O

DOMAIN System

Command Reference

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Order No. 002547
Revision 04

Copyright © 1987 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: May, 1983
Latest Printing: December, 1986

Updated: June, 1987

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and Domain are registered trademarks of Apollo Computer Inc.

3DGR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C,
Domain/ComController, Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL,
Domain/Dialogue, Domain/DQC, Domain/IX, Domain/Laser-26, Domain/LISP, Domain/PAK,
Domain/PCC, Domain/PCC-Remote, Domain/PCI, Domain/SNA, Domain/X.25, DPSS/MAIL,
DSEE, FPX, GMR, GPR, GSR, Network Computing Kernel, NCK, Network Computing System,
NCS, Open Network Toolkit, Open System Toolkit, OST, Personal Workstation, and Series 3000
are trademarks of Apollo Computer Inc. . ‘

Ada is a.registered trademark of the U.S. Government (Ada Joint Program Office). . PostSecript is
a trademark of Adobe Systems Incorporated.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

TN

e

O

Update Package 1 to the
DOMAIN System

Command Reference

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Order No. 009496
Revision 00

Copyright © 1987 Apollo Computer Inc.
All rights reserved.

Printed in U.S.A.

First Printing: June, 1987

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and Domain are registered trademarks of Apollo Computer Inc.

3DGR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, Domain/C,
Domain/ComController, Domain/CommonLISP, Domain/CORE, Domain/Debug, Domain/DFL,
Domain/Dialogue, Domain/DQC, Domain/IX, Domain/Laser-26, Domain/LISP, Domain/PAK,
Domain/PCC, Domain/PCC-Remote, Domain/PCI, Domain/SNA, Domain/X.25, DPSS/MAIL,
DSEE, FPX, GMR, GPR, GSR, Network Computing Kernel, NCK, Network Computing System,
NCS, Open Network Toolkit, Open System Toolkit, OST, Personal Workstation, and Series 3000
are trademarks of Apollo Computer Inc.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Offiée). PostScript is
a trademark of Adobe Systems Incorporated.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING
OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO
COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

TN

N

Updating Instructions

The information in this package supersedes the contents of the DOMAIN System Command
Reference, Revision 04. To update your manual, remove the old pages and insert the new pages
as listed below. Insert this instruction sheet behind the title page as a record of the changes.

Remove
Title/Notice

Preface

4-39/4-40
4-171/4-172 through 4-174

4-249/4-250

4-277/4-278
4-315/4-316

4-319/4-320 through 4-330

Index-1 through Index-9

Reader’s Response/
Business Reply

Insert

Title/Notice

Preface

2-14.1

2-50.1

4-39/4-39.1 through 4-40
4-171/4-172 through 4-174
4-249/4-250
4-263.1/4-263.2
4-277/4-278

4-315/4-316 through 4-316.1

4-319/4-320 through 4-330

Index-1 through Index-8

Reader’s Response/
Business Reply

O

O

Preface

This document updates the SR9.5 version of the DOMAIN System Command Reference for
software features included in the SR9.6 release. The DOMAIN System Command Reference is
the third volume in the three-volume introduction to the DOMAIN computing system. The first
volume, Getting Started With Your DOMAIN System (Order Number 002348), provides a
tutorial approach to getting started on your node. The second volume, DOMAIN System User’s
Guide (Order Number 005488), constitutes a handbook that takes you beyond the introductory
stage into practical applications of Display Manager (DM) and Shell operations. This third
document provides complete reference information on all of the DM and Shell commands that are
available to you. We assume that you are familiar with the material in the first two books before
you attempt to use this reference manual. Fundamental concepts like file structure and usage are
taken for granted here. We tell you how to use the commands; not why you might want to use
them.

For information on creating, protecting, and maintaining the network environment, see
Administering Your DOMAIN System (Order number 001746). For information on creating,

protecting, and maintaining the DOMAIN/BRIDGE internet environment, see Admzmstermg
Your DOMAIN/BRIDGE Internet (Order number 005694).

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the description of the
Shell command CRUCR (CREATE_USER_ CHANGE _REQUEST). You can also get more information
by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader’s Response form is located at the back of this
Guide.

v . Preface

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

< >

CTRL/Z

Preface

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the <CTRL > key while typing the

character.

Horizontal ellipsis points indicate that the preceding item may be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have
been omitted.

/'\y'
~_

Summary of Technical Changes

The Display Manager
The following new features are available in the SR9.6 DM.
New Commands and Features

e CDM (CHANGE_DISPLAY_ _MANAGER_ MODE): Ché.nge the display manager mode.
e LCM (LOAD_ COLOR_MAP): Load a color map.

The Shell
The following new features are available in the SR9.6 shell.
New Commands and Features

e SCRCH (SHOW_SCREEN__ CHARACTERISTICS): Show screen characteristics.
o SH8 (INVOKE_8=BIT _SHELL): Invoke 8-bit shell.

Changes to Existing Commands

e CPSCR: New -APPEND and -GPR[_ BITMAP] options.

¢ LCNET: New -C option.

e RTSTAT: New -DESC[RIPTION] option.

e VCOTL: New -SUSP, -EOL, -[NOJRAW, -[NOJENABLE __SIGS options.
e VSIZE: New -STD option.

e VT100: Support for PASTE and F8 keys.

o WBAK: New -PDTU option. -

NOTE: A vertical bar in the margin indicates a substantive technical change from Revision 04
of the DOMAIN System Command Re ference.

vii Preface

P

\. /’/‘

Summary of Technical Changes from SR9.2

Display Manager
The following new features are available in the SR9.5 Display Manager.

New Commands

o BL (BALANCE): Balance delimiters.
o CURS (CURSOR_LOCK): Control cursor positioning.
e MONO (MONOCHROME): Set color monitor to black and white.

Changes to Existing Commands

e CP: -N no longer must be the last token on the command line.

e CPO: New option, -W, to create process in wait mode.

e CPS: New option, -W, to create process in wait mode.

e DQ: New argument, WINDOW _NAME, which allows you to send a fault to a
specific process in a named window.

e WC: New argument, WINDOW _ NAME, which allows you to close a specific named
window.

Shell
The following new features are available in the SR9.5 Shell.

New Commands

e SHUTSPM: Shut down the Server Process Manager on a node.
e UMASK: Set DOMAIN/IX file-creation mode mask.

Changes to Existing Commands

o BIND: -SET_ VERSION nn.mm option is no longer valid.

e CPF: New option, -NSUBS; -SUBS is the default.

e CPT: New option, -NSUBS; -SUBS is the default.

o CRP: New option, -QUIET, to suppress connection messages.

e CRTYOBJ: New option, -PRE__SR9.5, to generate object modules in pre-SR9.5
format.

e DEBUG: New options, -NSRC to suppress source file display, and -GLOB to enable
DEBUG to enter routines in global address space.

¢ EDACL: New options, -SETPERS, -SETPROJ, -SETORG, -DYNAMIC, for
DOMAIN/IX compatibility.

¢ EDFONT: font pathname and initial editing character may now be passed to the
program as command line arguments.

e EDNS: New interactive command, UPDATE, to update the NS__ HELPER database
on a remote node.

e FPPMASK: Several new floating-point error mask conditions may now be reported.

e HPC: Several new options: -TO name, -FROM name, -PROC name, -LIMIT n, -MAP,
-NHDR.

o ITEST: Command renamed to IOS__ TEST.

3 Preface

e LD: Severl new options: -SC, -SR, -W, -CRB, -CRA, -USB, -USA, -MOB, -MOA. LD TN
also now automatically sizes its output to the width of the transcript pad’s window.
e LUSR: New option, -IDLE, to include idle nodes in report listing. e
e OLD _EDFONT: Obsolete command; no longer supported.
e PRF': Several new options: -COL, -POST, -LPI, -PAPER _ SIZE, -ORIENT, -C, -NC,
-D, -ND.
¢ RTCHK: -DEVICE option replaces -IIC.

e SET: Default startup file pathname is now USER_ DATA/SH/STARTUP in the login
home directory.

e SH: Default startup file pathname is now USER _ DATA/SH/STARTUP in the login
home directory.

e SIORF: -OBJ is obsolete and no longer supported. The command now handles binary
objects automatically.

e SIOTF: -OBJ is obsolete and no longer supported. The command now handles binary
objects automatically.

e TB: Complete overhaul; now performs cross-process traces.

NOTE: A vertical bar in the margin indicates a substantive technical change from Revision 03.

Preface 4

O

O

O

Summary of Technical Changes

The Shell
The following new features are available in the SR9.2 Shell.
New Commands and Features

e CRTY (CREATE_TYPE): Create a new type.

e CRTYOBJ (CREATE_TYPE_ OBJECT): Create a type object module for binding.

e DLTY (DELETE_TYPE): Delete a type.

e EDIP (EDIT_IP_HELPER): Invoke editor for IP__ HELPER.
e INTM (INSTALL _TYPE_ MANAGER): Install a type manager.
e INTY (INSTALL _TYPE): Install a new type.

o ITEST (10s_ TEST): Test IOS__$calls.

e SETVAR (SET_VARIABLE): Set the value of a variable.

Changes to Existing Commands

e KBD: New keyboard type added.
o LTY: Change in command syntax for -N option.

NOTE: A vertical bar in the margin indicates a substantive technical change from Revision 03

of the DOMAIN System Command Re ference.

Preface

TN

~.

(‘\
A}
//

27N

N

O

O

@

Summary of Technical Changes

Display Manager
The following new features are available in the SR9.0 Display Manager.

New Commands

o ENV (ENVIRONMENT): Set or display an environment variable.
o TNI (TO_NEXT _ICON): Move cursor to next icon.

Changes to Existing Commands

e LO [-ON|-OFF]: Enable/disable logoff capability.
e SQ (SEARCH_ QUIT): Now identical to ABRT.
e WP (WINDOW_POP): Now works with named windows and window groups.

Shell

The following new features are available in the SR9.0 Shell.

New Commands and Features

e Active functions: You may now use the construct "“command" to assign the value
returned by ’command’ to a Shell variable. See the DOMAIN System User’s Guide
for details.

e DSPST (DISPLAY _PROCESS_STATUS): Display process status graphically.

e EDNS (EDIT_ NAMING _SERVER): Invoke naming server editor.

e EXPORT: Change a Shell variable into an Environment variable.

¢ FOR: Execute a FOR statement.

e HLPVER (HELP_ VERSION): Provide HELP support for Shell scripts.

o LTY (LIST_TYPES): List installed types.

e NOT: Negate a Boolean value.

e OLD _ EDFONT: Former version of EDFONT with function key interface.

e PRF (PRINT_FILE): Now supports Imagen 8/300 and Imagen LBP-10 laser printers
connected via SIO lines or the Multibus.

e PRFD (PRF_DISPLAY): Invoke menu-based PRF.

e SELECT: Execute a SELECT statement.

e SEND __ ALARM: Send messages to alarm servers.

e SET: Set current Shell conditions.

e SOURCE: Execute a Shell script at the current Shell level.

e VSIZE (VT100_SIZE): Set or display VT100 window settings.

Changes to Existing Commands

o ARGS -ERROUT: Now writes output to error output if desired.

e BIND: Several new options: -ALLRESOLVED, -BDIR, -LOCALSEARCH,
-NOLOCALSEARCH, -MULTIRES, -NOMULTIRES, -MAKERS, -NUND,
-SET _ VERSION, -SYSTYPE. '

e CPBOOT: Now supports cartridge tapes.

v : Preface

o CPF -DU: Now deletes currently locked files once they are unlocked.

e CPT -F: Force tree deletion is you have P rights.

e CRP: New option: -ME; new functionality in -LOGIN; -MBX no longer available.

e CRUCR: New corporate address for UCR submissions.

o CTNODE: Several new options: -FROM, -ON, -MS, -MD, -IDUPL, -LC, -ROOT, plus
three new paragraphs in the description explaining "confusion resolution".

e DEBUG: New information on macros and variables, new option, -PROC, for
cross-process debugging

e EDACL: New option, -UNIX, plus new directory rights “S" (search) and "E"
(expunge).

e EDFONT: New version with a pointing device-driven interface.

o EDMTDESC: Now supports cartridge tapes.

e EMHASP: No lofiger standard software. Documentation is now provided with the
RJE product.

o EXISTF: Wildcarding in pathname arguments is now supported.

e EXIT: Now works for FOR and SELECT as well as WHILE.

e FPAT: New options: -RM, -RMF, -LM.

e HASPSVR: No longer standard software. Documentation is now provided with the
RJE product.

o INLIB: Now supports multiple pathnames and wildcarding.

¢ INVOL: Default paging size (option 8) is now 352 pages instead of 256. A new option
10 allows you to set or display the sector interleave factor for a volume. (See
Appendix D.) ‘

e LAS: New options: -ALL, -FROM, -TO, -PROCESS.

e LCNODE: New options: -C, -ID.

e LD -ROOT: Supports new naming server.

e NETSVC -S: Controls network server availability on a node.

e NEXT: Now works for FOR and SELECT as well as WHILE.

e PRF: Completely overhauled for SR9.

e PROBENET: New options: -D, -SENS. Deleted option: -Q. Comment character
changed from ’(blank)’ to '#’. Reported statistics also changed.

o PRSVR -N: Assign a name to the print server process.

¢ RBAK: Now supports cartridge tapes with the options -DEV CT, -RETEN,
-NRETEN, -REWIND. Limited floppy disk support.

e READ: New option, -ERRIN, for reading from error input; new -TYPE choices: ANY
and ENV.

e READC: New option, -ERRIN, for reading from error input.

e READLN: New option, -ERRIN, for reading from error input.

¢ RETURN -OK: Same as -TRUE.

¢« RWMT: Now supports cartridge tapes with the options -DEV CT, -RETEN,
-NRETEN. Limited floppy disk support.

e SALVOL: Now allows controller unit number specification for use when two or more
of the same storage device are attached to one node.

e SH: Completely overhauled for SR9.

e TCTL: Several new options: -[NOJRTS__ ENABLE, -FORCE, -NO[RAW|.

e WBAK: Now supports cartridge tapes with the options -DEV CT, -RETEN,
-NRETEN, -SYSBOOT, -NO_EOT. Limited floppy disk support.

NOTE: A vertical bar in the margin indicates a substantive technical change from Revision 02.

Preface vi

N

a

Contents

Chapter 1 Display Manager Basics

1.1. Defining Points and Regions
1.2. Defining Window Boundaries
1.3. Defining a Range of Text
1.4. Using Regular Expressions
1.5. Key Naming Conventions
1.5.1. Standard Key Names
1.5.2. Controlling Keys from Within a Program
1.6. Special Characters in DM Scripts and Key Definitions

Chapter 2 Display Manager Commands

Chapter 3 Shell Basics

3.1. Command Format
3.1.1. Arguments
3.1.2. Separators
3.1.3. Node Specifications
3.2. Using Special Characters
3.3. The Command Line Parser
3.3.1. Standard Command Options
3.3.2. Command Line Parser Options

Chapter 4 Shell Commands

Index

—e

1-11
1-11

3-1
3-1
3-2

3-3
3-4

3-6
3-6

Index-1

Contents

Illustrations

Figure 1-1. The Low-Profile Model II Keyboard Map
Figure 1-2. ' The Low-Profile Model I Keyboard Map
Figure 1-38. The Mouse Key Map

Figure 1-4. The 880 Keyboard Map

Figure 3-1. Typical Shell Command Format

Tables

Table 3-1. Command Shell Special Characters

1-10
1-10
1-10
1-11

3-1

Hllustrations

@

-

Chapter 1
Display Manager Basics

This chapter summarizes the basic concepts that apply to the DM commands described
individually in the following chapter. For a more indepth discussion of these concepts, please
refer to the DOMAIN System User’s Guide.

1.1. Defining Points and Regions

Unless otherwise noted, all DM commands must be preceded by a pointing operation. This
generally involves moving the cursor to the spot where the command is to be executed (for
example, pointing to the window that you want to scroll), or specifying a specific screen or line
location as a command argument. If you don’t specify some pointing function, the Display
Manager executes.the command at the current cursor position.

To point, simply move the cursor to the desired location. For example, to point to a window,
place the cursor anywhere inside the window. The command reads the cursor position to
determine which window you mean. (Please note that when you use the block cursor to designate
a point on the screen, the designated point is actually at the lower left corner of the block cursor.)

You can also define a point in any of the following ways:

line-number Line numbers begin at 1 and range upward to the last line in the pad. Pads
may contain up to 262,143 lines. You may use the symbol "$" to refer to the
last line in the pad. Remember that the edit pad window legend contains the
line number of the top line in the window for reference. You may also display
the line number (plus the column number and X and Y coordinates) of the
current cursor position by using the DM command "=",

+ /; line-number
The "+ /- line-number" format denotes the nth line before or after the current
cursor position in a pad.

[line-number],[column-number]]

This format indicates the point by line and column number i¢n the pad. The
Display Manager assumes the current line if the first portion is omitted, and
column one if the second portion is omitted. Line numbers range from 1 to the
last line in the pad (262,143 max.). Column numbers range from 1 to 256.
When you specify a point in this format, you must use the outer set of
square brackets to enclose the numbers. This is how the Display Manager
distinguishes between line/column positions in a pad and X/Y coordinates on
the screen (below). Note that the use of “$" to denote the last line in the pad
does not work within square brackets.

1-1 Display Manager Basics

Examples: [127,14] Line 127, column 14

(53] Line 53, column 1. Brackets are
optional in this case: see above.

[.12] Column 12 of the current line

([x-coordinate],[y-coordinate])

Screen coordinates specify bit positions on the display. The origin (0,0) is at
the extreme upper left corner of the screen. Maximum values for x and y
coordinates depend on the size of the screen in use. The current x or y
coordinate of the cursor is used if you omit it from the coordinate pair. When
you specify a point in this format, you must use the outer set of parentheses to
enclose the numbers. This is how the Display Manager distinguishes between
line/column positions in a pad (above) and X/Y coordinates on the screen.

Examples: (200,450) Bit position with the given coordinates

(135) Bit position whose X coordinate is 135
and whose Y coordinate is the same as
the current cursor position.

(.730) Bit position whose X coordinate is the
same as the current cursor position
and whose Y coordinate is 730.

/regular-expression/ or \regular-expression\
A regular expression specifies a string in the pad that begins or ends the region
of interest. Regular expressions are described in section 1.4.

Now that we can identify points, let’s turn to regions. A region is simply the area between two

points. To define a region, you need to use the DM command DR (DEFINE_REGION). The region
definition operation has the following format:

[point]l DR; [point]

The first point marks one corner of the region. The second point marks the opposite corner of
the region. Remember that the points may be defined by cursor positions or specified explicitly
in one of the alternate formats mentioned above.

For convenience, the predefined key, <MARK>, invokes the DR command. Point the cursor at
the start of the range, MARK it, then point at the end of the range. That’s all there is to it.

For those DM commands that require you to specify a region in which to operate, you can declare
it either by MARKing it, or by explicitly specifying the region with one of the techniques
described above. If a DM command does require you to define a region, the command is specified
in the following format:

[region] command
The symbol [region| indicates where you must define the region. (The definition of a range for

text editing operations -- cut, paste, substitute, etc.-- is slightly different. Refer to section 1.3 for
more information.)

Display Manager Basics 1-2

1.2. Defining Window Boundaries

When a window’s size or position on the screen is changed in any way, the DM determines the
new boundaries of the window using calculations based on a pair of points (a “point pair") on the
screen. Usually, the first point in the pair has been defined with the DR command and the
second point is the current cursor position, although you may provide absolute point coordinates
as described in section 1.1.

Each point may specify either a new or existing edge of a window, or a new or existing corner of
a window. The new window, then, is created based on the relationship between the X and Y
coordinates of the two points. When either of the points specifies a new upper edge or right edge
for a window, the position is adjusted to account for the size of the displayed block cursor,
because the actual coordinates of the cursor are determined by its lower left corner. This
adjustment is made only when the coordinate source is the block cursor, and not when the point
comes from the touchpad or mouse, or from explicitly entered coordinates.

The relationship between the two points in the point pair affects the actions of the
window-related commands CP, CE, CV, CC, WG, WM, and WDF in the following ways:

1. Horizontal movement only (y coordinates of the two points are equal):

Creation - Create a window bounded by the given x coordinates, the top of the screen,
and just above the normal DM command window (i.e., a full vertical window).

WG/WM - Select the unobscured vertical edge nearest to the first point, and change
the x coordinate of that edge to be that of the second point. The y coordinate of the
first point must be within the unobscured range of y coordinates of the selected edge.

2. Vertical movement only (x coordinates of the two points are equal):

Analogous to horizontal movement, except that for creation, the full horizontal width
of the screen is used.

3. No movement (two points are equal):

Creation - create a 512 by 512 window centered as nearly as possible (subject to screen
boundaries) on the given cursor position.

WG - treated as in 4 below.

WM - Select the unobscured corner nearest the given point, and move the corner to
that point.

4. Two points differ in both x and y:
Creation - The given four coordinate values form opposing corners of the window.

WG/WM - The first point selects the nearest unobscured corner (the corner itself
must be visible) and that corner is repositioned at the second point.

If only one point is given (i.e., the DR command is not issued), grow is illegal and move behaves

as in step 3 above. The DM uses one of its five default window regions, or a default determined
by the last window creation or deletion (WC) command, as follows:

1-3 Display Manager Basics

e If the last such command was window deletion (i.e., WC), the default region is the
same as that of the deleted window.

e If the last such command was a successful window creation command, the default
region is the next third of the screen following the created window.

o If the last such command was an unsuccessful window creation command, the default
region is the same as specified in that command.

To define the five default window regiohs, use the DM command WDF.

1.3. Defining a Range of Text

The text editing commands that perform cut, paste, and substitute functions operate on a range
of text. That range is declared just as you would mark any other region in a pad; i.e., you place
the cursor at the start of the range, press <MARK>, then move the cursor to the end of the
range and issue the command in question.

The region of text you define for a cut, paste, or search operation is highlighted in reverse video
when you use the <MARK> key. This is because that key invokes the DR;ECHO command
sequence. You can still use the DR command alone to place a mark, but the highlighting feature
is not invoked without ECHO. You can cancel the defined ranged with the ABRT command
(invoked with CTRL/X). Refer to the descriptions of the DR, ECHO, and ABRT commands for
more information.

Please note that the character under the cursor at the end of the range is NOT included within
the range. Note also that you may NOT declare a range explicitly as an argument to the editing
commands, since those commands do not, in general, accept arguments. You must use the
MARK key or the DR command sequence.

The default range is different for these editing operations, too. While the general DM default
range is the current cursor position, cut, paste, and substitute commands apply to all characters
from the current cursor position up to the end of the line (including the NEWLINE character) if
no other range has been marked immediately prior to invoking the command.

1.4. Using Regular Expressions

Special "regular expression" notation is used to specify patterns for search and substitute strings
in the Display Manager editor. This notation is also used in the Shell commands ED (EDIT),
EDSTR (EDIT_STREAM), FPAT (FIND_PATTERN), FPATB (FIND _PATTERN_BLOCK), and CHPAT
(CHANGE_PATTERN). Regular expressions permit you to concisely describe textual patterns
without necessarily knowing their exact contents or format. You can create expressions to

describe patterns in particular positions on a line, patterns that always contain certain characters
and sometimes include others, or patterns that match text of indefinite length.

Regular expressions are constructed as follows:

1. Any standard ASCII character (except those discussed below) is a regular expression
and matches one and only one occurrence of that character. (For multiple occurrence

Display Manager Basics 1-4

)

-
\

matches, see "*" below.) The case of the characters in the expression is not

significant by default. Use the DM command SC (SET_CASE) to control case
significance.

SAM
fredi2 All valid expressions.
Joe (a&b)

2. A percent sign (%) at the beginning of a regular expression matches the empty string
at the beginning of a line. If a "%" is not the first character in the expression, then
it simply matches the percent character. Use this special feature to mark the start of
a line in a regular expression.

*OZPrint" matches the string in line a but not line b, because in line b Print is not at
the beginning of the line.

(a) Print this file.
(b) This Print file.

3. A dollar sign ($) at the end of a regular expression matches the null character at the
end of a line. If "$" is not the last character in the expression, then it simply
matches the dollar sign character. Use this special feature to mark the end of a line in
a regular expression.

“file$" matches the string in line a but not line b, because in line b file is not
followed by an end-of-line marker.

(a) Print this file
(b) This file is permanent

4. A question mark (?) matches any single character except a NEWLINE character. The
only exception to this is if the “?" appears inside a character class (see below), in
which case it represents the question mark character itself.

"?OLD???" matches a and b, but not ¢, because in line ¢ the letters *OLD" are alone
on the line.

(a) HOLDING
(b) FOLDERS
(c¢) OLD

5. Whereas the above expression (?) matches only a single occurrence of a pattern, an
asterisk (*) following a regular expression causes it to match zero or more occurrences
of that expression. The only exception to this is if the "*" appears inside a character
class (see below), in which case it represents the asterisk character itself. Matching
zero or more occurrences of some pattern is called a closure. An expression used in a
closure will never match NEWLINE.

a*b Match b, ab, aab, etc.
%al*b Match any string that begins with a and ends with b, and that is

also the first string in the line. Any number of other characters can -
come between a and b.

1-5 Display Manager Basics

[A-Z][A-Z][A-Z]* Match any uppercase word; i.e., any string containing at least two
(and possibly more) uppercase characters (see character classes,
below). Strings like "Mary" would not match, since "Mary" does
not begin with two uppercase characters.

. A string of characters enclosed in square brackets "[string]" is called a character class.
This pattern matches any one character in the string but no others. If, however, the
first character of the string is a tilde (~), the regular expression matches any one
character except the characters in the string. If ~ is not the first character in the
string, then it simply matches the tilde character. Note also that the other special
characters % $? * lose their special meaning inside square brackets, and simply
represent themselves.

[sam)] Match the single characters s, a, or m. (If you want to match the

word “sam", don’t use the square brackets.)
[~sam] Match any single character except s, a, or m.

. Within a character class, you can specify any one of a range of letters or digits by
indicating the beginning and ending characters in the range separated by a hyphen.
That is, 0 through 9 matches any single digit; a through z or A through Z matches
any single letter, lowercase or uppercase respectively. (Remember, though, that the
actual matching search ignores case unless you have used the DM command SC to
enable case sensitivity.) The range can be a subset of the digits or letters (i.e., a
through n or 3 through 8). The first and last characters of the range, however, must
be of the same type: digit, lowercase letter, or uppercase letter. "[A-9]" is illegal.

Note that the "-" character has a special meaning inside square brackets. If you want
to include the literal hyphen character in the class for matching, it must either be the
first or last character in the class (so that it does not appear to separate two
range-marking characters) or be escaped (see below).

The "]" character is also special to character classes - it closes the class descriptor
list. If you want to include the right bracket character in the class, it also must be
escaped (see below).

In summary, the following characters have special meaning inside square brackets: ~

-]

[a~d] Match any single occurrence of a, b, c, or d.

%|A-Z) Match any capital letter that is also the first character on the line
(%).

1-[1-9][0-9]* Match any of the page numbers in this chapter.

[0A-Z] Match any string containing a zero or a capital letter.

[~a-2z0-9] Match any uppercase letter or punctuation mark (i.e., no lowercase

letter or number).

. The at sign (@) is an escape character. Characters preceded by the "@" character
have special meaning in regular expressions, as indicated below.

Display Manager Basics 1-6

4
N

O

10.

@n Match NEWLINE character.

@t Match a tab character. Note, however, that the keyboard TAB key
does not insert a literal tab; rather it moves the cursor to the
display’s next tab position. In a regular expression, @t matches
only tab characters that have been inserted with @t.

Q@f Match a form feed character.

In addition, the escape character may be used inside a character class definition ([]) to
specify literal occurrences of characters like "-" and "|", which have special functions
inside square brackets. You may also use it whenever you need a literal occurrence of
some special character in a normal expression (like ?, *, or @ itself).

[A-Z@-@) Match any capital letter, a hyphen, or a right bracket.

@@* Match a question mark followed by an asterisk, rather than zero or
more occurrences of any character (?*).

. You can concatenate regular expressions to form a more complex regular expression.

The resulting regular expression matches the concatenation of the strings that the
component regular expressions match. All of the examples above concatenate
expressions (single characters of some sort) into longer strings for matching.

You can "tag" parts of a regular expression to help rearrange pieces of a matched
string. A text pattern surrounded by braces "{pattern}" is remembered and can be
referred to by "@n", where n is a single digit referring to the string remembered by
the nth pair of braces.

s/{1}{?*}/@2@1/
S is the DM command for string substitution. The example will
move a three-character sequence from the beginning of a line to the
end of the line. "???" matches the first three characters of the line,
and “"?** matches the rest of the line.

so/{?}{?}/@2@1/ SO is also a DM command for string substitution, but it only
substitutes the first occurrence of the first pattern on a line. The
example will transpose two characters beginning with the one under
the cursor. This can be a handy key definition if you often type
vei" for "ie", etc.

1-7 Display Manager Basics

Summary of Features

Literal character

Beginning of line (if first character only)

End of line (if last character only)

Any single character except NEWLINE

Closure (zero or more occurrences of previous

pattern)
] Character class (any one of these characters)
..] Negated character class (all characters except

those in brackets or NEWLINE)
[c1-c2] Any one of a range of characters from cl through c2 (must be same type)
ec Escaped character (e.g., @%, @[, @x, etc.)
{expr} Tagged expression for use later in command line

* VHRNO

mm
.

CAUTION: Remember that the special characters described above apply only to regular
expression operations. Some of these characters also have meanings (often radically
different) in Shell commands and other software products. If you are using a regular
expression as a part of one of those Shell commands or products, be sure to enclose
the expression in quotation marks so that it will not be misinterpreted.

1.5. Key Naming Conventions

Every key on your keyboard (and mouse) has a name; in fact, almost every key has a set of three
or four names. One set is the normal one, and is invoked when the key is pressed down. The
second set is invoked when the key is released; these names are the up-transition names. The
third set is invoked when the key is pressed simultaneously with the SHIFT key; these are the
shifted names. Finally, many keys have special functions when they are pressed simultaneously
with the CTRL key; these are the control shifted names.

1.5.1. Standard Key Names

The definable keys (see Figures 1-1, 1-2, and 1-4) have the following names:

Letters and numbers These are named by their own single character. The capital
letters are distinct from the lowercase letters: merely refer to A
instead of worrying about "a shifted". When you refer to these
keys in a key definition, enter them within single quotation
marks.

ASCII Control These are the standard intraline and interline control keys.

CR : Carriage Return
BS : Back Space
TAB : Tab
TABS : Shifted Tab
“TAB : Control Shifted Tab
ESC : Escape (low-profile only).
Same as '~[* (hex 1B).
DEL : Delete (low-profile only).
Same as '~|’® (hex 7F).

Display Manager Basics 1-8

Alphabetic Control

DM Function

Program Function

Numeric Keypad

Mouse

These are named “x, where x is some other valid key name (i.e.,
*Y for CTRL/Y and *N for CTRL/N). There are also six
non-alphabetic control characters. Their names must appear in
single quotation marks. The names and the hexadecimal values
of the keys are: **[’ (hex 1B), "\’ (hex 1C), **]’ (hex 1D), »*~’
(hex 1E), >*?’ (hex 1F), and **|’ (hex 7F).

These keys perform special Display Manager functions. Those on
the left side of the keyboard are named L1 through L9 and LA
through LF. (Note that the low-profile keyboards have an extra
row of keys below L1 through L3. These keys are named L1A,
L2A, and L3A.) Their up-transition names are L1U through L9U
and LAU though LFU. Their shifted names are L1S through L9S
and LAS through LFS. The DM Function keys on the right side
of the keyboard are named R1 through R6. Their up-transition
and shifted names are formed in the same way that the left-side
keys are.

NOTE: Due to internal hardware restrictions, the 880 keyboard
does not execute shifted definitions for these keys. The
DM will not object if you define shifted operations for
them, but nothing will happen when you try to use the
shifted definitions.

These keys are specially reserved for user program control. They
appear at the top of the keyboard and are named F1 through F'8,
as labeled. Their up-transition names are F1U through F8U.
Their shifted names are F1S through F8S. Their control shifted
names are "F1 through “F8. (Note that the low-profile Model II
keyboard has two additional program function keys, FO and F9.
Their shifted and control shifted names are derived as described
above.)

These keys are only available on the low-profile Model II
keyboard. The keypad’s numeric keys are named NPO through
NP9. The keypad symbols are named NP+, NP-, and NP.
respectively. The "Enter" key is named NPE. Keys 0 through 9,
plus (+), and minus (-) can have shifted names (for example,

NP-+S).

These are the keys located on the optional mouse pointing device
(Figure 1-3). Their names are M1, M2, and M3. Their
up-transition names are M1U, M2U, and M3U. There are no
shifted or control shifted names.

Names containing special characters and all ordinary graphic characters must be in single quotes.
For example, to define the lowercase x key so that it acts just like the uppercase X key, you
would use the following command line:

kd ’'x’ es X’

Consequently, however, you may find it difficult to redefine the x key, because the Display
Manager enters an X when you press the x key. This is true for all the alphanumeric and special

1-9 Display Manager Bastics

|
=]
[elie]

L]
[
[
[

1

=]
=]

@-@@@@

Figure 1-1.

The Low=Profile Model II Keyboard Map

IM |
@@@I@I@Eﬂ@@ﬂlﬂ@ EL E]
mnzn@.@

2ot
e Tel)l

=E]E]
EiE=

—
o

—

[=]
=&

EEIE ==

[rjfra]fealle] [r]ln]le
@@@@@@@@I
N)

(

| @@I@@@Eﬂ@@ i
@-@@@M@@@I@@

Figure 1-2.

Figure 1-3.

The Mouse Key Map

The Low-Profile Model I Keyboard Map

character keys. Although it is possible to change the definitions of these keys, that capability is

intended mainly for use in programs.

while the program is running and only in pads the program controls.

Display Manager Basics

1-10

When a program defines a key, the definition applies only

O

(-

e O o s ca oy =)
&G B R G A L EEIEEE
@@@@@@@Eﬂ@@ﬂ%ﬂ:
Jooleelee] (BT oo o) e o o) e T [o
) I 2 2 . et A

I~ | 1) e o

Figure 1-4. The 880 Keyboard Map

1.5.2. Controlling Keys from Within a Program

Because of the great flexibility provided by our displays and keyboards, many applications
programs assume control of these and redefine various capabilities. When this happens, the
default DM key definitions are overridden by the applications program. The default definitions
are restored once the applications program ends. For your own applications, you may control
key definitions through program calls to the PAD_$DEF_PFK and PAD_$DM_CMD routines as
described in the DOMAIN System Call Re ference.

Because the normal functions of the Display Manager keys are often useful (even when they have
been redefined by applications programs), the <HOLD> and <HOLD/GO> keys have been
defined to provide a temporary override function. Pressing <HOLD> while in an applications
program will restore the keyboard to its log in DM definitions. Pressing <HOLD> again will
re-enable the application-defined keys.

You may not change this feature of the <HOLD> and <HOLD/GO>> keys, which is functional
only when the keyboard is under applications program control. This capability is independent of
the default Display Manager definitions of WH (WINDOW__HOLD).

1.6. Special Characters in DM Scripts and Key Definitions

Several rules governing the use of literal and special characters affect the proper interpretation of
commands within the Display Manager environment. The following characters have special
meanings when they appear in a DM command line or script.

Q The escape character "@" always nullifies any special meaning that the
following character might have. As a part of command parsing, the Display
Manager strips off the "@" character itself. If you can’t remember whether a
character has some special meaning to the Display Manager, it is always safe to
escape the character -- if it is not special, the Display Manager still removes the
"@", so the character appears as it should. The need for character escaping is
generally confined to search and substitute operations, commands requiring
quoted stings, and key definitions.

1-11 Display Manager Basics

The use of "@" can be confusing in key definitions because the text in key
definitions is actually processed twice - once when the definition is made, and
once when the key is depressed and the definition is used. If a character needs
to be escaped both times, it must be preceded by three "@" signs. For
example, "QQ@Q@#" becomes "@#" in the key definition, which then becomes
w#" when the definition is used. Only the characters listed in this section are
special within key definitions.

‘ When read from a DM script, (via the CMDF comamnd), the "#" character
causes the remainder of the line to be treated as a comment and skipped.

; Semicolon is the normal command delimiter. It is equivalent to NEWLINE
(generated by <RETURN>).

& This character makes an input request, except when it is read from the
keyboard. When read from the keyboard, it can be used in the replacement
part of a substitution command to represent the entire string matching the
regular expression. When "&" is preceded by "@" it becomes an ordinary
character in both contexts. Therefore, you can’t use "&" within a script or
key definition and also use its special meaning within substitute commands
that appear in that script or definition.

Some commands accept strings surrounded by single quotes. They are KD, ES, CP, CPO, CPS,
and the "&" character. When you use single quotes, the only characters in the quoted string that
retain their special meanings are "@", "&", and the closing single quote. All other characters
revert to their literal graphic values. Note, however, that the KD command is not aware of single
quotes within the definition string, so "#" and ";" must be quoted there as well.

For example, to define the F'4 key to enter the string "-#-" at the current cursor position, place
the following line in a key definition file:

kd F4 es '-—-@@@#-’' ke

Display Manager Basics _ 1-12

7N
N

N

O

Display Manager Task Lists

Moving the Cursor

Task DM Command Predefined Key
Low-Profile 880 Keyboard

Move left one character AL — (LA) +— (LA)
Move right one character AR — (LC) - (LC)
Move up one line AU T (L8) 1 (L8)
Move down one line AD l (LE) 1 (LE)
Set arrow key scale factors AS X y none none

(raster units)
Move to start of next line AD;TL CTRL/K CTRL/K
Move to beginning of line TL j+— (L7) |+ (L4)
Move to end of line TR —+| (L9) —| (L8)
Move to top line in window TT <SHIFT>/T (LDS) none
Move to bottom line in window TB <SHIFT>/l (LFS) none
Move to window border TWB {-L, -R, -T, ~B} none none
Tab left THL CTRL/<TAB> CTRL/<TAB>
Tab right TH <TAB> <TAB>
Set tabs TS [n1 n2 ...] [-R] none none
Move to DM Input Pad TDM <CMD> (L5) <CMD> (L5)
Move to next window on screen TN <NEXT WNDW> (LB) <NEXT WNDW> (LB)
Move to previous window TLW CTRL/L CTRL/L
Move to next window in which TI none none

input is enabled
Move cursor to next unobscured TNI none none

icon on the display
Control window availability CURS [-ON|-OFF] none none

for cursor placement

Creating a Process

Task DM Command Predefined Key

Low-Profile

880 Keyboard

Create new process, CP pathname <SHELL> (L5S) <SHELL> (R2)
transcript pad, and
windows
Create new process without CPO pathname none none
transcript pad or windows
Create server process (valid CPS pathname none none
only in DM startup file)
1-13 Display Manager Basics

Controlling a Process

Task DM Command Predefined Key

Low-Profile 880 Keyboard
Quit, stop, or blast a process DQ [name] [-S|-B|-C nn} CTRL/Q CTRL/Q
Suspend execution of a process DS none none
Resume execution of suspended DC . none none
process

Creating a Window
Read and Edit Pads

Task DM Command Predefined Key
Low-Profile 880 Keyboard

Create edit pad and window CE pathname <EDIT> (R4) <EDIT> (R4)

in which to view it :

Create view window (read-only CV pathname <READ> (R3) <READ> (R3)

pad)

Create copy of existing cC none none

window

Display Manager Basics

1-14

Managing Windows

Task DM Command Predefined Key
Low-Profile 880 Keyboard

Grow or shrink a window WGE <GROW> (L3A) CTRL/G
using rubberbanding

Move a window WME <MOVE> (L3AS) CTRL/W
using rubberbanding

Push or pop a window on stack WP <POP> (R1) CTRL/P

Close (delete) a window WC (name] [-Q | -F] none none

Close window, pad; update file PW;WC -Q <EXIT> (R5) CTRL/Y
Close window, pad; no update wC -Q <ABORT> (R5S8) CTRL/N

Set scroll mode WS [-ON | -OFF]) CTRL/S CTRL/S

set autohold mode WA [-ON | -OFF] none none

Toggle scroll and autohold modes WA WS CTRL/A CTRL/A

set hold mode WH [-ON | -OFF) <HOLD> (R8) <HOLD/GO> (RS5)

Set insert mode
(see "Editing a Pad")

Define position of default WDF [n] none none
window n

View latest output in Shell’s AU;AU;PB;TI CTRL/V CTRL/V
process transcript pad

Copy text to Shell’s process DR;TR;XC;TL;TI;TB; <AGAIN> (R2) <F8>
input pad TR;XP;TR

Copy text to DM input pad for DR; <SHIFT>/<READ> none
use with <READ> /{~a-z0-9%@/@-._"1/ (R3S)

XC CV_FILE;TDM;
ES “CV ’;XP CV_FILE;
TR;EN

Moving a Pad Under a Window

Task DM Command Predefined Key
Low-Profile 880 Keyboard
Move top of pad into window PT none none
Move cursor to first character PT;TT;TL CTRL/T CTRL/T
in pad
Move bottom of pad into window PB none none
Move cursor to last character PB;TB;TR CTRL/B CTRL/B
in pad
Move pad n pages PP [-In Tt 1 1 1
(LD, LF) (LD, LF)
Move pad n lines PV [-In <SHIFT>/T <SHIFT>/| F2, F3
(L8S) (LES)
Move pad n characters PH [~]n <SHIFT>/4+—~ <SHIFT>/— — —
(LAS) (LCS) (L7, L9)
Save pad in pathname PN pathname none none

1-15 ‘ Display Manager Basics

Editing a Pad

7N
i
Task DM Command Predefined Key N
Low-Profile 880 Keyboard
Set read/write mode RO [-ON | -OFF] CTRL/M CTRL/M
Set insert/overstrike mode EI [-ON | -OFF] <INS> (L1S) <INS MODE> (L1)
Insert string ES ‘string” [Default DM operation]
Insert NEWLINE character EN <RETURN> <RETURN>
Insert new line after current line TR;EN;TL <F1> <F1>
Insert raw (noecho) character ER nn none none
Insert end-of-file mark EEF CTRL/Z CTRL/Z
Delete character at cursor ED <CHAR DEL> (L3) <CHAR DEL> (L3)
Delete character before cursor EE <BACK SPACE> <BACK SPACE>
Delete word of text DR;/[~-A-Z0-9$_] /XD <F6> <F8>
Delete from cursor to end of line ES * “;EE;DR;TR;XD;TL;TR <F7> <F7>
Delete entire line CMS;TL ;XD <LINE DEL> (L2) <LINE DEL> (L2)
Copy text to paste buffer XC [-F pathname | name] <COPY> (L1A) CTRL/C VR
Cut (delete) text and write it XD [-F pathname | name] <CUT> (L1AS) CTRL/E !
to paste buffer N
Paste (write) text in paste XP [~F pathname | name] <PASTE> (L2A) CTRL/O
buffer into pad
Copy a portion of the screen XI [pathname] none none
into a GMF file
Search forward for string /string/ none none
Repeat last forward search // CTRL/R CTRL/R
Search backward for string \string\ none none
Repeat last backward search \\ CTRL/U CTRL/U
Abort search ABRT (or) SQ CTRL/X CTRL/X 7
Set case comparison for search SC [-ON | -OFF] none none o
Substitute string2 for all S/stringl/string2/ none none
occurrences of stringl in
defined range
Substitute string2 for first SO/stringl/string2/ none none
occurrence of stringl in each
line of defined range
Check and/or balance delimiting BL (-I|-C) ([l_char] [r_char] none none
characters a
f
\
Undo previous command(s) UNDO <UNDO> (L2AS) none N
Update edit file without PW <SAVE> (R4S) none

closing edit pad

Display Manager Basics 1-16

O

Using Window Groups and Icons

Task

DM Command

Predefined Key
Low-Profile

880 Keyboard

Add a window or group to a WGRA group_name [entry name] none
new or existing group
of windows

Remove a window or group WGRR group_name [entry_name] none
from a group of windows

control window visibility WI [entry_name] [-I | -W] none

Change a window into an icon ICON [entry_name][-I | -W] none
or an icon into a window [-C ‘char’]

Set icon position and IDF none
offset vector

Display a list of the CPB none

windows in a group

none

none

none

none

none

none

Managing the Display Environment

Task DM Command Predefined Key
Low-Profile 880 Keyboard
Request help none <HELP> (R6S) none
Log in L id [proj [org]] [-P] [-H] none none
Log off LO [~F] [—ON|—OFF] none none
Shut down system SHUT [~F] none none
Place a mark DR) <MARK> (L1) <MARK> (R1)
Go to a mark GM none none
Clear mark stack CMS none none
Display cursor coordinates = none none
(line, column; x/y coord.)

Acknowledge DM alarm AA . none none
Acknowledge alarm and pop window AP none none
Set or display an environment ENV var ({value] none none
variable :

Set background color BGC [-ON | -OFF) none . none
Set window color INV [-ON | -OFF]) none none
Set color monitor to black & white MONO [~ON | -OFF] none none
Refresh entire screen RS CTRL/F CTRL/F
Refresh window RW [-R] none none
Load font for use in pads FL pathname none none
Declare keyboard type KBD [type] none none
Set or display key definition KD name [[def.] KE] none none
Request input to command line &’ prompt none none
Execute DM script CMDF pathname none none

1-17

Display Manager Basics

)

\n

Chapter 2
Display Manager Commands

2-1 Display Manager Commands

AA (ACKNOWLEDGE _ ALARM)

AA (ACKNOWLEDGE_ALARM) == Acknowledge Display Manager Alarms

FORMAT

AA

The AA command acknowledges a Display Manager alarm. This command turns off the
current alarm and enables further alarms, which may already be waiting. AA requires no
arguments or options.

Display Manager Commands 2-2

)

ABRT (ABORT)

ABRT (ABORT) -- Abort text search; cancel any action involving ECHO

FORMAT

ABRT (CTRL/X)

The ABRT command aborts a text search, and cancels any action involving the ECHO
command.

When you use ABRT to abort the current search, the Display Manager returns the
message "Search aborted." It does not move the window. Note that you cannot type
this command during a search.

When you use ABRT to abort the ECHO command, ABRT cancels a move window with
rubberbanding or grow window with rubberbanding operation; or, it cancels highlighting
for a defined range of text, depending on how ECHO was used.

CTRL/X issues this command by default.

2-3 Display Manager Commands

AD (ARROW _DOWN)
AD (ARROW_DOWN) == Move cursor down one line.

FORMAT

AD

The AD command moves the cursor down one line from its current position. By default,
the down arrow key (LE) on the left hand key pad executes this command.

Display Manager Commands 2-4

AL (ARROW _LEFT)

AL (ARROW_LEFT) -~ Move cursor left one character.

FORMAT

AL

The AL command moves the cursor left one character from its current position. By
default, the left arrow key (LA) on the left hand key pad executes this command.

2-5 Display Manager Commands

AP (ACKNOWLEDGE _ POP)

AP (ACKNOWLEDGE _POP) == Acknowledge alarm and pop window.

FORMAT
AP

The AP command acknowledges a Display Manager alarm and displays ("pops") the
window to which the alarm pertains. This command is particularly useful if the window
is completely covered so that you cannot point to it. AP requires no arguments or
options.

Display Manager Commands 2-6

®
(\

)

AR (ARROW _RIGHT)

Q AR (ARROW_RIGHT) == Move cursor right one character.

FORMAT

AR

The AR command moves the cursor right one character from its current position. By
default, the right arrow key (LC) on the left hand key pad executes this command.

2-7 Display Manager Commands

AS (ARROW _ SCALE)

AS (ARROW_SCALE) -- Set scale factors for arrow keys.

FORMAT

AS [x[y]]

The AS command sets scale factors for the arrow keys. The scale factor is useful for
changing the apparent sensitivity of the arrow keys and for lining up the edges of
windows after moving them.

ARGUMENTS

If no arguments are specified, then the default scale factors are used, as described below.

x
(optional)

Y
(optional)

Display Manager Commands

Specify horizontal scale factor in raster units (integer). This
value must be in the range 0-1023. (Note, however, that portrait
displays may only display up to 800 raster units in this
dimension.) There are approximately 100 raster units per inch.
The default horizontal movement is the width of the character
on which the cursor rests; if the cursor is not on a character, the
DM uses the width of a space in the last window. Specifying 0
for ’x’ indicates that the default should be used.

Default if omitted: 0

Specify vertical scale factor in raster units (integer). This value

must be in the range 0-1023. (Note, however, that landscape
displays may only display up to 800 raster units in this
dimension.) The default vertical movement is the height of a
line in the last window. Specifying 0 for ’y’ indicates that the
default should be used.

Default if omitted: leave current y value unchanged

AU (ARROW __UP)
AU (ARROW_UP) == Move cursor up one line.

FORMAT

AU

The AU command moves the cursor up one line from its current position. By default, the
up arrow key (L8) on the left hand key pad executes this command.

2-9 Display Manager Commands

BGC (BACKGROUND _ COLOR)

BGC (BACKGROUND _COLOR) == Set background color of display.

FORMAT
BGC [-ON | -OFF]

The BGC command sets the background color for monochrome displays. Note that this
is the display background only; window background color is controlled with INV
(INVERT _ COLOR).

The background color is ON, by default, at login.

NOTE: BGC has meaning only for monochromatic displays. It has no effect on nodes
with color displays. See the DM command MONO for information about
background color on color displays.

OPTIONS

If no option is specified, BGC toggles the current mode.

-ON Set background color to grey or green, depending on display
type.
-OFF Set background color to black.

Display Manager Commands 2-10

7

@

BL (BALANCE)

BL (BALANCE) -- Balance delimiters.

FORMAT

[range]|BL [~I | =C] [1__char] [r_ char]

BL determines whether a given pair of delimiting characters (for instance, left and right
parentheses) is balanced within a specified range of text.

ARGUMENTS

range
(optional)

I_char
(optional)

r__char
(optional)

OPTIONS

Specify range of text to be checked. This argument is valid only

when used with -C; the range for -I is the current cursor position
to the end (or beginning) of the file. Define the range to be
checked as described in "Defining a Range of Text" in the
previous chapter.

Default if omitted: check from cursor to end of line

Specify the left delimiting character. If r__char’ is specified but
this argument is omitted, the left delimiting character defaults to
r__char’. If both arguments are omitted, the left delimiting
character defaults to left parenthesis.

Specify the right delimiting character. If ’1__char’ is specified
but this argument is omitted, the right delimiting character
defaults to ’1__char’. If both arguments are omitted, the right
delimiting character defaults to right parenthesis.

If either of the following options is specified, it must precede any specified arguments.

Default options are indicated by *(D)."

-1

(D)

Insert mode: search for balanced delimiters from the current
character to the beginning or end of the file. The behavior of BL
depends upon the character under the cursor when BL is
invoked.

If you position the cursor on a delimiter and BL finds a
balancing delimiter, it moves the cursor to the matched
character momentarily (to show you where the balance is
completed), then returns the cursor to the character immediately
rollowing the initial cursor postion. The search direction is
forward if the character under the cursor is a left delimiter, and
backward if the character is a right delimiter.

If you position the cursor on a delimiter and BL finds no

2-11 Display Manager Commands

BL (BALANCE)

Display Manager Commands

balancing delimiter, it gives an error message and sounds the
alarm, then inserts a matching right delimiter at the initial
cursor position.

If you position the cursor on a character other than a delimiter,
BL searches backward for the first occurrence of ’1 __char’, briefly
shows you where it is, then inserts a matching right delimiter at
the initial cursor position.

Check mode: check only -- do not insert balancing characters or
move the cursor. You may mark a range of text to be checked if
you specify this option; see the ’range’ argument above. BL
checks all pairs of specified delimiters within the specified range.
Results of the check are displayed in the DM message window.

2-12

)

()

CASE

CASE =-- Change case of all letters in a defined range of text.

FORMAT

[range]CASE [options]

The CASE command changes the case of all the letters in a defined range of text. You
can instruct CASE to invert the case of all letters, change all letters to uppercase, or
change all letters to lower case. If you do not specify a range, CASE operates on the text
from the cursor position to the end of the current line.

OPTIONS

Default options are indicated by *(D)."

-5 (D) Swap all uppercase letters for lowercase, and all lowercase
letters for upper case (in the defined range).

-U Change all letters in the defined range to uppercase.

~L Change all letters in the defined range to lowercase.

2-13 Display Manager Commands

CC (CREATE _ COPY)
CC (CREATE_COPY) -~ Create a copy of an existing window.

FORMAT

CcC

The CC command creates a copy of an existing window. To use this command, mark
both edges of the new window with the DR command, then point to the window to be

copied. With the cursor in the window to be copied, press <CMD> and issue the CC
command.

If no region is marked, the new window is created using the next default DM window.

NOTE

There is a homonymous Shell command: CC (COMPILE_ C) -- Compile a C program. See
the CC command description in the DOMAIN C Language Reference for more
information.

Display Manager Commands 2-14

®

O

CDM (CHANGE _DISPLAY _MANAGER _ MODE)

CDM (CHANGE_DISPLAY_MANAGER_MODE) =~ Change the display manager mode.

O

FORMAT
CDM [-P 1 | §]

The CDM command changes the display mode of the hardware which affects the colors
used by the Display Manager. A user normally uses this command in preparation for
running a direct color application, which requires a 24-plane workstation. In this case it
is necessary to restrict the Display Manager to only using 2 colors.

At login, the default is CDM (with no options), which instructs the hardware to use the
highest number of planes (normally 8) when drawing colors. This is an indirect color
mode where the DM uses several colors for window banners, window background, and
text.

