
ANSI X3.23a-1989

for Information Systems -

~ Programming Language -
Intrinsic Function Module for COBOL

...-.....
-~· .. .-...----------.... e;qlV~I American National Standards Institute

1430 Broadway
New York, New York

10018

Secretariat

ANSI®
X3.23a-1989

Supplement to
ANSI)(3.23·198$

AmericanNational Standard
for Information Systems -

Programming Language -
Intrinsic Function Module for COBOL

Computer and Business Equipment Manufacturers Association

Approved September 13, 1989

American National Standards Institute, Inc

· ACKNQWLEDG:MENT

Any organization interested in reproducing the COBOL standard and s~ification8 in whole 0r in part, using ideas' ftolll thi.s
document as the basis for an instruction manual or for any other purpose;· is ftee to do so. However, all ·such orgahizations are·
requested to reproduce the following acknowledgment paragraphs in their entirety as part of the preface to any such publication
(any organization using a short passage from this document, such as in a book review, is requested to mention "COBOL" in
acknowledgment of the source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any company or group of companies, or of any organization
or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOi,. Committee as to.the
accuracy and functioning of the programming system and liinguage. Moreover, no responsibility is asswned by any
contributor, or by the committee, in connection therewith. · ' · ·. ·

The authors and copyright holders of the copyrighted materials used herein. , •. , .. ·
FLOW-MATIC (trademark of Sperry Rand Corporation), Programlllnig for th,e uNJ:VA.c (R.) i aild II. Da,ta Autonl~- . ·.
tion Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM CoJllll1ericalTranslater fo.:rm No, F 28- ·
8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authoriza"
tion extends to the reproduction and use of COBOL specifications in programming manuals or similar publications.

American
National
Standard

Published by

Approval of an American National Standard requires verification by ANSI that the re
quirements for due process, consensus, and other criteria for approval have been met by
the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been reached by directly and materially affected interests. Sub
stantial agreement means much more than a simple majority, but not necessarily unanim
ity. Consensus requires that all views and objections be considered, and that a concerted
effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from man
ufacturing, marketing, purchasing, or using products, processes, or procedures not con
forming to the standards.

The American National Standards Institute does not develop standards and will in no cir
cumstances give an interpretation of any American National Standard. Moreover, no per
son shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for inter
pretations should be addressed to the secretariat or sponsor whose name appears on the
title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that
action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers
of American National Standards may receive current information on all standards by
calling or writing the American National Standards Institute.

American National Standards Institute
1430Broadway, New York, New York 10018

Copyright © 1990 by American National Standards Institute, Inc
All rights reserved.

No .part of this publication may be reproduced in any form,
in an electronic retrieval system or othetWise, without
the prior written permission of the publisher.

Printed in the United States of America

APS3M390/32

Foreword (This Foreword.is not part of American National Standard X3.23a-1989.)

This supplement, the first to the document entitled "American National Standard for
Information Systems- Programming Language- COBOL, ANSI X3.23-19.85, ISO
19.89.-19.85," presents a new COBOL module, the Intrinsic Function module. This
module provides the capability of referencing a data item whose value is derived auto-
matically during the execution of a program. ·

In June 19.85, Technical Committee X3J4 on COBOL of Accredited Standards Com
mittee X3 began the task of preparing supplements that will add upwardly mobile,
compatible COBOL language extensions. The extensions that X3J4 considered were
taken from. proposals that appeared in CODASYL COBOL Journal of Development,
19.84. . .

In January 19.87, X3J4 approved the content and format for the first supplement and
recommended. to X3 that the proposed draft be published for public review and com
ment by the data-processing community of software producers and users. During two
public review and comment periods, X3J4 reviewed.and responded to all the com
ments.

In October 1988, X3J4 approved the final version of the proposed supplement and
forwarded it to X3 for processing. X3 approved the proposed supplement and submit
ted it to the American National Standards Institute. This supplement was designated
ANSI X3.23a-19.89. and was approved by ANSI on September 13, 19.89.;

Suggestions for improvement of this standard will be welcome. They should.be sent to
the Computer and Business Equipment Manufacturers Association, 311 First Street,
NW, Suite 500, Washington, DC 20001.

This standard was processed and approved for submittal to ANSI by the Accredited
Standards Committee on Information Processing Systems, X3. Committee approval of
the standard does not necessarily imply that all committee members voted for its ap
proval. At the time it approved this standard, the X3 Committee had the following
members:

Richard Gibson, Chair
Donald Loughry, Vice-Chair
(Vacant), Administrative Secretary

Organization Represented Name of Representative
Allen-Bradley Company .. Ronald H. Reimer
American Library. Association ... Paul Peters
American Nuclear Society : Geraldine C. Main
AMP, Inc .. Edward Kelly

Ronald Lloyd (Alt)
Apple ... Karen Higginbottom

Michael J. Lawler (Alt)
Association of the Institute for

Certification of Computer Professionals ... Thomas M. Kurihara
AT&T .. Thomas F. Frost

Paul D. Bartoli (Alt)
Boeing Company .. Paul W. Mercer
Compaq Computer Corporation .. James Barnes
Control Data Corporation .. Ernest Fogle
Cooperating Users of Burroughs Equipment Thomas Easterday

· Donald Miller (Alt)
Dataproducts Corporation ~···Charles D. Card
Digital Equipment Computer Users Society James Ebright
Digital Equipment Corporation ... Gary S. Robinson

Delbert L. Shoemaker (Alt)

Organizdti~Repres~hled ' Name of !i~preie"niaiiv~ , , ,''
, ,;Eas~an ~odak.'.,.,,.,,.,•······,•·:····,-···•···,-,-·····:·,··:·······,-········,-······ .. ············:····•Oary Haine~
, ,, ' ' ', ',, ,·. ·' .··.·· •···.· ···' • .··.· ·. •• 'JamesD.Converse(Alt)
· Electronic Data Systems Coq>oration ; .. ;.:: ..•.•..•.•... , ' :.: Jerrold S. ;FOiey

· .·GUIDE International •••.. ; .•. ;;:, ; .. ,;,,,.,. ,:, ... : , : ...•. ; : ... f'.rank: Kirshenbaum
, .·. . . . , .. • . . • . · . ·. , . , Jeffrey Roberts (Alt) ·

Hewlett-Packard :: ... , '. '. , ,'.Donald C. Loughry
Honeywell Bull ::·:: .. :.· ·.-............ : •; .. ::· :.:. David M. Taylor

. IBM Corporatio.n ... , ,.,, .• ., , ,, .. , .•. , ,, ,,.,., ,.Mary An,ne.Gray
.. ·.· · · · ··· · · · · · · ·' · · ·· · · · · · · ·. RobettH; Follett(Alt)

IEEE Compilter Society :·.;;,.,.,;·.;;.:: .. :":~; .. ,;.;;: : , ; ... Tom Hannon
, ·Bob ;t>ritchard (Alt)

Lawrence.Berkeley Laboratory ,, , , ,, Dav~4 f': Stevens
' ' . . . ' . ' '. , . . ' Robert L. Fink (Alt)

MAP/l'OP ... Mike Kaminski
, Moore:ausiness F~rnJ.s '.""'''.'".'"'"'''''''.········ ,, ,.,,'., ... D.einier H .. Oddy
National Con\munications System :: :: ... : : : ... :.,.,., ... : :Denms Bridson
·. · · -. '· .·· · · ·· · · · · · · · Donald Wilson (Alt)
National Institute.of Standards and Technology ; ;., .. : .. ::: ... Robert E .. Rountree

- .· .-· . . , , .Milce }Jogan (Alt)
NCR Corporation ... '. Tom Kern

A. R. Danfols (Alt)
. ()MNIC.OM ... , ... , ,, , _ , , Harold C. J.olts

. Cheryl Slobodian (Alt)
Priine Co'ri'lputer; Inc.• ... :: :.: ;, ; .. , :.:• ;, :. TomComierty

· . Phil Cieply (Alt)
Recpgnition Technology l)sers Association, ,, ,. .. :. .•.. _ .. , Herl:>ert f. Schantz
SHARE Inc .. : Thomas· B. Steel
. · , . ' , • : . . ··. , , Gary AinsVlo'.orth (Alt)
3M Company ,., , ,.,.Pa~l D: Jahnke
Unisys ... , , .. :.:.-Matvm W, Bass

· · · · Steven Oksala (Alt)
U.S. Department of Defense , '. , William C.;Rinehuls

, · · · - Thomas H. Kurihara (Alt)
U.S. General Services Administration , ; ... , :.;.; .. ' DaleQ, Christensen

Larry L Jackson (Alt)
US WEST , , , ..•......... ,,.Gary Dempsey

· · · · Sue Capraro (Alt)
VIM ... Chris Tiiriner

John Ulrich (Alt)
Wang Co1poration .. ,, J.J; Cinecoe

. Sarah Wagner (Alt)
Wintergreen Information Services , :, ,,;:Johri L. Wheeler
Xerox Co1poration .. u::: ;; ... :• ; .. : ;; .. ;.;;,.;Roy. Pierce·

Technical Committee X3J4 on COBOL, which developed this addendum, had the
following members:

D.A. Schricker, Chair
B. D. Sinclair, Vice Chair
P.A. Beard, Secretary

P. Blacklock
W.Blatt
D.Bowman
J. R. Brieschke
V. Eckels
C. P. Ellis
A. Fryer
J. Garfunkel
B. Gaarder
P.Graham
A. Hewitt
K. Howard
A.Jackson
J. Kailey
R. Kisselburgh
S. D.Klute

P. L'Allier
L. K. Madison
D. D. Marriott
J. R. Peters
A. 0. Reimann
J. A. Rodriguez
A. Saturnelli
L. Skidmore
S. Spears
S. Spence
W. Stover
M. V. Vickers
A. Wallace
K. Watts
L. V. Willis

Others who contributed to the work on the addendum were as follows:

M.Adams
M. Blanchette
P.Brown
M. Daleo
B. J. Edwards
P. B. Hall
J.M. Hart

C. Johnson
L. Keating
I.A.Moran
B. M. Strauss
J.M. Triance
J.P. Wessler

TABLE OF CONTENTS

ADDENDUM!: CHANGESTOSTANDARDCOBOL

SECTION A: INTRINSIC FUNCTION MODULE

Chapter 1: Introduction to the Intrinsic Function Module

1.1 Purpose of Intrinsic Function Module .
1.2 Language Concepts.

Chapter 2: General Description

2.1 Function Definition and Returned Value
2.2 Arguments
2.3 Types of Functions
2.4 Definitions of Functions. .
2.5 The ACOS Function . . .
2.6 The ANNUITY Function .
2.7 The ASIN Function. . •
2.8 The ATAN Function .
2.9 The CHAR Function .
2.10 The COS Function . .
2.11 The CURRENT-DATE Function
2.12 The DATE-OF-INTEGER Function .
2.13 The DAY-OF-INTEGER Function.
2.14 The FACTORIAL Function
2.15 The INTEGER Function
2.16 The INTEGER-OF-DATE Function .
2.17 The INTEGER-OF-DAY Function.
2.18 The INTEGER-PART Function .
2.19 The LENGTH Function.
2.20 The WG Function
2.21 The WGlO Function
2.22 The LOWER-CASE Function .
2.23 The MAX Function. . .
2.24 The MEAN Function . • . .
2.25 The MEDIAN Function. . .
2.26 The MIDRANGE Function .
2.27 The MIN Function . . •
2.28 The MOD Function • . .
2.29 The NUMV AL Function .
2.30 The NUMV AL-C Function
2.31 The ORD Function. . . .
2.32 The ORD-MAX Function .
2.33 The ORD-MIN Function .
2.34 The PRESENT-VALUE Function .
2.35 The RANDOM Function .
2.36 The RANGE Function . .
2.37 The REM Function. . . . •
2.38 The REVERSE Function •

i

A-1

A-27
A-27

A-27
A-28
A-29
A-29
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-41
A-42
A-43
A-44
A-45
A-46
A-47
A-48
A-49
A-50
A-51
A-52
A-53
A-54
A-55
A-56
A-57
A.-58
A-59
A-60
A-61
A-62
A-63
A-64
A-65
A-66
A-67

2.39 The SIN Function . •
2.40 The SQRT Function •... . ;
2.41 The STANDARD-DEVIATION Function.
2.42 The SUM Function.
2.43 The TAN Function
2.44 The UPPER-CASE Function ·
2.45 The VARIANCE Function .
2.46 The WHEN-COMPILED Function. ..

. ii

A-68
A-69
A-70
A-71
A-72

. · A-13
A-74
A·75

American National Standard
for Information Systems-

Programming Language -
Intrinsic Function Module for COBOL

ADDENDUM 1: CHANGES TO STANDARD COBOL

The following are the changes to be applied to the document .entitled "American National
Standard for Information Systems - Programming Language - COBOL, ANSI X3.23-1985,
ISO 1989-i985", in order lo include the language elements of the. Intrinsic Function module and to
correct typographical errors (indicated by the symbols (T) in the page number colun1n). The changes
add totally upward compatible language extensions to Standard COBOL except for the addition of the
reserved word FUNCTION.

