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Chapter 1

Introduction

1.1 General

DSPLIB is the Digital Signal Processing LIBrary. Release 2 of DSPLIB contains over 200 routines,
that variously can perform:

• Fast Fourier transforms (FFT)

• Windowing

• Signal generation

• Signal format conversion

In general, for each function provided by DSPLIB there are 14 subroutines, one for each FORTRAN-
PLUS data precision: INTEGER*1 to INTEGER*8 and REAL*3 to REAL*8. In the detailed
specifications that follow, for each function the INTEGER*1 to INTEGER*8 variants are grouped
into the generic INTEGER*n, and the REAL*3 to REAL*8 variants are grouped into the generic
REAL*n.

The exception to this generality is the group of high performance FFT subroutines, which can
handle input data precisions of 8 to 11 bits, and in some cases up to 16 bits.

The DAP is based on an ES by ES array of single bit processing elements, where ES is the
edge size of the DAP: 32 for DAP 500 machines, 64 for DAP 600 machines, and so on. All of
the subroutines in Release 2 operate on N-point arrays of matrices, treated as ES2 1-dimensional
N-point data sets. Each complete data set is manipulated by only 1 processing element and stored
in the memory directly associated with that processing element. The subroutines operate on all
ES2 data sets in parallel.

Points to note:

• The number of processing elements in the DAP (the square of ES, the ‘edge size’, in DAP
terminology) does not affect the running of any subroutine in the library. However, the rou
tines can be tuned at software configuration time for particular sizes of DAP array memory,
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Fast Fourier transforms Chapter 1: Introduction

to optimise subroutine performance; you should make sure that the DSPLIB supplied to you
has been configured by AMT for your DAP’s memory size. If you try to run the library on a
larger array memory you should have no problems (other than reduced performance); if you
try to run it on a smaller array memory, some of the subroutines will not work.

• Various system routines are used internally by the DSPLIB; the names of these routines
start with SPL_, and are listed under Auxiliary routines in the reference section of this
manual. You should make sure that none of the routines you write has the same name as any
of these system routines; if any do you may get unexpected results when you use DSPLIB.

1.2 Fast Fourier transforms

Two chapters in the manual are devoted to fast Fourier transforms. Chapter 3 describes 10 groups
of subroutines, that take input data from arrays X and Y, calculate the transform, and put result
back in X and Y. One of the user-defined parameters to those FFTs is N, the required length of the
transform — both the number of pairs of input data to be operated on to form the transform, and
the number of terms in the Fourier series that are to be evaluated to form the required transform.
There is a maximum permitted size to the value of N, given by the formula:

(256 Mem
Nmar

bytes

where:

Nmaz is the maximum length of the transform that can be specified in the routine

Mem is the size of the DAP array store, in Mbytes

bytes is the number of bytes in each data element being transformed

= z, where z = 2, 2 <x <2Y+l, and y is an integer.

Chapter 4 describes 2 groups of high performance FFTs, that give an improvement in performance
of the order of 3 or 4 over those described in chapter 3. They also allow you more freedom in the
way you input the data to be transformed, at the expense of being more difficult to use.

The discrete Fourier transforms (DFTs), and the inverse discrete Fourier transforms, on which fast
Fourier transforms (FFTs) are based, are calculated from the series:

the ks” component of the DFT: X(k) = z(n)exp
(_27rnk)

for k = 0, 1,..N —1

and
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Chapter 1: Introduction Signal format conversion

the n’ component of the inverse DFT: x(n) = X(k) exp ( 2lrnk)

for n=0,1,...,N—1

where N is the user-specified length of the required transform.

1.3 Signal format conversion

In the section of the library concerned with signal format conversion, routines exist to convert
signal format between:

• In-phase and quadrature components, and magnitude and phase angle components

• In-phase and quadrature components, and power and phase angle components

The algorithms used for the conversion are:

Magnitude = Jz2 + y2

Power = 20 log10 x2 + y2

Phase angle = arctan (!)
where:

x is the in-phase component of the signal

y is the quadrature component of the signal

DSPLIB’s subroutines are described in the following chapters. Chapter 2 contains a quick reference
list of the routines; chapters 3 to 7 describe each subroutine in detail.

1.4 Using the library on different ranges of DAP machines

In general the signal processing software has been written for use on any of the models in the whole
range of DAP machines, although some limitations to full portability do exist, mainly because of
the characteristics of the various host operating systems. These limitations are discussed in the
next sections.

Dizital signal processing library manOl3.03 3



Compilation and Linking Procedure Chapter 1: Introduction

1.5 Compilation and Linking Procedure

1.5.1 In a Sun UNIX environment

You can link the digital signal processing library into a program by using the -1 option to either
dapa or dapf (see DAP Series: Program Development under UNIX (manOO3) for more details).

For example, a FORTRAN-PLUS source program in a file sigproc.df can be compiled and linked
with the AMT-supplied DSPLIB routines, and the object code put into a DOF file sigproc by
executing the command:

dap! —o sigproc sigproc.df —1 dsplib

If you want to port FORTRAN-PLUS or APAL code containing calls to signal processing subrou
tines to a DAP of different edge size, also operating under UNIX, then you have to recompile and
relink the code.

The UNIX environment variable that ‘knows’ the size of the target DAP is DAPSIZE, and DAP
SIZE defaults to 32 when you run dapf or dapa. Hence, if you want to compile and link code to
run on a DAP 500, you do not have to set DAPSIZE explicitly. If you want to compile and link
code to run on a DAP 600, then before you use dapf or dapa you should enter:

setenv DAPSIZE 64

and so on for other sizes of DAP.

1.5.2 In a VAX/VMS environment

You can link the digital signal processing library into a program by including it in the list of input
files to the DLINK command (see DAP Series: Program Development Under VAX/VMS (manOO4)
for further details). In release 3.OV of the basic software, two versions of the graphics library are
supplied, DSPLIB5 for DAP 500, and DSPLIB6 for DAP 600; when you link the signal processing
library into your program you need to specify the appropriate version of DSPLIB.

For example, to compile and link the DAP program in the file SIGPROC.DFP to run on a
DAP 600, you can use the following commands:

$ DFORTRAN/DAPSIZE=64 SIG?ROC
$ DLINX/DAPSIZE=64 SIGPROC ,SYS$LIBRARY : DSPLIB6/LIBRARY

To compile and link code in file SIGCALCS.DFP to run on a DAP 500 the above commands
would be:

$ DFORTRAN/DAPSIZE=32 SIGCALCS
$ DLINK/DA?S1ZE32 SIGCALCS , SYS$LIBRARY : DSPLIB5/LIBRARY

4 manOl3.03 AMT



Chapter 1: Introduction Compilation and Linking Procedure

As an alternative to specifying that the signal processing routines which the code in SIGPROC
references are to be found in library SYS$LIBRARY:DSPLIB6.DLB, or the routines for SIGCALCS
are in library SYS$LIBRARY:DSPLIB5.DLB you can define the logical name DAPnJABRARY
by using the command:

$ DEFINE DAPn...LIBRARY SYS$LIBRARY:DSPLIBn

where ii is 5 (for DAP 500) or 6 (for DAP 600). This will cause DLINK to search DSPLIBn
automatically for unsatisfied external references. If you are going to use DSPLIBn frequently, you
could insert the above DEFINE into your LOGIN.COM file. If there are several DAP users on the
system, linked to a DAP 600 say, the system manager could include the command:

$ DEFINE/SYSTEM DAP6_LIBRARY SYS$LIBRARY:DSPLIB6

into the site system start-up command file which would give all users automatic access to the
library.

