalf.

o Access data in the file by using the pointer returned by MS $MAPL or
MS $CRMAPL.

o Perform any required map operations. To change your lock on a file, use
MS _ $RELOCK. To map a different section of a file, use MS _ $REMAP. To obtain
file attributes, use MS _ $ATTRIBUTES. To truncate a file, use MS _ $TRUNCATE.
To force write a file, use MS_$FW _F~E.

o When you are through with the file, use MS _ $UNMAP to unmap and unlock the file.

2.4. Mapping a File

There are two calls for mapping files:

o MS _ $MAPL maps an existing file.

o MS _ $CRMAPL creates and maps a new file.

Both calls require parameters to specify the information about the file you are mapping and the
lock you are requesting. (A lock defines a type of file access. See Section 2.5 for more
information.) In addition, both calls return a pointer to the mapped file. Use this pointer to
reference the file. (A pointer is the same as an address.) A file remains mapped until you unmap
it with MS _ $UNMAP. See Section 2.10 for information on unmapping files.

The following sections describe different aspects of mapping a file:

o Section 2.4.1 describes how to define a user-defined record to help you access data in a
mapped file.

o Section 2.4.2 describes the syntax for MS _ $MAPL and MS _ $CRMAPL.

o Section 2.4.3 describes how to provide usage advice after you map a file.

o Section 2.4.4 describes how to obtain file attributes after you map a file.

2-3 Sharing Data Through Mapping

2.4.1. Creating a User-Defined Record

When you c.ll MS _ $MAPL and MS _ $CRMAPL, you may find it useful to define a variable
that is a pointer to a user-defined record. You can then use this variable to receive the pointer
returned by MS _ $MAPL or MS _ $CRMAPL. To access data in the mapped file, use the
pointer. (In FORTRAN, a pointer is an address.)

Figure 2-1 shows how to map a file that contains a user-defined record. First, the example
defines a record and a pointer to this record. Then the program uses MS _ $MAPL to map the
file and obtain a pointer. The program then uses this pointer to access different fields in the
record.

Note that MS _ $MAPL returns a status code using the variable status, which is a record in
STATUS _ $T format. This record is defined in the BASE insert file. See Programming With
General System Galls for more information on the structure of status codes.

PROGRAM ms_map;

{ This program maps a file and uses the pointer returned by MS_$MAPL
to reference a user-defined record. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';

TYPE

VAR

sales record t =
RECORD
item code
units sold
END;

status
mapped_seg_ptr

integer;
integer;

status_$t;
"'sales record_t;

BEGIN
mapped_seg_ptr := ms_$mapl('sales_stats'.

status);

IF status.all <> status_$ok THEN RETURN;

{ Write a record to the file. }

mapped_seg_ptr"'.item_code := 1;
mapped_seg_ptr"'.units_sold 10;

END; {program}

{ file to map }

{ other parameters }

Figure 2-1. Getting a Pointer to a User-Defined Record

Sharing Data Through Mapping 2-4

c

o

o

o

o

o

If a file contains many records, you can define the area in which you map the file as an array of
records. In this way, you can define the data file to be as simple or as complex as your
application requires. Note that, in 0, you may need to type-cast a pointer returned by
MS $MAPL or MS $ORMAPL.

2.4.2. Using MS _ $MAPL and MS _ $CRMAPL

MS _ $MAPL maps an existing file into your process address space, and obtains a lock on the file.
MS _ $ORMAPL creates, maps, and locks a new file.

MS _ $MAPL has the following format:

address = MS_$MAPL (name. name-length. start. desired-length.
concurrency. access. extend. length-mapped. status)

The parameters are defined as follows:

o The name and name-length parameters indicate the pathname of the file that you
are mapping, and the length of the pathname.

o The start parameter indicates the first byte to map. Use the value zero to indicate
the first byte of the object.

o The desired-length parameter indicates the number of bytes to map. Note that
MS _ $MAPL may map more bytes than you request. MS $MAPL returns the
actual number of mapped bytes in the length-mapped parameter.

o The concurrency and access parameters determine the type of lock that you are
requesting. The concurrency indicates the number of programs that can access a file;
the access indicates the type of access that each program can have. To select
concurrency and access values, first determine the type of lock you want to get. Then
select the correct combination of concurrency and access modes to get this lock. See
Section 2.5 for a description of locks, and for the combinations of concurrency and
access modes that produce each lock. The concurrency mode must be of type
MS_$OONO_MODE_ T; in FORTRAN this is a 2-byte integer. MS $MAPL
allows the following concurrency modes:

MS $NR_XOR_IW Allows one writer or any number of readers
MS $OOWRITERS Allows any number or readers and/or writers

The access must be of type MS _ $AOO _MODE _ T; in FORTRAN this is a 2-byte
integer. MS _ $MAPL allows the following access types:

MS $R
MS_$RX
MS $RIW
MS $WR
MS $WRX

Read
Read and execute
Read with intent to write (RIW)
Read and write
Read, write, and execute

2-5 Sharing Data Through Mapping

• The extend parameter indicates whether the entire length you specify (in the

desired-length parameter) should be mapped. The value TRUE allows you to
extend the size of the file to the desired length, even if the file is shorter. (That is,
you can write data that increases the length of the file.) FALSE indicates that the
amount mapped should be no greater than the actual length of the file.

• The length-mapped and status parameters are returned by MS _ $MAPL. The
length-mapped parameter indicates the number of bytes actually mapped. Note that
in certain cases, MS _ $MAPL maps a file in 32-page units, called segments.
Therefore, the length mapped may exceed the desired length.

MS $ORMAPL has a format that is similar to MS $MAPL:

address = MS_$CRMAPL (name, name-length, start, desired-length,
concurrency, status)

The parameters for MS _ $ORMAPL accept the same values as the corresponding parameters for
MS _ $ORMAPL. Note, however, that MS _ $ORMAPL does not allow you to select an access
mode or an extend value. Instead, MS _ $ORMAPL always uses an access mode of MS $WR
and an extend value of TRUE.

Figure 2-2 shows a program that uses MS _ $MAPL and MS _ $ORMAPL. First, the program
tries to map a file with MS _ $MAPL. If the file does not exist, the program uses
MS _ $ORMAPL to create and map the file.

Note that MS _ $MAPL returns the status NAME _ $NOT _FOUND if no file currently exists.
In order to test for this value, you must include the naming server insert file in your program.

PROGRAM ms_map;

{ This program tries to map a file. If the file does
not exist, the program creates and maps it. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/ms.ins.pas';
%include '/sys/ins/name.ins.pas';

TYPE
sales record t =

RECORD
{ user-defined record }

CONST

item code
units sold
END;

integer;
integer;

pathname = 'data file';
namelength = sizeof(pathname);

{ file to map }

Figure 2-2. Using MS_$MAPL and MS_$CRMAPL

Sharing Data Through Mapping 2-6

(
'-.

r
\ ..

c

o

o

o

o

o

VAR
{ status } status

mapped_seg_ptr
len_mapped

status_$t;
"'sales_record_t;
integer32;

{ pointer to record }
{ length mapped }

BEGIN

{ Try to map existing file. }

(pathname.
name length.
O.
sizeof(sales_record_t).
ms_$nr_xor_1w.
ms_$wr.
true.
len mapped.
status);

{ where to start
{ desired length
{ concurrency
{ access
{ extension

IF(status.all <> status_$ok) AND (status.all <> name_$not_found) THEN

BEGIN
error_$print (status);
RETURN;

END;

IF status.all = name_$not_found THEN

BEGIN { create and map }
mapped_seg_ptr := ms_$crmapl (pathname.

namelength.

}
}
}
}
}

O. { where to start }
sizeof(sales_record_t). { desired length }
ms $nr xor 1w. { concurrency }
st~tus); -

IF status.all <> status_$ok THEN
BEGIN

error_$print (status);
RETURN;

END;
END; {create and map }

{ Write a record to the file. }

mapped_seg_ptr item_code := 1;
mapped_seg_ptr units_sold 10;

END.

Figure 2-2. Using MS_$MAPL and MS_$CRMAPL (continued)

2-7 Sharing Data Through Mapping

2.4.3. Providing Usage Advice

If you have a predicted type of file usage, you can use MS _ $ADVICE to provide advice to the
mapped segment manager. MS _ $ADVICE can help the operating system optimize performance
when managing your mapped file.
You can specify the following types of file access:

MS $NORMAL

MS $RANDOM

You do not have a predicted manner for accessing the file. This IS the
default if you never use MS _ $ADVICE.

You will access the object randomly.

MS_$SEQUENTIAL You will access the object sequentially.

Although it is not required that you use MS _ $ADVICE, it is recommended that you provide file
usage advice after you map a file. Note that you can call MS _ $ADVICE more than once to
change the advice for a mapped file.

MS _ $ADVICE has the following format:

MS_$ADVICE (address. length. access. options. record-length. status)

The parameters are defined as follows:

• The address parameter is a pointer to the first byte for which to provide advice.

• The length parameter indicates the number of bytes for which to provide advice.

• The access parameter indicates the type of file access you are performing.

• The options parameter is reserved for future use. In Pascal, specify the empty set [J.
In C and FORTRAN, declare a variable as a 4-byte integer and initialize it to zero
(0).

• The record-length parameter indicates the number of bytes in one record of the
mapped file. If you do not know the record length, or if the file is not record
structured, specify zero (0).

o The status parameter is returned by MS _ $ADVICE to indicate whether the call was
successful.

Figure 2-3 shows how to use MS _ $ADVICE to inform the mapped segment manager that you
plan to access a file sequentially.

Sharing Data Through Mapping 2-8

C)

o

o

o

o

-- --------------

PROGRAM ms_advice;

{ This program maps a file and then provides file usage advice. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/ms.ins.pas';
%include '/sys/ins/name.ins.pas';

TYPE
sales record t =

RECORD
{ user-defined record }

CONST

item code
units sold
END;

integer;
integer;

pathname = 'data_file';
namelength = sizeof(pathname);

VAR
status
mapped_seg_ptr
len_mapped

BEGIN

status_$t;
.... sales record t·
integer32;

{ Map existing file. }

ms_$mapl (pathname.

{ file to map }

{ status }
{ pointer to record }
{ length mapped }

name length.
O.
sizeof (sales_record_t) * 100.
ms_$nr_xor_lw.
ms_$wr.
true.
len_mapped.
status);

IF(status.all <> status_$ok) THEN
BEGIN

error_$print (status);
RETURN;

END;

{ where to start
{ map 100 records
{ concurrency
{ access
{ extension

{ Provide advice to say you will access the file sequentially. }

ms_$advice (mapped_seg_ptr. { first mapped byte }

len_mapped. { length }

ms_$sequential. { access type }

[L { reserved }

sizeof (sales_record_ t L { size of record }

status) ;

END.

Figure 2-3. Using MS_$ADVICE

}
}
}
}
}

2-9 Sharing Data Through Mapping

2.4.4. Obtaining File Attributes

After you map a file, you can get information about the following file attributes:

• Permanence

• Immutability

• Length, in bytes

• Length, in blocks

• Date-time used

o Date-time modified

o Date-time created

To get attribute information, use MS _ $ATTRIBUTES. This call has the following format:

MS_$ATTRIBUTES (address, attrib-buf, attrib-len, attrib-max, status)

The parameters are defined as follows:

o The address parameter specifies the pointer to the first byte of the currently mapped
portion of the object.

o The attrib-buf and attrib-Ien are output parameters. The attrib-buf specifies a

buffer in which the attributes are received. The attrib-Ien specifies the length of the
returned attributes. When you specify an attributes buffer in Pascal and C, declare
this buffer to be of type MS_$ATTRIB_ T. MS_$ATTRIB_ T is a record with the
following fields:

PERMANENT

IMMUTABLE

CUR LEN

BLOCKS USED

DTU

DTM

DTCR

A Boolean value that indicates whether the object is permanent
(TRUE) or temporary (FALSE)

A Boolean value that indicates whether the object can be
modified. The value TRUE means that the object is
immutable. The value FALSE means that the object is not
immutable and can be modified. (Even if an object is not
immutable, you must still have a write lock in order to modify
the object.)

Current length, in bytes, of the object.

The number of disk blocks used for the object.

Date-time used, in TIME_$CLOCKH_ T format.

Date-time modified, in TIME _ $CLOCKH_ T format.

Date-time created, in TIME _ $CLOCKH_ T format.

Sharing Data Through Mapping 2-10

'-.."'.'

I'
I

\.,.

o

o

o

o

o

In FORTRAN, you can use a declaration like the following to declare an attributes
buffer:

CHARACTER ms_$attrib_t(22)
CHARACTER permanent, immutable
INTEGER*4 cur_len, blocks_used, dtu, dtm, dtcr
EQUIVALENCE (ms_$attrib_t(l) , permanent),

2 (ms $attrib t(2), immutable),
3 (ms-$attrib-t(3) , cur len),
4 (ms-$attrib-t(7) , blocks used),
5 (mS=$attrib=t(ll) , dtu),
6 (ms_$attrib_t(15) , dtm),
7 (ms_$attrib_t(19) , dtcr)

Note, that the permanent and immutable fields are Boolean values that are one
byte long. To determine the contents of these fields, use the FORTRAN statement
ICHAR. For example, if ICHAR(PERMANENT) is zero, then the value is FALSE. If
ICHAR(PERMANENT) is not zero, then the value is TRUE.

• The attrib-max is an input parameter that defines the length of the buffer where the
attributes will be returned. This value defines the' maximum amount of information
that MS $ATTRIBUTES can return .

• The status parameter returns a status code.

Figure 2-4 uses MS _ $ATTRIBUTES to obtain the attributes of a mapped file.

PROGRAM ms_attributes;

{ This program maps an existing file and obtains its attributes. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/ms.ins.pas';
%include '/sys/ins/name.ins.pas';

TYPE
sales record t =

CONST

- -
RECORD
item code
units sold
END;

integer;
integer;

{ user-defined record }

pathname = 'data file'; { file to map}
namelength = sizeof(pathname);
attrib max = sizeof (ms_$attrib_t); {attribute buffer length}

Figure 2-4. Using MS_$ATTRIBUTES

2-11 Sharing Data Through Mapping

VAR
status status_$t; { status }
mapped_seg_ptr sales_record_t; { pointer to record }
len_mapped integer32; { length mapped }
attrib buf ms_$attrib_t; { attribute buffer }
attrib len integer; { length of attribute

BEGIN

{ Map existing file. }

mapped_seg_ptr .- ms_$mapl (pathname.
namelength.
O.
sizeof(sales record t).
ms $nr xor 1;. -
ms=$r.- -
true.
len_mapped.
status);

IF(status.all <> status_$ok) THEN

BEGIN
error_$print (status);
RETURN;

END;

{ Determine current file length. }

MS_$ATTRIBUTES (mapped_seg_ptr.{
attrib_buf. {

start byte }
attribute buffer

{
{
{
{

{

}

record }

where to start
desired length
concurrency
access
extension

attrib_Ien. { length of returned attributes }
attrib max. { length of attribute buffer
sta.tus-);

WRITELN ('The file is " attrib_buf.cur_Ien,' bytes long. ');
WRITELN ('The file uses . attrib_buf.blocks_used. ' blocks. ');

END.

Figure 2-4. Using MS_$ATTRIBUTES (continued)

2.5. Getting a Lock

}

}
}
}
}
}

You request a lock when you map the file with MS _ $MAPL or MS _ $CRMAPL. A lock
determines the type of access your program can have to a file. In addition, a lock affects the
types of access that programs from other processes can have to the file. Table 2-2 describes the
allowable locks.

To get a lock, specify the appropriate concurrency and access modes when you map the· file.
Table 2-3 shows the concurrency and access modes for each lock.

Sharing Data Through Mapping 2-12

~
'\., .. "

c

o

o

o

o

Lock

Protected Read

Protected Read
With Intent to
Write (RIW)

Shared Read

Exclusive Write

Shared Write

Table 2-2. Types of MS Locks

Definition

You can read the file. Others can get any
type of read lock, but no one can get any
write locks.

You can read the file. Others can get
protected or shared read locks. However, no
one can get another RIW lock. Mter other
readers unmap the file, you can get an exclusive
write lock.

You can read the file. Others can get any type of
read lock. Others can also get shared write locks.

You can read and write to the file. No one
else can get any locks on the file.

You can read and write to the file. Others
can get shared read or shared write locks.

Table 2-3. Concurrency and Access Modes for MS Locks

Lock Concurrency mode Access Mode

Protected Read MS $NR XOR lW MS $R or MS - - - - -

Protected RIW MS - $NR - XOR - lW MS $RIW -

Shared Read MS $COWRITERS MS $R or MS - - -
MS $RIW -

Exclusive Write MS $NR XOR lW MS $WR orMS - - - -

Shared Write MS $COWRITERS MS $WR orMS - -

$RX

$RXor

$WRX -

$WRX -

Once you have locked a file, other programs can map the file only if these programs request a
lock that is compatible with your lock. Table 2-4 shows the combinations of locks that are
allowed and prohibited. Y means that the combinations are allowed; N means that the
combinations are prohibited.

Note that when you map a file, your call returns immediately, even if the call is unable to
perform your map request. For example, if you try to map a file with a lock that is incompatible
with a lock that another file holds, your map call will return with an error status.

2.5.1. Protected Read Locks

Use protected read locks when several programs read a file, but do not write to it. No program
can write to the file as long as other programs have protected read locks. You must use

2-13 Sharing Data Through Mapping

Table 2-4. MS Lock Combinations

Existing Lock Requested Lock*

Protected Protected Shared Exclusive

Read RIW Read Write

Protected Read Y Y Y N

Protected RIW Y N Y N

Shared Read Y Y Y N

Exclusive Write N N N N

Shared Write N N Y ** N

* Y means that a combination is allowed. N means that a combination is
prohibited.

** These locks are allowed only if the programs are on the same node.

Shared

Write

N

N

Y **

N

Y **

MS _ $MAPL to get a protected read lock; you cannot get a protected read lock with
MS _ $CRMAPL. However, if you use MS _ $CRMAPL to get an exclusive write lock, you can
later call MS _ $RELOCK to change to a protected read lock.

2.5.2. Protected RIW Locks

Use protected RIW locks to read a file that you later want to update. The protected RIW lock
allows other programs to map and read the file, but no one else can get a protected RIW lock.
When you get a protected RIW lock, you do not block anyone else from reading the file. When
you want to write to the file, you must wait for other programs to unmap the file. Then, you
can change your protected RIW lock to an exclusive write lock.

The MS manager avoids a potential deadlock (where two programs wait to change protected RIW
to write locks) by preventing two programs from getting protected RIW locks on the same file.
However, the MS manager does not prevent deadlocks in which a program with an RIW lock
waits for other programs to unlock the file. For example, a program may periodically try to use
MS _ $RELOCK to change an RIW lock to exclusive write; be sure that the program does not try
indefinitely to relock the file. See Section 2.6 for more information on MS _ $RELOCK.

You must use MS _ $MAPL to get a protected RIW lock; you cannot get a protected RIW lock
with MS _ $CRMAPL. However, if you use MS _ $CRMAPL to get an exclusive write lock, you
can later call MS $RELOCK to change to a protected read lock. See Section 2.6 for more
information on MS $RELOCK.

2.5.3. Shared Read Locks

Use a shared read lock when you want to read a file, but also allow other programs on your node
to write to the file (by getting shared write locks). You must, however, provide your own
synchronization if several programs read and write to the same file.

Sharing Data Through Mapping 2-14

----------_

"--- .

c

o

o

o

o

o

-------_. -_ ... _-----

You must use MS _ $MAPL to get a shared read lock; you cannot get a shared read lock with
MS _ $CRMAPL. Note that when you request a shared read lock, you can specify an access of
MS _ $R, MS _ $RX, or MS $RIW. For shared read locks, MS $R and MS $RIW are
identical.

2.5.4. Exclusive Write Locks

Use an exclusive write lock when you want to write to a file, and you want to deny other
programs access to the file. You can use either MS $CRMAPL or:MR $MAPL to get an
exclusive write lock.

2.5.5. Shared Write Locks

Use shared write locks to· allow many programs to read from and write to the same file. Only
programs on the same node can get shared write locks to the same file. You must provide your
own synchronization if you allow more than one program to get a shared write lock.

Chapter 3 shows examples of two programs that use shared write locks to transfer data. Both
programs map the same file with a shared write lock. One program places data in the shared file;
the other reads data from the file. The programs use user-defined eventcounts to synchronize the
data transfer.

2.6. Changing a Lock

Use the MS _ $RELOCK call to change the lock on a file. MS _ $RELOCK allows you to specify
a new access mode. This new mode, in combination with the current concurrency mode, forms a
new lock. Table 2-5 shows how to change from one lock to another. The table also describes any
restrictions on changing locks. Note, however, that your ability to change a lock depends on the
locks that other programs hold on the object. For example, it is legal to change a protected RIW
lock to an exclusive write lock. However, you can change the lock only when no other programs
hold locks on the file.

Figure 2-5 shows a program that maps a file with a protected read lock. Then it changes the lock
to an exclusive write lock. In order to change the lock, the program must wait until no other
programs have locks on the file.

PROGRAM ms_relock;

{ This program maps a file with a protected read lock. Then it tries
to change the lock to an exclusive write lock. If the MS_$RELOCK call
is not successful. the program waits five seconds and then tries again
to relock the file. }

%INCLUDE ·/SYS/INS/BASE.INS.PAS·;
%INCLUDE ·/SYS/INS/MS.INS.PAS·;
%INCLUDE ·/SYS/INS/TIME.INS.PAS·;
%INCLUDE ·/SYS/INS/CAL.INS.PAS·;

Figure 2-5. Relocking a File

2-15 Sharing Data Through Mapping

LABEL
unmap;

TYPE
sales record t =

RECORD
item code
units sold
END;

CONST

integer;
integer;

{ user-defined record }

pathname = "data file";
namelength = sizeof(pathname);

VAR
status
mapped_seg_ptr
len_mapped
wait time

BEGIN

status_$t;
"'sales record t·
integer32;
time_$clock_t;

{ Map file with protected RIW lock. }

mapped_seg_ptr := ms_$mapl (pathname,
namelength,
0,
sizeof(sales_record t),
ms_$nr_xor_lw,
ms_$riw,
true,
len_mapped,
status);

IF status.all <> status_$ok THEN
RE;rURN;

{ Get system clock value for 5 seconds. }

REPEAT

{ Keep trying to relock file until the MS_$RELOCK
call is successful. After each try, wait 5
seconds and then try again. }

ms_$relock(mapped_seg_ptr,
ms $wr,
status);

IF status.all <> ms_$in_use THEN
EXIT;

time _ $wai t (t.ime _ $relati ve, wa.i t _time, sta.tus);
UNTIL false;

{ where to start
{ desired length
{ concurrency
{ access

Figure 2-5. Relocking a File (continued)

Sharing Data Through Mapping 2-16

}
}
}
}

c

(-
\ •....

o

o

o

o

IF status.all <> status_$ok THEN
GOTO unmap;

{ Write new data into the file. }

mapped_seg_ptr~.item_code - l'
mapped_seg_ptr~.units_sold - 300;

{ Unmap the file. }

unmap:

ms_$unmap(mapped_seg_ptr.
sizeof(sales_record_t).
status);

{ pointer to file }
{ size of file }

IF status.all <> status_$ok THEN
RETURN;

writeln('File was unmapped');

END.

Current Lock

Protected read

Protected RIW

Shared read

Exclusive write

Shared write

Figure 2-5. Relocking a File (continued)

Table 2-5. Ways to Relock a File

Changes

Change to exclusive write by specifying
the access mode MS $WR or MS $WRX.

Change to protected RIW by specifying
the access mode MS _ $RIW.

Change to exclusive write by specifying
the access mode MS $WR or MS $WRX.

Cannot change to protected read by
specifying the access mode MS _ $R.

Change to shared write by specifying
the access mode MS $WR or MS $WRX.

Change to protected read by specifying
the access mode MS $R.

Change to protected RIW by specifying
the access mode MS $RIW.

Change to shared read by specifying
MS $R or MS $RIW.

2-17 Sharing Data Through Mapping

2.7. Remapping a File

If you are working with a very large file, you may not be able to map the entire file at one time.
If you try to map a file that is larger than your virtual address space, you will get the error
MS _ $NO _ SPACE. In such a case, map part of the file and then use the MS _ $REMAP call to
map another section. By mapping different sections of a file, you can use MS _ $REMAP to
move a sliding window over the file. MS _ $REMAP does not change the lock mode of the object.

The program in Figure 2-6 maps a file one segment at a time. The file contains user-defined
records that are four bytes long. First, the program prompts for the number of pages to map.
(A page contains 1024 bytes, or 256 4-byte records.) Next, the program determines the number
of segments needed to map the specified number of pages. (A segment contains 32 pages.)

The program maps the first segment of the file, starting at byte o. After mapping the file, the
program creates a loop to remap the file and get the next segment. After remapping the last
segment, the program exits from the loop and unmaps the file.

Note that the program maps the file with an extend value of TRUE. Therefore, the program will
map enough segments to contain the number of pages you specify, even if the actual file length is
shorter.

PROGRAM ms_remap;

{ This program uses MS_$REMAP to map each segment of a
large data file. The file contains user-defined records. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/ms.ins.pas';
%include '/sys!ins/error.ins.pas';
%include '/sys/ins/pgm.ins.pas';

TYPE
sales record t =

RECORD
{ A sales record is 4 bytes long }

item code
units sold
END;

integer;
integer;

data_page_t
mapped_seg_t

= ARRAY [0 .. 255] OF sales_record t; { 256 records in a page
= ARRAY [0 .. 31] OF data_page_t; { 32 pages in a segment

CONST
pathname
namelength

= 'data file';
= sizeof(pathname);

VAR
mapped_seg_ptr
status
num_pages
first_seg
last_seg
start_byte
len_mapped
seg_num

.... mapped_seg_t;
status_$t;
integer32;
integer32;
integer32;
integer32;
integer32;
integer32;

{
{
{
{

{

{

{
{

address returned by MS
status code
number of pages to map
first segment to map
last segment to map
first byte
length mapped
counter

Figure 2-6. Remapping a File

Sharing Data Through Mapping 2-18

calls }
}

}
}
}
}
}
}

}
}

\

(
"-

o

o

o

o

c

PROCEDURE check_status; {for error handling}

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error $print(status);
pgm_$exit;
END;

END;

BEGIN

WRITE('Enter file size in p~ges: ');
READLN(num_pages);

{ Determine the range of segments you need to map. }

first_seg := 0;
last_seg := (num_pages - 1) div 32;

{ first segment }
{ last segment }

{ Initialize variable to indicate first byte to map. Map the first
segment, starting at byte 0 in the file. }

start_byte := 0;
mapped_seg_ptr := ms_$mapl(pathname,

namelength,
start_byte,
32 * 1024,
ms_$nr_xor_1W,
ms_$wr,

{
{
{
{

{
{

{

file to map
length of file name
start at first byte
map 1 segment
concurrency
access
extend true,

len_mapped,
status);

{ bytes mapped - returned

check_status;

{ Print message about the current segment. Then remap the file
to get the next segment. Keep looping until you finish. }

FOR seg_num
BEGIN

first_seg to last_seg DO
{ map loop }

writeln('Finished mapping segment · ,seg_num);
writeln('Segment contains data starting at byte' start_byte);
writeln('The first record at this address has the item code .);
writeln(mapped_seg_ptr~[O,O] .item~code);

{ Remap the file to get the next segment unless you are done. }

Figure 2-6. Remapping a File (continued)

}
}
}

}
}
}

}
}

2-19 Sharing Data Through Mapping

BEGIN { remap }

start_byte := (seg_num + 1) * 32 * 1024;
mapped_seg_ptr := ms_$remap(mapped_seg_ptr. { previous segment}

END; { remap }

END; { map loop }

{ Unmap the file and exit. }

ms_$unmap(mapped_seg_ptr,
len_mapped,
status);

check_status;

END.

start_byte. { new segment }
32 * 1024. { map 1 segment }
len_mapped. { length mapped }
status);

Figure 2-6. Remapping a File (continued)

2.8. Truncating a File

Use MS _ $TRUNCATE to set the length of a mapped file to the length that you specify. With
MS _ $TRUNCATE, you specify the pointer to the currently-mapped portion of the object. Also,
specify the number of bytes you want to save (starting from the first byte.)

There are two common uses for MS $TRUNCATE:

• To delete existing sections of a file .

• To set the file length to the number of bytes that the file actually uses.

When you want to delete existing sections of a mapped file, use MS _ $TRUNCATE and specify
the length at which to truncate the file. For example, if you map a file and you want to
overwrite it, use MS _ $TRUNCATE and specify a length of zero. Any existing information in
the file will then be deleted.

You can also use MS _ $TRUNCATE to define a length for a file, even if you are not throwing
away data. For example, when you unmap a file, the system may set the file length to a value
that is larger than the number of bytes that your file needs. To tell the system exactly how
many bytes the file uses, call MS _ $TRUNCATE and specify the length of your file.

Figure 2-7 illustrates MS _ $TRUNCATE.

Sharing Data Through Mapping 2-20

;------

\
'-

o

o

o

r:J

PROGRAM ms_truncate;

{ This program maps a file and uses MS_$TRUNCATE to delete
the contents of the file. After writing a new record to
the file. the program uses MS_$TRUNCATE to set the file
length to the number of used bytes. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/ms.ins.pas';
%include '/sys/ins/name.ins.pas';

TYPE
sales record t =

RECORD
{ user-defined record }

item code
units sold
END;

integer;
integer;

CONST

VAR

pathname = 'data file';
namelength = sizeof(pathname);

{ file to map }

status
mapped_seg~ptr

len_mapped

status_$t;
.... sales record_t;
integer32;

{ status }
{ pointer to record }
{ length mapped }

BEGIN

{ Map existing file.}

ms_$mapl (pathname.

IF(status.all <> status_$ok)

BEGIN
error_$print (status);
RETURN;

END;

name length.
O.
sizeof(sales_record_t).
ms_$nr_xor_lw.
ms_$wr.
true.
len mapped.
status);

THEN

{ where to start
{ desired length
{ concurrency
{ access
{ extension

{ Truncate the file to zero to delete existing contents. }

ms_$truncate (mapped_seg_ptr. { where to start }
{ no. bytes to keep} O.

status);

Figure 2-7. Truncating a File

}
}

}
}
}

2-21 Sharing Data Through Mapping

{ Write a new record to the file. }

mapped_seg_ptr~.item_code := 1;
mapped_seg_ptr~.units_sold := 10;

{ Truncate the length to 4 - the number of used bytes.}

MS_$TRUNCATE mapped_seg_ptr, { where to start }
sizeof (sales_record_t), { no. bytes to keep}
status);

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr,
len_mapped,
status);

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Figure 2-7. Truncating a File (continued)

2.9. Force Writing a File

When you work with mapped files, the system uses a predefined set of conditions to determine
when to move information out of memory and back to disk. If you have mapped a local file, the
system moves information back onto the disk. If you have mapped a remote file, the system
moves the information back to the node where the disk is located.

If you need to supplement the system's actions, you can use MS _ $FW _FILE to force write a
file. Typically, you use MS _ $FW _FILE when you are writing a database or transaction
manager. In these cases, MS _ $FW _FILE can help protect data integrity.

NOTE: You must use MS $FW FILE in combination with other mechanisms to ensure data
integrity. Also, if you use MS $FW FILE inappropriately, you can significantly
degrade system performance.

See the DOMAIN System Call Reference for more information on MS _ $F\V _FILE.

2.10. Unmapping a File

When you are through with the file, use MS _ $UNMAP to unmap and unlock it. When you
unmap a file, you release the sections of your process address space that were allocated for the
file.

Sharing Data Through Mapping 2-22

(
I

o

o

o

o

c

When you use MS _ $UNMAP, specify the address of the currently mapped portion of the file,
and the number of mapped bytes. MS $UNMAP returns an error status. Figure 2-8 shows how
to unmap a file.