Page No. Change to ANSI X3.23-1985 and ISO 1989-1985

ii Add the following after the entry for section II, paragraph 7:

8. Intrinsic Function Facility 11-36

iii Change the entry for section VI, paragraph 1.3 to read:

1.3 Restrictions on Overall Language. . VI-1

xi Add the following after the entry for 3.4:

3.5 American National Standard COBOL 1985, Addendum 1 XVII-13

xi Add the following after the entry for 4.3:

4.4 ISO Standard 1989-1985 for COBOL, Addendum 1 XVII-15

I-1 Paragraph 1.2, first paragraph, second sentence, change to read: "The standard defines
12 functional processing modules: Nucleus, Sequential I-0, Relative I-0, Indexed I-0,
Inter-PrograDJ. Communication, Sort-Merge, Source Text Manipulation, Report Writer,
Communication, Debug, Segmentation, and Intrinsic Function."

I-1 Paragraph 1.2, first paragraph, last sentence, change to read: "Three of the modules
contain only level 1 elements."

I-3 Paragraph 1.2, add the following paragraph after the last paragraph:

The Intrinsic Function module provides the capability to reference a data item
whose value is derived automatically at the time of reference during the execution of
the object program. The Intrinsic Function module contains only level 1 elements.

A,.1

page No.

1-3

Change to ANSI 13.23-1985 and ISO .1989-1985

Paragraph 1.3, first paragraph, first sentence, change to read:
sections."

" ... into nineteen

1-3 Paragraph 1.3, third paragraph, first sentence, change to read: "Sections VI through
XVI and section A contain specifications for the twelve functional ... ".

1-3 Paragraph 1.3, fourth paragraph, change to read: "Sections II through XVI and section
A comprise the detailed ... ".

1-4 Paragraph 1.4, fourth paragraph, first sentence, change to read: " ... representation of
the 12 functional processing modules ... ".

1-4 Paragraph 1.4, fifth paragraph, add to the list:

ITR Intrinsic Function

1-5 Change diagram to include the Intrinsic Function module as shown on the next page of
this addendum.

A-2

I"

M
I
N

•.

... :.:.::.

..

I'
sciqiMtiai 1.· ~llit~

I.0 I.O
··.· '" :_:_L

I 1 NUC 1,2 1 SEQ 1,2
M
u
M

... ~
1:.0

:_:_:_·· + ..

1 INXO,Z

:::_

":.:.'.. "'""

I

J IPC 1,2 1 sR.'r o,i

·: . •· '•:;

1 Rl'Wo,i

llPC 1,2

· [_::_ .. "

·=

OPTIONAL MOOOLES
(Not ~ Ii SlibMtii)

::,::. =·...c:..:c..··

· eommunlelidiKI
::::. c:.:::c L:.

J DEBo,i J SIGO,Z

1 DEll'o,i

liilrliiiik
Puildtoil

.i ITl.9,1

Page No.

1-6

1-6

1-8

CbangeHto ANSI X3.23-1985 and ISO 1989-1985

Paragraph 1.5, second sentence, change "consists of 11 modtiles, &,even of which are
required and four of which are optional." to "consists of 12 modules, seven of which
are required and five of which are optional. (It is the intention of X3J4 to require
the Intrinsic.Function module in the next complete revision of Standard COBOL.)" .

Paragraph 15.1, first paragraph, last sentence, change to ·• re~d: . "The five optional
modules (Report Writer, Communication, Debug, Segmentation, and· lnttjnsic Function)
are not .. .". ·

Paragraph 15.25.3, change to read:

1.S.2.S.3 Reserved Words

An implementation of Standard COBOL must recognize as reserved words all of the
COBOL reserved words occlirring in the specification of the seven required modules and
the four. optional modules of Report Writer, Communication, Debug, and Segmentation.
An implementation of Stanslard COBOL need not recognize iffi.Y new reserved words
introduced by the optional Intrinsic Function module until that ··module is included in
the implementation. (See page IV-45, COBOL Reserved Words.) ' ·

1-10 Paragraph 2.1, last paragraph, add the following to the list:

1-12

1-12 (T)

• · Page 1-39: Summary of elements in the Iritrinsic Function module

. Change the entry for "Reference modification" to "Reference-modifier" ..

Under "Reference Format~~ change •"Asterisk (8) comment line~ to "Asterisk (*)
comment line".

1-39 After the Segmentation module· list, add the Intrinsic Functiori • module list shown on
the next page of this addendum.

SUMMARY OF ELEMENTS IN THE INTRINSIC FUNCTION MODULE

ELEMENT

IANGUAGE CONCEPTS
Character-Strinss
COBOL words
Function-name • •. ~ • •• ... • "'. >. • •• • • • • •. • ' • • ~ "' • •

Unigueness of Reference
. Function~Identifier . • . , ... ' .. -· •·· .•' ··.• . . . '

PROCEDURE DIVISION
ACOS function . .
ANNUITY function
ASIN function. .
ATAN function .
CIJAR function· . . .

. . : ~'

COS function ·. .
CURRENT-DATE function
DATE-OF-INTEGER function
DAY-OF-INTEGER function .
FACT.O!llALfunction .. ;' .
INTEGER function
INTEGER-OF-DATE function
INTEGER~OF:-PA Y function.
INTEGER-PART function .
LENGTH function.
WG function
WGlO function
WWER-CASE function .
MAX function. . .
MEAN function
MEDIAN function: . .
MIDRANGE function .
~IN function ; . .
MOI> functiOn . . .
Nl.JMV AL function .
NUMV AL-C function
ORD ·function . . : .
d~D~MAX function .
ORD~MIN function .
PREsENT-V ALUE function
RANDOM function
~GE function . . •
:Q.EM function. . . :
REVERSE function .
SIN f~nction

·.

SQRT function :
STANDARD-I>EVIATION function.
slJM: .function . ; : . .
TAN function . ; . . .
UPPER-CASE function
VARIANCE function .
WHEN-COMPILED function.

. . :.'
.•

·. ..

. ' ,._ '

,~ ., . ..,. .. ,

... •.

•. . .. '. - . ~ . .

'• •; . . •':·

• ~ ·. ·!': • ' • ·, .. • - .• ._ ~-. . -•. , .: •'

·- .- .,

.•

. • •.. ' ~

• .•·;
"

.

·. .·, '• .·. ; •.

..

•·• .!,•

.•,_ •-.. •

•.

'. ~' ··. " . •. •,

•' ,._. '-'·: ·· ... --.·:··· ,·e :,

.. - ._ ..
,,•- •. • '111-,·

. .. ' ~-, ";. ··. -~,- . .. ,.. r ,• -~

··.:·.

.. ' : ": ,·. : . :.~ •_; .. ,·

. . - ... ··. •, ..

'

LEVEL 1

x

x
x
x: .
x
x
k
x
x
x
x.
x
x
x
)(
x
:x .
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Page No.

I-40

1-41 (T)

I-42

Change to ANSI XJ.23-1985 and ISO i989-1985

Paragraph 3.1, second paragraph, add the folloWing to the list:

ITR Intrinsic Function

Under "Character Set", change entry in MODULE column for "Characters used in
punctuation =" from "1 STM". to "2 STM".

Add .the following before the entry for "Literals"; align the word "Function-names" one
position to the right of the word "Literals":

Function-names lITR

I-42 Change the entry for "Reference niodification" to "Reference-modifier".

I-42 Add the following before the en.try for "Reference-modifier"; align the word
"Function-identifier" with the word "Reference-modifier":

I~45 (T)

I-St (T)

1-54

Function-identifier llTR

Under "OBJECT-COMPUTER paragraph", change entry in MODULE column for
"SEGMENT-LIMIT clause" from "1 SEG Z" to "2 SEG Z".

In the line following "Level-number clause", change "may be l or 1 digits" to "may be
1 or 2 digits".

Add the following before the entry for "ACCEPT statement":

Intrinsic functions
A.cos function .
ANNUITY function
ASIN function. .
ATAN function .
CHAR function .
COS function . .
CUR.RENT-DATE function
DATE~OF~INTEGER function .
DAY-OF-INTEGER function.
FAcroR.IAL function
JNTEGER function . . • . . .
INTEGER-OF~DJ\TE function .
INTEGER-OF-DA.Y function.
IN:fEGER-PART function .
LENGTH function.
LOG function
, LQGlO functi9n..
. LOWER-CASE function .
~JunctiOn ...
MEAN function
. MF:DIAN function. . .
. MtoRANGE function .
MIN function .
:MOD function

llTR
lITR
lITR
lITR
.11TR
UTR
1,ITR
lITR
riTR
'1:(TR
llTR
lITR
lITR
lITR
l:(TR
trfR
lITR
•1iTR
··rrrR
llTR
lITR
1trR.
lITR
lITR

page No. Change to ANSI X3.23-1985 and ISO 1989-1985

NUMV AL function .
NUMV AL-C function
ORD function
ORD-MAX function .
ORD-MIN function .
PRESENT-VALUE function
RANDOM function
RANGE function . .
REM function. . . .
REVERSE function .
SIN function
SQRT function . . .
STANDARD-DEVIATION function.
SUM function . . • . .
TAN function
UPPER-CASE function
VARIANCE function .
WHEN-COMPILED function.

Statements

llTR
lITR
lITR
lITR
lITR
lITR
llTR
lITR
lITR
lITR
lITR
lITR
lITR
lITR
lITR
lITR
llTR
lITR

1-54 Indent all lines following the newly inserted "Statements" entry beginning with
thru "ACCEPT statement" and ending with "END-WRITE phrase".
1-63

11-23 (T)

11-25 (T)

11-35

Paragraph 6.4.1.1, entitled "Names of Programs", second paragraph, first line, change
"compiled program" to "compiled programs".

Paragraph 6.4.2.2, entitled "Value of Parameters", second paragraph, penultimate line,
change "may be used by a called program to return to the" to "may be used by a
called program to return a result to the".

Add the following on page 11-36 after paragraph 7.6:

8. INTRINSIC FUNCTION FACILI1Y

Data processing problems frequently require the use of values which are not . directly
accessible in the data storage associated with the object program. These data values
must be derived through performing some operations on other data. A function
represents a temporary data item whose value is derived automatically at the time of
reference during the execution of the object program.

The value returned by a function is considered to be a data value. A mechanism is
provided at object time to assign a data value to a function when it is referenced. In
order to determine the value of a function, the evaluation mechanism may require
access to data values provided by the referencing program. These data values are
provided by specifying parameters, known as arguments, when referencing the function.
Specific functions may place constraints on these arguments such as range, data types,
or size, etc. If, at the time a function is referenced, the arguments specified for that
reference do not have values that comply with the specified constraints, the returned
value for the function is undefined.

A-7

Page No.

ill-1
thru
m-26

m-1
thru
III-26

Chgnge to AN$l XJ.23-\985 . and ISQ 1989-1985

Insert the following terms Jnto the glossary at the . appropriate position in the
alphabetic sequence: .

Alphanumeric Function. A function whose value is ~mposed of~ string of one or
more characters from the computer's character set.

Arimment. An identifier, a literal, or an arithmetic expression . that specifies a
value to be used in the evaluation of a function.

Function. A temporary . data item whose value is determined by invoking a
mechanism provided by the implementor at the time the function is .referenced during
the execution of a statement.

Function-Identifier. A syntactically correct combination of . character-strings and
separators that references a function. The data item represented ~y a function is
uniquely. identified by a . function-name with . · its arguments, if any. A
function-identifier may include a reference-modifier. A function-identifier that
references an alphanumeric function may be specified anywhere. in the. general formats
that an identifier may be specified, subject to certain restrictions. A
function-identifier that references an integer or numeric function may be referenced
anywhere in the general formats that an arithmetic expression may be specified. (See
page IV-22, Function-Identifier.)

Function-Name. A word that names a mechanism provided by the implementor to
determine the value of a function.

Inteaer function. A function whose category is numeric and whose definition
provides that all digits to the right of the decimal point are zero . in. the returned value
for any possible evaluation of the function.

Numeric Function. A function whose class and category are numeric but which for
some possible evaluation does not satisfy the requirements of an integer function.

Replace the definitions as follows:

Data Item. A unit of data (excluding .literals) defined by a .COBOL program or by
the rules for function evaluation.

Identifier. A syntactically correct combination of character-strings and separators
that names a data item. Whe~ . referencing a data item whic)i . is not a function, an
identifier consists of a data-name, together with . its qualifiers, ·subscripts, and
reference-modifier, as required for uniqueness of reference. When referencing a data
item which is a function, a function-identifier . is used. The rules for 'identifier'
associated wit)i general formats . may, however, specifically prohibit reference to
functions, qualification, subscripting, or reference modification. ·

lnteeer. . (1) A numeric literal that does npt fu.clude anY digit positions to the
right of the decimal point.

(2) A numeric data item defined in th.e Data Division that does not include any
digit positions to the right of the decimal point.