Similarly, the command:

$ DEFINE/SYSTEM DAPS_LIBRARY SYS$LIBRARY:DSPLIBS

would achieve the same thing for a DAP 500 system.

On a system that has available both DAP 500 and DAP 600, then both DAP5_LIBRARY and
DAP6_LIBRARY can be defined, and users will pick up the appropriate version of DSPLIB when
they specify DAPSIZE in their DFOBTRAN and DLINK commands.

Digital siznal rocessinz library manOl3.03 5
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Chapter 2

D$PLIB quick reference
catalogue

Listed below are the groups of subroutines in DSPLI3, and the subroutines in each group. For
details of each group’s use, consult the relevant section in the chapters that follow.

You may find this chapter helpful in the initial selection of suitable routines for the job in hand.

Chapter 3 — Fast Fourier transforms

1 Complex forward FFT starts on page 12
CF_FFT1_In calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

CF_ FFT1_ Rn calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

2 Complex inverse FFT starts on page 16
CI - FFT1_ In calculates an inverse fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

CI - FFT1_ Rn calculates an inverse fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

3 Real forward FFT starts on page 20
RF_ FFT1_ In calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

RF_FFT1_Rn calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type REAL*n, where n can have any value from 3 to 8.

4 Real inverse FFT starts on page 24
RI_FFT1_In calculates an inverse fast Fourier transform (FFT) of complex conjugate sy
metric input data held in an array of numbers of type INTEGER*n, where n can have any
value from 1 to 8, and produces a real output.

RI - FFT1_ Rn calculates an inverse fast Fourier transform (FFT) of complex conjugate sy
metric input data held in an array of numbers of type REAL*n, where n can have any value
from 3 to 8, and produces a real output.

Digital siznal processing library man 013.03 7
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Fast Fourier transforms
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Complex forward FFT Chapter 3: Fast Fourier transforms

3.1 Complex forward FFT

3.1.1 CF_FFT1_In release 2

1 Purpose
CF_ FFTLIn calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

2 Specification
SUBROUTINE CF.FfTLIn (X, Y, N, M, IFAIL)
INTEGER*n X( , , N), Y( , , N)
INTEGER*4 N, M, IFAIL

3 Description
CF_FFT1_In simultaneously evaluates ES2 N-point complex FFTs, where ESE is the edge
size of the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output data will be stored in X and Y, and the user’s input data over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X — INTEGER*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y — INTEGER*n matrix variable N-deep

Contains the imaginary input data on entry to the subroutine, and the imaginary spec
trum on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
O The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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Chapter 3: Fast Fourier transforms Complex forward FFT

7 Auxiliary routines
IN_FFT1_In — Initialises the FFTs coefficient arrays for a given length N (the Mtl power
of 2).

System Routines

SPL. RAD2-In
SPL. RAD4-In
SPL. IRAD8-In
SPL. LRADS-In

SPLMR.. REV.82
SPL..MR.. REV..84
SPLMR REV88

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used - SPL.FFTIn, SPL.MACH, SPLTMPO..In to SPL.TMP4..In,
SPL.TRIG

10 Keywords
FFT, fast Fourier transforms, spectrai analysis

Digital signal processing library manOl3.03 13



Complex forward FFT Chapter 3: Fast Fourier transforms

3.1.2 CF_FFT1_Rn release 2

1 Purpose
CF_ FFT1_ Rn calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE CFFFTLRn (X, Y, N, M, IFAIL)
REAL*n X(,,N),Y(,,N)
INTEGER*4 N, M, IFAIL

3 Description
CF_FFT1_Rn simultaneously evaluates ES2 N-point complex FFTs, where ES is the edge
size of the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output spectral data will be stored in X and Y, and the user’s input data over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974.

5 Arguments

X — REAL*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y — REAL*n matrix variable N-deep

Contains the imaginary input data on entry to the subroutine, and the imaginary spec
trum on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, and N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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Chapter 3: Fast Fourier transforms Complex forward FFT

7 Auxiliary routines
IN... FFT1_Rn — Initialises the FFT’s coefficient arrays for a given length N (the jth power
of 2).

System Routines

SPL RAD2-Rn
SPL. RAD4-Rn
SPL IRAD8-Rn
SPL. LRAD8-Rn

SPL. MR. REV...82
SPL. MR.. REV84

8 Accuracy

Details to be supplied

9 Further comments
COMMON blocks used - SPL..FFT...Rn, SPL..MACH, SPLJMPO.Jn to SPLJMP4..In,
SPLJRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis
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Complex in verse FFT Chapter 3: Fast Fourier transforms

3.2 Complex inverse FFT

3.2.1 CI_FFT1_In release 2

1 Purpose
CI - FFT1_In calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type INTEGER*n, where n can have any value from 1
to 8.

2 Specification
SUBROUTINE CLFFTLIn ( X, Y, N, M, IFAIL)
INTEGER*n X(,, N), Y( ,, N)
INTEGER*4 N, M, IFAIL

3 Description
CI - FFT1_ In simultaneously evaluates ES2 N-point complex inverse FFTs, where ES is the
edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix
arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm
is used, so the output data will be stored in X and Y, and the user’s input data over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X — INTEGER*n matrix variable N-deep

Contains the real spectrum on entry to the subroutine, and real data on exit.

Y — INTEGER*n matrix variable N-deep

Contains the imaginary spectrum on entry to the subroutine, and imaginary data on
exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_FFT1_In — Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL. RADI2-In
SPL RADI4-In
SPL. IRADI8-In
SPL.. LRADI8-In

SPL.. MR.. REV...82
SPL MR. REV.84
SPL.. MR. REV.88

8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPL.FFT..In, SPLMACH, SPL..TMPOJn to SPL..TMP4..In,
SPL.TRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis

Dizitaj siznal processing library manOl3.03 17



Complex inverse FFT Chapter 3: Fast Fourier transforms

3.2.2 CI_FFT1_Rn release 2

1 Purpose
CI - FFT1_ Rn calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE CLFFTLRn ( X, Y, N, M, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

3 Description
CI - FFT1_ Rn simultaneously evaluates ES2 N-point complex inverse FFTs, where ES is
the edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep
matrix arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT
algorithm is used, so the output data will be stored in X and Y, and the user’s input data
over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974,

5 Arguments

X — REAL*n matrix variable N-deep

Contains the real spectrum on entry to the subroutine, and real data on exit.