O Note that this command causes a visual change in the colors on the screen of a 24-plane
workstation only. It has no effect on any other display hardware and the DM will give
an error message, “wrong display hardware", if this command is issued on any device
other than a 24-plane workstation.

_The CDM command differs from the MONO command in that the MONO command does
not affect the 24-plane hardware in any way. The MONO command simply instructs the
DM to use black and white for all its drawing operations, thus freeing up color slots in
the color map.

OPTIONS

The only option that the CDM command takes is a -P option that allows the user to specify
the number of planes that the Display Manager should use to get color. For example, a
“CDM -P 1" causes all DM output to be displayed in only 2 colors, through the use of one
plane. This is necessary to "free up" all 24 planes so that some application can run in
direct color mode. When the user is finished running a direct color application, the DM can
be restored to its original state by issuing the "CDM -P 8" command. The DM’s original
state is such that it uses 4 colors for window background, 4 more colors for window banner
background, white for banner text, and black for text in DM windows.

O

If no options are specified, CDM defaults to highest number of planes, causing the the
display to be reset to its original state where existing indirect color applications work as
before.

Default options are indicated by "(D)."

-P1 This causes the Display Manager to put the hardware in a state
where the DM draws in only 1 plane, causing the DM’s output to
appear in 2 colors.

-P 8 (D) This instructs the DM to use all 8 planes for drawing. The
hardware mode is changed to allow the DM to use 8 planes. The
DM’s output appears in many colors. This option is currently
equivalent to giving the CDM command with no options.

2-14.1 Display Manager Commands

O

CE (CREATE _EDIT)

CE (CREATE_EDIT) == Create an edit pad and window

FORMAT

[region]CE pathname [options]

Giving the CE command causes the Display Manager to create an edit pad and a window
in which to view it. If the file specified exists, it is opened for editing. If the file does not
exist, the DM creates and opens a file with the specified name.

By default, the <EDIT> key (R4) invokes the CE command, automatically moving the
cursor to the DM input pad and issuing the "Edit file: " prompt. Type the pathname of
the file to be edited.

Once an edit pad is created, you may use other DM commands to manipulate text in the
pad. See the DM index pages at the end of the previous chapter for a list of editing
commands.

To close a pad and window, use the DM command WC (usually CTRL/N).

NOTE: CE does not create a process. It simply opens a file for editing within the current
Display Manager process.

ARGUMENTS
region
(optional) Specify area of the screen where the new window will be
displayed. For details on window boundaries, see the previous
chapter.
Default if omitted: use next DM default window.
pathname
(required) Specify file to be edited.
OPTIONS
-1 Specify that the window created for this pad will be in icon
format.
=C ’char’ Specify the icon character to be used in the icon window. ’char’

must reside in the current icon font. If this option is not
specified and -I is present, the Display Manager will use the
default icon character for this pad type.

2-15 Display Manager Commands

CMDF (COMMAND _ FILE)
CMDF (COMMAND _FILE) == Execute DM script

FORMAT

CMDF pathname

CMDF directs the Display Manager to read commands from a file (DM script). When it
reaches the end of the file, the cursor returns to its previous location.

Command files may be nested; i.e., CMDF may be used within another DM script.

ARGUMENTS

pathname

(required) Specify name of file to be executed. DM commands may appear
one per line, or several per line, each delimited by semicolons.

Display Manager Commands 2-16

®

O

CMS (CLEAR _MARK _STACK)

CMS (CLEAR_MARK_STACK) -- Erase existing marks.

FORMAT

CMS

The CMS command erases any existing marks. Use it to ensure that commands requiring
marked regions do not behave unexpectedly as a result of outstanding (but probably
forgotten) marks. The <LINE DEL> standard key definition is a good example:
"CMS;TL;XD". Previous marks are cleared so that only the current line is deleted.

CMS requires no arguments or options.

2-17 Display Manager Commands

CP (CREATE _PROCESS)
CP (CREATE_PROCESS) == Create process, pads, and windows.

FORMAT

[region]CP [options] pathname [args ...]

CP creates a process, input and transcript pads, and input and transcript windows, then
executes a program (indicated by the pathname argument) within that process. The
transcript pad is opened as standard output in the new process. To create a process
running the Shell that we supply, either press the <SHELL> key (which causes
everything to happen automatically) or specify /COM/SH for pathname as follows:

Command: CP /COM/SH <RETURN>

This command creates an input pad associated with the transcript pad, and opens it as
standard input. As a result, you have a new process, windows to its input and transecript
pads, and a shell.

To stop a shell and delete all windows and pads associated with its parent process, type
CTRL/Z in the shell’s process input pad, then CTRL/N (refer to the DQ command in the
next section for more information).

ARGUMENTS
region
(optional) Specify area of the screen where the new window will be
displayed. For details on window regions, see the previous
chapter.
Default if omitted: use next DM default window.
pathname
(required) Specify file to be executed by the new process: usually a Shell
(command interpreter).
args ...
(optional) Specify any arguments to be passed to the program ’pathname’.
If any of these arguments contain explicit blanks, enclose those
arguments in quotation marks.
OPTIONS

Note that options, if present, must precede the ’pathname’ argument.

-1 Specify that the window created for this process will be in icon
format.
-C ’char’ Specify the icon character to be used in the icon window. ’char’

must reside in the current icon font. If this option is not
specified and -1 is present, the Display Manager will use the
default icon character for this pad type.

Display Manager Commands 2-18

)

C

CP (CREATE_ PROCESS)

=N name Assign process name 'name.’ If omitted, the DM assigns the
name “Process__n," where n is an integer beginning with 1 and
incremented by 1 for each active process.

EXAMPLES

1. Create a process named ’spare’ running the Shell. The ’-nstart’ option on SH
suppresses startup file execution for the new Shell.

Command: (0,0)dr; (500,300)cp /com/sh -nstart —-n spare

2. Create a process running the Shell, and place it in a window in icon format
using the default icon character for this pad type.

Command: cp -i /com/sh

2-19 Display Manager Commands

CPB (CREATE _PASTE _ BUFFER)

CPB (CREATE_PASTE_BUFFER) == Display a list of the windows in a group.

FORMAT

CPB group _ name [options]

The CPB command creates a window on a named paste buffer specific to the given
group. The paste buffer contains a list of the windows in the group. Because these group
lists are held in paste buffers, your programs can access the groups by using the PBUFS
routines described in the DOMAIN System Call Re ference.

The DM automatically creates three special paste buffers to help you manage your
windows and icons. These paste buffers contain the following groups:

e The INVIS _GROUP -- this buffer holds the pathnames of all the windows
that you have made invisible.

e The ICON_ GROUP -- this buffer holds the pathnames of all the windows
that are represented by icons.

e The ALLL.__ GROUP -- this buffer holds the pathnames of every window open
on your node - Shell process windows, DM windows, visible and invisible
windows, and windows represented by icons.

These special groups are created regardless of any other groups, and their members may
overlap with the members of any other group (just as any group can have the same
member(s) as another).

A special feature of the CPB command allows you to directly access the windows in a

group when the paste buffer holding the group is displayed on your screen. To use this
feature:

1. Use the CPB command to display the list of windows.

2. Position the cursor on the pathname of the window you want to access.
3. Press <CMD>, and issue the DR (MARK) command.

4. Press <CMD> again, and issue the desired DM command.

By using this feature you can directly access windows that are invisible, represented with
icons, etc.

ARGUMENTS

group __name

(required) Specify the name of the group you want to display.

OPTIONS

Display Manager Commands 2-20

CPB (CREATE_ PASTE _ BUFFER)

-1 Specify that the window created will be in icon format.

~C ’char’ Specify the icon character to be used in the icon window. ’char’
must reside in the current icon font. If this option is not
specified and -I is present, the Display Manager will use the
default icon character for this pad type.

2-21 Display Manager Commands

CPO (CREATE_ PROCESS _ ONLY)

CPO (CREATE_PROCESS _ONLY) == Create process without pads or windows.

FORMAT

CPO [options] pathname [args...]

The CPO command creates only a process, without associated pads or windows. The
four standard I/O streams are directed to /DEV/NULL. If this command appears in the
node’s DM boot startup script ‘NODE_ DATA/STARTUP the system assigns the new
process the subject identifier (SID) USER.SERVER.NONE .local __node, and the created
process will continue to run regardless of whether or not any one is logged in. This is
desirable for utilities like the PRSVR (PRINT_SERVER) and NETMAN, and means that
CPO is identical to CPS in this context.

If CPO is issued in any other startup script or from the keyboard, the SID of the new
process is derived from whatever process invokes CPO, and the created process will
terminate at logout.

ARGUMENTS

pathname

(required) Specify file to be executed by the new process.

args...

(optional) Specify any arguments to be passed to the program ’pathname’.
If any of these arguments contain explicit blanks, enclose those
arguments in quotation marks.

Default if omitted: no arguments passed.
OPTIONS

~N name Assign process name 'name’. If this option is omitted, the
process is not named.

-W Invoke "wait" mode. If this option is specified, the DM suspends
its activities until the newly created process terminates. As long
as the process runs, the DM will not respond to keyboard or
other input. USE THIS OPTION WITH CAUTION. If the
newly created process does not terminate, the DM will appear to
be hung. In addition, processes created using -W CANNOT
make any DM requests (via pad_$ requests or DM commands)
because the DM is suspended and will not respond.

EXAMPLES

1. Run the ALARM _ SERVER in a background process.

Command: cpo /sys/alarm/alarm_server -disk 98 -belll

Display Manager Commands 2-22

\
e

~

CPS (CREATE _ PROCESS_ SERVER)

CPS (CREATE_PROCESS_SERVER) == Create process independent of login.

FORMAT

CPS [options| pathname [args...]

CPS creates a process (without associated pads or windows) that runs regardless of
whether or not any one is logged in. This is desirable for utilities like the PRSVR

(PRINT _SERVER) and NETMAN. CPS may appear in any of the DM startup scripts.
You may prefer to issue the CPS command from the keyboard on selected occasions,
however, rather than include this function in a startup script.

The created process is assigned the subject identifier (SID)
USER.SERVER.NONE.local _node regardless of the context in- which the CPS command
appears. Be sure that any files to be used by this process (including the program
specified by the ’pathname’ argument) give adequate access to this SID. If the ACLs on
the files do not allow proper access to the SERVER project name, the process will
terminate. And since background processes are essentially invisible, no error messages are
returned to the display, making fault diagnosis difficult.

ARGUMENTS

pathname

(required) Specify file to be executed by the new process.

args...

(optional) Specify any arguments to be passed to the program ’pathname’.
If any of these arguments contain explicit blanks, enclose those
arguments in quotation marks.

Default if omitted: no arguments passed.
OPTIONS

=N name Assign process name ’name’. If this option is omitted, the
process is not named.

-w Invoke "wait" mode. If this option is specified, the DM suspends
its activities until the newly created process terminates. As long
as the process runs, the DM will not respond to keyboard or
other input. USE THIS OPTION WITH CAUTION. If the
newly created process does not terminate, the DM will appear to
be hung. In addition, processes created using -W CANNOT
make any DM requests (via pad_$ requests or DM commands)
because the DM is suspended and will not respond.

EXAMPLES

1. Run the server MBX__HELPER.

Command: cps /sys/mbx/mbx_helper -n mbx_helper

2-23 Display Manager Commands

CURS (CURSOR_LOCK)

CURS (CURSOR_LOCK) == Control cursor positioning.

FORMAT
CURS [-ON | -OFF]

CURS controls whether or not a window is available for cursor positioning by the DM

command TN (TO_NEXT_WINDOW), normally invoked by <NEXT WNDW>. All
windows initially default to CURS -ON, which permits the DM to move the cursor into
all windows via the TN command.

CURS operates on a per-window, per-pane basis. For example, you may prevent the DM
from moving the cursor to a transcript pad’s pane while permitting it to move the cursor
to the related input pad’s pane.

To set the window state, simply point to the appropriate window and then issue the
CURS command.

OPTIONS

If no option is specified, CURS toggles the current mode.
-ON Enable cursor positioning.

-OFF Disable cursor positioning.

Display Manager Commands 2-24

-

)

CV (CREATE _VIEW)

CV (CREATE_VIEW) == Create a read-only edit pad and window.

FORMAT

[region] CV pathname [options]

The CV command creates a read-only edit pad to view an existing file. You may not
make changes to the file, only view it. If you decide that you want to make changes to it
after all, you must first disable read-only mode. See the RO command description for
details about that operation.

By default, the <READ> key (R3) invokes the CV command, automatically moving the
cursor to the DM input pad and issuing the "Read file: " prompt. Type the pathname of
the file to be read.

To close a pad and window, use the DM command WC (usually CTRL/N).

ARGUMENTS
region
(optional) Specify area of the screen where the new window will be
displayed. For details on window regions, see the previous
chapter.
Default if omitted: use next DM default window.
pathname
(required) Specify file to be viewed. An error occurs if the file does not
exist,.
OPTIONS
-1 Specify that the window created for this pad will be in icon
format.
-C ‘char’ Specify the icon character to be used in the icon window. ’char’

must reside in the current icon font. If this option is not
specified and -I is present, the Display Manager will use the
default icon character for this pad type.

2-25 Display Manager Commands

DC (DEBUG _ CONTIUNE)

DC (DEBUG_ CONTINUE) == Continue a suspended process.

FORMAT

DC
The DC command restarts a process that has been suspended by the DS
(DEBUG_SUSPEND) command. Refer to the DS command description for details about

that operation.

DC requires no arguments or options.

Display Manager Commands 2-26

)

DQ (DEBUG _QUIT)

DQ (DEBUG_ QUIT) == Generate a quit fault in a process.

FORMAT

DQ [entry _name| [options]

The DQ command generates a quit fault, which normally interrupts execution of the
current program and returns the process to the calling program (usually the Shell). This
command affects the process associated with the window that contains the cursor. By
default, CTRL/Q invokes DQ without options to generate a normal quit fault in the
program currently running.

ARGUMENTS

entry _name

(optional) Specify the name of the window or window group whose process
is to receive the fault. Note that this is valid only for processes
with windows. To stop background processes, use the Shell
command SIGP (SIGNAL PROCESS). If the name of the window
or group appears as a text string somewhere on the display, you
may use the following time-saving feature: place the cursor on
the name, then press <MARK>. Now issue the DQ command.
DQ uses the MARKed name for the ’entry _name’ argument.

Default if omitted: send fault to the process whose window is
under the cursor.

OPTIONS

If no options are specified, then DQ generates a normal quit fault and halts whatever
program is currently running.

-C nn Generate an arbitrary asynchronous fault with the specified
hexadecimal status (nn).

-S Stop entire process in a controlled way, if possible. Close open
streams, files, pads, etc. The Shell’s parent process is stopped
and closed, too.

-B Blast process; do not execute further user mode instructions.

NOTE: If you are trying to stop a Shell’s parent process (as opposed to some program
running within a Shell), there is an easier method than typing DQ -S. Position
the cursor in the Shell’s process input window and issue an EEF (END_OF _FILE)
command (by default, CTRL/Z). This signals completion of input, and stops
both the Shell and the process. See the description of the DM command EEF for
more information.

2-27 Display‘ Manager Commands

DR (DEFINE _ REGION)
DR (DEFINE_REGION) =~ Place a mark to define a region.

FORMAT

DR

The DR command marks some part of the display or some part of a pad. The mark can
be used to define a region for a substitute command, to grow, shrink, or move a window,
or to reposition the cursor.

You may specify a literal point at which the mark is to be placed by preceeding the DR
command with line and column numbers in a pad, x and y screen coordinates, or regular
expressions for matching text. If no point is specified, the mark is placed at the current
cursor position.

By default, the <MARK> key invokes the DR command along with ECHO to provide
user-visible feedback.

Display Manager Commands 2-28

™)

O

DS (DEBUG_SUSPEND) == Suspend a process.

FORMAT

DS

DS (DEBUG _SUSPEND)

The DS command generates a temporary interrupt for a process. All activities are

suspended. Processes may be restarted with the DC (DEBUG _CONTINUE) command. See
the DC command description for details.

DS requires no arguments or options.

2-29

Display Manager Commands

ECHO

ECHO =-- Begin text echoing, end rubberbanding.

FORMAT
ECHO [option]

When used as part of the DR; ECHO command sequence invoked with <MARK >, the
ECHO command performs two seperate operations depending on the situation where it is
used. When you press <MARK > to begin defining a range of text, ECHO tells the DM
to begin highlighting the indicated text range in reverse video (text echoing). When you
use <MARK> to complete a move window (WME) or grow window (WGE) operation,
the ECHO command tells the DM to remove the "rubberband" and move or grow the
window as indicated. You can abort text highlighting or rubberbanding using the SQ
command. (By default, the CTRL/X key combination issues the SQ command.)

OPTIONS

-R Specify ECHO for a rectangular region of text. Use a mark
point and the cursor to specify a column along the left side of
the text you want to highlight in reverse video. When you issue
the ECHO command with the -R option all text to the right of
the specified column is then diplayed in reverse video.

Display Manager Commands 2-30

N

ED (EDIT _DELETE)
Q ED (EDIT_DELETE) -- Delete character under cursor.

FORMAT

ED

The ED command deletes the character under the cursor. If the character is a
NEWLINE, ED joins two lines. By default, the <CHAR DEL> key invokes the ED

command.

ED requires no arguments or options.

NOTE: There is a homonymous Shell command: ED -- Invoke line mode editor. See
the ED command description in the Shell chapter for details.

2-31 Display Manager Commands

EE (EDIT _ERASE)
EE (EDIT_ERASE) == Delete character preceding cursor.

FORMAT
EE

The EE command deletes the character preceding the cursor. If the window is in

overstrike mode, EE replaces the preceding character with a blank. By default, the
<BACKSPACE> key invokes the EE command.

EE requires no arguments or options.

Display Manager Commands 2-32

r\

O

EEF (EDIT _END _OF _FILE)

EEF (EDIT_END_OF_FILE) == Insert end-of-file mark.

FORMAT

EEF

The EEF command inserts a stream end-of-file mark (EOF) in the pad. If the line
containing the cursor is empty, the end-of-file mark is written on that line. Otherwise,
the end-of-file mark is inserted following the current line.

By default, CTRL/Z executes the EEF command.

It is a common (although not universal) convention for programs to terminate execution
and return to the process which called them when they receive an EOF on their standard
input stream. The command Shell is such a program. When the top-level program in a
process (usually /COM/SH) returns, the process stops and all of its streams are closed.
The Display Manager then closes the Shell’s process input pad and window, and closes
the transcript pad. Whether or not the transcript window also disappears depends on the
setting of its auto-close mode (see the WC command description for details). If
auto-close is disabled (the default condition), then you must manually delete any windows
associated with the closed transcript pad by using the DM command WC -Q, or
CTRL/N.

2-33 Display Manager Commands

EI (EDIT _INSERT)

EI (EDIT_INSERT) =- Set insert/overstrike mode.

FORMAT

EI [-ON | -OFF]

The EI command puts the current pad into (-ON) or out of (-OFF) insert mode. If no
option is supplied, the current mode is inverted. In insert mode, characters you type are
inserted into the pad without replacing or overstriking any existing characters. This
causes existing text to drift to the right as new text is added. In overstrike mode (i.e.,
insert mode turned off), characters typed at the keyboard replace those under the cursor.

This can be useful for entering information into pre-formatted files so that the format is
undisturbed.

By default, the <INS> key on low-profile keyboards and the <<INS MODE> key on
880 keyboards invoke the EI command without options to toggle the current mode.

The window legend contains an “"I" when the window is in insert mode. The "I®
disappears in overstrike mode.

All pads are initially in insert mode, although this is irrelevant if the pad is also
read-only.

Display Manager Commands 2-34

—

O

EN (EDIT _NEWLINE) == Insert NEWLINE.

FORMAT

EN

EN (EDIT _ NEWLINE)

The EN command inserts (or overstrikes, depending on current mode) a NEWLINE

character at the current cursor position.

By default, the <RETURN> key invokes this command.

2-35

Display Manager Commands

ENV (ENVIRONMENT)
ENYV (ENVIRONMENT) =- Set or display an environment variable. (

FORMAT

ENYV variable [value]

The DM command ENV sets or displays the value of an environment variable.
Environment variables are of primary concern to DOMAIN/IX users; please consult the
DOMAIN/IX documentation for details about their usage.

If you invoke ENV from the keyboard, you may use it only to display environment
variables, not set them. To set variables, ENV must appear in one of your startup
scripts so that it gets executed before any Shells are created. This is because the DM
assigns values to environment variables for new Shells using those in effect for the
window that currently contains the cursor. ENV thus does not have a chance to N
influence the new Shell if other Shell(s) already exist. In addition, the ENV command /\
will NEVER change the value of a variable in an existing process. N

For details about manipulating environment variables from the Shell, see the EXPORT
command description in the Shell commands chapter.

ARGUMENTS
variable Y
(required) Specify the name of the variable whose value is to be set or l\‘
displayed. Since the DM normally forces arguments to uppercase
prior to command scanning, enclose a variable whose name must
be lowercase in single quotation marks.
value
(optional) Specify the new value to be assigned to ’variable’. Since the
DM normally forces arguments to uppercase prior to command
scanning, enclose a value which must be lowercase in single .
quotation marks. (\
Default if omitted: display the current value of *variable’.
EXAMPLES
Command: env SYSTYPE Display the current value for SYSTYPE
for the current Shell window.
Command: env SYSTYPE °’bsd4.2° Set the SYSTYPE variable to ’'bsd4.2’.

This line must appear in a startup
script to have any effect.

Display Manager Commands 2-36

ER (EDIT _RAW)
O ER (EDIT_RAW) == Insert raw character.

FORMAT

ER nn

The ER command sends a raw character to a program. The single argument nn
(required) is a one or two character hexadecimal value which defines the single byte sent
to the active program the next time the program requests input. The data byte is not
echoed anywhere on the display. In effect, this command delivers a single raw keystroke
to a program.

This command can be used by programs that need to define keys to return known values
for actions by the programs.

O This command differs from the other text insertion commands in that it does NOT insert

the hexadecimal character into an edit pad. Its sole function is to pass a hexadecimal
character to a running program.

2-37 Display Manager Commands

ES (EDIT _ STRING)

ES (EDIT_STRING) == Insert string.

FORMAT
ES ’string’

If a window is currently in write mode, then any text character typed at the keyboard is
inserted at the current cursor position. This is the default Display Manager action.
Typing text into a read-only window causes an error.

The ES command inserts a string of text at the current cursor position. Enclose the
string to be inserted in apostrophes. Since text insertion is the default action anyway,
this command is primarily useful in key definition commands where you want some text
written out when the key is pressed, or in DM scripts for writing text to the display.

Display Manager Commands 2-38

O

EX (EXIT)

EX (EXIT) -- Exit Display Manager to Boot Shell.

FORMAT

EX

The EX command causes the system to stop the Display Manager process and enter the
Boot Shell. This puts you in the same place that you would be if you had powered up
your node with the NORMAL/SERVICE switch set to SERVICE.

To restart the Display Manager, type
) GO

in the Boot Shell.
This command differs from SHUT, which shuts the node’s operating system (AEGIS)
down completely and enters the Mnemonic Debugger that resides in the node’s boot

PROM.

Do not confuse this command with the Shell command EXIT, which exits a Shell script
loop. See the EXIT command description for more information.

2-39 Display Manager Commands

FL (FONT_LOAD)
FL (FONT_LOAD) == Load a font for use in pads.

FORMAT

FL pathname [-]]

The FL command loads a font for use in subsequent pads. Note that fonts apply to pads,
not windows, so any new window opened to an old pad uses the old font.

You can load up to 50 fonts. The DM keeps track of fonts loaded by the FL. command or
programs. It unloads fonts on a least-recently-used basis.

If you need to unload a font (to edit it with EDFONT for example), issue an FL
command for another font, and close all the windows using the font you wish to unload.
If a program loaded the font, stop the program (issue an end-of-file -- usually CTRL/Z),
and close the window.

ARGUMENTS
pathname
(required) Specify name of file containing font to be loaded. The given
pathname is first looked up directly, using the user working and
naming directory rules. If not found, it is looked up in the
directory /SYS/DM/FONTS.
OPTIONS
-1 Specify that the font to be loaded is an icon font.

Display Manager Commands 2-40

O

o

GM (GO _TO_MARK)
GM (GO_TO_MARK) -- Go to a mark.

FORMAT

GM

The GM command repositions the cursor at the most recently marked point after first
marking the current cursor position (where you invoked the GM command). This allows
you to alternate between two points with repeated invocations of GM. The most
common use of this is to "remember" a position in a file and return to it later. GM
repositions the window, if necessary, to display the marked pad location.

Pads may contain multiple marks, in which case GM works its way progressively through
the mark stack, consuming each mark as it goes. You may also place marks in different
pads; GM builds only one mark stack, not one for each pad. Thus you may use this

command to jump around between pads.

GM requires no arguments or options.

2-41 Display Manager Commands

ICON

ICON =- Change a window or window group into an icon(s); change an icon 7
back into a window. N

FORMAT

ICON |[entry __name] [options]

The ICON command changes the specified window or group into an icon(s), or changes
an icon back into a window. You can use two methods to change a window into an icon:
specify the window name (shown in the window legend) when you issue the ICON
command, (either by typing it or using <MARK> as described below), or simply
position the cursor in the window, press <CMD >, and issue the ICON command. If you
want to change a group of windows into icons, you must specify the group name when
you issue the ICON command. By default, if you do not specify an entry _name (the
name of a window or group) ICON manipulates the window under the cursor.

To change an icon back into a window, repeat the process described above. The window N
reappears on your display at its former position.

When you change a window into an icon, the DM displays an icon character that
describes the type of information the window displayed, such as an edit pad, a graphics
file, or a Shell transcript pad. The default icon characters are held in a font file called
/SYS/DM/FONTS/ICONS. If you desire, you can examine or change this file using the
EDFONT program described in the appendices. If you want to use your own icon font
file, invoke the FL (FONT_LOAD) command with the -I option prior to issuing the ICON

)

command. .
ARGUMENTS
entry name
(optional) Specify the name of the window or group you want to change
into icon(s), or change back into a window. If the name of the
window or group appears as a text string somewhere on the .
display, you may use the following time-saving feature: place the (\
cursor on the name, then press <MARK>. Now issue the T
ICON command. ICON wuses the MARKed name for the
’entry __name’ argument.
Default if omitted: manipulate the window under the cursor.
OPTIONS
If no options are specified, ICON toggles the current window setting.
-1 Force the window or group to appear as an icon. Not valid if
-W is specified.
-W Force the window or group to appear as a window. Not valid if
-I is specified.
-C char Specify the the DM icon character used to represent a window. (\

Display Manager Commands 2-42

IDF (ICON_ DEFAULT)

IDF (ICON_DEFAULT) == Set the icon default positioning and offset.

FORMAT

IDF

The IDF command sets the position of an icon on your screen, determines where
subsequent icons will be positioned (the offset), and specifies the icon shift vector to use
when icons start to overlap each other. Each time you issue the IDF command you reset
the positions where any subsequent icons appear.

By default, icons appear in a horizontal line along the top of portrait displays, and in a
vertical line along the right side of landscape displays. The default offset is set at the
width of one icon (60 bits) horizontally or vertically, depending on the display. You can
use IDF to change this default positioning and offset, to establish the position of an icon
created in a script, or to set your personal icon positioning and offset in a DM startup
seript (STARTUP __DM). Specify the IDF command in one of the following ways:

o Move the cursor to the new default icon position. Issue the IDF command.

This operation sets the first icon position; the offset of the next icon will be
0,0 (pixels) and the shift vector will be 0,0 (pixels). Therefore, all subsequent
icons will appear on top of one another at the first icon position.

o Move the cursor to the new default icon position. Use the <MARK> key or
issue the DR command to mark the cursor position. Move the cursor to
indicate the offset for the next icon. Issue the IDF command.

This operation sets the first icon position and next icon offset. The shift
vector is 0,0 (pixels). Therefore, when icons need to use already-occupied
positions, the DM places new icons directly on top of pre-existing icons.

Move the cursor to the new default icon position. Use the <MARK> key or
issue the DR command to mark the cursor position. Move the cursor to
indicate the offset for the next icon and once again issue a <MARK> or DR
command. Then move the cursor again in order to set the shift vector for
reused icon positions.

This operation sets the first icon position and the next icon offset. It also
establishes a shift vector so that icons will not appear directly on top of one

another if the DM needs to place new icons over pre-existing ones.

o Specify the icon position, offset, and shift explicitly in a command line. The
format is as follows:

(first_xy pos)DR; (next_xy pos)DR; (shift_xy pos);IDF

For example, the command line:

Command: (800,10) DR; (850,60) DR; (820,10); IDF

places the upper-left corner of the first icon at bit position (800,10), sets the

2-43 Display Manager Commands

IDF (ICON__DEFAULT)

icon offset vector to-(50,50) (found by subtracting the ’initial’ from the ’next’
bit positions), and sets the shift vector to (20,0) (found by subtracting the
’initial’ from the ’shift’ bit positions). The next icon would, therefore, appear
at bit positions (850,60), the next at (900,110), etc. If an icon must be placed

on top of the first icon, then it will be positioned at (820,10), the next at
(870,60), etc.

The IDF command requires no arguments or options.

Display Manager Commands 2-44

)

9

INV (INVERT _ COLOR)

INV (INVERT_COLOR) == Set window color.

FORMAT

INV [-ON | -OFF]

The INV command sets the color of all windows on monochrome displays. Note that
these are window backgrounds only; the display background is controlled with BGC

(BACKGROUND __ COLOR).

The window color is ON, by default, at login.

NOTE: INV has meaning only for monochromatic displays. It has no effect on nodes
with color displays. See the DM command MONO for information about
window color on color displays.

OPTIONS

If no option is specified, INV toggles the current mode.

-ON Display black characters on a white or green background,
depending on display type.

-OFF Display white or green characters on a black background,
depending on display type.

2-45 Display Manager Commands

KBD (KEYBOARD)

KBD (KEYBOARD) == Declare keyboard type.

FORMAT
KBD id

NOTE: This command is valid only in the DM file ‘NODE_DATA/STARTUP; it may not
be typed from the keyboard. See the DOMAIN System User’s Guide for
information on startup files.

KBD allows you to specify the keyboard that is attached to your node so that the proper
set of standard key definitions may be applied. When this command is invoked in the
‘NODE__DATA/STARTUP file, it causes the DM to execute the corresponding key definition

file (/SYS/DM/STD _KEYS, /SYS/DM/STD_KEYS2, or /SYS/DM/STD_KEYS3).

If this command is not invoked in the ‘NODE_DATA/STARTUP file, the DM will do the
following. It will first test for a low-profile Model II keyboard and, if one is attached, it
will use 'KBD 3’. If a Model II keyboard is not present, the DM will then default to
’KBD 2’ (low-profile Model I keyboard).

ARGUMENTS

id
(required) Specify keyboard ID. Valid IDs are ’ ’ for the 880 keyboard, ’2’

for the low-profile Model I keyboard, and ’3’ for the low-profile
Model II keyboard.

Display Manager Commands 2-46

)

O

KD (KEY _ DEFINITION)

KD (KEY_DEFINITION) == Set or display key definition.

FORMAT

KD key_name [[definition] KE]

The KD command defines a keyboard key as a sequence of DM commands. It also can
display the definition of a key.

ARGUMENTS

key _name
(required)

definition
(optional)

KE
(optional)

EXAMPLES

1. Command: KD L3

Specify the name of the key to be defined or displayed. Key
names are available from HELP DM KEYS. Enclose normal
alphanumeric and punctuation keys in quotation marks.

Specify sequence of DM commands that represent desired key
function; separate commands with NEWLINEs or semicolons.
Definition can be any number of commands, but cannot exceed
256 characters. Definitions may contain other predefined keys
(i.e., key definitions may be embedded in one another).

The input request character, ’&’, which is frequently used in key
definitions, must be preceded by an escape character (@) when
the KD command appears in a script.

If *definition’ is not specified and KE is present (i.e., definition is
null), then the current key definition is deleted and the key
reverts to its normal graphic value, if any. If KE is also absent,
then the definition of the named key is displayed in the DM
message window,

Default if omitted: see above

Signal the end of the KD command. This argument is required
if 'definition’ is present, or if you wish to delete a definition by
specifying a null definition.

Default if omitted: display ’key _name’ definition

Display definition of key L3.

2. Command: KD F6 AU;TR KE Define F6 key to move the cursor to end of

previous line in window.

3. Command: KD ~C KE Delete current definition of CTRL/C.

You can embed key definitions in key definitions, and thereby define keys that define other

2-47 Display Manager Commands

KD (KEY_ _ DEFINITION)

keys. The embedded key definition follows the same rules as any other key definition. The
KE that ends the embedded definition must be separated from the next command by an
“escaped” semicolon; that is, a semicolon preceded by the @ character. For example:

Command: KD F3 KD "X ES ’April is the cruelest month’ KE@; PV KE

changes the definition of the F'3 key, which normally just invokes the DM command PV, so
that it also changes the definition of CTRL/X to print out the string shown. If the ’;’ were
not preceded by an escape character, the definition would not be accepted.

Note that key definitions within key definitions aré scanned THREE times: 1) when the
outer key definition is made, 2) when the outer key definition is executed and the inner key
definition is made, and 3) when the inner key definition is executed. Because of this, you
must exercise great care when escaping (with "@") certain special characters such as "@"
itself.

Display Manager Commands 2-48

L (LOGIN)

L (LOGIN) == Log in to a node.

FORMAT

L id [proj [org]] [options]

The L command allows you to log in to a node. It is valid only at the beginning of a
session in reponse to the "Please log in:" prompt. Typing the L command after logging
in causes an error. After entering the L command, the system will request a password. If
you specify either the ID or the password incorrectly, the system displays an error
message and the correct format of the L command, and you may try again.

If you forget your password, you will have to contact your System Administrator, who
can assign a new password to you. The administrator will NOT be able to tell you your
current password, since those are encrypted within the system and are not
human-readable.

The ’L’ character itself is optional when preceded by the “Please log in:"* prompt. You
may omit it and simply type your ID if you desire.

When you have logged in successfully, the system sets the working directory to your
"login home directory," which may be anywhere in your file hierarchy that you please.
The login home directory name is first established by the System Administrator for your
network when your account is created. You may change it using the -H option (below).

ARGUMENTS
The ’id’, ’proj’, and ’org’ arguments may be separated either by blanks (as shown), or by
periods.
id _
(required) Specify the user ID assigned to you by the System
Administrator when your access privileges were established.
proj
(optional) Specify project ID associated with this user id. User IDs may or
may not have project IDs, depending on how the access privileges
were set up.
org
(optional) Specify organization ID associated with this user and project ID.
Again, this may or may not be necessary for any particular user
ID.
OPTIONS
-P Set new password. After you have successfully logged on with

the old password, the system will prompt you to set a new
password. The password may be any combination of ASCII
characters up to a maximum of 8 characters. (Note: Some
network configurations may require the password to be at least 6

2-49 Display Manager Commands

L (LOGIN)

Display Manager Commands

characters long for added security. Check with your local
System Administrator to see if this requirement has been
implemented on your network.)

Set new home directory. After you have logged on successfully,
the system will prompt you to establish a new home directory for
login. Enter the desired pathname. This is the directory which
you enter by default each time you log on.

2-50

®

LCM (LOAD _ COLOR_ MAP)

Q LCM (LOAD_COLOR_MAP) =~ Load a color map.

FORMAT

LCM [-p pathname]

LCM loads a color map from a file which specifies a set of color map entries. Each entry
establishes an association between an index and a color value. When the DM is initially
loaded, it sets the node’s color map from the file in /sys/dm/color _ map.

If no pathname is given, LCM loads the color map from /sys/dm/color_map. In this
case, all 16 colors (that is, color entries for color slots 0-15) are reloaded. If you specify a
pathname, then LCM reads the given file and tries to load the colors associated with the
indexes.

O NOTE: IF there are direct mode graphics programs running that have changed the color
values for color slots 0-15, then the execution of this command will change the colors in
these windows as well as resetting the DM’s colors.

OPTIONS
=-Ppathname Specify file which contains the color values for red, green, and
blue. The format of this file should be identical to the DM’s
color map file, /sys/dm/color__map. For more information
C\ about the format of this file, please refer to the manual
/ "Programmer’s Guide to DOMAIN Graphics Primitives".
EXAMPLES

1. Load the DM’s color map found in the file /sys/dm/color _ map.
Command: lcm

2. Load the color map specified in the file my _ colormap.

O Command: lcm —p my_colormap

2-50.1 Display Manager Commands

@

O

N

N

LO (LOG_ OFF)

LO (LOG_OFF) -- Log off a node.

FORMAT
LO [options]

The LO command stops all user processes (except those created by the CPS command

and those created by the node startup file ‘NODE_DATA/STARTUP), closes all pads and
files, and returns the display to the "Please log in:"* prompt.

If LO cannot terminate all active processes normally, then the command asks you
whether or not you wish to blast the remaining processes (see -F below). Respond either
Ny [IR}
y" or “n".

You may also disable the ability to log off. See -OFF below.

It is possible to execute a DM command script automatically at logout. The logout script
must be in a file named ‘NODE_ DATA/STARTUP_LOGOUT.type, where ’type’ is one of the
standard display type extensions used for startup file names (*.19L’, *.COLOR’ or none).
Note that you cannot start up new processes with CP, CPS, or CPO from this script
because the DM is in the process of shutting down all existing processes.

OPTIONS

-F Force log off by blasting processes that cannot be stopped
normally. If you use this option, be aware that some disk space
may be lost. To recover the disk space, use the salvager
SALVOL. Files and programs that you had been working with
may also be lost. The -F option should only be used as a last
resort when the normal logoff proceedure is not working.

-OFF Disable the ability to log off. When this option is specified, the
user who is currently logged in will not be able to log off.

-ON Enable log off. Use this option to restore the ability for a user
to log off.

2-51 Display Manager Commands

MONO (MONOCHROME)
MONO (MONOCHROME) == Set color monitor to black and white.

FORMAT
MONO [-ON|-OFF] -
MONO controls whether the DM displays text and windows in color or in black and

white. This command operates on color displays only. For information on controlling
window color on monochrome displays, see the DM commands BGC

(BACKGROUND _ COLOR) and INV (INVERT _COLOR).

MONO is OFF, by default, at login.

OPTIONS

If no option is specified, MONO toggles the current mode.
-ON Enable monochrome mode.

-OFF Disable monochrome mode.

Display Manager Commands 2-52

MSG (MESSAGE)

MSG (MESSAGE) -~ Display a message in the DM output window.

FORMAT

MSG ’string’

The MSG command instructs the Display Manager to print a string in the DM output
window. The string must be enclosed in single quotes.

ARGUMENTS

string
(required) Specify the string to be printed in the DM output window.

EXAMPLES
The DM command line:
Command: MSG ’Please select another key’

causes the DM to display the message "Please select another key" in the DM output
window.

2-53 Display Manager Commands

i%

PB (PAD _BOTTOM)
PB (PAD_BOTTOM) == Move bottom of pad into window.

FORMAT

PB
The PB command moves the bottom line of the pad to the bottom of the current
window. This is a pad movement command, as opposed to TB, which moves the cursor

to the last line in the window, regardless of that line’s position in the pad.

PB does not require either arguments or options.

Display Manager Commands

2-54

e’

O

PH (PAD _ HORIZONTAL)

PH (PAD_HORIZONTAL) == Move pad horizontally by characters.

FORMAT
PH [-]n

The PH command moves (scrolls) the pad horizontally under a window in units of
characters.

By default, the boxed horizontal arrow keys scroll a pad in 10-character increments.

ARGUMENTS

[-]n

(required)

Specify scrolling increment in characters. Positive (unsigned) 'n’
scrolls pad left; negative 'n’ scrolls pad right.

2-55 Display Manager Commands

PN (PAD_ NAME)

PN (PAD_NAME) == Save transcript pad in named file.

FORMAT

PN pathname

The PN command names a transcript pad and makes it permanent. That is, the pad is
stored in a file and remains on the system after all windows to it are deleted. The file
remains in use and locked, however, until the process is stopped and all windows are
closed. If you do not use the PN command, transcript pads are deleted when all windows
to them are deleted.

The PN command can also be used to change the name of an edit pad.

ARGUMENTS

pathname

(required) Specify the pathname where the DM saves the pad. The
pathname must be cataloged in a directory on your node (i.e.,
you cannot save a file on your node if the file name is cataloged
on some other node).

Display Manager Commands 2-56

N
N

C

S

PP (PAD _PAGE)

PP (PAD_PAGE) == Scroll pad vertically by pages.

FORMAT
PP [~]n

The PP command scrolls the pad vertically under a window in units of pages. By
default, the boxed up and down arrow keys invoke this command, scrolling in half-page
units.

ARGUMENTS

[~]n

(required) Specify scrolling increment in pages. Positive (unsigned) ’n’
scrolls down; negative 'n’ scrolls up. Note that 'n’ may also be a
decimal fraction.

A "page" is defined as the smaller of either of the following
values:

o the number of lines that fit in the window

e the number of lines between the bottom of the
window and the next form feed or frame

2-57 Display Manager Commands

PT (PAD_ TOP)

PT (PAD_TOP) ~- Move top of pad into window.

FORMAT

PT
The PT command moves the top line of the pad to the top of the current window. This
is a pad movement command, as opposed to TT, which moves the cursor to the first line

in the window, regardless of that line’s position in the pad.

PT does not require either arguments or options.

Display Manager Commands 2-58

)

/4

PV (PAD_ VERTICAL)

PV (PAD_VERTICAL) == Scroll pad vertically by lines.

FORMAT
PV [=]n
The PV command scrolls the pad vertically under a window in units of lines. By default,

the shifted up and down arrow keys on the low-profile keyboard and the F2 and F3
function keys on the 880 keyboard invoke this command, scrolling in one line units.

ARGUMENTS
[-]n

(required) Specify scrolling increment in lines. Positive (unsigned) ’n’
scrolls down; negative ’n’ scrolls up.

2-59 Display Manager Commands

PW (PAD _ WRITE)

PW (PAD_WRITE) -- Update edit file while maintaining edit pad unchanged. . N
N
FORMAT
PW

The PW command updates a file that is being edited. It is valid only for writable edit
pads. The first time you issue PW, the DM writes the contents of the edit pad to the file
that is being edited, without closing the edit pad. The previous contents of the file are
saved in a file with the same name and the added suffix .BAK. Subsequent PW or WC

(WINDOW _ CLOSE) commands rewrite the new file and leave the .BAK version of the file
unchanged.

PW is similar to WC with two exceptions. First, PW leaves the edit pad open. Second,
PW writes the new version of the file even if other windows are viewing the edit pad.

PW is useful if, for example, you want to try compiling a program you are editing. If C
you decide to make additional changes to the program, you can just go back to the edit
pad and continue editing, since updates made by PW leave the edit pad open and active.

The <SAVE> key on the low-profile keyboard executes PW;RO to save the pad and put
it in read-only mode. There is no predefined key on the 880 keyboard that provides a
similar function, although PW is executed along with other DM commands by the default

CTRL/Y sequence. '
TN
The PW command requires no arguments or options. (
N

9

Display Manager Commands 2-60

O

O

RM (REPLACE _ MARK)

RM (REPLACE_MARK) == Replace a mark on the mark stack.

FORMAT

RM

The RM command places the last issued mark (DR) back on the mark stack, allowing

you to use the mark again.

RM requires no arguments or options.

2-81

Display Manager Commands

RO (READ _ ONLY)

RO (READ_ONLY) == Set read/write mode.

FORMAT
RO [-ON | -OFF]
The RO command puts a pad into (~-ON) and out of (-OFF) read-only mode. If no option
is supplied, the current mode is toggled. The pad must be in write mode (-OFF') in order

for you to insert or delete anything.

By default, CTRL/M invokes the RO command without options to toggle the current
mode.

An "R" appears in the window legend of a pad in read-only mode. The "R" disappears
in write mode.

An edit pad which has been modified cannot be made read-only without first writing it
out with the PW command. See the PW command description for details.

Display Manager Commands 2-62

O

O

O

O

RS (REFRESH_SCREEN) -- Refresh screen.

FORMAT

RS

RS (REFRESH__ SCREEN)

The RS command refreshes the entire screen, updating all windows with any pending
changes. By default, the CTRL/F sequence invokes this command.

2-63

Display Manager Commands

RW (REFRESH_ WINDOW)

RW (REFRESH_WINDOW) -- Refresh a window.

FORMAT
RW [-R]

The RW command causes the DM to refresh the contents of the current window
immediately, updating it with any pending changes.

When an unexpected system fault, such as a network failure, occurs, pads may be marked
undisplayable in order to avoid further faults. When this happens, the DM displays an
error message instead of the window’s normal contents. When the problem has been
resolved, use the -R option (reset) to redisplay the window’s normal contents.

Display Manager Commands 2-64

S (SUBSTITUTE)

S (SUBSTITUTE) == Substitute all occurrences of matched string in defined range.

FORMAT

[range]S[[/[stringl]]/string2/]

The S command substitutes one literal string for a string described by a regular
expression over a defined text range. The command does not move the cursor or the
window, but does update the window when the substitution is completed. Strings used
with this command are also saved for later use (see below).

All substitutions are case sensitive, unlike searches, which ignore case unless told
otherwise. Substitution case sensitivity cannot be disabled.

If the Display Manager scans more than 100 lines while processing a substitute command,
it displays a "Substitute in progress..." message in its message window. Then it polls for
keystrokes for every 10 lines it processes. At this point you may:

1. Wait for DM to complete the operation.

2. Use the keyboard. It works as it does normally. You can type into any pad
except the one being searched. You can issue any Display Manager command
except another search or substitute command. The Display Manager executes
these commands when it completes the substitution. You can type input to
another Shell or program (if it was previously waiting for input). Subsequent
user process input and output requests will be processed when the Display
Manager finishes the substitution.

ARGUMENTS

If no arguments are specified, the previous substitution will be repeated from the current
cursor position to the end of the line.

range

(optional) Specify range of text in which substitution is to be made. See
the section on defining text ranges in the previous chapter for
details.
Default if omitted: use current cursor position to end of line

stringl

(optional) Specify string to be replaced in the form of a regular expression.
If this argument is omitted but the opening delimiter (/) is used
(i.e., "S//string2/"), then stringl defaults to the stringl used in
the last search operation. If the delimiter is also omitted (i.e.,
“S/string2/"), then stringl defaults to the string used in the last
substitution operation.
Default if omitted: see above

string2

(optional) Specify literal replacement string. This is not a regular

2-65 Display Manager Commands

S (SUBSTITUTE)

expression). An "&" can be used to denote stringl. If ’stringl’
is present, then ’string2’ is required.

Default if omitted: repeat last substitution command

EXAMPLES
1. CTRL/T
<MARK>
CTRL/B :

<CMD> s/Fielding/Tom Jones/

2. <CMD> s/Tom/& Jones/

Move to first character in the pad.

Place a mark.

Move to last character in the pad.

Replace the string "Fielding" with
“Tom Jones" throughout the marked
range (in this case, the entire pad).

Replace "Tom" with "Tom Jones".

Since no range was marked or specified,
the replacement takes effect from

the current cursor position to the

end of the line.

See the section on "Using Regular Expressions" in the previous chapter for more

examples.

Display Manager Commands

2-66

P

7

SC (SET _ CASE)

SC (SET_CASE) == Set search case sensitivity.

FORMAT
SC [-ON | -OFF]

A search can be either case-sensitive or case-insensitive. In case-sensitive searches, the
characters must match in case (i.e., /mary/ would NOT locate the string "MARY"). In
case-insensitive searches, uppercase and lowercase letters are considered equivalent. By
default, searches are case-insensitive.

The -ON option explicitly specifies a case-sensitive search; the -OFF switch explicitly
specifies a case-insensitive search. Typing the SC command without options toggles the
current case comparison setting.

NOTE: The SC command has no effect on substitution operations, only search
operations. Substitutions are always sensitive to the case of the strings
involved.

2-67 Display Manager Commands

SHUT

SHUT == Shut down system. .

FORMAT

SHUT [-F]

The SHUT command exits from the Display Manager and shuts down the system. The
Display Manager first closes all windows and pads, then unloads the operating system
(AEGIS) and enters the Mnemonic Debugger that resides in the node’s boot PROM. If
user processes are still active, the SHUT command attempts to stop them. If they stop

normally, the shutdown proceeds. If the Display Manager cannot stop them normally,
the SHUT command aborts.

The SHUT command has the same effect on system software as turning the node’s power
off.

To restart the system, type EX AEGIS in the Mnemonic Debugger.

To force either log off or shut down, specify the -F option. (The same effect can be
achieved by reponding "y" to a request to blast processes that cannot be closed
normally.) If you use this, however, be aware that some disk space may be lost if
processes cannot be terminated normally. To recover the disk space, use the salvager
SALVOL. See the SALVOL (SALVAGE _ VOLUME) command.

Display Manager Commands 2-68

)

)

e

N

SO (SUBSTITUTE _ ONCE)

SO (SUBSTITUTE_ ONCE) =~ Substitute first occurrence of matched string.

FORMAT
[range]|SO|[/[stringl]]/string?2]

The SO command is identical to the S (SUBSTITUTE) command except that ’string2’
replaces only the first occurrence of ’stringl’ in each line of the defined range of text.

2-69 Display Manager Commands

SQ (SEARCH_ QUIT)

SQ (SEARCH_QUIT) -- Abort a search operation.

FORMAT

SQ

The SQ command aborts a text search, and cancels any action involving the ECHO
command. This command is equivalent to ABRT.

The SQ command aborts the current search. The DM returns the message "Search
aborted." It does not move the window. Note that you cannot type this command
during a search. You must invoke it with a defined key.

When you use SQ to abort the ECHO command, SQ cancels a ’move window with
rubberbanding’ or ’grow window with rubberbanding’ operation; or, it cancels
highlighting for a defined range of text, depending on how ECHO was used.

Display Manager Commands 2-70

O

TB (TO_BOTTOM)

TB (TO_BOTTOM) -- Move cursor to bottom line in window.

FORMAT

TB

The TB command moves the cursor to the bottom line in the window. This is in contrast
to the PB command, which moves the bottom line of the pad into the window.

TB requires no arguments or options.

NOTE:
There is a homonymous Shell command: TB (TRACEBACK) -- Print traceback after
a fault. See the TB command description in the Shell chapter for details.

2-71 Display Manager Commands

TDM (TO_DM_ WINDOW)

N

TDM (TO_DM_WINDOW) -- Move cursor to DM input window.

FORMAT
TDM

TDM moves the cursor to the Display Manager input window (labeled "Command: * at
the bottom of the screen) so that you can enter DM commands.

By default, the <CMD> key (L5) invokes the TDM command.

TDM requires no arguments or options.

Display Manager Commands

2-72

e
(\

.,

/’\

TH (TAB_RIGHT)
TH (TAB_HORIZONTAL) == Move cursor right to next tab stop.

FORMAT
TH
The TH command moves the cursor right to the next horizontal tab stop. Tabs are
global (i.e., they apply to all windows), and may be set with the DM command TS.

Initially, tabs are set every 5 spaces.

By default, the < TAB> key invokes the TH command. Note that this does NOT insert
an ASCII tab character into the file; it simply positions the cursor to the next tab stop.

TH requires no arguments or options.

2-73 Display Manager Commands

THL (TAB_ HORIZONTAL _LEFT)

THL (TAB_HORIZONTAL_LEFT) =-- Move cursor left to previous tab stop.

FORMAT

THL

The THL command moves the cursor left to the next horizontal tab stop. Tabs are
global (i.e., they apply to all windows), and may be set with the DM command TS.

Initially, tabs are set every 5 spaces.

By default, the CTRL/<TAB> sequence invokes the THL command. Note that this
does NOT insert an ASCII tab character into the file; it simply positions the cursor to the

previous tab stop.

THL requires no arguments or options.

Display Manager Commands

2-74

N

/’_\

)

O

TI (TO _INPUT _ WINDOW)

TI (TO_INPUT_WINDOW) == Move cursor to next input window.

FORMAT

TI
TI moves the cursor to the next fully unobscured window in which input is accepted (i.e.,
the next window that opens into neither a transcript nor a read-only edit pad). The

cursor is placed at its last previous position in the window.

The Display Manager scans across the screen from left to right and top to bottom to find
the next window.

2-75 Display Manager Commands

TL (TO_LEFT)
TL (TO_LEFT) -- Move cursor-to the beginning of the current line.

FORMAT

TL

The TL command moves the cursor left to the beginning of the current line. By default,
the bar-left arrow key invokes the TL command.

TL requires no arguments or options.

Display Manager Commands 2-76

O

TLW (TO_LAST_ WINDOW)

TLW (TO_LAST_WINDOW) -- Move cursor to last (previous) window.

FORMAT

TLW

TLW moves the cursor back to the window it was in before it moved to the current
window. The cursor is placed at its last previous position in the window.

By default, the CTRL /L sequence invokes the TLW command.

2-77 Display Manager Commands

TN (TO_NEXT _ WINDOW)

TN (TO__NEXT _WINDOW) -- Move cursor to next window.

FORMAT

TN

TN moves the cursor to the next fully unobscured window on the screen. Any window
that is partially covered by another is not considered in the search. . The DM scans the
screen from top to bottom to find the next window, selecting the one whose upper-left
corner is the "highest" (i.e., has the lowest Y coordinate value), then proceeding
downward across the screen. If there are panes within a window, the cursor is positioned
in the next lower pane until the pane choices have been exhausted, before moving to the
next "lower" window. Once the next window is located, the DM places the cursor at its
last previous position within that window.

By default, the <NEXT WNDW > key (LB) invokes this command.

Display Manager Commands 2-78

s
/,

TNI (TO_NEXT _ICON)

TNI (TO_NEXT _ICON) -- Move cursor to next icon.