A-8

Page No. Change· to . ANSI.· ;p.23-1985 and . ISO 1289-1985

(3) A numeric function whose . definition provides . that all digits to the right of
the decimal point are zero in the returned value for any possible evaluation of the
function.

Where . the . term 'integer' appears in the general formats, integer must be a
numeric literal which. is an integer, and it must be neither signed nor zero unless
expli~tly allowed by the rules for that format.

Key Word. A reserved word or function-name whose presence is required when the
format in which the word appears is used in a source program.

Subscript. An occurrence number represented by either an integer, a data-name
optionally followed by an integer with the operator + or .. , or an index-name optionally
followed by an integer with the operator + or -, that identifies a particular element in
a table. A subscript may be the word ALL when the subscripted identifier is used as a
function argument. {See page A-28, Arguments.)

Word. A character-string of not more than 30 characters . wlµch forms a
user-defined word, a system-name, a reserved word, or a function-name. {See page
IV-5, COBOL Words.)

111-19 Replace the defulition for Reference Modifier with the following:

IV-i(T)

IV-4(T)

IV-4

IV-5

Reference-Modifier. A syntactically correct combination of character-strings and
separators that. defmes . a unique data item. It includes a delimiting left parenthesis
separator, the leftmost character position, a colon separator, optionally a length, and a
delimiting right parenthesis separator. (See page IV-22, Reference-Modifier.)

Paragraph .2.1.5 entitled "Ellipses", second paragraph, first line, change "In the general
format," to "In the general formats,".

Paragraph 4.1, entitled "Character Set", third paragraph, first line, change "fewer than
,51 charaqers, double" to ~fewer than 52 characters (all characters of the COBOL
character set exceptthe lowercase letters), double";

Paragraph 4.2.1, rule (4), change second sentence to read: "Parentheses may appear
only in . balanced · pairs . <>f left and right pm,-entheses delimiting subscripts, a list of
function arguments, reference modifiers, arithmetic expressions, or conditions."

.Paragraph 4.2;2,1, replace with the following:

A COBOL ,word is. a character-string .of not more .than 3() ·.characters. which forms a
user-defined word, a system-name, a reserved word, or a function-name. Each
character of a COBOL word is selected from the set of letters, digits, and the hyphen.
The hyphen may not appear as the first or last character. Each lowercase letter is
considered to be equivalent to its corresponding uppercase letter. Within a source
program, reserved words and user-defined words form disjoint sets; reserved words and
system-names form disjoint sets; reserved words and function-names form disjoint sets;
function-names, system-names, and user-defmed words form intersecting sets. The
same COBOL word may be used as a function-name, as a system-name, and as a user
defined word within a source program; and the class of a specific occurrence of the
COBOL word is determined by the context of the clause or phrase in which it occurs.

A-9

Page No.

IV-9

Chanae to ANSI XJ.23-198$ and ISO 1989-1985

Add the following before paragraph 4.2.2.2:

4.2.2.1.4 Function-Names

A function-name is a word that is one of a specified list of words which may be
used in COBOL source programs. The same word, in a different context; may appear
in a program as a user-defined word or a system-name. (See page A-29, Definitions of
Functions.)

IV-15 Paragraph 4.3.3, delete the last sentence and add the following new paragraphs:

Every data item which is a function is an elementary item, and belongs to one of
the categories alphanumeric or numeric, and to the corresponding class; the category of
each function is determined by the definition of the function. This definition is made
in these specifications. (See page A-27, Intrinsic Function Module.)

The following table depicts the relationship of the class and categories of data
items.

IV-16 Paragraph 4.3.4, second paragraph, replace first sentence with the following: "When a
computer provides more than one means of representing data, the standard data format
must be used for data items other than integer and numeric functions, if not otherwise
specified by the data description."

IV-16 Paragraph 4.3.4, add the following new paragraph preceding the last paragraph:

An alphanumeric function· is always represented in the standard data format. The
size of an alphanumeric function in standard data format characters is determined by
the definition of the function. The implementor specifies the representation of integer
and numeric functions, and this representation need not be the standard data format.
Integer and numeric functions may be used only in arithmetic expressions. An integer
or numeric function represents the value ·resulting from the evaluation of the function
without the restriction on composite of operands and/ or receiving data items. Each
implementor will indicate the techniques used in evaluating integer and numeric
functions.

IV-18 Paragraph 4.3.8, add the following new paragraph preceding the last paragraph:

When the resource named is a function, the function definition may require the user
to specify in the reference to the function a value or set of values for one or more
parameters which determine the value of the function for that particular reference.
This is accomplished through the specification of arguments as described in the
following paragraphs.

A-10

·ran No. Change to ANSI xJ.23-198$ 1llld ISO 1989.1985

IV-21 Paragraph 43.8.2.2, replace the gerieral formid: \vith the fOlloWillg:

{
condition-niune-l} intager-'l [f +l :

. . ·. (dat. a-name. -2 . .•• . in. teger-2 .·
data-name-1 · -

+
index·n~e...;1 · · integer-3

...)

IV-21 Paragraph 43.8.2.3, add new syntax rule 7 as frillows:

(7) . The subscript ALL may he used only when the subscripted identifier is. used as
a function argument and may not be uSed when conditioii;.riame-1 is 'specified. (See
page A~28, Argulilents.)

IV .;22 Rellulnber paragraphs 43~8.3 thru. 43.8.5 to 4.3.8.4 thtu 4.3.8.6, ·respectively.
tbro
IV;.24

IV .;22 Add the folloWing as new paragraph 43.8.3:

4.3.8.3 Function-Identifier

43.8.3.1 Pllrpo5e ~ra Function~Idendlier

A fuJlction:.identifier is a syntattically correct oornbihation Of Chata~ter-stririgs and
Separators that wliquely references the "data item resuiting from the evaluation of a
function.

4.3.8.3.2 Ge.i~nll Format

FUNcTION function-nallle-1 [({argumant-'1} •..)) [reference-modifier)

. . (l) Argtlll1¢nt71, nius! be , an id~ntifier,_ ·a literaI, or an · arithtnetic expression.
Specific niles goverriiDg. 'the number, 'class, and category of ar~erit-1 are given fu
the definition of each fuDction. (See page A-27,• Intrmstc FunctiOn M'6duie.)

. ' (2) ~ tbfet~nce~mOdifier may be sp&ified oruy for functions of the category
atphatiumeric.

·. (3). A, >function~identfiier which tefetellCes an alphanumeric functicm . ·may be
specified anywhere ·in the .. •general . t6rmats . that an identifier is permitted and where
the. rtJles. &ssociated . With . the genefal . formats do not specifically prohibit reference fo
functionS, e)ccept as follm\is:

Page No.

IV-22

IV-22

IV-22

IV-22

IV-23

· · .. S<bange to ANSI X3.2J-19U· and ISO 1989-1985

b. Where the rules associated with the general formats require the data item
being referenced to have particular characteristics (such as class and category, usage,
si7.e, sign, and permissible values) and the evaluation of the function according to its
definition and the particular arguments specified woUld"n:ot ~ve,th~se .c4aract~~istics.

> ', ~> ' • ' _. ,· ,: ' ;

(4) A function-identifier 'which references an integer 'or numeric function may be
used only in an arithmetic expression.

4.3.8.3.4 General Rules

(1) The class and other characteristics of the function being' referenced are
determined;t,y. the function definition .. (See pageA~2'.7, lntrmsic FlJllctions.)

.. . - - .

(2) At the time reference is made to a function;. jts' argi,µnents . are evaluated
individually in the order specified in the list of arguments, from left · to right. An
argument being evaluated- may itself, be ;a functio11-identifier or may, ~ -~ expression
containing function-identifiers. There is no restriction preventing the function
referenced in evaluating an argument from being the same function as that for which
the argument is specified.

New paragraph 4.3.8.4, change the title to "Reference-Modifier".

New paragraph 4.3.8.4.2, replace the general format with the following:

::=:..tl;...-1 in -~,, ... '\J ''"~l">·t-~•ot•r:po~·"~' [longtb))

NOTE: Dat.a-name-1 and FUNCTION funct.ion-name-1 (argument.-1) are shown in j:.Jle.above format. t.o
provide cont.ext. and are not. part. of t.he reference-modifier. , . .

New paragraph 4.3.8.4.3, add the following as new syntax iuie'5:'
(5) The r\liiction ref~renCed by function.:name-1 'alid 'its 8rgfun~ilts, if any, must be

an alphanumeric function.

New paragraph 4.3.8.4.4, change the first sentence or' genef~' · 'ittle l 't() read: "Each
. char~tter Qf a data. item refer.enCed by <lata-J1~e-1. Qr .by function-name-1 and its
ar~ents,,if ,anY• .istllS.Sjgne<f an. 'ordfual' m1ro~r 'iiig-~1lleriting),y ... 01~e frop,i the leftmost
position ~o;~~ :rigli~pst ~~on: · · .- · · · · · · ' · · · . ,

New Par~aph 4.3J~.4'.4, $ener~. rule 3a, add, ,the,, foU<>wing ne\V last sentence: "If an
ALL subsCrlpt is specified for an operan~ the reference-modifier .. ~ apl>Jied to each of
the implicitly specified elements of the table." · ·

. t-l~\V Paragraph . .i1.8..t.4,'gerier~ ~~ 3, add the. (o~ri6g ~ n¢"1'(\l}e'~:
. . . ' -· • ·- . ' ' . ,. •,.. . • . ' . . .· - , •. .. - ' ._,. c. ~

· c~ '/fr ;efetence Jll~caii~n iS' specified in'_~ {µri~fo~'.refe~~~~ •. 'the reference
modification is evaluated immediately after evaluation of the functfon'.: •. ''' '. .. '' '

Page No •.

IV-23

IV-23

IV-23

IV-23

IV-45

. Change . to ANSI. XJ.23~1985 and ISO 1989-1985

New paragraph 4.3.8.4.4; generalrule 4, change. the first sentence to r~ad: "Reference
modification creates a unique data item that is a subset of the data item referenced by
data-name~ 1 or by function-name-1 and its arguments, if any."

New paragraph 4.3.8.4.4, general rule 4, paragraphs a and b, replace four occurrences
of "the data item referenced by data-name-1" by "the data item referenced by
data-name-1 or function-name-1 and its arguments, if any".

New paragraph 4.3.8.4.4, general rule 5, second sentence, replace the word "It" by
"When. a function is refer~nced, the unique . data item, has the · class and category .of
alphanumeric. When data-name-1 is specified, the unique data item" ..

New paragraph 4.3.R5, change to read: .

. 4.3.8.S ·. ldentifi~r

4.3.8.S.1 Function

. All .identifier. is ~· syntact~callY·· correct ,sequence. of chaJ;acter"'.'smngs and s~para~ors
used to reference data uniquely.

Whe~ a dat~ item other than a function is being referenced, identifier is a term
used to reflect that a data-name, if not unique in a program, must be followed by a
syntactically·. correct . combination of qualifiers, subscripts, or reference modifiers
necessary for uniqueness of reference. (See page X-4, Scope of Names.)

4.3.8.S.2 General Fonnat

Format 1:

function-identU:ier-1

Format2:

data-n•-1 [k} data-name-21 [{cd~name-1 }] f!!!l ·. kJ fi~~:-name-1 ,

report-name.:1

[({subscript} •.•)] [reference-modifier]

4.3.8.5.3 Syntax Rules

(1) The words IN and OF are•equivaleilt: · ·'' . . : ' ~

Paragraph 8, insert the following before the list of reserved words:
• ':,[: ··"·' : '-1

The following is a list of COBOL're5eived\vords for th~ set~n'reqtiired modules and
the four optional modules of Report Writer, Communication, Debug, and Segmentation .

. A..,13

pg No.

IV-46

v-3(T)

V-T{T)

v~l5'{T)

y.:J.5'(1')

V~16(1')

V-16 (T)

y.;;27.(t)

V-28 (T)

V-38

'Patagtaph8, ihsert'the 'followmgafter the'list of~tved words:

The ftillo\Ving is a list <>f :COBOL 'reserved w0rds for the optidnal 'lnttinsic Function
ni<>dule.

FuNCTION

SYMBOLICCHARACTERS -clause, delete olitermOst Set of braces.

-o'RoANlzATI:O:N clatise, delete second occiirrence of a right br~cket after the word
SEQUENTIAL.

'Insert iiterininalperiOd' follo\Ving the 'last bracket· in-forinat '1.

Delete the commas beniveen data:..name-l thtough data.;nrune~ll, inclusively, informatl.

'Insertaterminalperioo followingthe last bracket infonnat 3.

Delete thecomnias between iliita•ruune-1 through data.;.naJrie~.· inclUsively,' in format 3.

PERFORM format, AFfER phrase, change "Ilter'lll·3" imlt'.lediately after the reserved
word.AFI'ER to "index-ilame-3".

Insert "W'ND-REWRrrE]" at the end of the first REWRITE statement.