PROGRAM ms_map;

{ This program maps an existing file named DATA FILE.
After working with the file. the program unmaps
the file and exits. }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/ms.ins.pas";

TYPE
sales record t =

RECORD
{ user-defined record }

item code
units sold
END;

integer;
integer;

CONST

VAR

pathname = 'data_file';
namelength = sizeof(pathname);

{ file to map }

status
mapped_seg_ptr
len_mapped

status_$t;
"'sales_record_t;
integer32;

{ status }
{ pointer to record }
{ length mapped }

BEGIN

{ Map existing file. }

ms_$mapl (pathname.
namelength.
O.
400.
ms $nr xor lw.
ms=$wr-:- -
true.
len_mapped.
status);

Figure 2-8. Unmapping a File

{ where to start
{ desired length
{ concurrency
{ access
{ extension

}
}
}

}
}

2-23 Sharing Data Through Mapping

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr.
len_mapped.
status);

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Figure 2-8. Unmapping a File (continued)

Sharing Data Through Mapping 2-24

\

o

o

o

o

o

Chapter 3
Using User-Defined Eventcounts

This chapter describes how to use user-defined eventcounts. It includes:

• An overview of user-defined eventcounts.

• A summary of DOMAIN system calls for working with eventcounts.

• Examples of how to use user-defined eventcounts.

• Information on how asynchronous faults affect eventcount waits.

3.1. Overview

A user-defined eventcount is a value that a user program creates and advances when the
associated event occurs. The event occurs within the program, and is therefore under the control
of the program. You use a user-defined eventcount to synchronize activities among multiple
programs involved in the same application. That is, one program advances the eventcount when
the event occurs. If other programs are waiting for the eventcount, the change notifies these
programs that an event has occurred.

In order for several programs to access an eventcount, the eventcount must be located in a
memory location that all the programs can read and write to. Usually, the programs share
memory by mapping a common file with read and write access. Because of the restrictions on
mapping files, all the programs must be running on the same node.

A user-defined eventcount should be associated with only one type of event. The program that
determines when this event occurs is called an event producer (or producer). The producer
advances the eventcount after the event occurs. A program that needs to find out about an event
is called a consumer. The consumer waits for the producer to advance the eventcount and then
responds to the event. While waiting for the event, the consumer does not use computer
processing time.

In addition to user-defined eventcounts, the DOMAIN system provides eventcounts that are
associated with system objects. These system-defined eventcounts allow programs to wait for,
and respond to, certain types of system events. The main difference between user and system
defined eventcounts is that user programs control the user-defined eventcounts, whereas the
system controls the system-defined eventcounts. Thus, with user-defined eventcounts, you write
both the producer and the consumer programs. However, with system-defined eventcounts, the
system is the producer; your program is the consumer.

This chapter describes how to use user-defined eventcounts for interprocess communication. For
information on system-defined eventcounts, see Programming With General System Calls.

3-1 Using User-Defined Eventcounts

3.2. EC2 System Calls, Insert Files, and Data Types

To work with user-defined eventcounts, use EC2 system calls. Table 3-1 summarizes the EC2
calls.

Table 3-1. Summary of EC2 System Calls

Operation Call

Create a user-defined eventcount. EC2 $INIT -

Advance a user-defined eventcount. EC2 $ADVANCE -

Read the current value of an eventcount. EC2 $READ -

Wait until an event count reaches a EC2 $WAIT -
trigger value. EC2 - $WAIT - SVC

In order to use EC2 calls, you must include the appropriate insert file in your program. The EC2
insert files are:

ISYS IINS IEC2 .INS. C
ISYS IINS IEC2 .INS .FTN
ISYS IINS IEC2 .INS.P AS

(for C)
(for FORTRAN)
(for Pascal)

Some of the EC2 calls require that you specify an eventcount directly. In these cases, specify a
variable in EC2 _ $EVENTCOUNT _ T format. The data type EC2 _ $EVENTCOUNT _ T
requires six bytes of storage. In FORTRAN, define this as an array of three INTEGER*2
elements.

Certain calls, however, require that you specify eventcounts using pointers. For these calls,
specify an eventcount using a variable in EC2 _ $PTR _ T format. EC2 _ $PTR _ T is a pointer
to an eventcount. In FORTRAN, use a declaration like the following:

INTEGER*4 ec2 _pointer

For complete information on the EC2 system calls and data types, see the DOMAIN System Call
Reference.

3.3. Steps For Using User-Defined Eventcounts

The following steps show how an event producer uses a user-defined eventcount to notify a
consumer about an event. These steps describe a simple case, in which the producer "produces"
an event, advances the eventcount to notify the consumer, and then exits.

The producer must perform the following steps:

1. Map a file in which to create the eventcount and use EC2 _ $INIT to initialize the
eventcount in this file.

2. Create a condition field (in the mapped file) to indicate whether the event has
occurred. To start, the producer sets this field to FALSE. (The consumer uses this
field to avoid a deadlock the first time it waits for the eventcount.)

Using User-Defined Eventcounts 3-2

o

o

o

o

o

3. Perform the work needed to produce the event.

4. Set the condition field to TRUE.

5. Use EC2 $ADV ANCE to increment the eventcount.

To wait for the event, the consumer must perform the following steps. (Note that you must start
the consumer after the producer has initialized the eventcount and condition field.)

1. Map the file containing the eventcount.

2. Use EC2 $READ to read the current value of the eventcount.

3. Define an eventcount trigger value by adding one to the value you obtained from
EC2 $READ.

4. Check the condition field. If the condition is FALSE, wait for the event to occur. If
the condition is TRUE, respond to the event now.

5. Use EC2 $W AlT or EC2 $W AlT SVC to wait for the eventcount to reach its
trigger. These calls are the same, except for how they respond to asynchronous faults.
See Section 3.6 for more information.

6. Respond to the event when EC2_$WAlT(_SVC) returns.

The above sequence of events is sufficient when a producer produces one event and exits.
However, in many applications, a producer will repeatedly produce an event within a loop.
Before repeating the loop, the producer needs to know whether the consumer responded to the
event. In such a case, the producer and consumer need two eventcounts. The producer advances
one eventcount to indicate that the event has occurred; the consumer advances the other
eventcount to indicate a response.

Sections 3.4 and 3.5 show how to write a producer and a consumer that synchronize their
activities using two eventcounts. The producer places data in a shared data buffer, and the
consumer reads this data. The producer advances an event count to tell the consumer when there
is data to read; the consumer advances an eventcount to tell the producer when to write new
data. The two programs synchronize their actions so that:

• The consumer does not try to read data until the producer puts data into the buffer .

• The producer does not put new data into the buffer until after the consumer reads the
current data.

Figure 3-1 illustrates how the producer and consumer use eventcounts to synchronize data
transfer. In addition, the figure shows how the programs use a condition field. The condition
field ensures that the initial synchronization is correct.

3.4. Writing An Event Producer

In order to write an event producer, you need to understand how to use EC2 calls to perform the
basic eventcount operations. In addition, you need to understand how to synchronize actions
among programs so that deadlocks do not occur.

3-3 Using User-Defined Eventcounts

Producer

r-+ Put new
data In

Set condition
field to TRUE

Advance
producer EC

Walt until
consumer

advances EC

."

Consumer

yes

Read
data

Set condition
field to
FALSE

Advance
consumer EC

Walt for
>-_--:..:.n;:::.o __ 1M producer to

advance EC

Figure 3-1. Eventcount Synchronization Between Two Programs

Section 3.4.1 describes how to perform the basic eventcount operations in a producer that puts
data in a shared file, waits for the consumer to read this data, and then puts new data into the
file. Section 3.4.2 shows the same program, adding some techniques to ensure proper
synchronization.

3.4.1. Performing Basic Eventcount Operations

The producer performs the following eventcount operations. It:

• Maps a file in which to initialize eventcounts .

• Initializes eventcounts.

Using User-Defined Eventcounts 3-4

('

c

(
"'---

o

o

o

o

o

• Reads eventcounts.

o Advances eventcounts.

o Waits for events.

To map a file for user-defined eventcounts, use MS _ $MAPL (to map an existing file) or
MS _ $CRMAPL (to create and map a file.) Specify a locking mode of MS _ $COWRITERS and
an access type of MS _ $WR so that other programs can access the eventcounts. See Chapter 2
for more information on mapping files.

Map enough bytes to contain the eventcounts that the cooperating programs use, and any other
information that the programs need to share. As described in Chapter 2, MS _ $MAPL and
MS $CRMAPL return a pointer (or address) for the mapped file. Use this pointer to access
data in the file.

Next, use EC2 _ $INIT to initialize event counts within the mapped file. This program initializes
two eventcounts: one for the producer to advance and one for the consumer to advance.
EC2 _ $INIT accepts one parameter: the eventcount to initialize. The eventcount must be in
EC2 _ $EVENTCOUNT _ T format, which requires six bytes of storage. Specify the eventcount
in relation to the pointer you received from your MS call. For example, you can initialize the
producer eventcount in the first six bytes of the file, and the consumer eventcount in the next six
bytes.

Figure 3-2 shows how to map a file and initialize eventcounts.

PROGRAM ec2_producer;

{This program uses user-defined eventcounts to
synchronize data transfer to another program. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

TYPE
shared info t =

RECORD

producer_ec
consumer ec

END;

ec2 $eventcount t;
eC2=$eventcount=t;

{ fields in mapped
storage record }

{ producer event count }
{ consumer event count }

Figure 3-2. Initializing User-Defined Eventcounts in a Producer

3-5 Using User-Defined Eventcounts

VAR
status status_$t;
length_mapped integer32;
shared info shared info

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN

END;

BEGIN

error_$print(status);
pgm_$exit;
END;

{ status code }
{ length of mapped data }

t; { address of first byte } -

{ for error handling }

{ Map a shared data file containing the eventcountso
Use this file to hold a record of type SHARED INFO_To}

shared info - ms_$mapl('shared_file', { object to be mapped }
11, { length of name }
0, { first byte to map }
sizeof(shared info_t),

check_status;
WITH shared info DO

BEGIN

ms_$cowriters,
ms_$wr,
true,

length.....:mapped,
status);

{ Initialize the eventcounts }

ec2_$init(producer_ec);
ec2_$init(consumer ec);

{ noo bytes to map }
{ locking mode }
{ access type }
{ map length in 4th

parameter, even if
the object is shorter }

{ bytes mapped - returned }

Figure 3-2. Initializing User-Defined Eventcounts in a Producer (continued)

Once you have initialized the eventcounts, any program that maps the shared file can read, wait
for, or advance the eventcounts. In this example, the producer should read and wait for the
consumer eventcount. In addition, the producer should advance its own eventcount.

Using User-Defined Eventcounts 3-6

("
'-..._--

(
1",--

c

!~
1

\~

r-'
'-._.

o

o

o

o

o

To read an eventcount value, use EC2_$READ. To wait for an eventcount, use EC2_$WAIT
or EC2_$WAIT _SVC. Usually, you read an eventcount value so you can define a trigger value
for when you call EC2_$WAIT(_SVC). EC2_$WAIT(_SVC) suspends your program until
the actual value of an eventcount reaches the trigger that you specify.

EC2 _ $READ accepts one parameter: the eventcount whose value you want to read. Specify the
eventcount in EC2 $EVENTCOUNT T format.

NOTE: You must use EC2_$READ to read eventcount values; if you attempt to refer to the
eventcount directly, you may obtain an incorrect value, or you may incur a fault such
as II odd address error II, II access violation II, or II reference to illegal address II •

EC2 _ $W AIT(_ SVC) has the following format:

ec-satisfied = EC2_$WAIT(_SVC) (ec-plist, ec-vlist, ec-count, status)

The parameters are described below:

• The ec-plist is an array of pointers to the eventcounts you are waiting for. The
producer is waiting for only one eventcount: the consumer eventcount. Therefore,
supply a pointer to the eventcount.

o The ec-vlist is an array of trigger values for each of the eventcounts. The order of
the trigger values must correspond to the order of the eventcount pointers. In this
example, there is only one eventcount pointer in the ec-plist. Therefore, supply only
one trigger value.

• The ec-count is the number of eventcount pointers III the array. As stated

previously, there is only one eventcount in the ec-plist.

o The status is the status code returned by the call.

When the eventcount in the ec-plist reaches its trigger value, EC2 _ $W AIT(_ SVC) returns an
ordinal number indicating the array subscript of the eventcount that is satisfied. Therefore, a
return value of 1 indicates that the first (and, in this case, only) eventcount is satisfied.

In addition to reading and waiting for the consumer eventcount, the producer is responsible for
advancing its own eventcount. The producer must advance its eventcount to tell the consumer
when to read the data. To advance an eventcount, use EC2 _ $ADV ANCE. This call accepts an
eventcount in EC2 $EVENTCOUNT T format and returns a status code.

Figure 3-3 shows how to read, wait for, and advance an eventcount. In this program, the
producer reads the value of the consumer eventcount and adds one to it to form a trigger value.
Next, the producer places data in a shared buffer, and advances its (the producer's) eventcount.
Finally, the producer uses EC2 _ $W AIT to wait for the consumer to read the data.

3-7 Using User-Defined Eventcounts

PROGRAM ec2_producer;

{This program uses user-defined eventcounts to
synchronize data transfer to another program. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

TYPE

VAR

shared info t = - -
RECORD
producer ec
consumer ec

END;

status
length_mapped
shared info

consumer wait value

i

ec2 $eventcount t;
eC2=$eventcount=t;

status_$t;
integer32;
.... shared_info_t;

integer32;

integer;

{ fields in mapped record }
{ producer eventcount }
{ consumer eventcount }

{ status code }
{ length of mapped data }
{ address of first byte

of mapped storage }
{ trigger value when

waiting for consumer
eventcount }

{ value returned by ec2_$wait}

PROCEDURE check_status; { for error handling }

BEGIN

{ Map a shared data file containing the eventcounts.
Use this file to hold a record of type SHARED_INFO_T. }

shared info
11,

{ object to be mapped
{ length of name
{ first byte to map 0,

sizeof(shared info_t),

ms_$cowriters,
ms_$wr,
true,

length mapped,
status-);

{ no. bytes to map
{ locking mode
{ access type
{ map length in 3rd

parameter, even if
object is shorter

{ bytes mapped - returned

Figure 3-3. Advancing a User-Defined Eventcount in a Producer

Using User-Defined Eventcounts 3-8

}
}
}

}

}
}

}
}

,r
~-.

(
'-.

------------------------------ ------- -'.- ---- - --.-- ... -- ._------_ ... -

o

o

o

o

o

WITH shared info- DO
BEGIN

{ Initialize the eventcounts }

ec2 $init(producer_ec);
eC2=$init(consumer ec);

{ Store the current value of the consumer eventcount
so you can use it as a trigger value later. }

consumer wait value ec2_$read(consumer ec);

REPEAT { loop over input file }

{ Put record into buffer for consumer to read.
Then advance the producer eventcount. }

ec2_$advance(producer_ec. status);
check_status;

{ Wait for consumer to read the record. }

consumer wait value - consumer wait value +1;
i := eC2=$wait(addr.(consumer_~c). {eventcount }

check_status;

UNTIL done;

consumer_wait_value. {trigger value }
1. { no. eventcounts }
status);

Figure 3-3. Advancing a User-Defined Eventcount in a Producer (continued)

3.4.2. Synchronizing Reading and Writing

Once you understand the basic eventcount operations, you can add some techniques to ensure
synchronization between the producer and consumer. For example, you can include a condition
field in the shared file that you have mapped. Set this field to TRUE when there is data to read,
and set it to FALSE when there is no data. The consumer uses the condition field to avoid a
deadlock the first time it waits for the producer eventcount.

Another technique is to add a termination field to the mapped file. Set this field to TRUE when
the data transfer is complete.

3-9 Using User-Defined Eventcounts

A third technique is to use PGM_ $INVOKE to invoke the consumer from the producer. In this
way, you can ensure that the eventcount file is initialized before the consumer tries to use it. See
Programming With General System Calls for more information on PGM_ $INVOKE.

To incorporate these synchronization techniques in a producer, follow these steps:

• Map a file to contain the eventcounts, the termination field, and the condition field.
In addition, create fields for the data the producer will send, and the data length.
Now all the information that the producer and consumer need to share will be in a
single file.

• Initialize the producer and consumer eventcounts.

• Read the consumer eventcount so you can later define a trigger value.

• Set the condition field to FALSE because you have not yet written any data.

• Invoke the consumer program in a separate process. This step is not required within
the producer. However, if you use a different method to start the consumer, you must
ensure that the consumer does not map and read the shared file until after the
producer initializes the appropriate fields.

• Design a loop to get data, put it into the mapped file, and wait for the consumer to
read the data. Keep transferring data until you are through.

• At the end of the data transfer, unmap the shared file and exit.

To synchronize the data transfer, perform the tasks in the following order:

• Place the data into the shared file.

• Set the condition field to TRUE.

• Advance the producer eventcount to notify the consumer that there is data to read.
You must advance the eventcount after you set the condition field or the
synchronization may be wrong. For example, if the producer advances the eventcount
before setting the condition field, the consumer might check the condition field, see
that there is no data, and then wait for the producer eventcount to advance. In such
a case, the consumer would be waiting for an eventcount that the producer had
already advanced.

Figure 3-4 shows a producer that gets records from an input file and puts them into a mapped
file. The producer uses stream calls to get and move records. See Programming With General
System Calls for more information on streams.

The producer synchronizes reading and writing by using eventcounts and a condition value.
After getting all the records, the producer unmaps the event count file and closes the input file.

Using User-Defined Eventcounts 3-10

c

c

o

o

o

o

o

PROGRAM ec2_producer;

{This program uses user-defined eventcounts to
synchronize data transfer to another program. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

TYPE
shared info t =

RECORD
producer ec
consumer ec
done

ec2 $eventcount t;

VAR

record_present

useful data
data len
END;

status
length_mapped
stream id
seek_key
shared info

res

consumer wait value

local buf

i

eC2=$eventcount=t;
boolean;

boolean;

string;
integer32;

status $t; -
integer32;
stream_$id t· -stream_$sk t· -"'shared info t· -
Uid_$t;

integer32;

string;

"'string;

integer;

{
{
{
{

{

{
{

{
{
{
{
{

{

{

----_ .. --_._------

fields in mapped record }
producer eventcount }

consumer eventcount }

set to TRUE when you
reach end of input file }

set to TRUE when you copy
record from input file }

record from input file }

length of useful data }

status code }
length of mapped data }
stream ID }
where stream data starts }
address of first byte
of mapped storage }
reserved parameter for
pgm_$invoke }
trigger value when
waiting for consumer
eventcount }

{ buffer where stream_$get_ rec
may copy data }

{ buffer where stream_$get_rec
copies data }

{ value returned by ec2_$wait}

PROCEDURE cheek_status; { for error handling }

BEGIN
IF status.all <> status_$ok THEN

BEGIN

END;

error_$print(status);
pgm_$exit;
END;

Figure 3-4. Event Synchronization in a Producer

3-11 Using User-Defined Eventcounts

BEGIN
{ Open a stream to get records from. }

stream_$open('input_file',
10,

check_status;

stream $read,
stream=$no_conc_write,
stream id,
status-);

{ object to be opened}
{ length of pathname }
{ access type }
{ concurrency type }
{ stream ID returned }

{ Map a shared data file containing the eventcounts.
Use this file to hold a record of type SHARED INFO_T. }

shared info - ms_$mapl('shared_file', { object to be mapped}
11, { length of name }
0, { first byte to map }
sizeof(shared info t), { no. bytes to map }
ms_$cowriters, { locking mode }
ms_$wr, { access type }
true, { map length in 3rd parameter,

even if object is shorter }
length_mapped, {bytes mapped - returned }

check_status;
WITH shared info- DO

BEGIN

status);

{ Initialize the eventcounts }

eC2_$init(producer_ec);
ec2_$init(consumer ec);

{ Store the current value of the consumer event count
so you can use it as a trigger value later. }

consumer wait value - ec2_$read(consumer_ec);

{ Set the condition field to FALSE. }

record_present := false;

{ Invoke the consumer program in a separate process. }

pgm_$invoke('ec2_consumer.bin', {

check status;

16, {
0, {
0,
0,
0,

[L
res,
status);

{
{
{
{
{

program to invoke }
name length }
no. args. to pass }
addresses of args. }
no. of streams to pass }
stream IDs to pass }
invoke in a separate process }
reserved }

Figure 3-4. Event Synchronization in a Producer (continued)

Using User-Defined Eventcounts 3-12

c

c

o

o

o

o

o

REPEAT { loop over input file }

{ Get a record. If the input record is longer than your buffer,
the get call returns a negative value. To correct this, define
the record length to be the buffer length. }

stream_$get_rec(stream id,
addr(local buf),
sizeof(10C~1_bUf
data_ptr,
data_len,
seek_key,

{ stream ID to get record
{ where data may be read

), { buffer size

from}

status);

IF data len < 0 THEN
data len := sizeof(local_buf);

{ pOinter to data - returned
{ length of data

{ Set DONE to TRUE or FALSE, depending on result
of stream_$get_rec. Store DONE in shared memory. }

done := status.all <> status_$ok;

{ Copy record to shared buffer. }

{ Set condition field to TRUE and advance producer
eventcount. }

record present := true;
eC2_$actvance(producer_ec, status);
check_status;

{ Wait for consumer to get the record. }

consumer wait value - consumer wait value +1;
i := eC2=$wait(addr(consumer ec),- { eventcount }

consumer_wait_value, {trigger value }
1, { no. eventcounts }
status);

check_status;

UNTIL done;

END;

{ Clean up and terminate.}

ms_$unmap(shared_info, {first byte of mapped object}
length_mapped, { length of mapped object }
status);

stream_$close(stream_id, status);

END.

Figure 3-4. Event Synchronization in a Producer (continued)

}
}
}
}

3-13 Using User-Defined Eventcounts

3.5. Writing An Event Consumer

To write an event consumer, follow these steps:

• Map the file containing the eventcounts.

• Read the current value of the producer eventcount.

• Create a loop to wait for and read records from the mapped file.

To map the file, use MS _ $MAPL; the producer will have already created the file. When you
map the file, specify a locking mode of MS _ $COWRITERS and an access mode of MS _ $WR.
Map enough bytes to contain the eventcounts that cooperating programs will use, and the data
that the programs will read or write.

To read the current value of the producer eventcount, use EC2 _ $READ. Later in the program
you will use this value to create a trigger value for EC2 _ $W AIT.

Next, create a loop to wait for and read data. The consumer uses two types of information to
determine when there is data to read:

• A condition field

• The producer eventcount

In order to read a record, the consumer must know that the producer has written a new record.
Therefore, at the top of the loop, the consumer checks the condition field. If the condition is
true, the consumer reads data from the mapped file. If the condition is false, the consumer waits
for the producer event count to increase, and then checks the condition again. (See Section 3.4.2
for more information about the condition field in the mapped file.)

NOTE: The consumer must check the condition before waiting for the producer eventcount to
increase. Otherwise, the initial synchronization may be incorrect.

When the condition is TRUE, the consumer can read data from the mapped file. After reading
the data, the consumer sets the condition to FALSE and increments the consumer eventcount.
The consumer then returns to the top of the loop to wait for more records.

Figure 3-5 shows a consumer that waits for and reads records that another program (the
producer) places in a mapped file. The consumer uses eventcounts and a test condition to make
sure that the reading and writing operations are synchronized.

PROGRAM eC2_consumer;

{ This program uses user-defined eventcounts to
read data sent by another program. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

Figure 3-5. Sample Event Consumer

Using User-Defined Eventcounts 3-14

c

c

c

o

o

o

o

o

TYPE
shared info t = { fields in mapped

storage record }

RECORD
producer ec eC2_$eventcount_t; { producer eventcount }

consumer ec eC2_$eventcount_t; { consumer eventcount }

done boolean; { set to TRUE when you
reach end of input file }

record_present boolean; { set to TRUE when you copy
record from input file }

useful data string; { record from input file }

data len integer32; { length of useful data }

END;

VAR
status status_$t; { status code }

length_mapped integer32; { length of mapped data }

stream id stream $id t; { stream ID }

seek_key stream=$sk=t; { where stream data starts }

shared info "'shared_info_t; { address of first byte
of mapped storage }

producer_wait_value integer32; { trigger value when
waiting for consumer
eventcount }

i integer; { value returned by ec2 $wait}

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN

END;

BEGIN

error_$print(status);
pgm_$exit;
END;

{ Open a stream to "consume" records into. }

stream_$create("Output_file".
11.
stream $overwrite.
stream=$no_conc_write.
stream_id.
status);

{object to be created
{ name length
{ access type
{ concurrency
{ stream ID - returned
{ completion status

{ Map the shared data file containing the eventcounts. }

Figure 3-5. Sample Event Consumer (continued)

}

}
}

}
}
}

-

3-15 Using User-Defined Eventcounts

shared info .- ms_$mapl('shared_file', {object to be mapped

check_status;

WITH shared info~ DO
BEGIN

11, { name length
0, { first byte to map
sizeof(shared_info_t),

{ no. bytes to map
ms_$cowriters, {locking mode
ms_$wr, { access type
true, { map length in 3rd

parameter, even if
object is shorter

length_mapped, {bytes mapped - returned
status);

{ Store the current value of the producer eventcount
so you can use it as a trigger value later. }

REPEAT { wait for and process records}

{ Wait until a record is available. Check RECORD PRESENT
before you wait. }

WHILE NOT record_present DO
BEGIN

}
}
}

}
}
}

}
}

producer wait value := producer wait value + 1;
i := eC2-$wait(addr(producer ec),- { ptr to eventcount }

- producer wait value, {trigger value }
1, - - { no. of eventcounts }
status);

END;

{ If a record is available, write it to the output file}

IF NOT done THEN
BEGIN
stream_$put_rec(stream_id, { stream ID }

check_status;
END;

addr(useful_data),{ data to put }
data_len, { length of data}
seek_key, { seek key }
status);

{ Set condition field to FALSE and advance consumer eventcount. }

record_present := false;
ec2_$advance(consumer_ec, status);
cheek_status;

UNTIL done;

END;

Figure 3-5. Sample Event Consumer (continued)

Using User-Defined Eventcounts 3-16

r"
\,-..._ ..

c

\,._.

o

o

o

o

o

{ Clean up and terminate.}

ms_$unmap(shared_info, { first byte of mapped object}
length_mapped, {length of mapped object }
status);

stream_$close(stream_id, statUs);

END.

Figure 3-5. Sample Event Consumer (continued)

3.6. Asynchronous Faults During Eventcount Waits

When you use EC2_$WAIT or EC2_$WAIT _SVC, you cause a program to wait until the
eventcount reaches its trigger value. However, during the wait, an asynchronous fault, can occur.
An asynchronous fault, such as a II quiV', is generated outside your program.

If an asynchronous fault occurs during an EC2_$WAIT or EC2_$WAIT _SVC, the program's
response depends on:

o The type of error handling the program uses.

o Whether the program uses EC2_$WAIT or EC2_$WAIT_SVC.

A program can handle asynchronous faults in the following ways:

o Declare a clean-up handler (with PFM_ $CLEANUP) to perform clean-up operations
and exit .

• Declare a fault handler (with PFM_ $ESTABLISH_FAUL T _HANDLER) to handle
the fault. After taking corrective action, a fault handler often returns control to the
program .

• Inhibit asynchronous faults (with PFM_ $INHIBIT). This causes the program to
ignore asynchronous faults. To re-enable faults, call PFM_ $ENABLE.

If a program does not use one of the above techniques to handle asynchronous faults, then the
system aborts the program if an asynchronous fault occurs. See Programming With General
System Calls for more information on fault and cleanup handlers.

Table 3-2 shows how EC2 _ $W AIT and EC2 _ $W AIT _ SVC respond to an asynchronous fault,
if faults are enabled. Note that if a program uses a clean-up handler, an asynchronous fault
aborts both EC2 $WAIT and EC2_$WAIT_SVC. However, if a program uses a fault
handler, EC2_$WAIT and EC2_$WAIT _SVC perform differently. When the fault handler
returns control to the program, EC2_$WAIT continues waiting. However, EC2_$WAIT _SVC
returns the error EC2 _ $W AIT _ QUIT.

Table 3-3 shows how EC2 _ $W AIT and EC2 _ $W AIT _ SVC act when asynchronous faults are
disabled. Note that EC2 $W AIT always defers asynchronous faults and continues waiting. In
contrast, EC2 _ $W AIT -=- SVC defers asynchronous faults and returns the error
EC2 _ $W AIT _ QUIT. See Programming With General System Calls for more information on
how faults are deferred when asynchronous faults are disabled.

3-17 Using User-Defined Eventcounts

Table 3-2. Wait Actions When Asynchronous Faults Are Enabled

Call Error-Handling Technique

Clean-Up Handler Fault Handler

EC2 - $WAIT Executes clean-up Executes fault handler.
handler. If fault handler

returns control to
the interrupted code,
EC2 $W AIT continues -
waiting.

EC2 - $WAIT - SVC Executes clean-up Executes fault handler.
handler. If fault handler

returns control to
the interrupted code,
EC2 $WAIT SVC returns - -
the error EC2 - $WAIT _QUIT.

Table 3-3. Wait Actions When Asynchronous Faults Are Inhibited

Call Error-Handling Technique

Clean-Up Handler Fault Handler

EC2 $WAIT Defers the fault and Defers the fault and -
continues waiting. continues waiting.

EC2 - $WAIT - SVC Defers the fault, Defers the fault,
but returns the error but returns the error
EC2 - $WAIT _QUIT. EC2 _$WAIT_QUIT.

When you use EC2 _ $W AIT(_ SVC), you need to understand how your program will respond if
an asynchronous fault occurs. First, you must ensure that the program performs any required
clean-up actions if a fault occurs. Secondly, if faults are disabled, you must ensure that your
program does not wait indefinitely if an asynchronous fault prevents the event from occurring.

If you inhibit asynchronous faults and use EC2 _ $W AIT, you must know that the wait can be
satisfied in a short period of time. Otherwise, you should include a timer as one of the events
you are waiting for. In this way, even though your program ignores faults, it remains in the wait
state only for a predefined time. (See Programming With General System Calls for information
on time eventcounts.)

Another way to inhibit faults, and still have a way to terminate a wait if a fault occurs, is to use
EC2_$WAIT _SVC. EC2_$WAIT _SVC returns an error when an asynchronous fault occurs.

Figure 3-6 shows an example that inhibits asynchronous faults and uses EC2 _ $W AIT _ SVC
within a REPEAT loop. If the wait is not interrupted, the example responds to the wait and
then drops through the bottom of the loop. However, if an asynchronous fault occurs during the
wait, EC2 _ $W AIT _ SVC returns an error. The program either exits or repeats the loop,
depending on the type of fault handling that is in effect.

Using User-Defined Eventcounts 3-18

c

('

---.-.. - ---

o

o

o

o

o

REPEAT
pfm $inhibit;
{ Do work here. For example. establish a temporary state

and then wait for events before you continue. }

{ Use ec2_$wait_svc to get error status if asynchronous
fault occurs. }

ec2_$wait_svcC pointer_list. trigger_list. status);
IF status.all = status_$ok

THEN
{ handle event }

ELSE
{ Fix things you did before you waited for events.

If fault occurred during wait. status.all equals
ec2_$wait_quit. }

pfm_$enable;
{ If program did not inhibit faults before the REPEAT

loop. the condition or fault handler takes over here.
If program previously inhibited faults or if fault
handler returns control. continue. }

{ If fault occurred during eC2_$wait_svc. repeat loop and
try again. Otherwise. drop through loop and continue. }

UNTIL status.all <> ec2_$wait_quit;

Figure 3-6. Handling Asynchronous Faults During Eventcount Waits

If you use a loop like the one in Figure 3-6, your program will work correctly whether or not the
program disabled faults before entering the REPEAT loop. Also, the program will work correctly
regardless of the type of error-handling in effect. The following list describes some possible
situations:

• The program did not inhibit asynchronous faults before entering the loop, and the
program does not use a fault handler. If a fault occurs during the wait, the ELSE
clause restores items that were set before the wait. When the loop re-enables faults
with PFM_ $ENABLE, the fault occurs. The clean-up handler deals with the fault
and the program exits .

• The program did not inhibit asynchronous faults before entering the loop, and the
program uses a fault handler. If a fault occurs during the wait, the ELSE clause
restores items that were set before the wait. When the loop re-enables faults with
PFM_ $ENABLE, the fault occurs. The fault handler deals with the fault, and
returns control to the UNT~ condition. Because STATUS.ALL equals
EC2 _ $W AIT _ QUIT, the loop is repeated.