FORMAT

TNI

TNI moves the cursor to the next fully unobscured icon on the screen. Any icon that is
partially covered by another is not considered in the search. The DM scans the screen
from top to bottom to find the next icon, selecting the one whose upper-left corner is the
“highest" (i.e., has the lowest Y coordinate value), then proceeding downward across the
screen.

This command is similar to the TN command, which positions the cursor to the next
fully unobscured window on the screen.

2-79 Display Manager Commands

TR (TO_RIGHT)

TR (TO_RIGHT) -- Move cursor to the end of the current line.

FORMAT

TR

The TR command moves the cursor right to the end of the current line. By default, the
bar-right arrow key invokes the TR command.

TR requires no arguments or options.

Display Manager Commands 2-80

)

O

TS (TAB_SET)

TS (TAB_SET) -~ Set tab stops for all windows.

FORMAT
TS [n1] [n2] ... [-R]

The TS command sets the default tab stops for all windows. Tab stops may also be set

from within a program using a call to the system routine PAD_$SET_TABS; those set
under program control override the tab stops set by TS within windows belonging to the
program.

By default, tabs are initially set every 5 spaces.

NOTE: The DM command "=" displays the line and column numbers of the current
cursor position. This can be helpful when trying to set tab stops visually.

ARGUMENTS

If no arguments are specified, a stop is set at every character on the line.

nl n2 ...

(optional) Specify tab stops. The ’'n’ values are integers representing
absolute character positions. They must appear in increasing
order. Columns are numbered starting with one.

Default if omitted: see above
OPTIONS
-R Repeat the last interval.
EXAMPLES
Command: TS 7 12 -r (Set tabs at columns 7 and 12, and every 5

spaces thereafter.)

2-81 Display Manager Commands

TT (TO_TOP)

TT (TO_TOP) == Move cursor to top line in window.

FORMAT

TT

The TT command moves the cursor to the top line in the window. This is in contrast to
the PT command, which moves the top line of the pad to the the top of the window.

TT requires no arguments or options.

Display Manager Commands 2-82

TWB (TO_ WINDOW _ BORDER)

TWB (TO_WINDOW_BORDER) == Move cursor to a specified window border.

FORMAT
TWB {-L | -R | =T | -B}

The TWB command moves the cursor to a border of the current window, as specified by
the command options. You must specify an option with TWB.

OPTIONS

One of the following options is required.

-L Move the cursor to the left window border parallel to the
previous cursor position.

-R Move the cursor to the right window border parallel to the
previous cursor position.

-T Move the cursor to the top window border directly above the
previous cursor position.

-B Move the cursor to the bottom window border directly below
the previous cursor position.

2-83 Display Manager Commands

UNDO

UNDO =-- Undo previous DM command(s).

FORMAT

UNDO

UNDO works by compiling a history of DM activities in input and edit pads in reverse
chronological order. Invoking UNDO reverses the effect of the most recent DM
command. Successive UNDOs will undo further back in history. Note that this only
applies to DM operations; Shell operations (such as compiling a program) cannot be
undone.

The UNDO buffers (one per edit pad and one per input pad) are circular lists that, when
full, eliminate the oldest entries to make room for new ones. Entries are grouped
together in sets. For example, a S (SUBSTITUTE) command may change five lines. While
UNDO considers this to be five entries, the five entries are grouped into a single set so
that one UNDO will change all five lines back to their original state. When a buffer
becomes full, the oldest set of entries is erased. This means that UNDO will never
partially undo an operation: it will either completely undo it or do nothing.

An edit undo buffer can hold up to 1024 entries. An input undo buffer can hold up to
128 entries.

By default, the <UNDO> key on low-profile keyboards invokes the UNDO command.
There is no predefined key for this function on 880 keyboards.

UNDO requires no arguments or options.

Display Manager Commands 2-84

WA (WINDOW _ AUTOHOLD)

WA (WINDOW_AUTOHOLD) ~= Set window autohold mode.

FORMAT
WA [-ON | -OFF]

NOTE: Autohold mode applies only to windows open into transcript pads.

The WA command switches a window into (-ON) and out of (-OFF) autohold mode. WA
without options toggles the current setting. In autohold mode, the window automatically
enters hold mode (in which the contents of a window are temporarily frozen) if either of
the following conditions is true:

e A full window of output is available and none of it has been displayed.

o A form feed or create frame operation is output to the pad. In this case, the
window displays the output preceding the form feed. When the window exits
from hold mode, the output following the form feed or create frame operation
starts at the top of the window.

Initially, windows are not in autohold mode. The window legend contains an "A" when
the window is in autohold mode.

2-85 Display Manager Commands

WC (WINDOW __ CLOSE)

WC (WINDOW_ CLOSE) == Close window and associated functions.

FORMAT
WC [entry _name] [-Q | -F | =A | =§]

The WC command closes (deletes) a window or window group. It may also close the pad
into which the window looks, depending on the following conditions.

If other windows into the pad besides the one being closed exist, the DM naturally leaves
the pad open. If there are no other windows into the pad, however, the DM closes it.
The closed pad is then either deleted (if it was temporary) or saved under its pathname
(if it was named and permanent, i.e., a permanent disk file).

If the pad is a writable edit pad, and is being viewed only through the current window,
the DM renames the old file by appending .BAK to its name, and writes the edited
version to the original file name. If multiple windows are viewing the edit pad, WC
simply closes the window -- it does not write the file or rename the old file. To force the
DM to write the file and create the .BAK version, use the DM command PW

(PAD__WRITE) or the <EXIT> or CTRL/Y keys (see below).

A transcript (output) window normally cannot be closed if it is the last window into an
active process (see -F below).

Note that the DM cannot delete a permanent pad (file); you must use the Shell command
DLF (DELETE_FILE) for this purpose.

Two keys (or control/key sequences) have been predefined to perform related functions:

low-profile 880

PW.WC -Q (or) <EXIT> (R5) CTRL/Y Close window, pad;
update file

WC -Q (or) <ABORT> (R6S) CTRL/N Close window, pad;
ignore changes

ARGUMENTS
entry__name
(optional) Specify the name of the window or window group to be closed.

If the name of the window or group appears as a text string
somewhere on the display, you may use the following time-saving
feature: place the cursor on the name, then press <MARK>.
Now issue the WC command. WC uses the MARKed name for
the ’entry _name’ argument.

Default if omitted: close the window under the cursor.

Display Manager Commands 2-86

O

OPTIONS

WC (WINDOW _ CLOSE)

If no options are specified, WC closes the window and pad, then deletes the pad (if
temporary) or rewrites it (if permanent) as described above. Only one of the following
options may be specified at a time.

Default options are indicated by "(D)."

-Q

(D)

Quit without updating pad (file). Any changes made while
window was open are ignored. The system prompts you with
"File modified. OK to quit?" if you have made changes to verify
that you really wish to discard them.

Force window closure, even if this window was the last one open
into a process. Note that the process will become inaccessible,
however, if no windows are left.

Enable auto-close for current window. When auto-close is
enabled, the current window will close when the pad into which
it looks is closed.

Disable auto-close for current window. If auto-close is disabled

(the default condition), then the current window persists after
the pad into which it looks is closed.

2-87 Display Manager Commands

WDF (WINDOW _ DEAULT)

WDF (WINDOW _DEFAULT) == Define DM default window positions.

FORMAT
[region]WDF [n]

The WDF command lets you define any of the DM’s five default window positions. To
define a default window postion, mark (with the DM command "DR") the region that
will display the window, and issue the WDF command.

ARGUMENTS

region

(optional) Specify the area of the screen where the new window will be
displayed. For details on window regions, see "Defining Points
and Regions" elsewhere in this chapter.
Default if omitted: use marked region

n

(optional) Specify the ID number (1-5) of the DM default window that is

being defined. If you omit n, the WDF command discards any
saved window parameters, so the next window created uses the
stock default window boundaries.

Default if omitted: see above

Display Manager Commands 2-88

WG (WINDOW _ GROW)

WG (WINDOW_GROW) == Grow or shrink a window.

FORMAT
[region|WG

NOTE: There is a companion grow command WGE that provides visible feedback
during a grow operation. See the WGE command description elsewhere in this
chapter for information on that command.

The WG command changes the size of a window by moving one edge or corner across the
screen while leaving the other edges and/or corners where they are. To grow or shrink a
window, first mark the edge or corner you want to move by positioning the cursor at
that edge or corner and issuing the DR command string or pressing <MARK>. Then
move the cursor to the edge or corner’s new location and issue the WG command. (By
default, CTRL/G invokes the WG command on low-profile keyboards. This function is
not available by default on 880 keyboards.) The marked edge or corner moves to the
new cursor position, and the window shrinks or grows accordingly. If you want to move
only an edge, move the cursor only in the direction perpendicular to that edge. Moving
the cursor in two dimensions causes a corner to move.

ARGUMENTS

region

(optional) Specify old and new locations of edge or corner. May be
specified in a variety of formats: see "Defining Points and
Regions" in the previous chapter. This argument is REQUIRED
if you do not use the cursor placement and <MARK > operation
described above.

Default if omitted: use marked region

2-89 Display Manager Commands

WGE (WINDOW _ GROW _ECHO)
WGE (WINDOW_GROW_ECHO) == Grow/shrink a window with rubberbanding.

FORMAT

WGE

The WGE command changes the size of a window. To enlarge or shrink a window with
WGE, position the cursor in the window and issue the WGE command. (By default, the
<GROW>> key invokes the WGE command on the low-profile keyboard, while CTRL/G
provides the same function on the 880 keyboard.) After you enter the WGE command,
an outline, or "rubberband" will appear to show you the size and shape that the window
will take when you complete the grow operation. Move the cursor until the rubberband
matches the new size you want for the window. Then issue the DR; ECHO command
sequence or press <MARK> to complete the grow operation. You can use the SQ
command (CTRL/X) to abort a grow operation using rubberbanding.

WGE requires no arguments or options.

Display Manager Commands 2-90

N

WGRA (WINDOW _ GROUP _ ADD)

WGRA (WINDOW_GROUP_ADD) == Create or add to a window group.

FORMAT

WGRA group _name [entry _name]

The WGRA command creates a new window group with the specified group __name, or
adds a window or group to an existing group. By default, if you do not specify an
entry _ name (the name of a window or group) WGRA uses the pathname of the window
where the cursor was last positioned.

ARGUMENTS

group _name
(required) Specify the name of the group to be created or enlarged.

entry _name

(optional) Specify the name of the window or group to be added to
’group _name’. .

Default if omitted: Use the pathname of the window where the
cursor was last positioned.

EXAMPLES
Command: WGRA Shell_Windows Process_1

This command adds a window called "Process 1" to a group of windows called
“Shell _Windows*".

2-91 Display Mdnager Commands

WGRR (WINDOW _ GROUP _ REMOVE)
WGRR (WINDOW _GROUP_REMOVE) =-- Remove window/group from group.

FORMAT

WGRR group _name [entry _name]

The WGRR command removes a window or group from a window group. By default, if
you do not specify an entry _name (the name of a window or group) WGRR uses the
pathname of the window where the cursor was last positioned.

ARGUMENTS

group _ name

(required) Specify the name of the window group that contains the window
or group you want to remove.

entry _name

(optional) Specify the name of the window or group to be removed.

Default if omitted: use the pathname of the window where the
cursor was last positioned

EXAMPLES
Command: WGRR Shell Windows Process_2

This command removes a window called "Process__ 2" from a group of windows called
“Shell__Windows". '

Display Manager Commands 2-92

WH (WINDOW _ HOLD)

Q WH (WINDOW _HOLD) == Set window hold mode.

FORMAT

WH [-ON | -OFF]
NOTE: Hold mode applies only to windows open into transcript pads.

The WH command switches a window into (-ON) or out of (-OFF) hold mode. WH
without options toggles the current setting. In hold mode, the contents of the window
are "frozen" and do not change when a program sends more output to the pad. When a
window is not in hold mode, the window automatically moves to the end of the pad as
new output appears.

By default, the <HOLD> key on low-profile keyboards and the <HOLD/GO> key on
880 keyboards invoke the WH command.

Initially, windows are not in hold mode. The window legend contains an "H" when the
window is in hold mode.

2-93 Display Manager Commands

WI (WINDOW __INVISIBLE)
‘WI (WINDOW _INVISIBLE) -- Make a window or group visible or invisible.

FORMAT
WI [entry _name] [-W | =I]

The WI command controls the visibility or invisibility of the specified window or group.
WI without options toggles the current mode. By default, if you do not specify an

entry _name (the name of a window or group) WI uses the name of the window under
the cursor.

ARGUMENTS

entry _name

(optional) Specify the name of the window or group you want to make
visible or invisible. If the name of the window or group appears
as a text string somewhere on the display, you may use the
following time-saving feature: place the cursor on the name, then
press <MARK>. Now issue the WI command. WI uses the
MARKed name for the ’entry _name’ argument.

Default if omitted: manipulate the window under the cursor.

OPTIONS

If no option is specified, WI toggles the current visiblity setting.
-1 Force the window or group to be invisible.

-W Force the window or group to appear as a window.

Display Manager Commands 2-94

WM (WINDOW _ MOVE)

‘WM (WINDOW_MOVE) -- Move a window across the screen.

FORMAT
[region| WM

NOTE: There is a companion move command WME that provides visible feedback
during a move operation. See the WME command description elsewhere in
this chapter for information on that command.

The WM command moves a window across the screen. The DM moves the window whose
nearest unobscured edge or corner is the first point of the region. The new location of
this edge or corner is the second point of the region. So, to move a window, place the
cursor at one corner of the window you want to move and issue the DR command (or
press <MARK>). Next, place the cursor at the desired new position of the corner.
Finally, issue the WM command.

If you do not define a region, the WM command causes the nearest window corner to be
moved to the current cursor position. This can cause unexpected results if there are
multiple windows on the screen, however, since your idea of the "nearest" window may
not be the same as the DM’s. In that case, it is safer to <MARK> the window you
want to move.

ARGUMENTS

region

(optional) Specify old and new locations of edge or corner. This may be
specified in a variety of formats: see "Defining Points and
Regions" in the previous chapter.

Default if omitted: use current cursor position

2-95 Display Manager Commands

WME (WINDOW _ MOVE__ ECHO)

WME (WINDOW_MOVE_ECHO) =-- Move a window using rubberbanding. ' /\\]
Q\&./
FORMAT
WME

The WME command moves a window across the screen using the rubberbanding feature.
To move a window, place the cursor in the window you want to move and issue the
WME command. (By default, the <MOVE> key invokes the WM command on the
low-profile keyboard while CTRL/W provides the same function on the 880 keyboard.)
After you issue the WME command an outline or "rubberband® will appear to show you
where the window will be when you complete the move operation. Now move the cursor
until the rubberband is at the desired window position. Finally, issue the DR; ECHO
command or press <MARK> to complete the grow operation. You can use the SQ
command (CTRL/X) to abort a move operation using rubberbanding.

The WME command requires no arguments or options. NS

®

Display Manager Commands 2-96

WP (WINDOW _POP)

WP (WINDOW_POP) == Push or pop a window on the stack.

FORMAT
WP [entry _name] [-T|-B]

The WP command pops a window to the top of the stack or pushes a window to the
bottom of the stack. If the cursor rests in a partially obscured window, the WP
command pops the window to the top of the pile. If the cursor rests in a completely
visible window, WP pushes the window to the bottom of the pile. WP can also
manipulate specific named windows or window groups. See the ARGUMENTS section
below.

By default, the WP command is invoked by the <POP> key on low-profile keyboards,
while the same function is provided by CTRL/P on 880 keyboards.

ARGUMENTS

entry __name

(optional) Specify the name of the window or group you want to push or
pop. If the name of the window or group appears as a text
string somewhere on the display, you may use the following
time-saving feature: place the cursor on the name, then press
<MARK>. Now issue the WP command. WP uses the
MARKed name for the ’entry _name’ argument.

Default if omitted: push or pop the window under the cursor.
OPTIONS

The following options are intended primarily for use in DM scripts, where you may not be
able to predict the presence of other windows on the screen.

-T Force a window to the top of the window stack.

-B Force a window to the bottom of the window stack.
EXAMPLES
Command: wp -t Pop the window containing the cursor

to the top of the window stack.

Command: wp slide -b Push the window named °‘slide’ to the
bottom of the stack.

2-97 Display Manager Commands

WS (WINDOW _ SCROLL)

WS (WINDOW_SCROLL) == Set window scroll mode.

/ N
)
FORMAT
WS [-ON | -OFF]
NOTE: Scroll mode applies only to windows open into transcript pads.
The WS command switches a window into (-ON) and out of (-OFF) "line-at-a-time"
scrolling. WS without options toggles the current setting. When "line-at-a-time"
scrolling is in effect, output appears in the window one line at a time, scrolling past.
When "line-at-a-time" scrolling is not in effect, output appears a window at a time.
By default, CTRL/S invokes the WS command.
Initially, all windows (except edit windows) have "line-at-a-time" scrolling. The window (\
legend contains an "S" when the window is in scroll mode. ~

Display Manager Commands 2-98

XC (COPY)

XC (coPY) == Copy text to paste buffer.

FORMAT

[range]XC [-R] [-F pathname | name]

The XC command copies a range of text from any pad into a paste buffer or system file.
The copied text remains undisturbed.

By default, the <COPY> key on low-profile keyboards and CTRL/C on 880 keyboards
invoke the XC command using the default (unnamed) paste buffer.

ARGUMENTS

range
(required)

name
(optional)

OPTIONS

-F pathname

Specify range of text to be copied. Define the range to be
copied as described in "Defining a Range of Text" in the
previous chapter.

Default if omitted: copy from cursor to end of line

Specify paste buffer name. Text is written to the named buffer.

If text is copied to a buffer that has previously been used, the
new text overwrites the old. You may have up to 100 buffers
open per log in session.

Default if omitted: use unnamed buffer

Specify system file to receive copied text. If the file already
exists, the copied text overwrites the current file contents. Not
valid if ’name’ argument is present.

Specify copy for a rectangular portion of text.

2-99 Display Manager Commands

XD (CUT)

XD (CUT) == Cut (delete) text and write it to paste buffer.

FORMAT

[range]XD [-R] [-F pathname | name]

The XD command copies a range of text into a paste buffer or system file, then deletes
the text from the pad. This command can be used only in a writable pad.

By default, the <CUT> key on low-profile keyboards and CTRL/E on 880 keyboards
invoke the XD command using the default (unnamed) paste buffer.

ARGUMENTS

range
(required)

name

(optional)

OPTIONS

-F pathname

Display Manager Commands

Specify range of text to be cut. Define the range to be cut as
described in "Defining a Range of Text" in the previous
chapter.

Default if omitted: cut from cursor to end of line

Specify paste buffer name. Text is written to the named buffer.

If text is copied to a buffer that has previously been used, the
new text overwrites the old. You may have up to 100 buffers
open per log in session.

Default if omitted: use unnamed buffer

Specify system file to receive cut text. If the file already exists,
the cut text overwrites the current file contents. Not valid if
‘name’ argument is present.

Specify cut for a rectangular portion of text.

2-100

N
N /‘

XI (COPY _IMAGE)

XI (COPY_IMAGE) == Copy a display image into a graphiecs map file.

FORMAT
[range]XI [-F pathname]

The XI command copies a display image into a graphics map file (GMF). If you do not
mark the portion of the display window you want to copy, XI copies the entire window
where the cursor is positioned. You can print the GMF using the PRF Shell command
with the -PLOT option.

ARGUMENTS
range
(optional) Specify range of image to be copied. Define the range to be
copied as described in "Defining a Range of Text" in the
previous chapter.
Default if omitted: copy current window
OPTIONS
~F pathname Specify GMF output file. If this option is omitted, the image is

written to ‘NODE_DATA/PASTE _BUFFERS/DEFAULT.GMF. You can
print the GMF using the PRF Shell command with the -PLOT

option.

2-101 Display Manager Commands

XP (PASTE)

XP (PASTE) -- Paste (write) buffered text into pad.

FORMAT

XP [-R] [-F pathname | name]

The XP command inserts the contents of a paste buffer or system file into a pad at the
current cursor position. The contents of the paste buffer or file are unchanged by this

command, making multiple insertions possible. This command can be used only in a
writable pad.

By default, the <PASTE> key on low-profile keyboards and CTRL/O on 880 keyboards
invoke the XP command using the default (unnamed) paste buffer.

ARGUMENTS
name
(optional) Specify paste buffer name. Text is copied from the named
buffer. You may have up to 100 buiffers open per log in session.
Default if omitted: use unnamed buffer
OPTIONS
-F pathname Specify system file to provide paste text. Not valid if ’name’
argument is present.
-R Specify paste of a rectangular portion of text.

Display Manager Commands 2-102

O

Chapter 3
Shell Basics

This chapter summarizes the basic concepts that apply to the Shell commands described
individually in the following chapter. For a more indepth discussion of these concepts, please
refer to the DOMAIN System User’s Guide.

3.1. Command Format

In the most general sense, the operating system has no commands. There are simply files that the
Shell looks for and executes. When you type “date" in the Shell input window, the Shell looks
for a file called DATE (following its command search rules) and executes it. This means that any
files that you create can be given to the Shell for execution. (Of course, if you tell the Shell to
execute a file containing nonbinary data -- like the text of a memo -- you will receive an error
message.) The point is that any file, no matter where it comes from, may be given to the Shell
for interpretation and execution.

The simplest command line consists of a command name followed by arguments to the command,
separated by spaces:

$ command argi arg2 ... argn <RETURN>

Normally, you enter one command per line. You may continue a command over several lines by
typing @<RETURN> at the end of each line to be continued. The Shell then prompts with
“$ " to indicate that the current line continues the previous one.

3.1.1. Arguments

The command Shell, which we supply, handles commands that accept multiple arguments (see
Figure 3-1). Usually, those arguments come in two forms: a pathname designating a file on which
to operate or some other sort of literal string for manipulation, and instructions for special
command action. Those arguments that specify special action are almost always optional, and
are immediately preceded by a hyphen (-). (The hyphen is necessary because these arguments
often require secondary arguments of their own. The commands use the hyphen to interpret
correctly where all the different arguments apply.) These special arguments are labeled "Options*
in the command descriptions in Chapter 4.

$ 1d my dir -len
I | |____ Option (command modifier)
I [Argument (object of command action)
| | Command (LIST_DIRECTORY)
! Shell prompt

Figure 3-1. Typical Shell Command Format

3-1 Shell Basics

3.1.2. Separators

Normally, Shell commands are separated from each other by carriage returns (NEWLINE
characters). You may place multiple commands on the same line by separating the commands
with semicolons, up to a total of 256 characters per line. For example,

$ wd //mydir/subi;ld

This command line sets your working directory to the directory "//mydir/subl" and then lists
the contents of that directory.

Multiple commands may also appear on a single line when you are using pipes and filters.

3.1.3. Node Specifications

Many Shell commands require you to identify a target node on which the commands are to

operate. For example, the CRP (CREATE_A_PROCESS) command needs to know which node is
going to host the new process. You identify nodes with a node speci fication.

A node specification permits a node’s communications software to locate other nodes in a local
ring or in an internet (a network composed of individual network rings joined via
DOMAIN/BRIDGEs). This node specification may be either an internet address or a node name.

Internet Addresses

An internet address has the format:

[net].node__id

The net represents a network number and the node__id represents a hexadecimal node ID. A
network number of O refers to the local network.

If a node is cataloged (in either your local cache or the NS_ HELPER database), then you can
omit the network number when you use an internet address. When you provide only the node ID,
the system obtains the network number from either your local cache or the NS_HELPER
database. If you choose to provide a complete internet address, however, the system attempts to
locate the node only on the network you specify. Thus, if you specify an incorrect network
number, the system will look for the node only on the network that you specify and then report
an error; the system will not attempt to locate the node on another network.

If a node is not cataloged, the system cannot obtain a network number if you omit it. In this
case, the system assumes that the node is on the local ring. Thus, for an uncataloged node on the
local network, you must provide the node ID, but the network number is optional. However, you

must provide both the network number and node ID for an uncataloged node on a remote

network.
Node Names

A node name has the format:
//node __name

You can use a node name as a node specification only if the node is cataloged (in either your local

Shell Basics 3-2

e

VR
{

A/’A\

cache or the the NS_ HELPER database.) When you use a node name, the system obtains the
internet address associated with that name. If a node is not cataloged, you must use an internet
address to specify the node.

Note that both disked and diskless nodes can be cataloged and named.
Node Speci fication Examples

The following examples illustrate ways you can specify a node with an ID of A105, a name of
//CASEY, and a network number of 4051237A. (These examples assume that //CASEY is
cataloged in the NS__ HELPER database.)

1. $ LUSR -N 0A105 (Note that hex IDs that start with a letter must
be preceded by a 'O’ for the Shell to parse them
correctly.)

2. $ LUSR -N //CASEY

3. $ LUSR -N 4051237A.A105

In addition, if you are using a node on ring 4051237A, you can use the following internet address
to refer to //CASEY:

$ LUSR -N 0.A105 (’0’ indicates the local netwvork.)

3.2. Using Special Characters

The Shell recognizes a variety of special characters that allow you to change the action of
commands. The characters in Table 3-1 have special meanings when they appear on a command
line. Note that, while some of these characters have already been discussed as having special
meanings in Display Manager commands, regular expressions, and so forth, those meanings do not
necessarily carry over to the command Shell environment. Please be careful to keep the different
meanings distinct: regular expressions appearing in Shell commands, for instance, should be
enclosed in quotation marks to avoid confusion.

The at sign (@) is the Shell’s escape character. You can place an "@" anywhere on the
command line to suppress the special meaning of the next character (including the "@" character

itself).

For a full discussion of the usage of Shell special characters, please refer to the DOMAIN System
User’s Guide.

3-3 Shell Basics

Table 3-1. Command Shell Special Characters

Pathname Wildcards

Character Usage

? Match any single character except
NEWLINE.

% Match zero or more characters up
to but not including the period.

* Match zero or more occurrences of the
preceding character.

[string] Match any single character in the
character class "string".

[Fstring] Match any character except those

in "string"“.
Match zero or more subordinate directories.
= Copy (derive) leafname from
previous argument.

(names) Group pathnames for use in
later derived names.
{expr} Tag expression for later use.

Figure continued on next page

3.3. The Command Line Parser

Many Shell commands that we supply share a standard command line parsing procedure. It
determines how each command processes command line information. Chapter 4 of this manual,
and the on-line HELP files, identify commands that use the command line parser. These
commands support the following features:

1. You may use wildcards to specify existing pathnames.

2. You may use derived names to specify logically-related pathnames, and parentheses to
create several derived names with one command line. (See Table 3-1.)

3. When pertinent, you may include multiple pathnames as command line arguments.
For example, "PRF filel file2 file3".

4. You may use the asterisk character (*) to cause commands to read pathnames from
standard input or from another file. For example,

$ prf x/fred/names_file

prints the files listed in /FRED/NAMES _ FILE. Also,

Shell Bastcs 3-4

p

Table 3-1. Command Shell Special Characters (cont.)

Character

<
<?
<</
<<?/

>?

>>
>>7

)

Character

#
4

!
~n cmd n
~’cmd’

Notes:

(1) Special
(2) special
(3) special
(4) Special
(5) special

Input/Output Control

Usage

Redirect standard input

Redirect error input

Read in-line data from standard input
Read in-line data from error input
Redirect standard output

Redirect error output

Append standard output

Append error output

Pipe standard output

Group commands for I/0 redirection

Parsing Operators

Usage

Comment line in a command file

Run a program or command in
the background

Insert parameter

Insert parameter and rescan

Insert output of "cmd", with expansion

Insert output of "cmd", no expansion
Separate commands on a line

Quoted string, with expansion
Quoted string, no expansion

Escape character

Space

anywhere; causes a new command to start.

Notes

(3)
(3)
(3)
(3)
(3)
(3)
(3)
&)
&)
(1)

Notes

(4)
(1

3
(3
(3)
3
(1
(4)
(4)
()
(2)

anywhere; causes a nevw argument to start.

anywhere; does not start a new argument.

only at the beginning of an argument.

only when immediately preceding a character
that would otherwise be special.

Shell Basics

$ PRF *
filel
file2
file3
*kKEOF %%

$

reads the names "filel", "file2", and "file3" from standard input, and prints each
file. When using the keyboard for standard input, a NEWLINE and an end-of-file
character must follow the last name. By default, CTRL/Z generates an end-of-file
character.

If you include more than one name on an input line, in standard input or in a names
file, the command interprets all names except the first one on each line as derived
names. For example,

$ CHN * is equivalent to $ CHN * =,0l1d
a a.old a
b b.old b
c c.old c
* % KEQF k%% **EQF %% %
$ $

Do not confuse the action of the "*" character with that of the input redirection
symbol *<", The "*" character causes a Shell command to read pathnames from
standard input or from another file. The "<" symbol causes a Shell command to
read data from a file.

3.3.1. Standard Command Options

All Shell commands that we supply support the following standard options:
-HELP Display detailed usage information.

-USAGE Display brief usage summary.

-VERSION Display software version number.

NOTE: Using any of these three standard options precludes using any other options
within the same command.

3.3.2. Command Line Parser Options

Commands that use the command line parser also support the following options (D indicates a
default option):

-AE Abort if a name in pathname cannot be found. If omitted, processing continues
to the next name.

-NQ (D) Do not issue query to verify wildcard names.

-QW Issue query to verify wildcard names.

Shell Basics 3-8

-QA Issue query to verify all names.
= (hyphen alone) Read further data from standard input. End input with CTRL/Z.

*[pathname] Read file specified for further pathname arguments. If pathname is omitted,
read standard input for further pathname arguments.

Commands that delete or modify objects automatically verify names specified with wildcards.
You can suppress this query using -NQ, or extend it to all names using -QA.

When you select a query option, the command writes the selected names to the error output
stream with a ? to prompt you for a response. Then it reads your response from the error input
stream (normally the keyboard).

If you respond: The command:

h Displays help information.

Yy Operates on the name.

n Ignores the name.

q Quits immediately.

£ Operates on the name and suppresses further name queries.

d new__default Resets the default. The Shell performs the default action when

it receives a null line query response (i.e., when you simply press
<RETURN>). To change the default, enter d followed by
“yes", "no", or "none". The initial default is "none", which
means that the command ignores null line responses, and requires
explicit yes or no responses.

Chapter 4 describes each Shell command in detail. Those commands that use the command line

parser refer you to this section for information on the standard options to avoid repetition in the
text.

3-7 Shell Basics

Shell Basics

TN
/

s
!
A\

O

Functional Command Index

Manipulating Files/Directories
Creating Files /Directories

CRD (CREATE_DIRECTORY) -- Create a directory

'ORF (CREATE_FILE) -- Create a file

CRL (CREATE _LINK) -- Create a link
CRRGY (CREATE_REGISTRY) -- Create or modify network registry

Cataloging Files

CTOB (CATALOG__OBJECT) -- Catalog an object

UCTOB (UNCATALOG_ OBJECT) -- Uncatalog a pathname without deleting the object

LD (LIST _DIRECTORY) -- List contents of a directory
ND (NAMING _DIRECTORY) -- Set or display naming directory
WD (WORKING _ DIRECTORY) -- Set or display working directory

Changing File /Directory Attributes

CHN (CHANGE_NAME) -- Change an object’s name
CVT _REC_UASC -- Convert files between types
OBTY (OBJECT _TYPE) -- Set or display the type of an object

Copying Files

CATF (CATENATE_FILE) -- Catenate files and write to output
CPF (COPY_FILE) -- Copy a file

CPBOOT (copY_BoOT) -- Copy system boot file

CPSCR (COPY__SCREEN) -- Copy the display to a file

CPT (COPY_TREE) -- Copy a tree

CRPAD (CREATE_PAD) -- Create a transcript pad and window

MVF (MOVE_FILE) -- Move a file
TEE -- Copy input to output and to named files

Comparing Files

CMACCT (COMPARE _ACCOUNT _FILE) -- Compare account files

CMPPO (COMPARE _PPO_FILE) -- Compare person, project, or organization names
CMF (COMPARE_FILE) - Isolate differences between files

CMSRF (COMPARE _SORTED _FILES) -- Isolate differences between sorted files
CMT (COMPARE_ TREE) -- Compare all objects in trees

Shell Basics

Printing Files
PRF (PRINT_FILE) -- Print a file on a printer
Deleting Files/Directories

DLF (DELETE_FILE) -- Delete a file
DLL (DELETE_ LINK) -- Delete a link
DLT (DELETE_TREE) -- Delete a tree

Salvaging Files/Directories

SALD (SALVAGE _DIRECTORY) -- Salvage a directory
SALVOL (SALVAGE__VOLUME) -- Verify and correct allocation of disk blocks

Protecting Files /Directories

ACL (ACCESS_CONTROL _LIST) -- List or copy an access control list
EDACL (EDIT _ACCESS_ CONTROL_ LIST) -- Edit or list an existing ACL

SALACL (SALVAGE _ACCESS__CONTROL_ LiST) -- Salvage an ACL
UMASK -- Set DOMAIN/IX file-creation mode mask.

Backing Up Files/Directories

ARCF (ARCHIVE_FILE) -- Maintain an archive file
RBAK (READ_BACKUP) -- Restore or index a magnetic tape backup file
WBAK (WRITE_BACKUP) -- Create a magnetic tape backup file

Locking/Unlocking Files

LKOB (LOCK_ OBJECT) -- Lock an object
LLKOB (LIST _LOCKED _ OBJECTS) -- List locked objects
ULKOB (UNLOCK _ OBJECT) -- Unlock an object

Reading and Writing Files on Tape

EDMTDESC (EDIT _MAGTAPE_DESCRIPTOR) -- Create or modify magtape descriptor file
RWMT (READ_WRITE_MAGTAPE) -- Read and write files on magnetic tape

RBAK (READ_BACKUP) -- Restore or index a magnetic tape backup file

WBAK (WRITE_BACKUP) -- Create a magnetic tape backup file

Editing Files
Locating Text

FPAT (FIND _PATTERN) -- Find a text pattern in a file
FPATB (FIND _PATTERN_BLOCK) -- Find blocks of lines containing a pattern

Shell Basics 3-10

VR

)

/
o
t

Replacing Text

CHPAT (CHANGE_PATTERN) -- Replace pattern in ‘text file

DLDUPL (DELETE_ DUPLICATE _ LINES) -- Strip repeated lines from a file
ED (EDIT) -- Edit a text file

EDACCT (EDIT _ ACCOUNT) -- Edit registry account file

EDPPO (EDIT _PPO) -- Edit registry PPO files

EDSTR (EDIT _STREAM) -- Edit a stream
MACRO -- Expand macro definitions

OS (OVERSTRIKE) -- Convert ASCII to FORTRAN carriage control
TLC (TRANSLITERATE _ CHARACTER) -- Replace characters

Sorting Text

CREF'S (CROSS_ REFERENCE _ SYMBOLS) -- Cross-reference symbols in file
EXFLD (EXTRACT _FIELDS) -- Manipulate fields of data

FLEN (FILE_LENGTH) -- Count lines, words, and characters in a file
LAMF (LAMINATE_FILE) -- Laminate files

REVL (REVERSE _LINES) -- Reverse each line in a text file

SRF (SORT_FILE) -- Sort and/or merge text files

Formatting Files

FMC (FORMAT_MULTI__ COLUMN) -- Format text file into multiple columns
FMT (FORMAT_ TEXT) -- Format text file

OS (OVERSTRIKE) -- Convert ASCII to FORTRAN carriage control

PAGF (PAGINATE_FILE) -- Paginate a file to output

Developing Programs

Compiling Programs

MACRO -- Expand macro definitions
Debugging Programs

ABTSEV (ABORT_SEVERITY) -- Set or display abort severity level
DEBUG -- Invoke the Language Level Debugger

ESA (EXTERNAL_SYMBOL _ ADDRESS) -- Display address of external symbol in
installed library

HPC (HISTOGRAM_ PROGRAM_ COUNTER) -- Make a histogram of the program counter
STCODE (STATUS_ CODE) -- Translate status code value to text message
TB (TRACEBACK) -- Print traceback after a fault

Loading Programs

BIND -- Combine object modules into an executable file
INLIB (INSTALL _LIBRARY) -- Install a user-supplied library
LBR (LIBRARIAN) - Create an object module library

3-11

Shell Basics

Managing Your Node

CALENDAR (SET SYSTEM CALENDAR) -- Set system calendar clock

CPBOOT (coPY_BoOT) -- Copy system boot file
FIND _ ORPHANS -- Locate and catalog uncataloged objects

LVOLFS (LIST _VOLUME _FREE_ SPACE) -- List free space on all logical volumes
SALVOL (SALVAGE_ VOLUME) -- Verify/correct allocation of disk blocks (see Appendix D)

SCRTO (SCREEN_ TIMEOUT) -- Set/show screen timeout
SHUTSPM -- Shut down SPM on a node.

TPM (TOUCH_PAD_ MODE) -- Set characteristics for the touchpad
Requesting Process/System Information

Process

CSR (COMMAND _SEARCH_RULES) -- List or define command search rules
DSPST (DISPLAY;PROCESS_STATUS) -- Display process status graphically
FST (FAULT_STATUS) -- Display fault status information

LOPSTR (LIST_OPEN_ STREAMS) -- List open streams

PST (PROCESS__STATUS) -- List process internal state information
STCODE (STATUS_ CODE) -- Translate status code value to text message

Node

BLDT (BUILD_ TIME) -- Display time at which system was built
DATE -- Display current date and time

TZ (TIME_ZONE) -- Set or display system time zone
LAS (LIST_ADDRESS _SPACE) -- List objects mapped into the address space
LLKOB (LIST _LOCKED _OBJECTS) -- List locked objects

LVOLFS (LIST _VOLUME_FREE_ SPACE) -- List free space on all logical volumes

NETSTAT (NETWORK _ STATISTICS) -- Display network statistics
NETSVC (NETWORK _SERVICE) -- Set or display network services

TCTL (TERMINAL _CONTROL) -- Set or display terminal (SIO line) characteristics

Network

LCNET (LIST_CONNECTED _NETWORKS) -- Display internet routing information
LCNODE (LIST_CONNECTED _NODES) -- List nodes connected to the network

LUSR (LIST__USER) -- List users logged on

NETMAIN (NETWORK_ MAINTENANCE) -- Control/analyze network maintenance statistics
NETMAIN _NOTE (NETWORK _MAINTENANCE _NOTES) -- Place message in network error log

NETSTAT (NETWORK _ STATISTICS) -- Display network statistics
NETSVC (NETWORK _SERVICE) -- Set or display network services

PROBENET (PROBE_ NETWORK) -- Probe network and display error statistics

RTCHK (ROUTING _CHECK) -- Test traffic between adjacent routers
RTSTAT (ROUTING _STATISTICS) -- Display internet router information
RTSVC (ROUTING _ SERVICE) -- Set or display internet routing service

Shell Basics 3-12

™)

Setting Process Condiﬁions
Controlling Programs

ABTSEV (ABORT _SEVERITY) -- Set or display abort severity level
FPPMASK (FLOATING _POINT_MASK) -- Set or display floating-point error mask
PPRI (PROCESS _PRIORITY) -- Set or display process priority

SIGP (SIGNAL_ PROCESS) -- Signal a process to stop
SHUTSPM -- Shut down SPM on a node.
RETURN -- Return from the current Shell level at a specific error value

Controlling Shells

SIGP (SIGNAL_PROCESS) -- Signal a process to stop

SHUTSPM -- Shut down SPM on a node.

CRP (CREATE_A_PROCESS) -- Create a process on a remote node

CRSUBS (CREATE _SUBSYSTEM) -- Create a protected subsystem

CSR (COMMAND _SEARCH _RULES) -- List or define command search rules

ENSUBS (ENTER_ SUBSYSTEM) -- Enter a protected subsystem at Shell command level
RDYM (READY_MESSAGE) -- Set system ready message

SUBS (SUBSYSTEM) -- Set or display subsystem attributes

SH (SHELL) -- Invoke a Shell (command line interpreter)

SET -- Set current Shell conditions

BON -- reset SHELL -B flag

BOFF -- reset SHELL -B flag

EON -- reset SHELL -E flag

EOFF -- reset SHELL -E flag

VOFF (VERIFY _OFF) -- Reset SHELL -V flag

VON (VERIFY _ON) -- Reset SHELL -V flag

XOFF -- Reset SHELL -X flag -

XON -- Reset SHELL -X flag

XSUBS (EXECUTE_SUBSYSTEM) -- Execute a Shell script-protected subsystem manager
LOGIN -- Log in to a running process

Writing Your Own Commands (Shell Scripts)

ARGS (ARGUMENTS) -- Echo command line arguments

EQS (EQUALS) -- Compare strings for equality

EXISTF -- Check to see if an object exists

EXIT -- Exit a loop

NEXT -- Return to the top of a loop

RETURN -- Return from current Shell level

IF -- Execute a conditional statement

FOR -- Execute a FOR loop

SELECT -- Execute a SELECT condition

WHILE -- Execute a WHILE loop

XDMC (EXECUTE_DM_ COMMAND) -- Execute a Display Manager command
SOURCE -- Execute a Shell script at the current Shell level

3-13 Shell Basics

Using Shell Variables

DLVAR (DELETE_ VARIABLE) -- Delete a Shell variable

EXISTVAR (EXIST _ VARIABLE)-- Check to see if a variable exists
EXPORT -- Change a Shell variable into an environment variable

LVAR (LIST _VARIABLES) -- List name, type, and value of current variables
READ -- Set variables equal to input values

READC -- Set variables equal to input character values

READLN -- Set a variable equal to an input value

Managing Network Functions
Manipulating the Network Registry

CMACCT (COMPARE__ ACCOUNT _FILE) -- Compare account files

CMPPO (COMPARE_PPO_FILE) -- Compare person, project, or organization names
CRRGY (CREATE_REGISTRY) -- Create or modify network registry

EDACCT (EDIT _ACCOUNT) -- Edit registry account file

EDNS (EDIT_NAMING _SERVER_HELPER) -- Invoke editor for NS__ HELPER
EDPPO (EDIT_PPO) -- Edit registry PPO files

LRGY (LIST_REGISTRY) -- List contents of registry files

MRGRGY (MERGE_REGISTRIES) -- Merge two network registries

SALRGY (SALVAGE _REGISTRY) -- Salvage network and local registries

Managing an Internet

LCNET (LIST_ CONNECTED _ NETWORKS) -- Display internet routing information
LCNODE (LIST_ CONNECTED _ NODES) -- List nodes connected to the network

LUSR (LIST _USER) -- List users logged on

LVOLFS (LIST_VOLUME_FREE_ SPACE) -- List free space on all logical volumes
NETMAIN (NETWORK_ MAINTENANCE) -- Control/analyze network maintenance statistics
NETMAIN _NOTE (NETWORK__MAINTENANCE _NOTES) -- Place message in network error log
NETSTAT (NETWORK _ STATISTICS) -- Display network statistics

NETSVC (NETWORK__SERVICE) -- Set or display network services

PROBENET (PROBE_ NETWORK) -- Probe network and display error statistics

RTCHK (ROUTING _CHECK) -- Test traffic between adjacent routers

RTSTAT (ROUTING_ STATISTICS) -- Display internet router information

RTSVC (ROUTING _SERVICE) -- Set or display internet routing service

Controlling Peripheral Devices

EDMTDESC (EDIT _MAGTAPE_ DESCRIPTOR) -- Create or modify magtape
descriptor files

NETSVC (NETWORK _ SERVICE) -- Set or display network services
PRSVR (PRINT_SERVER) -- Start the Print Server

Shell Basics 3-14

N

Controlling Logical Volumes

CTNODE (CATALOG_NODE) -- Catalog a node in the network
UCTNODE (UNCATALOG_NODE) -- Uncatalog a node

INVOL (INITIALIZE_ VOLUME) -- Initialize a disk volume (see Appendix C)
MTVOL (MOUNT_VOLUME) -- Mount a logical volume

DMTVOL (DISMOUNT _ VOLUME) -- Dismount a logical volume

Using Miscellaneous Utilities

CALENDAR -- Set hardware clock and calendar (see Appendix A)

CRUCR (CREATE_USER_ CHANGE_REQUEST) -- Create a User Change Request form
DCALC (DESK_ CALCULATOR) -- Evaluate logical and arithmetic expressions
EDFONT (EDIT _FONT) -- Edit a character font (see Appendix B)

FSERR (FIND _SPELLING _ERRORS) -- Find spelling errors in a text file
HELP -- Invoke HELP facility
SEND _ ALARM -- Send messages to alarm servers

Communicating With Remote Computers

EM3270 -- Emulate an IBM 3270 terminal

‘VT100 -- VT100 terminal emulator

VCTL (VT100_ CONTROL) -- Set/display VT100 terminal characteristics

EMT (EMULATE _TERMINAL) -- Emulate a dumb terminal

TCTL (TERMINAL_ CONTROL) -- Set or display terminal (SIO line) characteristics
SIORF (SIO_RECEIVE_FILE) -- Receive a file from a remote host

SIOTF (SI0_ TRANSMIT_FILE) -- Transmit a file to a remote host

3-156

Shell Basics

™

__,/”‘

O

Chapter 4
Shell Commands

4-1

Shell Commands

ABTSEV (ABORT _SEVERITY _ LEVEL)

ABTSEV (ABORT_SEVERITY) == Set or display the abort severity level.

FORMAT

ABTSEYV [options]

Every Shell command or program returns a completion status message to its caller. The
message may indicate that the program completed successfully, or it may inform its caller
of a fatal internal error. Completion status messages vary in their severity. The
following completion status messages appear in order of their severity:

1. OK -- the program completed successfully and performed the requested action.

2. TRUE -- the program completed successfully; its purpose was to test a
condition, and the value of that condition was TRUE.

3. FALSE -- the program completed successfully; its purpose was to test a
condition, and the value of that condition was FALSE.

4. WARNING -- the program completed successfully and performed the
requested action. However, an unusual (but nonfatal) condition was detected.

5. ERROR -- the program could not perform the requested action because of an
error in the input. The output, however, is sound.

6. OUTPUT INVALID -- the program could not perform the requested action
because of a syntactic error in the input, and the output is not structurally
sound.

7. INTERNAL FATAL -- the program detected an internal fatal error and
stopped. The state of the output is unknown.

The ABTSEV command lets you set the severity level at which a Shell command or
program aborts. If a Shell command or program meets or exceeds the abort-severity
level, then it (and all of its ancestors) abort.

ABTSEV works on a per Shell program basis. A new Shell or Shell program inherits its
creator’s abort-severity level, and the operating system restores that abort-severity level
when you exit from the Shell or when the Shell program stops.

ABTSEV is an internal Shell command.

See the PGM_$SET _ SEVERITY description in the DOMAIN System Call Reference
for further information on severity levels.

OPTIONS

Specifying ABTSEV without options displays the current abort severity level. All options
must be specified in UPPERCASE letters.

-F[ALSE] Set level to false.

Shell Commands 4-2

ABTSEV (ABORT _SEVERITY _LEVEL)

-W[ARNING] Set level to warning.
-E[RROR] Set level to error.

-O[UTINV] Set level to output invalid.
-I[NTFATAL]} Set level to internal fatal error.
-P[GMFLT)] Set level to program fatal error.

-M[AX__SEVERITY]
Set level to maximum severity error.

EXAMPLES

$ abtsev Show initial setting.
error

$ abtsev -W Set level to WARNING.
$ abtsev Show new level.
warning

$

4-3 Shell Commands

ACL (ACCESS_CONTROL _ LIST)

ACL (ACCESS_CONTROL_LIST) =- List or copy an ACL.

FORMAT

ACL [target_ object [source_ object]] [options]

Every directory and file has an associated access control list (ACL) which lists users and
their rights to the object. ACL lets you copy an ACL from one object to another, or
display an ACL. For a detailed discussion of ACL structure and usage, please refer to
the EDACL (EDIT _ACL) command description.

In addition to its own ACL, each directory contains within it two additional ACLs (called
“initial ACLs"): one for new files and another for new subdirectories that are created
within that directory. When you create a new file or directory, the system assigns the
appropriate initial ACL stored in the parent directory. Also, when you copy files or
directories to new locations in the file hierarchy, the destination object receives the
appropriate initial ACL from its new parent directory. To change or display these initial
ACLs stored within a directory (so that newly created objects receive new initial ACLs),
use the -1, -ID, or -IF options.

The ACL command only displays ACLs or copies ACLs from one object to another. To
make changes to an existing ACL, use the EDACL command.

ARGUMENTS

target__object

(optional) Specify the object whose ACL you want to set or display. You
may use a wildcard to specify this argument. DO NOT,
HOWEVER, DO $ acl /... (anything) AS THIS MAY RENDER
YOUR NODE UNUSABLE. This wildcard sequence includes
files in the /SYS tree, which require special ACL settings in
order for system software to run.

Default if omitted: use current working directory

source__object

(optional) Specify the file or directory whose ACL(s) is to be used to set
the ACL(s) of the target object(s).

Default if omitted: display target__object’s ACL

OPTIONS
The following options confine the ACL command’s operation to target objects of the given
type.

-D Set or display ACLs of only those target objects that are
directories. If used with -I, -ID, or -IF options, set or display
initial ACLs for subdirectories.

-F Set or display ACLs of only those target objects that are files.

Shell Commands 4-4

®

ACL (ACCESS_ CONTROL _LIST)

The following options control the ACL command’s effect on target objects. If the target
object is a directory, they cause ACL to operate only on the initial ACLs stored within that
directory for use on newly created objects, and not on the ACL of the directory itself. Note
that this does NOT imply that all the target object(s) are directories, however. (That is
what -D specifies.)

-1 Set or display initial ACLs. If you are setting the ACLs of a
target directory, the source object’s type (file or directory)
determines which initial ACL (the one for files or the one for
directories) of the target directory is set. If the target object is a
file (or if a wildcarded target list includes files) and the source is
a directory, you will get an error unless you have also specified
-IS (so that the initial file ACL in the source directory, rather
than the ACL of the directory itself, can be copied to target
files). If both source and target are files, then the source file’s
ACL is applied to the target file, as you would expect. You must
run SALD (SALVAGE_DIRECTORY) on target directories that have
never contained initial ACLs (i.e., those directories created using
software prior to SR4.1).

-ID Set or display only the initial ACLs inside those target objects
that are directories that apply to new subdirectories created in
those directories.

-IF Set or display only the initial ACLs inside those target objects
that are directories that apply to new files created in those
directories.

(Specifying both -ID and -IF is the same as -I. Neither implies -D.)

The following option specifies that one (or both) of the initial ACLs inside the source object
is to be copied to the target, rather than the ACL of the source itself. This assumes that
the source object is a directory and not a file, since files cannot contain initial ACLs for
subordinate objects.

-IS Copy the initial ACL(s) in the source object (which must be a
directory) to the target. If there is a single target object (either
a file or a directory), then the appropriate initial ACL inside the
source is applied to the target. If the -I option is also specified,
then both initial ACLs in the source are copied to the initial
ACL:s inside those target objects that are directories.

The following option specifies that all the ACLs of the target object(s) are to be set or
displayed.

-ALL Set or display all ACLs of the target object(s). If you are using
wildcards to specify the target, you may qualify this action by
also specifying -D or -F. If the source object is a directory, then
all of its ACLs (both its own and the two initial ACLs that it
applies to newly created subordinate objects) are used to set the
corresponding ACLs of the target object(s). If -IS is also
specified, however, the ACL of the source object itself will not be
used, although all three ACLs of the target directories are still
set. Thus using -ALL (with or without -IS) may be used to
propagate new ACLs throughout subtrees.

4-5 Shell Commands

ACL (ACCESS__ CONTROL _ LIST)

The following options perform miscellaneous tasks:

-LINKS If target_object is a wildcard that specifies link(s), operate on
* the link(s). By default ACL does not operate on links specified
with wildcards. ACL always, however, operates on links you

specify explicitly (without wildcards).

-L List object names as the command sets ACLs.

-BR Display ACLs only, not object names.

ACL uses the command line parser, and so also accepts the standard command options
listed in Chapter 3 with the exception of the use of hyphen (-) to read data from standard
input.

EXAMPLES

1. $ acl new_file old_file Assign old_file’s ACL to new file.

2. $ acl joe mary -i -is Set the initial ACLs inside JOE using
the initial ACLs inside MARY (which must
be a directory).

3. $ acl abc?x filel -d -if Set the initial file ACL in all
subdirectories of the current working
directory whose names begin with ABC to
the ACL of FILEL.

4. $ acl abc?* dir2 -f -is Set the ACLs of all files in the current
working directory whose names begin with
ABC to the initial file ACL inside DIR2.

5. $ acl abc?* dir2 -i -is The initial ACLs in all subdirectories
of the current working directory whose
names begin with ABC are set using the
initial ACLs in DIR2, and the ACLs of all
files whose names begin with ABC are set
using the intial file ACL in DIR2.
(Adding -D would confine the operation
to directories.)

6. $ acl abc?* dir2 -all The ACLs of all files matched are set
using the initial file ACL in DIR2. The
ACLs of all directories matched are set
using the ACL of DIR2 itself. The initial
ACLs inside those matched directories are
set using the initial ACLs inside DIR2.

7. $ acl abe?* dir2 -all -is The ACLs of all files matched are set
using the initial file ACL in DIR2. The
ACLs of all directories matched are set
using the initial directory ACL in DIR2.
The initial ACLs inside those matched
directories are set using the initial
ACLs inside DIR2.

Shell Commands 4-6

Va
AN

O

ARCF (ARCHIVE _FILE)

ARCF (ARCHIVE _FILE) -- Maintain an archive file.

FORMAT

ARCF command arcname [pathname ...

ARCF collects sets of files into one large file and maintains that file as an archive. Files
can be extracted from the archive, new ones can be added, old ones can be deleted or
replaced by updated versions, and data about the contents can be listed. Only text files

can be archived.