Change the format for subscripting to read:

integer-1

{
c-otiditi·o-n-n_· ame-1-} ' · ·(data-nmiie.;2

· data-name-1 ·
.. .-)

V~38 Add the followingafter the formatfodubscripting:

. FiJN(Jfi<)N;.iDENTIFIER:

Fll'NcTr6N function:..riame""l C({argument-i} . ; . >J Cret'erence.;modifierl

·v-38 Charlge·the format for reference modification to read:

'e:-name-"1 '} -, .· _ _ __ . _ _ , . __ -___ ,_ _ _ . _ , _ • ·_ · (leftmi>st-character;;position: [length])
- ION functi0n-name-1 (({argument-1} • . •)]

A'-14

Page No. Chanae to ANSI XJ.23-1985 and ISO 1989-1985

V-38 Change the format for identifier to read:

Format 1:

function-identifier-1

Format2:

[{
cd-name-1 }]

data-name-1 [{:l data-name-2] • • • {:l file-name-1

report-name-1

(({subscript} ...)] [reference-modifier]

V-38 Insert after page V-38 the contents of pages A-16 and A-17 which contain the general
format for functions.

A-15

Intrinsic Function Formats

GENERAL:FORMAT. FOR INTRINSIC FUNCTIONS

:f'UNCTION ACOS (argument-1)

FUNCTION ANNUITY (argument-1 argument-2)

FUNCTION A§I! Cargument-1)

FUNCTION ~ (argument-1)

FUNCTION CHAR (argument-1)

FUNCTION £Q§. (argument-1)

FUNCTION CURRENT-DATE

FUNCTION.DATE,..OF-INTEGER (ai:gument-1)

FUNCTION DAY-OF-INTEGER (argument-1)

FUNCTION FACTORIAL (argument-1)

FUNCTION INTEGER (argument-1)

FUNCTION INTEGER-OF-DATE (argument-1)

FUNCTION INTEGER-OF-DAY (argwnent-1)

FUNCTION INTEGER-PART (argument-1)

FUNCTION ~ (argument-1)

FUNCTION LOG (argument-1)

FUNCTION LOGlO (argument-1)

FUNCTION LOWER-CASE (argument-1)

FUNCTION~ ({argument-1} •••

FUNCTION~ ({argument-1} •..

FUNCTION ~ ({argument-1} •••

FUNCTION MIDRANGE ({argument-1} •••

FUNCTION~ ({argument-1} •••)

FUNCTION ~ (argument-1 argument-2)

FUNCTION fil!MYAL (argument-1)

FUNCTION NUMVAL-C (argument-1 [argument-2])

A-16

Intrinsic Function Formats

GENERAL FORMAT FOR INTRINSIC FUNCTIONS

FUNCTION Q!m (argument-1)

FUNCTION ORD-MAX ({argument-1}

FUNCTION ORD-MIN ({argument-1}

FUNCTION PRESENT-VALUE (argument-1 {atgument-2} .•.)

FUNCTION RAND~ [(argument-1)]

FUNCTION ~ ({argument-1} ...

FUNCTION REM (argument-1 argument-2)

FUNCTIONReyERSE (argument-1)

FUNCTION §!!! (argument-1)

FUNCTION fil2R!...(argument-1)

FUNCTION STANDARD-DEVIATION ({argument-1} ..•)

FUNCTION SUM ({argument-1} ...)

FUNCTION IA! (argument-1)

FUNCTION UPPER-CASE (argument-1)

FUNCTION VARIANCE ({argument-1} ...)

FUNCTION WHEN-C~ILED

Page No.

VI-1

Chan&e to ANSI X3.23·1985 and ISO 1989·1985

Paragraph 1.3, change title to read: "RESTRICTIONS ON OVERALL LANGUAGE".

Renumber paragraphs 1.3.5 and 1.3.6 to 1.3.6 and 1.3.7, respectively; and add new
paragraph 1.3.5 without boxing as follows:

1.3.5 Function-Identifier

The availability of function-identifiers is dependent on whether the Intrinsic
Function module is supported by the implementation.

VI-13 (T) Paragraph 4.5.2, SYMBOLIC CHARACTERS clause, delete outermost set of braces.

VI-20 (T) Paragraph 5.3.2 of the OCCURS clause, delete the box around the first occurrence of
"[INJ)EXED BY {index-name-1} ...]".

VI-31 (T) Paragraph 5.9.4 of the PICTURE clause, general rule 8, second line, change "explain"
to "explained".

VI-50 (T) Paragraph 5.15.6 of the VALUE clause, general rule 6, second line, change "or m a
entry" to "or in an entry".

VI-57 Paragraph 6.3.1.2, replace the first paragraph after the general format beginning with
"The usage of the operand ... " by "Identifier-1 must reference a data item whose usage
is explicitly or implicitly DISPIA Y. If identifier-1 is a function-identifier, it must
reference an alphanumeric function.".

VI-62 Paragraph 6.3.4, penultimate paragraph:

a. Insert "(2)" at the beginning of the paragraph and indent 3 spaces.

b. Change the first sentence in part to read: "Values are established for arithmetic
expressions and functions if and when .. .".

VI-70 Paragraph 6.4.7, change in part to read: " ... PICTURE clause or function definition,
then the result. . .".

VI-96 Paragraph 6.18.4, general rule 4, change in part to read:
subscripted or is a function-identifier, the subscript or
evaluated .. .".

"If any identifier is
function-identifier is

VI-103 Paragraph 6.19.4, general rule 2, second paragraph, change the first sentence to read:
"If identifier-1 is reference modified, subscripted, or is a function-identifier, the
reference modifier, subscript, or function-identifier is evaluated only once, immediately
before data is moved to the first of the receiving operands."

VI-104 (T) Paragraph 6.19.4 of the MOVE statement, general rule 3, fourth line, change
"alphabetic, numeric edited," to "alphabetic, alphanumeric, numeric edited,".

VI-105 (T) Paragraph 6.19.4 of the MOVE statement, general rule 4c, change indentation to align
with general rule 4b.

A-18

P. No, . Change to ANSI 2QJ3=198S and ISO 1989-19§5.

VIl-6 (T) Paragraph 2.1, in the Input-Output Section of the Sequential 1.,.0 module, delete the.
box around the general format:

VU-52

CI-O-CQN7R0L. [input-output-control-entry]}

Paragraph 4.5.3, change syntax rule 1 to rea~:

(1) If identifier-1 is a function-identifier, it must reference an alphanu01eric
function. When identifier-1 is not a function-identifier, record-n,ame-1 and identifier-1
must not r~erence the same storage area.

Paragraph 4.7.3, change syntax rule 1 to read:

(1) If identifier-1 is a functi()n.,.icientifier, it must reference an alphanU01eri,c
function. When idenl:ifiei:--1 is not a function-identifier, l:'eCOJd-nan;ie-1 and icientifier.,.1
must not reference the same st-0rage area.

Paragraph 4;.6.3, change syntax rule 1 to read:

(1) If id,e11tifier-1. is a function-identifier, it must reference ~ ~pllanwn,eric
fl.mction. When identifier-1 is not a function-identifier, record-name-1 and identifier-1
must not reference the same. storage area.

Vlll-30 (T) Paragraph 4.6.3, change syntax rule 4 in part to read: " ... mode for which ... ".

VIIl-37

JX.,3 (T)

lX-4 (T)

IX-6 (T)

IX-7 (T)

faragraph 4.9,.3, change syntax rule 1 to read:

(l) If iden~r-1 is a function-i<,lentifier, it must reference an alphanumeric
function. Wb,en identifier-1 is not a fimction .. identifiet, record-name-1 and identifier-!.
must not reference the same storage area.

Paragn~pll 1.3.4, entitled ·1~0 Status"~ second occurrence. Qf a paragrapll numbered (1).
subparagraphs c and d, cllange indentation.to align with subparagraph b. · ·

Paragraph 1.3.4, en,titled "I-0 Sta~", second occurrence <>f a paragraph numbered (:l),
subparagraph b, first line, box "or rewrite".

Paragraph 1.3.S, entitled "The Invalid K,ey Condition", second occu,rrence <>f a paragraph
numbered 2, first line, cll1µ1ge "If not exception," to "Ifn<> el(ception". ·

Paragraph 1.3.7, first paragrapll, hist line, change "an" to •and''.

Paragraph 4.6.3, change syntax rule 1 to rea,d:

(1) If iden,tifier-1 is a function-identifier, it must reference an alphanumeric
function. When identifier-1 is not a function-identifier, record-ruune-1 and identifier-1
must not reference the same storage area.

IX-33 (T) Paragraph 4.6.3 of the REWRITE statement in the Indexed I-0 module, syntax rule 3,
change to read: 'The INVALID KEY phrase must be specified in the REWRITE
statement for indexed files for which an appropriate USE AFrER STANDARD
EXCEPTION procedure is not specified." ·

A-19

Page No.

IX-41

X-1 (T)

X-2(T)

X-5 {T)

X-6 (T)

x~1o(T)

X-19 (T)

X-19 (T)

Paragraph 4.9.3, change Syn.tu rule 1 to read: ·.~

(1) H identifier-1 is a function-identifier, it must reference an alphanumeric
function. When identifier-1 is not •a 'function~identifier, record-name,.,1 .and identifier-1
must not reference the same storage area.

Paragraph 1.1, Function for Inter-Program Communication module, fifth line, change
"data value available" to 1'data valueli available". ·

Paragraph 1.3.4, entitled "External Objects and Internal Objects\ seoond paragraph, last
sentence, change "representative" to "representation".

Paragraph 1.3.8, entitled "Scope of Names", second paragraph on page X-5, second line,
box the word "either". In the sme paragraph, third and fourth lines, box "which
Contains a· Config\iration Section or in· any program contained. Within that program.".

Paragraph 1.3.8.1, entitled "Conventions for Program-Names", rule 3, box "except
programs it directly or indirectly contains".

··Paragraph 2.4.2, entitled "Programs in the· Initial State", box··. numbered paragraphs 3
and4;

Paragraph 4.3.1, Function for data description entry in the Inter-Program
Communication lll'odule, first paragraph, last line; box "or global names";

Paragraph 4.3.1, Function for . data description entry in the Inter-Program
Communication module, second paragraph, second line, box "or external".

X-27 Paragraph 52.3, add new syntax rule 4 as follows:

X-29 (T)

XI-8 (T)

XI-13

(4) Identifier-2 must not be a function-identifier.

Paragraph 5.2;4 of . the CALL . statement, · general rule 10; change two occurrences of
"data-names" to "parameters"; also change two occurrences of "data-name" to
"parameter~; ·

Paragraph 4.1.3 of the MERGE statement, syntax rule 3, fifth line, change "in the file"
to ~in the files~; . . ·

Paragraph 4.2.3, change syntax rule 3 to read:

(3) If identifier-1 is a function-identifier, it must reference an alphanumeric
function. When identifier-1 is not . .a function~identilier, · record-name-1 · and identifier~.1
must not reference the same storage area.

XII-4 (T) Paragraph. 2.4 of the COPY statement, general rule 7; fifth ·and· sixth .. lines; change two
occurrences of "pseudo-text-delimiter" to "pseudo-text• delimiter".

XII-4 (T) Paragraph 2.4 of the.< COPY statemen4 ·general 'rule· ·9,; third .. paragraph,' fourth line,;
change "When a text word" to , "When a . text '.Word specified in the .BY phrase is
introduced, it appears on .a debugging.'line if the frrst library text word being replaced
is specified on a debugging line. Except". , : •

Paa No. · Changt(lo ANSI XJ.23-1985 and isc) 1.9S9-198S ·

XIII~? (T) Paragraph 3.2.2 ofthei file desciipiion entry m the Report Writer mOdule; VALUE OF
· clause, delete the fourth l>enod in the ellipsis. · · · ··

XIV-3 (T)

XIV-4(T)

Paragraph 2.2.2 of the communication description entry, delete . the commas between
data-name-1 through data-name-11, inclusively, in format 1. · ·

Paragraph 2.2.2 of the communicaticih. description e~try, .• delet~ the commas between
data-name-1 through data-name-6,, inclusively, in format 3.

XIV-19 (T) · Paragraph 3.2.4 of the·· DISABLE statement, general rUie · 4, third; line, change
~SOURCE}" to'"SOURCE))".

XIV-26 Paragraph 3.6.3, 11:dd new s)'ntax rUle 6 as follow5:

(6) If idetitifier-1 · is a function-identifier, it ·must reference an alphanumeric
· function.

XV-5 (T) Paragraph 323 of the USE FOR DEBUGGING statement, s}'titmc rule ·10, last line,
delete "or indexing;".

XVII-8 (Tj' · Paragraph 2~11, entitled "CODASYL COBOL JOURNAL OF DEVELOPMENT 1981", item
12, cltange "PROGRAM"'fo' "PERFORM". ' . .

XVII-13 · Add the folloWing after paragr~t>h 3.4: · ·

3.S AMERICAN NATIONAL STANDARD COBOL 198S;ADDENDUM 1 · ...
. •'

'The XiJ4 COBOL Techllical ·'Committee· of the. ActreditCd Standards Committee X3
was charged with the responsibility to develop addenda tO American NatiOnal Standard
COBOL X3.23-1985 as a means of adding upward compatible language extensions. In
June 1985, X3J4 began the task 'Of preparing the first addendum. Language extensions
considered for inclusion in Addendum l were taken from the CODASYL COBOL Journal
of Development 1984.