3-19 Using User-Defined Eventcounts

• The program previously inhibited asynchronous faults before entering the loop. If a
fault occurs during the wait, the ELSE clause restores items that were set before the
wait. The PFM_ $ENABLE call decrements the inhibit count. However, this does
not re-enable faults because the inhibit count is not zero. Because STATUS.ALL
equals EC2 _ $W AIT _ QUIT, the UNTIL condition is false and the loop is repeated.

Using User-Defined Eventcounts 3-20

c

c

o

o

o

o

o

Chapter 4
Using Mutual Exclusion Locks

This chapter describes how to use mutual exclusion (mutex) locks. It includes:

• An overview of mutual exclusion locks.

o A summary of DOMAIN system calls for working with mutex locks .

• Examples of programs that use mutex locks.

4.1. Overview

Mutual exclusion is a condition in which several programs share a resource, but only one program
at a time can use it. When programs share with mutual exclusion, they can use a mutual
exclusion (mutex) lock to control access to the resource.

In order to use the shared resource, a program must first request and receive the lock. If the
resource is locked, the requesting program waits until the lock is available or until a specified
amount of time has elapsed. When the program gets the lock, it uses the resource; when the
program is through, it releases the lock for others to use.

A program determines whether it can get a lock by examining a mutex lock,record. This record
contains information about a resource's current lock status. The lock record is stored in a file; all
programs using the lock must map this file with read and write access. To perform this map
operation, the programs must be running on the same node. (See Chapter 2 for more information
on mapping.)

Mutex locks are especially useful when you have several programs that share a file, but the order
in which they use the file is unimportant. All that matters is that one program at a time reads
(or writes to) the file. Otherwise, the file can become corrupted. When you use a mutex lock to
control access to a file, you can store the lock record within the shared file.

NOTE: A mutex lock is a convention that cooperating programs use to control access to a
resource. If a program bypasses the lock request and accesses the resource directly,
you cannot guarantee mutual exclusion.

4.2. Mutex System Calls, Insert Files, and Data Types

Use the mutex system calls to work with mutex locks. These system calls begin with the prefix
MUTEX. Table 4-1 summarizes the mutex calls.

In order to use mutex calls, you must include the appropriate insert file in your program. The
mutex insert files are:

/SYS /INS /MUTEX.INS.C
/SYS /INS /MUTEX.INS.FTN
/SYS /INS /MUTEX.INS.P AS

4-1

(for C)
(for FORTRAN)
(for Pascal)

Using Mutual Exclusion Locks

Table 4-1. Summary of MUTEX System Calls

Operation Call

Initialize a mutex lock record MUTEX $INIT -

Request the mutex lock MUTEX - $LOCK

Release the mutex lock MUTEX - $UNLOCK

When you refer to a mutex lock record from any of the mutex calls, you must use a value in
MUTEX_ $LOCK_REC _ T format. In Pascal and C, you can simply declare a lock record
variable to be of type MUTEX_ $LOCK_REC _ T. In FORTRAN, declare a mutex lock record
variable as a 4-element array of 2-byte integers.

For complete information on MUTEX system calls and data types, see the DOMAIN System
Call Reference.

4.3. Steps For Using Mutex Locks

Before you can use a mutex lock, one program must initialize the mutex lock record. Be sure
that only one program initializes the record, regardless of how many programs use the lock. To
initialize the lock record, map the file containing the record and then call MUTEX_ $INIT. Now
other programs can use the lock. (Note that the program that initializes a lock can also use it.)

To use a mutex lock after the lock record has been initialized, follow these steps:

• Map the file containing the lock record, if you have not already mapped it.

• Use MUTEX_ $LOCK to request the lock. When you call MUTEX_ $LOCK, specify
the lock record and include a time-out value to indicate how long you want to wait.
If you supply a negative value, or if you specify the constant
MUTEX_$WAIT _FOREVER, you will wait indefinitely for the lock.

• Examine the value returned by MUTEX_ $LOCK to determine whether you obtained
the lock. If you have the lock, use the shared resource. Otherwise, perform an
alternate action such as trying again or reporting an error.

• Use MUTEX_ $UNLOCK to release the lock when you are through with the resource.
Repeat the lock/unlock sequence as needed.

• Unmap the file that contains the mutex lock record when your program exits.

When several programs use a mutex lock, you must ensure that the mutex lock record has been
initialized before it is used by any programs.

Remember that all programs using the same mutex lock record must be on the same node. The
file containing the lock record can be on the same, or on another, node.

Using Mutual Exclusion Locks 4-2

c

(
I

\~ ..

--------------------------------------- .. - .. - _ ..• --.-.--.-...•

o

o

o

o

o

4.4. Initializing a Mutex Lock Record

Before you initialize a lock record, you must map a file to initialize the record in. Typically, you
initialize the lock record in a file that also contains data. Programs can then access both the lock
record and the data from a single file. However, if you prefer, you can initialize the lock record
in a separate file.

To map the lock record file, use MS _ $MAPL (to map an existing file) or MS _ $ORMAPL (to
create and map a new file.) When you map the file, specify a concurrency mode of
MS_$NR_XOR_1W and an access type of MS_$WR. This concurrency/access combination
obtains an exclusive write lock. No other programs can map the file while you are initializing the
lock.

Map enough bytes to contain the mutex lock record and any data that the user programs will
share. See Ohapter 2 for more information on mapping files.

When you call MS_$MAPL or MS_$ORMAPL, you obtain a pointer to the mapped file. Use
this pointer to refer to the mutex lock record. (This pointer is the same as the address of the file.)

Mter you map the file, call MUTEX_ $INIT, supplying the mutex lock record as a parameter.
Next, perform any other actions that are required in order to use the shared resource. Be sure to
unmap the mutex lock record file before your program exits.

Figure 4-1 illustrates a program that initializes a lock record and then exits. This program
prepares a file that others will use to process ticket sales for a concert. The file contains a mutex
lock record and a count of the tickets sold.

First, the program defines the format for the shared file. This file contains:

o The mutex lock record, which is of type MUTEX_ $LOOK_REO _ T. (This data
type is eight bytes long.)

• The count of tickets sold, which is an integer.

The program maps the shared file, initializes the mutex lock record, and sets the ticket count to
zero. Then the program writes an informational message, unmaps the file, and exits. Now that
the shared file is initialized, you can run the programs that accept ticket sales and update the
ticket count.

PROGRAM mutex_init;

{ This program shows how to initialize a mutex lock record.
It maps a file that contains a lock record and ticket sales
count. The program initializes the lock record and sales
count and then exits. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/ms.ins.pas·;
%INCLUDE ·/sys/ins/mutex.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

Figure 4-1. A Program That Initializes a Mutex Lock Record

4-3 Using Mutual Exclusion Locks

TYPE
ticket sales t = - - { ticket sales file }

RECORD
lock record
tickets sold
END;

mutex_$lock_rec_t;
integer;

{ mutex lock record }
{ counter }

VAR
status status_$t; {status code}
ticket info
length_mapped
tickets wanted
wait time

.... ticket_sales_t;
integer32;
integer;
time_$clock_t;
boolean;

{ length of mapped data }

lock

PROCEDURE check_status; { for error handling }

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error_$print(status);
pgm_$exit;
END;

END;

BEGIN

{ Map a data file containing the mutex lock. Use this file to hold data
of type TICKET_SALES_T. }

ticket info

check_status;

ms_$mapl('ticket_sales_file'.
17.
O.
sizeof(ticket_sales_t
ms $nr xor lw.
mS=$wr-: -
true.

length mapped.
status-);

ticket info tickets sold := 0;

{ Initialize the mutex lock. }
mutex_$init (ticket_info lock_record);

{ object to be mapped }
{ length of name }
{ first byte to map }

).{ no. bytes to map }
{ locking mode }
{ access type }

{ map length in 3rd parameter.
even if object is shorter }

{ bytes mapped - returned }

writeln('Mutex lock file has been initialized. Start lock users now.');

{ Unmap file and exit. }

ms_$unmap(ticket_info.
sizeof(ticket sales t).
status); -

check_status;
END.

Figure 4-1. A Program That Initializes a Mutex Lock Record (continued)

Us i fig Mutual Exclusion Locks 4-4

c~

c

o

o

o

o

o

Figure 4-1 shows a program whose only function is to initialize a mutex lock record. If you
execute this program before you start any program that uses the lock, you can ensure that the
lock record is properly initialized. However, you can use other techniques to insure that a lock
record is initialized before any program uses it. For example, you can ensure proper initialization
if one program initializes the lock and then calls PGM _ $INVOKE to invoke each program that
uses the lock.

Another way to ensure proper initialization is to have each program that uses the lock determine
whether the lock has been initialized. If the lock has not been initialized, any of the programs
can initialize it. To do this, each program would:

o Try to map the file containing the lock record, obtaining an exclusive write lock.

o If the map operation succeeds, then no other program is currently mapping the lock
record. (Only one program at a time can obtain an exclusive write lock.) Thus, the
program should initialize the mutex lock record. However, the program must then
unmap the file, and map the file again with a shared write lock.

o If the map operation fails, then another program is currently mapping the file. Thus,
another program has already initialized the lock (or another program is in the process
of initializing the lock.) In either case, you should try to map the file with a shared
write lock. If your map operation fails, wait a few seconds and then try again.

4.5. Using Mutex Locks

Before you can use a mutex lock, you must map the file containing the lock record. When you
map the file, specify a concurrency mode of MS _ $COWRITERS and an access type of
MS _ $WR. This concurrency/access combination specifies a shared write lock. This allows you
to read and write to the mutex lock record. In addition, other programs on your node can also
map the mutex lock record with read and write access.

After you map the file, design a loop to:

o Perform work that requires you to use the shared resource.

o To use the resource, call MUTEX_ $LOCK to request the mutex lock .

• If you get the lock, access the shared resource. Otherwise, perform an alternate
action.

o Use MUTEX $UNLOOK to release the lock.

When you are through, exit from the loop and unmap the mutex lock record file.

MUTEX $LOOK accepts two parameters: the lock record and a time-out value. The time-out
value indkates how long you want to wait for the lock. If you supply a negative value, you will
wait indefinitely. MUTEX $LOCK returns either TRUE or FALSE to indicate whether you
obtained the lock.

NOTE: Whenever you call MUTEX_$LOCK, the system uses PFM_$INHIBIT to inhibit
asynchronous faults. When you call MUTEX_ $UNLOOK, the sytem uses
PFM $ENABLE to reenable them. See Section 4.6 for more information on fault
handling.

4-5 Using Mutual Exclusion Locks

Figure 4-2 shows a program that accepts concert ticket orders, using a shared ticket sales file to
see if tickets are available. To process an order, the program requests a mutex lock on the ticket
sales file. (The lock record is at the beginning of the ticket sales file.) When it has the lock, the
program examines the ticket sales count to see if there are enough tickets to fill the order. If
there are tickets, the program writes the new sales total and unlocks the file. The program
accepts orders until the tickets are sold out.

If you run this program concurrently from different processes, each program will process orders
using the same ticket file. However, only one program at a time will access the file.

PROGRAM mutex_user;

{ This program uses MUTEX calls to lock a file that contains ticket sales
information. When the program gets a mutex lock. it determines whether
there are enough tickets to fill the ticket order. If there are tickets.
the program updates the ticket count and unlocks the file. The program
processes orders until tickets are sold out. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/mutex.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

TYPE
ticket sales t =

VAR

- -
RECORD
lock record
tickets sold
END;

status
ticket info
length_mapped
tickets wanted
wait time
lock

mutex_$lock_rec_t;
integer;

status_$t;
.... ticket_sales_t;
integer32;
integer;
time_$clock_t;
boolean;

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error $print(status);
pgm_$;xit;
END;

END;

{ ticket sales file }

{ mutex lock record }
{ counter }

{status code}

{ length of mapped data }

{ for error handling }

Figure 4-2. A Program That Uses Mutex Locks

Using Mutual Exclusion Locks 4-6

c

o

o

o

o

o

BEGIN
{ Map a shared data file containing the mutex lock.

Use this file to hold data of type TICKET_SALES_T. }

ticket info - ms_$mapl('ticket_sales_file' , { object to be mapped }
17, { length of name }
0, { first byte to map }
sizeof(ticket sales t). { no. of bytes to map }

ms_$cowriters, { concurrency mode }

ms_$wr, { access type }
true, { map length in 3rd parameter,

even if object is shorter }
length_mapped, { bytes mapped - returned }
status);

{ Get system clock value for 30 seconds. }
cal_$sec_to_clock (30, wait_time);

{ Keep looping as long as you can get a lock and there are tickets left. }

WITH ticket info- DO

BEGIN
WHILE tickets sold < 100 DO

BEGIN {while }
writeln ('Input the number of tickets you want ');
readln (tickets_wanted);

{ Get a mutex lock on the file. If you get the lock, try
to buy tickets. Otherwise, assume there's a problem and exit.
The theater holds 100 people.}

lock := mutex_$lock(lock_record, wait time);
IF NOT lock THEN

BEGIN
writeln('Problem locking file. Try again later.');
ms_$unmap(ticket_info,

sizeof(ticket_sales_t),
status);

check_status;
RETURN;
END;

IF tickets sold + tickets wanted > 100 THEN
writeln ('Only', 100 --tickets_sold:4, ' tickets left.')

ELSE
BEGIN
tickets sold := tickets_sold + tickets_wanted;
writeln (, You got', tickets_wanted:4, ' tickets.');
END;

mutex_$unlock (lock record);
END;

END; { while}

Figure 4-2. A Program That Uses Mutex Locks (continued)

4-7 Using Mutual Exclusion Locks

{ Unmap file and exit. }

ms_$unmap(ticket_info,
sizeof(ticket sales t),
status); -

check_status;

END.

Figure 4-2. A Program That Uses Mutex Locks (continued)

4.6. Mutex Locks and Fault Handling

.A13 part of the MUTEX_ $LOCK call, the system calls PFM_ $INHIBIT to disable asynchronous
faults (such as "quits".) .A13 part of the MVTEX_ $UNLOCK call, the system calls
PFM $ENABLE to re-enable these faults. The system performs these actions so that an
asynchronous fault cannot abort your program while it is holding a mutex lock. If your program
exits without releasing a lock, no other program will be able to obtain the lock. That is, the
system does not automatically release a program's mutex lock when the program exits. Note that
the system inhibits asynchronous faults only while you hold the lock, not while you are waiting
for it.

If, while you hold a mutex lock, you call a procedure that may wait for a long time, you may
want to restore the ability to use a II quitl' to stop the program. To do this, temporarily re
enable asynchronous faults, as described below:

• Call MVTEX_ $LOCK to get the mutex lock.

o Declare a clean-up handler that uses MUTEX_ $UNLOCK to release the mutex lock.
This clean-up handler will be in effect during the period in which you re-enable
asynchronous faults.

oRe-enable asynchronous faults before you call the procedure. In this way, an
asynchronous fault can interrupt the program.

• Call the procedure. If an asynchronous fault occurs, the program uses the clean-up
handler to release the lock before exiting. If no asynchronous fault occurs, disable
asynchronous faults when you return from the procedure.

e Release the clean-up handler.

• Call MUTEX $UNLOCK to release the lock.

Figure 4-3 illustrates how to declare a clean-up handler and re-enable asynchronous faults while
you have a mut.ex lock. See Programming With General System Calls for more information on
clean-up handlers.

Using Mutual Exclusion Locks 4-8

C~'

c

c

c

o

o

o

o

o

{ Make declarations and start the program. }

{ Get the mutex lock. ~

lock := mutex_$lock(lock_record, wait time);

{ Establish the clean-up handler. }

status := pfm $cleanup (handler id);
IF (status.all <> pfm_$cleanup_set) THEN

BEGIN
mutex_$unlock (lock record) ;
pfm_$signal (status-);

END;

{ Re-enable asynchronous faults. }

pfm $enable;

{ Make a call that can be interrupted with a "quit."
If a "quit" occurs, the cleanup-handler is executed. }

{ If no fault occurred, disable asynchronous faults and
release the clean-up handler. }

pfm $inhibit;
pfm_$release_cleanup (handler_id);

{ Release the mutex lock. }

mutex_$unlock (lock record);

Figure 4-3. A Clean-Up Handler for Use After Calling MUTEX_$LOCK

You may also want to write a clean-up handler to handle synchronous faults (such as network
failures) that may occur while you hold a mutex lock. If a synchronous fault can abort your
program, be sure that a clean-up handler releases the program's mutex lock before the program
exits. To do this:

• Call MUTEX_$LOCK to get the mutex lock .

• Declare a clean-up handler that uses MVTEX_ $UNLOCK to release the mutex lock.
Thus, if a synchronous fault occurs, the program will use the clean-up handler to
release the lock before exiting.

4-9 Using Mutual Exclusion Locks

• Perform the required work while you have the lock.

• Release the clean-up handler.

• Call MUTEX $UNLOCK to release the lock.

See Figure 4-3 for an example of how to write a clean-up handler.

(
\... ..

Using Mutual Exclusion Locks 4-10

--------------------------------------_.- - --_._- - --- - ---

o

o

o

o

o

Chapter 5
Using Mailboxes

This chapter describes how to perform interprocess communication using mailboxes. It includes:

• An overview of message transmission using mailboxes.

o A summary of the MBX system calls and data types.

• A description of how to write a mailbox server and a client.

• A discussion of special considerations for sending long messages.

o A description of how to use mailbox eventcounts.

• A description of the :NffiX_HELPER.

5.1. Using Mailboxes To Transmit Messages

A mailbox is a file that two programs use to exchange information. A program that creates a
mailbox is called a server. Other programs, called clients, can open mailbox channels in order to
communicate with the server.

A mailbox has only one server, although a mailbox can have up to 255 channels that clients can
open. A server can "service requests" from any client that has opened a channel to the mailbox.
However, a client can communicate only with the server.

Figure 5-1 shows a server, a mailbox, and two clients that have opened mailbox channels. The
server and the clients can get messages from the mailbox, and can put messages in. When the
server puts a message into the mailbox, the server must indicate which channel the message is for;
only the client using that channel can get the message out. When a client puts a message into the
mailbox, only the server can get the message out.

Server Client 1

~ .. channel 1 ~, r-
., r-

~ ... channel 2 ~ .. ., r- " r-

Client 2

Figure 5-1. A Mailbox Server with Two Clients

5-1 Using Mailboxes

A mailbox channel provides a guaranteed connection, called a virtual circuit, between a server
and a client. Because it is a virtual circuit, a mailbox channel maintains the sequence for the
messages that pass through it. Every mailbox channel has two buffers: one for the server and
one for the client. Figure 5-2 illustrates a mailbox channel.

From server
to client 1

Mailbox

{

server buffer

channel 1 1---------\ ... f6°s~r~~~nt 1 client buffer ...

Figure 5-2. A Mailbox Channel

You can use mailboxes to communicate between programs on the same, or on different, nodes.
However, if programs on different nodes use the same mailbox, they cannot both access the
mailbox at the same time. Therefore, the DOMAIN system includes an 1v1BX_HELPER program
to assist the interprocess communication. You must run the 1v1BX_HELPER on both the
server's and client's nodes. See Section 5.8 for information on starting and using the
1v1BX_HELPER.

You can use a mailbox for any task that involves data transfer between programs. For example,
you can:

• Send data from a client to a server. The client sends data by putting it into the
server's mailbox. The server then gets the data from the mailbox and processes it .

• Exchange information between a client and a server. The client sends a message that
indicates a request for service. The server processes the request and then sends a reply
to the client.

5.2. MBX System Calls, Insert Files, and Data Types

To send and receive mailbox messages, use ·1v1BX system calls. These calls invoke the mailbox
manager, the system component that is responsible for mailboxes. Table 5-1 summarizes the
1v1BX calls.

In order to use 1v1BX calls, you must include the appropriate insert file in your program. The
11BX insert files are:

Using Mailboxes

/SYS /INS /1v1BX.lNS. C
/SYS /INS /1v1BX.lNS .FTN
/SYS /INS /1v1BX.lNS.P AS

5-2

(for C)
(for FORTRAN)
(for Pascal)

(
\

c

o

o

o

o

Table 5-1. Summary of MBX Calls

Operation Calls

Create mailboxes and MBX - $OPEN
open channels MBX - $ CREATE - SERVER

Get messages from a mailbox MBX _$GET_REC
MBX - $GET - REC - CHAN
MBX $GET REC CHAN SET - - - -
MBX $GET CONDITIONAL -
MBX - $COND - GET - REC - CHAN
MBX $COND GET REC CHAN SET - - - - -

Put messages into a mailbox MBX - $PUT - CRR
MBX $PUT CRR COND - - -
MBX $PUT REC - -
MBX $PUT REC COND - - -

Determine maximum message size MBX - $ SERVER - WINDOW
MBX $CLIENT WINDOW - -

Use eventcounts MBX $GET EC - -

Close mailboxes and MBX $CLOSE -
deallocate channels MBX $DEALL0 CATE -

Some of the MBX calls require that you specify parameters using special DOMAIN data types.
These data types include:

MBX $CHAN NUM T

MBX $CHAN SET T

MBX $EC KEY T

MBX $MTYPE T

MBX $NAME T

MBX $MSG HDR T

MBX $SERVER_MSG T

A mailbox channel number.

A set of mailbox channel numbers.

An event associated with a mailbox.

A mailbox message type.

A mailbox name.

A header for a mailbox message.

A mailbox message, as seen by a server. The message includes
a header and a data section.

For complete information on MBX system calls and data types, see the DOMAIN System Call
Reference.

5-3 Using Mailboxes

5.3. Mailbox Messages

When a program sends a message to a mailbox, the message contains two parts:

• A 6-byte header that contains control information for the mailbox manager .

• Up to 32760 CMBX_ $REC _DATA_MAX) bytes of user data.

The message header contains three fields, each of which is two bytes long. The fields include:

Message length The total number of bytes in the message, including the header.

Message type The purpose of a message. This field can contain one of the following values:

• 1v1BX $ACCEPT OPEN MT -- A response from a server
accepting a client's open request.

• 1v1BX $CHANNEL OPEN MT -- A request from a client to
open a channel to the mailbox.

• 1v1BX $DATA MT -- A data transmission .

• 1v1BX_$DATA_PARTIAL_MT -- A partial data transmission.

• 1v1BX $EOF _MT -- An end-of-transmission notice.

• 1v1BX $REJECT OPEN MT -- A response from a server,
rejecting a client's open request.

Channel number The channel of the client that sent the message, or that should receIve the
message. This field is two bytes long.

Although a message contains both a header and a data, a client gets and sends only the data
section. In contrast, a server gets and sends both the header and data sections. Figure 5-3 shows
a message as seen by a server and a client.

up to
32760
bytes

Using Mailboxes

Message as seen by server Message as seen by client

Figure 5-3. Mailbox Message Formats

5-4

c

('
"'---

c

c

c

--~-.--------------------------

o

o

o

o

o

The MBX insert files include constants that describe short and long messages. These constants
are:

MBX $MSG MAX A 1024-byte data section.

MBX $SERV MSG MAX A short message, including the 6-byte header and the 1024-byte
data section.

:MBX_ $REO DATA MAX A 32760-byte data section.

A long message, including the 6-byte header and the 32760-byte
data section.

Although messages can be up to MBX_ $REO _MSG _MAX (32766) bytes long, the following
restrictions apply when you work with messages that are longer than 1158 bytes:

• If a server sends a long message to a client on a remote node, the remote node's
MBX_HELPER must be able to accept the message. Use
:MBX $SERVER WINDOW to determine the largest message that ~he remote
node's :MBX_HELPER can accept. See Section 5.5.4 for more information on sending
long messages .

• A mailbox client can optionally send data when using :MBX_ $OPEN to open a
channel to a mailbox. However, the largest message you can send with
MBX_ $OPEN is 1024 bytes, even if the mailbox accepts larger messages. See Section
5.6.1 for more information.

The following sections describe how to define mailbox message buffers in servers and clients.
Because servers and clients see different versions of a mailbox message, you must define different
types of message buffers. You use a message buffer whenever you get a message from a mailbox,
or whenever you send one.

5.3.1. Defining Message Buffers in a Server

When you define a message buffer in a server, you must include fields for the header and data
sections of the message. In Pascal and 0, you can use the predefined data type
MBX_ $MSG _HDR _ T when you define message buffers for servers. MBX $MSG HDR T
is a record with the three fields in a message header:

ONT A 2-byte integer giving the message length.

MT A 2-byte integer giving the message type.

OHAN A 2-byte integer giving the message channel.

The following example shows Pascal type definitions for a message and a pointer to a message:

5-5 Using Mailboxes

TYPE
server rec t =

RECORD { a server message }
mbx hdr mbx_$msg_hdr_t; {header has 3 fields:

cnt - message length
mt - message type
chan - message channel }

ARRAY [1 .. mbx_$msg_max] OF char;

server_rec_ptr_t = ~server_rec~t; { pOinter to a server message}

In FORTRAN, you can define a server message header as a three-element INTEGER*2 array;
declare the data as a character array. For example:

INTEGER*2 header(3)
OHARAOTER message(1030)
EQUNALENOE (header{l), message{l))

The server messages in the previous examples can contain up to :MBX_ $MSG _MAX (1024)
bytes of data. The total message is :MBX_ $SERV _MSG _MAX (1030) bytes long, including the
header. However, you can define the data portion of the message to be up to
:MBX_ $REO _DATA_MAX (32760) bytes long.

5.3.2. Defining Message Buffers in a Client

A mailbox client sees only the data section of a message; the mailbox manager appends or
removes the appropriate header. Therefore, you need only define a message buffer that is large
enough to hold the messages you are sending and receiving. The largest possible data message
(:MBX_$REO_DATA_MAX) is 32760 bytes. You can use :MBX_$MSG_MAX to define a
short (1024-byte) data message.

5.4. Steps For Using Mailboxes

To communicate using mailboxes, follow these steps:

• Write the mailbox server, the program that creates the mailbox. In addition to
creating the mailbox, the server defines the size of the mailbox and the number of
channels that clients can open. Section 5.5 describes how to write a mailbox server.

o Write the mailbox client (or clients), the programs that use the mailbox. Each client
must open its own channel to the mailbox. Section 5.6 describes how to write a
mailbox client.

• Start the mailbox helper (:MBX_HELPER), if required. If the server and client{s) will
run on different nodes, you must be sure that :MBX_HELPER is running on each
node. Section 5.8 explains how to check for and start :MBX_HELPER.

• Start the server program; clients cannot open channels until the server creates the
mailbox.

• Start the client program{s); each client can now open a channel to the mailbox and
send messages.

Using Mailboxes 5-6

C-'"
... "."

c

c

o

o

o

o

o

------ ---- -- ---------

In general, servers and clients use MBX calls in the following order:

1. The server creates the mailbox with MBX $CREATE SERVER.

2. A potential client calls MBX_ $OPEN to open a channel to the mailbox.

3. The server uses one of the MBX_ $GET calls to get the open request. To accept the
request, the server uses one of the MBX_ $PUT calls to send a message with the type
MBX_$ACCEPT _ OPEN_MT; to reject the request, the server sends a message
with the type MBX_$REJECT _ OPEN_MT.

4. The client's MBX_ $OPEN call returns and the status code indicates whether the call
succeeded. If the server accepted the message, the ~X_ $OPEN call returns with
STATUS $OK. If the server did not accept the message, the client's call returns
with MBX $OPEN REJECTED.

5. The server and client exchange data using MBX_$PUT and MBX_$GET calls.
Depending on the call, either complete messages (~X_$DATA_MT) or partial
messages (MBX_$DATA_PARTIAL_MT) are sent.

6. Either the server or a client ends the communication. The server can call
MBX_ $CLOSE or MBX_ $DEALLOCATE; MBX_ $CLOSE closes the mailbox,
while MBX_ $DEALLOCATE deallocates a channel and frees it for use by another
client. If a server closes a mailbox or deallocates a channel while a client is still using
it, the client gets an error message the next time it tries to use the mailbox.

A client can stop using a channel by calling MBX_ $CLOSE. This sends the server
an MBX_$EOF _MT message. However, MBX_$CLOSE (when called from a
client) does not close the mailbox or deallocate the channel. The server must receive
the client's message and either deallocate the channel or close the mailbox.

For more information on how you send messages between servers and clients, refer to Sections 5.5
and 5.6.

5.5. Writing a Mailbox Server

A mailbox server has the following general design. The server:

• Creates the mailbox.

• Enters a loop to get messages from the mailbox and service the requests. The server
should be able to handle open requests, data transmissions, partial data transmissions,
and end-of-transmission notices.

• Exits from the loop and closes· the mailbox when a terminating condition has been
satisfied.

The following sections show how to write a mailbox server. Section 5.5.1 shows how to create
and close a mailbox; Section 5.5.2 shows how to get messages; Section 5.5.3 shows how to respond
to messages. Note that each section uses examples from the same sample program.

5-7 Using Mailboxes

5.5.1. Creating and Closing a Mailbox

To create a mailbox, use the call :MBX_$CREATE_SERVER; to close a mailbox, use the call
1vlBX $CLOSE.

:MBX_$CREATE_SERVER specifies the name for the mailbox, the maximum size of the
buffers for each channel, the number of channels that can be opened, and the name of a "handle"
for the mailbox. The handle is an identifier for the mailbox.

Note that a mailbox is a special kind of file; therefore, specify the mailbox name as a DOMAIN
pathname. If you use the name of an existing file when you call :MBX$ _ CREATE _ SERVER,
the mailbox manager deletes the contents of the file before creating your mailbox.

When a program (either a server or a client) sends messages to a mailbox, the messages are stored
in a buffer for the appropriate channel. The messages remain in the buffer until another program
reads them. A buffer continues to accept messages until it is full. If a prograt:ntries to send a
message when the buffer is full, the mailbox manager either returns an error or suspends the
calling program (depending on the :MBX call you used). Each channel has two buffers: one for
the server and one for the client.

The buffer size defines the number of message bytes that the server and a client can each store in
a channel. For example, if you specify a buffer of 2000, the mailbox manager allocates 4000
bytes per channel; 2000 bytes for. the server and 2000 bytes for the client.

You must specify a buffer size of at least 64 bytes; the maximum buffer size is 32767. Be sure to
specify a buffer that is at least as large as the largest message you plan to send from either a
server or a. client.

A mailbox can have between 1 and 255 channels. Remember that buffer space is allocated for
both the server and the client using a channel. Thus, if you specify a buffer size of 2000 and a
channel number of 4, the mailbox will be created with 16,000 bytes of buffer space. (That is,
there will be 4,000 bytes apiece for four channels.) Specify enough channels to handle open
requests from each client you anticipate.

The mailbox handle is a pointer to the mailbox. The value for this pointer is returned when you
call :MBX_ $ CREATE SERVER. Most:MBX calls use the handle, rather than the name, to
refer to the mailbox.

Note that, in a secure network, a mailbox's access control list (ACL) is determined by the ACL of
the directory in which it·is created. If clients on other nodes use the mailbox, you must be sure
that the server node's 1v1BX HELPER has read and write access to the mailbox. See Section
5.8.3 for more information.

Figure 5-4 shows a server that uses :MBX_ $CREATE SERVER to create a mailbox named
TEST _MAILBOX on the local node. This mailbox allows up to 255 open channels, with 2060
bytes in each channel. The program uses :MBX_ $CLOSE to close the mailbox.

Using Mailboxes 5-8

(
\

c

c

o

o

o

o

PROGRAM mbx_server (input.output);

{ This mailbox server creates a mailbox and handles
requests from clients. The server handles open
requests. close requests. and data transmissions. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

LABEL
done;

CONST
mbx bufsize
mbx maxchan
mbx name
mbx name len

TYPE

VAR

mbx handle
status

= mbx_$serv_msg_max;
=
=
=

mbx_$chn_max;
'test_mailbox';
sizeof(mbx name

univ ptr;
status_$t;

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error $print(status);
pgm_$;xit;
END;

END;

BEGIN {program test server }

{ Create the mailbox. }

mbx_$create_server(mbx_name.
mbx_namelen.
mbx_bufsize.
mbx_maxchan.
mbx_handle.
status);

check_status;

) ;

{
{
{
{
{

{ channel buffer size
{ no. mailbox channels - 255
{ mailbox name
{ length of mailbox name

{ a pointer to the mailbox }
{ a status code }

{ for error handling }

name }

name length }

buffer size }

maximum channels }

handle }

writeln('Mailbox' mbx_name. ' was successfully opened.');

{ Get messages from clients. }

Figure 5-4. A Server That Creates and Closes a Mailbox

}
}
}
}

5-9 Using Mailboxes

{ Close mailbox and exit. }

done:

mbx_$close(mbx_handle.
status);

check_status;
writeln ('The mailbox has been closed.');

END. {program test_server}

Figure 5-4. A Server That Creates and Closes a Mailbox (continued)

5.5.2. Getting Messages

You can use two types of :MBX calls to get messages from a mailbox. Nonconditional calls
suspend your program until a message is available and the call can complete; conditional calls
return immediately with the completion status:MBX $OHANNEL E:N.1PTY if no message is
available.