Files to be added to an archive must exist as files with the name given. Files that are
extracted from an archive will be written to files with the name given. Files that are
added to archives can, of course, be archive files themselves. Any number of files can be
nested this way. Thus, ARCF can be used to maintain tree-structured file directories.

NOTE: When you use the update and print commands, the files are updated and
printed in the order they appear in the archived file, not in the order listed on

the command line.

ARGUMENTS

command
(required)

Specify the operation to perform on the archive file arcname.
Follow the command with V to get verbose output. Possible
commands are:

-D

-P

Delete the named files from the archive. If the
V option is used, filenames are displayed on
the standard output as they are deleted from
the archive.

Write the named files on standard output.

The V option causes the filenames to precede
the file.

Write a table of contents for the archive file.
Normally, the table contains only the
filename. If the V option is used, the table
also includes the file’s length, type, and date
and time of the last change.

Update the named archive by replacing
existing files, or adding new ones at the end.
If no filenames are given, all possible files in
the archive will be updated with files of the
same name in the current directory. If the
archive file does not exist, it will be created
with the name given. If the V option is used,
filenames are displayed on standard output as
files are written to the new archived file.

Shell Commands

ARCF (ARCHIVE _FILE)

Arcname
(required)

pathname
(optional)

EXAMPLES

X

Extract the named files from archive. Write
each to a file with the same name. If the file
already exists, the new version replaces the
old. If the V option is added, filenames are
displayed on standard output as files are
extracted.

Request verbose output. This command can
follow any of the other commands (see
example below), and will cause the archiver to
print additional information, generally
filenames, on standard output. Its specific

action for each command has already been
described.

Specify name of archive file being created or maintained.

Specify name of file to be added or deleted from the archive.
Multiple names are permitted, separated by blanks. Specifying a
hyphen as a filename will cause further names to be read from
standard input, one per line.

Default if omitted: perform action on all files in the archive

1. $ arcf -uv my_archive stamps

stamps

$

2. $ arcf -tv my archive

stamps

$

Shell C’ommands

330 1local

(except -D, which requires that names be
explicitly given).

Update archive file "my_archive"
with a new copy of the file
"stamps", returning verbose
output.

02/18/83 13:53:07

Report on the contents of the
archive.

e

ARGS (ARGUMENTS)

Q ARGS (ARGUMENTS) == Echo command line arguments.

FORMAT

ARGS [FERR[OUT]] string ...

ARGS writes its arguments, one per line, to standard output unless -ERR is specified.
Use it to write to files by redirecting standard output into a file with the " >pathname"
expression. The ARGS command is useful for inserting messages and diagnostics to be
reported to the display into Shell scripts and for inserting lines of text into files.

ARGUMENTS
string
(required) Specify the string of characters to be written. Multiple strings
are permitted; separate strings with blanks. Strings are written
one per line. To write phrases containing literal blanks, enclose
strings in quotes.
OPTIONS
-ERR[OUT] Write the string(s) to error output instead of standard output.
This option is useful for writing to the transcript pad (where
error output is usually directed) from an ARGS command inside
Q a pipeline, since standard output is then connected to the pipe.
EXAMPLES

1. $ args Hi there
Hi
there

$

Q 2. $ args "Hi there" "Mary"
Hi there ’

Mary
$

3. $ args "Hi there, Mary." >my_file Write "Hi there, Mary." into
the file MY FILE in the
current working directory.

4-9 Shell Commands

BIND

BIND =-- Combine object modules into an executable file.

BIND combines two or more object modules into one executable object module. It
resolves external references to global symbols and combines sections that have the same
name. For full details on the binder, see the DOMAIN Binder and Librarian Reference
manual. The binder takes the following format:

$ BIND pathnamel ... [pathnameN] [option]...

In other words, the command line simply consists of the word BIND, one or more
pathnames, and zero or more options.

The binder uses the object modules stored in pathnamel through pathnameN to create an
executable object file. Each pathname must be the name of a valid object file or library
file. (A compiler creates an object file, and the librarian creates a library file.) You may
use wildcards in pathnames. The binder automatically loads all object modules stored in
object files, but conditionally loads the object modules stored in library files.

Options modify the binder’s actions. Of all the binder’s options, -BINARY is the most
important. You must use this option to get an executable output object file.

Following is a summary of the BIND options. See the DOMAIN Binder and Librarian
Reference manual for complete descriptions of each option. Default options are indicated

by *(D)".

—ALIGN section-name LONG Aligns the named section on a 32-bit boundary
at runtime.

-ALIGN section-name QUAD Aligns the named section on a 64-bit boundary
at runtime.

-ALIGN section-name PAGE Aligns the named section on an 8,192-bit
boundary at runtime. -

—-ALLKEEPMARK Preserves all marks.

—ALLMARK Marks all global symbols in the input object
files that appear after the option on the
BIND command line.

—-ALLRES [OLVED] Signals a shell severity level of "error" if
there are unresolved global symbols at the
end of a BIND command. Useful in controlling
Shell scripts.

—ALLUNMARK (D) Unmarks all global symbols in the input object
files that appear after the option on the
bind command line.

-BDIR directory_name Adds a pathname to the list of directories the
binder searches for input object files.

-B[INARY] pathname Creates an output object module and stores it
at pathname.

-END Signifies end of a command that is spread over
several lines.

-ENTRY global_symbol Specifies a nondefault start address.

-EXACTCASE Makes the binder case-sensitive to all
variable names and section names.

-GLO [BALS] Writes currently defined global symbols to
error output.

-H[ELP] Prints this list of commands.

-INCL[UDE] module-name Unconditionally loads the named object module
from a library file into the output object
file.

Shell Commands 4-10

-

TN

BIND

—~INCL[UDE] -ALL Unconditionally loads all object modules from
a library file into the output object file.
-INLIB pathname Specifies that the object modules in pathname

are to be "installed" when the output object
file is invoked. (This is an alternative to
the —-INLIB utility.)

—LOCALSEARCH Forces the binder to make another search
through a library file if the previous search
loaded an object module containing an
unresolved external reference.

-LOOKS [ECTION] name Makes the named section available for sharing
with a public section in an installed
library.

~LOOKS [ECTION] -ALL Makes all subsequent sections available for

sharing with their counterpart public
sections in an installed library.

-MAK [ERS] Lists the version numbers of the compilers,
binders, etc. that were used to create the
input object files.

~MAP Writes a complete binder map .to standard
output.

-MARK global_symbol Marks the specified global symbol.

—-MARK -ALL Same as "~ALLMARK".

-MARKS [ECTION] section_name
Makes section_name public. Affects only
those object files that are destined to
be installed as an installed library.
—-MARKS [ECTION] -ALL Makes all subsequent sections public. Affects
only those object files destined to be
installed as an installed library.

-MERGE [BSS] Merges all sections corresponding to C global
variables into a single section named BSS$.

—-MES [{SAGES] (D) Produces informational messages at the end of
a BIND command.

-MOD [ULE] new_name Changes the name of the output object module

from the default (i.e., the first input
object module loaded) to new_name.

~MSGS (D) Same as -MESSAGES.

-MULTIRES Reports errors if multiple resolutions of the
same external symbol exist in object module
libraries.

-NMSGS Same as —NOMESSAGES.

—NOEXACTCASE (D) Makes the binder case-insensitive to all
variable and section names.

~NOINLIB pathname Specifies that the object file(s) in pathname

are no longer to be "installed" when the
program is invoked.

~NOLOCALSEARCH (D) Searches each library file once, then proceeds
to searching the next input object file.

~NOLOOKS [ECTION] name Makes the named section unavailable for
sharing.

-NOLOOKS [ECTION] —-ALL (D) Makes all subsequent data sections unavailable
for sharing.
-~NOMARKS [ECTION] section_name
Makes section_name private.

—NOMARKS [ECTION] -ALL - Makes all subsequent sections private.
—NOMES [SAGES] Suppresses informational messages.
~N[O0]MULTIRES (D) Omits error reporting when there are multiple

possible resolutions in a library.

4-11 Shell Commands

BIND

—NOUND [EFINED] Suppresses the listing of undefined globals.
-QIUIT] Exits from the binder without finishing.
—READONLY [SECTION] section_name ‘
Changes the read/write attribute of
section_name to read-only.
—-SEC[TIONS] Displays a section map.
—-SET_VER [SION] number.number
Sets the program version in the map to the
specified number.

~SORTL [OCATION] Sorts global symbols numerically (by
position) .

—-SORTN [AMES] (D) Sorts global symbols alphabetically (by
name) .

-SYS [TEM] Makes system globals visible.

—-SYSTYPE type Builds a shared resource record into the

output object module. For type, you must
specify the name of an operating system
(sys3, sys5, bsd4.1, or bsd4.2). This option
overrides all system information stored in
the input object modules.

~UND [EF INED] Suppresses a listing of unresolved external
symbols present at the end of a bind command
line.

-UNMARK global_symbol Remove a mark from the specified global
symbol.

~UNMARK -ALL Same as "-ALLUNMARK".

—UNMARKS [ECTION] name Makes section_name private. Affects only

those object files that are destined to be
installed as an installed library.

—-UNMARKS [ECTION] -ALL (D) Makes all subsequent sections private. Affects
only those object files that are destined to
be installed as an installed library.

~XREF Displays a listing of cross references.

~ (hyphen) Tells the binder that more input will follow
on the next line.

EXAMPLES

. $ bind a.bin b.bin -binary my_program A simple binder command line.
The binder builds an output
object file in my_ program
from two input object files.

$ bind a.bin my library -b my_program A library file can also serve
as an input object file.

. $ bind one.bin two.bin three.bin -map -b my_program
The -MAP option causes bind
to print substantial binder

information.

. $ BIND <RETURN> The command BIND specified
*paul.bin -ALLMARK -B name.bin <RETURN> by itself tells bind that
*time.bin -UNMARK date —-UNMARK year <RETURN> more input will follow on
*john.bin -map <RETURN> the next line. Specify a
*<RETURN> blank line to end the

prompting.

Shell Commands 4-12

/-
\

®

BIND

5. $ BIND a.bin b.bin {a comment} -b hope Put comments inside braces.

4-13 Shell Commands

BLDT (BUILD _ TIME)

BLDT (BUILD _TIME) == Display time at which operating system was built.

FORMAT

BLDT [pathname] [options]

BLDT displays the time at which the running version of AEGIS was built.

ARGUMENTS
pathname
(optional) Display the build time of the node whose network root directory
is "pathname".
Default if omitted: display build time of current node
OPTIONS

=N node__spec ...
Display build time of specified node[s|. See the section on node
specifications in Chapter 3 for more information.

-A Display build time of all nodes.
EXAMPLES
1. $ bldt
kkk Node 532 *¥ v//paris"

AEGIS, revision 5.0, built on Friday, June 5, 1982 2:29:44 am (EST).

2. $ bldt //os
%% Node 21 *x "//london"
AEGIS1, revision 6.0x, built on Tuesday, June 24, 1983 9:01:00 pm (EDT).

3. $ bldt -n 74
#*%%* Node 74 *¥** "//munich"
AEGIS1, revision 6.0x, built on Monday, July 1, 1983 10:26:41 am (EDT).

4. $ bldt -n //brooklyn

*%%*k Node COCOA.E84 #*** //brooklyn diskless to "//new_york"
AEGIS2-DOMAIN/IX kernel, revision 9.0, Friday, June 21, 1985 3:40:04 pm

Shell Commands 4~-14

@

BOFF

O BOFF -- Deactivate the Shell’'s =B flag.

FORMAT

BOFF

BOFF turns off the Shell’s -B (display output of background process) flag, which is
turned on by the BON command or the -B option on the SH command line. When the
flag is off, the output of background processes created with the & parsing operator is sent
to /DEV/NULL. This background process output is sent to /DEV/NULL by default.

BOFTF requires no arguments or options.

4-156 Shell Commands

BON

BON =- Activate the Shell’s =B flag.

FORMAT

BON

BON activates the Shell’s -B (display output of background process) flag. The flag can
also be activated by using the -B option on the SH command when the Shell is invoked.
The BOFF command deactivates the -B flag. By default, the flag is off when a Shell is
invoked.

This flag causes the Shell to send the output of a background process (created with the
"&" parsing operator) to the display. The output of the background process is displayed
in the transcript pad of the Shell where it was invoked.

If BON is turned on in a Shell script, it remains on until that Shell script exits, or until it
is over-ridden by a BOFF command in a nested Shell script. When a Shell script exits,
the state of execution tracing is returned to the state in effect just before the script was
invoked.

BON requires no arguments or options.

Shell Commands 4-16

a

CALENDAR
CALENDAR (SET SYSTEM CALENDAR) == Set system calendar clock.

FORMAT

CALENDAR (from the Shell)
EX CALENDAR (from the Mnemonic Debugger)

The calendar utility is used to set or reset the calendar clock in a node. It can also be
used to update the last valid time known to the system, which is stored on the boot
volume. Normally, the clock is set at the factory, and there is no need to reset it. Care
must also be taken if setting the clock backwards in time, since duplicate UIDs may be
generated, resulting in the loss of files. For information on changing the timezone, see

the TZ (TIMEZONE) command description.

Note that CALENDAR only works on unmounted volumes, so you must invoke it from
the Mnemonic Debugger in order to set the clock on the boot volume.

Please refer to the DOMAIN System Utilities manual for complete information on the
use of this software tool.

CALENDAR prompts for all required arguments and options.

4-17 Shell Commands

CATF (CATENATE _FILE)

CATF (CATENATE_FILE) -- Read file(s) and write to standard output.

FORMAT

CATF [pathname ...]

CATF reads input files in order and writes them to standard output.

ARGUMENTS
pathname
(optional) Specify file(s) to write to standard output. If multiple
pathnames are given, they are read and written in the order that
they appear on the command line.
Default if omitted: read standard input
OPTIONS

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

1. $ catf garbage Writes the file "garbage" on standard output.
2. $ catf garbage - trash >collector

Concatenates the file "garbage.," the lines read
from standard input, and the file "trash," and
writes the result in the file "collector."

3. §$ catf collector >>junk

Appends the contents of "collector" to the file
"junk."

Shell Commands ‘ 4-18

®

®

CHHDIR (CHANGE _ HOME _ DIRECTORY)

CHHDIR (CHANGE_HOME_DIRECTORY) -- Change a login home directory.

FORMAT

CHHDIR pathname

The login home directory contains your initial working and naming directories. After
login, you are automatically in your login home directory. Use CHHDIR to change your
login home directory.

In order for this command to work properly, the network registry must have been sealed
so it is owned by the LOGIN subsystem. See the command descriptions for CRSUBS,
SUBS, and ENSUBS for more information on protected subsystems and the objects they
protect.

ARGUMENTS

pathname
(required) Specify name of new login home directory.

EXAMPLES

$ chhdir //user/john Set new login home directory to
//user/john.

4-19 Shell Commands

CHN (CHANGE _ NAME)

CHN (CHANGE_NAME) =- Change an object’s name.

FORMAT

CHN old _name [new_ name| [old _name [new _name] ...] [options]

CHN changes the name of a file, directory, or link. CHN works with the rightmost
component ("leafname") of the old name (see EXAMPLES).

This command cannot be used to change the name of a directory embedded in a complete
pathname, which would result in the file’s relocation to some other part of the naming

tree. For instance,

$ chn //et/mary/letters //et/fred/letters

is illegal. Use the MVF (MOVE_FILE) command for that operation.

ARGUMENTS

Multiple ’old _name’/’new _name’ pairs and pathname wildcarding are permitted.

old_name
(required)

new_name
(optional)

OPTIONS

-D

Y

-U

-S

Specify the current pathname of the object to be renamed.

Specify the new name of the object. The new name may be
derived from the old name. ’New_name’ may be omitted
entirely if -D, -Y,or -U are specified. Otherwise, some portion of
it is required. Names may be 1 to 32 characters long.

Default if omitted: derive 'new__name’ from ’old_name’.

Append today’s date (month and day) to 'new_ name’ in the
form "new__name.mm.dd"

Append today’s date (year, month, and day) to 'new__name’ in
the form "new_name.yy.mm.dd"

Force ’new__name’ to be unique by appending a sequence
number to the end of the name until it becomes unique.

List names changed on standard output.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

Shell Commands

4-20

EXAMPLES

chn fritz henri

chn henri mike peter paul

chn (a b ¢) =.zorp
chn /my/stuff/lips red_lips

chn henri -d
henri.07.19

chn joe -u
joe.1 '

CHN (CHANGE _ NAME)

Change the name "fritz" to "henri" in
the current working directory.

Change henri to mike and peter to paul.

Change a b and ¢ to a.zorp, b.zorp and
c.zorp.

Change the file "lips" to "red_lips"
in the directory "/my/stuff.”

Change henri to henri.mm.dd where
mm is the current month (01-12) and
dd is the current date (01i-31).

Change joe by appending sequence number
to end of file name.

4-21 Shell Commands

CHPASS (CHANGE _ PASSWORD)

CHPASS (CHANGE_PASSWORD) =~ Change a login password

FORMAT

CHPASS [new_ password]

CHPASS changes your login password to ’new__password.’” CHPASS allows you to
change your password from the Shell command level.

In order for this command to work properly, the network registry must have been sealed
so it is owned by the LOGIN subsystem. Refer to CRSUBS, SUBS, and ENSUBS, plus
HELP PROTECTION, for more information on protected subsystems and the objects
they protect.

Your login password can also be changed using the -P option under the L (LOGIN) Display
Manager command.

ARGUMENTS

new __password

(optional) Specify new password. Omitting this option causes CHPASS to
prompt for your new password. Input echo is disabled. A second
prompt verifies the password and guards against typing
mistakes.

Default if omitted: prompt up to three times for password.

EXAMPLES

$ chpass sesame Set new login password to "sesame."

Shell Commands 4-22

)

S

CHPAT (CHANGE _ PATTERN)

CHPAT (CHANGE_PATTERN) == Replace pattern in text file.

FORMAT

CHPAT [options| [pathname ... [-P] [pat ...] from_ pattern [to_ expression]

CHPAT copies every line from its input files to its output files, globally substituting the
text replacement pattern "to_ expression" for each occurrence of "from _pattern" in
those lines designated by the "pat" argument(s) and any options.

Refer to the descriptions of the ED (EDIT), FPAT (FIND_PATTERN), and EDSTR
(EDIT _STREAM) commands for related information.

ARGUMENTS

pathname
(optional)

from _pattern

(required)

to__expression
(optional)

pat
(optional)

Specify name of file to be searched. Multiple pathnames and
wildcarding are permitted.

Default if omitted: search standard input.

Specify target text string (a regular expression) for substitution

or deletion. If the string includes the characters % $ [] { } ! *
or any other Shell special characters, enclose it in quotes to avoid
unpredictable results. If the ’pathname’ argument is present,
precede this argument (or the ’pat’ argument, if present) with
"-P" to separate the pathname(s) from the regular expressions
on the command line.

Specify replacement string. If no replacement is specified, the
from__pattern’ string will be deleted. If regular expressions
defining a range of text (’pat’ argument) are present, you must
use a literally null ’to_ expression’ ("") to delete
'from __pattern’,

Specify range of text for which the substitution is to apply, in
the form of a regular expression. Multiple expressions separated
by blanks are permitted. Unless modified by options, any line of
text matching any pattern is replaced and all lines, changed or
not, are written to output. If the ’pathname’ argument is
present, precede this argument with "-P" to separate the
pathname(s) from the regular expressions on the command line.

Default if omitted: use from _pattern’ to select matching lines.

4-23 Shell Commands

CHPAT (CHANGE _ PATTERN)

OPTIONS
-A Select only lines that match all of the leading expressions, in
any order.
-X Select only lines that match none of the leading expressions.
-0 Write only the selected lines to standard output. By default,
CHPAT writes all lines to output.
-L List name(s) of input file(s) on output file(s) as the input file(s)

are searched.

=OUT pathname
Specify name of output file. Pathname may be derived from the
input file name. If this option is omitted, output is written to
standard output.

EXAMPLES

1. $ chpat foo bar

Changes all occurrences of 'foo’ in standard input to ‘bar’
and writes the results to standard output.

2. $ chpat ‘%This’® " %" * °

In 1lines starting with °'This’, 1t changes all occurrences
of multiple spaces to 2 single space.

3. $ chpat '%This’ *%That’® " *" * *

Like 2., but works on 1lines starting with either ‘This’ or
'That’.

4. $ chpat -a °'%when’ ‘only$’ *;’ *:’

In 1lines that start with ’when’ and end with ‘only’, change
all semicolons to colons. ’

5. $ chpat -x not none some all

In lines that do not contain either ’‘not’ or ‘'none’, change
all instances of ’some’ to ‘all’.

6. $ chpat erase

Delete (replace with nothing) all occurences of ‘erase’.
Exactly the same effect can be obtained with:

$ chpat erase *’

Shell Commands 4-24

O

7. $ chpat -o other opts pat... fr_pat to_pat

Is exactly the same as

CHPAT (CHANGE _ PATTERN)

$ fpat pat... | chpat other_opts fr_pat to_pat

8. $ chpat ?*.pas —-out =.new —-p "if x = y" "if (x = y)"

Change all occurrences of the

string

llif X = yll

to "if (x = y)" in all Pascal source files (files ending with
’.pas’) and put the output for ’'X.pas’ in ’X.pas.new’.

4-25

Shell Commands

CMACCT (COMPARE_ ACCOUNT _FILE)

CMACCT (COMPARE_ACCOUNT_FILE) == Compare account files.

FORMAT

CMACCT rgyl__path rgy2_path

CMACCT compares two different network registries’ accounts. Accounts that appear in
both registries and are associated with different home directories and/or passwords are
reported. Use EDACCT to resolve these account collisions.

CMACCT is for use in a DOMAIN/BRIDGE Internet. For complete information on
comparing network registries, see Managing DOMAIN Internets.

ARGUMENTS

rgyl__path
(required)

rgy2_ path
(required)

EXAMPLES

Specify the pathname of a registry file to be compared. The
pathname may be the master registry file
(//node/REGISTRY/RGY _MASTER), a node’s copy of the
master registry file (//node/REGISTRY/REGISTRY), or simply
a node entry directory (//node). If the pathname is a node entry
directory, the //node/REGISTRY/REGISTRY file is used.

Specify the other registry file to be compared.

The following commands compare the account files in two different registries, delete the
account that is assoicated with different home directories from one of the registries, and
then compare the account files again to check that there are no more collisions.

$ cmacct //alpha/registry/rgy_master //beta/registry/rgy master

Account user.none.none has different home directories: / //guest/user

1 account collision

$ edacct -r //alpha/registry/rgy_master

=> d user none none
user none none

/

OK to delete this account? (Y/N/Quit): y ,
smith none rd //martha/smith

Current entry is:
=> wr

$ cmacct //alpha/registry/rgy_master //beta/registry/rgy_master

No account collisions

$

Shell Commands

4-26

®

O

CMF (COMPARE _ FILE)

CMF (COMPARE_FILE) == Identify differences among files.

FORMAT

CMF file _a [...file__e] [options]

CMF compares the contents of two to five ASCII files and reports the differences on

standard output. This
CMT (COMPARE _ TREE).

ARGUMENTS

file_a
(required)

file_b ... file_e
(optional)

OPTIONS

-R pathname

-TB

command works only on files: to compare directory trees, use

Specify pathname of original file; all differences are reported in
relation to this file. Wildcarding of this pathname is permitted
to achieve multiple comparisons.

Specify descendants of ’file__a’. If more than one file is
specified, you may use a hyphen (-) to cause standard input to be
read in place of a pathname. Pathnames may be derived from
file__a’.

Default if omitted: read standard input

Report all differences to the specified report file, in addition to
reporting to standard output. This pathname may be derived
from ’file__a’ (if ’file__a’ is wildcarded) to produce one report for
each comparison. If ’file__a’ is wildcarded and this report file
name is NOT derived, then all reports are concatenated into the
single report file.

Include trailing blanks in the comparison. By default, ignore
trailing blanks. -TB also causes CMF to regard the NEWLINE
character at the end of the last line in the file as significant (if it
exists).

Display only line numbers of lines containing discrepancies. By
default, display both line numbers and line contents.

Display names of files being compared before each comparison is
performed. This is useful when wildcarded pathnames are
specified.

Set the minimum number of lines for a rematch to 'n.” This is

the minimum number of lines, following a reported difference,
which must match for CMF to consider the files synchronized.
The default value is 3.

4-27 Shell Commands

CMF (COMPARE _FILE)

EXAMPLES

Assume that file "filel" contains

Fourscore

and seven

years ago,

our fathers brought
forth

and "file2" contains

Eighty-seven
years ago,
our fathers brought

CMF produces the following output when "filel" is compared to "file2."

$ omf fileil file2

Al Fourscore

A2 and seven
changed to

B1 Eighty-seven
AB forth

deleted before
end of file B

2 discrepancies found.

Shell Commands

4-28

CMPPO (COMPARE _ PPO _ FILE)

CMPPO (COMPARE_PPO_FILE) -- Compare person, project, or organization names.

FORMAT

CMPPO rgyl_ path rgy2_ path [options]

CMPPO compares two different network registries’ person, project, and/or organization
names. Names that appear in both registries and are associated with different name IDs

are reported. Use the C (CHANGE_NAME) command in EDPPO to change duplicate
names in one of the registries; do not delete names.

CMPPO is for use in a DOMAIN/BRIDGE internet. For complete information on
comparing network registries, see Managing DOMAIN Internets.

ARGUMENTS
rgyl path
(required) Specify the pathname of a registry to be compared. The
pathname may be the master registry file
(//node/REGISTRY/RGY _MASTER), a node’s copy of the
master registry file (//node/REGISTRY/REGISTRY), or simply
a node entry directory (//node). If the pathname is a node entry
directory, the //node/REGISTRY/REGISTRY file is used.
rgy2__path
(required) Specify the other registry to be compared.
OPTIONS

Default options are indicated by "(D).*

-PERS Compare the names in the Person files.
-PROJ Compare the names in the Project files.
-ORG Compare the names in the Organization files.
-ALL (D) Compare the names in the Person, Project, and Organization
files.
EXAMPLES

The following commands compare person names in two registries, change duplicate names,
and then compare person names again to check that all duplicate names have been handled.

$ cmppo //alpha/registry/rgy master //beta/registry/rgy master -pers
Names with different ids found in both registries’ person file:
martin smith

2 names.

4-29 Shell Commands

CMPPO (COMPARE _ PPO_ FILE)

$ edppo -r //beta/registry/rgy_master -pers

=> ¢ martin emartin

=> ¢ smith msmith

=> wr

$ cmppo //alpha/registry/rgy master //beta/registry/rgy master —pers
No names with different ids found in both registries’ person file

$

Shell Commands 4-30

CMSRF (COMPARE __ SORTED _ FILE)

CMSRF (COMPARE_SORTED_FILE) == Find lines common to two files.

FORMAT

CMSRF [options] filel [file2]

CMSRF reads sorted files, filel’ and ’file2’, and produces 1-, 2-, or 3-column output.
Column 1 contains lines found only in *filel’, column 2 contains lines found only in ’file2’,
and column 3 contains lines found in both files. The number option, -N, specifies which

columns you want to print. To compare unsorted files, use CMF (COMPARE_FILE).

ARGUMENTS

Use of a hyphen for either file name will cause the data to be read from standard input.

filel
(required) Specify first file for comparison.
file2
(optional) Specify second file for comparison.
Default if omitted: compare filel to standard input.
OPTIONS

If no options are specified, CMSRF produces a complete 3-column report.

-n Specify number(s), where n is an integer sequence representing
the following:

1 Report only lines exclusive to ’filel’.
2 Report only lines exclusive to ’file2’.
3 Report only lines commmon to both files.
EXAMPLES
1. $ cmsrf -12 //us/sorted_stuff.c Compare '//us/sorted_stuff.c

to standard input and report
lines found in either place,
but not both.

2. $ cmsrf -3 //us/sorted_stuff.a //us/sorted_stuff.b

Report only common lines
for both files.

4-31 Shell Commands

CMT (COMPARE _ TREE)

CMT (COMPARE_TREE) -- Compare source tree to target tree. .

FORMAT

CMT source__pathname target__pathname [options]

CMT compares all the objects in the source tree against all objects in the target tree.
COMT reports any objects cataloged in the source that do not also appear in the target. If
the target contains objects that do not appear in the source, however, the differences are
ignored.

CMT compares objects based on their internal representation, unlike CMF

(COMPARE _FILE), which treats its input data as ASCII text streams and compares them as
such.

Both the source and target pathnames must specify the same type of object, either a
directory or a file. CMT, however, can compare objects of any type, unlike CMF, which
compares only text files.

If CMT encounters differences, it reports that the objects are different and continues the
comparison with the next object.

ARGUMENTS

Both the source and target pathnames must specify the same type of object, either a
directory or a file. Use of wildcards in pathnames is permitted. Multiple source/target
pairs are permitted.

source __pathname
(required) Specify source tree.

target _pathname

(required) Specify target tree. Name may be derived from
’source__pathname.’

OPTIONS

If no options are specified, CMT will only report the names of directories and files with
differences in source and target trees.

-L List all directories and files compared.

-LD List all directories compared.

-LF List all files compared.

-AE Abort on the first mismatch, or if the source tree contains a

name not found in the target tree. By default, the comparison
continues after the mismatch is reported. '

Shell C’ommands 4-32

"

)

)

CMT (COMPARE _ TREE)

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

Assume that the directories "dirl" and "dir2" each contain three files called "a,"* "b,"
and "c¢," and that the contents of the "b" files differ. Following is the result of a
comparison of those two directories.

$ cmt dirl dir2
**%% compare failed at file loc O SRC: 10002 DST: 100011
diri/b - compare failed (from US / file utility)

4-33 Shell Commands

CPBOOT (COPY_BOOT)

CPBOOT (COPY_BOOT) == Copy the system boot file SYSBOOT.

FORMAT

CPBOOT source__directory { target_ directory | -DEV CT }

CPBOOT copies the system boot file SYSBOOT from one directory to another. The
sysboot file is used by the bootstrap PROM to start the system. CPBOOT is useful for
copying SYSBOOT to a floppy disk, thus making the stand-alone utilities (SAU)
directory on the floppy disk accessible from the boot PROM. You may also use it to
update a Winchester disk when a new software release is distributed.

If you wish to build a bootable cartridge tape, "-DEV CT" should be specified in place of
the target directory. This will copy CTBOOT -- the cartridge tape version of SYSBOOT
-- from the source directory (usually /SYS) onto the beginning of the cartridge tape.
(Note: subsequent WBAKSs to the tape should use the -SYSBOOT option to avoid
overwritting CTBOOT on the tape.)

ARGUMENTS

source__directory
(required) Specify directory containing the file SYSBOOT or CTBOOT.

target __directory

(optional) Specify directory to which SYSBOOT is to be copied. This
must be the entry directory on the target logical volume.

Default if omitted: must use -DEV.

OPTIONS
-DEV CT Specify that you wish to build a bootable cartridge tape. This
option must be specified if you omit the ’target_ directory’
argument.
EXAMPLES

$ cpboot /fipa / Copy the SYSBOOT file from the directory
"/flpa" to the current node entry directory.

$ cpboot /sys -dev ct Copy the CTBOOT file from the directory "/sys"
to the cartridge tape.

Shell Commands 4-34

/’\)
{

)

O

CPF (COPY _FILE)

CPF (COPY_FILE) == Copy a file.

FORMAT

CPF source_pathname [target_pathname] [options]

CPF copies a file from the source pathname to the target pathname. CPF only copies
files; see CPT (COPY_ TREE) for copying directories and their subordinate objects.

ARGUMENTS
source__pathname

(required)

target _pathname
(optional)

Specify file to be copied. If the source pathname is a link name,
CPF resolves the link and copies the file to which the link refers.

Specify target for copy. If target_pathname is a directory,
source__pathname is copied into this directory. Target must
NOT be a link.

Default if omitted: copy ’source __pathname’ into current
working directory

Multiple source/target pairs and pathname wildcarding are permitted.

OPTIONS

Default options are indicated by *(D)."

-C (D)

-R
-LF
-LDL

-CHN

-DACL (D)

-SACL

-SUBS (D)

Create source file at target. An error occurs if the target file
already exists.

Replace target with copy of source.

List files copied.

List files deleted as a result of a "replace" (-R).

Use with -C to change the name of an existing object with the
target pathname before the copy is made. Use with -R to change
the name of a target file if it is in use and cannot be deleted.

Apply the target directory’s default ACL for files copied. In
addition to its own ACL, each directory has two default ACLs,
one for its files and another for its subdirectories. Unless 1) you
specify -SACL, or 2) the file belongs to a protected subsystem
(see -SUBS), the system assigns to the target file its parent
directory’s default ACL for files.

Retain the source file’s ACL.

Retain source ACL for objects which belong to subsystems.

4-35 Shell Commands

CPF (COPY_FILE)

-NSUBS

-DU

-PDT

Apply the target directory’s default ACL for objects which
belong to subsystems.

Force deletion of target object if ’p’ rights are present.
Delete when unlocked. This option is useful with -R. If the
object to be replaced is locked when CPF is invoked, the replace

operation will be performed when the object is unlocked.

Preserve the source file’s modification and used times.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

1. $ cpf /latest/wbak wbak.latest Copy the file "wbak" from the

$

"/latest" directory to the
current directory, and call it
"wbak.latest".

2. $ cpf /latest/com/wbak /com -r Copy the file "/latest/com/wbak"

$ to the "/com" directory, replacing
the existing "/com/wbak".

3. $ cpf /games/space?* -1f Copy and list all files in the
(file) “"spacewar" copied. "/games" directory starting with
(file) “spacebunny" copied. "space"to the working directory.
(file) “"space_shot" copied.
$

4. $ cpf ?*x.pas backup/=.12.07 Copy all files in the working
$ directory with the suffix ".pas"

Shell Commands

to the directory “"backup",
appending a date.

4-386

C

)

CPL (COPY _LINK)

CPL (COPY_LINK) == Copy a link.

FORMAT

CPL linkname [pathname] ... [options]

CPL copies a linkname to the target object.

ARGUMENTS

Multiple linkname/pathname pairs and wildcarding are permitted.

linkname

(required) Specify the name of the link to be copied.

pathname

(optional) Specify the target pathname of the copied link. If ’pathname’ is
a linkname, then this link is created or replaced (depending on
various options below). If ’pathname’ is a directory, then the
link text is copied into this directory. In no case is the object to
which the link refers affected: only the text of the link itself.
Default if omitted: copy link into current working directory.

OPTIONS

Default options are indicated by *(D)."

-C (D) Create source link at target. An error occurs if the target link
already exists.

-R Replace target with copy of source.

-LL List links copied.

-LDL List links deleted because of replacement (-R).

-CHN Change name of existing link with target__pathname before
copying.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

1. $ cpl //ai/sources /progs Copy the link "//ai/sources"
to the node entry directory as
" Progs " .

4-37 ‘ Shell Commands

CPL (COPY _LINK)

2. $ cpl //zorba/sys/print /sys -r Copy the link "/sys/print" from the
node whose entry directory is
"zorba" to the local /sys directory,
replacing any existing link.

Shell Commands 4-38

O

CPSCR (COPY _ SCREEN)

CPSCR (COPY_SCREEN) == Copy the current display to a file.

FORMAT

CPSCR pathname [-INV] [FAPPEND] [-GPR[_ BITMAP])

CPSCR copies the current screen image (without clearing it) to the file you specify. Use
the PRF' (PRINT_FILE) command to print the file.

Use the Display Manager command CPO to copy the screen without creating a new
process window or changing the current transcript pad. CPO invokes the CPSCR
command from the Display Manager without creating a pad or window. Thus, press
<CMD > then type:

CPO /COM/CPSCR pathname

You may copy small portions of a black and white screen (such as a single window) with
the DM command XI.

By default, black and white screens are copied into a GMF file. Color screens are copied
into a GPR bitmap.

ARGUMENTS
pathname
(required) Specify file to which the screen is copied.
OPTIONS
-INV ‘ Invert image. Use this option to store the image in reverse
video. Black screen pixels become white and white screen pixels
become black. This switch cannot be used with the
-gpr__bitmap switch or on color nodes.
-APPEND Appends a black and white screen image to an existing GMF

file. This switch cannot be used with the -gpr_bitmap switch or
on color nodes.

-GPR[_BITMAP]|
Use this option to copy a black and white screen into a gpr
bitmap file rather than a gmf file. This option has no meaning
for color nodes since color screens are already copied into gpr
bitmaps.

EXAMPLES

1. $ cpscr //us/looky there —-inv Invert and copy the current screen
image to the specified file. Since
the command line is echoed in the
Shell’s process transcript pad prior
to execution, this command will
appear in the resulting image.

4-39 Shell Commands

CPSCR (COPY _SCREEN)

2. <CMD>

Command: cpo /com/cpscr //us/looky_ there -inv

Shell Commands

Same result as in example 1,
but the CPSCR line will not
appear in the plotted output.

4-39.1

N’

O

o

CPT (COPY_TREE)

CPT (COPY_TREE) =~ Copy a directory tree.

FORMAT

CPT source__pathname target_pathname ... [options]

CPT is a multipurpose tool for copying, merging, and replacing files, directories, and
links. To copy files only, use CPF (COPY_FILE).

ARGUMENTS

Multiple source/target pairs and wildcarding are permitted.

source _pathname
(required)

target_ pathname
(required)

OPTIONS

Specify the file, link, or directory tree to be copied. CPT does
not change the contents or link references of the source, so errors
that occur will leave the source unaffected.

Specify the file or directory tree to be created, replaced, or
merged. The target pathname may be derived from the source
pathname. The target can NOT be a link. In addition, the
target can NOT be a logical volume entry Jirectory, or the
network root unless the -MD option is specified.

Default options are indicated by "(D)."

=AF date

-BE date

-C (@)

Shell Commands

Copy only objects whose dtms (date-times) are after the given
date and time: [[[yy]yy/]Jmm/dd][.][hbh:mm:ss]] | TODAY . The
date defaults to today, and the time to midnight; if either are
omitted from ’date’.

Copy only objects whose dtms are before the given date and
time: [[[yy]yy/|mm/dd][.][hbh:mm[:ss]] | TODAY . The date
defaults to today, and the time to midnight if either are omitted
from ’date’.

Create source at target. If the file or directory already exists,
an error will occur and processing will continue to the next
source/target pair. Not valid if -MS, -MD, or -R is specified.

If the source is a file, CPT copies it to the target. If the source
is a directory, CPT copies the directory to'the target. It then
copies every file cataloged in the directory (and all
subdirectories) until it reaches the end of the tree.

Each link name in the source tree is created as a link name in
the target, but the object that the link references is not copied.
If ’source__pathname’ is itself a link, however, the link is
resolved and the object to which it points is copied to the target.

4-40

O

-MD

-DACL (D)

-SACL

-CHN

-SUBS (D)

-NSUBS

-PR pathname

CPT (COPY _ TREE)

Replace target with source. Not valid if -C ,-MS, or -MD is
specified. CPT deletes the tree starting at the target pathname
and copies the entire source tree in its place. Note that the target
is deleted BEFORE copying begins. If no target tree by the
specified name exists, CPT creates one and duplicates the source.

Merge source and target if both are directories. Not valid if -C
or -R is specified. If the target does not exist, CPT duplicates
the source at the target. If the target exists, CPT merges the
source into the target, replacing files and links, and combining
directories. '

If both the source and the target are directories, CPT merges
their contents as described below. Otherwise, CPT deletes the
target and replaces it with the source.

To merge directories, CPT compares their contents, object by
object. Objects that exist in the source but not in the target are
created in the target. Objects that exist in the target but not in
the source remain unchanged. Files and links with the same
name in both the source and the target are deleted from the
target and replaced by the source version. Directories with the
same name in both source and target are merged. CPT
continues this process recursively until it reaches the end of the
source tree.

Merge source and target if both are directories. Similar to -MS
except that files and links with the same name in both source
and target are left unchanged in the target.

Force deletion of target object if ’p’ rights are present.

Apply the target directory’s default ACLs. In addition to its
own ACL, each directory has two default ACLs, one for its files
and another for its subdirectories. -DACL causes CPT to apply
the target directory’s default ACLs to each subdirectory and file
it copies. The -SACL option causes each object to retain its
original ACL.

Retain the source ACL.

Use with -C to change the name of a target before source is
copied. Use if target _name already exists. Use with -R, -MS,
and -MD to change the target _name if target is in use.

Retain source ACL for objects which belong to subsystems.

Apply the target directory’s default ACL for objects which

belong to subsystems.

Preserve the object ’pathname’ in target when another object
with the same name exists in the source. Valid with -MS option
only.

4-41 Shell C’dmmands

CPT (COPY_ TREE)

-PDT Preserve the source’s modification and used times.

The following five options allow you to monitor CPT’s operation. You can use -LD, -LF,
and -LL in any combination. By default, the listing options apply to both copied and
deleted objects. To list only deletions, use -LDL with -L, -LD, -LF, or -LL.

-L List all objects as they are copied.

~-LD List directories as they are copied.

-LF List files as they are copied.

-LL : List links as they are copied.

-LDL List only objects deleted as a result of replacements.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

WARNING

Five conditions always terminate execution:

® You attempt to use the network root or node entry directory as a target, without
specifying a merge.

e An error occurs in reading the top level of the source tree.

e You attempt to create an existing directory (if the target is an existing directory, you
must specify -R or -M).

o The logical volume containing the target directory is full.

e A quit or stop fault occurs in this process.

EXAMPLES
1. $ cpt /com /com.backup -T Copy the directory tree "/com"
to "/com.backup" replacing the
existing "/com.backup” tree.
2. $ cpt my_circuits /circuits -ms Merge the directory tree

"my_circuits" into the
"/circuits" tree.

Shell Commands 4-42

)

CRD (CREATE _ DIRECTORY)

CRD (CREATE_DIRECTORY) -- Create a directory.

FORMAT

CRD pathname ...

CRD creates a directory with the specified pathname.

ARGUMENTS
pathname
(required) Specify the subdirectory name to be created. Multiple
pathnames are permitted. The new directory receives its parent
directory’s initial ACL.
OPTIONS

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ crd /my_dir/new_dir Create the subdirectory new_dir
in the directory /my_dir.

4-43 Shell Commands

CREFS (CROSS_REFERENCE _ SYMBOLS)
CREFS (CROSS_REFERENCE _SYMBOLS) == Cross-reference symbols in a file.

FORMAT

CREFS [-F| [pathname ...]

CREFS produces a cross-referenced list of the symbols in each of the named files, and
writes each list to standard output. A symbol is a string of letters, digits, underscores,
and dollar signs and must begin with a letter. The list contains every symbol in the file in
alphabetical order, followed by the numbers of the lines in which the symbol appears.

Symbols of more than 32 characters are truncated.

ARGUMENTS
pathname
(optional) Specify input file. Multiple pathnames and wildcarding are
permitted: separate names with blanks.
Default if omitted: read text from standard input.
OPTIONS

If the option is not specified, CREFS treats uppercase and lowercase letters as different
characters, and places uppercase letters before lowercase letters in the alphabetical sort.

-F Treat all input text as lowercase while cross-referencing.

=K key_ file Only the words listed in ’key_ file’ are cross-referenced. These
words must be listed one per line.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES
To find all occurrences of certain variables in the program "cycle," type:
$ crefs cycle

CREF'S can also be used in conjunction with other commands to produce more refined
results. For instance:

$ crefs cycle | tee cycle.all | fpat wheel spoke axle >cycle.some

The output file “"cycle.all" contains a list of all the symbols in the program, with
references to the line containing them. The output file "cycle.some" contains only the
lines with references to the three variables named: wheel, spoke, and axle.

Shell Commands 4-44

-

@

CRF (CREATE _FILE)

CRF (CREATE_FILE) -- Create a file.

FORMAT

CRF pathname...

CRF creates a zero-length file with the specified pathname. The new file receives its parent
directory’s initial ACL for files. There is a maximum of 1300 files per directory.

(See the ACL command description for more information.) The file type is set to OBJECT and
the file is made permanent. The type UID is set to nil.

This command is most useful for system-level debugging. Use the Display Manager editing
capability to create normal text files.

ARGUMENTS
pathname
(required) Specify file to be created. Multiple pathnames are permitted,
separated by blanks.
OPTIONS

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ crf my file

4-45 Shell Commands

CRL (CREATE _ LINK)
CRL (CREATE_LINK) == Create a link.

FORMAT

CRL linkname object _name ... [~R]
CRL is used to create links. Links normally serve two functions: as a shorthand way of

specifying objects with lengthy (and frequently recurring) pathnames and as static
pointers to other objects. '

Links cause the Shell to redirect a pathname to another object. In effect, links allow you
to take a detour from one part of the naming tree to another.

ARGUMENTS

linkname

(required) Specify the link’s name and location.

object _name
(required) Specify the object to which the link points.

Multiple linkname/pathname pairs are permitted.

OPTIONS

-R Replace an existing link. Use this option to change a link’s
object _name.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ crl bugs /maintenance/reports Create a link called "bugs" in
the current working directory.

Now, when you use "bugs" in a pathname, the command Shell substitutes the text
" /maintenance/reports". Therefore, the pathname:

bugs/sticky_cursor

refers to the same file as the pathname:

/maintenance/reports/sticky cursor

Shell Commands 4-46

)

CRP (CREATE_A_ PROCESS)

CRP (CREATE_A_PROCESS) =~ Create a process on a remote node.

FORMAT

CRP [command line] ~ON node_ spec [options]

CRP creates a process on a remote node.

ARGUMENTS

command line
(optional)

OPTIONS

Specify command line to be executed by the remote process. If
the command string contains embedded blanks, enclose it in
quotation marks.

Default if omitted: execute /COM/SH (the Shell)

The following option, which specifies the remote node, is REQUIRED:

=-ON node__spec

Specify the remote node on which the process is to be created.
See the section on node specifications in Chapter 3 for more
information.

One of the following options may be specified (default option is indicated by a "(D)"):

-CP

-NWP

-CPO

-CPS

=N name

(D)

Create a remote process running with standard streams
connected to the current window. Not valid if -CPO or -CPS is
specified. You may stop these processes by typing an EEF
(usually CTRL/Z) in the process input pad.

Do not create a window pane legend indicating that the local
window is connected to a remote process. Use with -CP option
only.

Create a remote process without a connection to the current
window, and an identity of ’user.none.none’. Not valid if -CP or
-CPS is specified. To stop these processes, you must first create
a visible remote process running the Shell, then issue the SIGP
command to stop the background process.

Create a remote process without a connection to the current
window, and an identity of ’user.server.none’. Not valid if -CP
or -CPO is specified. To stop these processes, you must first
create a visible remote process running the Shell, then issue the
SIGP command to stop the background process.

Specify the name of the remote process. If this option is not

specified, the default is "user id.node__id". This allows remote
processes to be traced to their originator.

4-47 Shell Commands

CRP (CREATE _A__PROCESS)

-LOGIN name [password]

-QUIET

EXAMPLES

Specify the login sequence for the remote process on the
command line. If the password is omitted, the system prompts
you for it. A null (zero-length) password is specified by the null
string .

Normally, -LOGIN appears with -CP. You may, however, use
-LOGIN with -CPO and -CPS as well. If -LOGIN is specified
with either -CPO or -CPS, then the identity of the created
process is the same as that of the caller’s (as opposed to
’user.none.none’ or ’user.server.none’, respectively). This means

that -CPO and -CPS are identical if -LOGIN is also specified.

If you use -LOGIN with -CPO or -CPS, you must place both the
name and the password on the command line. No prompting is
available in this case.

-ME is typically specified instead of -LOGIN. If -ME is
specified, then the created process on the remote node inherits
the caller’s working directory, naming directory, home directory
text string and SID. In some sense, this is similar to popping up
another Shell except that the process is running on another node.
If -ME is specified with either -CPO or -CPS, then the identity
of the created process is also that of the caller’s (as opposed to
’user.none.none’ or ’user.server.none’, respectively). This means
that -CPO and -CPS are identical if -ME is also specified.

Suppress connection/disconnection messages in the transcript
pad.

$ crp -on 532 -login joe Create a process on node 532 running the

$ crp -on Oaef -me

Shell Commands

Shell, and log in with the user id "joe".
Create a process on node AEF running the

Shell, and inherit the current process
state information.

4-48

)

CRPAD (CREATE _ PAD)

CRPAD (CREATE_PAD) =- Create a transcript pad and window.

FORMAT

CRPAD [pathname)] [options]

CRPAD creates a transcript pad, copies a file (or standard input) into that pad, and then
opens a window into the pad. This new pad is NOT related to the transcript pad
attached to processes running the Shell; it is for viewing file contents only. This is
primarily useful for displaying output being produced inside a pipeline without
interrupting the flow of control in the pipe.

Transcript pads are not editable. If you wish to place a file in a pad for editing, use the
<EDIT> key or the DM command CE (CREATE _EDIT).

CRPAD -IN behaves differently. This creates an edit pad and lets you create whatever
text you want. When you close the edit pad (with WC or CTRL/Y), that text is copied
to standard output.

ARGUMENTS

pathname

(optional) Specify the file to be copied into the pad. Not valid if -IN is
present.
Default if omitted: copy standard input.

OPTIONS

-IN[PUT] Copies data from a temporary edit window to standard output.
, Not valid if -TEE or -PN are specified.

-PN pathname
Specify a pathname for the pad. If you specify a pathname, the
pad is saved in that file. Note that you can also save the pad
after it is created by using the DM command PN (PAD_ NAME).

-TEE Copy output to standard output in addition to the new pad.

EXAMPLES

1. $ crpad test.data Create a pad that displays
the file "test.data".

2. $ fpat —-p ’'256-' <phone.book | crpad -tee | srf >phone.book.local
Display the intermediate results
in a pipeline.

3. $ crpad —input | srf | crpad
Create an edit pad. When the pad is closed,
sort the text edited and display it in a
transcript pad.

4-49 Shell Commands

CRRGY (CREATE_REGISTRY)

CRRGY (CREATE_REGISTRY) =~ Create or modify network registry.

FORMAT

CRRGY [options]

CRRGY allows you to create a network registry, create a local registry on the master
node, or change registry sites. While all the functions of this command are described
below, it is unlikely that you will be able to manipulate the network registry unless you
are the network administrator for your network (due to ACL settings on the registry
files). You may, however, have access to the local registry for your particular node to
manipulate as you like. For complete information about both network and local
registries, see Admenistering Your DOMAIN System.

OPTIONS

At least one of the following options must be specified.

-R rgypath

-S site...

-A site...

=D site...

Shell Commands

Specify the pathname of the new registry object you want to
create or the registry on which you want to operate. If you
provide just a node name (//node), CRRGY creates the registry
" //node/registry/rgy _ master”, or CRRGY uses the file
//’this__node’/registry/registry to locate the master registry. If
you omit a pathname, CRRGY creates
"//’this__node’/registry/rgy _ master." We recommend that
you specify only a node name.

Default if omitted: create //this_ node/REGISTRY/RGY_MASTER

Create new site(s). ’site’ specifies the pathname of the registry

directory you want to create. Multiple sites are permitted,
separated by blanks. Files created at the sites are filled with
default identities. The new sites are included in the new registry
master file. If you do not specify -S, and you are creating a
registry, "//’this__node’/registry/rgy __site" is used. Sites may
be located anywhere in the network. This option is not valid for
local registries.

Add site name(s) to the existing registry specified by the -R

option. This command creates a directory at the site, copies all
the registration data files to the directory, and adds the site
names to the master file. This option is not valid for local
registries.

Delete site namels| in the existing registry master file specified
by the -R option. The master registry file reflects the change
but the registry file copies (’/registry/registry’) do not. This
option is not valid for local registries. The site directories are
NOT deleted; their names are removed from the registry file.

4-50

.

CRRGY (CREATE _ REGISTRY)

-LOC Create a local registry. The only valid pathnames for a local
registry are the following default names:

" //'node’ /registry/local _registry* for the master, and
* / /'node’ /registry/local __site" for the site.

Thus, you should only specify a root name (*//node") with the
-R option and let all other defaults apply.

-EX Specify that the given sites already exist. Do not create the
sites specified, just include their names in the registry master
file. You may use this option to create a replacement registry
master file that points to existing sites or to add existing site
names to an existing master file (-A). No check is made to
ensure that the sites really do exist. The site names must be full
pathnames when you use this option.

-SEC Set secure passwords to a minimum length of six characters.
’ This option is not valid for local registries.

=COUNT n Specify the number of slots (n) to create in a local registry
account file. The default number is 25; minimum is 5. This
option requires -LOC. Nodes serving diskless partners should
have enough entries to allow slots for the users of the diskless
nodes.

-DAYS n Specify number of days (n) during which an entry in a local
registry account file will remain valid after login. The default
number is 21; maximum is 60. This option requires -LOC.

EXAMPLES
$ crrgy -loc -count 50 —-days 30 Create a new local registry with
$ spaces for 50 account entries

which will each be valid for
30 days after login. Previous
local registry accounts are lost.

For detailed examples of network registry creation, see Administering Your DOMAIN
System.

4-51 Shell Commands

CRSUBS (CREATE _ SUBSYSTEM)
CRSUBS (CREATE_SUBSYSTEM) == Create a protected subsystem. (A\
|

FORMAT

CRSUBS subsystem _name
CRSUBS is used to create a protected subsystem.

A protected subsystem is a set of programs and data files. The programs are called the
“managers" of the protected subsystem; the data objects which they manage are said to
be "owned" by the subsystem. Protected subsystems allow you to define exactly how a
file can be accessed. :

CRSUBS creates a protected subsystem by creating the "subsystem shell® and putting it

in the directory /SYS/SUBSYS. Once there, the subsystem shell can be invoked using the

ENSUBS command. The access control list for the directory /SYS/SUBSYS determines ,
who can create new subsystems: whoever has ’a’ (append) rights to the directory will be C
able to create new subsystems.