In January 1987 X3J4 approved the content and format for· the< first draft proposed
Addendum 1 to American National Standard COBOL X3.23-1985 and recommended to X3
that iFbe published for public review and comment. X3J4 held two public review and
comment periods in which comments were received from the data processing community
on the content of the draft proposed Addendum 1 to American National Standard
'COBOL X3.23-1985. X3J4 reviewed and responded to all comments: received during
these two public review periods.

In October 1988 X3J4 approved the final version of the draft proposed Addendum 1
to American National. Stalldard COBOL· XJ.23-1985 and forwarded the doeument to the
X3 committee for processing.·· The :X3 committee then· voted in favor of the
acceptability of the draft proposed Addendum 1 to American National Standard COBOL

· ·X3.23-1985. This X3 vote also forwarded . the proposed Addendum. l: for American
National Standard COBOL X3.23-1985 to the American National Standards Institute for

. final approval. '·

Addendum 1 to American National Standard COBOL X3.23-1985 proposed by X3 was
approved by the American National Standards Institute on September 13, 1989 as an

A~21·.

xvu,.15

XVll-17

xvn~18

XVII-19

XVII-19

CJuuuie to ANSI X}.23·1985 aggl ISO 1989-1985
« .". . ' ... ' ,· ·, / ..••.•... ' .'' ' . .•

addendum to American National Standard GOB.OL X3.23-1985. The. specifkations of this
approved Adde11dwn. 1 are . publiSh# · in th~ Aulerican 1'lat,iol1al Stand!u"ds lnstit.ute
document X3:23A-l989. · · · ·

Add the follQwing after par~aph 43;.

4..4:·. ISO S'.fANDAIU)198~1,985 FOil (;OBOL, ADD~Nl):tJM 1

At its meeting in Vieno,a, Austria, in Febrµary 1984, ISO Technical Committee 97,
S.~IQJD.ittee 22, Working Group 4 on COBOL resolved to propose addenda for tJpward
compatible language. extensions to ISO standard 19~9-19.85. for COBOL~ ·The purpose of
pro~ adcienda of up~d compatible language extensions instead of embarking
immediately on a revision to. S:tanclard COBOL was. to provide the language
e~~m.en~s in a iµ,ore timely manner, · e.g., in a two to. five year time frame rather
than a five t() ten year, or 10nger, time frauie. At this same 111eeting ISO/TC97/SC22
Working Group. 4 recommended that the t,Jni~ed States be requested, to provide draft
documents for the addenda. The recomJnc~ndations of ISO/TC97 /SC22 Working Group 4.
wel'e approved and the work of develo~ the adden~ was ~igned to.X3J4. · ·

During "3.f4's work on Addendwn 1 for Standard COBOL, close and continuous
liaison was maintained with the international. community through ISQ/IEC JTC1/SC22
Working Group 4. The draft document was presented for review and comment to
ISO/IEC JTC1/SC22 in Mar~ 1987 as a dl'aft proposed, Ad<Jen<Jwn 1 to ISO Standard
1989-1985 for. COBOL. ISO/IEC JTC1/SC22 ~0usly appl'oved a. re50lution to semi
the proposed Addendunt 1 to ISO Standard 1989-1985. for COBOL to the Central
Secretariat for registration as a dl'aft il:iternational standard (DIS). The DIS
Addendwn 1 to ISO Standard 1989-1985 for COBOL was circulated to all the ISO
llleml>er bodies for inquiry. Addendum 1 to ISO Standard 1989:-1985 for COBOL was
accepteti by the ISO Council.

Ad<l the following before the eney for "User-defined words"; align the word
"l"uncti011-name~· with the word "User-defined,":

Function-names, system-names, and user-defined, words form
il:iter~ing sets. . . . • . N 1 ITR

Add, the following before the entry foi: "Literals"; align th.e woni "Funct.ion-names" one
position to the right of the word "l,.iterals":

Fun<:tion:-natl\es N UTR

Change the eney for "Reference modification" to "Reference-mQdifier".

Add the following before the entry for "Referen~:-modifier"; align the word
"Fw;lction,-identifier~ with~ word "Reference-mQdifier~:

Function-identifier N lITR

XVII-19 (T) U~er "Reference Format•, change entry in 3RD STD colwnn for "Continuation of
COBOL word, nU111eric literal" fro'1 "1 Nl,JC" to "2 NUC".

Page No.

XVII-31

XVII-50

Change to ANSI XJ.23-1985 and ISO 1989-1985

Add the following before the entry for "ACCEPT statement":

Intrinsic functions. . .
ACOS function . . .
ANNUITY function .
ASIN function. .
ATANfunction .
CHAR function •
COS function . .
CURRENT-DATE function
DATE-OF-INTEGER function .
DAY-OF-INTEGER function.
FACTORIAL function
INTEGER function
INTEGER-OF-DATE function •
INTEGER-OF-DAY function .
INTEGER-PART function .
LENGTH function.
LOG function
LOG10 function
LOWER-CASE function .
MAX function. . .
MEAN function
MEDIAN function. . .
MIDRANGE function .
MIN function . . .
MOD function . . .
NUMV AL function .
NUMV AL-C function .
ORD function
ORD-MAX function .
ORD-MIN function .
PRESENT-VALUE function
RANDOM function
RANGE function . .
REM function. . . .
REVERSE function .
SIN function
SQRT function .•.
STANDARD-DEVIATION function.
SUM function •
TAN function . . . • . .
UPPER-CASE function
VARIANCE function .
WHEN-COMPILED function.

Add the following after item 107:

N lITR
N llTR
N lITR
N llTR
N lITR
N llTR
N lITR
N lITR
N lITR
N llTR
N llTR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N lITR
N llTR
N llTR
N lITR
N lITR
N llTR
N llTR
N lITR
N llTR
N lITR
N lITR
N llTR
N llTR

(108) Intrinsic Function. Module . (1 lTR). The Intrinsic Function . module provides the
capability to reference a data item whose value is derived automatically at the time of
reference during the execution of the object program.

A-23

Paire No. ' •.Change to ANSI X3.23-1985 aild · ISO .1989-1985 .

XVll-64 (I') Substantive change 26, entitled "PERFORM statement•; pri()f · to the last paragraph on
the page, delete: "Under second Standard COBOL, PARA3 will be executed 8 times as
shown above. Under third Standard COBOL, PARA3 will be executed 6 times as shown
above."

XVII-70 (I') Substantive change 37, entitled· "File position indicator", first ··paragraph, second line,
·change "access made" to "access mode".

XVll-98

XVl-9

XVIII-l
thru

XVlll-13

·Add the word FUNCTION to the list of reserved words in item 39.

Add the following after item 80:

(81) InteGr and Numeric Functions. The implementor specifies the representation
of integer and numeric functions, and this representation need· not be· the standard

· data format. (See 4.3.4, second occurrence of page number IV-16, on page A-10.)

(82) Imes of Functions. The characteristics of· the returned Value are defined by
·the implementor. (See 2.3, paragraphs 2 and 3, on page A-29.)

(83) CHAR function. If the current program collating sequence was not specified by
the ALPHABET clause, the implementor determines the value. (See 2.9.4, rule 2, on
pageA-37.)

(84) · RANDOM function. If the first reference to this function: iri · the run unit does
not specify argument-1, the seed value is defined by the implementor. (See 2.35.3, rule
3, on page A-64.)

Add the following after item 28:

(29) Intrinsic functions. If, at the time a function is referenced, the arguments
specified for that reference do not have values that comply with the specified
constraints, the returned value for the function is undefined~ · (See· · l.2.2, on page

· A-27.)

Insert after section XVI pages A-27 through A-76 containing the ltitrinsic Function
module.

Add the following entries to the Index in their appropriate alphabetical sequence:

ACOS function, A-33
Alphanumeric function, A-8, A-10, A-29
ALL subscript, A-9, A-11, A-28
ANNUITY function, A-34

· Arccosine function, A-33
Arcsine function, A-35
Arctangent function, A-36
Argument, A-8, A-11, A-28
ASIN function, A-35
ATAN function, A-36 . ·
CHAR function, A•37
Character function, A-37
COS function A-38

A·24

Page No. Change to ANSI X3.23·1985 and ISO 1989-1985

Cosine function, A-38
CURRENT-DATE function, A-39
DATE-OF-INTEGER function, A-41
DAY-OF-INTEGER function, A-42
FACTORIAL function, A-43
Function, A-8
Function-identifier, A-8, A-11, A-27
Function-name, A-8, A-10, A-27
Function summary, A-30
INTEGER function, A-44
Integer function, A-8, A-10, A-29
INTEGER-OF-DATE function, A-45
INTEGER-OF-DAY function, A-46
INTEGER-PART function, A-47
Intrinsic function concepts, A-7
Intrinsic function module, A-27

Element summary, A-5
LENGTH function, A-48
LOG function, A-49
WG10 function, A-50
Logarithm base e, A-49
Logarithm base 10, A-50
WWER-CASE function, A-51
MAX function, A-52
Maximum function, A-52
MEAN function, A-53
MEDIAN function, A-54
MIDRANGE function, A-55
MIN function, A-56
Minimum function, A-56
MOD function, A-57
Natural logarithm, A-49
Numeric function, A-8, A-10, A-29
NUMV AL function, A-58
NUMV AL-C function, A-59
ORD function, A-60
Ordinal function, A-60
ORD-MAX function, A-61
ORD-MIN function, A-62
PRESENT-VALUE function, A-63
RANDOM function, A-64
RANGE function, A-65
Reference modifier, A-9, A-12
REM function, A..(,6
REVERSE function, A-67
SIN function, A-68
SQRT function, A-69
STANDARD-DEVIATION function, A-70
Subscripted identifier, A-11
SUM function, A-71 .
TAN function, A-72
Tangent function, A-72

A-25

Page No. Chanae to ANSI XJ.23-1985 and ISO 1989-1285

UPPER-CASE function, A-73
VARIANCE function, A-74
WHEN-COMPILED function, A-75

A-'lf>

Intrinsic Function - Introduction

SECTION A: INTRINSIC FUNCTION MODULE

1. INTRODUCTION TO THE INTRINSIC FUNCTION MODULE

1.1 PURPOSE OF INTRINSIC FUNCTION MODULE

The Intrinsic Function module provides the capability to reference a data item whose value is
derived automatically at the time of reference during the execution of the object program.

1.2 LANGUAGE CONCEPTS

1.2.1 Function-Name

In the Intrinsic Function module, a function is a temporary data item whose value is determined
by invoking a mechanism provided by the implementor at the time the function is referenced during
the execution of a statement. A function-name names a mechanism provided by the implementor to
determine the value of a function. A function-name is a COBOL word that is one of a specified list
of COBOL words which may be used in COBOL source programs. (See page A-29, Definitions of
Functions.)

1.2.2 Value Returned by a Function

The value returned by a function is considered to be a data value. A mechanism is provided at
object time to assign a data value to a function when it is referenced. In order to determine the
function's value, the evaluation mechanism may require access to data values provided by the
referencing program. These data values are provided by specifying parameters, known as arguments,
when referencing the function. Specific functions may place constraints on these arguments, such as
range, etc. H, at the time a function is referenced, the arguments specified for that reference do
not have values that comply with the specified constraints, the returned value for the function is
undefined.

1.2.3 Function-Identifier

A function-identifier is used by the programmer to reference a function within the Procedure
Division of a COBOL source program. (See page IV-22, Function-Identiqer.)

2. GENERAL DESCRIPTION

2.1 FUNCTION DEFINmON AND RETURNED VALUE

The definition of a function identifies:

(1) For alphanumeric functions, the sire of the returned value.

(2) For numeric and integer functions, the sign of the returned value and whether the function
is integer.

(3) For some other cases, the value returned.

A-27

Intrinsic Function - Arguments

2.1.1 Date Conversion Function

The Gregorian calendar is used in the date conversion functions. The starting date of Monday,
January 1, 1601, was chosen to establish a simple relationship between the Standard Date and
DAY-OF-WEEK; i.e., integer date 1 was a Monday, DAY-OF-WEEK 1.

2.2 ARGUMENTS

Arguments specify values used in the evaluation of a function. Arguments are specified in the
function-identifier. These arguments can be specified as identifiers, as arithmetic expressions, or as
literals. The definition of a function specifies the number of arguments required, which can be
zero, one, or more. For some functions, the number of arguments which can be specified may be
variable. The order in which arguments are specified in a function-identifier determines the
interpretation given to each value in arriving at the function value.

Arguments may be required to have a certain class or a subset of a certain class. The types of
argument are:

(1) Numeric. An arithmetic expression must be specified. The value of the arithmetic
expression, including operational sign, is used in determining the value of the function.

(2) Alphabetic. An elementary data item of the class alphabetic or a nonnumeric literal
containing only alphabetic characters must be specified. The size associated with the argument can
be used in determining the value of the function.