Each :MBX get call has both a conditional and a nonconditional form. Table 5-2 summarizes
these calls.

Table 5-2. Summary of MBX Get Calls

Nonconditional Call Conditional Call

Get a message from MBX_$GET_REC MBX_$GET_CONDITIONAL
any channel

Get a message from MBX_$GET_REC_CHAN MBX_$COND_GET_REC_CHAN
a specified channel

Get a message from MBX_$ GET_REC_C HAN_SET MBX_$COND_GET_REC_CHAN_SET
a specified group
of channels

For each of these calls, supply the handle for the mailbox and the name of a buffer where the
mailbox manager can place the returned message. Note that you must also supply an output
parameter so these calls can return the actual location of the retrieved message; the calls do not
always place the message in the buffer you supply. Always use the output parameter to refer to
the message.

Figure 5-5 shows a server that uses :MBX_ $GET _REO to search each channel, in sequence,
until it finds a message to retrieve. If no messages are waiting, the server waits until a message is
available. (See Section 5.7 for information on using eventcounts with the conditional :MBX calls.)

When the server gets a message, it interprets the message type and branches to the appropriate
section. The server can process open requests, end-of-transmission notices, data, and partial data
transmissions. To determine the message type, the server looks in the second field of the message
header.

Using Mailboxes 5-10

('

o

o

o

o

o

In this example, the GET _:tvIESSAGE_LOOP is controlled by a counter that keeps track of the
number of open channels to the mailbox; the program continues in the loop until all channels
have been closed. Note, however, that some applications may require that the server run
continuously, regardless of whether there are open channels.

PROGRAM mbx_server (input,output);

{ This mailbox server creates a mailbox and handles requests from
clients. It handles open and close requests, and data transmissions. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

LABEL
get_message_Ioop,
done;

CONST
mbx bufsize = mbx_$serv_msg_max;
mbx maxchan = mbx_$chn_max;
mbx name
mbx namelen
srv_msg_Ien

TYPE

= 'test_mailbox';
= sizeof(mbx_name);
= mbx_$serv_msg_max;

{ channel buffer size
{ no. mailbox channels - 255
{ mailbox name
{ length of mailbox name
{ length of buffer that server can

use to receive messages

server rec t =
RECORD { server message }
mbx hdr mbx_$msg_hdr_t; { header has 3 fields:

cnt - message length
mt - message type
chan - message channel }

msg_data : ARRAY [1 .. mbx_$msg_max] OF char;
END;

= server_rec_ptr_t
.... server_rec_t; { pointer to a server message }

VAR
mbx handle univ_ptr;
status status_$t;
srv_msg_buf server rec

{
{

t; { -

a pointer to the mailbox
a status code
a buffer that the server can use to

}
}
}
}

}

}
}

receive messages }
mbx_retptr

mbx retlen
send_msg_buf

open_chan

server_rec_ptr_ t;

integer32;
server rec t; -
integer16;

{

{
{

{

a pointer to the buffer where MBX
placed a retrieved message }
length of a retrieved message }
a buffer where the server places
a message to send }
number of open channels to
the mailbox }

Figure 5-5. A Server That Gets Messages

5-11 Using Mailboxes

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error_$print(status);
pgm_$exit;
END;

END;

BEGIN {program test server }

{ Initialize variables. }

{ Create the mailbox. }

mbx_$create_server(mbx_name,
mbx_namelen,
mbx_bufsize,
mbx_maxchan,
mbx_handle,
status);

check_status;

{ for error handling }

{ name }
{ name length }
{ buffer size }
{ maximum channels }
{ handle }

writeln('Mailbox' mbx_name, ' was successfully opened.');

{ Keep getting messages until there are no more clients. }

REPEAT
mbx_$get_rec(mbx_handle,

check_status;

addr(srv_msg_buf),
srv_msg_Ien,
mbx_retptr,
mbx retlen,
status);

WITH mbx_retptr~ DO
BEGIN

{ where message may be received}
{ length of message buffer }
{ where message is received }
{ message length }

writeln('Message received from .channel' mbx hdr.chan:4);

CASE mbx hdr.mt OF

{ If message is an open channel request, accept it.
Also, keep track of the number of open channels. }

Figure 5-5. A Server That Gets Messages (continued)

Using Mailboxes 5-12

o

o

o

o

o

{ If message is a close channel request. deallocate
the channel and decrement the open channel count. }

{ If message is a data transmission or
a partial data transmission. process the data. }

OTHERWISE
writeln ('Invalid message type');

END; {case statement }
END; {with statement}

UNTIL open_chan = 0;

{ Close mailbox and exit. }

done:

mbx $close(mbx handle.
- status);

check status;
writeln ('The mailbox has been closed.');

END. {program test_server }

Figure 5-5. A Server That Gets Messages (continued)

5.5.3. Responding to Messages

After a server gets a message, it must perform the appropriate action. Usually, this involves
sending a reply to the client. A server uses one of the following PUT calls to send replies:

:MBX_$PUT REO

:MBX $PUT REO OOND

Puts a record into the mailbox. If the receiving channel is full,
the program is suspended until there is room to accept the
message.

Puts a record into the mailbox if there is room in the receiving
channel. If the channel is full, the call returns the status
MBX_$NO ROOM IN OHANNEL.

A server should be able to handle open requests, end-of-transmission notices, data, and partial
data transmissions. The following sections describe how to respond to these message types.

5-13 Using Mailboxes

Section 5.5.3.1 describes ope~ requests, Section 5.5.3.2 desribes end-of-transmission notices, and
Section 5.5.3.3 describes data and partial data messages.

5.5.3.1. Open Requests

You receive an :MBX_ $CHANNEL _ OPEN _MT message whenever a client calls :MBX_ $OPEN
and you have an available channel. Note that if you have no available channels, the mailbox
manager does not transmit the open request to you; the mailbox manager immediately returns
:MBX_ $NO _MORE_ CHANNELS to the client's open call.

To respond to the open request, send one of the messages MBX_ $ACCEPT _ OPEN _MT or
MBX_ $REJECT _ OPEN _MT back to the client. This causes the mailbox manager to return
either STATUS $OK or MBX_ $OPEN REJECTED to the client.

To send the message, use one of the calls :MBX $PUT REC or
MBX $PUT CONDITIONAL. The first call suspends the calling process until there is room in
the channel for the message; the second call returns immediately with the completion status
:MBX $NO ROOM IN CHANNEL if there is no room. To use either call, specify the
mailbox handle and a pointer to the message you are sending. Note that whenever you send a
message from a server, you must include the message header.

Whenever you accept an open request, check the length of the message to see whether data is
included. If the message is longer than the standard message header
(:MBX_$SERV _MSG_HDR_LEN), then the open request contains data that you should
process.

Figure 5-6 shows a server that accepts an open request and checks whether the message contains
data. If the message contains data, the server calls a subroutine to process the data.

PROGRAM mbx_server (input,output);

{ This mailbox server creates a mailbox and handles requests from
clients. It handles open and close requests, and data transmissions. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/mbx.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

LABEL
get_message_loop,
done;

CONST

srv_msg_len = mbx_$serv_msg_max; {length of buffer that server can
use to receive messages }

Figure 5- 6. A Server That Responds to Open Requests

U8ing Mailboxe8 5-14

c

c

(
'-

o

o

o

o

o

TYPE
server rec t =

RECORD
mbx hdr mbx_$msg_hdr_t;

{ server message }
{ header has 3 fields:

cnt - message length
mt - message type
chan - message channel }

msg_data : ARRAY [1 .. mbx_$msg_max] OF char;
END;

server_rec_ptr_t =
-server_rec_t; {pointer to a server message}

VAR
mbx handle
status
srv_msg_buf

univ_ptr;
status_$t;
server rec_t;

{ a pointer to the mailbox }
{ a status code }

mbx_retptr

mbx retlen
send_msg_buf

open_chan

{ a buffer that the server can use to
receive messages

server_rec_ptr_t; {a pointer to the buffer where MaX
placed a retrieved message

integer32; { length of a retrieved message
server rec t· { a buffer where the server places

a message to send
integer16; { number of open channels to

the mailbox

PROCEDURE check_status; { for error handling }

PROCEDURE process data;

END;

BEGIN {program test server }

{Initialize variables. }

open_chan := 0;

{ Create mailbox and get handle. }

{ Keep getting messages until there are no more clients. }

REPEAT
mbx_$get_rec(mbx_handle.

addr(srv_msg_buf).
srv_msg_len.
mbx_retptr.
mbx_retlen.
status);

{ where message may be received}
{ length of message buffer }
{ where message is received }
{ message length }

Figure 5-6. A Ser.ver That Responds to Open Requests (continued)

}

}
}

}

}

5-15 Using Mailboxes

WITH mbx_retptr- DO
BEGIN
writeln('Message received from channel' mbx hdr.chan:4);

CASE mbx hdr.mt OF

{ If message is an open channel request, accept it.
Also, keep track of the number of open channels. }

mbx_$channel_open_mt :
BEGIN
send_msg_buf.mbx_hdr.cnt := mbx_$serv_msg_hdr_len;

{there's no data in this message}
send_msg_buf.mbx_hdr.mt := mbx $accept open mt;

{type of message-you are-sending}
send msg buf.mbx hdr.chan := mbx hdr.chan;

- - {channel to send to }

mbx_$put_rec(mbx handle,
addr(send_msg_buf).
robx_$serv_msg_hdr_len.
status);

{ message to send }
{ length of message }

writeln (, Open request from channel '.
mbx_hdr.chan:4, ' has been accepted.');

IF mbx retlen <> mbx_$serv_msg_hdr_len THEN
process_data;

END;

END; {case statement}
END; {with statement}

UNTIL open_chan = 0;

{ Close mailbox and exit.}

END. {program test_server}

Figure 5-6. A Server That Responds to Open Requests (continued)

5.5.3.2. End-of-Transmission Notices

When you receive a message of type MBX_ $EOF _MT, call MBX_ $DEALLOCATE to free the
channel for use by other clients. Specify the channel by using the value in the third field of the
message header.

Figure 5-7 shows a server that deallocates a channel after receiving an MBX $EOF MT
message. The server also decrements a channel counter. When there are no open channels to the
mailbox, the program exits.

Using Mailboxes 5-16

c

c'

c

o

o

o

o

o

PROGRAM mbx_server (input,output);

{ This mailbox server creates a mailbox and handles requests from
clients. It handles open and close requests, and data transmissions. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/mbx.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

LABEL
get_message_loop,
done;

CONST

TYPE
server rec t =

RECORD
mbx hdr mbx_$msg_hdr_t;

use to receive messages }

{ server message }
{ header has 3 fields:

cnt - message length
mt - message type
chan - message channel }

msg_data : ARRAY [1 .. mbx_$msg_max] OF char;
END;

= server_rec_ptr_t
..... server_rec_t; { pointer to a server message }

VAR

mbx handle univ_ptr;
status status_$t;
srv_msg_buf server rec t; -

mbx_retptr server_rec_ptr_

mbx retlen integer32;
send_msg_buf server rec t· -
open_chan integer16;

PROCEDURE check_status;

PROCEDURE process_data;

END;

{
{
{

t· {

{
{

{

a pointer to the mailbox }
a status code }
a buffer that the server can use to
receive messages }
a pointer to the buffer where MBX
placed a retrieved message }
length of a retrieved message }
a buffer where the server places
a message to send }
number of open channels to
the mailbox }

{ for error handling }

Figure 5-7. A Server That Responds to End-or-Transmission Notices

5-17 Using Mailboxes

BEGIN {program test_server }

{ Initialize variables. }
open_chan := o·

{ Create mailbox and get handle. }

{ Keep getting messages until there are no more clients. }

REPEAT
mbx_$get_rec(mbx_handle.

check_status;

addr(srv_msg_buf).
srv_msg_Ien.
mbx_retptr.
mbx retlen.
status) ;

WITH mbx_retptr~ DO
BEGIN

{ where message may be received }
{ length of message buffer }
{ where message is received }
{ message length }

writeln("Message received from channel" mbx hdr.chan:4);

CASE mbx hdr.mt OF

{ If message is a close channel request. deallocate
the channel and decrement the open channel count. }

mbx_$eof_mt :
BEGIN
mbx_$deallocate(mbx_handle.

mbx hdr.chan. {channel number}
status);

check_status;

writeln ("Channel" mbx_hdr.chan:4." was deallocated.");

open_chan open_chan - 1;

IF open_chan = 0 THEN
GOTO done;

END; { mbx_hdr.mt}

END; {case statement }
END; {with statement}

UNTIL open_chan = 0;

{ Close mailbox and exit. }

END. {program test server}

Figure 5-7. A Server That Responds to End';'of-Transmission Notices (continued)

Using Mailboxes 5-18

c~

o

o

o

o

o

5.5.3.3. Data and Partial Data Transmissions

You receive an MT _$DATA_MT message when a client sends a data transmission; you receive
an MT _$DATA_PARTIAL_MT message when a client sends partial data. When you receive
one of these message types, process the data portion of the message. Send a return message if one
is required by the application; for some applications, you may need to send a message to another
client. You may find it useful to write a subprogram to perform the data processing.

NOTE: When a server uses any of the MBX_$GET calls, the call returns STATUS_$OK for
both data and partial data messages. This is in contrast to how MBX_ $GET calls
act when called from clients. When a client gets a data message, the MBX_ $GET
call returns STATUS _ $OK; when a client gets a partial data message, the call
returns MBX $PARTIAL REOORD.

Figure 5-8 shows a server that processes data transmissions by displaying the data on the node's
monitor. The server uses the subroutine PROOESS _DATA to find the data portion of the
message and write it to the screen. The server also sends a return message to indicate that the
data was written. This example processes complete and partial data transmissions in the same
way. However, you may want to design special methods to concatenate data from partial data
transmissions.

PROGRAM mbx server (input.output);

{ This mailbox server creates a mailbox and handles requests from
clients. It handles open and close requests. and data transmissions. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/mbx.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

LABEL
get_message_Ioop.
done;

CONST

TYPE
server rec t =

use to receive messages}

RECORD { server message }
mbx hdr mbx_$msg_hdr_t; {header has 3 fields:

cnt - message length
mt - message type
chan - message channel }

msg_data : ARRAY [1 .. mbx~$msg_max] OF char;
END;

server_rec_ptr_t
"'server_rec_t;

=
{ pointer to a server message }

Figure 5-8. A Server That Responds to Data and Partial Data Transmissions

5-19 Using Mailboxes

VAR
mbx handle
status
srv_msg_buf

mbx retlen
send_msg_buf

univ_ptr;
status_$t;
server rec_t;

integer32;
server rec_t;

integer16;

{ a pointer to the mailbox }
{ a status code }
{ a buffer that the server can use to

receive messages }
{ a pointer to the buffer where MaX

placed a retrieved message }
{ length of a retrieved message }
{ a buffer where the server places

a message to send }
{ number of open channels to

the mailbox }

PROCEDURE check_status; { for error handling }

PROCEDURE process_data;

CONST
reply
reply_len

VAR
reply_array
i

BEGIN

= "Message written.";
= sizeof(reply);

ARRAY [1 .. reply_len] OF char;
integer; { a counter}

{ Display the client"s message. }

writeln (mbx retptr-.msg data: mbx retlen
- mbx=$serv_msg_hdr_Ien); -

{ Construct a header for a return message. }

.- reply_len

send_msg_buf.mbx_hdr.mt
send_msg_buf.mbx_hdr.chan

+ mbx $serv msg hdr len;
.- mbx_$data_mt; - -
.- mbx_retptr-.mbx_hdr.chan;

{ Construct the data portion of a message. }

reply_array .- reply;
FOR i := 1 TO reply len DO

send_msg_buf.msg_data[i] .- reply_array[i];

{ Send the return message. }
mbx_$put_rec(mbx_handle.

check_status;
END;

addr(send_msg_buf).
send_msg_buf.mbx_hdr.cnt.
status);

Figure 5-8. Server That Responds to Data and Partial Data Transmissisons (cont.)

Using Mailboxes 5-20

c

c

c

c

o

o

o

o

o

BEGIN {program test_server }

{Initialize variables. }

open_chan := 0;

{ Create the mailbox and get a handle. }

{ Keep getting messages until there are no more clients. }

REPEAT
mbx_$get_rec(mbx handle.

addr(srv_msg_buf).
srv_msg_len.
mbx_retptr.
mbx retlen.
status);

WITH mbx_retptr- DO
BEGIN

{ where message may be received}
{ length of message buffer }
{ where message is received }
{ message length }

writeln('Message received from ch~nnel' mbx hdr.chan:4);

CASE mbx hdr.mt OF

{ If message is a data transmission or
a partial data transmission. process the data. }

mbx_$data_mt :
process_data;

mbx_$data_partial_mt
process_data;

OTHERWISE
writeln ('Invalid message type');

END; {case statement}
END; {with statement}

UNTIL open_chan = 0;

{ Close mailbox and exit. }

END. {program test_server}

Figure 5-8. Server That Responds to Data and Partial Data Transmissisons (cont.)

5-21 Using Mailboxes
......

5.5.4. Sending Long Messages

When a server puts a message into a mailbox and the message is intended for a client on a remote
node, the message must pass through a system mailbox maintained by the client node's
:MaX_HELPER. (See Section 5.8 for more information on sending messages when servers and
clients are on different nodes.) The buffer size for this mailbox is defined when the client node's
:MaX_HELPER is started. By default, a system mailbox has channel buffers that can hold 1158
bytes of data.

However, a server can create a mailbox with buffers that hold up to 32767 bytes. Thus, a server
might create a buffer that is larger than the buffer for a system mailbox on a remote node. If a
server creates such a mailbox, and then tries to send a message that is larger than the system
mailbox buffer on the remote node, the send operation will fail.

To prevent this type of error, a server can call :MBX_ $ SERVER _ WINDOW to determine the
buffer size for the mailbox maintained by the :MBX_HELPER on a remote client's node. If the
remote node's mailbox is too small, the server can perform one of the following actions:

• Separate a long message into pieces that are small enough to fit in the remote node's
system mailbox .

• Report the problem so you can change the buffer size for the system mailbox on the
remote node. To change this buffer size, stop the :MaX_HELPER on the client's
node. Then restart the :MaX_HELPER, using the -DATASIZE option to specify a
larger buffer size. See Section 5.8.2 for more information.

See the DOMAIN SY8tem Call Reference for more information on using
:MaX $SERVER WINDOW.

Note that, even if you send a message that is smaller than the remote node's mailbox buffer, a
PUT call can fail if the buffer is full. For example, if you send a new message before the client
got your previous one, the buffer may be full and your call may fail.

5.5.5. Closing a Channel

A server can close a channel even if a client is still using the channel. To close an active channel,
use one of the following methods:

• Deallocate the channel with :MaX_ $DEALL0 CATE .

• Send a message of type :MaX_$EOF _MT to the client using the channel.

When you deallocate the channel, you free it for use by another client. When the affected client
tries to use the mailbox, the client receives a completion status of
MBX_$CHANNEL_NOT_OPEN.

If you send a message of type :MaX_ $EOF _MT to a client, the client receives a completion
status of :MaX_ $EOF when the client tries to read the message. In such a case, the client should
call :MaX _ $CLOSE to close the channel.

U8ing Mailboxe8 5-22

c

('
\ -

c_

o

o

o

o

o

5.6. Writing a Mailbox Client

A mailbox client has the following general design. The client:

• Opens a channel to the mailbox.

• Enters a loop to send messages to the mailbox and get replies.

• Exits from the loop and closes the channel to the mailbox when a terminating
condition has been satisfied.

The following sections describe how to write a mailbox client. Section 5.6.1 describes how to
open and close channels; Section 5.6.2 describes how to send and receive messages. Each section
uses examples from the same sample program.

NOTE: A client can use STREAM calls to open a channel to a mailbox, get and send
messages, and close the channel. See Programming With General System Calls for
more information on using stream calls.

5.6.1. Opening and Closing Channels

To open a channel to a mailbox, use MBX_$OPEN; to close a channel, use MBX_$CLOSE.

MBX_ $OPEN specifies the name of the mailbox you want to open a channel to, and gives a
name for the mailbox handle. The mailbox handle is a pointer to the mailbox; the mailbox
manager returns a value for the handle when you call MBX_$OPEN.

When you open a channel, you can optionally include data to be sent if the open request is
successful. To include data, specify a pointer to the buffer that contains the data when you call
MBX_ $OPEN. Also include the length of the data you are sending. Note, however, that you
can send only 1024 bytes of data with an MBX_ $OPEN call, even if the mailbox buffer can
handle larger messages.

If you do not include data with MBX_ $OPEN, specify a nil pointer and a data length of zero.
Use the following to specify a nil pointer:

Pascal NIL

FORTRAN o

C NULL

When you call MBX_$OPEN, the mailbox manager sends the server an open request
(MBX_$CHANNEL_OPEN_MT). When the server responds, your MBX_$OPEN call
returns a status code to indicate whether the server accepted your open request. Test this status
code to see whether the call was successful; MBX_ $OPEN returns STATUS _ $OK if the server
accepted your open request.

To indicate that you have finished using a channel, call MBX_ $CLOSE. When you call
MBX_$CLOSE, the mailbox manager sends the server an MBX_$EOF _MT message. The
server must deallocate the channel to free it for use by other clients. Note that an
MBX $CLOSE call from a client does not close a mailbox.

5-23 Using Mailboxes

Figure 5-9 shows a client that opens a channel to the mailbox TEST _MAILBOX on the local
node. When the client has finished using the mailbox, it informs the server by calling
MBX $CLOSE.

PROGRAM mbx_client (input,output);

{ This mailbox client opens a channel to a mailbox. The client
sends messages to the server, and gets the server's reply. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

CONST
mbx name
mbx namelen

= 'test_mailbox'; {mailbox name }
= sizeof(mbx name); { length of mailbox name}

VAR
mbx handle
status

univ_ptr;
status_$t;

PROCEDURE check_status;

BEGIN

{ Open a channel to the mailbox. }

mbx_$open (mbx_name,
mbx_namelen,
NIL,
0,
mbx handle,
status);

check_status;

{ Send and receive messages.}

{ Close the channel. }

mbx_$close(mbx handle,
status);

check_status;

END.

{ mailbox handle }
{ a status code }

{ for error handling }

Figure 5-Q. A Client That Opens and Closes Channels

Using Mailboxes 5-24

c~

o

o

o

o

o

5.6.2. Sending and Receiving Messages

To send messages to the server, use one of the following calls:

MBX $PUT REO

MBX $PUT OIm.

MBX $PUT REO OOND

MBX $PUT OIm. OOND

Puts a record into the mailbox. If the receiving channel is full,
the program is suspended until there is room to accept the
message. This call sends a message with· the type
MBX $DATA MT.

Puts a partial message into the mailbox. This call is equivalent
to MBX_ $PUT _REO, except that it sends a partial data
message with the type 11BX_$DATA_PARTIAL_MT.

Puts a record into the mailbox if there is room in the receiving
channel. If the channel is full, the call returns the status
MBX $NO ROOM IN OHANNEL. This call sends a
message with the type 11BX_$DATA_MT.

Puts a partial message into the mailbox if there is room in the
receiving channel. If the channel is full, the call returns the
status MBX_ $NO _ROOM_IN _ OHANNEL. This call sends
a message with the type MBX_$DATA_PARTIAL_MT.

When you use these calls, specify the mailbox handle and a pointer to the buffer containing the
message. Note that you send only the data portion of a message from a client; the mailbox
manager appends the message header.

NOTE: When you send a message, the mailbox's channel buffer must be large enough to hold
your message. (The server defined the buffer size when it called
MBX_$OREATE_SERVER.) Thus, the mailbox buffer defines the largest message
you can send. If you do not know the mailbox buffer size, call
MBX_$OLIENT _ WINDOW to obtain it. See the DOMAIN System Call Reference
for more information on using MBX_$OLIENT_ WINDOW.

Mter you send a message to the server, you usually want a response. To get a response, use
either MBX_ $GET _REO or MBX_ $GET _ OONDITIONAL. MBX_ $GET _REO suspends
the calling process until a record is available, whereas :MBX_ $GET _ OONDITIONAL returns
immediately with the status MBX_$OHANNEL_EMPTY. When you use either of these calls,
specify the mailbox handle and the name of a buffer where the mailbox manager can place the
returned message. As described in Section 5.5.2, the mailbox manager does not always place
messages in the buffer you supply. However, the get call always returns the location of the
message in one of the output parameters. Use this returned location to obtain the message.

Note that when you get a data message, the :MBX_ $GET calls return the status
STATUS _ $OK. However, when you get a partial data message, the calls return the status
MBX $PARTIAL REOORD.

Figure 5-10 shows a mailbox client that establishes a loop to send and receive mailbox messages.
First, the client prompts for user input and places this input into a mailbox. Then the client gets
a reply from the server and displays the reply. The client continues in this loop until you enter
OTRL/Z. The client checks for both STATUS_$OK and MBX_$PARTIAL_REOORD in its
error-checking routine.

5-25 Using Mailboxes

PROGRAM mbx_client (input.output);

{ This mailbox client opens a channel to a mailbox. The client
sends messages to the server. and gets the server's reply. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

LABEL
done;

CONST
mbx name
mbx name len
buf len
msg_buf_Ien
prompt_str

= 'test mailbox'; {mailbox name }
= sizeof(mbx name); { length of mailbox name}
= mbx_$msg_max; { length of data buffer }
= mbx_$msg_max; { length of message buffer }
= 'Enter a new message:

TYPE

= msg_t
ARRAY

msg_ptr_t
-msg_t;

1 .. mbx_$msg_max] OF char; { client message}
=

{ pointer to a client message }

VAR
data buf msg_t; -
mbx handle univ_ptr;
status status_$t;
msg_buf msg_t;

msg_retptr msg_ptr_t;

msg_retlen integer32;

PROCEDURE check status; -

BEGIN

{ Open a channel to the mailbox. }

mbx_$open (mbx_name.
mbx_namelen.
NIL.
O.
mbx handle.
status) ;

check_status;

{ buffer for data to be sent
{ mailbox handle
{ a status code
{ a buffer that the client

can use to receive data
{ a pointer to the buffer where

MBX placed a retrieved message
{ length of a retrieved message

{ for error handling

Figure 5-10. A Client That Gets and Sends Messages

U8ing Mailboxe8 5-26

c

}
}
}

}

}
}

}

c~

c

o

o

o

o

o

{ Read data and put it in the mailbox. }

write('Enter a message; end with CTRL/Z: ');
WHILE NOT eof DO

BEGIN
readln(data buf);
mbx_$put_rec-(mbx handle,

addr(data_buf),
buf_Ien,
status);

{ Get a response from the server. }

mbx_$get_rec(mbx_handle,
addr(msg_buf),
msg_buf_Ien,
msg_retptr,
msg_retlen,
status);

check_status;

writeln (msg retptr~: msg_retlen);
write(prompt=str);
END;

done:

mbx $close(mbx handle,
- status);

check_status;

END.

Figure 5-10. A Client That Gets and Sends Messages (continued)

5.7. Using Mailbox Eventcounts

An eventcount is a number that increases when a certain type of event happens. Use an
eventcount to allow your program to wait for events, process them when they occur, and then
wait for new events.

Whenever you create a mailbox, the system establishes two eventcounts for the mailbox. They
are:

MBX $GETREO EO KEY Indicates that a new message may have arrived.

MBX $PUTREO EO KEY Indicates that a channel that was previously full may now be
able to accept a message.

The mailbox manager uses these eventcounts when managing the mailbox. However, you can also
use these eventcounts within your programs. Oall MBX _ $GET EO to get a pointer to the
MBX eventcount you want to use.

The mailbox eventcounts are system-defined eventcounts. Thus, these eventcounts, when
satisfied, indicate that there may be an event to respond to. When a mailbox event count is

5-27 Using Mailboxes

satisfied, your program should not assume that there i8 an event. See Programming With
General SY8tem Call8 for complete information on system-defined eventcounts.

After you get a pointer to an eventcount, use E02_$WAIT or E02_$WAIT _SVO to wait for
the eventcount to increment. You pass E02_$WAIT(_SVO) a "trigger" value; this is the value
at which you want to be notified. E02 _ $W AIT suspends your process until the eventcount
reaches or exceeds your trigger value. When this condition is satisfied, E02 _ $W AIT returns and
allows your program to process the event.

If you need to wait for only one type of mailbox event, do not use an eventcount. Instead, use a
nonconditional :rv.mX call. By definition, this type of call waits for an event and then responds to
the event. For example, a call such as :rv.mX_ $GET waits for a message and then gets it; a call
such as :rv.mX_ $PUT waits until there is room in the channel, and then puts the message in.

However, if you want to wait for two or more types of events, use eventcounts. In this way, you
can wait for any of the events to happen, respond to the type of event that occurs, and then go
back to waiting for more events to happen. Your process is awakened whenever there is an event
to respond to.

Follow these steps when you use eventcounts:

• Use the appropriate GET _EO calls to get pointers to each event that you want to
wait for.

• Define the trigger values using the current value of each of your eventcounts. Use the
call E02 $READ to determine these values.

• Establish a loop to· wait for events and process them. Use EC2 $W AIT or
EC2 $W AIT SVC to wait for events.

• Establish inner loops to process each of the events. Within each inner loop, define a
new trigger value for your return to the EC2_$WAIT loop.

• Use conditional calls to process the event -- these calls don't wait for an event to
happen before completing. To see if the call performed the requested action, check
the return status.

• Keep using the conditional call until the return status indicates that there are no more
events to process. Then return to the EC2 _ $W AIT(_ SVC) loop.

The following sections describe how to use the :rv.mX_ $GET REO EC and
:rv.mX_ $PUT _REC _EC eventcounts.

5.7.1. Waiting to Get a Message

Figure 5-11 shows a mailbox client that sets up two eventcounts:

• A stream get eventcount (STREAM_ $GETREC _EC _KEY). This event count
indicates when there may be input to get from a stream.

• A mailbox get eventcount (:rv.mX_$GETREC _EC _KEY). This eventcount indicates
when there may be input to get from a mailbox.

U8ing Mailboxe8 5-28

c

c

c

c

o

o

o

0

o

- ---.-----.. - ---------------.---- ------.-----------

After establishing eventcounts, the program initializes the trigger values for responding to events.
Then, the program uses E02 _ $W AIT within a loop to wait for each eventcount to reach its
trigger.

Note that before entering the E02 _ $W AIT loop for the first time, the program sets the trigger
values so that each eventcount is immediately satisfied. This insures that you will process any
events that occurred before you entered the E02 _ $W AIT loop.

After checking for each type of event, the program then waits for new events to occur. When a
stream event occurs, the program gets input from the keyboard and puts it into the mailbox.
When a mailbox event occurs, the program gets messages from the mailbox and displays them on
the screen.

When getting stream and mailbox data, the program uses conditional get calls. Therefore, the
program can keep getting stream input or mailbox messages until there is nothing more to get.
The program then returns to the EC2 _ $W AIT loop to wait for another event.

Every time the program gets stream or mailbox input, the program redefines the trigger value for
the EC2 _ $W AIT call. Therefore, when the program returns to the E02 $W AIT loop, the
trigger value is correctly defined.