Y — REAL*n matrix variable N-deep

Contains the imaginary spectrum on entry to the subroutine, and imaginary data on
exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_FFT1_Rn — Initialises the FFT’s coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL..RADI2-Rn
SPL... RADI4-Rn
SPL. IRADI8-Rn
SPL.. LRADI8-Rn

SPL... MR. REV...82
SPL. MR REV...84
SPL. MR. REV88

8 Further comments
COMMON blocks used - SPL..FFT.Rn, SPLMACH, SPL..TMPO.Jn to SPLJMP4..In,
SPLTRIG

9 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.3 Real forward FFT

3.3.1 RF....FFT1_In release 2

1 Purpose
RF_ FFT1_In calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

2 Specification
SUBROUTINE RF...FFTLIn (X, Y, N, M, IFAIL)
INTEGER*n X( , , N), Y( , , N)
INTEGER*4 N, M, IFAIL

3 Description
RF_ FFT1_ In simultaneously evaluates ES2 N-point real FFTs, where ES is the edge size od
the target DAP. X (real part) and Y (set to zero) are both N-deep matrix arrays with data
arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the output
spectral data will be stored in X and Y, and the user’s input data over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X — INTEGER*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y — INTEGER*n matrix variable N-deep

Set to zero on entry to the subroutine, and contains the imaginary spectrum on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N =

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_ FFT1_ In — Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL... RRAD2-In
SPL. RRAD4-In
SPL. IRRAD8-In
SPL. LRRAD8-In

SPL MIL REV.82
SPL... MR.. REV84
SPL.. MR.. REV.88

8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPL..FFTIn, SPL..MACH, SPL...TMPO..In to SPL.TMP4..In,
SPLJRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.3.2 RF_FFT1_Rn release 2

1 Purpose
RF_ FFT1_ Rn calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type REAL*n, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE RF...FFTLRn (X, Y, N, M, IFAIL)
REAL*n X(,,N),Y(,,N)
INTEGER*4 N, M, IFAIL

3 Description
RF_FFT1_Rn simultaneously evaluates ES2 N-point real FFTs, where ES is the edge size
od the target DAP. X (real part) and Y (set to zero) are both N-deep matrix arrays with
data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output spectral data will be stored in X and Y, and the user’s input data over-written.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974.

5 Arguments

X REAL*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y — REAL*n matrix variable N-deep

Set to zero on entry to the subroutine, and contains the imaginary spectrum on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N =

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N 2M and N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_FFT1_Rn — Initialises the FFT’s coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL. RRA.D2-Rn
SPL. RRAD4-Rn
SPL. IRRAD8-Rn
SPL.. LRRAD8-Rn

SPL. MR REV...82
SPL.MR.. REV...84
SPLMR. REV88

8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPL.FFT..Rn, SPLMACH, SPLJMPO.An to SPLJMPLIn,
SPLTRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.4 Real inverse FFT

3.4.1 RI_FFT1...In release 2

1 Purpose

RI - FFT1_ In calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type INTEGER*n, where n can have any value from 1
to 8, and produces a real output.

2 Specification

SUBROUTINE RLFFTLIn ( X, Y, N, M, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

3 Description

RI FFT1_In simultaneously evaluates ES2 N-point real inverse FFTs, where ES is the edge
size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm is used,
so the output data will be stored in X, and the user’s input data over-written. Y will be set
to zero.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X — INTEGER*n matrix variable N-deep

Contains the real spectral data on entry to the subroutine, and real data on exit.

Y — INTEGER*n matrix variable N-deep

Contains the imaginary spectral data on entry to the subroutine, and zero on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_FFT1_In — Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL RRADI2-In
SPL.. RRADI4-In
SPL. RIRADI8-In
SPL. LRRADI8-In

SPL. MR. REV...82
SPL. MR. REV84
SPL... MR. REV.88

8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPLFCODEJn, SPL.FFT.Jn, SPL.MACH, SPL..TMPO.Jn to
SPLTMP&In, SPL..TRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.4.2 RI_FFT1_Rn release 2

1 Purpose

RI - FFT1_ Rn calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type REAL*n, where n can have any value from 3 to 8,
and produces a real output.

2 Specification

SUBROUTINE RLFFTLRn (X, Y, N, M, IFAIL)
REAL*n X(,,N),Y(,,N)
INTEGER*4 N, M, IFAIL

3 Description

RI_FFT1_Rn simultaneously evaluates ES2 N-point real inverse FFTs, where ES is the
edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix
arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm
is used, so the output data will be stored in X, and the user’s input data over-written. Y
will be set to zero.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974.

5 Arguments

X — REAL*n matrix variable N-deep

Contains the real spectral data on entry to the subroutine, and real data on exit.

Y — REAL*n matrix variable N-deep

Contains the imaginary spectral data on entry to the subroutine, and zero on exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified
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7 Auxiliary routines
IN_FFTLRn — Initialises the FFT’s arrays for a given length N (the Mt’ power of 2).
System Routines

SPL.. RRADI2-Rn
SPL. RRADI4-Rn
SPL. IRRADIS-Rn
SPL. LRBADI8-Rn

SPL.. MIL REV82
SPL.. MR.. REV84
SPL.. MR. REV..88

8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPL..FFT.Rn, SPL..MACH, SPL..TMPO.In to SPLTMP4..In,
SPL.TfflG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.5 FFT initialisation

3.5.1 IN_FFT1_In release 2

1 Purpose

IN_FFT1_In initialises coefficients and parameters for CF_FFT1_In, CLFFTLIn, RF_FFT1_In
and RLFFT1_In, where n can have any value between 1 and 8.

2 Specification
SUBROUTINE iN.. FFTL In (N, M, IFAIL)
INTEGER*4 N, M, IFAIL

3 Description
IN..FFT1_In generates two arrays of coefficients for use in CF_FFT1_In, CLFFT1_In,
RF_FFT1_In and RI.. FFT1_In; where n can have any value from ito 8.

The arrays produced — Cm and SIn — are held in the common block SPL_FFT_In, and are
used by the system software. You need only call IN_ FFT1_ In once before using any of the
FFT subroutines listed above and having the same value of n.

4 References
[iJ Brigham E 0

The Fast Fourier Transform: Prentice-Hall, i974

5 Arguments

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified

3 N and M are not mutually compatible

7 Auxiliary routines
None
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8 Accuracy
Details to be supplied

9 Further comments
COMMON blocks used - SPLfCODEJn, SPLFFT.Jn, SPLMACH, SPL.TMPO..In to
SPLTMP4..In, SPL..TRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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3.5.2 IN_FFT1_Rn release 2

1 Purpose
IN..FFTLRn initialises coefficients and parameters for CF_FFT1_Rn, CI_FFT1_Rn, RF_FFTLRn
and RLFFT1_Rn, where n can have any value between 3 and 8.