(3) Alphanumeric. A data item of the class alphabetic or alphanumeric or a nonnumeric literal
must be specified. The size associated with the argument can be used in determining the value of
the function.

(4) Integer. An arithmetic expression which will always result in an integer value must be
specified. The value of the arithmetic expression, including operational sign, is used in determining
the value of the function.

The rules for a function may place constraints on the permissible values for arguments in order
to permit meaningful determination of the function's value. If, at the time a function is referenced,
the arguments specified for that reference do not have values within the permissible range, the
returned value for the function is undefined.

When the definition of a function permits an argument to be repeated a variable number of
times, a table may be referenced by specifying the data-name and any qualifiers that identify the
table, followed immediately by subscripting where one or more of the subscripts is the word ALL.

When ALL is specified as a subscript, the effect is as if each table element associated with that
subscript position were specified. The order of the implicit specification of each occurrence is from
left to right, with the first (or leftmost) specification being the identifier with each subscript
specified by the word ALL replaced by one, the next specification being the same identifier with the
rightmost subscript specified by the word ALL incremented by one. This process continues with the
rightmost ALL subscript being incremented by one for each implicit specification until the rightmost
ALL subscript has been incremented through its range of values. If there are any additional ALL
subscripts, the ALL subscript immediately to the left of the rightmost ALL subscript is incremented
by one, the rightmost ALL subscript is reset to one and the process of varying the rightmost ALL
subscript· is repeated. The ALL subscript to the left of the rightmost ALL subscript is incremented
by one through its range of values. For each additional ALL subscript, this process is repeated in
turn until the leftmost ALL subscript has been incremented by one through its range of values. If

A-28

Intrinsic Function - Types of Functions

the ALL subscript is associated with an OCCURS DEPENDING ON clause, the range of values is
determined by the object of the OCCURS DEPENDING ON clause. The evaluation of an ALL
subscript must result in at least one argument, otherwise the returned value is undefined.

2.3 TYPES OF FUNCTIONS

Data item functions are elementary data items and return alphanumeric, numeric, or integer
values. Data item functions are treated as elementary data items and can not be receiving operands.
Types of data item functions are:

(1) Alphanumeric functions. These are of the class and category alphanumeric. The number of
character positions in this data item is specified in the function definition. Alphanumeric functions
have an implicit usage of DISPIA Y.

(2) Numeric functions. These are of the class and category numeric. A numeric function is
always considered to have an operational sign. Those characteristics of the returned value not
otherwise specified for a given function are defined by the implementor.

A numeric function may be used only in an arithmetic expression.

A numeric function may not be referenced where an integer operand is required, even
though a particular reference may yield an integer value.

(3) Integer functions. These are of the class and category numeric. An integer function is
always considered to have an operational sign. Those characteristics of the returned value not
otherwise specified for a given function are defined by the implementor.

An integer function may be used only in an arithmetic expression.

An integer function can be referenced where an integer operand is required and where a
signed operand is allowed.

2.4 DEFINITIONS OF FUNCTIONS

Table 1 on pages A-30 through A-32 summarizes the functions that are available.

The Arguments column defines the type and number of arguments as follows:

A means alphabetic
I means integer
N means numeric
X means alphanumeric

The Type column defines the type of the function as follows:

I means integer
N means numeric
X means alphanumeric

A-29

Intrinsic Function - Function Summary

FUNCTION-NAME ARGUMENTS TYPE VALUE RETURNED

ACOS Nl N Arccosine of Nl

ANNUITY Nl, 12 N Ratio of annuity paid for 12 periods at
interest of Nl to initial investment of one

'

ASIN Nl N Arcsine of Nl

ATAN Nl N Arctangent of Nl

CHAR 11 x Character in position 11 of program
collating sequence

cos Nl N Cosine· of Nl

CURRENT-DATE None x Current date and time and difference from
Greenwich Mean Time

DATE-OF-INTEGER 11 I Standard date equivalent (YYYYMMDD)
of integer date

DAY-OF-INTEGER 11 I Julian date equivalent (YYYYDDD) of
integer date

FACTORIAL 11 I Factorial of 11

INTEGER Nl I The greatest integer not greater than Nl

INTEGER-OF-DATE 11 I Integer date equivalent of standard date
(YYYYMMDD)

INTEGER-OF-DAY 11 I Integer date equivalent of Julian date
(YYYYDDD)

INTEGER-PART Nl I Integer part of Nl

LENGTH Al or I Length of argument
Nl or
Xl

WG Nl N Natural logarithm of Nl

WG10 Nl N Logarithmtobase10ofN1

WWER-CASE Al or Xl x All letters in the argument are set to
lowercase

Table 1: Table of Functions

A-30

Intrinsic Function - Function Summary

FUNCTION-NAME ARGUMENTS TYPE VALUE RETURNED

MAX Al ... or Depends Value of maximum argument
11 ... or upon
Nl ... or arguments*
Xl ...

MEAN Nl ... N Arithmetic mean of arguments

MEDIAN Nl ... N Median of arguments

MIDRANGE Nl ... N Mean of minimum and maximum
arguments

MIN Al ... or Depends Value of minimum argument
11 ... or upon
Nl ... or arguments*
Xl ...

MOD 11, 12 I 11modulo12

NUMVAL Xl N Numeric value of simple numeric string

NUMVAL-C Xl,X2 N Numeric value of numeric string with
optional commas and currency sign

ORD Al or Xl I Ordinal position of the argument in
collating sequence

ORD-MAX Al ... or I Ordinal position of maximum argument
Nl ... or
Xl ...

ORD-MIN Al ... or I Ordinal position of minimum argument
Nl ... or
Xl ... or

PRESENT-VALUE Nl N Present value of a series of future
N2 .•. period-end amounts, N2, at a discount rate

ofNl

RANDOM 11 N Random number

RANGE 11 ... or Depends Value of maximum argument minus value
Nl ... upon of minimum argument

argument

REM Nl,N2 N Remainder of Nl/N2

*A function that has only alphabetic arguments is type alphanumeric.

Table 1: Table of Functions (Continued)

A-31

Intrinsic Function - Function Summary

FUNCTION-NAME ARGUMENTS 1YPE VALUE RETURNED

REVERSE Al orXl x Reverse order of the characters of the
argument

SIN Nl N Sine of Nl

SQRT Nl N Square root of Nl

STANDARD- Nl ... N Standard deviation of arguments
DEVIATION

SUM 11 ... or Depends Sum of arguments
Nl ... upon

arguments

TAN Nl N Tangent of Nl

UPPER-CASE Al orXl x All letters in the argument are set to
uppercase

VARIANCE Nl ... N Variance of argument

WHEN-COMPILED None x Date and time program was compiled

Table 1: Table of Functions (Continued)

A-32

Intrinsic Function - ACOS

2.5 mE ACOS FUNCTION

2.5.1 Description

The ACOS function returns a numeric value in radians that approximates the arccosine of
argument-1. The type of this function is numeric.

2.5.2 General Format

FUNCTION ACOS (argument-1)

2.5.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be greater than or equal to -1 and less than or equal to + 1.

2.5.4 Retumed Values

(1) The returned value is the approximation of the arccosine of argument-1 and is greater than
or equal to zero and less than or equal to pi.

A-33

Intrinsic Function - ANNUITY

2.6 THE ANNUl'IY FUNCTION

2.6.1 Description

The ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio
of an annuity paid at the end of each period for the number of periods specified by argument-2 to
an initial investment of one. Interest is earned at the rate specified by argument-1 and is applied
at the end of the period, before the payment. The type of this function is numeric.

2.6.2 General Format

FUNCTION A!!!!Y!I! (argument-1 argument-2)

2.6.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be greater than or equal to rero.

(3) Argument-2 must be a positive integer.

2.6.4 Retumed Values

(1) When the value of argument-1 is rero, the value of the function is the approximation of:

1 / argument-2

(2) When the value of argument-1 is not rero, the value of the function is the approximation
of:

argument-1 / (1 - (1 + argument-1) •• (- argument-2))

A-34

Intrinsic Function - ASIN

2.7 THE ASIN FUNCTION

2. 7.1 Description

The ASIN function returns a numeric value in radians that approximates the arcsine of
argument-1. The type of this function is numeric.

2.7.2 General Format

FUNCTION ~ (argument-1)

2.7.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be greater than or equal to -1 and less than or equal to + 1.

2.7.4 Returned Values

(1) The returned value is the approximation of the arcsine of argument-1 and is greater than
or equal to -pi/2 and less than or equal to + pi/2.

A-35

Intrinsic Function - ATAN

2.8 THE ATAN FUNCTION

2.8.1 Description

The ATAN function returns a numeric value in radians that approximates the arctangent of
argument-1. The type of this function is numeric.

2.8.2 General Format

FUNCTION ~ Cargument-1)

2.8.3 Arguments

(1) Argument-1 must be class numeric.

2.8A Returned Values

(1) The returned value is the approximation of the arctangent of argument-1 and is greater
than -pi/2 and less than + pi/2.

A-36

Intrinsic Function - CHAR

2.9 THE CHAR FUNCTION

2.9.1 Description

The CHAR function returns a one-character alphanumeric value that is a character in the
program collating sequence having the ordinal position equal to the value of argument-1. The type
of this function is alphanumeric.

2.9.2 General Format

FUNCTION CHAR (argument-1)

2.9.3 Arguments

(1) Argument-1 must be an integer.

(2) The value of argument-1 must be greater than zero and less than or equal to the number of
positions in the collating sequence.

2.9.4 Returned Values

(1) If more than one character has the same position in the program collating sequence, the
character returned as the function value is that of the first literal specified for that character
position in the ALPHABET clause.

(2) If the current program collating sequence was not specified by an ALPHABET clause, the
implementor determines the value.

A-37

Intrinsic Function - COS

2.10 THE COS FUNCTION

2.10.1 Description

The COS function returns a numeric value that approximates the cosine of an angle or arc,
expressed in radians, that is specified by argument-1. The type of this function is numeric.

2.10.2 General Format

FUNCTION £m (argument-1)

2.10.3 Arguments

(1) Argument-1 must be class numeric.

2.10.4 Returned Values

(1) The returned value is the approximation of the cosine of argument-1 and is greater than or
equal to -1 and less than or equal to + 1.

A-38

Intrinsic Function - CURRENT-DATE

2.11 THE CURRENT-DATE FUNCTION

2.11.1 Description

The CURRENT-DATE function returns a 21-character alphanumeric value that represents the
calendar date, time of day, and local time differential factor provided by the system on which the
function is evaluated. The type of this function is alphanumeric.

2.11.2 General Format

FUNCTION CURRENT-DATE

2.11.3 Returned Values

(1) The character positions returned, numbered from left to right, are:

Character
Positions

1-4

5-6

7-8

9-10

11-12

13-14

15-16

17

Contents

Four numeric digits of the year in the Gregorian calendar.

Two numeric digits of the month of the year, in the range 01through12.

Two numeric digits of the day of the month, in the range 01 through 31.

Two numeric digits of the hours past midnight, in the range 00 through 23.

Two numeric digits of the minutes past the hour, in the range 00 through
59.

Two numeric digits of the seconds past the minute, in the range 00 through
59.

Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
function is evaluated does not have the facility to provide the fractional
part of a second.

Either the character '-', the character '+ ', or the character 'O'. The
character '-' is returned if the local time indicated in the previous character
positions is behind Greenwich Mean Time. The character '+' is returned if
the local time indicated is the same as or ahead of Greenwich Mean Time.
The character 'O' is returned if the system on which this function is
evaluated does not have the facility to provide the local time differential
factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 . through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+ ', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time. If
character position 17 is '0', the value 00 is returned.

A-39

Intrinsic Function - CURRENT-DATE

Character
Positions

20-21

Contents

Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+' or
'-',respectively. If character position 17 is '0', the value 00 is returned.

(2) If the system does not have the facility to provide fractional parts of a second, the value
00 is returned in character positions 15 and 16.

(3) If the system does not have the facility to provide the local time differential factor, the
value 00000 is returned in character positions 17 through 21.

A-40

Intrinsic Function - DATE-OF-INTEGER

2.12 THE DATE-OF-INTEGER FUNCTION

2.12.1 Description

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date
form to standard date form (YYYYMMDD). The type of this function is integer.

2.12.2 General Format

FUNCTION DATE-OF-INTEGER (argument-1)

2.12.3 Arguments

(1) Argument-1 is a positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar.

2.12.4 Returned Values

(1) The returned value represents the ISO Standard date equivalent of the integer specified in
argument-1.

(2) The returned value is in the form (YYYYMMDD) where YYYY represents a year in the
Gregorian calendar; MM represents the month of that year; and DD represents the day of that
month.

A-41

Intrinsic Function - DAY-OF-INTEGER

2.13 THE DAY-OF-INTEGER FUNCTION

2.13.1 Description

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date
form to Julian date form (YYYYDDD). The type of this function is integer.

2.13.2 General Format

FUNCTION DAY-OF-INTEGER (argument-1)

2.13.3 Arguments

(1) Argument-I is a positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar.