PROGRAM mbx_get_ec (input. output);

{ This program uses a mailbox eventcount to determine when to get messages
from a mailbox. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

LABEL
done;

CONST
kbd ec
mbx ec
mbx name

= 1;

= 2;
= 'test mailbox';

{ index for keyboard event
{ index for mbx event
{ mailbox name

mbx name len = sizeof(mbx name) ; { length of mailbox name
msg_buf_len = mbx $msg max; { length of message buffer - -

TYPE
= msg_t

ARRAY
msg_ptr_t

..... msg_t;

1 .. mbx_$msg_max] OF char; { client message}
=

{ pointer to a client message }

}
}
}

}
}

Figure 5-11. A Client That Uses MBX $GETREC EC KEY

5-29 Using Mailboxes

{

VAR
empty boolean; { true if mailbox is empty
eC2_ptr ARRAY [1. .2 OF eC2_$ptr_t;

{ array of event count pointers
ec2 val ARRAY 1 .. 2 OF integer32;

{ array of trigger values
which integer; { integer that indicates an event type
data buf msg_t; { buffer where stream data can be read
data_retptr msg_ptr_t; { buffer where stream data is read
line len integer32; { size of stream data line
seek_key stream_$sk_t;
mbx handle univ_ptr; { mailbox handle
status status_$t; { status code
msg_buf msg_t; { buffer that the client can use to

get data
msg_retptr msg_ptr_t; { buffer where MBX places a retrieved

message
msg_retlen integer32; { length of a retrieved message

BEGIN

Get an eventcount that changes when there's input from the keyboard. }

stream_$get_ec (stream_$stdin.
stream $getrec ec key.
eC2_ptr[kbd_ec]. -
status);

IF (status.all <> status_$ok) THEN
RETURN;

{ stream ID }
{ type of event count }
{ where pointer is returned }

{ Open a channel to the mailbox. Then get an eventcount that changes when
there are messages in the mailbox. }

mbx_$open (mbx_name.
mbx_namelen.
NIL.
O.
mbx handle.
status);

IF (status.all <> status_$ok) THEN
RETURN;

mbx_$get_ec(mbx_handle.
mbx_$getrec_ec_key.
ec2_ptr[mbx_ec].
status);

IF (status.all <> status_$ok) THEN
RETURN;

{ name }
{ length of name }
{ no data to send }
{ length of data }
{ handle }

{ mailbox }
{ type of eventcount }
{ where pointer is returned }

{ Initialize the trigger values using the current eventcount values.}

ec2 val[kbd ec]
eC2=val[mbx=ec]

ec2_$read(ec2_ptr[kbd_ec]~);
- ec2_$read(ec2_ptr[mbx_ec]~);

}

}

}
}
}
}
}

}
}

}

}
}

Figure 5-11. A Client That Uses MBX_$GETREC_EC_KEY (continued)

Using Mailboxes 5-30

C~

C~

c

c

o

o

o

o

{ prompt for input }

writeln('Enter a message; end with CTRL/Z: ');

{ Now go into an infinite loop to wait for events. When there is keyboard
input. go to the kbd ec loop. When there is a mailbox message. go to
the mbx ec loop. } -

REPEAT
which ec2_$wait(ec2_ptr. { list of pointers to eventcounts }

eC2_val.
2.

{ trigger values }
{ no. eventcounts in the list }

status);
IF status.all <> status_$ok THEN

RETURN;

CASE which OF

{ For keyboard input. create a loop to read the current eventcount and
increase it by one -- this is the new trigger value. Then get
keyboard input. When there is no more input. exit from the loop.}

kbd ec:

REPEAT
ec2_val[kbd_ec] := ec2_$read(ec2_ptr[kbd_ec]~) + 1;
stream $get conditional(stream $stdin. { stream ID }

- - addr(~ata buf); {buffer for data }
sizeof(data buf).{ length of buffer }
data retptr.- { where data is read }
linelen. { length of data }
seek key. { seek key }

status);

IF (status.all <> status $ok)
AND (status.code <> stream_$end_of_file)

THEN
RETURN;

IF (status.subsys = stream $subs)
AND (status.code = stream_$end_of_file)

THEN
GOTO done;

IF line len > 0 THEN
BEGIN
mbx_$put_rec

IF status.all
RETURN;

END;

(

UNTIL linelen = 0;

mbx_handle.
data_retptr.
linelen.
status);

<> status_$ok THEN

{ handle }

{ data to send }

{ length of data }

Figure 5-11. A Client That Uses MBX_$GETREC_EC_KEY (continued)

5-31 Using Mailboxes

{ For a mailbox message, create a loop to read the current eventcount and
increase it by one -- this is the new trigger value. Then get the
mailbox message. When there are no more messages, exit from the loop. }

mbx ec:

REPEAT
empty := false;
ec2 val [mbx ec] := ec2 $read(ec2 ptr[mbx ec]-) + 1;
mbx=$get_conditional(mbx_handle,- { handle }

addr(msg_buf), {buffer for data }
msg_buf_len, { length of buffer }
msg_retptr, { actual data }
msg_retlen, { length of data }
status);

IF (status.all <> status $ok)
AND (status.all <> mbx $channel empty)
AND (status.all <> mbx=$partial=record)

THEN
RETURN;

IF (status.all = mbx_$channel_empty) THEN

empty := true
ELSE

writeln (msg_retptr-: msg_retlen);
UNTIL empty;

END; { case }
UNTIL false;

done:

mbx_$close(mbx_handle,
status);

IF (status.all <> status_$ok) THEN
RETURN;

END.

Figure 5-11. A Client That Uses MBX_$GETREC_EC_KEY (continued)

5.7.2. Waiting to Put a Message

In order to wait for room in a full channel, you must first have an :MBX_$PUT _REO _ OOND
call that fails and returns an :MBX_ $NO _ROOM_IN _ OHANNEL status code. When you
receive such a status, you can use E02_$WAIT to wait for the :MBX_$PUTREC_EO_KEY
eventcount to increase. When this count increases, there may be enough room in the channel to
accept the message that you tried to put there.

Figure 5-12 shows a client that sets up three eventcounts:

• A stream get eventcount (STREAM_ $GETREO _EO _KEY).

• A mailbox get eventcount (:MBX_ $GETREO _EO _KEY).

• A mailbox put eventcount (:MBX_ $PUTREC _EO _KEY).

Using Mailboxes 5-32

c

o

o

o

o

o

The client uses the call E02 _ $W AIT to wait for any of these events to occur. This program is
similar to Figure 5-11 in Section 5.7.1. However, the following program (Figure 5-12) uses
1v1BX_ $PUT _REO _ OOND instead of 1v1BX_ $PUT _REO to put the keyboard data into the
mailbox. If 1v1BX_ $PUT _REO _ OOND fails, then the program returns to the E02 _ $W AIT
loop. The program does not read new keyboard input until the 1v1BX_ $PUTREO _Ea._KEY
count is satisfied, and the program can put the data into the mailbox.

Note that when you initialize the trigger value for an 1v1BX_ $PUTREO _EO _lillY eventcount,
you should add one to the current value before you use EC2 _ $W AIT to wait for events. Thi~ is
in contrast to how you initialize the STREAM_ $GETREO _EO _KEY and the
1v1BX_$GETREO_EO_KEY counts. You should not force the 1v1BX_$PUTREO_EO_KEY
to be satisfied because this event occurs only after an 1v1BX_PUT _REO _ OOND has failed.

PROGRAM mbx_put_ec (input,output);

{ This mailbox client uses eventcounts to wait for input from the
keyboard or from a mailbox. The client also uses the putrec event count
to wait for a previously full channel to accept a message.}

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

LABEL
done;

CONST
kbd ec
get_ec
put_ec
mbx name
mbx namelen
msg_buf_len

TYPE

= 1·

= 2;
= 3·
= 'test_mailbox' ;
= sizeof(mbx name) ;

= mbx_$msg_max;

{
{
{
{
{
{

index for keyboard event }
index for mbx get event }
index for mbx put event }
mailbox name }
length of mailbox name }
length of message buffer }

msg_t
msg_ptr_t

= ARRAY [1 .. mbx_$msg_max] OF char; { client message}
= ~msg_t; { pointer to a client message }

VAR
channel full
empty
ec2_ptr

ec2 val

which
data buf -
data_retptr
line len
seek_key

boolean;
boolean;
ARRAY [1 .. 3 OF

ARRAY 1. .3 OF

integer;
msg_t;
msg_ptr_t;
integer32;
stream_$sk_t;

{ TRUE if channel is full }

{ TRUE if mailbox is empty }

ec2_$ptr_t;
{ array of eventcount pointers }

integer32;
{ array of trigger values }
{ integer that indicates an event type
{ buffer where stream data can be read
{ buffer where stream data is read
{ size of stream data line

Figure 5-12. A Client That Uses MBX_$PUTREC_EC_KEY

}
}
}
}

5-33 Using Mailboxes

{ VAR cont. }

mbx handle univ_ptr; { mailbox handle }
status sta.tus_$t; { status code }
msg_buf msg_t; { buffer that the client can use to get

data }
msg_retptr msg_ptr_t; { buffer where MBX places a retrieved

message }
msg_retlen integer32; { length of a retrieved message }

BEGIN

{ Get an event count that shows when there's input from the keyboard. }

IF (status.all <>
RETURN;

stream $stdin,
stream=$getrec_ec_key,
ec2 ptr[kbd ec],
sta.tus); -
status_$ok) THEN

{ stream to get eventcount for }
{ type of eventcount }
{where to put pointer }

{ Open a channel to the mailbox. Then get the getrec and putrec eventcounts. }

mbx_$open (mbx_name. { name }
mbx_namelen. { name length }
NIL, { no data to send }
0, { length of data }
mbx_handle, { handle }
status);

IF (status.all <> status_$ok) THEN
RETURN;

mbx_$get_ec(mbx_handle, { mailbox to get eventcount for}
mbx_$getrec_ec_key. { type of event count }
ec2_ptr[get_ec]. {where to put the pointer }
status);

IF (status.all <> status_$ok) THEN
RETURN;

mbx_$get_ec(mbx handle. { mailbox to get eventcount for}
mbx=$putrec_ec_key, { type of eventcount }
ec2_ptr[put_ec]. { where to put the pointer }
status);

IF (status. all <> status_$ok) THEN
RETURN;

{ Initialize the trigger values for kbd_ec and get_ec using the current
event count values. Initialize the trigger value for put_ec as one
greater than the current value. }

ec2 val[kbd ec]
eC2-val[get-ec]
eC2=val[put=ec]

- ec2 $read(ec2 ptr[kbd ec]-);
- ec2-$read(eC2=ptr[get=ec]-);
- eC2=$read(ec2_ptr[put_ec]-) + l'

{ Initialize variable. }
channel full := false;

Figure 5-12. A Client That Uses MBX_$PUTREC_EC_KEY (continued)

Using Mailboxes 5-34

c

c

c

o

o

o

o

o

{ Prompt for input. }

writeln('Enter a message; end with CTRL/Z: ');

{ Now go into an infinite loop to wait for events. When there is keyboard
input. go to the kbd_ec loop. When there is a mailbox message to get.
go to the get_ec loop. When a previously full channel has room to accept
a mailbox message. go to the put_ec loop. }

REPEAT
which .- ec2_$wait(ec2_ptr.

eC2_val.
3.

{ list of eventcount pointers }
{ list of eventcount values }
{ number of pointers in list }

status);
IF status.all <> status_$ok THEN

RETURN;

CASE which OF

{ For keyboard input. create a loop to read the current eventcount
and increase it by one -- this is the new satisfaction value
for the ec2_$wait call in the outer loop. Then get keyboard input.
When there is no more input. exit from the loop. }

kbd ec:

REPEAT
eC2_val[kbd_ec] := ec2_$read(eC2_ptr[kbd_ec]~) + 1;

{ If the channel is full. return to EC2_$WAIT. When there is room
in the channel. the put_ec section will change channel_full
to FALSE. }

IF channel full = true THEN
EXIT;

stream_$get_conditional(stream_$stdin.
addr(data buf).
sizeof(data_buf).
data_retptr.
linelen.
seek_key.
status);

IF (status.all <> status $ok)
AND (status.code <> stream_$end_of_file)

THEN
RETURN;

IF (status.subsys = stream $subs)
AND (status.code = stream_$end_of_file)

THEN
GOTO done;

{ stream ID }
{ buffer for data }
{ size of buffer }
{ where data is copied}
{ length of data }

Figure 5-12. A Client That Uses MBX_$PUTREC_EC_KEY (continued)

5-35 Using Mailboxes

IF linelen > 0 THEN

{ If mbx $put rec cond fails because the channel is full. set
channel_full to-TRUE. }

BEGIN
mbx_$put_rec_cond (mbx_handle.

data_retptr.
linelen.
status);

IF (status.all <> status $ok)

{ handle }
{ data to send }
{ length of data }

AND (status.all <> mbx_$no_room in channel)
THEN

RETURN;
IF status. all = mbx_$no_room_in_channel THEN

channel full - true;
END;

UNTIL linelen = 0;

{ For a mailbox message. create a loop to read the current eventcount and
increase it by one -- this is the new satisfaction value. Then get the
mailbox message. When there are no more messages. exit from the loop. }

get ec:

REPEAT
empty := false;
ec2_val[get_ec] := ec2_$read(ec2_ptr[get_ec]-) + 1;
mbx_$get_conditional(mbx handle. { handle }

addr(msg buf). { buffer for data }
msg_buf_len. { length of buffer }
msg_retptr. { where data is copied}
msg retlen. { length of data }
status);

IF (status.all <> status $ok) AND
(status.all <> mbx_$channel_empty) AND
(status.all <> mbx_$partial_record) THEN
RETURN;

IF (status.all = mbx_$channel_empty) THEN
empty := true;

IF NOT empty THEN
writeln (msg_retptr-: msg_retlen);

UNTIL empty;

Figure 5-12. A Client That Uses MBX_$PUTREC_EC_KEY (continued)

Using Mailboxes 5-36

c

c

c

('
"-.-

---... --.-

o

o

o

o

o

{ When the putrec eventcount is satisfied. try to put the message
in the mailbox. If there still is no room. go back to EC2 $WAIT.
If the MBX_$PUT_REC_COND succeeded. set the keyboard eventcount
so that you will check to see if there are any more keyboard messages. }

put ec:

BEGIN
ec2_val[put_ec] .- ec2_$read(ec2_ptr[put_ec]-)
mbx_$put_rec_cond(mbx_handle. { handle

data_retptr. {data to send

+ 1;
}
}
} linelen. { length of data

status);
IF status.all <> status $ok THEN

IF status.all = mbx_$no_room_in_channel THEN
EXIT

ELSE RETURN;
channel full := false;

{ Set the keyboard satisfaction value so that the ec2_$wait call will
indicate a keyboard event when you return to the ec2_$wait loop. }

eC2_val[kbd_ec]
END;

END; { case }

UNTIL false;

done:

mbx_$close(mbx_handle. { mailbox to close channel in }
status);

IF (status.all <> status_$ok) THEN
RETURN;

END.

Figure 5-12. A Client That U~es MBX_$PUTREC_EC_KEY (continued)

5.S. Using The Mailbox Helper

Whenever a mailbox server and client are on different nodes, the programs can not directly access
the mailbox at the same time. Therefore, you must run the program
/SYS/MBX/MBX_HELPER (the mailbox helper) to help remote servers and clients send
messages. The MBX HELPER maintains a system mailbox (SYSMBX) in the 'node data
directory.

When a server sends a message to a remote client, the message first goes to the client node's
MBX_HELPER. The MBX_HELPER then puts the message into the SYSMBX on the client's
node. When the client uses the mailbox handle to get the message, the system gets the message
from the SYSMBX, rather than from the server's mailbox.

When a client sends a message to a remote server, the message follows a slightly different path.
First, the message goes to the MBX_HELPER on the server's node. The MBX HELPER then

5-37 Using Ma£lboxes

puts the message into the server's mailbox. When the server gets the message, it uses its own
mailbox as it normally would.

Figure 5-13 shows how the MBX_HELPER assists a client and a server. In this figure, the
server is on Node B, the client is on Node C, and the server's mailbox is on a disk on Node
A. The server's and client's nodes are each running the MBX_HELPER. On Node B, the
MBX_HELPER does not need to use the SYS:MBX to assist the server. However, on Node C,
the MBX_HELPER uses its SYSMBX to assist the client.

Node C

Node A Node B Node C

~+ ++ Server . MBX_HELPER ..
+ + SYSMBX SYSMBX

Server's • •• •• +
mailbox MBX_HELPER Client

Figure 5-13. How MBX_HELPER Assists Interprocess Communication

Note that the MBX_HELPER's role is transparent to server and client programs. That is, these
programs always use the same mailbox handle and calls to send and receive messages, regardless
of how the messages are routed. The only times you need to consider the MBX_HELPER are:

• When a server sends long messages to a client (see Section 5.8.2) .

• When you use unusually restrictive access control lists (ACLs) (see Section 5.8.3).

5.8.1. Starting the MBX_HELPER

If you plan to execute a mailbox server and its clients on different nodes, use the Shell command
PST to see whether the MBX_HELPER is running on each of these nodes. PST shows the
processes that are currently running on a node. Usually, if the MBX_HELPER is running, it
will be displayed under the name MBX_HELPER. However, the MBX_HELPER is listed under
a different name if the person who started the :MBX_HELPER specified another name.

If you need to start the MBX_HELPER, use one of the following DM commands:

CPO

CPS

Creates a process without pads or windows. The process terminates when you
log out.

Creates a process without pads or windows. The process runs whether or not
anyone is logged in.

The following command creates a process that runs the MBX_HELPER. Because no name is
specified, the process will be named MBX_HELPER.

Command: CPS /SYS/:MBX/MBX_HELPER

U8ing Mailboxe8 5-38

C'

c

(
"--

--_.- -----_ ..

o

o

o

o

o

You may want to keep the :MBX_HELPER running as a background process on your node
because many DOMAIN products rely on it. To ensure that the :MBX_HELPER is always
running on your node, you can include the CPO or CPS command in your node's start-up
command file. The mailbox helper only needs to run once on any node, no matter how many
clients or servers there are on the node.

When you start :MBX_HELPER, you can use the following options:

-MAXCHAN n Set the number you specify with n as the maximum number of remote channels

to and from the node using :MBX. By default, n is 128 (channels.)

-DATASIZE b Sets the number you specify with b as the buffer size for the SYS:MBX channel.
(This buffer size is also called a queue data size.) The buffer size is the
maximum number of bytes that the SYS:MBX can buffer at one time for a
remote server. By default, b is 1158.

5.8.2. Adjusting the Buffer Size for Long Messages

You may need to increase the SYS:MBX default buffer size if a local client is expecting long
messages from a remote server. For example, if the SYS:MBX has a buffer of 1158 bytes (the
default), and a client is expecting a message of 9000 bytes, you must change the buffer size.

To change the buffer size for the system mailbox, use the Shell command SIGP to stop the
:MBX_HELPER. Then restart the:MBX HELPER with a new buffer size. For example:

Command: CPS jSYSj:MBXj:MBX_HELPER -DATASIZE 9000

NOTE: You should increase the buffer size only if you have a special reason for allowing
clients to receive large messages. If you arbitrarily increase the buffer size, you may
force the :MBX_HELPER to use up too much of its virtual address space for
maintaining the SYS:MBX. In such a case, you will limit the number of servers that
the :MBX _ HELPER can assist.

5.8.3. Using MBX_HELPER in a Secure Network

In a secure network, a mailbox receives its access control list (ACL) from the directory in which it
is created. Be sure that this ACL allows the :MBX_HELPER (on the server's node) to access the
mailbox. Otherwise, clients on other nodes (that use the server's :MBX_HELPER) will not be
able to use the mailbox. If a server's :MBX_HELPER does not have access to the server's
mailbox, a client will receive the error :MBX_ $HELPER_NO _RIGHTS when it tries to open a
channel to a remote server's mailbox.

An:MBX HELPER can access a mailbox only if the mailbox's ACL allows read and write access
to the MBX_HELPER. To have access, the :MBX_HELPER's subject identifier (SID) must be
included in themailbox.sACL.An :MBX_HELPER usually has a SID of:

user .server .none.node-id

The node-id represents the node where the :MBX_HELPER is running. However, if you used the
Shell command CPO to start the :MBX_HELPER,the process will have your SID. Use the
following Shell command to find out the SID of your :MBX_HELPER:

5-39 Using Mailboxes

$ LUSR -ME -ALLP

To be sure that a server node's MBX_HELPER can access the server's mailbox, use the EDACL
Shell command to add the MBX_HELPER's SID to the mailbox's access control list. Give the
MBX HELPER write and read ac·cess.

The following example shows how to add an entry to a mailbox's access control list. The example
gives write and read access to all MBX_HELPERs with SIDs beginning with user.server.none.

$ EDACL -A USER.SERVER.NONE.% WR TEST MAILBOX
$ ACL -L TEST_MAILBOX # verify that the SID is there
Acl for test mailbox:

oconnell.%~groupl.%
user.server.none.%
%.%.groupl.%
%.%.%.%

pgndwrx
----wr-
pgn-wrx
-----rx

Note that you cannot change a mailbox's ACL while the mailbox is in use.

You must also be sure that a client has read and write access to its local SYSMBX, as -the client
uses this mailbox to get messages that are routed through the local MBX_HELPER. If a client
can't access its SYSMBX, the client will get the error MBX_ $ CLIENT _NO _RIGHTS when it
tries to open a channel to a remote server's mailbox.

Using Mailboxes 5-40

(
'_.

o

o

o

o

o

Chapter 6
Sending Datagrams

This chapter describes how to send interprocess communication (IPC) datagrams using IPC
system calls. The chapter includes:

• An overview of using datagrams for interprocess communication.

• A summary of the IPC system calls and data types.

• An explanation of the IPC datagram format.

• Examples of two programs that use IPC datagrams to communicate.

6.1. Overview

An IPC datagram is a message that one program sends to another through a communications
buffer called a socket. To receive datagrams, a program must open a socket, receive a handle for
the socket, and store the handle in a file. Another program can then look in the file, obtain the
socket handle, and send a datagram. Programs that use datagrams can be running anywhere in
the DOMAIN system network; the programs do not have to be on the same node.

Figure 6-1 shows two programs that communicate using sockets. Each program knows the
other's socket handle. (These handles are stored in files, which are no~, represented in the
diagram.) Program 1 sends datagrams to Program 2's socket; Program 2 sends datagrams to
Program 1's socket. Note that a program always receives datagrams through a socket on its local
node. However, the socket handle can be stored in a file anywhere in the network.

Node A

Program

01 socket

4--

To Program 2 from Program 1
~

To Program 1 from Program 2

Node B

Program
2

Figure 6-1. Using Sockets to Receive Datagrams

A datagram connection is a fast, but unreliable, connection between two programs. That is,
when you send a datagram, the system makes its best effort to deliver it. However, the programs
that communicate using datagrams are responsible for verifying that each datagram is
successfully received. Usually, programs verify the datagram transmission by using
acknowledgments. That is, when one program sends a datagram to another, the sender waits for
an acknowledgment. If the acknowledgment does not arrive within a specified amount of time,
the sender retransmits the original datagram.

6-1 Sending Datagrams

In addition, programs that use datagrams must be able to recognize duplicates in order to remain
synchronized. For example, it is possible for a program to receive a datagram, and send an
acknowledgment to the sender. However, the acknowledgment may get lost. In such a case, the
sender would retransmit the original datagram. The receiver should be able to identify the
second datagram as a duplicate.

In conclusion, IPC datagrams provide two important features:

• They provide a fast way to transfer information between programs on the same, or on
different, nodes .

• They allow programs to use the DOMAIN file system to catalog socket handles. A
program that wants to communicate with another can easily obtain the socket handle
by looking in the correct file.

6.2. IPC System Calls, Insert Files, and Data Types

To send and receive datagrams, use the IPC system calls. These calls invoke the IPC manager,
the system component that is responsible for datagrams. Table 6-1 summarizes the IPC calls.

Table 6-1. Summary of IPC Calls

Operation Calls

Opening sockets IPC - $ CREATE
IPC - $OPEN

Sending and receiving datagrams IPC - $ SEND
IPC $RCV -
IPC $SAR -

Waiting for datagrams IPC - $WAIT
IPC $GET EO - -

Closing sockets IPC - $CLOSE
IPC $DELETE -

Determining a socket's handle IPO - $RESOLVE

In order to use the IPC calls, you must include the appropriate insert files in your program.
These insert files are:

Sending Datagrams

jSYS JINS jIPC.lNS. C
jSYS JINS jIPC.INS.FTN
jSYSjINSjIPC.lNS.P AS

6-2

(for C)
(for FORTRAN)
(for Pascal)

c

c

(
'_ ...

c'

(
~.

o

o

o

o

o

Some of the IPC calls allow you to specify parameters using special DOMAIN data types. These
include:

IPC $DATA T The data portion of an IPC datagram.

IPC $HDR INFO T The header portion of an IPC datagram.

IPC $SOCKET HANDLE T A handle for an IPC socket.

For complete information on IPC system calls and data types, see the DOMAIN System Call
Reference.

6.3. IPC Datagram Format

An IPC datagram has two parts:

o A header that can contain up to 128 bytes.

o A data section that can contain up to 1024 bytes.

If you are sending large amounts of data, you can place control information in the header and put
the data in the data section. The following example shows variables for a program that sends a
page (1024 bytes) of data, with control information in the datagram's header. The example uses
the predefined types IPC _ $HDR_INFO _ T and IPC _ $DATA_ T to define the length of each
buffer. IPC _ $HDR_INFO _ T defines a 128-byte header buffer; IPC,_ $DATA T defines a
1024-byte data buffer.

VAR
header buf
data buf

IPC_$HDR_INFO_T; { header buffer for control information}
IPC_$DATA_T; { data buffer}

Note that a program does not have to use both the header and data sections of a datagram. For
example, if you are sending less than 128 bytes of information, you can put all the information in
the header. The following example shows a Pascal type definition for a datagram that contains
128 bytes. The first two bytes contain an integer that is used as control information; the
following 126 bytes contain data. Note that even though the example does not need a data
section, you should still declare a buffer for it. (The IPC send and receive calls require that you
specify buffers for both the header and data portions of a datagram.) To declare a data buffer as
a placeholder, use a small, 2-byte buffer. For example:

TYPE
datagram_t =

RECORD
msg_number
msg_text
END;

VAR
header buf
data buf

{ user-defined format for datagram }
{ that fits into a 128-byte header}

integer; { 2 bytes for control info}
ARRAY [1' .. 126] OF char; { 126 bytes for data }

datagram_t;
integer;

{ header contains entire datagram }
{ placeholder for data section }

If you are sending datagrams that contain less than 128 bytes, it is more efficient to put all the
information into the header. It takes less time to send a datagram that contains only a header.

6-3 Sending Datagrams

6.4. Using The IPC Calls

When you use datagrams, your application usually involves two programs:

• An IPC server, whose primary purpose is to receive information .

• An IPC client, whose primary purpose is to send information.

An IPC server waits for datagrams from a client. When a datagram arrives, the server processes
the datagram and sends a reply if necessary. In contrast, an IPC client initiates communication
by sending information to the server. The primary flow of information from a client to a server
can be either one- or two-way. For example, a client can send data for the server to process.
Alternatively, the clien.t can send a request for information that the server must respond to.

When a client and server use IPC datagrams to communicate, the programs must provide
mechanisms for message verification. Because IPC is an unreliable datagram service, a client does
not know whether any of its datagrams are received. Therefore, servers should acknowledge the
receipt of datagrams.

In addition, servers and clients must ensure that they remain synchronized. For example, a
server needs to recognize duplicate messages from a client. Also, a client needs to recognize
duplicate acknowledgments from a server.

IPC servers and clients use the same calls, but in different sequences. Sections 6.4.1 through 6.4.5
give an overview of the tasks you perform with IPC calls. Section 6.5 describes how to use the
calls in a server; Section 6.6 describes how to use the calls in a client. In addition, Sections 6.5
and 6.6 show some techniques for datagram verification and interprocess synchronization.

6.4.1. Creating a Handle File and Opening a Socket

In order to receive datagrams, a program must open one of the node's sockets and obtain the
socket's handle. Before opening a socket, however, you must create a file in which to store the
handle. To create such a file, use IPC _ $CREATE. For example:

ipc_$create ('prog1_handle_file',
17,
status);

{ file for handle }
{ length of filename }

After you create the handle file, you can open a socket with IPC _ $OPEN. This call opens an
available socket and stores the handle in the handle file. In addition, IPC _ $OPEN returns the
handle in one of the output parameters.

When you use IPC _ $OPEN, you must specify the name and length of the handle file. You must
also include a socket depth to specify how many datagrams the socket can hold at one time.
Allowable values are one through four.

You must also declare a variable that IPC $OPEN uses to return the handle for the socket it
opens. Declare this variable to be of type IPC_$SOCKET_HANDLE_T. In FORTRAN,
specify this as an array of 20 characters. C users should note that the
IPC _ $SOCKET _HANDLE _ T string is not null-terminated. Therefore, in an operation such as
comparing two handles, use strncmp not strcmp. Figure 6-2 illustrates IPC _ $OPEN.

Sending Datagrams 6-4 .

o

o

o

o

o

VAR
status status_$t; { status code }
local socket handle - - ipc_$socket_handle_t; { handle for your socket}

BEGIN

{ Create file to contain a socket handle. }

{ Open a socket so you can receive datagrams. }

ipc_$open('progl_handle_file', { file for handle }
17, { length of filename }
4, { socket depth }

local socket handle, { handle for your socket }
status); -

Figure 6-2. Opening a Socket

6.4.2. Receiving Datagrams

Once you have opened a socket, you can receive datagrams. To get a datagram that has arrived
in your socket, use IPC _ $RCV. This call copies the header portion of the datagram to one
buffer, and the data portion to another. Note that IPC _ $RCV also obtains the handle you can
use to reply to the datagram.

When you use IPC _ $RCV, you must specify the lengths of the buffers where you want to receive
the datagram header and data. IPC _ $RCV gets the amount of information that will fit in these
buffers. If the actual header or data is longer, you will lose part of the information.

IPC _ $RCV has the following format:

IPC_$RCV (handle. hdr-buflen. data-buflen, from-handle. hdr-buf, hdr-length.
data-buf, data-length, status)

These are the input parameters:

• handle -- The handle from which to get the datagram. You should specify the handle
for your socket. (In C, the handle is not null-terminated.)

o hdr-buflen -- The length of the buffer where IPC _ $RCV should copy the header
portion of the datagram.

o data-buflen -- The length of the buffer where you are copying the data portion of
the datagram.

These are the output parameters:

• from-handle -- The handle to which you can send a reply. This IS the handle
identifies a socket belonging to the program that sent the datagram.

6-5 Sending Datagrams

.hdr-buf -- The buffer where IPC _ $RCV copies the data.

• hdr-length -- The length of the header that is copied.

• data-buf -- The buffer where IPC _ $RCV copies the data.

• data-length -- The length of the data that is copied.

• status -- The return status.

Note that you can define datagrams that do not use the data portion of a datagram, and instead
store user data in the datagram header. (See Section 6.3.) In such a case, you can specify a small
data buffer with IPC _ $RCV, even though your program does not use this buffer.

NOTE: There is an alternate method of specifying the data buffer when no data is included in
this buffer. Instead of declaring a small buffer to act as a placeholder, you can specify
the data-buf as o. However, if you do this, be sure that you have also specifed the
data-buflen as o.

Figure 6-3 uses IPC $RCV to get a datagram. The datagram contains two fields of
information: a message number and some text. The datagram is only 128 bytes long, and is
stored entirely in the header. Therefore, the IPC _ $RCV call specifies that the length of the
header buffer is 128 and the length of the data buffer is o.

TYPE { user-defined format for datagram
{ that fits into 128-byte header }

integer; { 2 bytes for sequence no. }

datagram_t =
RECORD
msg_number
msg_text
END;

ARRAY [1 .. 126] OF char; { 126 bytes for data }

VAR
status status $t; { status code
local socket handle ipC_$socket_handle_t;{ handle for your socket - -
rcv socket handle ipc_$socket_handle_t;{ handle for received datagram
expected_msg_number integer; { datagram you expect
receive buf datagram_t; { buffer to receive datagram
receive len integer; { length of received datagram
data buf integer; { buffer for data portion
data len integer; { length of data portion

BEGIN

{ Create a file for the handle and open a socket. }

Figure 6-3. Receiving a Datagram from a Socket

Sending Datagrams 6-6

}

}
}
}
}
}
}
}
}

c

c

C'

~--~----------------------------.--.----- ._---

~"

U

o

o

o

o

{ Get a datagram. }

ipc_$rcv(local socket handle, { your socket handle }
sizeof(ipc_$hdr_info_t), { maximum size of header }
0, { maximum size of data }
rcv_socket_handle, { where the datagram came from }
receive_buf, { buffer for header }
receive_len, { length of header }
data_buf, { buffer for data }
data_len, { length of data }
status);

Figure 6-3. Receiving a Datagram from a Socket (continued)

6.4.3. Waiting for Datagrams

In general, you use IPC _ $RCV when you know that there is a datagram to get. If you call
IPC _ $RCV when your socket is empty, the call returns immediately with the status
IPC _ $SOCKET _EMPTY. IPC provides two ways to wait for datagrams:

• Use the call IPC $W AlT .