2 Specification
SUBROUTINE INFFTLRn ( N, M, IFAIL)
INTEGER*4 N, M, IFAIL

3 Description
IN_FFTLRn generates two arrays of coefficients for use in CF_FFT1_Rn, CI_FFTLRn,
RF_FFT1_Rn and RLFFTLRn; where n can have any value from 3 to 8.

The arrays produced — CRn and SRn — are held in the common block SPL_FFT_Rn, and
are used by the system software. You need only call IN_FFT1_Rn once before using any of
the FFT subroutines listed above and having the same value of n.

4 References
[1] Brigham E 0

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,

where M is a positive integer.

M — INTEGER*4 scalar variable

M is a positive integer such that N = 2M where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
o The subroutine function has worked correctly

1 N is not correctly specified

2 M is not correctly specified

3 N and M are not mutually compatible

7 Auxiliary routines
None

8 Accuracy
Details to be supplied
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9 Further comments
COMMON blocks used - SPL..FCODE...Rr, SPL..FFT..Rn, SPL... MACH, SPL.TMPO..In to
SPLTMP&In, SPL.TRIG

10 Keywords
FFT, fast Fourier transforms, spectral analysis
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Chapter 4

High performance FFTs

Contents:

Subroutine Page

CF..FFTJ.n.Jen.JN..m 34

CLFFTJnJenINm 39

The fast Fourier transform routines described in this chapter offer improved performance over the
routines described in the previous chapter. The new routines offer you a faster way to calculate
FFTs, and provide a more general way to specify your input and required output data.
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4.1 Forward FFTs

4.1.1 CF_FFT_T_n_ ten_IN_rn release 2

1 Purpose
CF_ FFT_T_ n_ten_IN_rn calculates with tapered arithmetic the forward fast Fourier trans
form of complex input data held in a data array of type INTEGER*p. n is the length of the
required transform, and can take any of the values 2, 4, 8, 16, 32, 64, 128, 256 or 512; len is
the size of the array needed to hold the input (and output) data, and can take the value S or
L corresponding to a value for p of 2 or 3; the real and imaginary components of the input
data are assumed to have a precision of rn bits, where rn takes an integer value in the range
8 to 11 or up to 16 in some cases. The routine will accept input data components that are
interleaved with, or separated from each other, and which can be digit-reversed or naturally
ordered.

2 Specification
SUBROUTINE CFFFTT.ntenINm ( DATA, INFLAG, OUTFLAG)
INTEGER*p DATA(, , 2n +2)
INTEGER*4 INFLAG, OUTFLAG

3 Description
CF_ FFT_T_ n_ten_IN_rn simultaneously calculates ES2 n-point complex FFTs, where n is
the length of the FFT that is to be calculated. The same data array, DATA, is used for
input and output.

The routine assumes that the real and imaginary components of the input data have a
precision of rn bits, with a system limit of 16 on m. The number of bits needed to store the
output spectra is at least (m + 1), and increases with n, the length of the transform. The
‘precision growth’ of the output spectral data compared with the input data puts a limit on
the possible precision of the input data the routine will handle.

If you specify ten to have the value L, then you have to declare the matrix array DATA as
INTEGER*3, so 24 bits are available to hold each data value. For an n of 512, the precision
growth is 5 bits, so for input data with rn of 16 bits, output data is only 21 bits long.
Hence, if you declare DATA as INTEGER*3, the routine puts no n-related restrictions on
the precision of your input data, and an input data limit of 16 bits applies for FFTs of any
length.

You may wish to conserve array memory space as much as possible — and specify ten to have
a value of 5, and DATA as INTEGER*2. In this case, precision growth with n does affect
the maximum possible input data precision the routine can handle. The table below lists
the relationship between n and mma, the maximum value of rn the routine will handle with
an INTEGER*2 data array:

n 2 4 8 16 32 64 128 256 512

mmax 15 15 14 14 13 13 12 12 11

For example, if you want to calculate the FFTs of ES2 sets of data, 32 pairs of data in each
set (n 32), if you specify ten as S and DATA as INTEGER*2, then the maximum precision
of your input data the routine will handle is 13 bits, and you might use the routine:
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CFFFT..T...32..S..IN..13

Under these conditions, if you specify m to be more than 13, perhaps by using the routine
CF_ FFT_T_ 32_ S.. IN_ 15, your program will fail at the linking stage, with an error message
similar to ‘Names undefined ...‘.

In all cases there is a limit to the values that the components of the input data can take for
a given precision. Suppose one instance of the complex input data is a + jb, and an input
data precision of m bits is assumed; a, b and m must satisfy the relationship:

/a2+b2) <2m_1_1

If the relationship is not satisfied, there will be overflow during the calculations, but because
these routines have been written to work at maximum speed, the normal DAP error reporting
features have not been used, and you may not know overflow had occurred.

The output data is ‘normalised’, by dividing it by 2[(’°22’)—P9], where pg is the precision
growth for the length of transform concerned. The normalisation factors NF and precision
growths for different lengths of transform are:

n 2 4 8 16 32 64 128 256 512

pg 1 1 2 2 3 3 4 4 5

NF 1 2 2 4 4 8 8 16 16

4 References
None

5 Arguments
DATA - INTEGER*p

On entry, the routine expects to find the data to be transformed in DATA, and to
be right aligned (that is, in the least significant end of each element in DATA), in a
mapping defined by the value in INFLAG. If you specify len to be L then you must
declare DATA as INTEGER*3 (24 bits); if you specify ten to be S you must declare
DATA as INTEGER*2 (16 bits).

Note that you should declare DATA two matrices larger than needed to cope with the
input data; this extra area is used for workspace.

On output, DATA holds the normalised spectral output of the transform, in a format
defined by OUTFLAG, right-aligned, and sign-extended to the most significant end of
each element of DATA, to use all of the bits in each element.
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5 Arguments — continued

INFLAG - INTEGER*4

Specifies the assumed input data mapping, and can have any one of the following values:

0 The input data is assumed to be digit-reversed with real and imaginary parts
interleaved

1 The input data is assumed to be digit-reversed with real and imaginary parts
separated

2 The input data is assumed to be naturally ordered with real and imaginary
parts interleaved

3 The input data is assumed to be naturally ordered with real and imaginary
parts separated

The routine expects to find its input data in the first 2n blocks of INTEGER*p planes
in DATA. If the real and imaginary parts of the complex input data are separated, the
first n blocks of DATA will contain the real parts of all the input data, and second n
blocks all the imaginary parts. If the real and imaginary parts are interleaved, then the
real part of any given data input pair is immediately followed by the pair’s imaginary
part. In all cases, the last two blocks of INTEGER*p planes of DATA are used by the
routine for workspace.