2.13.4 Returned Values

(1) The returned value represents the Julian equivalent of the integer specified in argument-1.

(2) The returned value is an integer of the form (YYYYDDD) where YYYY represents a year in
the Gregorian calendar and DOD represents the day of that year.

A-42

Intrinsic Function - FACTORIAL

2.14 THE FACTORIAL FUNCTION

2.14.1 Description

The FACTORIAL function returns an integer that is the factorial of argument-1. The type of
this function is integer.

2.14.2 General Format

FUNCTION FACTORIAL (argument.-1)

2.14.3 Arguments

(1) Argument-1 must be an integer greater than or equal to zero.

2.14.4 Returned Values

(1) If the value of argument-1 is zero, the value 1 is returned.

(2) If the value of argument-1 is positive, its factorial is returned.

A-43

Intrinsic Function - INTEGER

2.15 THE INTEGER FUNCTION

2.15.1 Description

The INTEGER function returns the greatest integer value that is less than or equal to the
argument. The type of this function is integer.

2.15.2 General Format

FUNCTION INTEGER (argument-1)

2.15.3 Arguments

(1) Argument-1 must be class numeric.

2.15.4 Returned Values

(1) The returned value is the greatest integer less than or equal to the value of argument-1.
For example, if the value of argument-1 is -1.5, -2 is returned. If the value of argument-1 is +1.5,
+ 1 is returned.

A-44

Intrinsic Function - INTEGER-OF-DATE

2.16 THE INTEGER-OF-DATE FUNCTION

2.16.1 Description

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date
form (YYYYMMDD) to integer date form. The type of this function is integer.

2.16.2 General Format

FUNCTION INTEGER-OF-DATE (argument-1)

2.16.3 Arguments ·

(1) Argument-1 must be an integer of the form YYYYMMDD, whose value is obtained from the
calculation (YYYY • 10,000) + (MM • 100) + DD.

a. YYYY represents the year in the Gregorian calendar. It must be an integer greater
than 1600.

b. MM represents a month and must be a positive integer less than 13.

c. DD represents a day and must be a positive integer less than 32 provided that it is
valid for the specified month and year combination.

2.16.4 Returned Values

(1) The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600, in the Gregorian calendar.

A-45

Intrinsic Function - INTEGER-OF-DAY

2.17 THE INTEGER-OF-DAY FUNCTION

2.17.1 Description

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form
(YYYYDDD) to integer date form. The type of this function is integer.

2.17.2 General Format

FYNCTION INTEGER.-OF-DAY Cargument-1)

2.17.3 Arguments

(1) Argument-1 must be an integer of the form YYYYDDD, whose value is obtained from the
calculation (YYYY * 1000) + ODD.

a. YYYY represents the year in the Gregorian calendar. It must be an integer greater
than 1600.

b. ODD represents the day of the year. It must be a positive integer less than '367
provided that it is valid for the year specified.

2.17.4 Returned Values

(1) The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600, in the Gregorian calendar.

A-46

Intrinsic Function - INTEGER-PART

2.18 THE INTEGER-PART FUNCTION

2.18.1 Description

The INTEGER-PART function returns an integer that is the integer portion of argument-1. The
type of this function is integer.

2.18.2 General Format

FUNCTION INTEGER-PART (argument-1)

2.18.3 Arguments

(1) Argument-1 must be class numeric.

2.18.4 Returned Values

(1) If the value of argument-1 is zero, the returned value is zero.

(2) If the value of argument-1 is positive, the returned value is the greatest integer less than
or equal to the value of argument-1. For example, if the value of argument-1 is +1.5, +1 is
returned.

(3) If the value of argument-1 is negative, the returned value is the least integer greater than
or equal to the value of argument-1. For example, if the value of argument-1 is -1.5, -1 is
returned.

A-47

Intrinsic Function - LENGTH

2.19 TIIE LENGm FUNCTION

2.19.1 Description

The LENGTH function returns an integer equal to the length of the argument in character
positions. The type of this function is integer.

2.19.2 General Format

FUNCTION ~ (argument-1)

2.19.3 Arguments

(1) Argument-1 may be a nonnumeric literal or a data item of any class or category.

(2) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING
phrase of the OCCURS clause, the contents of the data item referenced by the data-name specified
in the DEPENDING phrase are used at the time the LENGTH function is evaluated.

2.19.4 Retumecl Values

(1) If argument-1 is a nonnumeric literal or an elementary data item or argument-1 is a group
data item that does not contain a variable occurrence data item, the value returned is an integer
equal to the length of argument-1 in character positions.

(2) If argument-1 is a group data item containing a variable occurrence data item, the returned
value is an integer determined by evaluation of the data item specified in the DEPENDING phrase of
the OCCURS clause for that variable occurrence data item. This evaluation is accomplished
according to the rules in the OCCURS clause dealing with the data item as a sending data item.
(See page VI-26, The OCCURS Clause; and page Vl-46, The USAGE Clause.)

(3) The returned value includes implicit FILLER characters, if any.

A-48

Intrinsic Function - LOG

2.20 THE WG FUNCTION

2.20.1 Description

The LOG function returns a numeric value that approximates the logarithm to the base e
(natural log) of argument-1. The type of this function is numeric.

2.20.2 General Format

FUNCTION LQ!;i (argument-1)

2.20.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be greater than zero.

2.20.4 Returned Values

(1) The returned value is the approximation of the logarithm to the base e of argument-1.

A-49

Intrinsic Function • LOGlO

2.21 mE LOG10 FUNCTION

2.21.1 Description

The LOGlO function returns a numeric value that approximates the logarithm to the base 10 of
argument-1. The type of this function is numeric.

2.21.2 General Format

FYNCTIOH ~ Cargument-1)

2.21.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be greater than uro.

2.21.4 Retumed Values

(1) The returned value. is the approximation of the logarithm to the base 10 of argument-1.

A-SO

Intrinsic Function - LOWER-CASE

2.22 THE LOWER.CASE FUNCTION

2.22.1 Description

The LOWER-CASE function returns a character string that is the same length as argument-1
with each upppercase letter replaced by the corresponding lowercase letter. The type of this
function is alphanumeric.

2.22.2 General Format

FUNCTION I.CMER-CASE (argument-1)

2.22.3 Arguments

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in
length.

2.22.4 Returned Values

(1) The same character string as argument-1 is returned, except that each uppercase letter
replaced by the corresponding lowercase letter.

(2) The character string returned has the same length as argument-1.

(3) If the computer character set does not include lowercase letters, no changes take place in
the character string.

A-51

Intrinsic Function - MAX

2.23 TIIE MAX FUNCTION

2.23.1 Description

The MAX function returns the content of the argument-1 that contains the maximum value. The
type of this function depends upon the argument types as follows:

ArlP!Dlent ~

Alphabetic
Alphanumeric
All arguments integer
Numeric (some arguments may be integer)

2.23.2 General Format

FUNCTION~ ({argument-1} ...

2.23.3 Arguments

Function~

Alphanumeric
Alphanumeric
Integer
Numeric

(1) If more than one argument-1 is specified, all arguments must be of the same class.

2.23.4 Returned Values

(1) The returned value is the content of the argument-1 having the greatest value. The
comparisons used to determine the greatest value are made according to the rules for simple
conditions. (See page VI-54, Simple Conditions.)

(2) If more than one argument-1 has the same greatest value, the content of the argument-1
returned is the leftmost argument-1 having that value.

(3) If the type of the function is alphanumeric, the size of the returned value is the same as
the size of the selected argument-1.

A-52

Intrinsic Function - MEAN

2.24 THE MEAN FUNCTION

2.24.1 Description

The MEAN function returns a numeric value that is the arithmetic mean (average) of its
arguments. The type of this function is numeric.

2.24.2 General Format

FUNCTION~ ({argument-1} ...)

2.24.3 Arguments

(1) Argument-1 must be class numeric.

2.24.4 Retumed Values

(1) The returned value is the arithmetic mean of the argument-1 series.

(2) The returned value is defined as the sum of the argument-1 series divided by the number of
occurrences referenced by argument-1.

A-53

Intrinsic Function - MEDIAN

2.25 THE MEDIAN FUNCTION

2.25.1 Description

The MEDIAN function returns the content of the argument whose value is the middle value in
the list formed by arranging the arguments in sorted order. The type of this function is numeric.

2.25.2 General Format

FYNCTION ~ ({argument-1} •••)

2.25.3 Arguments

(1) Argument-1 must be class numeric.

2.25.4 Retumed Values

(1) The returned value is the content of the argument-1 having the middle value in the list
formed by arranging all the argument-1 values in sorted order.

(2) If the number of occurrences referenced by argument-1 is odd, the returned value is such
that at least half of the occurrences referenced by argument-1 are greater than or equal to the
returned value and at least half are less than or equal. If the number of occurrences referenced by
argument-1 is even, the returned value is the arithmetic mean of the values referenced by the two
middle occurrences.

(3) The comparisons used to arrange the argument-1 values in sorted order are made according
to the rules for simple conditions. (See page VI-54, Simple Conditions.)

A-54

Intrinsic Function - MIDRANGE

2.26 THE MIDRANGE FUNCTION

2.26.1 Description

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean
(average) of the values of the minimum argument and the maximum argument. The type of this
function is numeric.

2.26.2 General Format

FtJNCIION MIDRANGE ({argument-1} •••)

2.26.3 Arguments

(1) Argument-1 must be class numeric.

2.26.4 Returned Values

(1) The returned value is the arithmetic mean of the greatest argument-1 value and the least
argument-1 value. The comparisons used to determine the greatest and least values are made
according to the rules for simple conditions. (See page VI-54, Simple Conditions.)

A-55

Intrinsic Function - MIN

2:1.7 THE MIN FUNCTION

2:1.7.1 Description

The MIN function returns the content of the argument-1 that contains the minimum value. The
type of this function depends upon the argument types as follows:

Argument~

Alphabetic
Alphanumeric
All arguments integer
Numeric (some arguments may be integer)

2:1.7 :J. General Format

FUNCTION~ ({argument-1} ...)

2:1.7.3 Arguments

Function~

Alphanumeric
Alphanumeric
Integer
Numeric

(1) If more than one argument-1 is specified, all arguments must be of the same class.

2:1.7.4 Returned Values

(1) The returned value is the content of the argument-1 having the least value. The
comparisons used to determine the least value are made according to the rules for simple conditions.
(See page VI-54, Simple Conditions.)

(2) If more than one argument-1 has the same least value, the content of the argument-1
returned is the leftmost argument-1 having that value.

(3) If the type of the function is alphanumeric, the size of the returned value is the same as
the size of the selected argument-1.

A-56

Intrinsic Function - MOD

2.28 THE MOD FUNCTION

2.28.1 Description

The MOD function returns an integer value that is argument-1 modulo argument-2. The type of
this function is integer.

2.28.2 General Format

FUNCTION KlD (argument-1 argument-2)

2.28.3 Arguments

(1) Argument-1 and argument-2 must be integers.

(2) The value of argument-2 must not be zero.

2.28.4 Retumed Values

(1) The returned value is argument-1 modulo argument-2. The returned value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

(2) The following illustrates the expected results for some values of argument-1 and
argument-2.

ArKUJDent-1 ArBUment-2 Return

11 5 1
-11 5 4
11 -5 -4

-11 -5 -1

A-57

Intrinsic Function - NUMV AL

2.29 THE NUMVAL FUNCTION

2.29.1 Description

The NUMV AL function returns the numeric value represented by the character string specified
by argument-1. Leading and trailing spaces are ignored. The type of this function is numeric.

2.29.2 General Format

FUNCTION ~ (argument.·1)

2.29.3 Arguments

(1) Argument-1 must be a nonnumeric literal or alphanumeric data item whose content has one
of the following two formats:

or

(space] [+] [space] {digit. (. (digit.]]} [space]

- . digit.

{
digit. [

[space]
• digit.

[digit.]]}

+

[space] [apace]

where space is a string of zero or more spaces and digit is a string of one to 18 digits.

(2) The total number of digits in argument-1 must not exceed 18.

(3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a
comma must be used in argument-1 rather than a decimal point.

2.29.4 Returned Values

(1) The returned value is the numeric value represented by argument-1.

(2) The number of digits returned is 18.

A-58

Intrinsic Function - NUMV AL-C

2.30 mE NUMVAL-C FUNCTION

2.30.1 Description

The NUMV AL-C function returns the numeric value represented by the character string specified
by argument-1. Any optional currency sign specified by argument-2 and any optional commas
preceding the decimal point are ignored. The type of this function is numeric.

2.30.2 General Format

FUNCTION NUHVAL-C (argument-1 [argwnent-2])

2.30.3 Arguments

(1) Argument-1 must be a nonnumeric literal or alphanumeric data item whose content has one
of the following two formats:

[+] {digit [, digit] • . • [. [digit]]}
[space] _ [space] [cs] [space] [space]

• digit

or

+

{
digit [, digit] .•• [. [digit]]}

[space] [cs] [space] [space]
• digit ~

[space]

where space is a string of zero or more spaces, cs is the string of one or more characters specified
by argument-2 and digit is a string of one or more digits.