• Use the call IPC $GET EC to get a pointer to an eventcount associated with a
socket. Then use either EC2 _ $W AlT or EC2 _ $W AlT _ SVC to wait for datagrams.

In general, use IPC _ $W AlT if you are waiting for datagrams in only one socket. With
IPC _ $W AlT, specify the handle for the socket you are waiting on, and the amount of time to
wait. If a datagram is already in the socket, IPC _ $W AlT returns immediately with a success
status. Otherwise, IPC _ $W AlT waits for the specified amount of time. If the call times out
before a datagram arrives, IPC _ $W AlT returns the status IPC _ $ T11v.IE OUT .

With IPC _ $W AlT, specify the waiting time in quarter seconds. Thus, if you want the call to
wait for one minute, you can specify the waiting time as 60 III 4. The following example
illustrates IPC $W AlT.

VAR
status
local socket handle

status_$t;
ipc_$socket_handle_t;

{ status code }
{ handle for your socket }

BEGIN

ipc_$wait(local_socket_handle,
300 * ~,
status);

{ your socket handle }
{ wait 5 minutes }

{ If the wait is successful, call IPC_$RCV to get the datagram. }

To wait for datagrams in more than one socket, use IPC _ $GET _EC to get a pointer to each
socket's eventcount. Then use EC2_$READ to read the values for each eventcount, and use
EC2 _ $W AlT (or EC2 _ $W AlT _ SVC) to wait for any of the eventcounts to increment.

6-7 Sending Datagrams

The socket eventcount works in the same way as the other system-defined eventcounts:

• Use IPC _ $GET _EO to get a pointer to each socket's eventcount.

• Use EC2 $READ to read the current value of each eventcount. Place these values
into an array of eventcount trigger values.

• Design a loop to wait for any of the eventcounts to reach their trigger values. When
an eventcount is satisfied, try to get a datagram from the corresponding socket. Use
E02 _ $W AIT(_ SVC) for eventcounts to reach their triggers.

• The first time through the loop, define the trigger values so that each eventcount wait
is immediately satisfied. This prevents you from waiting if a datagram is currently
available in a socket.

Figure 6-4 shows how to use IPC _ $GET _EC to get pointers to eventcounts for two sockets.
See Programming With General System Galls for more information on using system-defined
eventcounts.

{ Program that shows how to wait for eventcounts from to sockets. }

PROGRAM wait_socket;

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ipc.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

CONST
{ define indexes for arrays }

sock1 ec = 1; {The first element is for socket 1. }
sock2 ec = 2; {The second element is for socket 2. }

VAR
eC2_ptr ARRAY 1 .. 2 OF ec2_$ptr_t;{ array of pointers to

two eventcounts
ec2 val ARRAY 1 .. 2 OF integer32; { array of eventcount

trigger values

}

}

which integer; { number returned by EC2_$WAIT }
socket1 handle ipc_$socket_handle_t; { handle for socket 1 }

socket2 handle ipc_$socket_handle_t; { handle for socket 2 }

status status_$t; { status code }

BEGIN

{ Create socket handle files and open each socket. }

Figure 6-4. Waiting for Datagrams from Two Sockets

Sending Datagrams 6-8

r ,,-,-

('

o

o

o

o

o

--

{ Get pointer to eventcount for socket 1. Store the eventcount pointer
in first element of pointer array. }

ipc_$get_ec(socketl_handle. { socket to get eventcount ptr for }
eC2_ptr[sockl_ec]. { eventcount pointer returned by call}
status);

IF status.all <> status_$ok THEN
RETURN;

{ Get pointer to eventcount for socket 2. Store the event count pointer
in second element of pointer array. }

ipc_$get_ec(socket2 handle. { socket to get eventcount ptr for }
ec2 ptr1sock2 ec]. { event count pointer returned by call}
status); -

IF status.all <> status_$ok THEN
RETURN;

{ Read the value of socket l's eventcount and store it in the first
element of the trigger value array. Read the value of socket 2's
eventcount and store it in the second element of the trigger value array. }

ec2 val[sockl ec]
eC2=val[sock2=ec]

ec2 $read(ec2 ptr[sockl ec]~);
- eC2=$read(eC2=ptr[sock2=ec]~);

{ Go into an infinite loop to wait for input from the two sources.
The first time through. both eventcounts are satisfied. }

REPEAT
which ec2_$wait(ec2_ptr.

eC2_val.
2.

{ list of pointers }
{ list of triggers }
{ no. of eventcounts }

status);
IF status.all <> status_$ok THEN

RETURN;

CASE which OF
sockl ec:

{ If WHICH is 1. get datagrams from socket 1
and then return to EC2_$WAIT. }

sock2 ec:

{ If WHICH is 2. get datagrams from socket 2
and then return to EC2_$WAIT. }

END; {case}

UNTIL false;
END. {program}

Figure 6-4. Waiting for Datagrams from Two Sockets (continued)

6-9 Sending Datagram8

6.4~4. Sending Datagrams

To send a datagram, you must know the socket handle for the program you want to
communicate with. If you are responding to a datagram you just received, use the socket handle
returned by IPO _ $RCV. However, if you are initiating the communication, you can obtain the
handle if you know the pathname for the socket handle file. Use IPO $RESOL VE to obtain a
handle from a handle file. For example:

VAR
status
prog2_socket_handle

status $t; { status code }
ipC_$socket_handle_t; { handle for your socket}

BEGIN

ipc_$resolve(·prog2_socket_file·. { file with prog2's handle}
17. { length of filename }
prog2_socket_handle. { prog2's handle }
status);

IPO $RESOL VE returns a handle only if the socket is currently open. If you call
IPO _ $RESOL VE and the file you specify does not contain a handle for an open socket,
IPO $RESOLVE returns the error IPO $SOOKET NOT OPEN.

To send a datagram, use IPO _ $SEND or IPO _ $SAR. IPO _ $SEND sends a" datagram, while
IPO _ $SAR sends a datagram, waits a specified amount of time for a response, and gets the
response if one arrives. This section describes IPO _ $SEND; for information on IPO _ $SAR, see
the DOMAIN System Gall Reference.

IPO _ $ SEND has the following format:

IPC_$SEND (to-handle. reply-handle. hdr-buf. hdr-length. data-buf.
data-length. status)

The following are input parameters:

• to-handle -- The handle for the socket where you are sending the datagram.

• reply-handle -- The handle for the socket where you want to get a reply.
program that gets your datagram uses this socket to send a reply.

• hdr-buf -- The buffer that contains the header for the datagram you are sending.

". hdr-Iength -- The length of the header.

The

• data-buf -- The buffer that contains the data portion of the datagram you are
sending.

• data-length -- The length of the data.

IPO $SEND returns a status code to indicate whether the call completed successfully. Note that
even if IPO _ $SEND completes successfully, there is no guarantee that the datagram has reached

Sending Datagrams 6-10

c'

c'

c

o

o

o

o

o

the target socket, or that the target program has received the datagram. For example,
IPC _ $SEND will complete successfully even if the target socket is closed. Therefore, programs
that use IPC calls must acknowledge the receipt of datagrams, and must synchronize their
activities. Sections 6.5 and 6.6 describe some techniques to provide this synchronization.

Figure 6-5 uses IPC _ $ SEND to send a datagram. The datagram contains two fields of
information: a message number and some text. The datagram is only 128 bytes long, and is
stored entirely in the header. Therefore, the IPC $SEND call uses a small buffer as a
placeholder, and specifies the data length as O.

CONST

socket file = 'prog1_handle_file'; { file for own socket handle}

TYPE
datagram_t =

RECORD

{ user-defined format for datagram }
{ that fits into 128-byte header }

msg_number : integer;
msg_text ARRAY [1 .. 126] OF char;
END;

VAR
status

{ 2 bytes for sequence no.
{ 126 bytes for data

}
}

local socket handle
prog2_socket_handle
send buf
send len
data buf

status_$t;
ipc_$socket_handle_t;
ipc $socket handle t;
datagram_t;- { buffer
integer; { length
integer; { buffer

{ handle for your socket }
{ handle for prog2's socket}

with datagram to send }
of datagram you are sending }
for data portion of datagram }

BEGIN

{ Create file for socket handle and open socket
Then get handle for socket you want to send to.}

ipc_$send(prog2_socket_handle.
local_socket_handle.
send_buf.
send_len.
data_buf.
O.
status);

{ where to send datagram }
{ your handle }
{ header portion }
{ length of header }
{ data portion }
{ length of the data }

Figure 6-5. Sending a Datagram

6.4.5. Closing Sockets and Deleting Handle Files

When a program is through with· a socket, the program should close it. To close a socket, use
IPC $CLOSE. This call removes the socket handle from the handle file and unlocks the handle
file. -You should close sockets when you no longer need them, as the number of sockets on your
node is limited. When you close a socket, you make it available for other programs that need to
use it.

6-11 Sending Datagrams

A program should always close any open sockets before exiting. However, if a program fails to do
so, the IPC manager will automatically close sockets and unlock handle files when a program
exits.

In addition to closing a socket, you can also delete the handle file. To delete a handle file, use
IPC _ $DELETE. A program does not have to delete its handle rile before exiting. For example,
if you execute a program frequently, you may save the handle file rather than creating and
deleting it each time you run the program.

Both IPC _ $CLOSE and IPC _ $DELETE accept the name and length of the pathname for the
handle file. In addition, both calls return a status code. Figure 6-6 illustrates IPC _ $CLOSE
and IPC $DELETE:

{ Declarations for program }

{ Use IPC for interprocess communication. }

{ Close socket and delete handle file when you are through. }

ipc_$close('prog1_handle_file'.
17.
status);

IF status.all <> status_$ok THEN

{ file containing handle }
{ length of filename }

error_$print_name (status. 'Error closing socket.'. 21);

ipc_$delete('prog1_handle_file'.
17.
status);

IF status.all <> status_$ok THEN

{ file containing handle }
{ length of filename }

error_$print_name (status. 'Error deleting handle file.'. 27);

Figure 6-6. Closing a Socket and Deleting a Handle File

6.5. Writing a Server

The main function of an IPC server is to service client requests. Therefore, an IPC server waits
for incoming datagrams, gets them, and processes them. However, because a datagram
conne·ction is unreliable, an IPC server needs to acknowledge the receipt of each datagram. In
addition, the IPC server needs to remain synchronized with the client. For example, if the client
retransmits a datagram (because the server's acknowledgment got lost), the server must recognize
that the second datagram is a duplicate.

Sending Datagrams 6-12

c

c

o

o

o

o

o

One way to provide synchronization is to have the client include a sequence number with every
datagram. In this way, a server can check to see that a datagram contains the expected sequence
number. If the client increments the sequence number for each new datagram, the server can
then know which datagram to expect. For example, after processing datagram number 5, the
server expects number 6. If the server receives the same sequence number twice, the server can
identify a duplicate.

The sequence number is also useful when the server sends acknowledgments to the client. For
example, the server can include the sequence number in an acknowledgment to identify which
datagram is being acknowledged.

The following algorithm describes one way a server can receive datagrams, acknowledge them,
and remain synchronized with the client:

1. Use IPC _ $W AIT to wait for datagrams. When a datagram arrives, use IPC _ $RCV
to get it.

2. Examine the datagram and determine whether you should process it. First, check the
length. If the length is not within the limits you are expecting, ignore the datagram
and wait for another.

3. If the length is acceptable, check the sequence number. If the sequence number is not
what you're expecting, ignore the datagram and wait for another.

4. If the datagram contains the correct sequence number, process the datagram and
increment your sequence count. Then use IPC _ $SEND to send an acknowledgment
to the client. Include the sequence number for the datagram you are acknowledging.

5. If you receive a datagram that contains a sequence number that is one less than what
you're expecting, don't process it. (You processed it when you got it the first time.)
However, send an acknowledgment because your original acknowledgment may have
gotten lost.

6. Keep waiting for and processing datagrams until the data transmission is complete.

Figure 6-7 shows a server that waits for and processes IPC datagrams, following the algorithm
described above. Note that the server expects datagrams that contain the 128-byte header, but
do not contain a data section. Within the header, the first two bytes contain the sequence
number. The following 126 bytes contain a message sent by the client.

First, the server creates a file for its socket handle and opens a socket. Then the server waits for
datagrams. When it gets a datagram, the server determines whether the datagram is valid. The
server first checks to see if the datagram's length is between 1 and 128. Next, the server checks
that the sequence number matches the one that the server is expecting. If the sequence number is
correct, the server displays the client's message on the screen and then sends an acknowledgment.

If the sequence number is one less than what the server is expecting, the datagram contains a
second copy of a previously received datagram. The server does not display the message a second
time. However, the server sends another acknowledgment to the client. The server continues
waiting for datagrams, displaying them, and sending acknowledgments until the message IIqll
arrives.

6-13 Sending Datagrams

'PROGRAM ipc_server;

{ This program accepts datagrams from a client and displays
the message portion of the datagram. The program also
illustrates techniques for acknowledging datagrams and
remaining synchronized with the client. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ipc.ins.pas';

CONST
socket file ='server_handle_file'; { file for socket handle }
wait sec = 300; { number of seconds to wait}

TYPE
datagram_t =

RECORD
msg_number
msg_text
END;

VAR
status

{ user-defined format for datagram }
{ that fits into 128-byte header }

integer; { 2 bytes for sequence no. }
ARRAY [1 .. 126] OF char; { 126 bytes for data }

status_$t; { status code }
local socket handle ipc_$socket_handle_t;{ handle for your socket } - -rcv socket handle ipc_$socket_handle_t;{ handle for received datagram} - -expected_msg_number integer; { datagram you expect }

datagram t; { buffer to receive datagram }
integer;- { length of received datagram }

receive buf
receive len
text len integer; { length of message text }
ack buf integer; { acknowledgment }
data buf integer; { buffer for data portion }
data len integer; { length of data portion }

PROCEDURE program_cleanup;
BEGIN

{ Cleanup procedure }

ipc_$close(socket file.
sizeof(socket file).
status); -

IF status.all <> status $ok THEN

{ file containing handle }
{ length of filename }

error_$print_name (status. 'Error closing socket.'. 21);

ipc_$delete(socket_file.
sizeof(socket file).
status); -

,IF status.all <> status $ok THEN
error_$print_name (status. 'Error

END;

{ file containing handle }
{ length of filename }

deleting handle file.'. 27);

Figure 6-7. An IPC Server

Sending Datagrams 6-14

c

c

c

o

o

0

o

o

.-----.-.---.-- -- .. __ .. _-------

PROCEDURE program_exit; { Program exit procedure }

BEGIN

program cleanup;
pgm $ex1t;

END;

BEGIN

{ Create file to contain a socket handle. }

ipc_$create (socket_file.
sizeof(socket file).
status); -

IF status.all <> status_$ok THEN
BEGIN

{ file for handle }
{ length of filename }

error $print name (status. 'Error creating handle file.'. 27);
pgm $exit; -

END;

{ Open a socket so you can receive datagrams. }

ipc_$open(socket_file, { file for ha.ndle
sizeof(socket_file).
4.
local socket handle.
status); -

IF status.all <> status_$ok THEN
BEGIN

{
{
{

length of filename
socket depth
handle for your socket

error_$print_name (status. 'Error opening socket.'. 21);
program_exit;

END;

writeln ('Socket opened successfully. ');

{ Initialize datagram sequence number. }

Figure 6-7. An IPC Server (continued)

6-15

}
}
}
}

Sending Datagrams

{ Enter loop to wait for and acknowledge incoming datagrams.
Acknowledge a datagram if it is valid and it contains a
sequence number that you are expecting. }

REPEAT { begin receive loop }
{ Wait up to 5 minutes for a datagram. }

REPEAT

ipc_$wait(local_socket_handle,
wait sec * 4,
status);

{ begin wait loop}

{ your socket handle }
{ wait 5 minutes }

{ If a datagram arrived, exit from the wait loop and get the datagram. }

IF status.all = status_$ok THEN
EXIT;

{ It the call timed out, wait again. }

IF status.all = ipc_$timeout THEN
NEXT;

{ If another error occurred, print error and repeat wait loop. }
error_$print(status);

UNTIL false;

{ Get the datagram. }

ipc_$rcv(local socket handle,
sizeof(ipc_$hdr_info_t),
0,
rcv_socket_handle,
receive_buf,
receive_len,
data_buf,
data len,
status);

{ end wait loop}

{ your socket handle
{ maximum size of header
{ maximum size of data
{ where the datagram came from
{ buffer for header
{ length of header
{ buffer for data
{ length of data

{ If there's an error, print an error message and return to the top
of the receive loop to wait for a new datagram. }

IF status.all <> status_$ok THEN
BEGIN
error_$print_name (status, 'Error getting the datagram.', 27);
NEXT;
END;

{ If you successfully got a datagram, make sure that it's valid before
you use its contents. First, check that the size is valid. If the
size is not valid, print an error message and return to the top
of the receive loop to wait for a new datagram. }

Figure 6-7. An IPC Server (continued)

Sending Datagrams 6-16

}
}
}
}
}
}
}
}

(

~.-

c:

c

~~-- -- ------------ ----

o

o

o

o

o

IF receive len> sizeof(datagram_t) OR ELSE
receive len < sizeof(datagram_t.msg_number)

THEN
BEGIN
error_$print_name (status. 'Bad datagram length.'. 20);
NEXT;
END;

{ Check the sequence number to make sure you remain synchronized
with the sender. If the sequence number is bad. return to the
top of the receive loop to wait for a new datagram. Discard any
datagram whose sequence number is larger than you expect. Also.
discard any datagram whose sequence number is two less than the
number you expect because this is an old datagram that you have
already processed. }

IF receive_buf.msg_number > expected_msg_number OR ELSE
receive_buf.msg_number < (expected_msg_number - 1)

THEN
BEGIN
error_$print_name (status. 'Received out of sequence.'. 26);
NEXT;
END;

{ If you got the datagram you expected. process it by
displaying it on the screen. Then increment the sequence number.
If you got a datagram whose sequence number is one less than
what you expected. assume that the sender never got your
acknowledgment. Don't process the datagram. but send another
acknowledgment. }

IF receive_buf.msg_number = expected_msg_number THEN
BEGIN

text len := receive len - sizeof(datagram_t.msg_number);
writeln ('Received-message: '. receive_buf.msg_text text len);
expected_msg_number .- expected_msg_number + 1;

END;

{ Send an acknowledgment for the datagram you just processed.
. or for a datagram whose acknowledgment was lost.
Send the sequence number for the datagram you are acknowledging. }

ack buf := receive~buf.msg_number;
ipc_$send(rcv_socket_handle.

local_socket_handle.
aCk_buf.
sizeof(ack_buf).
data_buf.
O.
status);

IF status.all <> status_$ok THEN

{ where to send acknowledgment }
{ your handle }
{ the number you're sending }
{ length of the number }
{ data portion }
{ length of data portion }

error_$print_name (status. 'Error sending acknowledgment.'. 29);

Figure 6-7. An IPC Server (continued)

6-17 Sending Datagrams

{ When you receive a 'q' then quit running. }

IF (text_len = 1) AND
(receive_buf.msg_text[l] = 'q') THEN
program_exit;

UNTIL false; { end receive loop}

END.

Figure 6-7. An IPC Server (continued)

6.6. Writing a Client

The main function of an IPO client is to send requests to a server. Therefore, the client must:

• Obtain the information to send.

• Send a datagram containing this information.

• Wait for the server's acknowledgment.

• If the acknowledgment does not arrive within a specified amount of time, resend the
datagram.

In addition, the client must perform special checks to remain synchronized with the server. For
example, if an acknowlegment is late and you resend a datagram, you might eventually receive
two acknowledgments -- one for each datagram that you sent. Your program should be able to
identify duplicate acknowledgments.

Another condition you need to watch for is if the server (or the network) becomes unavailable. In
such a case, you will receive no acknowledgments and should probably report an error condition.

As described in Section 6.5, you can use sequence numbers to provide synchronization. Include a
sequence number with every datagram that you send; check the sequence number from every
acknowledgment that you receive.

The following algorithm describes one way a client can send datagrams and wait for
acknowledgments:

1. Use IPO _ $RESOL VE to obtain the handle for the server you want to communicate
with. Note that you must get the handle after the server has opened its socket.
Therefore, always start the client after you start the server.

2. Obtain the information you want to include in the datagram.

3. Use IPO $SEND to send the datagram. Include the sequence number within the
datagram.

4. Wait for an acknowledgment using IPO_$WAIT. If a reply arrives, use IPO$_ROV
to get it. Then verify that the acknowledgment is for the datagram you just sent. If
it is, increment the sequence number and send the next datagram. If the
acknowledgment is bad (e.g., it contains the wrong sequence number or if it came

Sending Datagrams 6-18

c

c

(
'\.-_.-

c

o

o

o

o

o

from the wrong socket) wait for another datagram. Wait for, and receive, up to three
datagrams. If you still don't get a valid acknowledgment, resend the datagram.

5. If you are waiting for an acknowledgment and it does not arrive within the allotted
time, resend the the original datagram. Try up to five times to send the datagram
and get the correct acknowledgment. If you don't get an acknowledgment after five
tries, then display an error message and exit.

6. Continue sending datagrams and waiting for acknowledgments until the data transfer
is complete.

Figure 6-8 shows a client that sends IPC datagrams using the algorithm described above. Note
that the client sends datagrams containing the 128-byte header, but they do not contain a data
section. Within the header, the first two bytes contain the sequence number. The following 126
bytes contain a message.

First, the client creates a socket handle file and opens a socket. Next, the client uses
IPC $RESOL VE to obtain the server's socket handle. Then the client prompts the user to enter
a message.

The client places a sequence number in front of the message and then uses IPC _ $SEND to send
the datagram to the server. The IPC _ $ SEND call includes the client's socket handle; the server
will use this handle to send an acknowledgment.

Then the client waits for an acknowledgment. If the acknowledgment arrives within the specified
amount of time, the client verifies that it is valid. To be valid, the acknowledgment must be two
bytes long and must contain the current sequence number.

If the correct acknowledgment arrives, the client prompts for a new message to send. However, if
the correct acknowledgment does not arrive, the client resends the current message. The client
continues prompting for and sending messages until the user enters "q" (or until the client is
unable to communicate with the server.)

PROGRAM ipc_client;

{ This program prompts for input and sends it to an IPC server,
using a datagram. The program waits for an acknowledgment
before prompting for new input. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/ipc.ins.pas';

CONST

socket file
server socket file
wait sec = 10;

= 'client_handle_file'; { file for own socket handle
= 'server_handle_file'; {file with server's handle

{ no. seconds to wait

Figure 6-8. An IPC Client

}
}
}

6-19 Sending Datagrams

TYPE
datagram_t =

RECORD
msg_number : integer;
msg_text ARRAY [1 .. 126] OF char;
END;

VAR
status status $t;

{
{

{
{

user-defined format for datagram }

that fits into the 128-byte header }

2 bytes for sequence no. }

126 bytes for data }

local socket handle
server socket handle - -
rcv socket handle - -

ipC_$socket_handle_t;{ handle for your socket }
ipc_$socket_handle_t;{ handle for server's socket }
ipc_$socket_handle_t;{ handle for received datagram}

current_msg_number
send buf
send len
text len
receive buf
receive len
data buf
data len
count
send count
wait count

LABEL
message_received;

PROCEDURE program_cleanup;
BEGIN

ipc_$close(socket_file.

integer; { datagram you are sending }
datagram t; {buffer with datagram to send }
integer;- { length of datagram you are sending }
integer; { length of message text }
datagram t; {buffer in which to receive datagram}
integer;- { length of received datagram }
integer; { buffer for data portion of datagram}
integer; { length of data portion of datagram }
integer;
integer;
integer;

{ Clean-up procedure }

sizeof(socket file).
{ file containing handle }
{ length of filename }

status); -
IF status.all <> status_$ok THEN

error_$print_name (status. 'Error closing socket.'. 21);

ipc_$delete(socket_file.
sizeof(socket file).
status); -

IF status.all <> status_$ok THEN
error_$print_name (status. 'Error

END;

{ file containing handle }
{ length of filename }

deleting handle file.'. 27);

PROCEDURE program_exit; { Program exit procedure}

BEGIN
program_cleanup;
pgm_$exit;

END;

Sending Datagrams

Figure 6-8. An IPC Client (continued)

6-20

("
.-

-~

c

c

c

o

0

o

o

o

BEGIN

{ Create file to contain a socket handle. }

ipc_$create (socket_file,
sizeof(socket file),
status); -

IF status.all <> status_$ok THEN
BEGIN

{ file for handle }
{ length of filename }

error_$print_name (status, 'Error creating handle file.', 27);
pgm_$exit;

END;

{ Open a socket so you can receive datagrams. }

ipc_$open(socket file,
sizeof(socket_file),
4,
local socket handle,
status); -

IF status.all <> status_$ok THEN
BEGIN

{
{
{
{

file for handle
length of filename
socket depth
handle for your socket

error_$print_name (status, 'Error opening socket.', 21);
program_exit;

END;

{ Get the server's socket handle. }

}
}
}
}

ipc_$resolve(server_socket_file, { file with server's handle}
sizeof(server_socket_file), { length of filename }
server_socket_handle, { server's handle }
status);

IF status.all <> status_$ok THEN
BEGIN

error_$print_name (status, 'Error resolving socket name.', 28);
program_exit;

END;

{ Initialize datagram sequence number. }

{ Enter loop to prompt for messages, send datagrams, and
wait for acknowledgments. }

Figure 6-8. An IPC Client (continued)

6-21 Sending Datagrams

REPEAT { begin get message loop }

{ Prompt for message. }

writeln ('Enter a message (q to quit) ');
readln (send_buf.msg_text);

{ Determine the message length. }

text_len := sizeof (send_buf.msg_text);
WHILE (send buf.msg text[text len] =) AND

(text=len > 0-) ·DO -
text_len := text_len - 1;

{ Define the sequence number and length for the datagram. }

send_buf.msg_number := current msg number;
send_len := text_len + sizeof(-datagram_t.msg_number);

{ Send the datagram and wait for an acknowledgment. If you don't
receive the acknowledgment within 10 seconds. then resend the
datagram. Try to send up to 5 times. }

FOR send count := 1 TO 5 DO { begin send loop
BEGIN
ipc_$send(server_socket_handle. { where to send datagram

local_socket_handle. { your handle
send_buf. { header you're sending
send_len. { length of the header
data_buf. { data portion
O. { length of the data
status);

{ If there's an error. try sending again. }

IF status.all <> status_$ok THEN
BEGIN

}

}
}
}
}
}
}

error_$print_name (status. 'Error sending datagram.'. 23);
NEXT;

END;

{ If the send completed successfully. wait for an acknowledgment.
If you get a bad acknowledgment. ignore it and wait for another one.
Repeat the wait loop up to 3 times. then res end the datagram. }

FOR wait count 1 TO 3 DO { begin wait loop}

BEGIN

ipc_$wait(local_socket_handle.
wait sec * 4.
status);

{ your handle }
{ wait 10 seconds}

Figure 6-8. An IPC Client (continued)

Sending Datagrams 6-22

C

o

o

o

o

o

IF status.all <> status_$ok THEN
BEGIN

{ If the wait timed out. exit from the wait loop and resend the
datagram. If there was another type of error. display an
error message and repeat the wait loop. }

IF status.all = ipc_$timeout THEN
EXIT;

error _:")rint name (status. 'Error waiting for datagram. '. 27);
NEXT;
END;

{ If the wait completed successfully. get the datagram and
verify that it contains a valid acknowledgment. }

ipc_$rcv(local socket handle. {
sizeof (ipc=$hdr_info_t). {
o {

receive_len.
data_buf.
data_len.
status);

{

{
{
{
{

your socket
maximum size of header
maximum size of data
where datagram came from
buffer for header
length of header
buffer for data
length of data

{ If there's a receive error. repeat the wait loop. }

IF status.all <> status_$ok THEN
BEGIN
error_$print_name (status. 'Error receiving datagram.'. 25);
NEXT;
END;

{ If you got a datagram. make sure it came from the server.
Otherwise. display an error message and repeat the wait loop. }

IF server socket handle <> rcv socket handle THEN - -BEGIN
error_$print_name (status.

}
}

}
}

}
}
}
}

'Received message from unexpected socket.'. 40);
NEXT;
END;

{ If the datagram came from the right socket. make sure it's
the right length. If it is. then check that the sequence number
is correct.If either condition is FALSE. then display an error
message and repeat the wait loop. }

Figure 6-8. An IPC Client (continued)

6-23 Sending Datagrams

IF receive_len <> sizeof(datagram_t.msg_number) OR ELSE
receive_buf.msg_number <> current_msg_number

THEN
BEGIN

error_$print_name (status, 'Received bad acknowledgment.'. 28);
NEXT;

END;

{ If you got a good acknowledgment. exit from the wait loop
and the send loop. }

GOTO message_received;

END; { end of wait lOop}

END; { end of send message loop }

{ If you failed after 5 send attempts, display an error message and exit. }

writeln ('Unable to communicate with foreign socket. ');
program_exit;

message_received:

{ If the message started with a 'q', exit from the program.
Otherwise. increment the sequence number and repeat the get
message loop. }

IF (text_len = 1) AND (send_buf.msg_text[l] = 'q') THEN
program_exit;

UNTIL false; { end get message loop }

END.

Figure 6-8. An IPC Client (continued)

Sending Datagrams 6-24

------------_._---_ _._ .. __ .. _- .

c

c

o

o

o

o

o

Appendix A
Sample Pascal Programs

-_ .. -.---

Appendix A contains complete versions of the Pascal examples that are used throughout this
manual. The MS programs are described in Chapter 2; the EC2 programs are described in
Chapter 3; the MUTEX programs are described in Chapter 4; the :MBX programs are described in
Chapter 5; the IPC programs are described in Chapter 6.

Table A-I summarizes the programs that appear in this appendix.

Table A-I. Summary of Programs in Appendix A

Name

MS MAP.PAS

MS ADVICE.PAS

MS ATTRIBUTES.PAS

MS RELOCK.PAS

MS REMAP.P AS

MS TRUNCATE.PAS

EC2 PRODUCER.PAS

EC2 CONSUMER.PAS

MUTEX INIT.P AS

MUTEX USER.P AS

:MBX SERVER.P AS

:MBX CLIENT.PAS

:MBX GET EC.PAS

Function

Maps, accesses, and unmaps a file (page A-3).

Provides file usage advice after you map a file (page A-5).

Obtains attributes of a mapped file (page A-7).

Waits for other programs to unmap a file and then relocks it (page
A-9).

Maps different sections of a file (page A-II).

Deletes the contents of a file, writing new information, and setting
the file length (page A-13).

Uses user-defined eventcounts to synchronize data transfer to another
program (page A-15).

Uses user-defined eventcounts to synchronize data transfer from
another program (page A-19).

Initializes a mutex lock (page A-22).

Uses a mutex lock (page A-24).

Uses a mailbox to wait for and service requests from other programs
(page A-27).

Uses a mailbox to send requests to another program and receIve
replies (page A-31).

Waits to receive a mailbox message (page A-33).

A-I Sample Pascal Programs

Table A-I. Summary of Programs in Appendix A (continued)

Name Function

MBX - PUT - EC.PAS Waits to put a message into a mailbox (page A-37).

IPC - SERVER.PAS Uses datagrams to obtain data from another program (page A-42).

IPC - CLIENT.PAS Uses datagrams to send data to another program (page A-47).