‘Naturally ordered’ and ‘digit-reversed’ refer to the ordering the routine assumes for the
input data in DATA. The table below lists the address bits needed to address the real and
imaginary components of the input data for different values of n for input data assumed
to be naturally ordered. a0 is the most significant bit of the address of the input data pair;
a2 is the bit that differentiates between the real and the imaginary components of the
data, so is the most significant bit of the total address for data assumed to be separated,
and the least significant bit for data assumed to be interleaved. The real component of
a data pair is assumed to have a lower address in DATA than the imaginary component.

Length ‘12’ Naturally ordered address bits
of transform interleaved data components separated data components

2 a0 a3 a2 a0
4 a0a1 a3 a3 a0a1
8 a0a1a2 a2 a0a1a2

16 a0a1a2 a3 a2 a3 a0a1a2 a3
32 a0a1a2 a3a4 a2 a3 a0a1a2 a3a4
64 a0a1a2 a3a4a5 a2 a3 a0a1a2 a3a4a5

128 a0a1a2 a3a4a5 a6 a3 a2 a0a1a2 a3a4a5 a6
256 aoa;a2 a3a4a5 a6a7 a2 a3 a0a1a2 a3a4a5 a6a7
512 a0a1a2 a3a4a5 a6aras a3 a2 a0a1a2 a3a4a5 a6a7a8

The table on the next page shows the effect of ‘digit-reverse’ of the ordering of address
bits, using the same conventions as in the table above.
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5 Arguments — continued

Length ‘n’ Digit-reversed address bits
of transform interleaved data components separated data components

2 a0 a2 a2 a0
4 aa1 a2 a2 a0a1
8 a0a1a2 a2 a2 a0a1a1

16 a3 a0a1a2 a2 a2 a3 a0a1a2
32 a3a4 aoala2 a2 a3 a3a4 aoaia2
64 a3a4a5 a0a1a2 a2 a2 a3a4a5 a0a1a2

128 a6 a3a4a5 aoala2 a3 a2 a6 a3a4a5 a0a1a2
256 a6a7 a3a4a5 a0a1a2 a2 a3 a6a7 a3a4a5 a0a1a2
512 a6a7a8 a3a4a5 a0a1a2 a2 a2 a6a7a8 a3a4a5 a0a1a2

For example, if n is 32, and the routine expects naturally ordered input data with real
and imaginary parts interleaved (INFLAG = 2), then it would assume that the imaginary
part of the fifth input data pair would be stored in DATA(, , 10) (that is, would have
binary address within DATA of (001 00 1) (note that the first plane is numbered 1 in
FORTRAN-PLUS, but is numbered 0 as far as the actual address bits are concerned).
If naturally ordered and separated data were expected (INFLAG = 3), the address of the
imaginary part of the fifth input data pair would be DATA( , , 37), with a binary address
of (1 001 00).

If the routine expects the input data to be digit-reversed and interleaved (INFLAG = 0),
then it would assume that the imaginary part of the fifth data pair had a binary address
of (00 001 1) and would be stored in DATA(, ,4).

If the routine expects the input data to be digit-reversed and separated (INFLAG = 1),
then it would assume that the imaginary part of the fifth data pair had a binary address
of (1 00 001) and would be stored in DATA(,,34).

OUTFLAG - INTEGER*4

Specifies the required mapping of the normalised spectral data in DATA on output, and
can have either of the following values:

0 The real and imaginary parts of the output spectra are interleaved, and are
naturally ordered

1 The real and imaginary parts of the output spectra are separated, and are
naturally ordered

As with the assumed mapping of the input data, the output data is held either interleaved
or separated, in the first 2n blocks of DATA

6 Error indicators
None — in order to process the input data at maximum speed, no error detection is used.

7 Auxiliary routines
None
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8 Accuracy
Details to be supplied

9 Further comments
None

10 Keywords
FFT, fast Fourier transforms
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4.2 Inverse FFTs

4.2.1 CI_FFT_T_n_ ten_IN_rn release 2

1 Purpose

CI_FFT_T_n_ten_IN_m calculates with tapered arithmetic the inverse fast Fourier trans
form of complex input spectral data held in a data array of type INTEGER*p. n is the
length of the required transform, and can take any of the values 2, 4, 8, 16, 32, 64, 128,
256 or 512; ten is the size of the array needed to hold the input (and output) data, and
can take the value S or L corresponding to a value for p of 2 or 3; the real and imaginary
components of the input spectra are assumed to have a precision of m bits, where m takes
an integer value in the range 8 to 11 or up to 16 in some cases. The routine will accept input
data components that are interleaved with, or separated from each other, and which can be
digit-reversed or naturally ordered.

2 Specification
SUBROUTINE CIFFTTn.ten.AN..rn (DATA, INFLAG, OUTFLAG)
INTEGER*p DATA(, , 2n +2)
INTEGER*4 INFLAG, OUTFLAG

3 Description
CI FFT..T_ n_ten.. IN.. m simultaneously calculates ES2 n-point complex inverse FFTs, where
n is the length of the FFT that is to be calculated. The same data array, DATA, is used for
input and output.

The routine assumes that the real and imaginary components of the input spectral data
have a precision of m bits, with a system limit of 16 on m. The number of bits needed to
store the output data is at least (m + 1), and increases with n, the length of the transform.
The ‘precision growth’ of the output data compared with the input data puts a limit on the
possible precision of the input data the routine will handle.

If you specify ten to have the value L, then you have to declare the matrix array DATA as
INTEGER*3, so 24 bits are available to hold each data value. For an n of 512, the precision
growth is 5 bits, so for input data with m of 16 bits, output data is only 21 bits long.
Hence, if you declare DATA as INTEGER*3, the routine puts no n-related restrictions on
the precision of your input data, and an input data limit of 16 bits applies for FFTs of any
length.

You may wish to conserve array memory space as much as possible — and specify ten to have
a value of 5, and DATA as INTEGER*2. In this case, precision growth with n does affect
the maximum possible input data precision the routine can handle. The table below lists
the relationship between n and mmar, the maximum value of m the routine will handle with
an INTEGER*2 data array:

n 2 4 8 16 32 64 128 256 512

mma 15 15 14 14 13 13 12 12 11

For example, if you want to calculate the inverse FFTs of ES2 sets of spectral data, 128
pairs of data in each set (n = 128), if you specify ten as S and DATA as INTEGER*2, then
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the maximum precision of your input data the routine will handle is 12 bits, and you might
use the routine:

CLFFTJ..32, S..1N 12

Under these conditions, if you specify m to be more than 12, perhaps by using the routine
CI_ FFT_T_ 32.. S..JN_ 15, your program will fail at the linking stage, with an error message
similar to ‘Names undefined ...‘.

In all cases there is a limit to the values that the components of the input data can take for
a given precision. Suppose one instance of the complex input data is a + jb, and an input
data precision of m bits is assumed; a, b and m must satisfy the relationship:

Ja2+b2) <2m_1_1

If the relationship is not satisfied, there will be overflow during the calculations, but because
these routines have been written to work at maximum speed, the normal DAP error reporting
features have not been used, and you may not know overflow had occurred.