The access control list on the file /SYS/SUBSYS/subsystem_ __name determines who can
enter the subsystem ’subsystem _name’. Whoever has read and execute rights to it can
enter the subsystem. This capability should be restricted generally to the creators of the
subsystem or to the system administrators.

For more information on protected subsystems, see the DOMAIN System User’s Guide.

ARGUMENTS
subsystem__name
(required) Specify name of subsystem to be created. This file will contain
the "“subsystem shell" and will reside in the /SYS/SUBSYS
directory.
EXAMPLES ~
n_’
$ crsubs newsubs Create the subsystem "newsubs".

O

~—

Shell Commands 4-52

CRTY (CREATE_ TYPE)

CRTY (CREATE_TYPE) -~ Create a new type.

FORMAT

CRTY type_ name [options]

The CRTY command creates new types. It creates an identifier for the new type, and
associates it with the supplied type name. New types are used to identify a new kind of

manager for Streams.

ARGUMENTS

type _name
(required)

OPTIONS

=N node__spec

-L

=U high.low

Specify the name to assign to the created type.

Specify the node on which the type is to be created. See the
section on node specifications in Chapter 3 for more information.
You may also specify the entry directory of a volume mounted
for software installation, as shown in the example below. If this
option is omitted, the type is created on the current node.

List the type name/type identifier pair that is created.

Create the type with the specified unique identifier (UID). Give
the high and low addresses for the UID as indicated. Use this
option only for system debugging purposes. Misuse of this
option may cause programs to behave incorrectly.

-B[INARY] pathname

EXAMPLES

Create the type from the specified object module (which was
created by CRTYOBJ). This allows you to add a new type to a
system from an object module which can be shipped on media
like floppies, magnetic tapes, ete.

$ crty example_type -1
"example_ type" 24BF9F41.100001FB created.

$ crty example_type -n //test_vol -1
"example_type" 24BFA6F8.200001FB created on volume //test_vol.

In the following example, the disk has been mounted for software installation. The disk’s
top level directory (catalogued as ’/mount__disk’ by the MTVOL command) must contain a
vsys* directory. If it does not, you will get a "type manager directory not found" error.

$ mtvol w /mount_disk
$ crty example_type -n /mount_disk -1
"example type" 24BFB71E.200001FB created on volume //my_node/mount_disk.

4-53 Shell Commands

CRTYOBJ (CREATE _ TYPE _ OBJECT)

CRTYOBJ (CREATE_TYPE_ OBJECT) =~ Create a type object module for binding.

FORMAT

CRTYOBJ type_name [variable__name] [options]

CRTYOBJ creates an object module which contains a global symbol with the type UID.
This module is bound with type managers. The variable is passed into calls to
TRAIT _$MGR__DCL to declare support for the specified type.

ARGUMENTS
type__name
(required) Specify the name of the type for which an object module is to
be created.

variable__name
(optional) Specify the variable name for the type uid.

Default if omitted: name the variable "type_name_ $UID".

OPTIONS

=B bin_name Specify the output binary file name. The default is
“type__name.BIN".

=SECT section_name

Specify the section name for the data area in which the variable
is declared. The default section name is "DATAS$".

=U high.low Specify the type UID explicityly with the high and low addresses
in the positions indicated. Use this option only for system
debugging purposes.

-PRE _SR9.5 Generate an object module in the pre-SR9.5 format. If this
option is omitted, the generated object module is in the SR9.5
format.

EXAMPLES

$ crtyobj example_ type example_ $uid
$ bind -b example_mgr example_main.bin example calls.bin example type.bin

Shell Commands 4-54

®

9

O

CRUCR (CREATE _USER_ CHANGE _REQUEST)

CRUCR (CREATE_UCR) -- Create a User Change Request form.

FORMAT

CRUCR

We appreciate feedback from users of our systems. To make the feedback process as easy
as possible, we provide User Change Request (UCR) forms for you to record comments
and suggestions.

CRUCR enables you to complete user change request forms on line. CRUCR assigns each
form a unique number and stores the completed form in /SYS/UCR. /SYS/UCR may be
a link.

The first time you execute CRUCR on a node, the command prompts you for information
about your site and creates the object file /SYS/UCR/DMPROCxxxx, where xxxx is your
node ID. This file contains the default UCR form that is used from then on. You may
edit this template to add information to subsequent UCR forms.

Submit UCRs to us on floppy disks or as line-printer listings, using a separate UCR for

each distinct problem that you report. If you are sending in a program, please use a
floppy disk. Mail the material to:

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA. 01824

Attn: UCR Administrator, Technical Operations

You may also send UCRs directly to Apollo Customer Sevices via the UUCP network.
The network address is: uer_admin@apollo.uucp

Recommended paths to Apollo are via uw-beaver and decvax!wanginst.

When you send UCRs via UUCP, please supply the output from the standard CRUCR
command. Customer Services will acknowledge all received UCRs. Therefore, do not
assume your UCR has been received unless you receive a reply. Security-conscious sites
should not send confidential material. Also, you should send voluminous submissions by

magnetic media.

CRUCR does not require any arguments or options.

4-55 Shell Commands

CSR (COMMAND _ SEARCH__RULES)

CSR (COMMAND _SEARCH_RULES) == Set or display command search rules.

FORMAT

CSR [directory ...] [~A dir_name]

Command search rules determine which directories the Shell examines to find commands.
CSR lets you display or change this list. If a new Shell is invoked inside the current
process, or a new Shell script run, the subordinate Shell inherits the search rules of the
parent Shell. Note that this does not apply to "shells* created by the <SHELL> key,
since that key actually creates a new, separate process. Its Shell receives the default
search rules described below.

By default, the Shell looks for commands in this order:

1. Your working directory ("."), or the directory specified by the command’s
pathname.

2. Your personal command directory, ~COM (the COM subdirectory of your
naming directory). :

3. The system command directory, /COM.

Refer to The DOMAIN System User’s Guide for a detailed discussion of command
search rules.

Specifying CSR without arguments or options displays the current command search rules.

ARGUMENTS
directory
(optional) Specify new command search sequence. Multiple directory
pathnames are permitted; separate names with blanks. The
Shell will search the directories in the order that you specify.
Default if omitted: display current search rules unless -A is
specified.
OPTIONS
-A dir_name Append the specified directory name(s) to the existing command
search sequence. This allows you to add a new directory to the
end of the list without retyping the entire list. Multiple
directory pathnames are permitted; separate names with blanks.
EXAMPLES
1. $ csr Display current search rules.
“com /com '

Shell Commands 4-58

—

2. $ csr . ~“com //us/myproj/com /com

3. $ csr -a “com/special_commands

4-57

CSR (COMMAND _ SEARCH _ RULES)

Set new search sequence by adding
an additional command directory.

Append the directory

~com/special_commands to the
current list of directory names.

Shell Commands

CTNODE (CATALOG _ NODE)

CTNODE (CATALOG _NODE) == Catalog a node in the network.

FORMAT

CTNODE [node_name [net.|node_id ...] [options]

CTNODE informs the local node that a remote node exists, thereby enabling network file
access to the remote node. The command catalogs the node__name in the local copy of
the network root directory as the entry directory for the remote node. In other words,
CTNODE adds the directory //node_name to your copy of the network root directory.

For information on deleting a node__name entry, see UCTNODE (UNCATALOG _ NODE).

We assign a node ID to every node during the manufacturing process. To find out the
node ID of a node, type the following command at its keyboard:

$ lcnode -me

At SR9.0, CTNODE supports the ability to merge information from another node’s
network root into your own, or any other node’s network root. The merge options (-MD
and -MS) add the entry for a node to the target provided the entry does not already exist
and the source has exactly one entry for that node. In the case of one source and one
target entry for a node which match, those entries are assumed to be correct. All other
cases are considered to be ambiguous and the "confusion resolution protocol" is invoked.

This "confusion resolution protocol® first attempts to verify the correct entry name with
the node itself. If the node is available, then the reply from the node is cataloged
regardless of whether -MD or -MS is used. This is because an answer from the node
itself is assumed to be the truth.

If the node is unavailable to resolve an ambiguity, then the entry containing the most
recent UID (latest time stamp portion of the UID), is used. In this case, existing entries
in the target directory are only updated if the -MS option is used.

ARGUMENTS

node__name

(optional) Specify the name of the node you wish to catalog. If the
’[net.Jnode__id’ argument is specified, then ’node_ name’ is
required.

Default if omitted: must use -N, -UPDATE, or -FROM

[net.Jnode_id

(optional) Specify the hexadecimal ID (and optional network ID) of the
node you wish to catalog. The node must be connected to the
network when this command is executed. If the 'node_ name’
argument is specified, then ’'node__id’ or ’net.node_id’ is
required.

Default if omitted: must use -N, -UPDATE, or -FROM

Multiple name/ID pairs are permitted.

Shell Commands 4-58

CTNODE (CATALOG__NODE)

OPTIONS

If neither -N, -UPDATE, or -FROM is specified, then the ’node_name’ and
’[net.Jnode__id’ arguments are required. The -N, -UPDATE, and merge options work
only for remote nodes running AEGIS SR5.0 or later. The ’[net.Jnode__id’ forms work
only when both the local and remote nodes run AEGIS SR9.0 or later.

-ROOT Catalog 'node__name’ as the entry directory name for
‘node _id’ in both the master network root directory and the
local copy of the network root directory. This option is valid
only if the 'node_name’ and 'node__id’ arguments are specified.
This option is not valid if the -IN option is specified.

=N [net.Jnode__id...

Copy the entry directory name from the network root directory
of the specified remote node, to the network root directory of the
local node. You do not need to know the entry directory name.
However, you must specify the node__id or the net.node__id of
the remote node. Multiple node _id’s and net.node__id’s may be
specified. ‘Use this option instead of the
'node__name’/’[net.Jnode __id’ argument pair. This option is not
valid if the -R option is specified.

-UPDATE Obtain a list of nodes currently responding to a network inquiry
and perform the same operation as "-N" for each node. Names
are replaced with the most current version, if they already exist
in your local copy of the network root directory, and new names
are added.

-FROM //node ...
Look in the specified list of network root directories for the
names to add to the target network root, or use this network
root as the source for names to merge into the target network
root. Wildcards may be used to specify source node names. The
-FROM option is not supported in a DOMAIN internet
enviroment.

-MD Used with -FROM. Merges all names in the source network
root into the target network root. Preference is given to existing
names in the target if there are unresolved conflicts (see the
discussion of "confusion resolution protocol® above).

-MS Same as -MD, except that preference is given to entries in the
source network root when there are unresolved conflicts (see the
discussion of “confusion resolution protocol" above).

-ON //node ...
Catalog names in the network root of the specified nodes instead
of the local network root. Wildcards may be used to specify
target node names. The -ON option is not supported in a
DOMAIN internet enviroment.

-R Replace cataloged names if they already exist. An error occurs
if you do not specify this option and try to add a node_name

4-59 Shell Commands

CTNODE (CATALOG _NODE)

This command uses the

that has already been cataloged (unless you are using
-UPDATE).

List node names as they are cataloged.

Ignore entry (suppress error messages) if name already exists in
the target.

List invocations and resolutions of the "confusion resolution
protocol", '

command line parser, and so also accepts the standard command

options listed in the description of the command line parser in Chapter 3.

EXAMPLES

1. $ ctnode os 21

2. ¢ ctnode -update

Add the node whose ID is 21 and whose entry
directory name is "os" to your node’s catalog.

Bring your node’s catalog up to date with any
new nodes on the network.

3. $ ctnode os eve —-from //master

Copy names "os" and "eve" from the network
root on //master.

4. $ ctnode os 21 -on //a?x

Add node ID 21 with the name "os" to
the network root of all nodes whose names
begin with "A".

5. $ ctnode -md -from //os

Shell Commands

Merge network root of 0OS into local network
root, resolving conflicts.

4-60

C

4

O

@

CTOB (CATALOG_ OBJECT)

CTOB (CATALOG_OBJECT) -- Catalog an object.

FORMAT

CTOB pathname uid_hi vid_low

CTOB assigns a pathname to an object that has a known unique identifier (UID). CTOB
catalogs the pathname and associated UID in the naming tree. This command is
primarily for system-level debugging.

ARGUMENTS

pathname
(required)

uid_ hi
(required)

uid _low
(required)

OPTIONS

Specify assigned pathname.

Specify the high portion of the UID as a 32-bit hexadecimal
number.

Specify the low portion of the UID as a 32-bit hexadecimal
number.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ ctob lastfile 10AOBAAD 60000102

4-61 Shell Commands

OVT_REC_ UASC (CONVERT _RECORD _ UASC)

CVT_REC_UASC (CONVERT_RECORD_UASC) == Convert file types.

FORMAT

CVT_REC_UASC source_pathname [target_pathname] -OT type [options]

CVT _REC_UASC converts files from type “rec", "hdru®, or "uasc" to files of type
"rec", *hdru", or "uasc". It functions on nodes running software release 4.1 and later.

ARGUMENTS

source__pathname
(required)

target _pathname
(optional)

-OT type
(required)

Specify the file to be converted.

Specify file to be created. An error occurs if this file already
exists (see -R below). The target _pathname may be derived. If
target is a directory, the source file is converted and placed in
that directory.

Default if omitted: the converted file becomes
’source __pathname’ and the original file is
renamed ’source _pathname.CBAK’.

Specify type of file to be created (’target_pathname’). Choose
one of the following for type’: "rec", "hdru", or "uasc."

Wildcards in pathnames associated with this command are permitted.

OPTIONS

-R

Replace target __pathname’ if it already exists.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

Shell Commands

4-62

N

S

)

N

EXAMPLES

1. $1d -a

CVT_REC_UASC (CONVERT _RECORD _ UASC)

Directory "/larry/cvt_rec_uasc_examples":

sys
type
file

file
file

type blocks current

uid used 1length
rec 1 42
rec 1 42
rec 1 44

3 entries, 3 blocks used.

attr

P
P
P

2. $ cvt_rec_uasc ?* -ot uasc -ng
$ 1d -a

rights

pndwrx
pndwrx
pndwrx

name

List current files in specified directory and their types.

Convert all files to type uasc;
suppress wildcard queries.

Directory "/larry/cvt_rec_uasc_examples":

sys
type

file
file
file
file
file
file

type blocks current

uid used length
uasc 1 37
rec 1 42
uasc 1 38
rec 1 42
uasc 1 40
rec 1 44

6 entries, 6 blocks used.

attr

‘U v 'u'utu Y

rights

padwrx
pndwrx
pndwrx
pndwrx
pndwrx
pndwrx

8. $ cvt_rec_uasc [a~c] =.x -ot rec -nq
$1d -a

name

a

b

[o]

.cbak

.cbak

.cbak

Convert files named “a" "b"

and “"c"

them

Directory "/larry/cvt_rec_uasc_examples":

sys
type

file
file
file
file
file
file
file
file
file

type blocks current

uid used length attr rights
uasc 1 37 P pndwrx
rec 1 42 P pndwrx
rec 1 42 P pndwrx
uasc 1 38 P pndwrx
rec 1 42 P pndwrx
rec 1 42 P pndwrx
uasc 1 40 P pndwrx
Tec 1 44 P pndwrx
rec 1 44 P pndwrx

9 entries, 9 blocks used.

$

4-83

to "a.x"

=4
[
B
(]

CooOCToopPPE

.cbak

o

.cbak

"

.cbak

b

to type rec and write

"b.x" and "c.x"

Shell Commands

DATE
DATE -- Display the current date and time. (K

FORMAT

DATE [options]

DATE prints the current system date and time. It requires no arguments or options. If
no options are specified, the date is displayed as shown in Example 1 below.

The hardware date and time may be set with the Shell command CALENDAR.

OPTIONS
=Y Display year as YYYY.
-MD Display month and day as MM/DD. C
-T Display time in 24-hour format (HH:MM:SS).
-D Display year, month, and day.
EXAMPLES
1. $ date . N
Tuesday, June 9, 1981 4:20:15 pm (EDT) r\

2. $ date -t
15:36:14

3. $ date -d
1983/08/08

Shell Commands 4-64

D

(

DCALC (DESK _ CALCULATOR)

DCALC (DESK_CALCULATOR) == Evaluate logical and arithmetic expressions.

FORMAT

DCALC [-H] [pathname...]

DCALC mimics the features of a desk calculator, evaluating both logical and arithmetic

expressions.
ARGUMENTS
' pathname
(optional) Specify input file containing expressions to be evaluated, one
expression per line.
Default if omitted: read standard input; stop with CTRL/Z
OPTIONS

If no options are specified, all operations are decimal-based.

-H Specify hexadecimal operations.

Ezpressions
Input expressions can be simple arithmetic expressions or variable assignment expressions.
DCALC writes the value of each evaluated expression on standard output. Variables hold

temporary values, which DCALC does not automatically write.

Expressions may include any of the operators listed below (in order of precedence):

1. + - unary plus and negation operators. These may only
appear at the start of an expression or within
parentheses.

2. << >> logical left and right shift

3. %% exponentiation

4. * / % multiply, divide, modulo (remainder)

5. + - add, subtract

6. == equal to

1= not equal to
> greater than

>= greater than or equal to

4-85 Shell Commands

DCALC (DESK_ CALCULATOR)

< less than

<= less than or equal to
7. ! unary logical not
8. | logical or

& logical and

logical xor

Relational operators return the value 1 for true and O for false. DCALC performs
operations in double precision floating point, except for logical operators listed as items 2
and 8 above, which use 32-bit integers.

Variables

Expressions may include previously declared variables. Use this format to declare a
variable:

name = expression

e A variable name must begin with a letter and may consist of any combination of
letters and digits.

¢ DCALC does not automatically print replacement expressions, because they
usually contain temporary values.

Radiz Control

You can change the default base for input or output using ibase (input base) and obase
(output base) statements. For example,

ibase 2

obase 16

causes DCALC to interpret input in binary and print results in hexadecimal.

To set an individual number’s radix, precede it with the desired radix and a pound sign.
For example,

16#100

specifies the hexadecimal number 100 (equals 256 in decimal).

Shell Commands 4-86

/
(

O

EXAMPLES

Your in

10 + (-64 / 2%*4)

temp = 2#101

temp ==

ibase
obase
11 + 28
1a + Of

put:

5

16
2

DCALC output:

6

1 (true)

111001
101001

DCALC (DESK _ CALCULATOR)

(Note that when you type a hexadecimal number that begins with
a letter, you must precede it with a zero.)

ibase =
numa =
numb
numa +

16
100
100
numb

512

4-67

Shell Commands

DEBUG

DEBUG -=-- Invoke the Language Level Debugger. ("\

FORMAT

DEBUG |options] {~-PROC process__name | target [args...]}

The Language Level Debugger (DEBUG) lets you debug programs written in Pascal,
FORTRAN, or C. The DOMAIN Language Level Debugger Re ference manual details the
debugger. After you've invoked it, you can enter DEBUG’s '"HELP’ command to read
other help files that explain how to operate the debugger.

Preparing a File for Debugging

In order to use DEBUG to debug a program, you must have compiled your source code

with the correct compiler option. Each compiler supports four command options (-DB,

-DBA, -DBS, or -NDB) that affect DEBUG’s access to a program. (\
e

-DB, the default, gives you limited access to the debugger. -DBA and -DBS both give you
full access to the debugger. With -DBA, the compiler removes any optimizations which
might interfere with debugging. With -DBS, the compiler allows any optimizations
specified by the -OPT option. If you compile with -NDB, you cannot debug the file.

Invoking the Debugger

To invoke DEBUG, enter a command having one of the following two formats: ~
$ DEBUG debug_ options target [args...] C
or
$ DEBUG debug__options -PROC process__name

The necessary arguments and options are described below. By default, the window from
which you invoke DEBUG is divided into three windowpanes. One windowpane will
contain all I/O for the program you are debugging. Another windowpane will contain all
the DEBUG commands you enter and all the responses from DEBUG. A third
windowpane will display the source code of the program you are debugging. C

ARGUMENTS

One of the following two arguments is required on the command line.

target [args...]

(optional) Specify the pathname of the file containing the program you
wish to debug, plus any arguments which that program may
require.

-PROC process__name

(optional) Perform explicit cross-process debugging. This primes DEBUG
to watch for target invocation in an already-existing process
(specified by ’process_name’). After you invoke DEBUG with
this option, it will watch the given process for the invocation of (-\;
a program. When the invocation of the target program occurs, —

Shell Commands 4-68

OPTIONS

DEBUG

DEBUG will wake up and take control of the target program,
and give you the regular DEBUG access to it. You cannot debug
an already running program, or a process which is already the
target of another debugger.

This feature is especially useful when the normal invocation of
DEBUG and a target perturbs the environment enough to make
a bug disappear. In this case, creating a new process for DEBUG
and directing it to watch the old process will help ensure that the
target runs in the same environment as when it runs alone.
Cross-process debugging is also helpful for programs which
perform graphics or in some way alter or control the window(s)
of the process in which they run, thus making normal,
within-process debugging impossible.

Note that all DEBUG options MUST PRECEDE the pathname of the target program.

Default options are indicated by "(D).*

=NC

-R[EAD] pathname

-SET arg_string

-NwP

-SRC
-SRC_T
-SRC_R

(D)

Prevent DEBUG from copying the target object file. Instead,
DEBUG maps the object file so that you can write breakpoints
directly into the object file.

Invoke a DEBUG command file with the specified pathname.
This option may appear only once on the command line.

Set debug variable prior to invoking the target program.
’arg_string’ is the body of a valid Set command. The string
must be quoted if it contains spaces, so that the command line
parser sees it as one argument. See Example 2 below. If you
submit a -SET option which does not have an assignment
operator (=, :=) in ’arg_sring’, the Set command will be
interactive as it is during normal DEBUG operation.

Specify size of DEBUG windowpane from 10% to 90%. ’'n’ may
equal 10, 20, 30, 40, 50, 60, 70, 80, or 90. Default if omitted:
DEBUG creates a windowpane in the top 50% of the window.

Do not create DEBUG windowpanes. Instead, DEBUG will
perform input and output operations using the error input and
error output streams in your transcript pad.

These options cause DEBUG to display the source file(s) which
were used to make the target program being debugged. The
-SRC option lets DEBUG choose where the source will be
displayed. The -SRC _ T option makes DEBUG put the source
at the top of the window; the -SRC_R option makes DEBUG
put the source on the right-hand side of the window.

4-69 Shell Commands

DEBUG

=NSRC Suppress creation of a source-display windowpane.

=-SDIR pathname
This option provides alternative directory pathnames for finding
the source file(s), when one of the -SRC options is used. It may
be given any number of times on the command line. The
working directory is always checked and hence need not be

specified.
-GLOB Enable DEBUG to enter routines in global address space.
-SMAP Print a brief section map of the target program loading
operation.

DEBUG Startup Files

When you invoke DEBUG it looks in your login home directory for a file named
"user _data/startup__debug®. If it finds the file DEBUG processes its contents as a
sequence of DEBUG commands. DEBUG then looks in the working directory for a file
named "startup__debug" and similary processes it. No error occurs if one or both files are
not found. Startup file processing preceeds processing of a file given in a -READ option.

Saving a DEBUG Session
To save your dialog with DEBUG, use the Display Manager’s command "PN*" to name the

debugger’s transcript pad anytime before you issue the debugger’s quit command. See the
PN command description for more information.

EXAMPLES
1. $ debug my_prog Tells the debugger to debug the file
named my prog.
2. $ debug -read s1 my_prog Invokes the debugger for a debugging

session with file my prog, and starts
the session by executing the commands
stored in file sl.

3. $ debug -src -set "‘max_array_dim = 8" my prog
Sets the ‘MAX_ARRAY DIM variable as
you invoke DEBUG; allows DEBUG to
select the most appropriate type of
source display.

Shell Commands 4-70

)

&

DLDUPL (DELETE _ DUPLICATE _ LINES)

DLDUPL (DELETE_DUPLICATE_LINES) -- Strip repeated lines from a file.

FORMAT

DLDUPL [-C] [pathname ...]

DLDUPL reads the input file(s), comparing adjacent lines. Second and succeeding copies
of repeated lines are removed; the remaining lines are written to standard output.

ARGUMENTS
pathname
(optional) Specify input file. Multiple file names permitted; separate
names with blanks.
Default if omitted: read standard input
OPTIONS
-C Write number of occurrences of each line to standard output.
EXAMPLES

Suppose you have two dictionary files. To create one dictionary file containing the words
from both, use:

$ srf -m dictl dict2 | dldupl >dict.new

This merges the words from the two files (SRF -M), then deletes any duplicate words and
saves the result in the new dictionary.

4-71 Shell Commands

DLF (DELETE _FILE)

DLF (DELETE_FILE) == Delete one or more files.

FORMAT

DLF [pathname...] [options]

DLF deletes the file(s) specified. To delete objects other than files, see DLL
(DELETE _LINK) and DLT (DELETE _ TREE).

ARGUMENTS
pathname
(optional) Specify file to be deleted. Multiple names and wildcarding are
permitted; separate names with blanks.
Default if omitted: read names from standard input
OPTIONS
-F Force file deletion if you have owner rights, even if you don’t
have delete rights.
-L List names of deleted files.
-DU Delete when unlocked. If the object to be deleted is locked when

DLF is invoked, the delete operation will be performed when the
object is unlocked.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ d1f mary.bak -L
(file) "mary.bak" deleted.

Shell Commands 4-72

O

DLL (DELETE _ LINK)

DLL (DELETE_LINK) -- Delete a link.

FORMAT

DLL pathname ... [options]

DLL deletes a link. After execution of this command, the link is no longer available for

use.
ARGUMENTS
pathname
(required) Specify pathname of the link to be deleted. Multiple pathnames
and wildcarding are permitted; separate names with blanks.
OPTIONS
-L List name(s) of link(s) as deleted.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES
. $ d11 bpugs Delete the link "bugs" from the
$ current working directory.

4-73 Shell Commands

DLT (DELETE__ TREE)

DLT (DELETE_TREE) == Delete a tree.

FORMAT

DLT pathname ... [options]

DLT deletes the directory named by the pathname, and all its descendants in the naming

tree.

ARGUMENTS

pathname
(required)

OPTIONS
-L
-LD
-LF
-LL

-F

-DU

-PR pathname

Specify directory or link to be deleted. If "pathname" is a
directory, DLT deletes the directory and all subordinate objects
(subdirectories, files, and links). If a link, DLT deletes the link
name, but has no effect on the files and directories named by the
link. Multiple pathnames and wildcarding are permitted.

List files, links, and directories as they are deleted.
List directories as they are deleted.

List files as they are deleted.

List links as they are deleted.

Force object deletion if you have owner rights, even if you don’t
have delete rights.

Delete when unlocked. If the object to be deleted is locked when

DLT is invoked, the delete operation will be performed when the
object is unlocked.

Preserve specified pathnames.

-LD, -LF, amd -LL may be combined to create the type of listing you desire.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ dilt april_backup may backup Delete the two directory trees

Shell Commands

specified.

4-74

o

-

o

DLTY (DELETE_ TYPE)

DLTY (DELETE_TYPE) -- Delete a type.

FORMAT

DLTY type_name [options]

DLTY deletes a type and any installed type manager.

ARGUMENTS

type__name
(required)

OPTIONS

=N node_spec

-L

EXAMPLES

Specify the name of the type to be deleted.

Specify the node on which the type is to be deleted. See the
section on node specifications in Chapter 3 for more information.
You may also specify the entry directory of a volume mounted
for software updates, as shown in the example below. If this
option is omitted, the type is deleted on the current node.

List the type name/type identifier pair that is deleted.

$ dlty example_type -1
"example_ type" 24BF9F41.100001FB deleted.

$ dlty example_type -n //test_vol -1
"example type" 24BFA6F8.200001FB deleted from volume //test_vol.

In the following example, the disk has been mounted for software updates. The disk’s top
level directory (catalogued as ’/mount_ disk’ by the MTVOL command) must contain a
"sys* directory. If it does not, you will get a "types file not found" error.

$ mtvol w /mount_disk
$ dlty example_type -n /mount_disk -1
“example type" 24BFB71E.200001FB deleted from volume //my_node/mount_disk.

4-75 , Shell Commands

DLVAR (DELETE _ VARIABLE)

DLVAR (DELETE_VARIABLE) == Deletes all of the specified variables.

FORMAT

DLVAR var_name ...

The DLVAR command deletes the variable(s) specified. If a variable had another value
at a higher level of invocation, the variable is restored to that value.

ARGUMENTS

var__name ...

(required) Specify the variable name to be deleted. Muiltiple names are
permitted, separated by blanks.

Shell Commands 4-76

)

N

|-
K_//

DMTVOL (DISMOUNT _ VOLUME)

DMTVOL (DISMOUNT_ VOLUME) == Dismount a logical volume.

FORMAT

DMTVOL device[unit] [log_ vol _number| [pathname] [options]

DMTVOL dismounts a logical volume that was previously mounted with the MTVOL
(MOUNT _ VOLUME) command. After the volume has been dismounted, it is unavailable for

further access.

ARGUMENTS

device
(required)

unit
(optional)

log__vol _number

(optional)

pathname
(optional)

OPTIONS

-FU

Specify the type of disk on which the volume resides: "W" for
a Winchester disk, "S* for a storage module, or "F'" for a floppy
disk. ‘

Specify a unit number (0 or 1 only) for the device, if necessary.
For example, "S1" denotes storage module unit 1.

Default if omitted: 0 (zero)

Specify the number of the logical volume to be dismounted.

Default if omitted: 1

Specify the entry directory of the logical volume. If you include

this argument, DMTVOL dismounts the volume and uncatalogs
its entry directory. If you omit it, DMTVOL dismounts the
logical volume, but retains its name in the naming tree.

Default if omitted: see above

Forcibly unlock any locked objects, then dismount the volume.
If you omit this option, the dismount fails if the volume contains
any locked objects.

No__write -- Prevents DMTVOL from trying to write to the
disk during the dismount. Normally, writing to the disk saves
current information. However, if the disk was removed prior to
dismount, this option should be used.

4-77 Shell Commands

DMTVOL (DISMOUNT _ VOLUME)

EXAMPLES

1. $ dmtvol s 2
$

2. $ dmtvol f /floppy
$

Shell Commands

Dismount storage module unit zefo,
logical volume 2, and leave its name in
the naming tree.

Dismount floppy unit zero, logical volume 1,
and delete its name from the naming tree.

4-78

(

()

(

()

~
\x

DSPST (DISPLAY _ PROCESS__ STATUS)

DSPST (DISPLAY_PROCESS_STATUS) == Display process status graphically.

FORMAT

DSPST [options]

DSPST displays process statistics in a graphical, bar-chart fashion within the current
process window. The chart is updated periodically (see -R below). The default action of
this command is to display the brief OS process list, all user processes and all I/O
information in a font size automatically selected based on window size.

While DSPST is running, the following keys are interpreted as follows:

All keyboards:

~T Move to top

“B Move to bottom

RETURN Exit

“N Exit

~Y Exit and save current image

880 keyboard only:

Boxed up arrowvw Scroll forward 1/2 window
Boxed down arrow Scroll backward 1/2 window
F2 Scroll backward 1 line
F3 Scroll forward 1 line

Low-profile keyboard only:

Boxed up arrow Scroll backward 1/2 window
Boxed down arrow Scroll forward 1/2 window
Shifted up arrow Scroll backward 1 line
Shifted down arrow Scroll forward 1 line

EXIT or ABORT Exit

SAVE Exit and save current image

OPTIONS

Default options are indicated by "(D)."

-Rn Specify that the display should be repeatedly updated every ’n’
seconds. If this option is omitted, the display is updated every 4
seconds.

-P Show process information.

-L1 Show OS and user process information.

-08 - (D) Show brief OS and full user process information.

-M Show missing CPU time in addition.

4-79 Shell Commands

DSPST (DISPLAY _PROCESS _ STATUS)

-10 (D) Show I/0 statistics.
-A Show all information (same as -L1 -10 -M).

=N node__spec
Specify remote node whose process statistics are to be listed. See
the section on node specifications in Chapter 3 for more
information.

-LARGE (D) Force use of large font for display.

-SMALL Force use of small font for display.
EXAMPLES
$ dspst Display 0S, user process, and I/0 status.
$ dspst -n //fred -large Display 0S, user process, and I/0 status for

the node named //fred using the large font.

Shell Commands 4-80

4 \)
),

ED (EDIT)

ED (EDIT) -- Invoke line editor.

O

FORMAT

ED [-N] [pathname]

ED invokes the line editor. Input text and editing commands are read from standard
input. While you may use ED to create text files interactively, it is better suited for use
in programs and scripts. Use the <EDIT> key or the DM command, CE, to create and
edit files interactively.

NOTE: There is a homonymous DM command: ED -- Delete character preceding cursor.
See the ED command description in the DM chapter for details.

ARGUMENTS

Q pathname

(optional) Specify file to be edited. ED reads the file into a buffer for
editing and remembers its name for future use. ED operates on
the buffer copy; changes made there have no effect on the
original file until you issue a W (write) command from within
ED. Files are limited to 6400 lines.

If the ’pathname’ argument is omitted, the edit buffer is empty
and no file name is remembered for future use. You will have to
specify an explicit file name when you exit the editor.

Default if omitted: see above

OPTIONS
-N Suppress the printing of line counts by the E (edit), R (read),
and W (write) commands.
O SUMMARY OF ED COMMANDS

Commands to ED have a consistent format: zero, one, or two line addresses followed by a
single-character command, with optional parameters following the command. The general
format is:

[line,] [1ine]command parameters

The [line] specifies a line number or address in the current edit buffer. There is usually a
useful default for each command (normally the current line) so that you don’t need to
specify an address explicitly.

Refer to the ED description in the DOMAIN System Utilities manual for detailed
explanations of individual ED commands.

4-81 Shell Commands

ED (EDIT)

Addresses:
—~
17 a decimal number <:_/
. the current line
$ the last line of the file
/pat/ search forward for line containing pat
\pat\ search backward for line containing pat
line+n n lines forward from line
line-n n lines backward from line
Defaults:
(.) use current line
(.+1) use the next line
... use current line for both line numbers
(1.$) use all lines
Commands :
) A Append text after line (text follows)
(...n) Bn Browse over the next n lines (default n is 22). (i\\
If n is negative, print last n lines before -
current line. If °'B.’ is specified, print n
lines with current line in center of screen.
(...) ¢ Change text (text follows)
C...) D Delete text
E file Discard current text, enter file, remember
filename
F Print filename
F file Remember filename
(. I Insert text before line (text follows) (/“\
(...) Kline Copy text to new line after specified line .
(...) Mline Move text to line after specified line
(..) P Print text (can be appended to other commands)
Q Quit
(.) R [file] " Read file, appending after current line
.. S/pat/new/GP Substitute new for leftmost pat (G implies all
occurrences)
(1.$) W [file] Write file, leave current text unaltered (if
no file is specified, write to current filename)
.) =[P] Print line number, current line o
(.+1) <CR> Print next line (
(1,$) G/pat/command Execute command on lines containing pat S
(except A, C, I, Q commands)
(1,$) X/pat/command Execute command on lines not containing pat
(except A, C, I, Q commands)
... Comment
$n Read or write temporary buffer, "n".
The error message "?" is printed whenever a command fails or is not understood.
LIMITATIONS
o Files being edited can contain up to 6400 lines.
e When a global search and substitute combination fails, the entire global search
stops.
e Problems sometimes occur when removing or inserting NEWLINE characters C

(via @n), especially in global commands.

Shell Commands 4-82

EDACCT (EDIT _ACCT_FILE)

EDACCT (EDIT_ACCT_FILE) -- Create, edit, or list accounts.

FORMAT

EDACCT [options]

EDACCT is used to define accounts in the network registry. Valid person, project, and
organization names must have been previously defined with EDPPO.

While all of the EDACCT options are described below, it is unlikely that you will be able
to manipulate the network registry unless you are the network administrator for your
network. The registry is protected by ACL restrictions. However, you will be able to list
registry entries.

For complete information on the use of network administration commands such as
EDACCT, see Administertng Your DOMAIN System.

OPTIONS

At least one of the following options must be specified; however, you may only include one
-A, -D, -C, or -L option per command line. If the command line does NOT include -A, -D,
-C, or -L, EDACCT enters an interactive editing session and accepts commands from
standard input. See the "EDACCT COMMANDS* section below.

=R pathname Specify pathname of registry you want to use. You should only
use this option with -LOC (described below) to manipulate a
remote node’s local registry. If you want to manipulate the
master registry, omit this option and let EDACCT use the
network registry file copy (’/registry/registry’) on the current
node to locate the master registry.

-A pers proj org homedir password
Add a new account with the person, project, organization, log in
home directory, and password indicated. You must specify all
fields; you can use "None" to specify proj and/or org. A space
between two quotation marks specifies a blank password. This
option is not valid for local registries.

=D pers proj org
Delete the account with the person, project, and organization
names indicated. You must specify all fields. This option is not
valid for local registries.

-C pers proj org [~p passw] [-h homedir]
Change the password and/or the login home directory for the
account named. A space between two quotes may be used to
specify a blank password. This option is not valid for local
registries.

-L [pers [proj [org]]]

List specified entries. All entries for a particular category are
listed if you omit that portion of the account specification. You

4-83 Shell Commands

EDACCT (EDIT _ACCT _FILE)

may also use "%" in any of the fields to match all entries in
that field. If you indicate no accounts by name, all accounts are

listed.

-LOC Use the registry ’/registry/local _registry’ on the node given by
the -R option or this node. You may specify only the node name
(//node) for "pathname" on -R in this case. If you specify -LOC,
the only valid operation is to list entries (-L).

-NP Suppress prompts for interactive editing.

EXAMPLES
$ edacct -loc -1 List entries in the local account file.
Note that two have expired.

paul mfg none 30 83/03/12.12:16 exp:83/03/12 //pj/paul

joe none r d 1FB 83/03/15.08:28 exp:83/03/15 //bye/joe

csa none none 30 83/03/15.08:32 exp:83/03/15 //my/csa

rjm mktg pay B8 83/03/15.09:50 exp:83/03/15 //slash/rjm

Z00 cage feed 1FB 83/03/14.20:53 exp:83/03/14 *INVALID* //me

flip none wilt 124 83/03/09.18:46 exp:83/03/09 //go/flip

user none none 30 83/03/14.19:22 exp:83/03/14 *INVALID* /

EDACCT COMMANDS

The following interactive editing commands may be entered from standard input if you do
not include -A, -D, -C, or -L on the EDACCT command line. In all cases, periods may be
used instead of blanks to separate person, project, and organization identifiers.

a [pers [proj [org [homedir [password]]]]]

Add a new account. The account is added AFTER the current account (last one
listed) unless you have positioned to the top (t). You will be prompted for any
fields omitted. Press <RETURN>> to assign the default, if appropriate. A
space between two quotes may be used to specify a blank password.

d [pers [proj [org]]]

t

b

Delete one or more accounts. If no fields are given, only the current entry (last
one listed) is deleted. % may be specified for wildcard match, in which case all
matching entries (from the top) are deleted. If proj and/or org are omitted, %
is assumed for them. Verification of each deletion is requested. The last deleted
entry is saved and may be moved to a different place using ’i’.

Insert the last deleted entry at the current location (after the current entry or at
the top).

Move to the top of the file, before the first entry.

Move to the bottom of the file, at the last entry.

n [[-]number]

Move up (-) or down "number" entries. For example, "n 2" moves down two
entries, while "n -4" moves up four entries. If "number" is omitted, the default
is 1.

Shell Commands 4-84

)

—

\

o

o

O

EDACCT (EDIT _ACCT_FILE)

¢ [pers [proj [org]]]

Change one or more entries. If no arguments are specified, only the current
entry is changed. % specifies wildecard match. If proj and/or org are omitted, %
is assumed for them. If arguments are given, the search begins at the top of the
file. Wildcarded fields are not eligible for changing. You will be prompted for
each new field in order. Press <RETURN> to keep a field unchanged.

1 [pers [proj [org]]]

List the current entry (if no arguments are specified) or the first matching entry,
starting at the top. % may be used to specify wildcard match.

la [pers [proj [org]]]

List all matching entries, starting at the top. % may be used to specify
wildcard match.

In [pers [proj [org]]]

Ie

1

Wr

h {comm]

List the next matching entry, starting at the current entry. If no arguments are
given, the previous name specification is used.

List all the changed or new entries.

List the locality of the current entry, displaying the preceding and succeeding
five entries.

Update the file with all changes and exit.
Quit without updating.

Help — list briefly all the available commands or a particular command in
detail.

4-85 Shell Commands

EDACL (EDIT _ ACCESS_ CONTROL _ LIST)

EDACL (EDIT _ACCESS_CONTROL_LIST) -- Edit or list an ACL.

FORMAT

EDACL [commands] [options] pathname...

Every directory and file has an associated access control list (ACL) that lists users and
their rights to the object. EDACL edits or displays the ACL of the object(s) specified.
The structure and usage of an ACL is described in detail in the DOMAIN System User’s

Guide.

ARGUMENTS

pathname
(required)

commands
(optional)

COMMANDS

Specify the object whose ACL you wish to edit or display.
Multiple pathnames and wildcarding are permitted.

Specify the action(s) described below. If you do not specify a
command, EDACL enters an interactive editing mode.

Default if omitted: read commands from standard input; do not
precede commands with a hyphen (-) in this
mode.

Many of the commands described below take arguments called ’sid’ and ’rights’. These are
summarized in the sections preceeding the EXAMPLES.

~L

-A sid rights
~AF sid rights

-AR sid rights
-C sid rights
-CF sid rights

-D sid

Shell Commands

List ACL entries.

Add the specified entry to an ACL. You will receive an error
message if the ACL entry exists.

Add force. Add the specified entry to an ACL. You will not
receive an error message if the ACL entry exists.

Add the specified rights to an ACL. You will receive an error
message if the entry does not exist.

Change the access rights in the entry for ’sid’ (replaces current
rights). You will receive an error message if the entry does not
exist.

Change force. Change the access rights in the entry for ’sid’
(replaces current rights). You will not receive an error message

if the entry does not exist.

Delete the ACL entry for ’sid’. You will receive an error
message if the entry does not exist. If ’sid’ is '%.%.%.%’, then

4-86

(»\

®

-DF sid rights

-DR sid rights

=CDN node

-CN sid node

-Q

EDACL (EDIT _ACCESS_ CONTROL _ LIST)

EDACL will leave the entry with ’S’ and ’E’ rights to maintain
DOMIAN/IX compatibility.

Delete force. Delete the specified rights from the entry for ’sid’.
You will not receive an error message if the ACL entry does not
exist.

Delete the specified rights from the entry for ’sid’. You will
receive an error message if the entry does not exist.

Change the default node ID.
Change the node ID entry in ’sid’.

Quit without changing the object’s ACL. This command is
useful only when you supply EDACL commands interactively
(see -I). To signal successful completion and update the ACL, use
EOF in standard input (usually <CTRL/Z>).

The following three commands are meaningful primarily for DOMAIN/IX applications. If
the pertinent index is enabled, the process executing the file assumes the PERSON,
PROJECT, and/or ORGANIZATION identity of the file. (This is the DOMAIN/IX
equivalent of AEGIS protected subsystems.) The indexes may be set for both files and
directories, but are meaningful only for files.

-SETPERS {sid|0}

-SETPROJ {sid|0}

-SETORG {sid|0}

OPTIONS
-DIR
-FILE

Assign the SET PERSON index to ’sid’.

If you specify 0’ (zero) instead of a sid, the SET PERSON index

is deleted.

Assign the SET PROJECT index to ’sid’.

If you specify 0’ (zero) instead of a sid, the SET PROJECT
index is deleted.

Assign the SET ORGANIZATION index to ’sid’.

If you specify ’0’° (zero) instead of a sid, the SET
ORGANIZATION index is deleted.

Only operate on directories.

Only operate on files.

Edit the default initial ACL for directories (-DIR implied).
Edit the default initial ACL for files (-DIR implied).

Enable editing of ’S’ and ’E’ rights for directories. This is

4-87 Shell Commands

EDACL (EDIT _ ACCESS_ CONTROL _ LIST)

meaningful primarily for DOMAIN/IX applications.
Modification of these rights is disabled by default, unless this
option is specified.

-DYN[AMIC] Create a dynamic ACL for use with DOMAIN/IX applications.
Dynamic ACLs are computed and assigned "on the fly" by
DOMAIN/IX programs; thus, they change from user to user
rather than remaining static, like AEGIS ACLs. Use of this
option precludes the use of any of the editing functions listed
above in the "COMMANDS" section.

The following two options apply only when EDACL reads commands from standard input:

-P EDACL interprets commands when it receives an EOF (usually
<CTRL/Z>). This is the default when you have redirected
standard input (i.e., instructed the program to read commands
from a Shell program, here document, file, or pipe).

-1 EDACL interprets commands as you enter them. This is the
' default when you have not redirected standard input. You may
only specify one pathname (with no wildcards) in this mode.
EDACL changes a copy of the ACL; the command does not
assign a new ACL to an object until it reads an EOF. Thus,
EDACL -I does not change an ACL if you terminate the session

with the "Q" command.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

SIDS

An SID (subject identifier) is the mechanism used to identify people to the system when
they log in. Basically, an SID has three parts: a person name (P), project name (P), and
organization name (O); the combination is often abbreviated to 'PPO’. In some cases, the
node on which the subject is running is of importance as well. Thus, a full SID also contains
this item of information, in which case it is a 'PPON’; but most of the time PPO is all that
is of concern.

SIDs consist of the P,P, and O seperated by periods. Thus
joesftwr.r_d

might be the name of a software programmer in the R & D organization. His person name
is ’joe’; his project name is ’sftwr’; his organization name is r__d’.

If the node ID is required then a PPON for the above example might look like:

joe.sftwr.r__d.14C

where ’14C’ is the node ID of the node where ’joe’ is logged in.

In ACLs, SIDs may contain one or more wildcards, similar in concept to wildcards used
with pathnames. A ’%’ in the person, project, organization, or node id part of a SID will
match any person, project, organization, or node (respectively). Thus

j0e.%.%.%

Shell Commands 4-88

®

EDACL (EDIT _ACCESS_ CONTROL _ LIST)

would match user ’joe’ regardless of his project or organization names, and regardless of
which node he happened to be using.

RIGHTS

The following are the basic kinds of operations that can be performed on objects, and the
rights which allow them when present in an ACL entry.

for all objects:

P
g

n

for files:

XA

protect rights; allows rights to be changed
grant rights. allows creation of new entries
with a subset of creator’s rights

change node list rights; allows CD, CN commands

delete rights; allows file to be deleted
write rights; allows file to be written
read rights; allows file to be read
execute rights

for directories:

0

n s P

[

delete rights; allows directory to be deleted
change rights. allows names to be changed,

and links to be deleted

append rights; allows names to be added to directory
link rights. allows links to be added to directory
read rights; allows directory to be listed

search rights; allows directory to be searched for
subordinate objects (for DOMAIN/IX)

expunge rights; allows subordinate objects to be
deleted provided delete rights are also available
for the subordinate object (for DOMAIN/IX)

The following abbreviations exist for sets of rights: (Note that search and expunge rights

are always set.)

—0OWNER

-USER

~READ
-EXEC
-LDIR

~ADIR

-NONE

Gives all rights.

For files, it means: pgndwrx

For directories: pgndcalrse

Gives all rights except ability to change ACL.
For files, it means: dwrx

For directories: dcalrse

For files, allows reading:. can’t change ACL.
Precisely, it means: r

For files, allows reading, execution; can’'t change ACL.
Precisely, it means: rx

For directories, allows listing. can’'t change ACL.
Precisely, it means: rse

For directories, allows adding names and links,
and listing; can’t change ACL.

Precislely, it means: alrse

Gives no rights, for files or directories.

Used to explicitly deny rights to specific

SIDs that would otherwise be granted righs
because they are members of a project or
organization.

For directories it means: se (unless -UNIX was

4-89 Shell Commands

EXAMPLES
(The DOMAIN System User’s Guide also provides detailed examples of applying and

manipulating ACLs.)

EDACL (EDIT _ ACCESS_ CONTROL _ LIST)

specified when EDACL was invoked, in which
case all rights are revoked.)

1. The order of the commands in the following sequence is significant.

$ edacl -L sales
%.%.%.% pg

$ edacl sales -c
$ edacl -L sales
DAN.%.%.% -
%.%.%.% P

$ edacl sales -a joe —owner

$ edacl -L sales

joe . %.%.% P
dan.%.%.% -
%.%.%.% p

ndwrx

f dan.%

gndwrx

gndwrx

gndwrx

-none

$ edacl sales -a %.%.mktg wrx

$ edacl -L sales
joe . %.%.%
dan.%.%.%.
%.%.mktg.%
%.%.%.%

$ edacl sales -c

$ edacl -L sales
joe.%.%.%
dan.%.%.%
%.%. mktg . %
%.%.%.%

$

Shell Commands

pgndwrx

—~=—=WIX
pgndwrx

% r -

pgndwrx

—=—-Wrx
———-—r——

4-90

List ACL for the file °‘sales’. The
ppon is all wildcards (%.%.%.%). so
all users have complete rights
(pgndwrx) to ’sales’.

Deny user DAN access to °sales’.
Other users still have all rights.
Note that the system automatically
places specific entries before
general ones.

Add user JOE to the ACL for ’sales’
with all rights.

Allow users in the MKTG organization
to change file contents, but do not
let them assign rights to others (p
and g), change the node ID entry (n),
or delete the file (d).

Change everyone else’s access to read
only. Note that the more liberal
rights (wrx) assigned to the MKTG
organization in the previous line
still apply. since specific entries
override general ones.

®

EDACL (EDIT _ACCESS_ CONTROL _LIST)

2. The following examples illustrate the effect of the -UNIX option.

$ edacl dir
dir
* 1
%.%.%.% pgndcalrse
* a jim -none -
jin.%.%% ——————— se
* a ers -r
ers. %.%.% L mm——— rse
¥ 1
jim.%%% ——————— se
ers%%% —————— rse
%% %% pgndcalrse

Now specify -UNIX ...

$ edacl dir -unix
dir
* 1 .
%-%.% % pgndcalrse
* a jim -none
jimn.%%% mmme—————

* a ers -r

ers.%.%.% = mm——— r——
* 1

rees.%.%.% @020 eememmm————
ers. %.%.% 0 emmm——— r——
%-%-%.% pgndcalrse

3. Set the initial file ACL for the directory //test/tmp/dir to be dynamic.

$ edacl //test/tmpdir -if -dyn

4-91 Shell Commands

EDFONT

EDFONT == Edit a character font. (\

FORMAT

EDFONT [pathname [char]]

EDFONT is an interactive, menu-driven program that allows you to create, edit and view
character font files. For a detailed explanation on editing a character font, see the
EDFONT description in the DOMAIN System Utilities manual.

ARGUMENTS
pathname
(optional) Specify the name of the font file to be edited.
Default if omitted: EDFONT prompts for the pathname. (\
char
(optional) Specify the first character to be edited. This argument is valid

only if the ’pathname’ argument has been specified.

Default if omitted: begin editing session with character ’g’.

Shell Commands 4-92

EDIP (EDIT _IP_HELPER)

EDIP (EDIT_IP_HELPER) -- Invoke editor for IP__HELPER.

FORMAT

EDIP [[net.Jnode_id]

EDIP allows you to inspect and modify the IP_HELPER’s directory of DOMAIN node
names, Internet Protocol addresses, DOMAIN addresses, and the IP__HELPER’s replica
list. Once invoked, EDIP enters an interactive mode and accepts the commands
described below.

ARGUMENTS

[net.]node_id

(optional) . Set the default IP_ HELPER to the IP__HELPER at the node
specified by this identifier.

COMMAND SUMMARY

Some EDIP commands use node specifications and DOMAIN internet addresses as
arguments. If a command accepts a node specification, the syntax line uses the term
'node _spec’. If a command accepts a DOMAIN internet address, the syntax line uses the
term ’[net.Jnode__id’.

When a command accepts a node specification, you can provide a node name (if the name is
cataloged in the default IP_ HELPER database) or you can provide a DOMAIN internet
address. When a command accepts a DOMAIN internet address, you must specify a node
ID, and in some cases, a DOMAIN network number.

Note that the rules for specifying DOMAIN internet addresses in EDIP commands differ
slightly from the rules for specifying DOMAIN internet addresses in Shell commands. If the
node is on the local ring, the network number is optional. If the node is on a remote ring,
the network number is required. When you issue EDIP commands from a node in a
network that has a non-zero network number, you cannot specify the number 0 to indicate
the local ring.

When you specify a DOMAIN internet address in an EDIP command, the DOMAIN internet

address must begin with an integer. If the address begins with a letter, precede the address
“with a 0 (e.g. 0D34.1E05).

4-93 Shell Commands

EDIP (EDIT _IP _HELPER)

SYNTAX FUNCTION
(abbreviation shown
in UPPER case)

Default options are indicated by *"(D)".

ADD name -IP Internet Protocol_address
-DA [net.]node_id
Adds a DOMAIN node name, its Internet
Protocol(IP) address, and its DOMAIN address
to the default IP_HELPER’s copy of the
directory. The IP address must be
entered as 4 decimal digits each separated

by a period ".". The DOMAIN address net and
nodeid must be entered as hexidecimal digits
separated by a period ".". The DOMAIN

address or the IP address may be omitted.

IP_HELPER propagates the new information
to all IP_HELPERs in its replica 1list.
If the node name or its IP address
already exists in IP_HELPER's database,
EDIP does not add the entry and displays
an error message.