('

c
Sample Pascal Programs A-2

------------------ ._-------_.-.... _

o

o

o

o

o

A.I. MS MAP.PAS

PROGRAM ms_map;

{ This program tries to map a file. If the file does
not exist, the program creates and maps it. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/name.ins.pas';

TYPE
sales record t = - - { user-defined record }

RECORD
item code
units sold
END;

integer;
integer;

CaNST

VAR

pathname = 'data_file';
namelength = sizeof(pathname);

{ file to map }

status
mapped_seg_ptr
len_mapped

status_$t;
.... sales_record_t;
integer32;

{ status }
{ pointer to record }
{ length mapped }

BEGIN

{ Try to map existing file. }

mapped_seg_ptr := ms_$mapl (pathname,
name length,
0,
sizeof(sales_record_t),
ms $nr xor 1w,
mS=$wr:- -
true,
len_mapped,
status);

{ where to start
{ desired length
{ concurrency
{ access
{ extension

IF(status.all <> status_$ok) AND (status.all <> name_$not_found) THEN

BEGIN
error_$print (status);
RETURN;

END;

}
}
}
}
}

A-3 Sample Pascal Programs

IF status.all = name_$not_found THEN

BEGIN {create and map }
mapped_seg_ptr := ms_$crmapl (pathname.

name length.
O.
sizeof(sales_record t).
ms $nr xor 1w.
status); -

IF status.all <> status_$ok THEN
BEGIN

error_$print (status);
RETURN;

END;
END; {create and map}

{ Write a record to the file. }

mapped_seg_ptr-.item_code := 1;
mapped_seg_ptr-.units_sold := 10;

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr.
sizeof(sales record t).
status); - -

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Sample Pa8cal Program8 A-4

{ where to start
{ desired length
{ concurrency

}
}
}

c

c

-------------_.- - . ------ .

o

o

o

o

o

A.2. MS ADVICE.P AS

Before you execute this program, use MS_MAP to create the file DATA_FILE.

PROGRAM ms_advice;

{ This program maps the file DATA_FILE and then provides file usage advice.
Before running this program, run MS_MAP to create the file DATA_FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/name.ins.pas';

TYPE
sales record t = { user-defined record } - -RECORD

item_code
units sold
END;

integer;
integer;

CONST

VAR

pathname = 'data file';
namelength = sizeof(pathname);

{ file to map }

status
mapped_seg_ptr
len_mapped

status_$t;
-sales_record_t;
integer32;

{ status }
{ pOinter to record }
{ length mapped }

BEGIN

{ Map existing file. }

(pathname,
name length,
0,
sizeof (sales_record_t) * 100,
ms $nr xor 1w,
ms=$wr-:- -
true,
len_mapped,
status);

IF(status.all <> status_$ok) THEN

BEGIN
error_$print (status);
RETURN;

END;

{ where to start
{ map 100 records
{ concurrency
{ access
{ extension

}
}
}
}
}

A-5 Sample Pascal Programs

{ Provide advice to say you will access the file sequentially. }

ms_$advice (mapped_seg_ptr.
len_mapped.
ms_$sequential.
[J.
sizeof (sales_record_t
status) ;

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr.
len_mapped.
status);

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Sample Pa8cal Program8

).

{ first mapped byte }
{ length }
{ access type }

{ reserved }
{ size of record }

{ first mapped byte }
{ length }

A-6

---------- --------------------

l
'-..._---

c

('
I

"'-----

c--

o

o

o

o

A.3. MS ATTRmUTES.PAS

Before you execute this program, use MS _MAP to create the file DATA_F~E in the directory
where you will execute MS _ATTRIBUTES.

PROGRAM ms_attributes;

{ This program obtains the attributes of a mapped file.
Before running this program, run MS MAP to create the file DATA FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas·;
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/name.ins.pas';

TYPE
sales record t =

RECORD
{ user-defined record }

CONST

item code
units sold
END;

integer;
integer;

pathname = 'data file';
namelength = sizeof(pathname);

{ file to map }

attrib max = sizeof (ms_$attrib_t); { attribute buffer length}

VAR
status status_$t; { status
mapped_seg_ptr -sales_record_t; { pointer to record
len_mapped integer32; { length mapped
attrib buf ms_$attrib_t; { attribute buffer
attrib len integer; { length of attribute

BEGIN

{ Map eXisting file. }

mapped_seg_ptr ms_$mapl (pathname,
name length,
0,
sizeof(sales_record_t),
ms_$nr_xor_1W,
ms_$r,
true,
len mapped,
status);

IF(status.all <> status_$ok) THEN

BEGIN
error_$print (status);
RETURN;

END;

{
{
{
{
{

}
}
}
}

record }

where to start
desired length
concurrency
access
extension

}
}
}
}

}

A-7 Sample Pascal Programs

{ Determine current file length. }

MS_$ATTRIBUTES (mapped seg ptr,{ start byte }
attrib=buf~ {attributes buffer }
attrib_len, { length of returned attributes }
attrib max, { length of attributes buffer }
status-);

WRITELN ('The file is " attrib_buf.cur_len,' bytes long ..);
WRITELN ('The file uses attrib_buf.blocks_used,· blocks ..);

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr,
len_mapped,
status);

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Sample Pascal Programs A-8

c

c

o

o

o

o

A.4. MS RELOCK.P AS

Before you execute this program, use MS MAP create the file DATA FILE in the directory
where you will execute MS_RELOCK.

PROGRAM ms_relock;

{ This program maps a file with a protected read lock.
Then it tries to change the lock to an exclusive write lock.
If the MS_$RELOCK call is not successful, the program
waits five seconds and then tries again to relock
the file.

Before running this program, run MS MAP to create the file DATA FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%INCLUDE '/sys/ins/cal.ins.pas';

LABEL
unmap;

TYPE
sales record t =

RECORD
first
second
END;

CaNST

integer;
integer;

pathname = 'data_file';
namelength = sizeof(pathname);

VAR
status
mapped_seg_ptr
len_mapped
wait time

BEGIN

status_$t;
.... sales_record_t;
integer32;
time_$clock_t;

{ Map file with protected RIW lock. }

mapped_seg_ptr := ms_$mapl (pathname,
namelength,
0,
sizeof(sales_record t),
ms $nr xor lw,
ms=$riW, -
true,
len mapped.
status);

IF status.all <> status_$ok THEN
RETURN;

writeln('File was mapped');

A-9

{ where to start }
{ desired length }
{concurrency }
{ access }

Sample Pascal Programs

{ Get system clock value for 5 seconds. }

REPEAT

{ Keep trying to relock file until the MS_$RELOCK
call is successful. After each try. wait 5
seconds and then try again. }

ms_$relock(mapped seg ptr.
mS_$wr:- -
status);

IF status.all <> ms_$1n_use THEN
EXIT;

time_$wait(time_$relative. wait_time. status);
UNTIL false;

IF status.all <> status_$ok THEN
GOTO unmap;

{ Write new data into the file. }

mapped_seg_ptr-.first
mapped_seg_ptr-.second

{ Unmap the file. }

unmap:

ms_$unmap(mapped_seg_ptr.

1 ;
3000;

sizeof(sales_record_t).
status);

IF status.all <> status_$ok THEN
RETURN;

writeln("File was unmapped");

END.

Sample Pascal Programs

{ pointer to file }
{ size of file }

A-IO

r~
'-..... _.

c

c

c

o

o

o

o

A.S. MS REMAP.PAS

Before you execute this program, create the file DATA_FILE in the directory where you will
execute MS REMAP.

PROGRAM ms_remap;

{ This program uses MS_$REMAP to map each segment of a
large data file. The file contains user-defined records.
Before running this program. run MS_MAP to create the file DATA FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

TYPE
sales record t =

RECORD
{ A sales record is 4 bytes long }

item code
units sold
END;

integer;
integer;

data_page_t = ARRAY [0 .. 255] OF sales_record t; { 256 records in a file}
mapped_seg_t = ARRAY [0 .. 31] OF data_page_t; { 32 pages in a segment}

CONST

pathname = 'data_file';
namelength = sizeof(pathname) ;

VAR

mapped_seg_ptr -mapped_seg_t; { address returned by MS
status status_$t; { status code
num_pages integer32; { number of pages to map
first_seg integer32; { first segment to map
last_seg integer32; { last segment to map
start_byte integer32; { first byte
len_mapped integer32; { length mapped
seg_num integer32; { counter

PROCEDURE check_status; {for error handling}

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error_$print(status);
pgm_$exit;
END;

END;

BEGIN

WRITE('Enter file size in pages: ');
READLN(num_pages);

calls }
}
}
}
}
}
}

}

A-11 Sample Pascal Programs

{ Determine the range of segments you need to map. }

first seg := 0;
last_seg := (num_pages - 1) div 32;

{ first segment }
{ last segment }

{ Initialize variable to indicate first byte to map. Map the first
segment. starting at byte 0 in the file. }

start byte := 0;
mapped_seg_ptr := ms_$mapl(pathname.

namelength.
start_byte.
32 * 1024.
ms_$nr_xor_1w.
ms_$wr.

{
{
{
{
{
{
{

file to map
length of file name
start at first byte
map 1 segment
concurrency
access
extend true.

len_mapped.
status);

{ bytes mapped - returned

check_status;

{ Print message about the current segment. Then remap the file
to get the next segment. Keep looping until you finish. }

FOR seg_num
BEGIN

first.seg to last seg DO
"{ map loop }-

writeln('Finished mapping segment • .seg_num);
writeln('Segment contains data starting at byte' start byte);
writeln('The first record at this address has this item ~ode: .);
writeln(mapped_seg_ptr-[o.o] .item_code);

{ Remap the file to get the next segment unless you are done. }

BEGIN { remap }

start_byte := (seg_num + 1) * 32 * 1024;

}
}
}
}
}
}
}
}

mapped_seg_ptr := ms_$remap(mapped_seg_ptr. { previous segment}

END; { remap }

END; { map loop }

{ Unmap the file and exit. }

ms_$unmap(mapped_seg_ptr.
len mapped.
status);

check_status;

END.

Sample Pascal Programs

start_byte. {new segment }
32 * 1024. { map 1 segment }
len mapped. { length mapped }
status);

A-12

(
'-"'-

c

o

o

o

o

A.6. MS TRUNCATE.PAS

Before you execute this program, create the file DATA FILE in the directory where you will
execute MS TRUNCATE.

PROGRAM ms_truncate;

{ This program maps the file DATA_FILE and uses MS_$TRUNCATE to delete
the contents of the file. After writing a new record to
the file. the program uses MS_$TRUNCATE to set the file
length to the number of used bytes.

Before running this program. run MS MAP ·to create the file DATA FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas·;
%INCLUDE '/sys/ins/name.ins.pas';

TYPE
sales record t =

RECORD
{ user-defined record }

item code
units sold
END;

integer;
integer;

CONST

VAR

pathname = 'data file';
namelength = sizeof(pathname);

{ file to map }

status
mapped_seg_ptr
len_mapped

status_$t;
"'sales_record_t;
integer32;

{ status }
{ pointer to record }
{ length mapped }

BEGIN

{ Map existing file.}

mapped_seg_ptr - ms_$mapl (pathname.
name length.
O.
sizeof(sales_record_t).
ms $nr xor lw.
mS=$wr-: -
true.
len mapped.
status);

IF(status.all <> status_$ok) THEN

BEGIN
error_$print (status);
RETURN;

END;

{ where to start
{ desired length
{ concurrency
{ access
{ extension

}
}
}
}
}

A-13 Sample Pascal Programs

{ Truncate the file to 0 to delete existing contents. }

ms_$truncate (mapped_seg_ptr.
O.
status);

{ Write a new record to the file. }

mapped_seg_ptr-.item_code := 1;
mapped_seg_ptr-.units_sold := 10;

{ where to start }
{ no. bytes to keep}

{ Truncate 'the length to 4 - the number of used bytes. }

MS_$TRUNCATE (mapped seg ptr. { where to start }
sizeof-(sales_record_t). { no. bytes to keep}
status);

{ Unmap file and exit. }

ms_$unmap(mapped_seg_ptr.
len_mapped.
status);

IF status.all <> status_$ok THEN
BEGIN

END.

error_$print (status);
RETURN;

END;

Sample Pascal Programs A-14

('

c

('
"----

c

o

o

o

o

o

A.7. EC2 PRODUCER.P AS

After initializing user-defined eventcounts, this program 'invokes EC2 CONSUMER.P AS (see
Section A.8).

Before you execute this program, create the file INPUT _FILE in the directory where you will
execute EC2 PRODUCER. Also, be sure that EC2 _ CONSUMER is in this directory.

PROGRAM ec2_producer;

{ This program uses user-defined eventcounts to synchronize data transfer
to another program, EC2_CONSUMER. Be sure that EC2 CONSUMER is in the
directory where you will execute EC2_PRODUCER. Also, before you execute
this program, use the DM editor to create a file named INPUT FILE. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ms.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

TYPE
shared info t =

RECORD
producer_ec ec2 $eventcount t;
consumer ec eC2=$eventcount=t;
done boolean;

record_present boolean;

useful data string;
data len integer32;
END;

VAR
status status_$t;
length_mapped integer32;
stream id stream_$id_t;
seek_key stream_$sk_t;
shared info shared_info_t;

res Uid_$t;

consumer wait value integer32;

local buf string;

data_ptr string;

i integer;

A-1S

{ fields in mapped record }
{ producer eventcount }
{ consumer eventcount }
{ set to TRUE when you

reach end of input file }

{ set to TRUE when you copy
record from input file }

{ record from input file }
{ length of useful data }

{ status code }
{ length of mapped data }

{ stream ID }

{ where stream data starts }

{ address of first byte of
mapped storage }

{ reserved parameter for
pgm_$invoke }

{ trigger value when waiting
for consumer eventcount }

{ buffer where stream_$get_ rec
may copy data }

{ buffer where stream_$get_rec
copies data }

{ value returned by ec2_$wait}

Sample Pascal Programs

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN

END;

BEGIN

error $print(status);
pgm $exit;
END;

{ Open a stream to get records from. }

{ for error handling }

stream_$open('input_file', {object to be opened}

check_status;

10, { length of pathname }
stream $read, { access type }
stream=$no_conc_write, { concurrency type }
stream id, { stream ID returned }
status-);

{ Map a shared data file containing the eventcounts.
Use this file to hold a record of type SHARED_INFO_T. }

shared info
11,

{ object to be mapped}
{ length of name }
{ first byte to map } 0,

sizeof(shared info_t),

check_status;

WITH shared info~ DO
BEGIN

ms_$cowriters.
ms_$wr,
true,

length_mapped.
status);

{ Initialize the eventcounts }

ec2 $init(producer_ec);
eC2=$init(consumer ec);

{ no. bytes to map
{ locking mode
{ access type
{ map length in 3rd

parameter, even if

}
}
}

object is shorter }
{ bytes mapped - returned }

{ Store the current value of the consumer eventcount
so you can use it as a trigger value later. }

consumer wait value - -
{ Set the condition field to FALSE. }

record_present := false;

Sample Pascal Programs A-16

c

".--.....

U

o

o

o

o

{ Invoke the consumer program in a separate process. }

pgm_$invoke('ec2_consumer.bin' , { program to invoke }
16, { name length }
0, { no. args. to pass }
0, { addresses of args. }
0, { no. of streams to pass }
0, { stream IDs to pass }
[J. { invoke in a separate process }
res, { reserved }
status) ;

check_status;

REPEAT { loop over input file }

{ Get a record. If the input record is longer than your buffer,
the get call returns a negative value. To correct this, define
the record length to be the buffer length. }

stream_$get_rec(

IF data len < 0

stream id, {
addr(local_buf), {
sizeof(local_buf),
data_ptr, {
data_len, {
seek_key,
status);

THEN
data len := sizeof(local_buf);

stream ID to get record from}
where data may be read }
{ buffer size }
where data is read - returned }
length of data }

{ Set DONE to TRUE or FALSE, depending on result
of stream_$get_rec. Store DONE in shared memory. }

done := status.all <> status_$ok;

{ Copy record to shared buffer. }

{ Set condition field to TRUE and advance producer
eventcount. }

record present := true;
eC2_$advance(producer_ec, status);
check_status;

{ Wait for consumer to get the record. }

consumer wait value - consumer wait value +1;
i := eC2=$wait(addr(consumer ec),- { eventcount }

consumer_wait_value, {trigger value }
1, { no. eventcounts }
status);

UNTIL done;

END;

A-17 Sample Pascal Programs

{ Clean up and terminate. }

ms_$unmap(shared_info. {first byte of mapped object}
length_mapped. { length of mapped object }
status);

stream_$close(stream_id. status);

END.

c

c

c

c
Sample Pa8cal Program8 A-18

o

o

o

o

o

A.S. EC2 CONSUMER.P AS

This program is invoked by the program E02_PRODUOER.PAS. (see Section A.7).

PROGRAM eC2_consumer;

{ This program uses user-defined eventcounts to read data sent by another
program, EC2_PRODUCER. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/streams.ins.pas·;
%INCLUDE ·/sys/ins/ms.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/ec2.ins.pas·;

TYPE
shared info t = { fields in mapped storage record } - -RECORD

producer ec ec2 $eventcount t;
consumer ec eC2=$eventcount=t;
done boolean;

record_present boolean;

useful data string;
data len integer32;
END;

VAR
status status_$t;
length_mapped integer32;
stream id stream_$id_t;
seek_key stream_$sk_t;
shared info shared_info_t;

producer_wait_value integer32;

i integer;

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN

END;

error_$print(status);
pgm_$exit;
END;

{ producer eventcount
{ consumer eventcount
{ set to true when you

reach end of input file
{ set to true when you copy

record from input file
{ record from input file
{ length of useful data

{ status code
{ length of mapped data
{ stream ID
{ where stream data starts
{ address of first byte

of mapped storage
{ trigger value when waiting

for consumer event count
{ value returned by ec2_$wait

}
}

}

}
}
}

}
}
}
}

}

}
}

A-19 Sample Pascal Programs

BEGIN

{ Open a stream to "consume" records into. }

stream_$create('output_file' , {object to be created
ii, { name length
stream_$overwrite, { access type
stream_$no_conc_write, { concurrency
stream id, { stream ID - returned
status-); { completion status

check_status;

{ Map the shared data file containing the eventcounts. }

shared info - ms_$mapl('shared_file' , { object to be mapped
ii, { name length
0, { first byte to map
sizeof(shared info_t), -

{ no. bytes to map
ms_$cowriters, { locking mode
ms_$wr, { access type

}
}
}
}
}
}

true, { map length in 3rd parameter,

WITH shared info- DO
BEGIN

length_mapped,
status);

even if object is shorter
{ bytes mapped - returned

{ Store the current value of the producer eventcount
so you can use it as a trigger value later. }

ec2_$read(producer ec);

Sample Pascal Programs A-20

c:'

}
}
}

} C' }

}

}
}

c

o

o

o

o

REPEAT { wait for and process records}

{ Wait until a record is available. Check RECORD PRESENT
before you wait. }

WHILE NOT record_present DO
BEGIN
producer_wait_value := producer_wait_value + 1;
i := ec2 $wait(addr(producer ec). {ptr to eventcount }

- producer wait value. {trigger value }
1. - - { no. of eventcounts }
status);

END;

{ If a record is available. write it to the output file. }

IF NOT done THEN
BEGIN
stream_$put_rec(stream id. { stream ID }

addr(useful_data).{ data to put }

check_status;
END;

data_len. { length of data}
seek_key. { seek key }
status);

{ Set condition field to false and advance consumer eventcount. }

record present := false;
eC2_$advance(consumer_ec. status);
check_status;

UNTIL done;

END;

{ Clean up and terminate. }

ms_$unmap(shared_info. { first byte of mapped object}
length_mapped. {length of mapped object }
status);

stream_$close(stream_id. status);

END.

.--.-----------

A-21 Sample Pascal Programs

A.9. MUTEX INIT.PAS

Beiore you execute this program, create the file TICKET _SALES _FILE in the directory where
you will execute MUTEX_INIT.

PROGRAM mutex_init;

{ This program shows how to initialize a mutex lock record. It maps a file
that contains a lock record and ticket sales count. The program
initializes the lock record and sales count and then exits. Before you execute
this program. use the OM editor to create a file named TICKET_SALES_FILE. }

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/ms.ins.pas·;
%INCLUDE ·/sys/ins/ec2.ins.pas·;
%INCLUDE ·/sys/ins/mutex.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

TYPE
ticket sales t =

VAR

- -RECORD
lock record
tickets sold
END;

status
ticket info
length_mapped
tickets wanted
wait time
lock

mutex_$lock_rec_t;
integer;

status_$t;
.... ticket_sales_t;
integer32;
integer;
time_$clock_t;
boolean;

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error $print(status);
pgm_$exit;
END;

END;

{ mutex lock record }
{ counter }

{status code}

{ length of mapped data }

{ for error handling }

Sample Pascal Programs A-22

c.

c

o

o

o

o

o

BEGIN

{ Map a data file containing the mutex lock. Use this file to hold data
of type TICKET_SALES_T. }

ticket info - ms_$mapl('ticket_sales_file' ,
17,
0,
sizeof(ticket sales t
ms_$nr_xor_1w,
ms_$wr,
true,

length_mapped,
status);

check_status;

ticket info-.tickets sold := 0;

{ Initialize the mutex lock. }
mutex_$init (ticket_info-.lock_record);

{ object to be mapped
{ length of name
{ first byte to map

L{ no. bytes to map
{ locking mode
{ access type
{ map length in

parameter, even if
object is shorter

{ bytes mapped - returned

writeln('Mutex lock file has been initialized. Start lock users now.');

{ Unmap file and exit. }

ms_$unmap(ticket_info,
sizeof(ticket_sales t),
status);

check_status;

END.

}
}
}
}
}
}

}
}

A-23 Sample Pascal Programs

A.IO. MUTEX USER.PAS

Before you execute this program, use MlJTEX_INIT.PAS (see Section A.9) to initialize the lock
record. You can run this program concurrently from different processes.

PROGRAM mutex_user;

{ This program uses MUTEX calls to lock a file that contains ticket sales
information. When the program gets a mutex lock, it determines whether
there are enough tickets to fill the ticket order. If there are tickets,
the program updates the ticket count and unlocks the file. The program
processes orders until tickets are sold out.

Before you execute this program, run MUTEX INIT to initialize the ticket
sales file and the mutex lock record.} -

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/cal.ins.pas·;
%INCLUDE ·/sys/ins/ms.ins.pas·;
%INCLUDE ·/sys/ins/mutex.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/pgm.ins.pas·;

TYPE
ticket sales t =

RECORD
lock record mutex_$lock_rec_t;
tickets sold integer;
END;

VAR
status
ticket info
length_mapped
tickets wanted
wait time
lock

PROCEDURE check_status;

BEGIN

status_$t;
.... ticket_sales_t;
integer32;
integer;
time_$clock_t;
boolean;

IF status.all <> status_$ok THEN
BEGIN
error_$print(status);
pgm_$exit;
END;

END;

BEGIN

{ ticket sales file }

{ mutex lock record }
{ counter }

{status code}

{ length of mapped data }

{ for error handling }

{ Map a shared data file containing the mutex lock.
Use this file to hold data of type TICKET_SALES_T. }

Sample Pascal Programs A-24

------------ -_._-------_.-

c

c

o

o

o

0

o

ticket info - ms_$map1('ticket_sa1es_fi1e' •
17.
O.
sizeof(ticket sales t
ms $cowriters.
mS=$wr.
true.

length_mapped.
status);

check_status;

{ Get system clock value for 30 seconds. }
ca1_$sec_to_clock (30. wait_time);

).

{ object to be mapped
{ length of name
{ first byte to map
{ no. bytes to map
{ concurrency mode
{ access type
{ map length in 3rd

parameter. even if
object is shorter

{ bytes mapped - returned

{ Keep looping as long as you can get a lock and there are tickets left. }

WITH ticket info- DO

BEGIN
WHILE tickets sold < 100 DO

BEGIN {while }

write ('Input the number of tickets you want ');
read1n (tickets_wanted);

{ Get a mutex lock on the file. If you get the lock. try
to buy tickets. Otherwise. assume there's a problem and exit.
The theater holds 100 people.}

lock := mutex_$lock(lock_record. wait time);
IF NOT lock THEN

BEGIN
write1n('Problem locking file. Try again later.
ms_$unmap(ticket info.

sizeof(" ticket sales t). - -
status) ;

check_status;
RETURN;
END;

IF tickets sold + tickets wanted > 100 THEN

,) ;

writeln (" 'Only'. 100 --tickets_so1d:4. · tickets left.')
ELSE

BEGIN
tickets_sold := tickets_sold + tickets_wanted;
writeln ('You got'. tickets_wanted:4. ' tickets.');
END;

mutex_$un1ock (lock record);

END; { while}
END; {with}

}
}
}
}

}
}

}
}

A-25 Sample Pascal Programs

{ Unmap file and exit. }

ms_$unmap(ticket_info.
sizeof(ticket sales t).
status); - -

check_status;

END.

c

c~

('
"--

Sample Pa8cal Programs A-26

--

o

0

o

0

o

A.II. MBX SERVER.P AS

PROGRAM mbx_server (input,output);

{ This mailbox server creates a mailbox and handles requests from clients.
The server handles open requests, close requests, and data transmissions. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE ·/sys/ins/pgm.ins.pas·;

LABEL
get_message_Ioop,
done;

CONST
mbx bufsize = mbx_$serv_msg_max;
mbx_maxchan = mbx_$chn_max;
mbx name = • test mailbox';
mbx name len = sizeof(mbx name) ;
srv_msg_Ien = mbx_$serv_msg_max;

TYPE
server rec t =

RECORD
mbx hdr mbx_$msg_hdr_t;

{ channel buffer size
{ no. mailbox channels 255
{ mailbox name
{ length of mailbox name
{ length of buffer that server

use to receive messages

{ server message }
{ header has 3 fields:

cnt - message length
mt - message type

can

chan - message channel }
msg_data : ARRAY [1 .. mbx_$msg_max] OF char;
END;

server_rec_ptr_t =
.... server_rec_t;

VAR

mbx handle univ_ptr; -
status status_$t;
srv_msg_buf server rec t; -
mbx_retptr server_rec_ptr_t;

mbx retlen integer32;
send_msg_buf server rec t; -

{ pointer to a server message }

{ a pointer to the mailbox
{ a status code
{ a buffer that the server can use to

receive messages
{ a pointer to the buffer where MBX

placed a retrieved message
{ length of a retrieved message
{ a buffer where the server places

a message to send

}
}
}
}

}

}
}

}

}
}

}

open_chan integer16; { number of open channels to the mailbox}

A-27 Sample Pascal Programs

PROCEDURE check_status;

BEGIN
IF status.all <> status_$ok THEN

BEGIN
error$print(status);
pgm.$exit;
END;

END;

PROCEDURE process_data;

CONST
reply
reply_len

VAR

= 'Message written.';
= sizeof(reply);

{ for error handling }

reply_array ARRAY [1 .. reply_len OF char;
i integer; { a counter}

BEGIN
{ Display the client's message. }

writeln (mbx_retptr-.msg_data : mbx_retlen
- mbx_$serv_msg_hdr_Ien);

{ Construct a header for a return message. }

send_msg_buf.mbx_hdr.mt
send_msg_buf.mbx_hdr.chan

reply len
+ mbx-$serv msg hdr len;

- mbx_$data_mt; - -
:= mbx_retptr-.mbx_hdr.chan;

{ Construct the data portion of a message. }

reply_array := reply;
FOR i := 1 TO reply_len DO

send_msg_buf.msg_data[i] reply_array[i];

{ Send the return message. }
mbx_$put_rec(mbx_handle,

addr(send_msg_buf),
send_msg_buf.mbx_hdr.cnt,
status);

check_status;
END;

BEGIN { program test_server }

{Initialize variables.}

Sample Pascal Programs A-28

c

c

o

o

o

o

o

open_chan := 0;

{ Create the mailbox. }

mbx_$create_server(mbx_name, { name }

mbx_namelen, { name length }

mbx_bufsize, { buffer size }

mbx_maxchan, { maximum channels }

mbx_handle, { handle }

status);
check_status;

writeln('Mailbox' mbx_name, ' was successfully opened.');

{ Keep getting messages until.there are no more clients. }

REPEAT
mbx_$get_rec(mbx_handle,

addr(srv_msg_buf),
srv_msg_Ien,
mbx_retptr,
mbx_retlen,

{ where message may be received}
{ length of message buffer }
{ w~ere message is received }
{ message length }

status);

WITH mbx_retptr- DO
BEGIN
writeln('Message received from channel' mbx hdr.chan:4);

CASE mbx hdr.mt OF

{ If message is an open channel request, accept it. Also, keep
track of the number of open channels. }

mbx_$channel_open_mt :
BEGIN
send_msg_buf.mbx_hdr.cnt - mbx $serv msg hdr len;

{ there's-no data-in this message}
mbx_$accept_open_mt;

send_msg_buf.mbx_hdr.chan
{ type of message you are sending }

:= mbx_hdr.chan;
{ channel to send to }

mbx_$put_rec(mbx handle,
addr(send_msg_buf),
mbx_$serv_msg_hdr_Ien,
status);

check_status;

{ message to send
{ length of message

writeln (, Open request from channel "
mbx_hdr.chan:4, ' has been accepted.');

IF mbx retlen <> mbx_$serv_msg_hdr_Ien THEN
process_data;

END;

}
}

A-29 Sample Pascal Programs

{ If message is a close channel request. deallocate the channel
and decrement the open channel count. }

mbx_$eof_mt :
BEGIN
mbx_$deallocate(mbx_handle.

mbx_hdr.chan. {channel number}
status);

writeln ('Channel' mbx_hdr.chan:4.
, was deallocated.');

open_chan

IF open_chan = 0 THEN
GO TO done;

END;

{ If message is a data transmission or a partial data transmission.
process the data. }

mbx_$data_mt :
process_data;

mbx_$data_partial_mt
process_data;

OTHERWISE
writeln ('Invalid message type');

END; {case statement}
END; { with statement}

UNTIL open_chan = 0;

{ Close mailbox and exit. }

done:

mbx $close(mbx handle.
- status);

check_status;
writeln ('The mailbox has been closed.');

END. {program test server}

Sample Pascal Programs A-3D

---------_._-_.,.'"

('
\

o

o

o

o

o

A.12. MBX CLIENT.PAS

This program uses the mailbox created by :MBX_SERVER.PAS (Section A.II). Execute the
client from the same directory where you execute the server.

PROGRAM mbx_client (input,output);

{ This mailbox client opens a channel to a mailbox. The client sends
messages to the server, and gets the server's reply. Execute this
program from the same directory where MBX_SERVER is running. }

. %INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';

LABEL
done;

CONST
mbx name
mbx name len
buf len -msg_buf_Ien

= ' test_mailbox' ;
= sizeof(mbx_name
= mbx_$msg_max;
= mbx_$msg_max;

{ mailbox name
) ; { length of mailbox name
{ length of data buffer
{ length of message buffer

prompt_str = 'Enter a new message:

TYPE
msg_t

ARRAY
msg_ptr_t

.... msg_t;

VAR
data buf
mbx handle
status

=
1 .. mbx_$msg_max] OF char; { client message}

=
{ pointer to a client message }

msg_t; { buffer for data to be sent
univ_ptr; { mailbox handle
status_$t; { a status code

}
}
}
}

msg_buf msg_t; { a buffer that the client can use to
receive data

msg_retptr msg_ptr_t; { a pointer to the buffer where
placed a retrieved message

msg_retlen integer32; { length of a retreived message

PROCEDURE check_status; { for error handling

BEGIN
IF (status.all <> status $ok) AND

(status.all <> mbx_$partial_record) THEN
BEGIN
error $print(status);
pgm $exit;
END;

END;

MBX

}

}
}
}

}

}
}

A-31 Sample Pascal Programs

BEGIN

{ Open a channel to the mailbox. }

mbx_$open (mbx_name. { name }

mbx_namelen. { length of name }

NIL. { no data being sent }

O. { length of data }

mbx_handle. { handle }

status) ;
check status; -
{ Read data and put it in the mailbox. }

write('Enter a message; end with CTRL/Z: ');
WHILE NOT eof DO

BEGIN
readln(data_buf);
mbx_$put_rec (mbx_handle.

addr(data_buf).
buf len.
status);

{ Get a response from the server. }

check_status;

mbx handle.
addr(msg buf).
msg_buf_Ien.
msg_retptr.
msg retlen.
status);

wri teln (msg_retptr-: msg_ret,len);
write(prompt_str);
END;

done:

mbx_$close(mbx handle.
status);

check_status;

END.

Sample Pascal Programs A-32

{ handle }
{ buffer with data }
{ length of message }

{ handle
{ buffer for message
{ length of buffer
{ actual location of
{ length of message

('
"','

}
}
}

message } C }

c

c

o

o

o

0

0

A.13. MBX GET EC.P AS

This program uses the mailbox created by:MBX_SERVER.PAS (seeSectionA.II). Execute the
client from the same directory where you execute the server.