The output data is ‘normalised’, by dividing it by where pg is the precision
growth for the length of transform concerned. The normalisation factors NF and precision
growths for different lengths of transform are:

n 2 4 8 16 32 64 128 256 512

pg 1 1 2 2 3 3 4 4 5

Nf 1 2 2 4 4 8 8 16 16

4 References
None

5 Arguments
DATA - INTEGER*p

On entry, the routine expects to find the spectral data to be transformed in DATA, and
to be right aligned (that is, in the least significant end of each element in DATA), in
a mapping defined by the value in INFLAG. If you specify ten to be L then you must
declare DATA as INTEGER*3 (24 bits); if you specify ten to be S you must declare
DATA as INTEGER*2 (16 bits).

Note that you should declare DATA two matrices larger than needed to cope with the
input data; this extra area is used for workspace.

On output, DATA holds the normalised output of the transform, in a format defined by
OUTFLAG, right-aligned, and sign-extended to the most significant end of each element
of DATA, to use all of the bits in each element.
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5 Arguments — continued

INFLAG - INTEGER*4

Specifies the assumed input data mapping, and can have any one of the following values:

0 The input data is assumed to be digit-reversed with real and imaginary parts
interleaved

1 The input data is assumed to be digit-reversed with real and imaginary parts
separated

2 The input data is assumed to be naturally ordered with real and imaginary
parts interleaved

3 The input data is assumed to be naturally ordered with real and imaginary
parts separated

The routine expects to find its input data in the first 2n blocks of INTEGER*p planes
in DATA. If the real and imaginary parts of the complex input data are separated, the
first n blocks of DATA will contain the real parts of all the input data, and second n
blocks all the imaginary parts. If the real and imaginary parts are interleaved, then the
real part of any given data input pair is immediately followed by the pair’s imaginary
part. In all cases, the last two blocks of INTEGER*p planes of DATA are used by the
routine for workspace.

‘Naturally ordered’ and ‘digit-reversed’ refer to the ordering the routine assumes for the
input data in DATA. The table below lists the address bits needed to address the real and
imaginary components of the input data for different values of n for input data assumed
to be naturally ordered. a0 is the most significant bit of the address of the input data pair;
a is the bit that differentiates between the real and the imaginary components of the
data, so is the most significant bit of the total address for data assumed to be separated,
and the least significant bit for data assumed to be interleaved. The real component of
a data pair is assumed to have a lower address in DATA than the imaginary component.

Length tjj Naturally ordered address bits
of transform interleaved data components separated data components

2 a0 a2 a2 a0
4 a0a1 a2 a2 a0a1
8 a0a1a2 a2 a2 a0a1a2

16 a0a1a2 a3 a2 a2 a0a1a2 a3
32 a0a1a2 a3a4 a2 a2 a0a1a2 a3a4
64 a0a1a2 a3a4a5 a2 a2 a0a1a2 a3a4a5

128 a0a1a2 a3a4a5 a6 a2 a2 a0a1a2 a3a4a5 a6
256 a0a1a2 a3a4as a6a7 a2 a2 a0a1a2 a3a4a5 a6a7
512 a0a1a2 a3a4a5 a6a7a8 a2 a2 a0a1a2 a3a4a5 a6a7a8

The table on the next page shows the effect of ‘digit-reverse’ of the ordering of address
bits, using the same conventions as in the table above.
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5 Arguments — continued

Length ‘n’ Digit-reversed address bits
of transform interleaved data components separated data components

2 a0 a7 a7 ao
4 a0a a7 a7 a0a1

$ a0a1a2 a7 a7 a0a1a1
16 a3 a0a1a2 a7 a3 a3 a0a1a2
32 a3a4 a0a1a2 a7 a7 a3a4 a0a1a2
64 a3a4a5 QOaja2 a7 a7 a3a4a5 a0a1a2

128 a6 a3a4a5 a0a1a2 a7 a7 a6 a3a4a5 a0a1a2
256 a6a7 a3a4a5 a0a1a2 G7 a7 a6a7 a3a4a5 aoaia2

512 a6a7a8 a3a4a5 a0a1a2 a2 a7 a6a7a8 a3a4a5 a0a1a2

For example, if n is 64, and the routine expects naturally ordered input data with real
and imaginary parts interleaved (INFLAG = 2), then it would assume that the real part
of the twentieth input data pair would be stored in DATA(, , 39) (that is, would have
binary address within DATA of (010 011 0) (note that the first plane is numbered 1 in
FORTRAN-PLUS, but is numbered 0 as far as the actual address bits are concerned).

If naturally ordered and separated data were expected (INFLAG = 3), the address of the
real part of the twentieth input data pair would be DATA(, , 20), with a binary address
of(0 010 011).

If the routine expects the input data to be digit-reversed and interleaved (INFLAG = 0),
then it would assume that the real part of the twentieth data pair had a binary address
of (011 010 0) and would be stored in DATA( ,,53).

If the routine expects the input data to be digit-reversed and separated (INFLAG = 1),
then it would assume that the real part of the twentieth data pair had a binary address
of (0 011 010) and would be stored in DATA( ,,27).

OUTFLAG - INTEGER*4

Specifies the required mapping of the normalised data in DATA on output, and can have
either of the following values:

0 The real and imaginary parts of the output data are interleaved, and are nat
urally ordered

1 The real and imaginary parts of the output data are separated, and are natu
rally ordered

As with the assumed mapping of the input data, the output data is held either interleaved
or separated, in the first 2n blocks of DATA

6 Error indicators
None — in order to process the input data at maximum speed, no error detection is used.

7 Auxiliary routines
None
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8 Accuracy
Details to be supplied

9 Further comments
None

10 Keywords
FFT, fast Fourier transforms
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5.1 Windowing

5.i.i WIN1_In release 2

1 Purpose
WIN1_In is a windowing subroutine for INTEGER*n real or imaginary arrays, where n can
have any value from 1 to 8.

2 Specification
SUBROUTINE WINLIn (X, N, IFAIL)
INTEGER*n X( , , N)
INTEGER*4 N, IFAIL

3 Description
WINLIn windows an INTEGER*n data array with a window function held in a COMMON
block, where ii can have any value from 1 to 8. Scaling arithmetic is included to avoid
overflows and underfiows.

4 References

[11 Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments

X - INTEGER*n

On input the array contains the user input data, which is replaced on output by the
windowed data.

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M
is a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine.

6 Error Indicators
o The subroutine function has worked correctly

1 N is not correctly specified

7 Auxiliary Routines
System routine

SPLWIN1 1n

8 Accuracy
Details to be supplied
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9 Further Comments
COMMON blocks used - SPL. MACH, SPL..TRIG, SPLWINF1 Jn

10 Keywords
FFT, Fast Fourier Transforms, Spectral analysis
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5.1.2 WIN1_Rn release 2

1 Purpose
WIN1_ Rn is a windowing subroutine for REAL*n real or imaginary arrays, where n can
have any value from 3 to 8.