ADDRep node_spec Adds a replica to the default IP_HELPER's
replica list. The IP_HELPER propagates
the new replica’s identity to all
IP_HELPERs .in its replica list.

The IP_HELPER accepts a new replica only
if the entry does not already exist in
the replica list. If an entry already
exists, then the IP_HELPER does not
accept the entry and EDIP displays an
error message.

CHRep 0ld_node_spec New_node_spec Changes the DOMAIN address of the replica
old node_spec to new_node_spec in the
default IP_HELPER’s replica list; only
the DOMAIN net number may be changed. The
IP_HELPER propagates the change to all
IP_HELPERs in its replica list, including
the replica whose address changed.

CMP [node_specA] node_specB Compares two IP_HELPER directories and lists
[-LA|-ND] entries that appear in both directories. The
CMP command shows names and Internet Protocol
addresses that appear in both copies of the
IP_HELPER directory. If you do not provide
a value for node_specA, then EDIP uses the
default IP _HELPER database.

Shell Commands 4-94

—

-ND (D)

DELete name

DELRep node_spec

DIFF [node_specA] node_specB

INFO

EDIP (EDIT_IP_HELPER)

Do not list entries that are exact
duplicates. Only list cases where 2 name
or Internet Protocol address is associated
with diferent entry information in the two
directories.

List all names and Internet Protocol
addresses that appear in both directories.

Deletes a node name from the default
IP_HELPER’s copy of the directory. »
The IP_HELPER propagates the delete request
to all IP HELPERs in its replica list.

If the name you specify does not exist,
EDIP returns an error message and does not
accept or propagate the DELETE request.

Deletes an IP_HELPER from the default
IP_HELPER’s replica list. The IP_HELPER
propagates the delete request to all

IP HELPERs in its replica list, thereby
removing the replica from all other
replica lists. In addition, DELRep causes
the deleted replica to delete its database.
The deleted replica stops running after
its propagation list has been emptied.

If the replica you specify with the DELRep
command does not exist in the IP _HELPER’s
replica list, EDIP returns an error and
does not accept or propagate the DELRep
request. .

It is best to wait at least fifteen minutes
before restarting a deleted replica.

Lists the differences between two IP_HELPER
databases. The DIFF command shows
differences between the copies of the
IP_HELPER directory and between the

replica lists. If you do not provide a
value for node_specA, then EDIP uses the
default IP_HELPER database.

Displays the DOMAIN address and status
information for the default IP HELPER.

4-95 Shell Commands

EH)H?(EH)PT__IR__IIEHJ’EFU

INIT [node_specA] [-FROM node_specB]

-FROM node_specB

LD [names] [-NODE node_id]
[-NET net]
[-IPADDR IP_address]
[-SN|-NsN]
(-N] [-DA] [-IP] [-DTE]

-NET net

~NODE node_id

—IPADDR IP_address

-SN. ()]
-NSN

Shell Commands

Initializes an IP_HELPER database. If you

do not specify a value for node_specA,

then EDIP initializes the default IP_HELPER
database. After you initialize an IP_HELPER
it becomes active. That is, the IP_HELPER
can communicate with other IP_HELPERs and
can respond to lookup and update requests.
(Before an IP_HELPER is initialized, it will
repond only to the INFO, INIT, MERGE ALL and
SHUT commands.)

If you specify the -FROM option, EDIP
performs some additional initialization.

First, EDIP adds the IP_HELPER on node A

(or the default node) to node B's replica
list. Then node B propagates the new
replica information to all the replicas in
its (node B’'s) replica list. Thus, the other
IP_HELPERs will now have node A (or the
default IP_HELPER) on their replica lists.

Finally, EDIP merges all entries from node
B's IP_HELPER database into node A’'s (or
the default) database. This merge includes
the entries in node B’s copy of the
directory and in node B’s replica list.

Lists IP_HELPER directory entries by name;
if names are specified, only those names
are listed.

Lists directory entries with the
specified DOMAIN network number. If names
are specified, LD lists entries with the
specified names, and also lists entries
with the specified network number.

Lists entries with specified DOMAIN

node ID. If names are also specified,

LD lists entries with the specified names
and also lists entries with the specified
node ID.

Lists entries with specified Internet
Protocol address. If names are also
specified, LD lists entries with the
specified names and also lists entries with
the specified IP address.

Lists entries sorted by name.
Suppresses name sorting.

4-96

EDIP (EDIT _IP_ HELPER)

The following options specify what special information should be
displayed with each entry that is listed:

-N Displays node_id.

-DA . Displays DOMAIN address.

-IP Displays Internet Protocol(IP) address.
-DTE Displays date/time this entry was made

to the directory and the node_id of
the replica where this entry was made.

LR [-CLOCKS] Displays list of replicas in the network.

—CLOCKS Displays each replica’s current clock
date/time and checks for any replicas
whose clocks are skewed.

MERGE [node_specA] -FROM node_specB
Merges all entries in the IP_HELPER
database on node B into the IP_HELPER
database on node A; node B’s database
remains unchanged. If you do not specify
a value for node A, then EDIP merges node
B’s database into the default IP_HELPER
database.

If node A’s database contains an entry
with the same name as an entry being

merged from node B, then the entry with

the latest timestamp is saved in node A’s
database. (A timestamp is the time an
entry receives vwhen it is first added to
an IP_HELPER database. An entry keeps its
original timestamp when it is propagated to
other IP_HELPERs.)

The MERGE command affects only the database
on node A; node A does not propagate any
entries it obtains from the merge.

MERGE_ALL [node_spec] Performs a global merge using the
IP_HELPER at the node you specify as the
base for the merge. If you omit the
node_spec, EDIP uses the default IP_HELPER.

To do a global merge, EDIP merges each
IP_HELPER database in the specified
IP_HELPER’'s replica list into the
specified IP_HELPER's database. Then,
EDIP merges the updated database back out
to each replica. EDIP merges both the
replica lists and the copies of the
directory. If a database contains an entry
with the same name as an entry being
merged, then the entry with the latest
timestamp is saved. (A timestamp is the
time an entry receives when it is first

4-97 Shell Commands

EDIP (EDIT _IP _HELPER)

QUIT

REPlace name -IP IP_address
-DA [net.]node_id

SET [node_spec]

SHUT node_spec

For complete information on EDIP command usage, see Managing TCP/IP-Based

Communications Products.

Shell Commands

added to an IP_HELPER database. An entry
keeps its original timestamp when it is
propagated to other IP_HELPERs.)

An TP_HELPER must be listed in the base
IP_HELPER's replica list to be included

in a global merge. The IP_HELPERs in

the replica list may be uninitialized.

If an IP_HELPER is not already initialized,
the MERGE ALL command will initialize its
database and allow the IP_HELPER to be
active.

Terminates the current EDIP session.

Changes the Internet Protocol(IP) address
and DOMAIN address associated with name in
IP_HELPER’s copy of the directory. The IP
address must be entered as 4 decimal digits
each separated by a period (.). The

The DOMAIN address net and nodeid must be
entered as hexidecimal digits separated by
a period. The DOMAIN address or the IP
address may be omitted; an address which is
omitted is entered as NULL for the entry.

IP_HELPER propagates the new information
to all IP_HELPERs in its replica list. If
the IP address is associated with another
entry that already exists in IP_HELPER's
database, EDIP does not replace the entry
and displays an error message.

Sets the default IP_HELPER to the IP_HELPER
running on the node you specify. Subsequent
EDIP commands will be directed to this
IP_HELPER, unless you specify a different
IP_HELPER in the command. If you use the
SET command and omit a node specification,
EDIP will select an active IP_HELPER

(with an initialized database) to be the
default.

Shuts down the IP_HELPER replica on the
node you specify. This command causes
the specified replica to delete its
database and stop running immediately.
The shutdown replica is not removed from
any replica lists.

4-98

EDMTDESC (EDIT _MAGTAPE _ DESCRIPTOR)

EDMTDESC (EDIT_MAGTAPE_DESCRIPTOR) -- Edit magtape descriptor file.

FORMAT

EDMTDESC pathname {options}

EDMTDESC allows you to create, list, and modify magnetic tape descriptor objects.
These descriptor files provide information to the streams manager so that it can handle
subsequent tape operations much as an SIO descriptor file describes the configuration of
an SIO line.

ARGUMENTS
pathname .
(required) Specify name of magtape descriptor file to be created, listed, or
edited.
OPTIONS

At least one of the following options must be specified.

-C Create a new magtape descriptor object with the name given in
the ’pathname’ argument.

=L [var...] List the values of the variable(s) specified. If no variables are
named, the entire magtape descriptor is listed.

=S {var value}...
Set the variable(s) indicated to the specified value(s). At least
one variable/value pair is required if -S is specified. Multiple
variable/value pairs are permitted, separated by blanks.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

VARIABLES
The variables known to EDMTDESC are listed below, along with their types and default

values. The variable types are: integer (int), Boolean (y/n), character string of n letters (c
[n]), and date (in format yy/mm/dd.hh:mm).

4-99 "~ Shell Commands

EDMTDESC (EDIT _MAGTAPE _ DESCRIPTOR)

name

CLV

SPOS

VID
VACC
OWN

RF

BL
RL
ASCNL

FSECT
FID
FSID
GEN
GENV
CDATE
EDATE
FACC
sYsC
SYSU
BOFF

For cartridge tape (DEV C), you must change the block length (BL) and the record length

type

c[1]
int
y/n

y/n
y/n

y/n

c(s]
cl1]
cl14]
intx*

c[1]

int
int
y/n

int
c[17]
c[6]
int
int
date
date
cl1]
c[xx]
c[xx]
int

default definition

M
0
yes
no

yes

no

-auto

—auto

2048
2048
yes

-auto
—-auto

device type ('M’ for magtape, °C’ for cartridge)

magtape unit number (normally O)

'yes’ 1if magtape is ANSI labeled, ’no’ if
unlabeled

‘yes’ to reopen previously used volume, ’'no’
to open new volume ('yes’ suppresses rewind)
'yes' closes volume when file is closed,
'no’ leaves volume open

'yes’ saves volume position when volume is
closed (for reopen), ’no’ rewinds volume
vwhen closed

volume identifier (labeled volumes)

volume accessibility (labeled volumes)

volume owner (labeled volumes)

file sequence number -- integer or "cur" for
current file, or "end" for new file at end
of labeled volume

record format —— "F" for fixed length, "D"
for variable length, "S" for spanned,

"U" for undefined

block length, in bytes

(maximum) record length, in bytes

‘yes’ for ascii newline handling (strip
nevwlines on write, supply them on read),
‘no’ for no newline handling

file section number (labeled volumes)

file identifier (labeled volumes)

file set identifier (labeled volumes)

generation of file (labeled volumes)

generation version of file (labeled volumes)

creation date of file (labeled volumes)

expiration date of file (labeled volumes)

file accessibility (labeled volumes)

system code (labeled volumes)

system use (labeled volumes)

buffer offset (labeled volumes, should be 0)

(RL) to be 512 or less and the record format to be fixed ('RF F”).

EXAMPLES

$ edmtdesc set_tape -s u 1 lab yes

Edit file “"set_tape":
set the tape unit number
to 1. declare tape as
ANSI labeled.

$ edmtdesc ct -c -s dev ¢ bl 512 rl1 128 rf f

Shell Commands

Create descriptor file ct for
cartridge tape, blocking 4
records of maximum length 128
to each block.

4-100

)

EDNS (EDIT _NAMING _ SERVER _ HELPER)

EDNS (EDIT_NAMING _SERVER_HELPER) == Invoke editor for NS_ HELPER.

FORMAT

EDNS [[net.]node__id]

EDNS allows you to inspect and/or modify NS_HELPER’s master network root
directory and replica list. Once invoked, EDNS enters an interactive mode and accepts
the commands described below. For complete information on NS__ HELPER and EDNS
usage, see Administering Your DOMAIN System.

ARGUMENTS

[net.Jnode_id

(optional) Set the default NS__HELPER to the NS_HELPER at the node
specified by the internet address.

Default if omitted: Set the default NS__ HELPER to any active
NS _HELPER. An NS__HELPER becomes
active after its database has been initialized.

EDNS COMMAND SUMMARY

Some EDNS commands use node specifications and internet addresses as arguments. If a
command accepts a node specification, the syntax line uses the term node _spec. If a
command accepts an internet address, the syntax line uses the term [net./node__id.

When a command accepts a node specification, you can provide a node name (if the name is
cataloged in the default NS__HELPER database) or you can provide an internet address.

When a command accepts an internet address, you must specify a node ID, and in some
cases, a network number. Note that the rules for specifying internet addresses with EDNS
commands differ slightly from the rules for specifying internet addresses with Shell
commands. If the node is on the local ring, the network number is optional. If the node is
on a remote ring, the network number is required. When you specify an internet address
with an EDNS command, the internet address must begin with an integer. If the address
begins with a letter, precede the address with a 0 (e.g., 0D34.1E05). When you issue EDNS
commands from a node in a non-zero network, you cannot specify the number 0 to indicate
the local ring.

For complete information on EDNS command usage, see Administering Your DOMAIN
System and Managing DOMAIN Internets.

4-101 Shell Commands

EDNS (EDIT _NAMING _ SERVER _ HELPER)

SYNTAX
(abbreviation shown
in uppercase)

FUNCTION

Default options are indicated by "(D)".

ADD name [net.]node_id

ADDRep node_spec

CMP [node_specA] node_specB

DELete name

Shell Commands

Adds a new node name, and the associated
node information, to the default
NS_HELPER’s copy of the master root
directory. After accepting a name, the
NS_HELPER propagates the new information
to all NS HELPERs in its replica list.
The NS_HELPER accepts a new name only if
it does not already exist in the master
root directory. If a name already
exists, then the NS_HELPER does not
accept the entry and EDNS displays an
error message.

The node you are adding must be con-
nected to the network in order for EDNS
to obtain information needed for the
database. For a disked node, EDNS gets
the UID for the node entry directory.
For a diskless node, EDNS verifies that
it is diskless and creates a canned UID.

Adds a replica to the default

NS _HELPER’s replica list. The NS_HELPER
propagates the new replica’s identity to
all NS HELPERs in its replica list.

The NS_HELPER accepts a new replica only
if the entry does not already exist in
the replica list. If an entry already
exists, then the NS _HELPER does not
accept the entry and EDNS displays an
error message.

Compares two NS_HELPER databases and
lists names, network numbers, and UIDs
that appear in both copies of the master
root directory. CMP also lists replicas
that appear in both replica lists. If
you do not provide a value for
node_specA, then EDNS uses the default
NS_HELPER database.

Deletes a node name from the default
NS_HELPER’s copy of the master root
directory. The NS _HELPER propagates the
delete request to all NS_HELPERs in its
replica list. If the name you specify
does not exist, EDNS returns an error
message and does not accept or propagate
the DELETE request.

4-102

)

DELRep node_spec

DIFF [node_specA] node_specB

INFO

EDNS (EDIT _ NAMING _ SERVER _ HELPER)

Deletes an NS_HELPER from the default
NS_HELPER’s replica list. The NS_HELPER
propagates the delete request to all
NS_HELPERs in its replica list, thereby
removing the replica from all other
replica lists. 1In addition, DELRep
causes the deleted replica to delete its
database. The deleted replica stops
running after its propagation list has
been emptied. '

If the replica you specify with the
DELRep command does not exist in the
NS_HELPER's replica list, EDNS returns
an error and does not accept or
propagate the DELRep request.

It is best to wait at least fifteen
minutes before restarting a deleted
replica.

Lists the differences between two
NS_HELPER databases. The DIFF command
shows differences between both copies
of the master root directory, and
between both replica lists. If you do
not provide a value for node_specA,
then EDNS uses the default NS_HELPER
database.

Displays the internet address and status
information for the default NS _HELPER.

INIT [node_specA] [-FROM node_specB]

Initializes an NS_HELPER database. If
you do not specify a value for
node_specA, then EDNS initializes the
default NS _HELPER database. After you
initialize an NS_HELPER, it becomes
active. That is, the NS_HELPER can
_communicate with other NS_HELPERs and
can respond to naming requests from
other nodes. (Before an NS HELPER is
initialized, it will respond only to
the INFO, INIT, MERGE_ALL and SHUT
commands.)

To use the INIT command without the
-FROM option, you must use EDNS from a
node on the same ring as the NS_HELPER
you are initializing. In such a case,
EDNS gets a list of all nodes on the
local ring, and adds these nodes to the
NS_HELPER database that you are
initializing. The NS_HELPER propagates
the new information to all replicas in
its replica list.

4-103 Shell Commands

EDNS (EDIT _NAMING _ SERVER _ HELPER)

-FROM node_specB

LD [names] [-NODE node_id]
[-NET net]
[-SN|-NsN]
[-T]1 [-u] [-N] [-IA] [-DTE]

-NET net

-NODE node_id

-SN (D)
-NSN

Shell Commands

If you initialize an NS_HELPER that has
previously been initialized, the INIT
command adds any new node names to the
existing database and propagates these
names to the NS_HELPERs on its replica
list.

If you specify the -FROM option, EDNS
performs a different type of
initialization. First, EDNS adds the
NS _HELPER on node A (or the default
node) to node B’s replica list. Then
node B propagates the new replica
information to all the replicas in its
(node B’s) replica list. Thus, the
other NS HELPERs will now have node A
(or the default NS HELPER) on their
replica lists.

Next, EDNS merges all entries from node
B’s NS_HELPER database into node A's (or
the default) database. This merge
includes the entries in node B’'s copy of
the master root directory and in node
B’s replica 1list.

Finally, if node A (or the default node)
and node B are on different rings, EDNS
also gets a list of all nodes on node
A’s network and adds these nodes to node
A’s copy of the master root directory.
Then node A’s NS_HELPER propagates these
names to all the NS HELPERs on its
replica list. When node A and node B
are on different rings, you must use
EDNS from a node on the same ring as
node A.

Lists root directory entries by name; if
names are specified, only those names
are listed.

Lists root directory entries with the
specified network number; if names are
specified, LD lists entries with the
specified names, and also lists entries
with the specified network number.

Lists entries with specified node ID;
if names are also specified, LD lists
entries with the specified names and

also lists entries with the specified
node ID.

Lists entries sorted by name.
Suppresses name sorting.

4-104

-

EDNS (EDIT _ NAMING _ SERVER _ HELPER)

The following options specify the special information to be displayed
with each entry that is listed:

-T Displays entry type.

-U Displays UID.

-N Displays node_id.

-IA Displays internet address.

-DTE Displays date/time this entry was made

to the directory and the node_id of
the replica where this entry was made.

LR [-CLOCKS] Displays list of replicas in the
network.
—CLOCKS Displays each replica’s current clock

date/time and checks for any replicas
whose clocks are skewved.

MERGE [node_specA] -FROM node_specB
Merges all entries in the NS_HELPER
database on node B into the NS_HELPER
database on node A; node B’'s database
remains unchanged. If you do not
specify a value for node A, then EDNS
merges node B’'s database into the
default NS_HELPER database.

If node A’s database contains an entry
with the same name as an entry being
merged from node B, then the entry with
the latest time stamp is saved in node
A’s database. (A time stamp is the time
an entry receives when it is first added
to an NS_HELPER database. An entry
keeps its original time stamp when it is
propagated to other NS_HELPERs.)

The MERGE command affects only the
database on node A; node A does not
propagate any entries it obtains from
the merge. '

MERGE_ALL [node_spec] Performs a global merge using the
NS_HELPER at the node you specify as the
base for the merge. If you omit the
node_spec, EDNS uses the default
NS_HELPER.

To do a global merge, EDNS merges each
NS_HELPER database (in the specified
NS_HELPER’s replica list) into the
specified NS _HELPER's database. Then,
EDNS merges the updated database back
out to each replica. Note that EDNS
merges both the replica lists and the
copies of the master root directory. If
a database contains an entry with the

4-1056 Shell Commands

EDNS (EDIT_NAMING _ SERVER _ HELPER)

QUIT

REPlace name [net.]lnode_id

SET [node_spec]

SHUT node_spec

Shell Commands

same name ag an entry being merged, then
the entry with the latest time stamp is
saved. (A time stamp is the time an
entry receives when it is first added to
the NS_HELPER database. An entry keeps
its original time stamp when it is
propagated to other NS_HELPERs.)

An NS_HELPER must be listed in the base
NS_HELPER’s replica 1list to be included
in a global merge. The NS_HELPERs in
the replica list may be uninitialized.
If an NS_HELPER is not already
initialized, the MERGE ALL command will
initialize its database and allow the
NS_HELPER to be active.

Terminates the current EDNS session.

Changes the internet address and UID
associated with a name in the default
NS_HELPER's copy of the master root
directory. The NS HELPER propagates the
new information to all NS HELPERs in its
replica list. Use this command after
running the utilities CHUVOL, or INVOL,
or replacing a disk.

The node you are replacing must be
connected to the network in order for
the NS _HELPER to obtain information
needed for the database. For a disked
node, EDNS obtains the UID for the node
entry directory. For a diskless node,
EDNS verifies the diskless status and
creates a canned UID.

Sets the default to the NS_HELPER
running on the node you specify.
Subsequent EDNS commands will be
directed to this NS_HELPER, unless you
specify a different NS _HELPER in the
command. If you use the SET command and
omit a node specification, EDNS will
select an active NS_HELPER (with an
initialized database) to be the default.

Shuts down the NS_HELPER replica on the
node you specify. This command causes
the specified replica to delete its
database and stop running immediately.
The shutdown replica is not removed from
any replica lists.

4-106

~

EDNS (EDIT _NAMING _SERVER _HELPER)

UPDATE [node_spec] Updates the NS_HELPER database on the
node specified. If you do not specify
a node, then EDNS updates the default
NS_HELPER database. An NS_HELPER must
be initialized before it can be updated.

EDNS gets a list of all nodes on the
EDNS node’s local ring. It adds nodes
which are not already in the NS_HELPER
database and replaces node information
(such as internet address and entry
directory UID) which has changed.
NS_HELPER propagates new information
to all replicas in its replica 1list.

4-107 Shell Commands

EDPPO (EDIT _PPO_FILE)

EDPPO (EDIT_PPO_FILE) -~ Edit/list person, project, or organization names.

FORMAT

EDPPO {options}

EDPPO is used to define usernames in the network registry. This is a prelude to creating
network accounts, which associate usernames with log-in home directories and passwords.
Use EDACCT (EDIT _ ACCOUNT) to perform that operation.

While all of the available EDPPO options are described below, you will probably not be
able to edit network registry files unless you are the network administrator for your
network. You should, however, be able to list the contents of the network and local
registries. Use EDPPO to find out who is associated with a particular username and
account.

For detailed examples of editing network registry files and complete information on
network registry commands, see Administering Your DOMAIN System.

OPTIONS

If you omit the -A, -D, -L, and -LF options, EDPPO enters an interactive editing session
which reads commands from standard input as described in the COMMANDS section below.

Default options are indicated by *(D)."

=R pathname Specify the registry to be edited or listed. You should only use
this option with -LOC (described below) to edit or list a remote
node’s local registry. If you want to edit or list the master
registry, omit this option and let EDPPO use the network
registry file copy (’/registry/registry’) on the current node to
locate the master registry.

Only one of the following three options may be present on a command line.

-PERS (D) Edit or list the contents of the Person file.

-PROJ Edit or list the contents of the Project file.

-ORG Edit or list the contents of the Organization file.

-LOC Specify that the node’s local registry (’/registry/local _ registry’)

is to be listed. If you specify -LOC, the only other valid options
are -R -L, -COL, and -D. You may not manipulate the local
registry using EDPPO’s interactive mode; the list or delete
functions must be specified on the command line.

-A name [fullname]
Add a name and optional full name text. PPO names can be up
to 32 characters long, must begin with a letter, and can include
only letters, numbers, and underscores (__). PPO names are
automatically maintained in lowercase. Associated full name
text is optional but strongly recommended. It can include any

Shell Commands 4-108

)

e
{

EDPPO (EDIT _PPO _FILE)

characters and be up to 32 characters long. Use single (or
double) quotation marks to embed spaces (or quotation marks) in
a full name.

-D name Delete a name. Command line delete is valid only on a local
registry. To delete a name from the network registry file, use
EDPPO’s interactive mode. @~ DELETE WITH EXTREME
CAUTION, even locally, because once you delete a name no one
can EVER access any files created by the user who had that
PPO. (The system cannot recreate a unique name identifier once
it has been deleted.) Normally, you should delete people’s
accounts (using EDACCT), NOT their names.

-L [name...] List the name(s) specified. If 'name’ is omitted, all names are
listed.
-LF [name ... List the name(s) specified, along with associated full name text,

if any. If name’ is omitted, all names are listed.

-COL List the names in a single column.
-NP Suppress prompts during interactive editing.
COMMANDS

If you omit the -A, -D, -L, and -LF options on the command line, EDPPO enters an
interactive editing session which accepts the following commands from standard input.

a [name [fullname]]
Define one or more new names, along with optional full name. If
fullname’ is omitted, EDPPO prompts you for it. Enter an
empty line if you wish the fullname field to be null. (See -A
above for name formats and restrictions.) If no name is
specified, names are read from standard input. We strongly
recommend that you supply full names.

¢ name new_ name [new_ fullname]
Change ’name’ to 'new__name’. If ’'new_fullname’ is also
specified, change the full name associated with ’name’ to
'new __fullname’.

cf name new_fullname
Change the full name associated with the name indicated.

d name Delete the name indicated. Once deleted, the unique name
identifier cannot be recreated, so DELETE WITH EXTREME
CAUTION. Once you delete a name, no one can EVER access
any files created by the user who had that PPO. Normally, you
should delete people’s accounts (using EDACCT), NOT their

names.
1 [name] List one or all names defined (including new ones).
If [name] List one or all names defined with their associated full names, if
any.

4-109 Shell Commands

EDPPO (EDIT _PPO_FILE)

In

wr

q

h [comm]

EXAMPLES

List only those names added during this editing session.

Update the file with the changes and exit.

Quit without updating.

Help -- list briefly all the available commands or a particular

command in detail.

List the names of people in the local registry.

$ edppo -loc -1
adm
bso
chrissy
sqh
vic

Shell Commands

alan

burt

cnt
sys_person
wilson_j

apgar
cas
col
taylor
zahn

4-110

beth
charlie
color
todd

bls
chris
csa
user

EDSTR (EDIT _ STREAM)

EDSTR (EDIT _STREAM) -- Edit a stream.

FORMAT

EDSTR [-N] { command | =E command | =F emdfile ...} [pathname]

EDSTR copies the named input files to standard output, performing editing as directed
by EDSTR commands in the command line or in the named command file.

ARGUMENTS

If neither the -E or -F argument is specified, EDSTR assumes that the first token on the
command line without a hyphen is an EDSTR command (see below) and that the remaining
tokens (if any) are pathnames.

command

(optional) Specify a single EDSTR command (except A, C, or I). EDSTR
accepts the ED commands A, C, D, I, P, R, S, W, and =. To use
the A, C, or I commands, place them in a command file as
described below.

Default if omitted: use -E and/or -F

The following two arguments may be repeated and intermixed in any order. EDSTR
executes them in the order in which they appear on the command line.

-E command

(optional) Specify an EDSTR command (except A, C, or I). To use the A,
C, or I commands, place them in a command file as described
below. EDSTR can accommodate commands totaling
approximately 5000 characters (including <text> arguments),
and lines up to 120 characters long.

Default if omitted: use ’command’ or -F

=F emdfile :

(optional) Specify a file containing EDSTR commands, one per line.
Control is passed to this file for command processing. See -E for
EDSTR command restrictions.
Default if omitted: use ’command’ or -E

pathname

(optional) Specify input file to be edited. Multiple pathnames are
permitted.
Default if omitted: edit standard input

OPTIONS
-N Supress writing of output except for P and W EDSTR

commands. By default, EDSTR writes each line of input to
standard output after editing. If this option is specified, it must
precede any arguments on the command line.

4~-111 Shell Commands

EDSTR (EDIT _STREAM)

EXAMPLES

$ edstr -e s/joe/mary/g -e ’'20r add_stuff’ infile > outfile

This command first replaces all occurrences of "joe" with "mary", then copies material in
the file "add_stuff* into "infile® following line 20. Results are written to the file
"outfile".

SUMMARY OF EDSTR COMMANDS

Addresses:
17 a decimal number
$ the last line of the file

/pat/ search forward for line containing pat
\pat\ search backward for line containing pat
line+n n lines forward from line

line-n n lines backward from line

Defaults:

.
O (no address) use current line
(+1) use the next line

(1.$) use all lines

Commands
O A Append text after line (text follows)
O C Change text (text follows)
o) D Delete text
O I Insert text before line (text follows)
O P Print text (can be appended to other commands)
O R file Read file, appending after line
O S/pat/new/GP Substitute new for leftmost pat (G implies all
occurrences)
(1.$) W file Write file, leave current text unaltered (if
no file is specified. write to current filename)
0O =[P] Print line number, current line
Arguments:
$n Write to/read from the nth temporary buffer

Shell Commands 4-112

O

/

)

()

EM3270 (EMULATE _ 3270)

Q EM3270 (EMULATE_3270) == Emulate an IBM 3270 terminal.

FORMAT

EM3270.{device}

EM3270 allows a DOMAIN node to emulate an IBM 3270 terminal over an SIO line
connected to a VT100-to-3270 converter. The command is meaningless without this
additional hardware.

While EM3270 requires no arguments or options, there are actually three different
commands, depending on which protocol converter you are using. The following protocol
converters support the EM3270 Package software:

o JCCI Model CA20
o ICCI Model CA12

Q o KMW Model BAC-3270 F'S
« PCI 1076

Specify the device name with the EM3270 command. For example:
$ em3270.pci

if you are using the PCI 1076 protocol converter.

Follow the manufacturer’s directions for connecting the converter you choose to the

Q node’s SIO lines.

EM83270 Commands

Once you have invoked EM3270, you may use the following commands:

H Display command summary information.
LI [n] Select SIO line n. The default SIO line is 1.
Q Q Exit from EM3270.
SPEED n Set SIO line speed. Valid speeds are 50, 75, 110, 134, 150, 300, 600,

1200, 2000, 2400, 3600, 4800, 7200, 9600, and 19200.
[NOJSYNC Enable/disable XON/XOFF on the SIO line.

In addition to these commands, two control/key sequences perform special functions:

CTRL/<F8> Switch between command mode and Remote 3270 mode.

CTRL/<F7> Display a layout of the 3270 emulation keyboard.

4-113 Shell Commands

EM3270 (EMULATE __3270)

Keyboard Conversion

The following special keyboard keys map to the IBM equivalents indicated.

HEX CODE IBM KEYBOARD

X'5F°* CENT SIGN

X'4A’ NOT SIGN (PLI-NOT)

X’'6A° DOUBLE VERTICAL BAR
(ONE ABOVE THE OTHER)

X'4F’ VERTICAL BAR (PLI-OR)

Shell Commands 4-114

APOLLO KEYBOARD
LEFT BRACKET [’
RIGHT BRACKET ']’
CARET °~’

DOUBLE VERTICAL BAR

S

TN

EMT (EMULATE _ TERMINAL)

EMT (EMULATE_TERMINAL) == Emulate a dumb terminal.

FORMAT

EMT [pathname]

EMT allows your node to emulate an ASCII terminal connected to another computer.
This asynchronous connection exists through a stream opened on one of the node’s SIO
lines. EMT also permits ASCII file transfer between your node and the remote host.

ARGUMENTS
pathname
(optional) : Specify file containing EMT commands.
Default if omitted: read commands from standard input
Using EMT

EMT begins execution in local mode, and displays the following prompt:

emt>

To enter remote mode, press <F1>. (The EMT command DL no longer exists.) In remote
mode, your terminal operates as if it is physically connected to the remote computer ("host").
You can log on and enter remote host commands.

To return to local mode, press <F1> again.

Input /Output Streams

EMT uses the four standard streams (standard input, standard output, error input, and
error output) as follows:

o EMT commands are read from an EMT command file or from standard input.
The command filename may be specified on the command line or using the EMT
run’ command. Up to four levels of command files may be nested. When EOF
is reached on a command file, commands are read from the previous file or from
standard input. If EOF is reached on standard input, EMT exits.

o Keystrokes to be sent to the host computer are read from error input. Error
input may not be redirected to a file. Use the EMT ’xmit’ command to transmit
a file (of commands or data) to the host. Use the EMT ’recv’ command to
receive host transmissions to a DOMAIN file.

¢ EMT Command responses and all messages from the host are written to
standard output.

e Error messages from AEGIS system calls are written to error output. Optional
monitoring (MONIT) may also be written to error output (or to a named file).

4-115 Shell Commands

EMT (EMULATE _ TERMINAL)

Trans ferring Files

You can transfer files using EMT’s receive (RCV) or transmit (XMIT) commands. XMIT
sends a DOMAIN file to the remote host. RCV opens a DOMAIN file to receive
information from the remote host. For example, if you type (in local mode):

emt> XMIT FILEA

EMT displays the following message:

Ready to transmit file FILEA

Next, press <F1>. EMT enters remote mode, and transmits FILEA to the remote host.

If you type:

emt> RCV FILEB

EMT displays this message:

Ready to receive file FILEB.

Next, enter remote mode by pressing <F1>. Use a remote host command to display the
information that you want FILEB to receive. EMT automatically writes this and all
subsequent host transmissions into FILEB. To stop the RCV, press <F2>.

Transmisston Conventions

Use the EMT command INTERM to specify the line terminator used by the host. If you do
not know what the host uses as a line terminator, experiment by changing INTERM. Use
the EMT command OUTTERM to specify the line terminator to be transmitted to the host.

EMT allows you to open only one DOMAIN file at a time. If EMT receives a XMIT or
RCV command while another DOMAIN file is active, it closes the open DOMAIN file, and
executes the new command.

During remote mode, EMT waits on both the keyboard and SIO line for characters to
process, and monitors the data for characters of special interest to EMT.

You can specify which keyboard characters EMT should interpret by placing the keyboard
in raw or cooked mode. In raw mode, EMT passes all keyboard input (except the function
keys, keys L1 through L12, and keys R1 through R4), directly to the host. Cooked mode
lets you use many of the Display Manager’s features for editing the input pad. EMT places
your keyboard in cooked mode by default.

Shell Commands 4-116

C
)

EMT (EMULATE _ TERMINAL)

EMT COMMANDS

Keys

<F1> Switch between local and remote modes.

<F2> Interrupt a file transfer and close the file.

<F3> Turn TEE on or off. TEE on causes EMT to display file transmission
records on the screen. You can use this feature to monitor file transfers,
and decide if and when you should stop or interrupt a transfer. The
default is TEE on.

<F8> Send a BREAK to the host.

CTRL/<F7> Display function key definitions.

These function keys may be simulated by typing the EMTESC character followed by the
function key number (i.e., ~1 for F1). When EMT is used from the VT100 emulator,
F1-shifted is used instead of F2, and F1-control is used instead of F'3.

Commands

AE Abort on error.

ASConly | NOTASConly
Sift out most non-printing ASCII codes. Eliminates triangles, allows BS,
CR, ESC, FF, LF, TAB. The default is NOTASC.

BREAK |n] Set the BREAK duration value to n milliseconds. The default is 200. If
set to 0, the <F8> (break) key does nothing.

CLOSE Deactivate an RCV file. See the RCV command for related information.

CODE [xx | NONE]
Set the HOST-COMMAND-CODE to the hexadecimal number xx. The
default is NONE.

COOKED Place the keyboard in cooked mode. This enables many Display Manager
features for editing the input pad, and provides an escape sequence for
sending control characters to the remote host. To send the host a CTRL
character, precede the character with a tilde (~). The sequence ~_
transmits a delete character. To send the host a single tilde character,
type ~~.

The EMT default is cooked mode. Cooked mode always echos keystrokes, so it does not
require a full duplex connection to the host. (See the RAW command for
related information.) Note that the COOKED and RAW commands refer
only to the transcript pad and keyboard input. The SIO line itself is
always in RAW mode.

'EMTESC [chr|NONE]
Set the EMT escape character to chr. Use NONE to disable the escape
character. Default is ~ for cooked mode, NONE for raw mode.

4-117 Shell Commands

EMT (EMULATE _ TERMINAL)

The following three commands are useful when standard input is redirected to a file of

EMT commands:
F1

F2
F3
HANGUP

HELP [tct]]

Enter remote mode (Simulate Function key F1).
Terminate file transfer (Simulate Function key F2).
Toggle TEE mode (Simulate Function key F3).

Cause modem to break connection with the remote host.

Display information about EMT commands or about TCTL commands.

LINE {1/2|3|pathname}

Select the SIO line. Pathname must specify an SIO device descriptor
(e.g., /DEV/SIO2). The default SIO line is 1 (/DEV/SIO1).

Display the current SIO line, all EMT switch settings and the receive
filename, if any.

MONIT [pathname]

NOMONIT

QUIT

Write every character received over the SIO line to ’pathname’. If a
filename is not specified, the previous specification or error output is
used.

Stop monitoring.

End the EMT session.

RAW [-ECHO|-NOECHO] [-LF|-NOLF]

Place the keyboard in raw mode. This sends keyboard input directly to
the remote host, interpreting only function keys. The -ECHO option
echos keystrokes on standard output; you should use it when the host is
in half-duplex mode. The default is -NOECHO. The -LF option converts
CR to LF for lines echoed. The default is -NOLF. (See the COOKED
command for related information.) Note: The -ECHO and -LF options
are purely local functions that enable you to read what you type. They
do not in any way change host/node transmissions.

RCV [-R] [-KEYS|-NOKEYS] [pathname]

Shell Commands

Prepare the DOMAIN file specified to receive remote host transmissions.
If ’pathname’ already exists, EMT appends the transmission to it, unless
you specify -R. The receive begins when you enter remote mode <F1>.
If you omit ’pathname’, EMT uses the previous name, if any. The
-KEYS option writes keystrokes to the file along with received data. The
default is -NOKEYS.

EMT allows you to interrupt an RCV command at any time by pressing
<F2>. EMT remains in whatever mode it was in, but keeps the RCV
file active. When you are ready to continue receiving host transmissions,
you may type RCV again (in local mode) without a filename, and EMT
will use the same RCV file.

4-118

EMT (EMULATE _ TERMINAL)

If you omit filename and no RCV file is active, EMT issues an error
message. If you specify a new RCV file while another RCV file is active,
RCV closes the active file, and prepares the new file to receive the
transmission.

Use the CLOSE command to deactivate an RCV file.

TCTL {tct] commands}

Pass this command line to the Shell command TCTL to configure the
SIO line. It is not necessary to specify the line number (-line), although
you may if you wish to operate on a different line than the one you are
using. The SPEED and SYNC commands have been superseded by this
direct invocation of TCTL.

INTERM {CR|LF|CRLF|VAX|*hex’}

Select the input line terminator. The default is CRLF'.

OUTTERM {CR|LF|CRLF|’hex’}

XMIT pathname

Select the output line terminator. The default is CR. EMT transmits
the selected hexadecimal value as the terminator for each line.

Prepare to transmit the DOMAIN file specified to the remote host. If
you omit ’pathname’, or if you specify a file that does not exist, EMT
issues an error message. When you issue this command, EMT remains in
local mode. EMT transmits the file when you press <F1>.

When EMT completes the transfer, it closes the file and returns to the
previous mode. EMT does not send an end-of-file (EOF) signal to the
remote host. If the host requires an EOF, enter remote mode and
transmit it manually.

EMT can also receive commands from the host. If the host transmits the sequence:

HOST-COMMAND-CODE (EMT COMMAND STRING) LINE-TERMINATOR
EMT interprets the string as an EMT command. Use the EMT command CODE to define

HOST=COMMAND=CODE.
Input Line EMT Response
Terminators
CRLF Converts sequence to a line feed, ignoring
any null characters that may separate the
pair.
CR Converts sequence to a line feed and
ignores LFs.
LF Interprets it as a line feed, and ignores
CRs.
VAX Interprets both CR and CR-LF as terminators

and converts them to line feed.

4-119 Shell Commands

EMT (EMULATE _ TERMINAL)

‘hex’

Shell Commands

Converts the given hexadecimal value to LF.

4-120

ENSUBS (ENTER _ SUBSYSTEM)

ENSUBS (ENTER_SUBSYSTEM) == Enter a protected subsystem.

FORMAT

ENSUBS subsystem _name

ENSUBS is used to enter a protected subsystem at Shell command level. ENSUBS
creates a new process in which to run the subsystem Shell.

Once in the subsystem, the SUBS command can be used to create new managers for the
subsystem or to seal data objects so that only managers of the subsystem can operate on
them. Also, subsystem managers can be debugged conveniently in this mode using
DEBUG, and protected data objects can be examined. Note, however, that access to
protected objects requires prior use of the SUBS -UP command.

ARGUMENTS

subsystem _name

(required) Specify name of subsystem to be entered. The Shell will search
the directory /SYS/SUBSYS for the file specified.

NOTES

o ENSUBS XXX just invokes the command /SYS/SUBSYS/XXX in a new process
(unless the current process is already running in Subsystem XXX). The new
process shares the window of the creating process, and is therefore subject to the
same restrictions found when logging into a window. To avoid the limitations, a
new window, containing a Shell running in the subsystem, can be created using
the DM. Press the <CMD>> key; next to the prompt, type:

Command: c¢p /sys/subsys/xxx
o The access control list on the file /SYS/SUBSYS/subsystem __name determines
who can enter the subsystem ’subsystem _name’: whoever has read and execute

rights to it can enter the subsystem. Usually, this capability should be restricted
to the creators of the subsystem or to the System Administrator.

4-121 Shell Commands

EOFF

EOFF == Deactivate the Shell’s =E flag.

FORMAT

EOFF

EOFF disables variable evaluation. Variables are evaluated only inside variable
expression delimeters, ((expression)); otherwise, the Shell treats the “var_ name
expressions as strings and they are not evaluated. To enable variable evaluation
regardless of the context in which the variable appears, specify EON.

By default, EOFF is in effect when a Shell is invoked.
If EOFF is specified in a Shell seript, it remains in effect until that Shell script exits, or
until over-ridden by an EON in a nested Shell script. When a Shell script exits, the state

of variable evaluation is returned to the state in effect just before the script was invoked.

EOFF requires no arguments or options.

Shell Commands 4-122

)

EON

EON -- Activate the Shell's =E flag.

FORMAT

EON

EON enables variable evaluation regardless of the context in which the variables appear.
Normally, variables are evaluated only inside variable expression delimiters,
((expression)); otherwise, the Shell treats the “var __name expressions as strings and they
are not evaluated.

By default, EOFF is in effect when a Shell is invoked.
If EON is turned on in a Shell script, it remains on until that Shell script exits, or until
over-ridden by an EOFF in a nested Shell script. When a Shell script exits, the state of

variable evaluation is returned to the state in effect just before the script was invoked.

EON requires no arguments or options.

4-123 Shell Commands

EQS (EQUAL_ STRING)

EQS (EQUAL_STRING) == Compare strings for equality.

FORMAT
EQS [stringl [string2]]

EQS compares strings for equality, and sets the abort severity level accordingly.

ARGUMENTS

If no arguments are specified, EQS always returns TRUE.

stringl

(optional) Specify text string to test. If this is the only string given (i.e.,
'string2’ is not specified), return TRUE if ’stringl’ is empty;
otherwise return FALSE.
Default if omitted: return TRUE

string2

(optional) Specify text string to compare against ’stringl’. EQS returns
TRUE if the strings are equal, and FALSE if they are not.
Default if omitted: test ’stringl’ only

EXAMPLES

The following Shell script will compile the PASCAL module named by the first argument
(*1) if the second argument (“2) is -¢’. Then it will bind the module with ’library’.

if eqs ~2 ’-c’ then pas ~1 endif
bind ~1.bin library -b ~1

If the second argument is not -¢’, or if there is no second argument, the program simply
binds the module.

Shell Commands 4~-124

ESA (EXTERNAL _ SYMBOL _ ADDRESS)

ESA (EXTERNAL_SYMBOL_ADDRESS) == Display address of external symbol.

FORMAT

ESA symbol _name

ESA displays the address of an external symbol in an installed library. This command is
primarily intended for system-level debugging.

In addition to displaying the address of an external symbol, ESA returns TRUE to the
Shell if the symbol exists in an installed library and FALSE if it does not. This means
that you may use ESA in conjunction with the Shell IF' statement to determine whether
or not a library is installed, provided you know the name of one of its symbols. For
example, you might place the following lines in a Shell script:

if not esa my_favorite_symbol >/dev/null >?/dev/null then
inlib my library
endif

Note that in this instance, only the value returned by ESA is relevant; the actual address
of the symbol does not matter. Hence all textual output is redirected into /dev/null.

ARGUMENTS

symbol _name

(required) Specify symbol whose address you wish to display. ESA is case
sensitive with respect to the symbol name. Lowercase must be
used to refer to symbols defined in FORTRAN and Pascal
programs. Mixed case may be used, as needed, for symbols
defined in C programs.

EXAMPLES

$ esa gpr_$init
A1580C
$

This command displays the address of GPR_$INIT. This symbol resides within the GPR
library, which was installed at system startup time.

4-125 Shell Commands

EXFLD (EXTRACT _FIELDS)

EXFLD (EXTRACT _FIELDS) == Manipulate fields of data.

FORMAT

EXFLD {field _spec} output_ format [pathname ...]

EXFLD manipulates data kept in formatted fields. It copies data from specified fields of

the input files to specified places in standard output.

ARGUMENTS

field _spec
(required)

field _list

=T [¢]

output__format
(required)

Shell Commands

Specify either one of the following two arguments:

Integer list identifying fields in the input file to be copied. Up to
9 input fields are allowed. You can specify a field by the
columns in which it occurs or by its starting column and length.
For example, 5-10 denotes a field that extends from column 5
through column 10, and 342 denotes a field that starts in
column 3 and spans 2 columns. When specifying more than one
field, separate the specifications with commas, for example:

5-10,16,72+8

Fields can overlap, and need not be in ascending numerical
order. Thus

1-25,10,3

is a valid field specification.

Free-format separator specification. If input fields do not fall in
certain columns, but rather are separated by some character
(such as a blank or a comma), describe the fields by using >-T ¢’,
replacing ’¢’ with the appropriate separator. A tab character is
the default for ’c’.

Specify literal string representing output format. Fields from
input are referred to as $1, $2, $3, and so forth, denoting the
order in which the fields are specified. Up to 9 fields are
allowed, plus the argument $0 which refers to the whole line.
Place the $n symbol in the output format wherever the
corresponding field should appear, surrounded by any characters
desired. For example, an output format of:

"$2 somewords $1"

would produce an output line such as:

4-126

EXFLD (EXTRACT _FIELDS)

field2 somewords fieldi

pathname
(optional) Specify input file to be manipulated.
Default if omitted: read standard input
EXAMPLES
$ exfld 1-5,14-18 "$2 follows $1* Specify extraction.
ABCDE is not DEFGH Input text from standard input.
DEFGH follows ABCDE Result.
*%% EOF %% Signal completion with CTRL/Z.
$

4-127 Shell Commands

EXISTF

EXISTF =-- Check for existence of an object.

FORMAT

EXISTF pathname ...

EXISTF reads the object pathname(s) you supply and checks to see if the object exists.
If the object does exist, EXISTF returns with a good program status (PGM_ $TRUE). If
the object does not exist, EXISTF returns an error status (PGM_ $FALSE).

ARGUMENTS
pathname
(required) Specify the object to be checked. Multiple pathnames and
wildcarding are permitted. If you specify more than one
pathname, all the objects must exist for EXISTF to return
TRUE.
EXAMPLES
1. $ if existf my_file then args "The file is there." Test for "my file"
$_else args "Out of luck." endif which does not
Out of luck. exist.
$

Shell Commands 4-128

A

EXISTVAR (EXIST _ VARIABLE)

EXISTVAR (EXIST _VARIABLE) == Check that a variable is set.

FORMAT

EXISTVAR var__name ...

The EXISTVAR command checks to see if the variable name(s) declared as its
argument(s) has a currently set value. If the variable is currently set, EXISTVAR
returns a "TRUE" value. If the variable is not currently set, EXISTVAR returns

"FALSE". If you specify more than one variable name to check, all the variables must
exist for EXISTVAR to return "TRUE".

ARGUMENTS

var__name [...]

(required) Specify the variable name to be checked. Multiple names are
permitted, separated by blanks.

4-129 Shell Commands

EXIT

EXIT =-- Exit from a loop.

FORMAT

EXIT

EXIT terminates the flow of control in a Shell loop construct (FOR, SELECT, and
WHILE). When EXIT is encountered, control passes to the first command following the
body of the loop (see example below).

You may also interrupt the flow of control in a loop without actually leaving the loop by
using the NEXT command. See the NEXT command description for more information.

Do not confuse this command with the DM command EX, which exits the Display
Manger and returns control to the Boot Shell. See the EX command description in the
DM commands chapter for more information.

The EXIT command requires no arguments or options.

EXAMPLES

Consider the following section from a Shell script:

WHILE ((true))

DO READC a
IF ((~a = "y")) THEN EXIT ENDIF
ARGS "still looking ..."

ENDDO

ARGS "Finished."®

When the READC (READ_ CHARACTER) command reads a character into variable "a" that
matches the character "y", the EXIT command executes and causes the SCI‘lpt to jump to
the command following the ENDDO.

For more information on variables, refer to the DOMAIN System User’s Guide.

Shell Commands 4-130

TN

@

‘)

EXPORT

EXPORT =-- Change a Shell variable into an Environment variable.

FORMAT

EXPORT var__name...

The Shell can access enviroment variables using all of the standard variable commands
and operators. The EXPORT command adds the capability of turning regular Shell
variables into environment variables.

Environment variables are variables that programs can access or set and that are used to
store global state information. Several are generated automatically when you create a

process; they can be displayed using the LVAR (LIST_VARIABLES) command. For
example:

$ lvar

environment NODETYPE = DN400

environment TZ = ESTSEDT

environment PATH :~com:/usr/ucb:/bin:/com: /usr/bin

environment TERM = apollo_15P
environment HOME = //node_8e4/joseph
environment USER = joseph

environment LOGNAME = joseph
environment PROJECT = none
environment ORGANIZATION = r_d
environment NODEID = 8E4

$

Environment variables are of special interest to users of DOMAIN/IX. Consult the
DOMAIN/IX documentation for additional information.

NOTE: The Shell creates environment variables in UPPERCASE only. (Environment
variables are case sensitive in DOMAIN/IX; the Shell only allows uppercase
ones to avoid collisions between environment variables and Shell variables.)

ARGUMENTS

var__name

(required) Specify the Shell variable to be changed into an environment
variable. It doesn’t matter whether or not the name is typed in
uppercase; the Shell converts it to uppercase automatically.
Multiple variable names are permitted, separated by blanks. If
the specified variable does not exist, EXPORT creates it.

EXAMPLES
$ eon
$ current_dir := "//panacea/joe"
$ lvar
string current_dir = //panacea/joe (Shell variable created.)

environment USER = joe
environment LOGNAME = joe

4-131 Shell Commands

EXPORT

environment
environment
environment
environment
environment
environment
environment
environment

PROJECT = none

ORGANIZATION = r_d

NODEID = D5B

PATH = :~com:/usr/ucb:/bin:/com:/usr/bin
TERM = apollo_19L

NODETYPE = DN300

TZ = ESTS5EDT

HOME = //panacea/joe

$ export current_dir

$ 1lvar

environment
environment
environment
environment
environment
environment
environment
environment
environment
environment
environment

Shell Commands

USER = joe

LOGNAME = joe

PROJECT = none

ORGANIZATION = r_d

NODEID = D&B

PATH = :~com:/usr/ucb:/bin:/com:/usr/bin
TERM = apollo_ 19L

NODETYPE = DN300

TZ = ESTSEDT

HOME = //panacea/joe

CURRENT_DIR = //panacea/joe (Environment

4-132

variable created.)

FIND _ ORPHANS

FIND _ORPHANS ==~ Locate and catalog uncataloged objects.

FORMAT

FIND _ ORPHANS |[options] [volume_ pathname]

FIND _ ORPHANS finds all uncataloged permanent objects in a local volume. It uses or
creates a directory ORPHANS in the root of the volume and enters the names of all
objects not cataloged elsewhere. Uncataloged directories are found first, so no redundancy
occurs.

The user of this command must have read permission to all directories on the volume. If
some directory is not readable, every object under that directory will be cataloged in the
ORPHANS directory. In addition, the user must either have permission to create the
ORPHANS directory or to catalog objects in ORPHANS when it already exists.

The objects cataloged by FIND _ ORPHANS are given sequential names like F1, F2, etc.,
and can be moved using MVF to a directory of the user’s choice.

This command is useful for finding objects that are lost by a broken directory. It should
be run only on a quiescent node: i.e., one not connected to the network (use NETSVC -N

to disable network communications) and not actively running any processes other than
the one performing the FIND _ ORPHANS operation.

ARGUMENTS

volume__pathname

(optional) Specify the name of the volume to be searched. The volume
must be physically attached to your node; you may not find
orphan objects on volumes elsewhere in the network.