PROGRAM mbx_get_ec (input. output);

{ This program uses a mailbox eventcount to determine when to get messages
from a mailbox. Execute this program from the same directory where
MBX_SERVER is running. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

LABEL
done;

CONST
kbd ec
mbx ec
mbx name

= 1·

= 2;
= 'test mailbox' ;

{ index for keyboard event }
{ index for mbx event }
{ mailbox name }

mbx name len = sizeof(mbx name) ; { length of mailbox name }
msg_buf_Ien = mbx_$msg_max; { length of message buffer }

=
TYPE

msg_t
ARRAY 1 .. mbx_$msg_max] OF char; { client message}

msg_ptr_t =
-msg_t; { pointer to a client message }

VAR
empty boolean;
eC2_ptr ARRAY [1 .. 2

ec2 val ARRAY 1 .. 2

which integer;
data buf msg_t;
data_retptr msg_ptr_t;
linelen integer32;
seek_key stream_$sk_t;
mbx handle univ_ptr;
status status_$t;
msg_buf msg_t;

msg_retptr msg_ptr_t;

msg_retlen integer32;

OF

OF

{ TRUE if mailbox is empty }
eC2_$ptr_t;
{ array of eventcount pointers }
integer32;
{ array of trigger values }
{ integer that indicates an event type }
{ buffer where stream data can be read }
{ buffer where stream data is read }
{ size of stream data line }

{ mailbox handle }
{ status code }
{ buffer that the client can use to

get data }
{ buffer where MBX places a retrieved

message }
{ length of a retrieved message }

A-SS Sample Pascal Programs

BEGIN

{ Get an eventcount that changes when there's input from the keyboard. }

IF (status.all <>
RETURN;

stream $stdin.
stream-$getrec ec key.
eC2_ptr[kbd_ecJ. -
status);
status_$ok) THEN

{ stream id }
{ type of eventcount }
{ where pointer is returned }

{ Open a channel to the mailbox. Then get an eventcount that changes when
there are messages in the mailbox. }

mbx_$open (mbx_name.
mbx_namelen.
NIL.
O.
mbx handle.
status);

IF (status.all <> status_$ok) THEN
RETURN;

mbx_$get_ec(mbx_handle.
mbx_$getrec_ec_key.
ec2 ptr[mbx ec].
status); -

IF (status.all <> status_$ok) THEN
RETURN;

{ name }
{ length of name }
{ no data to send }
{ length of data }
{ handle }

{ mailbox }
{ type of eventcount }
{ where pointer is returned }

{ Initialize the trigger values using the current eventcount values. }

ec2_val[kbd_ec]
ec2_val[mbx_ec]

ec2_$read(ec2_ptr[kbd_ec]-);
eC2_$read(eC2_ptr[mbx_ec]-);

{ prompt for input }

writeln('Enter a message; end with CTRL/Z: ');

{ Now go into an infinite loop to wait for events. When there is keyboard
input. go to the kbd_ec loop. When there is a mailbox message. go to
the mbx ec loop. }

REPEAT
which - ec2_$wait(ec2_ptr.

eC2_val.
2.
status);

IF status.all <> status_$ok THEN
RETURN;

Sample Pascal Programs

{ list of pointers to eventcounts }
{ trigger values }
{ no. eventcounts in the list }

A-34

--------_.- ._---_

('
~.-..

c

c

o

o

o

o

o

CASE which OF

{ For keyboard input. create a loop to read the current eventcount and
increase it by one -- this is ,the new trigg~r value. Then get
keyboard input. When there is no more input. exit from the loop. }

kbd ec:

REPEAT
ec2 val[kbd ec] := ec2 $read(ec2 ptr[kbd ec]-) + 1;
stream $get-conditional(stream $stdin. - {stream id }

- - addr(data buf). {buffer for data }
sizeof(data buf).{ length of buffer }
data_retptr.- { where data is read}
linelen. { length of data }
seek_key. { seek key }
status);

IF (status.all <> status $ok)
AND (status.code <> stream_$end_of_file)

THEN
RETURN;

IF (status.subsys = stream $subs)
AND (status.code = stream_$end_of_file)

THEN
GOTO done;

IF line len > 0 THEN
BEGIN
mbx_$put_rec (mbx_handle.

data_retptr.
linelen.
status);

IF status.all
RETURN;

END;

<> status_$ok THEN

UNTIL linelen = 0;

A-3S

{ handle }
{ data to send }
{ length of data }

Sample Pascal Programs

{ For a mailbox message. create a loop to read the current eventcount and
increase it by one -- this is the new trigger value. Then get the
mailbox message. When there are no more messages. exit from the loop. }

mbx ec:

REPEAT
empty := false;
ec2 val [mbx ec] := ec2 $read(ec2 ptr[mbx ec]-) + 1;
mbx=$get_conditional(mbx handle.- { handle }

addr(mag_buf). {buffer for data }
msg_buf_Ien. { length of buffer }
msg_retptr. { actual data }
msg retlen. { length of data }
status);

IF (status. all <> status $ok)
AND (status.all <> mbx $channel empty)
AND (status.all <> mbx=$partial=record)

THEN
RETURN;

IF (status.all = mbx_$channel_empty) THEN
empty := true

ELSE
writeln (msg_retptr-: msg_retlen);

UNTIL empty;

END; { case }

UNTIL false;

done:

mbx $close(mbx handle.
- status);

IF (status.all <> status_$ok) THEN
RETURN;

END.

Sample Pascal Programs A-36

c

c

o

o

o

o

o

A.14. MBX PUT EC.P AS

This program uses the mailbox created byMBX_SERVER.PAS (seeSectionA.II). Execute the
client from the same directory where you execute the server.

PROGRAM mbx_put_ec (input.output);

{ This mailbox client uses eventcounts to wait for input from the
keyboard or from a mailbox. The client also uses the putrec eventcount
to wait for a previously full channel to accept a message. Execute this
program from the same directory where MBX SERVER is running. }

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/mbx.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%INCLUDE '/sys/ins/ec2.ins.pas';

LABEL
done;

CONST
kbd ec = 1;
get_ec = 2;
put ec = 3;
mbx name = 'test_mailbox';
mbx namelen = sizeof(mbx name);
msg_buf_len = mbx_$msg_max;

TYPE

{ index for keyboard event }
{ index for mbx get event }
{ index for mbx put event }
{ mailbox name }
{ length of mailbox name }
{ length of message buffer }

msg_t
msg_ptr_t

= ARRAY [1 .. mbx_$msg_max] OF char; { client message}
= -msg_t; { pointer to a client message }

VAR
channel full
empty
eC2_ptr

ec2 val

which
data buf
data_retptr
line len
seek_key
mbx handle
status
msg_buf

boolean;
boolean;
ARRAY [1 .. 3

ARRAY 1. .3

integer;
msg_t;
msg_ptr_t;
integer32;
stream_$sk_t;
univ_ptr;
status_$t;
msg_t;

integer32;

{ TRUE if channel is full }
{ TRUE if mailbox is empty }

OF eC2_$ptr_t;
{ array of event count pointers }

OF integer32;
{ array of trigger values }
{ integer that indicates an event type }
{ buffer where stream data can be read }
{ buffer where stream data is read }
{ size of stream data line }

{ mailbox handle }
{ status code }
{ buffer that the client can use to get

data }
{ buffer where MBX places a retrieved

message }
{ length of a retrieved message }

A-37 Sample Pascal Programs

BEGIN

{ Get an event count that shows when there's input from the keyboard. }

stream_$get_ec (stream $stdin,
stream=$getrec_ec_key,
ec2_ptr[kbd_ec],
status);

{ stream to get event count for }
{ type of eventcount }

IF (status.all <>
RETURN;

status_$ok) THEN

{ where to put pointer }

{ Open a channel to the mailbox. Then get the getrec and putrec eventcounts. }

mbx_$open (mbx_name, { name }
mbx_namelen, { name length }
NIL, { no data to send }
0, { length of data }
mbx handle, { handle }
status);

IF (status.all <> status_$ok) THEN
RETURN;

mbx_$get_ec(mbx handle, {

mbx=$getrec_ec_key, {

ec2_ptr[get_ec], {

status);
IF (status.all <> status_$ok) THEN

RETURN;

mbx_$get_ec(mbx handle, {

mbx=$putrec_ec_key, {

ec2_ptr[put_ec], {

status);
IF (status.all <> status_$ok) THEN

RETURN;

mailbox to get eventcount
type of eventcount
where to put the pointer

mailbox to get eventcount
type of eventcount
where to put the pointer

for }
}
}

for }
}
}

{ Initialize the trigger values for kbd_ec and get_ec using the current
event count values. Initialize the trigger value for put_ec as one
greater than the current value. }

ec2 val [kbd ec]
eC2-val[get-ec]

- ec2_$read(eC2_ptr[kbd_ec]-);

- - - ec2 $read(ec2 ptr[get ec]-);
- eC2=$read(eC2=ptr[put=ec]-) + 1; ec2_val[put_ec]

{ Initialize variable. }
channel full := false;

{ Prompt for input. }

writeln('Enter a message; end with CTRL/Z: ');

Sample Pascal Programs A-38

C"

(
"-._ ..

C

c

c

o

o

o

o

o

{ Now go into an infinite loop to wait for events. When there is keyboard
input. go to the kbd_ec loop. When there is a mailbox message to get.
go to the get ec loop. When a previously full channel has room to accept
a mailbox message. go to the put_ec loop. }

REPEAT
which eC2_$wait(ec2_ptr. { list of eventcount pointers }

{ list of eventcount values }
{ number of pointers in list }

eC2_val.
3.
status);

IF status.all <> status_$ok THEN
RETURN;

CASE which OF

{ For keyboard input. create a loop to read the current eventcount
and increase it by one -- this is the new satisfaction value
for the ec2_$wait call in the outer loop. Then get keyboard input.
When there is no more input. exit from the loop. }

kbd ec:

REPEAT
eC2_val[kbd_ec] := ec2_$read(ec2_ptr[kbd_ec]-) + 1;

{ If the channel is full. return to EC2_$WAIT. When there is room
in the channel. the put_ec section will change channel full
to FALSE. }

IF channel full = true THEN
EXIT;

stream_$get_conditional(stream $stdin.
addr(data_buf).
sizeof(data_buf).
data_retptr.
linelen.
seek key.
status);

IF (status.all <> s~atus $ok)
AND (status.code <> stream_$end_of_file)

THEN
RETURN;

IF (status.subsys = stream $subs)
AND (status.code = stream_$end_of_file)

THEN
GOTO done;

A-39

{ stream id }
{ buffer for data }
{ size of buffer }
{ where data is copied}
{ length of data }

Sample Pascal Programs

IF linelen > 0 THEN

{ If mbx $put rec cond fails because the ch~nnel is full. set
channel_full to-TRUE. }

BEGIN
mbx_$put_rec_cond (mbx_handle.

data_retptr.
linelen.
status);

IF (status.all <> status_$ok)

{ handle }
{ data to send }
{ length of data }

AND (status.all <> mbx_$no_room in channel)
THEN

RETURN;
IF status.all = mbx_$no_room_in_channel THEN

channel full .- true;
END;

UNTIL linelen = 0;

{ For a mailbox message. create a loop to read the current eventcount and
increase it by one -- this is the new satisfaction value. Then get the
mailbox message. When there are no more messages. exit from the loop. }

get ec:

REPEAT
empty := false;
ec2 val [get ec] := ec2 $read(ec2 ptt[get ec]-) + 1;
mbx=$get_conditional(mbx handle.- -{ handle }

addr(msg buf). { buffer for data }
msg_buf_Ien. { length of buffer }
msg_retptr. { where data is copied}
msg_retlen. { length of data }
status);

IF (status.all <> status $ok) AND
(status.all <> mbx $channel empty) AND
(status.all <> mbx=$partial=record) THEN
RETURN;

IF (status.all = mbx_$channel_empty) THEN
empty := true;

IF NOT empty THEN
writeln (msg_retptr-; msg_retlen);

UNTIL empty;

{ When the putrec eventcount is satisfied. try to put the message
in the mailbox. If there still is no room. go back to EC2_$WAIT.
If the MBX $PUT REC COND succeeded. set the keyboard eventcount
so that you will check to see if there are any more keyboard messages. }

Sample Pascal Programs A-40

('

c

c

('
"---

c

o

o

o

o

o

put ec:

BEGIN
ec2 val [put ec] ec2_$read(ec2_ptr[put_ec]-)
mbx=$put_rec_cond(mbx handle. { handle

+ 1;

data retptr. {data to send
linelen. { length of data

}
}
}

status);
IF status.all <> status $ok THEN

IF status.all = mbx_$no_room_in_channel THEN
EXIT

ELSE RETURN;
channel full := false;

{ Set the keyboard satisfaction value so that the ec2_$wait call will
indicate a keyboard event when you return to the ec2_$wait loop. }

ec2_val[kbd_ec] - ec2_$read(ec2_ptr[kbd_ec]-);
END;

END; { case }

UNTIL false;

done:

mbx_$close(mbx_handle. { mailbox to close channel in }
. status);

IF (status.all <> status_$ok) THEN
RETURN;

END.

A-41 Sample Pascal Programs

A.1S. IPC SERVER.P AS

PROGRAM ipc_server;

{ This program accept's datagrams from a client and displays
the message portion of the datagram. The program also
illustrates techniques for acknowledging datagrams and
remaining synchronized with the client.}

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/ipc.ins.pas';

CONST

socket file = 'server_handle_file'; { file for socketh~ndle }
wait sec = 300; { number of seconds to wait}

TYPE
datagram_t =

RECORD
msg_number
msg_text
END;

{ user-defined format for datagram}
{ that fits into 128-byte header }

integer; { 2 bytes for sequence no. }
} ARRAY [1 .. 126] OF char; { 126 bytes for data

VAR
status
local socket handle
rcv socket handle - -expected_msg_number
receive buf
receive len
text len
ack buf
data buf
data len

Sample Pascal Programs

status $t; { status code }
ipC_$socket_handle_t;{ handle for your socket }
ipc_$socket_handle_t;{ handle for received datagram}
integer; { datagram you expect }
datagram t; { buffer to receive datagram }
integer;- { length of received datagram}
integer; { length of message text }
integer; { acknowledgment }
integer; { buffer for data portion }
integer; { length of data portion }

A-42

c

c

c

o

o

o

o

o

PROCEDURE program_cleanup; { Cleanup procedure }

BEGIN

ipc_$close(socket file,
sizeof(socket file),
status); -

IF status.all <> status $ok THEN

{ file containing handle }
{ length of filename }

error_$print_name (status, 'Error closing socket.', 21);

ipc_$delete(socket_file,
sizeof(socket_file),
status);

{ file containing handle }
{ length of filename }

IF status.all <> status $ok THEN
error_$print_name (status, 'Error deleting handle file.', 27);

END;

PROCEDURE program_exit; { Program exit procedure}

BEGIN

program_cleanup;
pgm_$exit;

END;

BEGIN

{ Create file to contain a socket handle.}

ipc_$create (socket_file,
sizeof(socket_file),
status);

IF status.all <> status_$ok THEN
BEGIN

{ file for handle }
{ length of filename }

error_$print_name (status, 'Error creating handle file.', 27);
pgm_$exit;

END;

{ Open a socket so you can receive datagrams. }

ipc_$open(socket file,
sizeof(socket_file),
4,
local_socket_handle,
status);

IF status.all <> status_$ok THEN
BEGIN

{
{
{
{

file for handle
length of filename
socket depth
handle for your socket

error_$print_name (status, 'Error opening socket.', 21);
program_exit;

END;

writeln ('Socket opened successfully. ');

}
}
}
}

A-43 Sample Pascal Programs

{ Initialize datagram sequence number. }

{ Enter loop to wait for and acknowledge incoming datagrams.
Acknowledge a datagram if it is valid and it contains a
sequence number that you are expecting. }

REPEAT { begin receive loop }

{ Wait up to 5 minutes for a datagram. }

REPEAT { begin wait loop }

ipc_$wait(local_socket_handle, { your socket handle }

wait sec * 4, { wait 5 minutes }

status);

{ If a datagram arrived, exit :from the wait loop and get the datagram. }

IF status.all = status_$ok THEN
EXIT;

{ It the call timed out, wait again. }

IF status.all = ipc_$timeout THEN
NEXT;

{ If another error occurred, print error and repeat wait loop. }
error_$print(status);

UNTIL false; { end wait loop}

{ Get the datagram. }

ipc_$rcv(local socket handle, { your socket handle
sizeof(ipc_$hdr_info_t L { maximum size of header
0, { maximum size of data
rcv_socket_handle, { where the datagram came from
receive_buf, { buffer for header
receive_len, { length of header
data_buf, { buffer for data
data_len, { length of data
status);

{ If there"s an error, print an error message and return to the top
of the receive loop to wait for a new datagram. }

IF status.all <> status_$ok THEN
BEGIN
error_$print_name (status, "Error getting the datagram.", 27);
NEXT;
END;

Sample' Pascal Programs A-44

}
}
}
}
}
}
}
}

c

c

C-~

o

o

o

o

o

{ If you successfully got a datagram. make sure that it"s valid before
you use its contents. First. check that the size is valid. If the
size is not valid. print an error message and return to the top
of the receive loop to wait for a new datagram. }

IF receive len> sizeof(datagram_t) OR ELSE
receive len < sizeof(datagram_t.msg_number)

THEN
BEGIN
error_$print_name (status. "Bad datagram length.". 20);
NEXT;
END;

{ Check the sequence number to make sure you remain synchronized
with the sender. If the sequence number is bad. return to the
top of the receive loop to wait for a new datagram. Discard any
datagram whose sequence number is larger than you expect. Also.
discard any datagram whose sequence number is two less than the
number you expect because this is an old datagram that you have
already processed. }

IF receive_buf.msg_number > expected msg number OR ELSE
receive_buf.msg_number < (expected_msg_number - 1)

THEN
BEGIN
error_$print_name (status. "Received out of sequence.". 26);
NEXT;
END;

{ If you got the datagram you expected. process it by
d~splaying it on the screen. Then increment the sequence number.
If you got a datagram whose sequence number is one less than
what you expected. assume that the sender never got your
acknowledgment. Don"t process the datagram. but send another
acknowledgment. }

IF receive_buf.msg_number = expected_msg_number THEN
BEGIN

text len := receive len - sizeof(datagram_t.msg_number);
writeln ("Received message: ". receive_buf.msg_text text_len);
expected_msg_number - expected_msg_number + 1;

END;

{ Send an acknowledgment for the datagram you just processed.
or for a datagram whose acknowledgment was lost.
Send the sequence number for the datagram you are acknowledging. }

A-45 Sample Pascal Progrants

ack buf := receive_buf.msg_number;
ipc_$send(rcv_socket_handle.

local_socket_handle.
aCk_buf.
sizeof(ack_buf).
data_buf.
O.
status);

IF status.all <> status_$ok THEN

{ where to send ack }
{ your handle }
{ the number you're sending}
{ length of the number }
{ data portion }
{ length of data portion }

error_$print_name (status. 'Error sending acknowledgment.'. 29);

{ When you receive a 'q' then quit running. }

IF (text len = 1) AND
(receive_buf.msg_text[l] = 'q') THEN
program_exit;

UNTIL false; { end receive loop }

END.

Sample Pascal Programs A-46

c

(
I,

\,

c

c

10
I

o

o

o

o

--

A.16. IPC CLIENT.PAS

This program uses a socket opened by IPC_SERVER.PAS (see Section A.I5). Execute this
program from the same directory where you execute the server.

PROGRAM ipc_client;

{ This program prompts for input and sends it to an lPC server, using a
datagram. The program waits for an acknowledgment before prompting
for new input. Execute this program from the same directory where
lPC_SERVER is running. }

%lNCLUDE '/sys/ins/base.ins.pas';
%lNCLUDE '/sys/ins/error.ins.pas';
%lNCLUDE '/sys/ins/pgm.ins.pas';
%lNCLUDE '/sys/ins/ipc.ins.pas';

CONST

socket file
server socket file
wait sec = 10;

TYPE
datagram_t =

RECORD

= 'client_handle_file'; { file for own socket handle
= 'server_handle_file'; {file with server's handle

{ number of seconds to wait

}
}

}

{ user-defined format for datagram }
{ that fits into the 128-byte header}

msg_number : integer;
msg_text ARRAY [1 .. 126] OF char;
END;

{ 2 bytes for sequence no.
{ 126 bytes for data

}
}

VAR
status
local socket handle
server socket handle
rcv socket handle - -current_msg_number
send buf
send len
text len
receive buf
receive len
data buf
data len
count
send count
wait count

LABEL
message_received;

status_$t;
ipc_$socket_handle_t;{ handle for your socket }
ipc_$socket_handle_t;{ handle for server's socket}
ipc $socket handle t;{ handle for received datagram}
integer; -{ datagram.you are sending }
datagram_t; { buffer with datagram to send }
integer; { length of datagram you are sending }
integer; { length of message text }
datagram_t; { buffer in which to receive datagram}
integer; { length of received datagram }
integer; { buffer for data portion of datagram}
integer; { length of data portion of datagram }
integer;
integer;
integer;

A-47 Sample Pascal Programs .

PROCEDURE program_cleanup; { Clean-up procedure }

BEGIN

ipc_$close(socket_file,
sizeof(socket file),
status); -

{ file containing handle }
{ length of filename }

IF status.all <> status_$ok THEN
error_$print_name (status, 'Error closing socket.', 21);

ipc_$delete(socket_file,
sizeof(socket file),
status); -

{ file containing handle }
{ length of filename }

IF status.all <> status_$ok THEN
error_$print_name (status, 'Error deleting handle file.', 27);

END;

PROCEDURE program_exit; { Program exit procedure}

BEGIN

program_cleanup;
pgm_$exit;

END;

BEGIN

{ Create file to contain a socket handle. }

ipc_$create (socket_file,
sizeof(socket_file),
status);

IF status.all <> status_$ok THEN
BEGIN

{ file for handle }
{ length of filename }

error_$print_name (status, 'Error creating handle file.', 27);
pgm_$exit;

END;

{ Open a socket so you can receive datagrams. }

ipc_$open(socket file,
sizeof(socket_file),
4,
local socket handle,
status); -

IF status.all <> status_$ok THEN
BEGIN

{
{
{
{

file for handle
length of filename
socket depth
handle for your socket

error_$print_name (status, 'Error opening soc~et.', 21);
program_exit;

END;

Sample Pascal Programs A-48

}
}
}
}

c

c

c

o

o

o

o

o

{ Get the server's socket handle. }

ipc_$resolve(server_socket_file, { file with server's handle}
sizeof(server_socket_file), { length of filename }
server_socket_handle, { server's handle }
status);

IF status.all <> status_$ok THEN
BEGIN

error_$print_name (status, 'Error resolving socket name.', 28);
program_exit;

END;

{ Initialize datagram sequence number. }

{ Enter loop to prompt for messages, send datagrams, and wait for
acknowledgments. }

REPEAT { begin get message loop }

{ Prompt for message. }

wri teln ('Enter a message (q to qUit) .) ;
readln (send_buf.msg_text);

{ Determine the message length. }

text len := sizeof (send_buf.msg_text);

WHILE (send_buf.msg_text[text_Ien] =
(text_len > 0) DO

text_len := text_len - 1;

) AND

{ Define the sequence number and length for the datagram. }

send_buf.msg_number := current_msg_number;
send len := text len + sizeof(datagram_t.msg_number);

{ Send the datagram and wait for an acknowledgment. If you don't
receive the acknowledgment within 10 seconds, then resend the
datagram. Try to send up to 5 times. }

A-49 Sample Pascal Programs

FOR send count := 1 TO 5 DO { begin send loop }
BEGIN
ipc_$send(server_socket_handle, { where to send datagram

local_socket_handle, { your handle
send_buf, { header you're sending
send_len, { length of the header
data_buf, { data portion
0, { length of the data
status);

{ If there's an error, try sending again. }

IF status.all <> status_$ok THEN
BEGIN

}
}
}
}
}
}

error_$print_name (status, 'Error sending datagram.', 23);
NEXT;

END;

{ If the send completed successfully, wait for an acknowledgment.
If you get a bad acknowledgment, ignore it and wait for another one.
Repeat the wait loop up to 3 times. then resend the datagram. }

FOR wait count 1 TO 3 DO { begin wait loOp}

BEGIN

ipc_$wait(local_socket_handle,
wait sec * 4.

{ your handle }
{ wait 10 seconds }

status);

IF status.all <> status_$ok THEN
BEGIN

{ If the wait timed out, exit from the wait loop and resend the
datagram. If there was another type of error. display an
error message and repeat the wait loop. }

IF status.all = ipc_$timeout THEN
EXIT;

error_$print_name (status. 'Error waiting for datagram.', 27);
NEXT;
END;

{ If the wait completed successfully, get the datagram and
verify that it contains a valid acknowledgment. }

ipc_$rcv(local socket handle, {
sizeof (ipc=$hdr_info_t). {
o {

receive_len,
data_buf.
data_len.
status);

Sample Pascal Programs A-50

{
{
{
{
{

your socket
maximum size of header
maximum size of data
where datagram came from
buffer for header
length of header
buffer for data
length of data

}

}
}
}

}
}
}
}

C

c

C'"
, .•.. ,.'

c

o

o

o

o

{ If there's a receive error. repeat the wait loop. }

IF status.all <> status_$ok THEN
BEGIN
error_$print_name (status. 'Error receiving datagram.'. 25);
NEXT;
END;

{ If you got a datagram. make sure it came from the server.
Otherwise. display an error message and repeat the wait loop. }

IF server socket handle <> rcv socket handle THEN - -
BEGIN
error_$print_name (status.

'Received message from unexpected socket.', 40);
NEXT;
END;

{ If the datagram came from the right socket. make sure it's
the right length. If it is. then check that the sequence number
is correct.If either condition is false, then display an error
message and repeat the wait loop. }

IF receive_len <> sizeof(datagram_t.msg_number) OR ELSE
receive_buf.msg_number <> current_msg_number

THEN
BEGIN

error_$print_name (status. 'Received bad acknowledgment.'. 28);
NEXT;

END;

{ If you got a good acknowledgment. exit from the wait loop
and the send loop. }

GOTO message_received;

END; { end of wait loOp}

END; { end of send message loop }

{ If you failed after 5 send attempts. display an error message and exit. }

writeln ('Unable to communicate with foreign socket. ');
program_exit;

A-51 Sample Pascal Programs '

message_received:

{ If the message started with a 'q', exit from the program. Otherwise,
increment the sequence number and repeat the get message loop. }

IF (text_len = 1) AND (send_buf.msg_text[l] = 'q') THEN
program_exit;

UNTIL false; { end get message loop }

END.

Sample Pascal Programs A-52

c

c

c

o

o

o

o

o

A

Access control list
for mailbox 6-8. 6-39

ACL
See also Access control list

Asynchronous fault
during eventcount wait 3-17
during mutex lock 4-6

c

Client
for IPC datagram 6-4. 6-18
for mailbox 6-1. 6-23
See also IPC datagram. Mailbox

Consumer
sample eventcount program 3-14

D

Datagram
See also IPC datagram

E

EC2
See also Eventcount

EC2_$ADVANCE 3-7
EC2_$READ 3-6
EC2_$WAIT 3-7

and asynchronous fault 3-17
EC2_$WAIT_SVC 3-7

and asynchronous fault 3-17
Eventcount

advancing 3-7
asychronous fault 3-17
data types 3-2
for IPC socket 6-7
for mailbox 5-27
insert files 3-2
overview 1-2. 3-1
reading 3-6
sample program A~15. A-19. 8-15. 8-18
steps for using 3-2
system calls for 3-2
user-defined 3-1
using in an event consumer 3-14
using an event producer 3-3
waiting for 3-7

F

Fault
asychronous 3-17

File
attributes for 2-10
remapping 2-18
unmapping 2-22

Index

Index-l

H

Handle

IPC

for IPC datagram 6-1
for mailbox 6-8

I

See also IPC datagram
IPC datagram

client 6-18
closing socket for 6-11
creating handle file for 6-4
data types 6-3
deleting handle file for 6-11
insert files 6-2
message format 6-3
opening socket for 6-4
overview 1-3. 6-1
recei ving 6-6
sample program A-42. A-47. 8-40. 8-44 '
sending 6-10
server 6-12
steps for using 6-4
system calls for 6-2
waiting for 6-7

IPC_$CLOSE 6-11
IPC_$CREATE 6-4
IPC $DELETE 6-12
IPC=$GET_EC 6-7
IPC_$OPEN 6-4
IPC $RCV 6-6
IPC=$RESOLVE 6-10
IPC_$SAR 6-10
IPC_$SEND 6-10
IPC_$WAIT 6-7

L

Lock
allowable combinations 2-13
changing 2-16
exclusive write 2-16
for mapping 2-12
for mutual exclusion 4-1. 4-6
protected read 2-13
protected RIW 2-14
shared read 2-14
shared write 2-16

M

Mailbox
access control list 6-8
access control list for 5-39
channel for 6-2
client 6-1. 6-23
client message buffer 6-6
closing 6-8
closing a channel 6-22. 5-23

creating 6-8
data types 6-3
eventcounts for 6-27
how a client gets a message 6-26
how a client sends a message 6-26
how a server gets a message 6-10
how a server responds to a data

transmission 6-19
how a server responds to an end of

transmission 6-16
how a server responds to an open
request 6-14

how a server sends a message 6-13
insert files 6-2
message format 6-4
opening a channel 6-23
overview 1-3, 6-1
sample program A-27, A-31, A-33, A-37,

B-26, B-29, B-31, B-36
sending long messages 6-22
server 6-1, 6-7
server message buffer 6-6
steps for using 6-6
system calls for 6-3
using the mailbox helper with 6-37

Mailbox helper 6-37
buffer suze for 6-39
queue data size for 6-39
starting 6-38

Mapped segment
attributes for 2-10
data types 2-2
force writing 2-22
insert files 2-2
locks for 2-12
mapping 2-3
overview 1-2, 2-1
providing advice for 2-8
relocking 2-16
remapping 2-18
sample program A-3, A-6, A-7, A-9,
A-ll, A-13, B-3, B-6, B-7, B-9,
B-ll, B-13

steps for using 2-3
system calls for 2-2
truncating 2-20
unmapping 2-22

Mapping a file 2-3

MBX

for a mutex lick record 4-3, 4-5
for an eventcount 3-6

See also Mailbox
MBX_$CLIENT_WINDOW 6-26
MBX_$CLOSE 6-8, 6-23
MBX_$COND_GET_REC_CHAN_SET 5-10
MBX_$CREATE_SERVER 6-8
MBX_$GET_CONDITIONAL 6-10, 5-25
MBX_$GET_REC 5-10, 6-26
MBX_$GET_REC_CHAN 6-10
MBX $GET REC CHAN SET 6-10
MBX=$OPEN 6-23 -
MBX_$PUT_CHR 6-25
MBX_$PUT_CHR_COND 6-25
MBX_$PUT_REC 6-13, 6-26

HBX $PUT REC COND 6-13, 6-26
MBX=$SERVER~WINDOW 6-22
MBX HELPER

See also Mailbox helper
Message

MS

for IPC socket 6-3
for mailbox 6-4

See also Mapped segment
MS_$ADVICE 2-8
MS $ATTRIBUTES 2-10
MS=$CRMAPL 2-3

parameters for 2-6
MS_$FW_FILE 2-22
MS_$MAPL 2-3

parameters for 2-6
MS_$RELOCK 2-16
MS_$REMAP 2-18
MS $TRUNCATE 2-20
MS=$UNMAP 2-22
MUTEX

See also Mutual exclusion lock
MUTEX $INIT 4-3
MUTEX =$LOCK 4-6

asychronous fault during 4-6
MUTEX_$UNLOCK 4-6
Mutual exclusion lock

data type 4-1
initializing 4-3
insert files 4-1
locking 4-6
overview 1-2, 4-1
sample program A-22, A-24, B~21, B-23
steps for using 4-2

Index-2

system calls for 4-1
unloclc1ng 4-6

p

PCM_$INVOKE 3-10
Producer

sample eventcount program 3-3

s

Sample program~
in c B-1
in Pascal A-1

Server
for IPC datagram 6-4, 6-12
for mailbox 6-1, 5-7
See also IPC datagram, Mailbox

Socket 6-1
SYSMBX 6-39

u

User-defined eventcount 3-1
See also Eventcount

c-

c