2 Specification
SUBROUTINE WINLRn (X, N, IFAIL)
REAL*n X( , , N)
INTEGER*4 N, IFAIL

3 Description
WIN1_Rn windows an REAL*n data array with a window function held in a COMMON
block, where n can have any value from 3 to 8. Scaling arithmetic is included to avoid
overflows and underfiows.

4 References
[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments

X - REAL’’n

On input the array contains the user data, which is replaced on output by the windowed
data.

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M
is a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine.

6 Error Indicators
o The subroutine function has worked correctly

1 N is not correctly specified

7 Auxiliary Routines
System routine

SPL.WIN1 ...Rn

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL... MACH, SPL.TRIG SPL..WINF1 Rn
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10 Keywords
FFT, Fast Fourier Transforms, Spectral Analysis
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5.2 Window initialisation

5.2.1 IN....WIN1_In release 2

1 Purpose

IN_WINL In is a window initialisation subroutine for INTEGER*n precision, where n can
have any value from 1 to 8.

2 Specification

SUBROUTINE IN..WINLIn ( FUNC, ALPHA, BETA, N, IFAIL)
REAL*4 ALPHA, BETA
INTEGER*4 FUNC, N, IFAIL

3 Description

IN_WIN1_In initialises an array with a suitably scaled window function, where n can have
any value from ito 8.

Scaling is essential because the window functions used are never greater than unity; the scale
factor gives a maximum window value of half the full positive range - 1, that is, for n = 5,
the maximum window value is 15.

4 References

[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments

FUNC - INTEGER*4

When you call IN...WINLIn you must always give a value for each of the four parameters
to the routine, even though the values you give for ALPHA or BETA or both are not
used for some values of FUNC. In release 1 of DSPLIB FUNC must lie in the range 1 -7;
the list below gives the various functions that can be called, details of the use made of
ALPHA and BETA, and the algorithms used to calculate the window function w(n):

1 — Hamming; neither parameter is used

w(n) = 0.54—0.46 cos (;!)
2 — Hanning; only ALPHA is used

w(n) = gina (!)
3 — Gaussian; only ALPHA is used, it must be positive

fw(n) = exp icm)
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4 — Dolph-Chebyshev; only ALPHA is used, it must be positive

w(n) = F’(W(k))

where:

F’ is the inverse DFT

W(k) = (_1)kC0S (Ncos’ (/3cos (f)))
cosh (N cosh (i3))

/3 cosh ( cosh_1(lOa))

a is the number of decades of sidelobe level

5 — Blackman; neither parameter is used

= a. cos
(27mm)

where am=1.0

6 — Blackman-Harris; only ALPHA is used, it must take the value 3.0 or 4.0 - the
number of samples in the truncated series. The window function w(n) is a
truncated BLACKMAN series

7 — Kaiser; only ALPHA used, it must be positive

I (ira.Ji.o (2,1)2)

w(n) =
Io[ira]

where:

ira is the time-bandwidth product

ALPHA - REAL*4

BETA - REAL*4

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M is
a positive integer.
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IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine.

6 Error Indicators
0 The subroutine has worked correctly

1 N was not specified correctly

2 The value of ALPHA was not valid

3 The value of BETA was not valid

4 The function was not known

5 The function’s parameters were not valid

7 Auxiliary Routines
System routines

SPLJWIN1 ...In
SPL.ICSH .Rm
SPL.CSH ..Rm
SPLJCOS... Rm
SPL..BESSELIO.. Rm

where m = 3 for n = 1,2 and m = n for n = 3,4, 5, 6,7,8

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL.MACH, SPL..TRIG, SPL..WINFLJn

10 Keywords
FFT, Fast Fourier Transforms, Spectral analysis
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5.2.2 IN_WIN1_ Rn release 2

1 Purpose
IN_WTN1_Rn is a window initialisation subroutine for REAL*n precision, where n can have
any value from 3 to 8.

2 Specification
SUBROUTINE INWINLRn (FUNC, ALPHA, BETA, N, IFML)
REAL*4 ALPHA, BETA
INTEGER*4 FUNC, N, IFAIL

3 Description
IN...WINL Rn initialises an array with a window function, where n can have any value from
3 to 8.

4 References
[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments

FUNC - INTEGER*4

When you call IN_WIN1_In you must always give a value for each of the four parameters
to the routine, even though the values you give for ALPHA or BETA or both are not
used for some values of FUNC. In release 1 of DSPLIB FUNC must lie in the range 1 -7;
the list below gives the various functions that can be called, details of the use made of
ALPHA and BETA, and the algorithms used to calculate the window function w(n):

1 — Hamming; neither parameter is used

w(n) = O.54—O.46 cos ()
2 — Hanning; only ALPHA is used

w(n) = sine
(7)

3 — Gaussian; only ALPHA is used, it must be positive

( ‘w(n) = exp am)
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4 — Dolph-Chebyshev; only ALPHA is used, it must be positive

w(n) = F1(W(k))

where:

F1 is the inverse DFT

kcos (Ncos’ (/3cos()))
T’V(k) — (—1) —1cosh (N cosh (/3))

j3 = cosh (: cOSh_1(lOa))

a is the number of decades of sidelobe level

5 — Blackman; neither parameter is used

w(n)=E(_1)m.am. cos(2m)

where Eam=1.0

6 — Blackman-Harris; only ALPHA is used, it must take the value 3.0 or 4.0 - the
number of samples in the truncated series. The window function w(n) is a
truncated BLACKMAN series

7 — Kaiser; only ALPHA used, it must be positive

I (ira.Ji.o
— (2i)2)

w(n) =
Io[ira]

where:

I(x)
oo ((r)k)2

ira is the time-bandwidth product

ALPHA - REAL*4

BETA - REAL*4

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M is
a positive integer.
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IFML - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine.

6 Error Indicators

0 The subroutine has worked correctly

1 N was not specified correctly

2 The value of ALPHA was not valid

3 The value of BETA was not valid

4 The function was not known

5 The function’s parameters were not valid

7 Auxiliary Routines

System routines

SPLIWIN1 ...Rn
SPL.JCSH ..Rn
SPL.CSH..Rn
SPL..ICO& Rn
SPL.. BESSELIO. Rn

8 Accuracy

Details to be supplied

9 Further Comments

COMMON blocks used - SPL MACH, SPLTBIGR, SPL.WINF1 ...Rn

10 Keywords

FFT, Fast Fourier Transforms, Spectral analysis
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6.1 Sine wave

6.1.1 CSINE_In

1 Purpose
CSINE_In generates a sine wave of INTEGER*n precision, where n can have any value fTom
1 to 8.

2 Specification
SUBROUTINE CSINE.Jn (X, FREQ, AMPL, N, IFAIL)
INTEGER*n X(, , N)
REAL*4 FREQ, AMPL
INTEGER*4 N, IFAIL

3 Description
CSINE_In sets a suitably scaled sine function into an array, where n can have any value
from ito 8.

4 References
None

5 Arguments

X - INTEGER*n

A data array into which the sine function is to be put

FREQ - REAL*4

The frequency of the sine function; that is, the number of cycles set into the array