(2) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph,
the functions of the comma and decimal point in argument-1 are reversed.

(3) The total number of digits in argument-1 must not exceed 18.

(4) Argument-2, if specified, must be a nonnumeric literal or alphanumeric data item.

(5) If argument-2 is not specified, the character used for cs is the currency symbol specified
for the program.

2.30.4 Returned Values

(1) The returned value is the numeric value represented by argument-1.

(2) The number of digits returned is 18.

A-59

Intrinsic Function - ORD

2.31 THE ORD FUNCTION

2.31.1 Description

The ORD function returns an integer value that is the ordinal position of argument-1 in the
collating sequence for the program. The lowest ordinal position is 1. The type of this function is
integer.

2.31.2 General Format

FUNCTION Qim (argument-1)

2.31.3 Arguments

(1) Argument-1 must be one character in length and must be class alphabetic or alphanumeric.

2.31.4 Retumed Values

(1) The returned value is the ordinal position of argument-1 in the collating sequence for the
program.

A-60

Intrinsic Function - ORD-MAX

2.32 THE ORD-MAX FUNCTION

2.32.1 Description

The ORD-MAX function returns a value that is the ordinal number of the argument-1 that
contains the maximum value. The type of this function is integer.

2.32.2 General Format

FUNCTION~ ({argument-1} ...)

2.32.3 Arguments

(1) If more than one argument-1 is specified, all arguments must be of the same class.

2.32.4 Returned Values

(1) The returned value is the ordinal number that corresponds to the position of the
argument-1 having the greatest value in the argument-1 series.

(2) The comparisons used to determine the greatest valued argument are made according to the
rules for simple conditions. (See page VI-54, Simple Conditions.)

(3) If more than one argument-1 has the same greatest value, the number returned corresponds
to the position of the leftmost argument-1 having that value.

A-61

Intrinsic Function - ORD-MIN

2.33 THE ORD-MIN FUNCTION

2.33.1 Description

The ORD-MIN function returns a value that is the ordinal number of the argument that contains
the minimum value. The type of this function is integer.

2.33.2 General Format

FUNCTION ORD-MIN ({argument-1} •••)

2.33.3 Arguments

(1) If more than one argument-1 is specified, all arguments must be of the same class.

2.33.4 Returned Values

(1) The returned value is the ordinal number that corresponds to the position of the
argument-1 having the least value in the argument-1 series.

(2) The comparisons used to determine the least valued argument-1 are made according to the
rules for simple conditions. (See page VI-54, Simple Conditions.)

(3) If more than one argument-1 has the same least value, the number returned corresponds to
the position of the leftmost argument-1 having that value.

A-62

Intrinsic Function - PRESENT-VALUE

2.34 TIIE PRESENT-VALUE FUNCTION

2.34.1 Description

The PRESENT-VALUE function returns a value that approximates the present value of a series
of future period-end amounts specified by argument-2 at a discount rate specified by argument-1.
The type of this function is numeric.

2.34.2 General Format

FUNCTION PBESENJ-VALUE (argument.-1 {argument.-2} •••)

2.34.3 Arguments

(1) Argument-1 and argument-2 must be of the class numeric.

(2) The value of argument-1 must be greater than-1.

2.34.4 Retumed Values

(1) The returned value is an approximation of the summation of a series of calculations with
each term in the following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2. The exponent, n, is incremented from one
by one for each term in the series.

A-63

Intrinsic Function - RANDOM

2.35 THE RANDOM FUNCTION

2.35.1 Description

The RANDOM function returns a numeric value that is a pseudo-random number from a
rectangular distn"bution. The type of this function is numeric.

2.35.2 General Format

FUNCTION~ [(argument-1))

2.35.3 Arguments

(1) If argument-1 is specified, it must be zero or a positive integer. It is used as the seed
value to generate a sequence of pseudo-random numbers.

(2) If a subsequent reference specifies argument-1, a new sequence of pseudo-random numbers
is started.

(3) If the first reference to this function in the run unit does not specify argument-1, the seed
value is defined by the implementor.

(4) In each case, subsequent references without specifying argument-1 return the next number
in the current sequence.

2.35.4 Retumed Values

(1) The returned value is greater than or equal to zero and less than one.

(2) For a given seed value on a given implementation, the sequence of pseudo-random numbers
will always be the same.

(3) The implementor will specify the subset of the domain of argument-1 values that will yield
distinct sequences of pseudo-random numbers. This subset must include the values from 0 through
at least 32767.

A-64

Intrinsic Function - RANGE

2.36 THE RANGE FUNCTION

2.36.1 Description

The RANGE function returns a value that is equal to the value of the maximum argument minus
the value of the minimum argument. The type of this function depends upon the argument types as
follows:

Ar1rnment ~

All arguments integer
Numeric (some arguments may be integer)

2.36.2 General Format

FUNCTION~ ({argument-1} ...)

2.36.3 Arguments

(1) Argument-1 must be class numeric.

2.36.4 Returned Values

Function~

Integer
Numeric

(1) The returned value is equal to the greatest value of argument-1 minus the least value of
argument-1. The comparisons used to determine the greatest and least values are made according to
the rules for simple conditions. {See page VI-54, Simple Conditions.)

A-65

Intrinsic Function • REM

2.37 THE REM FUNCTION

2.37 .1 Description

The REM function returns a numeric value that is the remainder of argument-1 divided by
argument-2. The type of this function is numeric.

2.37.2 General Format

FUNCTION REM (argument-1 argument-2)

2.37.3 Arguments

(1) Argument-1 and argument-2 must be class numeric.

(2) The value of argument-2 must not be zero.

" 2.37.4 Returned Values

(1) The returned value is the remainder of argument-1 / argument-2. It is defined as the
expression:

argument-1 - (argument-2 *FUNCTION INTEGER-PART (argument-1 I argument-2))

A-<i6

Intrinsic Function - REVERSE

2.38 mE REVERSE FUNCTION

2.38.1 Descripdon

The REVERSE function returns a character string of exactly the same length as argument-1 and
whose characters are exactly the same as those of argument-1, except that they are in reverse
order. The type of this function is alphanumeric.

2.38.2 General Format

FUNCTION REVERSE (argument-1)

2.38.3 Arguments

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in
length.

2.38.4 Returned Values

(1) If argument-1 is a character string of length n, the returned value is a character string of
length n such that for 1 ~ j ~ n, the character in position j of the returned value is the character
from position n-j + 1 of argument-1.

A-67

Intrinsic Function - SIN

2.39 THE SIN FUNCTION

2.39.1 Description

The SIN function returns a numeric value that approximates the sine of an angle or arc,
expressed in radians, that is specified by argument-1. The type of this function is numeric.

2.39.2 General Format

FUNCTION §.!! (argument-1)

2.39.3 Arguments

(1) Argument-1 must be class numeric.

2.39.4 Returned Values

(1) The returned value is the approximation of the sine of argument-1 and is greater than or
equal to -1 and less than or equal to + 1.

A-68

Intrinsic Function - SQRT

2.40 THE SQRT FUNCTION

2.40.1 Description

The SQRT function returns a numeric value that approximates the square root of argument-1.
The type of this function is numeric.

2.40.2 General Format

FUNCTION §mil'. (argwnent-1)

2.40.3 Arguments

(1) Argument-1 must be class numeric.

(2) The value of argument-1 must be zero or positive.

2.40.4 Returned Values

(1) The returned value is the absolute value of the approximation of the square root of
argument-1.

A-69

Intrinsic Function - STANDARD-DEVIATION

2.41 THE STANDARD-DEVIATION FUNCTION

2.41.1 Description

The STANDARD-DEVIATION function returns a numeric value that approximates the standard
deviation of its arguments. The type of this function is numeric.

2.41.2 General Format

FUNCTION STANDARD-DEVIATION ({argument-1} .••)

2.41.3 Arguments

(1) Argument-1 must be class numeric.

2.41.4 Returned Values

(1) The returned value is the approximation of the standard deviation of the argument-1 series.

(2) The returned value is calculated as follows:

a. The difference between each argument-1 value and the arithmetic mean of the
argument-1 series is calculated and squared.

b. The values obtained are then added together. This quantity is divided by the number
of values in the argument-1 series.

c. The square root of the quotient obtained is then calculated. The returned value is the
absolute value of this square root.

(3) If the argument-1 series consists of only one value, or if the argument-1 series consists of
all variable occurrence data items and the total number of occurrences for all of them is one, the
returned value is rero.

A-70

Intrinsic Function - SUM

2.42 THE SUM FUNCTION

2.42.1 Description

The SUM function returns a value that is the sum of the arguments. The type of this function
depends upon the argument types as follows:

Arpment ~

All arguments integer
Numeric (some arguments may be integer)

2.42.2 General Format

FUNCTION film ({argwnent-1} • • •)

2.42.3 Arguments

(1) Argument-1 must be class numeric.

2.42A Retumed Values

(1) The returned value is the sum of the arguments.

Function~

Integer
Numeric

(2) If the argument-1 series are all integers, the value returned is an integer.

(3) If the argument-1 series are not all integers, a numeric value is returned.

A-71

Intrinsic Function - TAN

2.43 THE TAN FUNCTION

2.43.1 Description

The TAN function returns a numeric value that approximates the tangent of an angle or arc,
expressed in radians, that is specified by argument-1. The type of this function is numeric.

2.43.2 General Format

FUNCTION ~ (argument-1)

2.43.3 Arguments

(1) Argument-1 must be class numeric.

2.43.4 Returned Values

(1) The returned value is the approximation of the tangent of argument-1.

A-72

Intrinsic Function - UPPER-CASE

2.44 THE UPPER-CASE FUNCTION

2.44.1 Descrlpdon

The UPPER-CASE function returns a character string that is the same length as argument-1
with each lowercase letter replaced by the corresponding uppercase letter. The type of this
function is alphanumeric.

2.44.2 General Format

FUNCTION UPPER-CASE (argument-1)

2.44.3 Arguments

(1) Argument-1 must be class alphabetic or alphanumeric and must be at least one character in
length.

2.44.4 Returned Values

(1) The same character string as argument-1 is returned, except that each lowercase letter is
replaced by the corresponding uppercase letter.

(2) The character string returned has the same length as argument-1.

A-73

Intrinsic Function - VARIANCE

2.45 THE VARIANCE FUNCTION

2.45.1 Description

The VARIANCE function returns a numeric value that approximates the variance of its
arguments. The type of this function is numeric.

2.45.2 General Format

FUNCTION VARIANCE ({argument-1} ..•)

2.45.3 Arguments

(1) Argument-1 must be class numeric.

2.45.4 Returned Values

(1) The returned value is the approximation of the variance of the argument-1 series.

(2) The returned value is defined as the square of the standard deviation of the argument-1
series. (See page A-70, STANDARD-DEVIATION Returned Values, rule 2.)

(3) If the argument-1 series consists of only one value, or if the argument-l series consists of
all variable occurrence data items and the total number of occurrences for all of them is one, the
returned value is zero.

A-74

Intrinsic Function - WHEN-COMPILED

2.46 THE WHEN-COMPILED FUNCTION

2.46.1 Description

The WHEN-COMPILED function returns the date and time the program was compiled as provided
by the system on which the program was compiled. The type of this function is alphanumeric.

2.46.2 General Format

FUNCTION WH!N-CCJll'ILED

2.46.3 Returned Values

(1) The character positions returned, numbered from left to right, are:

Positions

1-4

5-6

7-8

9-10

11-12

13-14

15-16

17

18-19

Contents

Four numeric digits of the year in the Gregorian calendar.

Two numeric digits of the month of the year, in the range 01 through 12.

Two numeric digits of the day of the month, in the range 01 through 31.

Two numeric digits of the hours past midnight, in the range 00 through 23.

Two numeric digits of the minutes past the hour, in the range 00 through
59.

Two numeric digits of the seconds past the minute, in the range 00 through
59.

Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
program was compiled did not have the facility to provide the fractional
part of a second.

Either the character '-', the character '+ ', or the character 'O'. The
character •-• is returned if the local time of compilation, reported in the
previous character positions, is behind Greenwich Mean Time. The character
'+' is returned if the reported time is the same as or ahead of Greenwich
Mean Time. The character 'O' is returned if the system on which the
program was compiled did not have the facility to provide the local time
differential factor.

If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+ ', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is· ahead of Greenwich Mean Time. If
character position 17 is 'O', the value 00 is returned.

A-75

Intrinsic Function - WHEN-COMPILED

Character
Positions

20-21

Contents

Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+' or
'-',respectively. If character position 17 is '0', the value 00 is returned.

(2) The returned value is the date and time of compilation of the source program that contains
this function. If the program is a contained program, the returned value is the compilation date
and time associated with the separately compiled program in which it is contained.

(3) The returned value must denote the same time as the compilation date and time if provided
in the listing of the source program and in the generated object code for the source program,
although their representations and precisions may differ.

A-76