Default if omitted: search node boot volume

OPTIONS

-V[ERIFY] Verify only; don’t catalog any orphans

EXAMPLES

$ find_orphans
11EE936C.50000105 -> f1
1216E28E.400001056 -> f2
12A2BC34.40000105 -> {3
12B782DC. 40000105 -> f4
12B78321.50000106 ~> {5
12B78353.60000105 -> {6
12B783EF .00000105 -> £7
12B784E8.90000105 -> {8
12B7863C.30000105 -> f9
12C18DBE. 40000105 -> {10
12F98201.400001056 -> fii
13452895.80000105 -> {12

4-133 Shell Commands

FIND _ ORPHANS

140090B4 .40000105
140090F4 .E0000105
16322D3A.70000105
17872C66 .50000105
Number of orphans:
$ 1d /orphans -a

->
->

16

Directory "/orphans":

sys
type

file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file

16 entries,

Shell Commands

type
uid

rec
nil
obj
nil
nil
nil
uasc
mbx
nil
nil
obj
obj
rec
obj
mbx
nil

f1i3
f14
156
fi6

blocks current

used

(<] [
DO ONO bbb ON

o
w
© W

115
15
o

371 blocks used.

length

1462

0
58590
4096
4096
4096
245
280172
0

0
65862
135724
8412
116188
278636
0

attr rights

p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p-ndwrx
p—ndwrx
p-ndvrx
p-ndwrx
p-ndwrx

YvwwwwYwYy'o'v'yv v YUYy 'y

4-134

name

f1

10
fii
12
£13
f14
f15
f16
2

i3

£
s

f5
f6
£7
i8
f9

C

FLEN (FILE_ LENGTH)

FLEN (FILE_LENGTH) -- Count lines, words, and characters in a file.

FORMAT

FLEN [options] [pathname ...]

FLEN prints the number of lines, words, and characters in each of the named files. A
word is defined as any sequence of characters delimited by tabs, spaces, and NEWLINEs.
If more than one file is specified, totals for all the files are printed, also.

ARGUMENTS
pathname
(required) Specify input file. Multiple file names and wildcarding are
permitted. :
Default if omitted: read standard input; suppress total counts
OPTIONS

If no options are specified, all counts are reported.

-L Print only line counts.
-w . Print only word counts.
-C Print only character counts.

Options may be mixed to achieve the desired reporting results.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ flen -L -C mary Print the number of lines and characters in the
' file ’mary’.

4-135 Shell Commands

FMC (FORMAT _MULTI_ COLUMN)

FMC (FORMAT_MULTI_COLUMN) == Format text into multiple columns.

FORMAT

FMC [options| [pathname ...]

FMC reads the named files and formats them into multiple columns on standard output.
Each input line is placed in one column of an output line; input lines which are longer
than the output column width are truncated. This command is useful to format text
which is already in the form of a column or list.

ARGUMENTS

pathname
(optional)

OPTIONS

Specify input file. Multiple pathnames are permitted, separated
by blanks.

Default if omitted: read standard input

The options control output format. If no options are specified, the default output format is:

-Cn

-Ln

EXAMPLES

number of columns 2
page length 55
column width 60
gutter width 8

Specify n columns. Default: 2.

Specify page length in n lines. FMC produces output in pages,
but does not place separators between the pages. Default: 55.

Specify column width in n characters. Input lines longer than n
characters are truncated. Default: 60.

Specify gutter width in n spaces. The gutter is the space
between columns. Default: 8.

Specify display terminal as output device. The column width is

set to n characters and the page size is set to 24 lines. The
number of columns and the gutter width are computed to
maximize the amount of information on the screen. Default: 10.

$ crefs sample | fmc -c 3 -w 22 -g 4

This command line first produces a cross-referenced list of all the symbols in the file
SAMPLE, then formats the report in a 3-column list.

Shell Commands

4-136

O

FMT (FORMAT _ TEXT)

FMT (FORMAT_TEXT) -- Format a text file.

FORMAT

FMT [pathname ...] [options]

FMT is a general purpose text formatting program, allowing you to arrange output text
according to formatting directives embedded in the input file or typed on-standard input.

By default, formatted text is written to standard output. You may redirect it to a file

with the -OUT option.

ARGUMENTS

pathname
(optional)

OPTIONS
-Fn
-Tn

-S

-POn
-LF

=-OUT pathname

Specify input file to be formatted. This argument must precede
any command line options. Multiple pathnames and wildcarding
are permitted; however, FMT will concatenate multiple files
prior to formatting. If FMT cannot find one of the specified
input files, control shifts to standard input.

Default if omitted: read standard input

Begin output at the first page numbered n.

Terminate output at the first page numbered higher than n.
Stop before printing each page, including the first. This option
is useful for paper manipulation. The prompt "Type return to
begin a page" is issued only once, before the first page.

Page Offset. Shift the entire document n spaces to the right.
List names of files as they are processed.

Specify output file. If this option is omitted, formatted text is
written to standard output.

EXAMPLES
$ fmt mary -out mary.formatted -po 9 Format "mary" with a page offset
$ of 9 spaces, and write the

Request Line Summary

results to "mary.formatted".

Complete information on using FMT is available in the DOMAIN System Utilities manual.

4-137 Shell Commands

FMT (FORMAT _ TEXT)

Request Initial

#

.bd
.bp
.br
.CC
.ce
.cu
.de
.ef

.eh

.en
Cfi
.fo

.he

.in
Jju
.1s
.m1
.m2
.m3
.m4
.ne
.nf
.nj

.ar

.of

.oh

pl
.po
.re
.Tm
.s¢
.80

.8p
.8t

.ta
.tc
.ti

.ul

c
n

n

XX
/1/c/T

/1/c/r

/1/c/r

/1/c/T

(== - I - = A -}

XxXm

/1/c/T

/1/¢/r

BBHmOBDOBD

nl n2

Shell Commands

=1

yes

n=0
yes
=1
n=3
n=2
n=
n=3

no
no
m=0

n=66
n=0

n=65
c=#

Default

=1
n=n+1

c=.
n=1
n=1

n=0
yes
n=1
n=3
n=2
n=

n=3
n=0

m=0

=66
n=0

n=65
c=#

n=0

n=1

Break Meaning

no

no
yes
yes
no
yes
no
no
no

no

no
yes
no

no

yes
no
no
no
no
no
no
y/n
yes
no
no

no

no

no
no
no
no
no
no
yes
yes

no
no
yes

no

Ignore this line. Precede comment

lines with this symbol.

Boldface the next n lines

Begin new page and number it n

Break

Control character becomes ¢

Center the next n input lines
Continuously underline next n input lines
Command xXx; ends at .EN

Foots on even pages are 1(eft), c(enter),
r(ight). °#’ and '%’ produce page number
and date, respectively.

Heads on even pages are 1l(eft), c(enter),
r(ight). ’#’ and '%’ produce page number
and date, respectively.

Terminate command definition

Begin filling output lines

Foot titles are 1(eft), c(enter), r(ight)
'#' and '%’ produce page number and date,
respectively.

Head title is 1(eft), c(enter), r(ight)
'#' and °%’ produce page number and date,
respectively.

Set left margin to column n+i

Begin justifying filled lines

Set line spacing to n

Space between top of page and head

Space between head and text

Space between text and foot

Space between foot and bottom

Need n lines; break if new page

Stop filling’

Stop justifying

Set number register x to m,

-m, +m for decrement, increment

Foots on odd pages are 1(eft), c(enter),
r(ight). °‘#°' and ‘%’ produce page number
and date, respectively.

Heads on odd pages are 1l(eft), c{enter),
r({ight). °#' and '%’ produce page number
and date, respectively.

Set page length to n lines

Set page offset to n spaces

Tab replacement character is ¢

Set right margin to column n

Change fixed space character to ¢

Switch input to file

Space n lines, except at top of page

Space to line n from top; -n spaces to line

n from bottom

Set tab stops at columns ni, n2,

Tab character is ¢

Temporarily indent next output line n
spaces

Underline words in the next n input lines

4-138

e

FMT (FORMAT _ TEXT)

IN-LINE FLAGS

{ c_ > no Underline characters enclosed in braces
{lc!} no Boldface characters enclosed in braces
énc no Replace with value in number register c
no Insert literal blank

KEY

n denotes numerical values
t denotes titles
c denotes single characters

Signed numbers signify relative changes to a quantity; unsigned numbers signify absolute

settings. Unless otherwise noted, omitted 'n’ fields set the value to 1, omitted ’t’ fields are
empty, and omitted ’c’ fields restore the default character.

4-139 ' Shell Commands

FOR

FOR == Execute a FOR statement.

FORMAT

FOR var_name := int_expr [TO int_expr] [BY int_expr] command... ENDFOR

FOR var_name IN string_expr [BY {CHAR|WORD|LINE}] command. .. ENDFOR

FOR allows you to build a control structure that executes commands repeatedly as long
as the result of a Boolean test is TRUE. The FOR command has two formats: one for
assigning and testing integer expressions, and one for assigning and testing string
expressions.

In the integer form, the (optional) TO and BY clauses permit you to specify ranges and
increment values, respectively. For example, you might want to loop 5 times by saying

FOR a: =0 TO 10 BY 2

If you do not specify "BY int__expr", the default increment is 1. If you do not specify
"TO int__expr", you will probably want to increment the variable manually inside the
body of the loop. You should also put a test condition inside the loop (and probably use
an EXIT to get out) or else you risk looping forever.

In the string form, the (optional) BY clause allows you to control the string assignment
operation. If you specify "BY WORD" (the default), each word (a sequence of non-blank
characters) in ’string __expr’ is assigned to ’var_name’ one at a time until ’string __expr’
is exhausted. You may also assign string values a character at a time, or a line at a time,
by using the "BY CHAR" and "BY LINE" clauses, respectively.

ARGUMENTS

var__name

(required) Specify the name of the Shell variable whose value is to be
assigned and tested.

int__expr

(required) Specify any valid expression that returns an integer value.

string __expr

(required) Specify any valid expression that returns a string value.
command...
(required) Specify the command to be executed as long as the FOR test

returns TRUE. This may be a Shell command, a Shell script, a
variable assignment, or any other valid Shell operation. Multiple

commands are permitted; separate them with semicolons or
NEWLINE characters.

Shell Commands 4~-140

)

)

- FOR

EXAMPLES

1. The following example demonstrates the advantages of a FOR loop over a
WHILE loop in one instance. Assume these line appear in a Shell script.

#

A loop using WHILE.

#

eon

a =0

while (("a <= 10)) do
args "a
a = Ta+ 2

enddo

#

The same loop using FOR.

#

FOR a := 0 TO 10 BY 2
args ~a

ENDFOR

#

End of script.

2. This example assigns three names to a variable.

#

Script FILE NAME

#

eon _

FOR file IN “"foo bar zap" BY word
args “file

ENDFOR

#

End of script.

Execution produces:

$ file_name
foo
bar
zap

$

4-141 Shell Commands

FPAT (FIND _PATTERN)

FPAT (FIND_ _PATTERN) == Find a text pattern in an ASCII file.

FORMAT

FPAT [options] [pathname... =P] reg__expr ...

FPAT searches its input file(s) for lines matching the specified regular expressions and
writes them to standard output or the file specified.

ARGUMENTS

reg_ expr...
(required)

pathname -P
(optional)

OPTIONS

One or more regular expression patterns. By default, a line that

contains any of these expressions matches and is written to
standard output. For a description of regular expressions used
for pattern matching, see the chapter on DM basics. Patterns
containing embedded spaces or Shell special characters must be
enclosed in quotation marks.

Specify name of file to be searched. If you specify a pathname
with this argument, you must follow it with "-P* to separate the
pathname(s) from the search patterns on the command line.
Multiple pathnames and wildcarding are permitted.

Default if omitted: read standard input

If no options are specified, any line that matches any one of the regular expressions is
considered a matching line.

=-OUT pathname

Shell Commands

Write output to specified file. If input file names were specified,
output filename can be derived. If this option is not specified,
matching lines are written to standard output.

Select only lines that match ALL regular expressions, in any
order.

Select only lines containing NONE of the regular expressions.
Write only a count of matching lines, not the lines themselves.
Ignore cases for search (i.e., become case-insensitive).

Write line number with each line that matches the regular
expression.

Set the maximum number of search lines to n (a decimal value).
FPAT terminates after searching n lines.

4-142

O

-LF

-LM

-RM n

-RMF n

FPAT (FIND _ PATTERN)

Display the name of the file being examined before searching its
lines. '

Similar to -LF, but display the name(s) of only those file(s)
which contain matches for the regular expression.

Set maximum number of matches to be reported for this
execution of FPAT.

Set maximum number of matches to be reported for each file
being searched.

Summary of Regular Expression Notation

—H R VO

o
[~...1

[c1-c2]

ac
en
at

*
{...}

Literal character
Any character (except newline)
Beginning of line

End of line

Character class (any one of these characters)
Negated character class (all characters except those in brackets)

Any single character in the range cl through c2

Escaped character (e.g.,@%, e[, ex)
Newline

Tab character

Closure

EXAMPLES

(zero or more occurrences of previous pattern)
Tagged pattern

1. Assume the file "text" contains:

PN~

now
is
the
time
for
all
good

Then the command,

$ fpat text -p o produces ...
now
for
good
$
. and the command,
$ fpat -x -m 5 -1 text -p o produces ...
2) is
3) the
4) time

4-143 Shell Commands

FPAT (FIND _ PATTERN)

2. $ fpat text?* —p the Search for the string "the" in all files
whose names begin with “text". (/A\\

¢

3. $ fpat text?* -p the -out =.out Search for the string "the" in all
files whose names begin with "text",
(i.e., "text", "texti", "text_file",
etc.) and write the output to the
files "text.out", "textl.out",
"text_file.out", etc.

e

Shell Commands 4-144

FPATB (FIND _ PATTERN_ BLOCK)

Q FPATB (FIND_PATTERN_BLOCK) -- Find blocks of text containing patterns.

FORMAT

FPATB [options] [pathname... =P] reg_ expr ... [FOUT pathname]

FPATB reads blocks of text from its input files and writes them to its output file(s) so
they meet the specified matching criteria. By default, blocks of lines are separated by an
empty line or by a line containing only blanks. FPATB is similar to FPAT
(FIND _PATTERN) except that if a pattern is found, the entire block of lines is copied to
output, rather than only the line in which the pattern occurs. Thus, it is useful for
searching mailing lists, bibliographies, and similar files, where several lines are grouped
together to form cohesive units.

Q ARGUMENTS

reg__expr

(required) Specify regular expression to be used for matching search. Each
expression defines a text pattern, and you can specify up to nine
expressions with each FPATB command. FPATB is
case-sensitive; for example, "a" is different from "A*. For a
description of regular expressions used for pattern matching,
see the chapter on DM basics.

O pathname -P

(optional) Specify name of file to be searched. If you specify a pathname
with this argument, you must follow it with "-P*" to separate the
pathname(s) from the search patterns on the command line.
Multiple pathnames and wildcarding are permitted.

Default if omitted: read standard input

OPTIONS

Q If no options are specified, any block containing a line that matches any one of the regular
expressions is considered a matching block.

=-OUT pathname
Write output to specified file. If input file names were specified,
output filename can be derived. If this option is specified, it
must be the last option on the command line (i.e., it must follow
any regular expressions specified). If this option is not specified,
matching lines are written to standard output.

-A Select only blocks containing lines that match ALL regular
expressions, in any order.

-X Select only blocks containing NONE of the regular expressions.

-C Write only a count of matching lines, not the lines themselves.

4-145 Shell Commands

FPATB (FIND _PATTERN_BLOCK)

-B reg__exprl

-E reg__expr2

Specify reg__exprl’ as the block separator, instead of a blank
or empty line. Text blocks begin at lines containing
reg__exprl’. If -B is specified and -E is not, 'reg__exprl’ begins
and ends the block.

Specify ’reg__exprl’ to start a block and reg__expr2’ to end a
block. Note that the -E option is used only in conjunction with
the -B option.

Write only the first n lines of selected blocks. If a block
contains fewer than n lines, this option pads the output block
with blank lines.

Display the name of the file being examined before searching its
lines.

Summary of Regular Expression Notation

c Literal character

? Any character (except newline)

% Beginning of line

$ End of line

[...] Character class (any one of these characters)

[-...] Negated character class (all characters except those in brackets)
[c1-c2] Any single character in the range cl through c2

ec Escaped character (e.g..,e%, e[, ax*)

en Newline

et Tab character

* Closure (zero or more occurrences of previous pattern)

{...} Tagged pattern

EXAMPLES

$ fpatb address_list -p 01824 -out zip_list Locate text blocks with

$

Shell Commands

the string "01824" in
the file "address_list"
and write the results
to "zip list".

4-146

FPPMASK (FLOATING _ POINT _ MASK)

FPPMASK (FLOATING _POINT _MASK) == Set/display floating-point error mask.

FORMAT

FPPMASK [options]

FPPMASK sets or displays the state of the floating-point package error mask for a
process. The error mask specifies some of the conditions that constitute a floating-point
exception for the process.

OPTIONS

If no options are specified,

=D condition ...

-E condition ...

the current floating-point error mask condition is displayed.

Disable ’condition’ (see below). Both conditions may be
specified.

Enable ’condition’ (see below). Both conditions may be specified.

’condition’ may be either of the following:

LOS

UNDR

Loss of significance. This condition occurs when subtracting
floating-point values that are exactly equal.

Underflow. This condition occurs when a floating-point result is
too small to be represented. For single-precision values, this
error occurs at about 0.118E-37. For double-precision values,
the error occurs at about 0.223E-307.

Both conditions are initially disabled when a process is created.

EXAMPLES

1. ¢ fppmask

Display current settings.

LOS (loss of significance): disabled

UNDR (underflow) :

disabled

2. $ fppmask -e los undr Enable both LOS and UNDR

3. $ fppmask -d undr

conditions.

Disable UNDR condition.

4-147 Shell Commands

FSERR (FIND _ SPELLING _ ERRORS)
FSERR (FIND_SPELLING _ERRORS) =~ Find spelling errors.

FORMAT

FSERR [pathname ...] [options]

FSERR copies the named files line-by-line to standard output, while looking up each
word in a dictionary. If it finds any spelling errors on a line, or if it finds words that are
not in the spelling dictionary, FSERR prints the line containing the questionable word
and asks whether or not the word is spelled correctly. If you indicate that the word is

misspelled, you are prompted for the correct spelling. FSERR corrects the spelling on
standard output and continues.

FSERR wuses three ASCII files. The large standard dictionary file is /SYS/DICT, which
contains the bulk of the words known to FSERR. Add words to this file if you want
them to become permanent additions to your dictionary, making sure entries remain in
alphabetical order. (Use the SRF (SORT_FILE) command to alphabetize the file if
necessary.) If you do not wish to alter the standard dictionary, you may direct FSERR
to use a file containing your own special words by specifying the -D option each time you
invoke the command.

/SYS/DICTDX serves as an index into the large dictionary file to speed searches. Do not
edit this file manually. If you make changes to /SYS/DICT, delete the index file; FSERR
generates a new one if /SYS/DICTDX does not exist. Note that it takes some time to

generate this index, so be prepared for a delay the first time you use FSERR after
altering the dictionary.

Finally, a relatively few "common words" that occur with great frequency are stored in
/SYS/CDICT. These are read and put into an internal hash table each time FSERR
starts up, making access to them faster than looking in the large dictionary file. This list
of words is not alphabetized; rather, words appear in order of relative frequency, with
the most common words at the top of the file. You may make changes to this file if
necessary. Just be careful not to make the file too big, since that would defeat the
purpose of a high-speed lookup mechanism for common words.

ARGUMENTS

OPTIONS

pathname

(optional) Specify file containing text to be checked. Multiple pathnames
are permitted separated by blanks.
Default if omitted: read standard input

-F Process words just after a period (’.’) in column 1 (i.e., FMT"
directives). The default is to ignore such "words".

-N Process digits. The default is to ignore digits.

-U Underline misspelled words instead of prompting for correction

or verification.

Shell Commands 4-148

®

4

L
/
' Vi

FSERR (FIND _ SPELLING _ ERRORS)

-8 Collect and print statistics on dictionary use.

-C pathname Write words that are not in the dictionary, but are correctly
spelled, into ’pathname’.

=D pathname Add the words in the file ’pathname’ to the dictionary used for
this run. Words in the file must appear one per line.

4-149 Shell Commands

FST (FAULT _STATUS)

FST (FAULT_STATUS) == Print fault status information.

FORMAT
FST [options]
FST prints information about the most recent fault that occurred in the process. The
information always includes the fault status, the program counter (PC) at which the fault
occurred, and a textual description of the error (as reported by the system call
ERROR _$PRINT).

This command is intended for system-level debugging.

If you are using a Peripheral Bus Unit (PBU) device, you can get fault information by
using the option "-U" (see below).

OPTIONS

-R Print the contents of the CPU general registers when the fault
occurred.

-S Print the supervisor PC, entry control block (ECB), and status
register (SR) if the fault occurred in supervisor mode. This
option is ignored if the fault occurred in user mode.

-A Print all available fault information. (Prints the same
information as both -S and -R.)

-Un Print the same information as both -S and -R for faults caused
by the PBU interrupt handler for unit n.

EXAMPLES
$ fst -a

Fault Diagnostic Information

Fault Status = 00120010:

process quit (from 0S / fault handler)

User Fault PC = 000167FC

DO-D7: 00120010 00000000 00000002 FFFFFFFE 00000008 00000006 00000182 00000004
AO-A7: 0020A452 OOE2F22E 0020A3D4 0020A450 OOE2F174 0000C92C 002746B4 002746AC
Supervisor ECB = 00000000
Supervisor SR = 0000
Supervisor PC = 00000000

Shell Commands 4-150

N

S

C

HELP

HELP =~ Provide help on Shell and DM commands.

FORMAT

HELP [topic [subtopic]]

This feature provides information on Shell and DM commands and miscellaneous system
services by opening a window to display the file that you request. For a list of subjects
in the HELP library, type:

$ HELP INDEX

Access to system HELP files is also provided through the <HELP> key on low-profile
keyboards. This key opens a read-only pad on a HELP file using your typed input to
construct the pathname, so the syntax is slightly different if you are seeking information
on a subtopic. In that case, separate the topic and subtopic with a slash (/) instead of a
blank. For example:

Help on: shell/commands

ARGUMENTS
topic
(optional) Specify the name of the command or topic for which you desire
help.
Default if omitted: display introductory information
subtopic
(optional) Specify subtopic to be viewed. For example,

$ help shell commands

displays a topical index of Shell commands, while

$ help shell

displays general information about the Shell.

Default if omitted: no subtopic displayed

4-151 Shell Commands

HLPVER (HELP _ VERSION)

HLPVER (HELP_VERSION) == Provide HELP support for Shell scripts.

FORMAT

HLPVER script_name version “1

HLPVER provides access to the DOMAIN HELP system utilities that support the
standard command options -HELP, -VERSION, and -USAGE for Shell commands. By
placing the HLPVER command inside a Shell script, you can allow users of the script to
specify these three standard command options and receive meaningful output.

HLPVER looks for help information in a file called /SYS/HELP /script_name.HLP.
HELP files have special information at the top that HLPVER uses. This information
must follow a standard format. The following example shows the header of the HELP
file for the WD (WORKING_DIRECTORY) command.

1.1;wd (working_directory), revision 1.1, 81/06/27
WD (WORKING_DIRECTORY) -- Set or display the current working directory.
usage: WD [pathname]

All HLPVER output goes to standard output (normally directed to the process transcript
pad). HLPVER returns the first line of the HELP file in response to -VERSION. It
returns the second line through the first blank line in the file in response to -USAGE. It
returns the entire file in response to -HELP.

Any user file placed in the /SYS/HELP directory is also available to the HELP command
for display in a standard HELP window. Thus the file /SYS/HELP/MARY.HLP can be
viewed with $ HELP MARY regardless of whether or not you are using HLPVER inside
the MARY script. HLPVER is solely for the purpose of enabling the three standard
command options mentioned above.

ARGUMENTS

script __name

(required) Specify the name of the script for which HELP is to be
provided. The name is the right-most leaf in the pathname, not
the entire pathname of the script. HLPVER uses this name to
construct the pathname for the HELP file to be returned (i.e.,
/SYS/HELP /script _name.HLP).

version
required Specify the version number of the Shell script. HLPVER
p

compares this number to the version number in the HELP file
(the first characters in the file up to the first semicolon) and
returns an error if they do not match. This allows you to
coordinate versions of the script and the HELP file.

(required) Pass in the desired option from the command line. "“1" must

appear literally so that HLPVER can tell what information to
return (-HELP, -VERSION, or -USAGE). See the example
below.

Shell Commands 4-152

)

e
\

-

O

HLPVER (HELP _ VERSION)

EXAMPLES

Assume that the following lines appear in a file called "test _script":

#

Example script showing HLPVER usage.
#

hlpver test_script 1.0 "1

args "Please enter ..."

End of script

When the user types:

$ test_script -help

HLPVER returns the contents of /SYS/HELP/TEST _SCRIPT.HLP to the transcript pad.

Likewise, when the user types:

$ test_script -version

HLPVER returns the first line of the HELP file containing the version number.

4-153

Shell Commands

HPC (HISTOGRAM_ PROGRAM _ COUNTER)
HPC (HISTOGRAM_PROGRAM _COUNTER) == Program counter histogram.

FORMAT
HPC [options] pathname [args...]

HPC (HISTOGRAM_PROGRAM_ COUNTER), part of DPAK (DOMAIN Performance Analysis
Kit), looks at the performance of programs at the PC level.

HPC produces a histogram of the program counter during program execution, thus
helping you locate the most compute-bound portions of your program.

While your program is executing, HPC samples the program counter at regular intervals,
gathering a set of data points. Each data point records the region in which the program
was executing -- the location of the program counter -- when the sample was taken.

HPC divides your program into 256 equally sized regions called "buckets." The size of
the region depends on the size of your program or the range you select. The smaller the
regions, the better the resolution of the analysis.

When execution of your program has ended, HPC displays statistics and a histogram (bar
graph) of the program counter. Each bar corresponds to an area of program memory.
The length of the bar indicates how much time the program spent executing in the

corresponding area. HPC tells you which procedures and line numbers each bar
represents.

While HPC and your program are executing, a serial line is not available for output.

ARGUMENTS
pathname
(required) Specify the name of the program to be evaluated.
args
(optional) Specify any arguments to be passed to the program
"pathname". These are not processed by HPC, but passed
directly to your program.
Default if omitted: no arguments passed
OPTIONS

If no options are specified, a histogram is produced for the entire program, with 500
samples taken per second.

-LOW x Specify lowest address (’x’) to be included in the histogram. ’x’
must be a hexadecimal value. If this option is omitted, the

histogram starts at the beginning of the program or procedure
(see -FROM below).

-HIGH x Specify highest address (’x’) to be included in the histogram. ’x’
must be a hexadecimal value. If this option is omitted, the

Shell Commands 4-154

=-FROM procedure

=TO procedure

=PROC procedure

HPC (HISTOGRAM_PROGRAM _ COUNTER)

histogram continues to the end of the program or procedure (see
-TO below).

Specify the beginning of a procedure as the lowest address to be
included in the histogram. If both -FROM and -LOW are
omitted, the histogram starts at the beginning of the program.
Note the the procedure name is case-insensitive.

Specify the end of a procedure as the highest address to be
included in the histogram. If both ~TO and -HIGH are omitted,
the histogram stops at the end of the program. Note the the
procedure name is case-insensitive. ‘

Specify a single procedure to be included in the histogram. Note
the the procedure name is case-insensitive.

By limiting the range of addresses in the histogram with -LOW, -HIGH, -FROM, -TO, and
-PROC, you can study a specific part of your program, such as an I/O routine.

-LIMIT n

“RATE n

-NHDR

-MAP

-BRIEF

EXAMPLES

Limit the displayed histogram bars to those that represent more
than 'n’% of the monitored program execution. The default
value for 'n’ is 1. Use -LIMIT 0 to show all histogram entries.

Specify how many times (’n’) HPC samples the program counter

per second. ’'n’ must.be a decimal number in the range 5 to
2000. The default is 500 samples per second. A higher rate
results in a more accurate histogram, but tends to slow program
execution.

Generate the histogram without the header information. Using
this option makes filtering the output easier.

Generate a list of the names and starting and ending locations
of the procedures in the program. This list is reduced if -FROM,
-TO, -HIGH, or -LOW are used to restrict monitoring to specific
procedures or memory addresses. The output from this option
can be quite verbose for large programs.

Produce a compact bar chart by showing only the name of the

first procedure, or procedure fragment, contained in the bucket
represented by each bar. By default, DPAT shows the names of
all procedures or procedure fragments contained in the bucket.
This option also suppresses source line information.

This section describes the use of HPC with the program VANDERBILT. First we call HPC,
passing 'VANDERBILT’ as an argument. Then we describe the output of HPC’s analysis of

VANDERBILT.

We invoke HPC as follows:
$ HPC VANDERBILT

4-155 Shell Commands

HPC (HISTOGRAM_ PROGRAM_ COUNTER)

Note that any HPC option would precede the name 'VANDERBILT".

HPC displays the following (each of the note numbers, e.g., {1}, are explained after the
output).

{1}

Address Size Section
002D8040 00000384 PROCEDURE$
002A6250 000000A8 DATA$
002D83C4 0000015A DEBUG$

{2}
VANDERBILT Done.
{3}
Program //corey/d_s/vanderbilt.bin from 002D8040 to 002D843F in 4-byte
increments
87178 interrupts, 7654 low misses, 2671 high misses, 67556 process
misses
9297 measurements in 209 buckets, 11% percent of total
{4}
Address Proc. Name stmt. No. % of Hits
002D811C CONTRACTOR [78] 1.2% |*
002D8120 CONTRACTOR [75 1] 1.0% |*
002D8124 CONTRACTOR [7s] 1.5% |*
00208128 CONTRACTOR [76] 1.85% |*
002D812C CONTRACTOR [76 1 1.2% %
002D8230 DECORATOR [100] 6.0% |skxkkkx
002D8234 DECORATOR [100 1 3.0% |**x
00208238 DECORATOR [100 1 7.20% |®kkekxk
00208308 ELECTRICIAN -110] 2.7% |*x*
002D830C ELECTRICIAN [110] 1.3% I*
00208310 ELECTRICIAN [111 1 1.5% |*
00208314 ELECTRICIAN [112 1 1.7% |=*
002D8318 ELECTRICIAN [112 1 1.4% |%
002D831C ELECTRICIAN [114] 13.7% | skskskskskckokskkskk
002D8320 ELECTRICIAN [114 1 8.5% |dkkrsnkk
00208324 ELECTRICIAN [114 1 16.6% |Hskkskskskskokskokskokskokok
00208328 ELECTRICIAN [116 1 1.8% |*
002D832C ELECTRICIAN [116- 1.3% |*
00208330 PLUMBER -123] 2.5% |x**
002D8338 PLUMBER [124 1 1.4% |*
002D833C PLUMBER { 125 1 1.2% |*
002D8340 PLUMBER [125 1 1.4% |%
002D8344 PLUMBER [127 1 4.2% |%%*%
002P8348 PLUMBER [127] 2.5% |*x%
002D834C PLUMBER [127 1 6.0% |xkxkxk
002D8350 PLUMBER [129] 1.0% |*
002D8354 PLUMBER [129- 1.83% |*
Less than 1% 5.4% |*%kk%

Shell Commands 4-156

®

HPC (HISTOGRAM _PROGRAM _ COUNTER)

Explanation of Notes

{1} A section map, showing the addresses and sizes of the program sections in

VANDERBILT.

{2} The output of the VANDERBILT program itself, which is simply the print
statement 'VANDERBILT Done.’

{8} HPC parameters and statistics are summarized as follows:

Program //cerey/d_s/vanderbilt.bin from (a) 002D8040 to
(b) 002D843F in (c) 4-byte increments

(d) 87178 interrupts, (e) 7654 low misses,

(f) 2671 high misses, (g) 67556 process misses

(h) 9297 measurements in (i) 209 buckets,

(7) 11% percent of total

Note that we have annotated the output to clarify the following descriptions.

from (a)to (b)) The range of addresses in the sample. These addresses are
derived from those specified with the -LOW and -HIGH or
-FROM and -TO options after rounding to the nearest bucket
address. If no option is specified, the range is the starting and
ending addresses of the program.

(c)-byte increments
The bucket sizet derived from the equation (b-a)/256=c where
b is the last address given, and a is the first address given in
the "from (a) to (b)* range described above. Also, where ’¢’ is
rounded up to the nearest power of 2. 256 is the maximum
number of buckets.

(d) interrupts The number of times HPC sampled the program counter.

(e) low misses The number of data points below the Low address. This is
specified with either the -LOW option, the -FROM option, or
the low end of the program.

(f) high misses The number of data points above the High address. This is
specified with either the -HIGH option, the -FROM option, or
the high end of the program.

(9) process misses The number of data points ignored because they are not
within the monitored process.

(h) measurements The number of real hits in the program. This number is
derived from the equation h=d-(e-+f+g), that is, the number
of interrupts minus the low, high, and process misses.

(2) buckets The number of buckets between the highest and lowest
buckets in which there were any real hits, inclusive. HPC
divides the range of addresses in the sample. Buckets are
numbered consecutively from 0 according to increasing bucket

4-1567 Shell Commands

HPC (HISTOGRAM_PROGRAM _ COUNTER)

address. The equation is i=(highest non-zero bucket number)
- (lowest non-zero bucket number) + 1, where non-zero
buckets is less than or equal to 256.

(7) percent of total
The ratio of real hits to interrupts, expressed as a percentage.
The percentage is derived from the equation j=(h/d)*100%.
This number is smaller if your program spends a lot of time
in the system libraries performing I/O.

In our example, the program ran from (a) 002D8040 to (b) 002D843F. While
VANDERBILT was running, there were 87178 interrupts, 7654 low misses, and
2671 high misses. The number ’9297 measurements’ indicates the number of
hits between the high and low addresses in the monitored process. The
percentages of hits shown in {4} are relative to the 11% of the total. For
example, of the 11% hits to the program, 13.7% of them were in statement 114.

{4} The HPC histogram. The histogram lists buckets in ascending order by

hexadecimal bucket address. Buckets for which the real hit percentage fell
below the -LIMIT threshold are not listed. For each bucket, HPC lists the
names of procedures contained entirely or partially in the bucket. For a
procedure that is only partially contained in the bucket, HPC prints source line
numbers to indicate which part of the procedure resided in the bucket, in the
following form:

[starting-line-number - ending-line-number]

If the end of the procedure is contained in the bucket, HPC omits
’ending-line-number’. If the start of the procedure is contained in the bucket,
HPC omits ’starting-line-number’. If the procedure resides entirely within the
bucket, HPC prints no source line numbers for the procedure.

For each listed bucket, HPC prints a percentage and a bar composed of asterisks
(*). The percentage indicates the percentage of real hits that fell into the
bucket. Notice that this percentage is calculated using the total number of
MEASUREMENTS (quantity (k) from the header) rather than INTERRUPTS.
The size of the bar is proportional to this percentage. Each asterisk in the bar
represents 1% of the total number of measurements. The total number of
asterisks is the percentage rounded down to the nearest whole percent. For
example, 4.2% is represented as ¥***,

If there were non-zero buckets that HPC did not list because of the -LIMIT
threshold, the last line of the histogram is a summary line that indicates the
percentage of real hits that were contained in those buckets as a group. For
example,

Less than 1% 5.4% |#kxkok

Shell Commands 4-158

C

O

O

IF -- Execute a conditional statement.

FORMAT

IF condition THEN command_1 ... [ELSE command_2 ...| ENDIF

IF executes a conditional statement depending on the results of a Boolean test. You can
extend the IF command over several lines if you use it interactively or in a Shell script.
When you use IF interactively, and extend the command over more than one line, the
Shell prompts you for each new line of the command with the $__ prompt (refer to the

example below).

ARGUMENTS

condition
(required)

command_ 1
(required)

command_ 2
(optional)

EXAMPLES

1. $ IF eqs a a

Specify a command or program to execute and test for truth, or
specify a variable expression or Boolean variable to test for
truth. “"Truth" usually means that the command executes
successfully (without any errors), or that the Shell variable
expression or Boolean is "true". (Specifically, this argument is
evaluated TRUE if it returns an abort severity level of 0 (zero).)

Refer to the DOMAIN System User’s Guide for more
information on Shell variables.

Specify command or program to execute if ’condition’ returns

TRUE.

Specify command or program to execute if ’condition’ returns
FALSE (i.e., a severity level greater than zero).

$_ THEN args “"a is a"
$_ ELSE args "Aristotle was wrong."

$_ ENDIF
2 is a
$

2. IF eqs "2 ’-c¢’
THEN pas ~1

bind ~1.bin library -b ~1
ELSE bind ~1.bin library -b -1

ENDIF

Example 2 might appear in a Shell script. These lines will compile the Pascal module
named by the first argument (1) if the second argument (*2) is >-¢’. Then it will bind the
module with ’library’. If the second argument is not ’-¢’, or if there is no second argument,
the command simply binds the module.

4-159 Shell Commands

INLIB (INSTALL _LIBRARY)

INLIB (INSTALL_LIBRARY) == Install a user-supplied library.

FORMAT

INLIB pathname...

INLIB installs a library at the current Shell level; it remains installed until the Shell that
installed it exits. (To load a library that is used by all processes, see note below.) The
newly installed library will be used to resolve external references of programs (and
libraries) loaded after its installation. (Thus, previously loaded libraries and programs

will NOT be affected.)

Note that only those global references which have been MARKed by the binder become
visible, and that the default action of the binder is to leave globals UNMARKed. You
should, therefore, take care to MARK all appropriate globals when you bind your library.
See the BIND command description for more details.

INLIB is an internal shell command.

NOTE: At Version 4.1 and later you can create a library that will be installed
automatically in every process. This library resides in the file
JLIB/USERLIBPRIVATE. The procedure text in this library will be shared among
all processes.

This library must be present at node startup time in order to be installed.
After copying your library to /LIB/USERLIBPRIVATE with the Shell command
CPF (COPY_FILE), you must shut down the node and start it up again in order

to use the library. Changes to the library also require rebooting the node to
load the new routines.

Global names in /LIB/USERLIBPRIVATE must not duplicate names used in

DOMAIN libraries.
ARGUMENTS
pathname
(required) Specify name of library file(s) to be installed. Multiple
pathnames and wildcarding are permitted.
EXAMPLES
1. $ inlib my_lidb Install the library "my 1lib".
2. $ inlib ?%.1ib Install all files in the current
working directory with a ".lib"
suffix.

Shell Commands 4-160

)

O

INTM (INSTALL_ TYPE_ MANAGER)

INTM (INSTALL_TYPE_MANAGER) -- Install a type manager.

FORMAT

INTM type_name [mgr__pathname] [options]

INTM installs a new type manager for a specified type. The manager is copied into the
type manager directory. This command does not accept wildcards.

ARGUMENTS
type__name
(required) Specify the type for which the manager is to be installed.
mgr__pathname
(optional) Specify the pathname of the manager object file to install for
this type.

Default if omitted: object file is named ’type _name’.
OPTIONS

=N node_ spec
Specify the node on which the type manager is to be installed.
See the section on node specifications in Chapter 3 for more
information. If this option is omitted, the type manager is
installed on the current node.

-L List the results of the operation.
-R Replace an existing type manager if it exists.
EXAMPLES

1. $ intm example_type /mydir/my_example_mgr.bin
2. $ intm exmaple_type /mydir/old_example_mgr.bin -n //remote_vol -1

"/mydir/old_example mgr.bin" installed as the manager for
type example_ type on volume //remote_vol.

4-161 Shell Commands

INTY (INSTALL _ TYPE)

INTY (INSTALL_TYPE) -~ Install a new type.

FORMAT

INTY type_ name source_ volume [-N node_ spec] [options]

INTY installs a type from one node to another. It will install both the type name and
type manager on the target node (given by the -N option).

ARGUMENTS

type__name
(required) Specify the name of the type to be installed.

source__volume

(required) Specify the pathname of the source volume from which to copy
the type name and type manager.

OPTIONS

=N node_ spec
Specify the node on which the type is to be installed. See the
section on node specifications in Chapter 3 for more information.
You may also specify the entry directory of a volume mounted
for software installation, as shown in the example below. If this
option is omitted, the type is installed on the current node.

~-L List the results of the installation.
-R Replace any existing type name/manager pair- that currently
exists.
EXAMPLES

1. ¢ inty example_type //test_vol
Type "example type" installed.

2. $ inty example_type //my_vol -n //test_vol -1
Type "example type" installed on volume //test_vol.

3. $ mtvol v /mounted_disk
$ inty net_ethernet //rocket_j -n /mounted_vol -1
Type "net_ethernet" installed on //my_node/mounted_vol.

In this case, the disk has been mounted for software installation.

Shell Commands 4-162

INVOL (INITIALIZE _ VOLUME)

INVOL (INITIALZE_ VOLUME) -~ Initialize disk volumes.

FORMAT

From AEGIS command Shell: INVOL
From Mnemonic Debugger : EX INVOL

INVOL initializes physical disk volumes, creates logical volumes, and maintains badspot
lists. = Once initialized, a volume can be mounted with the MTVOL (MOUNT_VOLUME)

command, or can be used to bootstrap the operating system, providing it contains the
necessary files.

For a detailed explanation of INVOL, see the DOMAIN System Utilities manual.

INVOL prompts for all required information.

4-163 Shell Commands

I0S_TEST

IOS _TEST == Test IOS_$ calls

FORMAT

I0S_TEST [-INIT]

IOS_TEST is a program for testing type managers that manage input and output to
objects. IOS_TEST allows you to open a stream to any type of object and then use
selected IOS calls on the open stream. With IOS__ TEST, you can open streams to
existing or new objects. For more information on using I0OS_TEST to test type
managers, see Using the Open System Toolkit for Extending the Streams Facility.
Complete descriptions of the IOS__TEST interactive commands are available in the
DOMAIN System Utilities manual.

OPTIONS

®

-INIT " Call the IOS_ $INITIALIZE routine (within a type manager) at
startup time.

.

)

Shell Commands 4-164

LAMF (LAMINATE _FILE)

LAMF (LAMINATE_FILE) == Laminate files.

FORMAT

LAMF [pathname...] [=S string]

LAMF laminates the named files to standard output. That is, it concatenates the first
lines of all input files, sequentially, and writes the result to standard output; and so on
for the next input lines. If the files contain different numbers of lines, null lines are used
for the missing lines in the shorter files.

NOTE: To insert a NEWLINE character between lines, use the escape sequence, @n, as
a string argument. (See Example 4, below.)

ARGUMENTS
pathname
(optional) Specify name(s) of file(s) to be laminated to standard output.

Multiple pathnames are permitted, separated by blanks.

Default if omitted: read standard input for input lines. Use a
hyphen (-) to specify standard input in a list
of file names.

OPTIONS
=S string Specify a string of text to be placed in each output line at the
point it appears in the command argument list. ’String’ may not
exceed 300 characters. Strings containing embedded spaces must
be in quotes (* “).
EXAMPLES
1. $ lamf mary fred Laminate files "mary" and "fred" and
write results to standard output.
2. $ lamf jan — george Laminate lines from "jan", standard

input, and “george", in that order.
3. $ lamf -S "A line from A: " a =S ", and from B: " b
would produce:

A line from A: first line from a, and from B: first line from b

Note that the text strings inserted are not bound in any way to the position of the
pathname arguments: you may place strings wherever you please. Those strings that
contain literal blanks must be enclosed in quotes, as above.

Escape sequences are valid in string arguments. For example:

4-165 Shell Commands

LAMF (LAMINATE _FILE)

4. $ lamf mary -S @n fred

Shell Commands

Insert a NEWLINE character between each
line from mary and fred, thus inter-
leaving the lines from the two files.

4-166

O

LAS (LIST_ADDRESS_ SPACE)

LAS (LIST_ADDRESS_SPACE) == List objects mapped into the address space.

FORMAT

LAS [options]

LAS produces a list of objects mapped into the address space. Information printed
includes the virtual address range, the starting address within the object, and its
pathname if available (in that order).

This command is most

OPTIONS

useful for system-level debugging.

If no options are specified, LAS lists the address space of the current process.

-ALL

-F[ROM] address

-T[O] address

-PROC[ESS] name

EXAMPLES
1. $ las
VA Range

8000 - 17FFF
18000 - 2FFFF
30000 - 37FFF
38000 - 4FFFF
50000 - 57FFF
58000 - 67FFF
68000 -~ 9FFFF
A0000 - A7FFF
A8000 - BFFFF
C0000 - E7FFF
E8000 - F7FFF
F8000 - FFFFF
100000 - 127FFF
128000 - 14FFFF
150000 - 157FFF
168000 - 15FFFF
160000 - 16FFFF
170000 - 187FFF
188000 - 19FFFF

List all address space, including that occupied by AEGIS.

Begin listing at the hexadecimal address specified.

End listing at the hexadecimal address specified.

List addresses for the process named. Use the PST

(PROCESS_STATUS) command to display the names of existing
processes.

Obj Start Pathname
/sys/node_data/global_data
/1ib/pmlib

/1ib/syslib.peb

/1ib/kslib
/1lib/trait_type_lib
/sys/node_data/global_data
/lib/streams
/1ib/vimt_streams
/lib/error

/1ib/swtlib

/1ib/£tnlidb

/1ib/pbulib

/1lib/gprlib

/1lib/clib
/1ib/lisp_initlib
/sys/node_data/global_rws
/sys/node_data/global_data
/1ib/shlib

/1ib/tfp

QO O0OO0O0

[y
o
o
o
(o]

2000

OO0 0O0OO0OO0CO0OO0O0O00O0O0

4-167 Shell Commands

LAS (LIST _ADDRESS_ SPACE)

1A0000 - 1BFFFF 0
1C0000 - 1C7FFF 0
1D0000 - iD7FFF 30000
200000 - 2AFFFF 0
2B0000 - 2B7FFF 0
-2B8000 - 2BFFFF 0
2C0000 - 2C7FFF 0
2C8000 - 2CFFFF 0
2D0000 - 2F7FFF B000OO
BCOOOO - BCFFFF (o}
BDOOOO - BDFFFF 0

2944 KB mapped.
. $ las -from 188000

VA Range Obj Start

188000 - 19FFFF 0
1A0000 - 1BFFFF 0
1C0000 - 1C7FFF 0
1D0000 - iD7FFF 30000
200000 - 2AFFFF 0
2B0000 - 2B7FFF 0
2B8000 - 2BFFFF 0
2C0000 - 2C7FFF 0
208000 - 2CFFFF o]
2D0000 ~ 2F7FFF B000O
BCOO00 - BCFFFF o)
BDOOOO - BDFFFF 0

1408 KB mapped.
. $ las -f 188000 -t 200000

VA Range Obj Start

188000 - 19FFFF 0
1A0000 - 1BFFFF 0
1C0000 - 1C7FFF 0
1D0000 - 1D7FFF 30000

288 KB mapped.

Shell Commands

/1ib/dialoglib
/sys/node_data/ipc_data
/sys/node_data/global_data
~-- temporary file —-
/sys/node_data/dm_mbx
/com/sh

-—- temporary file --
/com/1las

-- temporary file —-
/help_area/worksite
/3%]

Pathname

/1ib/tfp

/1ib/dialoglib
/sys/node_data/ipc_data
/sys/node_data/global_data
-= temporary file --
/sys/node_data/dm_mbx
/com/sh

-~ temporary file --
/com/las

-- temporary file --
/help_area/worksite
/1%)

Pathname

/11b/tfp

/1ib/dialoglidb
/sys/node_data/ipc_data
/sys/node_data/global_data

4-168

LBR (LIBRARIAN)

LBR (LIBRARIAN) -- Combine object modules into a library.

FORMAT

LBR {-C | -UPD} library _ pathname [module_ pathname] [options] []

The librarian manages libraries of object modules. It adds, removes, or replaces modules
in the library. As input, you must provide the pathname of a library you want to create
or update, followed by an optional list of object module pathnames and processing
options. As output, the librarian produces a new or updated library file.

You can use LBR in two ways: by entering complete LBR command strings, or by using
the "-* (hyphen) option to ask the librarian to prompt you for multiple strings of
module__pathname arguments and options. By using prompting you can perform several
operations on object modules in the same library file, without entering LBR each time.

For a complete description of the librarian, see the DOMAIN Binder and Librarian
Re ference.

Prompting

The optional hyphen at the end of the command line requests the librarian to begin
prompting. The hyphen is valid only on the line containing the LBR command, and must
be the last item on the line. Note that prompting is also requested if the command line
contains only the LBR command.

If you request prompting, the librarian processes the arguments and options on the
current command line, then displays an asterisk (*) on standard output. In response to
the asterisk, you can enter additional module__pathname arguments and options. For
example:

$LBR -C mylib.lib - <RET>
*filel.bin -DEL my module <RET>
*file2.bin ~L -REPL file3.bin
*<RETURN>

Prompting ends when you enter the -END switch or press <RETURN> in response to

the asterisk. After prompting ends, the librarian finishes creating or updating the library
file.

Comment Statements

You can include comments to an LBR command during a prompting session or in a Shell
script. Comments must be delimited by braces, as in this example:

$LBR -UPD plot.lib

*plot_line.bin { Add PLOT_LINE procedure to library }
*{ Generate library directory }

*-~L

*-END

The librarian ignores any comments when it processes the command line.

4-169 Shell Commands

LBR (LIBRARIAN)

Librarian Errors

If a problem occurs during LBR execution, the librarian displays a message on error
output. The message indicates the nature and severity of the problem. Error-level
messages are issued for fatal conditions, which prevent the librarian from creating or
updating a library file. Warning-level messages are issued for conditions that do not
prevent the librarian from producing a library file, but the file’s contents may not be
what you were expecting.

ARGUMENTS

-C[REATE] | -UPD[ATE] library _ pathname

(required) The pathname of the library output file must be specified on the
command line before you can specify any option that performs
an operation on a library (such as adding to, extracting from, or
reporting about a library). The -C (CREATE) or -UPD (UPDATE)
option must be specified with the library pathname argument to
indicate whether you want to create or update a library.
Remember that only one library output file can be specified per
execution of the librarian.

module__pathname

(optional) Specify an object module to be added into the library. Multiple
pathnames and wildcarding are permitted. If omitted, no new
object modules are added to the library.

OPTIONS

The following options instruct the librarian to perform various tasks. Note that some
options apply directly to a library, while other options act on modules within the library.
Default options are indicated by *(D)".

-DEL module Remove an object module from the library. If a module of the
given name cannot be found in the library, a warning is issued.
Note that the librarian is case-sensitive to the name 'module’.

-EX module [-O pathname]
Extract the named module from the library. If the pathname
modifier is specified with -O, the module will be copied to that
pathname. Otherwise, the module is copied to a file having the
same name as the module. Note that the librarian is
case-sensitive to the name 'module’.

-L List a directory of the library contents to standard output.
This report shows the name of each module in the library, with a
list of section information and global declarations and references
for each module.

-MSGS (D) Cause LBR to issue purely informational messages such as a
summary of the number of errors and warnings that occurred.

-NMSGS Cause LBR to suppress issuing purely informational messages.

~-NSYS (D) Do not list global variables which are defined in the system

Shell Commands 4=-170

@

O

-REPL pathname

-SYS

- (hyphen alone)

LBR (LIBRARIAN)

library when generating a listing of global definitions and
references with the -L option.

Replace, in the library, any modules found in the file specified by
pathname. This option has an effect equivalent to first deleting
all the modules found in pathname from the library, and then
adding all the modules in pathname back into the library. The
advantage gained by using -REPL is that you do not need to
know the names of the modules in ’pathname’. Also, if you
attempt to add a module to a library without using the -REPL
option, and a module of that name does already exist, an error
message is issued. If a module found in pathname does not
already exist in the library, a warning message is issued.

List global variables which are defined in the system library

when generating a listing of global definitions and references
with the -L option.

Request librarian prompting for further arguments.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

Refer to the DOMAIN Binder and Librarian Re ference for detailed examples of LBR.

4-171 Shell Commands

LONET (LIST _CONNECTED _ NETWORKS)

LCNET (LIST _CONNECTED _NETWORKS) == Display internet routing information.

FORMAT

LCNET [options]

LCNET displays the list of known networks, their distances from the current node, the
router used as the first hop towards that network, and other information.

The distances (hops) towards remote networks are measured in intervening routers. The
distances are all for one-way traffic; if a network is three hops away from yours, your
requests pass through three routers to get to that network. The responses also pass
through three routers on the way back.

The -CONN option shows you the full internet topology, i.e. the list of networks and how
the routers connect them together.

OPTIONS

Default options are indicated by "(D).*

-LOCAL (D) Display the 'First Hop’ and 'Hops’ information for each network
in the internet. The first hop is the node ID of a router on your
network. It is the first router used in sending packets from your
network to the target network. Other routers are also used if
the target network is more than one hop away from your own.

-FULL Display information showing how up-to-date the routing table is
(the ’Age’ and ’Expiration’ columns) in addition to the ’First
hop’ and ’Hops’ information shown by the -LOCAL option.
-FULL also lists inaccessible networks.

-CONN Show which routers are connected to each network, and which
other networks those routers touch. This option displays the
"Touching’ information.

-HW Display the type of hardware used for each of the networks (ring
or IIC).

The -CONN and -HW options may take several seconds to
execute if you have a large internet.

=N node=-spec Print another node’s view of the internet. The outputs
produced by -LOCAL and -FULL vary from node to node; -N
affects these outputs. The -N option does not affect the output
produced by the -CONN or -HW options, since the hardware and
connectivity do not depend on a node’s position in the internet.

-C The -C option suppresses the title over each output column. It
also fills every line of the "Network" column produced by the
-CONN option, and every line of the "Hardware" column
produced by the -HW option. These format changes make it
easier to use LONET’s output as another program’s input.

Shell Commands 4-172

LCNET (LIST _ CONNECTED _NETWORKS)

EXAMPLES

In this example, the node is directly connected to network COFFEE. Networks 5A1AD and
EDIF1CE were connected in the past, but are not now accessible (perhaps because the
routers are down).

The expiration date and time for the ’local’ network is meaningless.

$ lcnet —-full

First

Network Hop Hops Age Expiration date/time
B020 4B6F 1 NEW 1985/06/16 14:33:21
BOOBOO 4B6F 2 NEW 1985/06/16 14:33:21
SA1AD 4B6F gone NEW 1985/06/16 14:33:21
COFFEE 0 local NEW 1985/06/09 10:27:46
ED1F1CE 4B6F gone NEW 1985/06/16 14:33:21
DODO BAD1 1 NEW 1985/06/16 14:33:39

The ’Touching’ information describes your internet completely. This example includes
several kinds of information: - Network DEFACED has one router, node 2A3B. That
router connects DEFACED to EFFACED. - Network FACEOFF contains two routers,
31DC and 1371. Those routers connect FACEOFF to COCOA and COFFEE, respectively.

$ 1lcnet -conn

Touching Touching

Network Router Network
FOOD 5COB DECAF
36CF COFFEE
S5A1AD 459B COFFEE
45BE ED1F1CE
BOO2E 3FOA COFFEE
COCOA BAD1 BOOB1E
56B0 EFFACED

31DC FACEOFF

DECAF 5COB FOOD
BOOB1E BAD1 COCOA
COFFEE 36CF FOOD
459B BA1AD
3FOA BOO2E

1371 FACEOFF

DEFACED 2A3B EFFACED
ED1F1CE 45BE 5A1AD
EFFACED 56B0 COCOA
2A3B DEFACED
FACEQFF 31DC COCOA
1371 COFFEE

$ lcnet -conn -c¢

FOOD 5COB DECAF
FOOD 36CF COFFEE
S5A1AD 459B COFFEE
5A1AD 45BE ED1F1CE
BOO2E 3FO0A COFFEE
COCOA BAD1 BOOB1E
COCOA 56B0O EFFACED

4-173 Shell Commands

LONET (LIST _CONNECTED _NETWORKS)

COoCoA
DECAF
BOOBLE
COFFEE
COFFEE
COFFEE
COFFEE
DEFACED
ED1F1CE
EFFACED
EFFACED
FACEOFF
FACEQFF

Shell Commands

31DC
5COB
BAD1
36CF
459B
3FOA
1871
2A3B
45BE
56B0
2A3B
31DC
1371

FACEOFF
FOOD
COCOA
FOOD
5A1AD
BOO2E
FACEOFF
EFFACED
SA1AD
COCOA
DEFACED
COCOA
COFFEE

4-173.1

O

O

LCNODE (LIST__ CONNECTED _ NODES)

LCNODE (LIST_CONNECTED _NODES) -- List nodes connected to the network.

FORMAT

LCNODE |[options]

LCNODE lists the nodes currently connected to the network. The list contains the ID of
every node connected, the time at which the node was started, the current time, and the
name of each node’s entry directory.

This command reports only the nodes that respond within a preset time limit. Should a
node be connected, but temporarily unable to respond within the specified time, it will
not appear in the produced list.

OPTIONS

-M[E]

-B[RIEF]

-ID

-C[OUNT]

-MAX[NODES] n

-FROM node__spec

~-NAME

Shell Commands

Request information about your node only. This option
displays the node ID.

Request brief output. LCNODE lists only the entry directory
name for each connected node. Note that the entry directory of
a diskless node is the entry directory of its paging partner.

When used with -BRIEF, display the node ID in addition to the

entry directory.

Request node count only. LCNODE lists only the number of

nodes responding to its query.

‘Set a limit on the number of nodes you want to see, even if more

could have responded.

Starts the node list at some node other than your own. This is
especially useful in an internet environment, for looking at
networks other than your own. See the section on node
specifications in Chapter 3 for more information.

When you specify the -BRIEF option, LONODE normally prints

the entry directory for each node. If you specify -NAME with
-BRIEF, LCNODE prints the node-name catalogued with the
naming server. Only diskless nodes are printed differently. A
diskless node’s entry directory is its partner’s node name; a
diskless node’s node-name is uniquely its own.

Unless the -FROM option specifies your own node, the list will
only include an unbroken sequence of nodes running AEGIS
SR9.0 or later. The rest of the node list is lost, starting with the
first running a pre-SR9.0 AEGIS.

4-174

m
\
N

./,\

®

O

EXAMPLES

ID

21
17
27
11

4.

$ lcnode

The node ID of this node is 21.
3 other nodes responded.

Boot time Current time

1984/06/09 9:21:44 1984/06/09 16:06:22
1984/06/09 13:62:02 1984/06/09 16:06:13
1984/06/09 12:53:28 1984/06/09 16:06:07
1984/06/09 12:03:39 1984/06/09 16:06:15

$ lcnode -me

The node ID of this node is 21.
$ lcnode -b

//dollar

//quarter

//nickel
//quarter

LCNODE (LIST _ CONNECTED _ NODES)

Entry Directory

//dollar

//quarter

//nickel

** DISKLESS **

//diskless_$11 partner node: 17

(//QUARTER appears once as the host for a diskless node and

once for the node with the disk.)
$ lcnode -b -name

//dollar
//quarter
//nickel
//diskless_$000011

(-NAME shows you the name under which diskless node 11 is catalogued)

$ lcnode -c
466 other nodes responded.

$ lcnode -c -m
The node ID of this node is 116A.
466 other nodes responded.

$ lcnode -b -id
21 //dollar

17 //quarter
27 //nickel

11 //quarter

$ lcnode -from OFAD.3924 -max 2

Starting from node 3924.
1 other node responded,

but more might have responded with a high -MAX value.

Node ID Boot time

3924
34Bf

1986/02/14 17:20:45
1985/02/14 18:46:52

4-175

Current time

Entry Directory

1985/02/14 19:07:04 //laurel
1985/02/14 19:08:09 //hardy

Shell Commands

LD (LIST _DIRECTORY)

LD (LIST_DIRECTORY) -- List contents of a directory.

FORMAT

LD [pathname...] [options]

LD lists the objects in a directory on standard output. It provides a wide variety of
information on the contents of the various objects, depending on the command options
that you select.

ARGUMENTS
pathname
(optional) Specify pathname of the object to be described. The object may
' be a directory, a file, or a link. If you specify a directory, LD
describes the files in that directory. If you specify a file, the
attributes of that file are reported. Multiple pathnames and
wildcarding are permitted. (If they are used, each name is
assumed to be a filename.)
Default if omitted: list contents of working directory
OPTIONS

Default options are indicated by "(D).*

Attributes

-A Display all attributes.

-ATTR Display permanent/immutable/trouble flags.

-BL Display disk blocks used.

-LEN Display current length in bytes.

-R Display your access rights to entries.

-ROOT Display the contents of the replicated root directory managed by
the naming server helper.

-ST Display system object type.

-TU Display type UlDs.

Date and Time

-D Display creation, modified, and last used dates.
-DTC Display date/time created.
-DTM Display date/time last modified.

Shell Commands 4-176

-DTU

Streams
-SI
-AB
-CONC

-RT

Entry Selection
-CRB d
-CRA d
-USB d
-USA d

-MOB d

-MOA d

-BE d

-AF d

-DI

-ENT

-LD (D)

-LF (D)

-LL (D)

LD (LIST _DIRECTORY)

Display date/time last used.

Display all stream header information.
Display streams ASCII/binary flag.
Display streams object concurrency.

Display streams record type.

Display entries created before date and time "d".
Display entries created after date and time *d".
Display entries used before date and time "d".
Display entries used after date and time "d".

Display entries modified before date and time *d". Same as old
-BE option.

Display entries modified after date and time "d". Same as old
-AF option.

Display entries modified before date and time "d". Obsolete
option: use -MOB.

Display entries modified after date and time "d". Obsolete
option: use -MOA.

Treat all names as directory names and list the contents of
those directories.

List attributes of the target object itself. This option has no

effect if the pathname refers to a file. If the target object is a
directory, -ENT causes LD to display attributes of the directory
itself rather than its contents. If the target object is a link,
-ENT causes LD to display attributes of the link itself rather
than trying to resolve the link and display attributes of the
resolution object. See Example 5 below.

List directory names. If this option is specified, then -LF, -LL,
and -LN lose their default status, and must be specified
explicitly, if desired.

List file names. If this option is specified, then -LD, -LL, and
-LN lose their default status, and must be specified explicitly, if
desired.

List link names. If this option is specified, then -LD, -LF', and

-LN lose their default status, and must be specified explicitly, if
desired.

4-177 Shell Commands

LD (LIST _DIRECTORY)

-LN (D) List diskless node names. If this option is specified, then -LD,
-LF, and -LL lose their default status, and must be specified
explicitly, if desired. Diskless node names normally appear only
when you specify -ROOT, or when you list the // directory.

-LT Display link resolution names.

Output Control

-SC Sort the output vertically in columns.
-SR (D) Sort the output horizontally in rows.
“Wn Adjust the output to be 'n’ characters wide. If this option is

omitted, LD automatically adjusts the width of the output to the
size of the transcript pad’s window, unless the command is issued
from a dumb terminal or some other windowless device. In that
case, the output defaults to 80 characters wide if -W is omitted.

-C List entries in a single column, suppress header.
-HD (D) Display header and totals.

-NHD Suppress header and totals.

-SN (D) Sort entries by name.

-NSN Suppress entry sorting.

-WARN (D) Produce a warning if no wildeard matches are found.
~-NWARN Suppress warning if no wildcard matches are found.

LD uses the command line parser, and so also accepts the standard command options with
the exception of the query options (-QA, -NQ, -QW).

TIME

The time at which a file is created, modified, or used is accurate within a certain tolerance.
The reported time of creation or modification is correct within one minute of the actual
creation or modification time. The time of last use is updated only if more than an hour
has elapsed since the recorded time of last use. Hence, the time of last use reported by the
LD command may vary by as much as an hour from the actual time of last use.

EXAMPLES

1. $ 1d -a
Directory "/col/users/finali":

sys type blocks current

type uid used length attr rights name
file rec i8 17640 P pndwrx chil
file rec 18 18428 P pndwrx ch2

Shell Commands 4-178

4 entries listed, 8 blocks used.

LD (LIST _DIRECTORY)

file rec 67 67210 P pndwrx c¢h3
file rec 12 11654 P pndwrx ch4
4 entries, 115 blocks used.
. $ 1d -dtm
Directory "/col/users/finall":
date/time
modified name
82/03/28 17:18 chi
82/03/28 17:18 ch2
82/03/28 17:19 ch3
82/03/28 17:20 ch4
4 entries, 115 blocks used.
. $ 1d /sys/ins/[a-e]?*.ins.ftn -a
sys type blocks current
type uid used length attr rights name
file rec 1 872 P pnawrx /sys/ins/base.ins.ftn
file rec 2 1274 P pndwrx /sys/ins/cal.ins.ftn
file uasc 20 19966 P pndwrx /sys/ins/core.ins.ftn
file rec 1 738 P pndwrx /sys/ins/ec2.ins.ftn
4 entries listed, 24 blocks used.
. $1d //v?x -2
sys type blocks current
type uid used length attr rights name
node //victor
sdir nil 5 5120 P -——--—= rse //visitor
(attributes unavailable) //void
sdir nil S 3072 P pgn-calrse //vulture

NOTE: in this example, //victor is the name of a diskless node.

. $ crl foo //behemoth/rkd/foo.dat

$ 1d foo -11 -1t

?(14d) "foo" - name not found (0S/naming server)

{This error occurs because the resolution object
//behemoth/rkd/foo.dat does not exist.
attributes of the link itself without trying to resolve it.}

$ 1d foo -11 -1t -ent
foo "//behemoth/rkd/foo.dat"

1 entry listed.

4-179

Now use —ENT to show

Shell Commands

LD (LIST _DIRECTORY)
{The following command displays the contents of the working
directory.}
$1d . -a

Directory "//otis/tstlib/trash":

sys type blocks current

type uid used length attr rights name
file wuasc 1 32 P pgndwrx abc
link foo

2 entries, 1 block used.

{Now display attributes of the working directory itself.}

$ 1d . —ent -a

sys. type blocks current
type uid used length attr rights name
dir nil 2 2048 P pgndcalrse

1 entry listed, 2 blocks used.

Shell Commands 4-180

()

/w

LKOB (LOCK_ OBJECT)

LKOB (LOCK_OBJECT) =-- Lock an object.

FORMAT

LKOB pathname [options]
LKOB locks the specified object. The locking constraint is "n readers XOR 1 writer".
LKOB is primarily used for system-level debugging.

To list locked objects, use LLKOB (LIST_LOCKED_OBJECTS). To unlock an object, use
ULKOB (UNLOCK_ OBJECT).

ARGUMENTS
pathname
(required) Specify object to be locked. Multiple pathnames and
wildcarding are permitted.
OPTIONS

Default options are indicated by "(D)."

-R (D) Lock the object for reading.

-W Lock the object for writing.

-1 Lock the object for reading, with intent to write.

-R2W Change the lock mode of the object from "read" or
“read-intend-write" to "write".

-R2RIW Change the lock mode of the object from "read" to
“read-intend-write".

-W2R Change the lock mode of the object from "write" to “read".

-W2RIW Change the lock mode of the object from "write" to

“read-intend-write".
This command uses the command line parser, and so also accepts the standard command

options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ lkob susan -w Lock file "susan" for writing.

4-181 Shell Commands

LLKOB (LIST _LOCKED _ OBJECTS)

LLKOB (LIST_LOCKED _OBJECTS) -~ List locked objects.

FORMAT

LLKOB [options]

This command lists the locked objects resident on volumes mounted on this node, and
objects resident in other nodes that are locked by processes running locally.

The listing for each object includes the locking constraints imposed on the object (e.g.,
n-readers XOR l-writer), the specific lock mode being used (e.g., Read, Write,
Read-Intending-Write), the network node ID of the node at which the object is located,
the node ID of the node in which the locking process is active, and the name (if it is
available) of the object itself.

OPTIONS

-R[EMOTE]

-C[OUNT)
EXAMPLES

1. $ 1llkob

USE CONSTRAINT

W nR_xor_iW
R nR _xor_iW
W nR_xor_ 1W
R nR_xor_ 1W
W nR_xor_ 1iW

2. $ 1lkodb -c

Specify list of only those objects that either reside on this node
and are locked by another node, or reside on another node and
are locked by this node (i.e., those objects whose locks are in
some way remote).

List only a one-line summary of the number of objects locked.

HOME LOCKING

NODE NODE FILE
21 21 /sys/dm/pdb
21 21 - /sys/dm/fonts/std
21 21 --Temporary File—-
21 21 --Uncataloged Permanent File-—
21 21 --Display Manager Pad--

locked: 102 -- 100 local, 2 remote; 100 locally locked, 2 remotely

Shell Commands

4-182

O

O

LOGIN

LOGIN -~ Log in to a running process.

FORMAT

LOGIN [pei'son[.project[.org]] [-LP [passwd]] [-C pathname args...]]

The LOGIN command allows you to log in to a running process with a different identity.
This permits you to have multiple concurrent processes running under different Subject

Identifiers (SIDs).

See the EDACL command description for an explanation of SIDs.

As of SR9.2, the DM inherits the working and naming directories, plus the environment
variables, of the new login process. This means that normal DM activities (like editing
files) are now transparent to login activity. In releases prior to SR9.2, the DM did not
assume the process identity and could not interact transparently with other process

activities.

To log out of a running process and return control of the process to the original SID,
enter an end-of-file mark (usually CTRL/Z) in the process input pad.

ARGUMENTS

person
(optional)

project
(optional)

org
(optional)

Specify your username. If you omit ’person’, then LOGIN
prompts you to log in interactively. In this case, respond just as
you do to the DM log in prompt, i.e., issue the L command in
the form:

L person|[.project[.org]] [-P] [-H]

You will be asked for a password, and may take the opportunity
to change your password and login home directory with the -P
and -H options. See the L command description in the DM
command chapter for more information. When you have
successfully logged in, the process in the window assumes the
new identity, and the node’s local registry is updated.

Default if omitted: prompt for 'L’ command

Specify project ID (if one exists). This ID may be separated
from ’person’ by either a blank space or a period.

Default if omitted: no project ID specified

Specify organization ID (if one exists). This ID may be
separated from ’person’ by either a blank space or a period.

Default if omitted: no organization ID specified

4-183 Shell Commands

LOGIN

OPTIONS

-LP [passwd]

Specify password. If the ’person’ argument appears on the
command line, and -LP is not specified, you will be prompted for
a password. If -LP is specified without an associated password, a
blank password is used. -LP must follow the ’person’ argument
and precede the -C option. In addition, "-C" cannot be the
password. Note that using -LP makes your password visible in
the window.

After a successful login, the node local registry is updated with
the new identity.

-C pathname [args ...]

EXAMPLES

$ login

Specify a program (followed by optional arguments to be passed
to the program) that is to be invoked in the window after a
successful login. If -C is not specified, /COM/SH (the Shell) is
invoked. -C must not precede the ’person’ argument.

Please log in: 1 user

Password:

Logged in as user.none.none Monday, March 5, 1984 11:06:55 (EST).
$ args "And now for something completely different."

$ (CTRL/Z)
¥%k%x EQF k%%
process stop

$

Shell Commands

(0s/fault handler)
Control returned to original SID

4-184

-

K/’I

LOPSTR (LIST_OPEN_ STREAMS)

LOPSTR (LIST_OPEN_STREAMS) == List open streams.

FORMAT

LOPSTR

LOPSTR lists the streams that are open for the current process. The list contains the
stream ID and access mode (read, write, append, and so forth) for each stream. The
pathname (if one exists) associated with each stream is also displayed.

LOPSTR requires no arguments or options.

EXAMPLES

$ lopstr
st# open

0 read
1 append
2 read
3 append

name

(standard input)
(standard output)
(error input)
(error output)

4 streams open.

4-185

Shell Commands

LRGY (LIST _REGISTRY)

LRGY (LIST_REGISTRY) == List registry sites.

FORMAT
LRGY [options]

LRGY lists registry site names and the name of the network master registry file. For
complete information on the use of local and network registries, see Administering Your

DOMAIN System.
OPTIONS
If no options are specified, LRGY lists the sites in the current node’s registry file copy
(/REGISTRY/REGISTRY).
=R pathname Specify name of registry file to be listed. If the -LOC option is
also present, this name must be a node name (see example 3). If
you omit this option but include -LOC, LRGY lists your node’s
local registry (//’node’/REGISTRY/LOCAL _REGISTRY).
-LOC List local registry.
EXAMPLES
1. $ lrgy List registry file copy.
Registry: //os/registry/rgy_master

Sites of registration data files:
//os/registry/rgy_dir.1
//us/registry/rgy_dir.2
//tape/registry/rgy dir.3

2. $ lrgy -loc List current node'’s local registry.
Registry: //tape/registry/local_registry
Sites of registration data files:
//tape/registry/local_site
Registry is LOCAL. It has 11 slots for login;
the expiration period is 10 days.

3. $ 1rgy -r //os ~loc List local registry of node "os".
Registry: //os/registry/local_registry
Sites of registration data files:
//os/registry/local_site
Registry is LOCAL. It has 11 slots for logln
the expiration period is 10 days.

Shell Commands 4-186

7N

_

LTY (LIST_TYPES) == List installed types.

FORMAT

LTY [options]

LTY lists the types currently installed on a volume.
contents of internal caches for debugging purposes.

OPTIONS

LTY (LIST_ TYPES)

It can also be used to list the

If no options are specified, LTY lists types installed on the boot volume.

~N node_ spec

Specify the node whose type names are to be listed. See the

section on node specifications in Chapter 3 for more information.
You may also specify the entry directory of a volume mounted
for software installation, as shown in the example below.

-U Display type UIDs as well as type names.
-GLOB Display contents of global type name cache instead of the type
file (for debugging only).
-PRIV Display the contents of the private (per-user) type name cache
instead of the type file (for debugging only).
EXAMPLES
$ 1lvy

Local type file

area bitmap boot casehm
lheap mbx mo nil
pipe rec sch sio

ddf
null
uasc

evetype
obj
und

hdru ipad
objlib pad

In the following example, the disk has been mounted for software installation. The disk’s
top level directory (catalogued as ’/mounted __disk’ by the MTVOL command) must contain
a "sys" directory. If it does not, you will get a "types file not found" error.

$ mtvol w /mounted_disk
$ 1ty -n /mounted_disk

Type file for "//my_node/mounted_disk"

area bitmap boot casehm
lheap mbx mt nil
pipe rec sch sio

4-187

ddf
null
uasc

evetype
obj
und

hdru ipad
objlib pad

Shell Commands

LUSR (LIST _USER)

LUSR (LIST_USER) == List logged on users.

FORMAT

LUSR [options]

LUSR lists the identities of active users on the network.

OPTIONS

If no options are specified, the person name and node entry directory of all users logged into

the DM are listed.

-ME

=N node__spec ...

-BR

-FULL

-NOFULL

-ALLP

=-PPO ppo

-IDLE

EXAMPLES

1. $ lusr -me

List the user logged on to this node by person, project,
organization name, and node ID.

Lists user(s) logged on to the node specified. See the section on
node specifications in Chapter 3 for more information. Multiple

pathnames or node IDs are permitted; separate them with
blanks.

Suppress listing of home directory names. Home directory
names are listed if this option is not specified.

List complete PPON (person, project, organization name, and
node ID) for each user listed.

List only the person name of each user listed. This is the
default setting unless -ME is specified, in which case the full
PPON is listed by default.

List identities for all user processes, not just the DM, either by
node (if -N is also specified), by name (-PPO), for the current
node only (-ME), or everywhere in the network.

List user(s) named, at all nodes to which they have logged in to
the DM. ’ppo’ is a string of the form ’pers.proj.org’, where '%’
may be used as a wildcard specifier and trailing %’s may be
omitted (e.g., %.0s_ dev or joe.%.r_d).

Include idle nodes in report. If this option is omitted, LUSR
suppresses the names of nodes at which no one is logged in.

loc.none.mfg.1D5 //ET

$

Shell Commands

4-188

LUSR (LIST_ USER)

2. $ lusr -me -nofull -br

loc
$
3. $ lusr -n //magic //mountain //park
joe //MAGIC
brian //MOUNTAIN
gordon //PARK
$
4. $ lusr -full
jtj.none.none.532 //zoid
andy .none.now.12B //me
carol.none.mtg.334 //vip
nelson.none.pres.838 **x% diskless 883 ***
//halfwit partner node: //plan
annie.none.r_d.6CA //lunar
now.system.advent.368 *%% diskless 368 ***
' //diskless_$000368 partner node: //zoid
beth.none.mfg.2F7 //mack
$

5. $ lusr -idle
joe //magic
*No one logged inx //strider
No one logged in //panacea

janet %% diskless //cutie *%* partner node: //nirvana
john //duke

eric //1lion

No one logged in //fourbits

harper //basil

$

4-189 Shell Commands

LVAR
LVAR (LIST_VARIABLES) == List information about set variables.

FORMAT

LVAR [var_name ...]

The LVAR command lists the type, name, and value of currently set variables.
Optionally, you can specify individual variable names.

ARGUMENTS

var_name ...
(optional) List type, name, and value of the specified variable(s).

Default if omitted: list information for all variables currently set

Shell Commands 4-190

)

LVOLFS (LIST_VOLUME _ FREE_ SPACE)

LVOLFS (LIST_VOLUME_FREE_SPACE) =~ List free space on logical volumes.

FORMAT

LVOLFS [pathname] [options]

LVOLFS prints information about the amount of available storage on mounted volumes.
This information includes the total amount of storage in disk blocks, the amount of free
storage, the percent of the total storage that is free, and the entry directory name for the

volume.
ARGUMENTS
pathname
(optional) Report on the volumes mounted on the home node of the
specified file.
Default if omitted: list free space on current node
OPTIONS

If no options are specified, LVOLFS reports the storage available on the volumes mounted
on the current node.

-A Report on all volumes mounted in the network.
-N node__spec ... ,
Report on the volumes mounted on the specified node[s|. See the
section on node specifications in Chapter 3 for more information.
Multiple 'node _spec’ strings are permitted; separate them with
blanks.

EXAMPLES

$ LVOLFS -A

free # total % free node id entry directory

24217 30012 81 1A /

16589 30012 55 2B //DEV
7927 30012 26 3C //LANG
14497 30012 48 4D //MKT

4-191 Shell Commands

MACRO

MACRO -- Expand macro definitions.

FORMAT

MACRO [~0] [pathname ...]

MACRO is a general-purpose macro processor. MACRO reads the files and writes to
standard output a new file with the macro definitions deleted and the macro references

expanded.
ARGUMENTS
pathname
(optional) Specify file containing macro definitions to be processed.
Multiple pathnames are permitted.
Default if omitted: read standard input
OPTIONS
-0 (Zero, not letter O) Remove one level of brackets in macro calls

prior to processing. Normally, brackets appearing outside any
macro calls (level zero brackets) are NOT removed.

A macro is a symbolic constant; when you use MACRO, each constant is replaced by the
string of characters which define it. The general form of a macro definition is:

DEFINE(name,replacement text)

The string 'name’ can consist of letters (a-z and A-Z), digits (0-9), underscores (_), and
dollar signs ($). All subsequent occurrences of the string 'name’ separated from other
letters, digits, underscores, and dollar signs by any other characters, spaces, or newline
characters will be replaced by the replacement text. No space is allowed between the
command (in this case, DEFINE), and the left parenthesis.

Blanks in definitions are significant; they should appear in the replacement text only where
desired. Uppercase and lowercase letters are also significant. The replacement text may be
more than one line long. However, when an entire macro definition is followed immediately
by a newline, the newline is discarded. This prevents extraneous blank lines from appearing
in the output.

A simple example of a macro is:
DEFINE (EOF,~-1)
Thereafter, all occurrences of 'EOF’ in the file would be replaced by ’-1’.
You may specify arguments in macro definitions with the characters '$n’, where n is a
number between 0 and 9. The arguments to be inserted when the macro is encountered are

given inside parentheses following the macro name. $0 refers to the name of the macro
itself. For example,

Shell Commands 4-192

C

MACRO

DEFINE(copen,$3 = open($1,$2))
defines a macro that, when called by
copen(name, READ, fd)
expands into
fd = open(name, READ)

If a macro definition refers to an argument that was not supplied, the $n will be ignored.
The $ is taken literally if a character other than a digit follows it.

Macros can be nested, and can be called recursively. Any macros encountered during
argument collection are expanded immediately, unless they are surrounded by square

brackets ([]). That is, input surrounded by brackets is left absolutely alone, except that
one level of [and | is stripped off. Thus it is possible to write the macro D as

DEFINE(D, {define($1,$2)1)

The replacement text for D, protected by the brackets, is literally 'DEFINE($1,$2)’ so you
could use:

D(a,bc)
to define a as be. Brackets must also be used to redefine a macro. For example:

DEFINE(x,y)

DEFINE(x, z)

will define y in the second line, instead of redefining x. To define x the second time, the
operation must be expressed as

DEFINE(x,Yy)

DﬁFINE([x].z)

Normally, brackets appearing outside any macro calls (level zero brackets) are not removed.
When the -0 (zero, not letter O) option is specified, one level of brackets is removed both
inside and outside the macros. One level of brackets is also removed when the macro
reference is expanded. Thus, to rewrite the ’D’ macro above so that it is evaluated to the
literal string ’define($1,$2)’, the definition is:

DEFINE(D, [[define ($1.$2)11)

In order to redefine the macro 'DEFINE’ (for example, so that the Pascal keyword
'DEFINE’ can be used) the following definition can be used:

4-193 Shell Commands

MACRO

DEFINE([DEFINE], [[DEFINE]])
Both arguments get one level of brackets stripped when the definition is processed; the

second argument gets another level stripped when the macro is invoked.

The following built-in macros are provided:

DEFINE(a,b) defines a to be b and returns the null string.
IFELSE(a,b,c,d) returns c if a is identical to b. Otherwise, it returns d.
INCR(a) interprets a as an integer and returns a+1.

SUBSTR(a,m,n) returns a substring of the string a starting at character number m and
extending for n characters.

LEN(a) returns the length of a.

INCLUD(a) returns the contents of file a.

EXPR(a) returns the result of evaluating infix expression a. Operators in
increasing order of precedence are as follows. Parentheses may be used as
usual.
| & logical OR and AND

! unary logical NOT
== 7= <= < > >= arithmetic comparison

+ - addition and subtraction

* /% multiplication, division, modulus
(remainder)

*% exponentiation

+ - unary plus and negation

Logical operators return O (false) or 1 (true)

DIAGNOSTICS

arith evaluation stack overflow
Arithmetic expressions can only be nested to 30 deep.

arg stack overflow
The total number of arguments exceeds the limit of 100.

call stack overflow
Definitions can only be nested to 20 deep.

EOF in string An end-of-file has been encountered before a bracketed string has been
terminated.

evaluation stack overflow
Too many characters are used for the name, definition, and arguments of

one macro. 2500 characters are allowed.

unexpected EOF An end-of-file was reached before a macro definition was terminated.

Shell Commands 4-194

D

e

C

‘)

MACRO

filename: can’t open
The named file could not be opened.

filename: can’t include
The indicated file cannot be included with the built-in macro INCLUD.

includes nested too deeply
Files included with the built-in macro INCLUD can be nested only up to
128 deep.

expression: invalid infix expression
There is a syntax error in the indicated infix expression as passed to the
built-in macro EXPR.

too many characters pushed back
A macro expansion is too large to be rescanned. A macro definition may
contain up to 2500 characters.

name: too many definitions
The table space for macro definitions has been exhausted; this occurred

upon the definition of the named macro.

token too long A name or symbol in the input was longer than the token buffer. Each
token may be up to 200 characters long.

4-195 Shell Commands

MRGRGY (MERGE_ REGISTRIES)

MRGRGY (MERGE_REGISTRIES) == Merge two network registries.

FORMAT

MRGRGY rgyl path rgy2 path

MRGRGY merges two previously independent network registries. This command merges
each network’s site directories. Thus, all site directories’ person, project, organization,
full name, and account files are merged.

MRGRGY selects one master registry file to be the merged master. It then merges the
master registry files from each network into the merged master. The merged master
contains the name of the new master registry file and the names of the site directories
that were in each of the original master registry files. The other master registry file (i.e.,
the file that is not the merged master) is backed up and then deleted.

The MRGRGY command completes in four phases:

Phase Description

1 MRGRGY creates the new merged PPO and account files and saves
them in temporary files. Some .bak files are changed, but no changes
are made to the original PPO and account files. If Phase 1 fails
because MRGRGY detects duplicate entries in the PPO and account
files, fix the problem and rerun MRGRGY. If Phase 1 fails due to a
network problem, rerun MRGRGY.

2 MRGRGY saves the merged PPO and account files in the site
directories listed in the first master registry file. If Phase 2 fails due to
a network problem, rerun MRGRGY.

3 MRGRGY creates the merged master registry file and saves it in the
first master registry file. MRGRGY deletes the second master registry
file. If Phase 3 fails due to a network problem, recreate the original
master registry files from your backup copies. Then rerun MRGRGY.

4 MRGRGY performs a SALRGY to copy the merged PPO and account
files to all site directories in the merged master registry. (Some sites
already have these files; they will get new copies.) If Phase 4 fails due
to a network problem, run- SALRGY.

Before you use MRGRGY, use CMPPO and CMACCT to check for all name and account
collisions that would prevent MRGRGY from running to completion.

MRGRGY is for use in a DOMAIN/BRIDGE internet. For more 1nformatlon on merging
registries, see Managing DOMAIN Internets.

Shell Commands 4-196

)

MRGRGY (MERGE _ REGISTRIES)

ARGUMENTS
rgyl_path
(required) Specify the master registry file of one of the registries to be
merged; this file will become the new, merged registry’s master
file.
The master registry file may be specified by its pathname,
(//node/REGISTRY/RGY _MASTER), by a node’s copy of the
master registry file (//node/REGISTRY/REGISTRY), or simply
by a node entry directory (//node). If a node’s
/REGISTRY/REGISTRY file or a node entry directory is
specified, the //node/REGISTRY/REGISTRY file is used to
locate the registry’s master file.
rgy2_path
(required) Specify the master registry file of the other registry to be
merged.
EXAMPLES
The following command merges two registries. The registry masters are

//alpha/registry /rgy _ master and //beta/registry/rgy _master.

$ mrgrgy //alpha/registry/rgy_master //beta/registry/rgy_master

Phase 1:

Merging the person files

Merge completed

Merging the project files

Merge completed

Merging the org files

Merge completed

Merging the full names files

Merge completed

Merging the account files

Merge completed

4-197 Shell Commands

MRGRGY (MERGE _REGISTRIES)

Phase 2:

Merged person file saved in registry //alpha/registry/rgy_master’'s sites
Merged project file saved in registry //alpha/registry/rgy master’s sites
Merged org file saved in registry //alpha/registry/rgy master’s sites

Merged full_names file saved in registry //alpha/registry/rgy master's
sites

Merged account file saved in registry //alpha/registry/rgy master’'s sites
Phase 3:

Creating the new registry’s master file in “//alpha/registry/rgy master"
New master file completed

Phase 4:

Merged person file saved in all new registry’s sites
Merged project file saved in all new registry’s sites
Merged org file saved in all new registry’s sites
Merged full_names file saved in all new registry’'s sites
Merged account file saved in all new registry’s sites

$

Shell Commands 4-198

)

C
o

MTVOL (MOUNT _ VOLUME)

MTVOL (MOUNT_VOLUME) == Mount a logical volume.

FORMAT

MTVOL disk _type[unit] [log_ vol_number] [pathname] [options]

A logical volume is a named storage area on a disk. MTVOL mounts a logical volume,
making the files and directories it contains accessible. Up to eight volumes (both physical
and logical) may be mounted on a node at any time. Of the eight, no more than five of
those volumes may be logical.

Before a new physical volume can be mounted for the first time, you must initialize it.
See the INVOL (INITIALIZE _ VOLUME) command description for details.

ARGUMENTS

disk _type
(required)

unit

(optional)

log _vol number

(optional)

pathname

(optional)

Specify the type of disk on which the volume being mounted
resides. Valid disk types are: W (Winchester), S (Storage
Module), or F (Floppy).

Specify disk unit number (0 or 1). If you use this argument, the

unit number must follow the disk_type ID immediately: no
blanks in between. For example, "S1" denotes storage module
unit 1.

Default if omitted: 0

Specify the disk volume number. This is the same number that
you assigned when you formatted the disk using INVOL. The
first logical volume is numbered 1, the second 2, and so forth.

Default if omitted: 1

Specify the name of the volume entry directory. This is the
logical volume’s top-level directory. Specify this pathname only
if the entry directory is not already cataloged in the naming tree.
If the pathname you choose already exists, an error will result.

Logical volume entry directories may appear anywhere in the
naming tree, with one exception: if a logical volume entry
directory is also the node’s entry (top-level) directory, it must
appear just below the network root directory (//).

If you omit the pathname argument, MTVOL assumes that the
entry directory already exists, and searches the naming tree for
it. If it finds the entry directory, MTVOL mounts the volume
and prints the full entry directory pathname.

4-199 Shell Commands

MTVOL (MOUNT _ VOLUME)

If MTVOL does not find the entry directory, it prints an error ,

message, and does not mount the volume. The search may fail
for any of the following reasons:

e The entry directory has never been cataloged.

e The entry directory was uncataloged when the
volume was last dismounted.

o The entry directory pathname exists on another node,
for which directory information is currently
unavailable.

An unsuccessful search does not mean that you cannot mount the
volume. It simply means that the volume entry directory
pathname does not exist on your node. To mount the volume,
issue the MTVOL command and supply an entry directory
pathname.

Even if the MTVOL finds the entry directory pathname, the
mount may fail if the volume is corrupt for some reason and
needs salvaging. In this case, MTVOL asks for permission to
mount the volume. You should usually respond "no" to this
request, then run the volume salvaging routine SALVOL. Once
the volume has been salvaged, you may try to mount it again. If
you mount a corrupt volume without salvaging it first, damage
to files in that volume may result.

Default if omitted: see above

OPTIONS
-F Force -- Mount the volume whether or not it needs salvaging,
and do not ask for permission.
-NQ No query -- Suppress query if a volume needs salvaging.
Instead, mount the volume ONLY if it does not need salvaging.
-PR Protect -- Mount the volume with write protection. Any
attempts to write on the volume will fail.
CAUTION:
Before removing a floppy disk volume mounted with MTVOL, you MUST use
DMTVOL to dismount it. Failure to dismount the volume could result in lost or
corrupt information.
EXAMPLES
$ mtvol f /masterfloppy Mount floppy and make a new entry directory.
$ dmtvol f Dismount it.
$ mtvol f Remount it using the new entry directory.

Volume mounted, entry directory is "/masterfloppy"

$

Shell Commands

4-200

MVF (MOVE_FILE)
MVF (MOVE_FILE) -- Move a file.

FORMAT
MVF source [destination] ... [options]
MVTF moves a file to a different location in the naming tree. Its effect is identical to

$ CPF source destination copy source to destination
$ DLF source delete the source

MVF always retains the source ACL on objects moved.

ARGUMENTS
source
(required) Specify name of file to be moved. Wildcarding is permitted.
destination
(optional) Specify new file location. This pathname may be a derived

name. If ’destination’ is a directory, the command moves the
source file into that directory. Otherwise it creates the new file
using the name specified.

Default if omitted: copy source to current working directory

Multiple source/target pairs and wildcarding are permitted.

OPTIONS
Default options are indicated by *(D)."

-C (D) Create the target file. If the target file already exists, an error
~will result.
-R Replace target file with source file. Use this option if the target
file already exists. If the file does not exist, this option works
like -C.
-DU Delete when unlocked. This option is useful with -R. If the

object to be replaced is locked when MVF is invoked, the replace
operation will be performed when the object is unlocked.

-F Force deletion of destination object if you have ’p’ (protect)
rights, even if you do not have ’d’ (delete) rights.

-LF List files moved.
-LDL List files deleted by -R option.
-CHN Change the name of an existing destination file if required.

This option modifies the meaning of -C and -R. If -C is

4-201 Shell Commands

MVF (MOVE _FILE)

specified, this option causes any existing object with the
destination pathname to be renamed prior to the move. If -R is
specified, the destination object is renamed if it is in use and
cannot be deleted.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ mvf //anger/sam/letter //mary -r Move the file "letter" from the
directory "//anger/sam" to the
directory "//mary" and replace
the current file.

Shell Commands 4-202

)

ND (NAMING _ DIRECTORY)

ND (NAMING_DIRECTORY) =~ Set or display naming directory.

FORMAT

ND [pathname]

The ND command sets or displays the name of the naming directory. The naming
directory is provided so that you may use a tilde (~) as a shorthand feature in pathname
specifications. It is also important since the system checks its COM subdirectory
(~COM) as a part of the default command search operation. The naming directory is
set to the login home directory at login.

ARGUMENTS
pathname
(optional) Specify directory name to be used as the naming directory. ND
also accepts the command line parser arguments “-" and "*". If
you specify a hyphen (), ND looks to standard input for the
directory name. An asterisk (*) followed by the name of a file
directs ND to look inside that file for the new naming directory
name.
Default if omitted: display the name of the current naming
directory.
EXAMPLES
$ nd /paul/links Set naﬁing directory to “/paul/links".
After execution of this command, you can use a tilde (~) in place of ’/paul/links’ at the
beginning of any pathname. Thus “~sausage" would be the same as
" /paul/links/sausage".

4-203 Shell Commands

NETMAIN (NETWORK _MAINTENANCE)

NETMAIN (NETWORK_MAINTENANCE) == Analyze network maintenance stats.

FORMAT

NETMAIN |[options]

NETMAIN is a highly interactive, menu-driven program that lets you control the
NETMAIN _SRVR network maintenance server and analyze the data that
NETMAIN _SRVR produces. NETMAIN provides detailed help from its menus. See
Administering Your DOMAIN System for a complete description of NETMAIN’s
features, instructions about using its menus, and details about interpreting its output.

OPTIONS

Default options are indicated by "(D)."

-W[HELP] (D) Make sure window is large enough to display command menus
and interactive help.

-WC[MD] Set window size smaller for command menus only. If you later
decide that you want to see the helps, grow the window
manually with <GROW> or CTRL/G.

-NW Do not change window size.

EXAMPLES

1. $ netmain Run NETMAIN in a window large enough to
' display command menus and interactive help.

2. $ netmain -wc Run NETMAIN in a window large enough (but
no larger) to display the command menus.

Shell Commands 4-204

e

O

NETMAIN_ _ CHKLOG (CHECK _NETMAIN _LOGS)

NETMAIN _CHKLOG (CHECK_NETMAIN_LOGS) == Clean up bad log files.

FORMAT

NETMAIN _CHKLOG pathname... [options]

When the NETMAIN __ SRVR program halts catastrophically (for instance, during a node
reset), it can leave the log file it was writing in a corrupt, unusable state.
NETMAIN _ CHKLOG determines whether the log is corrupt and, optionally, deletes
corrupt files.

If the pathname you specify points to some kind of file other than a NETMAIN log file,
that file will almost always be ignored: it will almost never be deleted as a corrupt log.
On very rare occasions, another kind of file may look so much like a corrupt log that it
might be deleted accidentally if you use both -D and the standard command option -NQ
(no query). Thus you should use -D -NQ with extreme care.

ARGUMENTS

pathname
(required) Specify the files to be checked. Multiple names and wildcarding
are permitted; separate names with blanks.
OPTIONS

Default options are indicated by "(D)."

-D Delete corrupt log files.

-ND (D) Do NOT delete anything.

-L (D) Describe every file analyzed.
-NL Describe only corrupt log files.

This command uses the command line parser, and so also accepts the standard command
options listed in the description of the command line parser in Chapter 3.

EXAMPLES

$ netmain_chklog ‘node_data/net_log/?#

4-205 Shell Commands

NETMAIN _NOTE

NETMAIN_ _NOTE =-- Place message in network error log.

FORMAT

NETMAIN _NOTE string [string ...]

NETMAIN_NOTE sends a text string to NETMAIN_ SRVR, the network maintenance
server. The message is broadcast to all maintenance servers.

Typical topics of maintenance notes include known or explainable network failures,
scheduled down-time, and node installations.

ARGUMENTS
string
(required) Specify message to be sent. You may use any string that is
legal in a Shell command. (Note that the Shell takes special
action on some keywords, such as ’if’, unless you place them in
quotes.) If there is more than one string, NETMAIN builds the
note by concatenating the arguments that are separated by
spaces.
EXAMPLES

$ NETMAIN_NOTE ‘Scheduled down time at 5 pm.’

$ NETMAIN_NOTE Cable disconnected at //sancho_panza

Shell Commands 4-206

)

o
\

/‘\\

NETSTAT (NETWORK _ STATISTICS)

NETSTAT (NETWORK _STATISTICS) == Display network statistics.

FORMAT

NETSTAT [options]

This command writes a summary of network and hard disk activity to standard output.

OPTIONS

If no options are specified, NETSTAT returns a brief summary of network usage
information for the current node.

-L

-CONFIG

~N node_spec ...

-R [n]

=S [n]

-SAVE pathname

-SINCE pathname

EXAMPLES

1.

$ netstat

Long Report -- Provide more information than the summary.

Configuration Report -- Display only node-specific hardware
information: CPU type, display type, etc.

Provide information on specified node(s). See the section on
node specifications in Chapter 3 for more information. Multiple
'node _spec’ strings are permitted; separate them with blanks.

Report on all nodes in the network.

Repeat the NETSTAT command every n seconds until halted
by CTRL/Q. Only counts that have changed at each iteration
are displayed, and the values represent the amount of change
rather than absolute values. The default value for ’n’ is 10
seconds.

Send 'n’ test messages to every node being listed (except the
current node) before every repeat of the display. If this option is
specified, -R must also be specified. This option provides a
minimum amount of network activity during the wait time

between NETSTAT repeats. The default value for ’n’ is 100
messages.

Save all statistics in the file named ’pathname’.

Display counts that have changed since statistics were saved in
’pathname’.

The node ID of this node is 1FB.

*x¥¥% Node 1FB *¥k¥

//diskless_$0001Fb diskless to //anger

Up since 1983/02/01 at 8:17:06 Up for 1 day 2 hours 58 mins 4 secs

4-207 Shell Commands

NETSTAT (NETWORK _ STATISTICS)

Net I1/0: total= 94626 rcvs = 66912 xmits =
Winchester I/0: total= 0 reads= 0 writes=
System configured with 1.0 mb of memory.

2. ¢ netstat -L

The node ID of this node is 1FB.

27713

0

*%** Node 1FB **x*x //diskless_$0001Fb diskless to //anger

Up since 1983/02/01 at 8:17:06

Net I/0: total= 94766 revs = 67010 xmits =
10436 page-in requests issued.
8473 page-out requests issued.
41134 page-in requests serviced.
12139 page-out requests serviced.

Detected concurrency violations -- read: 0 write:
Xmit count 27748 Rev eor 0
NACKs 272 Rcv crc 767
WACKs 1639 Rev timout 0
Token inserted 65 Rev buserr 0
Xmit overrun 0 Rev overrun 0
Xmit Ack par 3 Rev xmit-err 3042
Xmit Bus error 0 Rcv Modem err 0
Xmit timout 90 Rev Pkt error 45
Xmit Modem err 0 Rcv hdr chksum 0
Xmit Pkt error 377 Rev Ack par 10

Delay switched OUT.
Winchester I/D: total= 0 reads= 0 writes=

Not ready 0 Contrlr busy -0
Seek error 0 Equip check 0
Drive time out 0 Overrun 0

CRC error percentage: 0.00%

Last ring hardware failure detected by node 241
on 1983/02/02 at 10:05
System configured with 1.0 mb of memory.
A total of 0 ECCC errors were detected.

Notes on Examples

0

{NOTE 1}

Up for 1 day 2 hours 68 mins 62 secs
27746

{NOTE 1}

{NOTE 2}

1. Node 1FB is running diskless, hence the absence of Winchester disk I/O activity.

2. At 10:05 AM. on Feb. 2, 1983, the network cable was disturbed immediately
upstream of node 241.

available from LCNODE (LIST_CONNECTED _NODES), can help you pinpoint a
hardware malfunction.

Shell Commands

This information, coupled with the network topology

4-208

@

O

NETSVC (NETWORK __SERVICE)

NETSVC (NETWORK _SERVICE) == Set or display network services.

FORMAT

NETSVC [options]

NETSVC sets or displays the network services that this node will perform. All changes

take place immediately.

OPTIONS

If no options are specified, NETSVC displays the network services allowed for this node.

Default options are indicated by "(D)."

-N

-A (D)

-S[ERVERS] [n]

-P [n]

-NET [net__id]

None -- Disable all network services and physically disconnect
this node from the network.

Local -- Allow only network requests originating at this node.

Remote -- Allow only network requests originating at other
nodes.

All -- Allow both locally and remotely initiated network
requests. (The size of the remote paging pool is not changed.)

Servers -- Set the number of network servers to run on this node.
At system start-up, the number of network servers is 1. If this
node is a network partner for diskless nodes or has several
remote file users, their performace can be improved by increasing
the number of servers. If n is not specified, the maximum
number of servers (3) is used.

Pool -- Set local memory pool size. Network page requests
originating at remote nodes may not use more than 'n’ pages of
the local node’s memory. If n is not specified, all of the local
node’s memory is eligible for remote page requests.

Network ID -- Set or display network ID. Use this option to
change or examine the ID of the network to which the node is
attached. It affects only the node at which you type the
command, not the rest of the network. Specifying a hexadecimal
network ID changes your node’s network ID. Using -NET with
no argument forces NETSVC to display your network ID even if
it is set to zero.

This option is useful only when there are no internet routers
active on the node’s network. Routers give the network ID to
nonrouting nodes every 30 seconds, and may override the
network ID you specify with this option.

4-209 Shell Commands

NETSVC (NETWORK _ SERVICE)

CAUTION:

EXAMPLES

$ netsve

CAUTION: If the network ID you set with -NET differs from
the network ID used by other nodes on your
network, your .node may not be able to
communicate with those other nodes.

Be careful when revoking network access with -N or -L. Remote file users
may have problems, and writable files may be damaged. If your node was
the network partner for a diskless node, that node will crash when your node
leaves the network.

Use the -S option carefully. Although you can increase the number of
servers, you cannot decrease it. The only way to return to a smaller number
of servers is to reboot the node. Also note that increasing the number of
server processes decreases the number of user processes allowed. When you
run NETMAN, the number of servers increases from one to two. If the
number of servers is already two or greater when you start NETMAN, it will
not increase further.

Network operations allowed: ALL

Number of network servers: 1

Remotely initiated paging pool limit: NONE
Network ID: 437A9

$

Shell Commands

4-210

e

NEXT

NEXT =- Return to the top of a loop.

FORMAT

NEXT

NEXT interrupts the flow of control in a Shell loop construct (FOR, SELECT, and
WHILE). When NEXT is encountered in a FOR or WHILE loop, control passes back to
the top of the loop (see examples below). When NEXT is encountered in a SELECT
loop, control passes to the next CASE clause. (This is useful when you have specified
SELECT ONEOF but want to test multiple things under certain circumstances).

You may terminate the flow of control in a loop by using the EXIT command. See the
EXIT command description for more information.

The NEXT command requires no arguments or options.

EXAMPLES

Consider the following section from a Shell script:

n =0

WHILE (("n < 10))

DO READ -TYPE integer n
IF (("n < 10)) THEN NEXT ENDIF
ARGS ~n

ENDDO

AS long as the READ command reads integers into variable *n" that are less than 10, the
NEXT command executes and causes the script to return to the top of the WHILE loop.

When the value of n is greater than or equal to 10, the script prints the number then leaves
the WHILE loop and continues execution.

For more information on variables, refer to the DOMAIN System User’s Guide.

4-211 Shell Commands

NOT

NOT -- Negate a Boolean value.

FORMAT

. NOT command

NOT takes the Boolean value returned by a command or expression and negates it. This

is useful primarily with the program control structures (IF, WHILE, etc.) used in Shell
scripts.

ARGUMENTS

command

(required) Specify a command or expression that returns a Boolean value.
EXAMPLES

Assume the following lines appear inside Shell scripts.

#

Loop as long as no error file exists.
#

while not existf error_file

do args "No error file yet ..."

enddo

End of script

- #

Verify user response.

#

eon

read -p "Type the pathname of the file to be deleted: " name
read -p "Are you sure you want to delete “name?" verification

if ((“verification = "yes")) then
delete := true

else
delete := false

endif

if ((not ~delete)) then
args "“name not deleted."
else
dlf “name -1
endif
End of script

Shell Commands 4-212

OBTY (OBJECT _TYPE)

OBTY (OBJECT_TYPE) == Set or display the type of an object.

FORMAT

OBTY pathname... [object__type]

OBTY is intended for system-level debugging use only.

Misuse of this command can

cause objects to become inaccessible and programs to behave incorrectly.

ARGUMENTS

pathname
(required)

Specify object whose type is to be set or displayed. Wildcarding

of this pathname is permitted.

object __type
(optional)
following:

NIL
UASC
REC
HDRU
0BJ
PAD
SIO
UNDEF
NULLDEV
DDF
MBX
AREA
SCH
MT
BOOT

Executable files (output of compilers and binders)
Most other binary files are REC.

Specify new type setting.

'Object __type’ must be one of the

(nil type UID)

unstructured ASCII (text) file
streams records file

streams header-undefined file
object file

display manager pad

sio descriptor file

undefined file type

null device (bit bucket)
device descriptor file (for GPIO)
mailbox

. D3M area file

D3M object (sub)schema file
magnetic tape descriptor file
system bootstrap file

are OBJ.

< Default if omitted: display current type of 'pathname’

OPTIONS

OBTY accepts no special options of its own, although it does use the command line parser,
and so accepts the standard command options listed in Chapter 3.

EXAMPLES

The sequence of the following commands is significant.

$ obty testfile

Display current object type.

"“testfile" object type is nil.

$ obty testfile uasc

Set type to "uasc".

4-213 Shell Commands

OBTY (OBJECT _TYPE)

$ obty testfile Display new object type. A~
"testfile" object type is uasc. '

.

N

Shell Commands 4-214

0S (OVERSTRIKE)

OS (OVERSTRIKE) == Convert ASCII to FORTRAN carriage control.

FORMAT

OS [pathname...]

OS converts a file containing ASCII carriage control (for such things as form feeds and
backspacing for underlining) into a file that can be printed on a line printer with
FORTRAN carriage control. By default, output is written to standard output; redirect it

into a file with the " >pathname" expression.

If you create a new file containing the overstruck text, OS automatically sets the file’s
carriage control flag so that printers we supply will interpret the file correctly. If you use
OS in a pipeline, however, the flag is not set (since output goes to standard output). In
this case, you must use the -FTN option on the PRF command for the file to be printed
correctly. See examples 2 and 3 below.

ARGUMENTS

pathname
(optional)

EXAMPLES

1. $ os mary

$

2. $ fmt letter | os >letter.overstruck

$ prf letter.os
$

3. $ fmt letter | os | prf -npag -ftn

$

Specify file to be converted. Multiple pathnames are permitted,
separated by blanks. All output is concatenated, however.

Default if omitted: read standard input

—npag

4. $ fmt letter | prf -npag -pr spin

$

4-215

Convert the file "mary" and
write to standard output.

Format the file "letter", pipe
output to OS, and write the
results into "letter.os." This
file is then printed on the
default printer.

Format the file "letter" and
pipe it directly to the line
printer. Note the use of
"-ftn" to ensure that proper
carriage control is used.

Format "letter" and print it
on a Spinwriter printer.
Since Spinwriters use ASCII
carriage control, 0OS and the
-FTN option on PRF are not
needed.

Shell Commands

PAGF (PAGINATE _FILE)

PAGF (PAGINATE_FILE) -- Paginate a file.

FORMAT

PAGF [options| [pathname...]

PAGF paginates the named files to standard output. Each file is printed as a sequence of
pages. Each page is 66 lines long by default, including a 6-line header and 3-line footer.
The header includes the file name, the date and time, and the page number.

OPTI