AMPL - REAL*4

The amplitude of the sine function

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2; that is N = 2M, where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine has worked correctly

1 N was not specified correctly

2 The value given to FREQ was not valid

3 The value given to AMPL was not valid
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7 Auxiliary Routines
System routines

SPL.CSINE. In

8 Accuracy

Details to be supplied

9 Further Comments

COMMON blocks used - SPL MACH, SPL.TRIG

10 Keywords

Sine, sine generation, sine wave generation
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6.1.2 CSINE...Rn release 2

1 Purpose
CSINE_ Rn generates a sine wave of REAL*n precision, where n can have any value from 3
to 8.

2 Specification
SUBROUTINE CSINE..Rn (X, FREQ, AMPL, N, IFAIL)
REAL*n X(,,N)
REAL*4 FREQ, AMPL
INTEGER*4 N, IFAIL

3 Description
CSINE_ Rn sets a suitably scaled sine function into an array, where n can have any value
from 3 to 8.

4 References
None

5 Arguments

X - REALn

A data array into which the sine function is to be put

FREQ - REAL*4

The frequency of the sine function; that is, the number of cycles set into the array

AMPL — REAL*4

The amplitude of the sine function

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2; that is N = 2M, where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
O The subroutine has worked correctly

1 N was not specified correctly

2 The value given to FREQ was not valid

3 The value given to AMPL was not valid

7 Auxiliary Routines
System routines

SPL..CSINE.. Rn
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8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL MACH, SPL.TRIG

10 Keywords
Sine, sine generation, sine wave generation
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6.2 Chirp sine wave

6.2.1 CHIRP_In release 2

1 Purpose
CHIRP_In generates a chirp sine wave with INTEGER*n precision, where n can have any
value from 1 to 8.

2 Specification
SUBROUTINE CHIRPIn (X, FREQS, FREQE, AMPL, N, IFAIL)
INTEGER*n X(,, N)
REAL*4 FREQS, FREQE, AMPL
INTEGER*4 N, IFAIL

3 Description
CHIRP_In sets a suitably scaled chirp sine function into an array, where n can have any
value from 1 to 8.

4 References
None

5 Arguments

X - INTEGER*n

The data array into which the chirp function will be put

FREQS - REAL*4

The start frequency of the chirp

FREQE - REAL*4

The end frequency of the chirp

AMPL - REAL*4

The amplitude of the chirp sine function

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2; that is N 2M, where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
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o The subroutine worked correctly

1 N was not specified correctly

2 The values given to both FREQS and FREQE were not valid
3 The value given to FREQS was not valid

4 The value given to FREQE was not valid

5 The value given to AMPL was not valid

7 Auxiliary Routines
System routines

SPL..CHIRP,.. In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPL.JRIG

10 Keywords
Chirp, chirp generation, chirp sine function
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6.2.2 CHIRP_ Rn release 2

1 Purpose
CHIRP_ Rn generates a chirp sine wave with REAL*n precision, where n can have any value
from 3 to 8.

2 Specification

SUBROUTINE CHIRP.. Rn (X, FREQS, FREQE, AMPL, N, IFAIL)
REAL*n X(,,N)
REAL*4 FREQS, FREQE, AMPL
INTEGER*4 N, IFAIL

3 Description

cHIRP.. Rn sets a suitably scaled chirp sine function into an array, where n can have any
value from 3 to 8.

4 References
None

5 Arguments

X - REAL’’n

The data array into which the chirp function will be put

FREQS - REAL*4

The start frequency of the chirp

FREQE - REAL*4

The end frequency of the chirp

AMPL - REAL*4

The amplitude of the chirp sine function

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2; that is N = 2M, where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
O The subroutine worked correctly

1 N was not specified correctly

2 The value given to FREQS was not valid

3 The values given to both FREQS and FREQE were not valid

4 The value given to FREQE was not valid

5 The value given to AMPL was not valid
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7 Auxiliary Routines
System routines

SPL...CHIRP.. Rn

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL... MACH, SPL.TRIG

10 Keywords
Chirp, chirp generation, chirp sine function
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6.3 Exponential decay

6.3.1 EX_DECAY_In release 2

1 Purpose
EXJJECAY..In generates an exponential decay function with INTEGER*n precision, where
n can have any value from 1 to 8.

2 Specification
SUBROUTINE EXJJECAYJn ( X, Y, AMPL, N, IFAIL)
INTEGER*n X( , , N), Y( , , N)
REAL*4 AMPL
INTEGER*4 N, IFAIL

3 Description
EX..DECAY.Jn sets a suitably scaled complex exponential decay function into X and Y,
where n can have any value from 1 to 8. The (i + i)” matrix in each array contains values
given by:

X1+jY1=AMPL.V for 1=0,1, ... ,N—1

where z= X+JY
/x2+y2

and x and y are initial values, input in the first matrices of the X and Y arrays respectively.

4 References
None

5 Arguments

X - INTEGERn

On input the routine expects to find the real part of the complex initial values for the
required decay function in the first matrix of the array; on exit the whole array contains
the real part of the function

Y - INTEGER*n

On input the routine expects to find the imaginary part of the complex initial values
for the required decay function in the first matrix of the array; on exit the whole array
contains the imaginary part of the function

AMPL - REAL*4

The initial amplitude of the decay function

N - INTEGER*4 scalar

Specifies the array length. N must be a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine
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6 Error Indicators
0 The subroutine worked correctly

1 N was not specified correctly

2 The magnitude of one or more of the input complex initial values was zero

3 The value given to AMPL was zero

7 Auxiliary Routines
SPL..CMPY... Rn

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPLTfflG

10 Keywords
Exponential, decay, exponential decay function
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6.3.2 EX_DECAY_Rn release 2

1 Purpose
EX.DECAY_ Rn generates an exponential decay function with REAL*n precision, where n
can have any value from 3 to 8.

2 Specification

SUBROUTINE EXJJECAY..Rn (X, Y, AMPL, N, IFAIL)
REAL*n X(,,N), Y(,,N)
REAL*4 AMPL
INTEGER*4 N, IFAIL

3 Description

EXJJECAY_Rn sets a suitably scaled complex exponential decay function into X and Y,
where ii can have any value from 3 to 8. The (1+ i)thi matrix in each array contains values
given by:

X1+jY1=AMPL.Z’ for i=O,1, ... ,N—1

where Z=x+jy

and x and y are initial values, input in the first matrices of the X and Y arrays respectively,
and where /z2 + y2 1 for all element pairs in those first matrices.

4 References
None

5 Arguments

X - REAL*n

On input the routine expects to find the real part of the complex initial values for the
required decay function in the first matrix of the array; on exit the whole array contains
the real part of the function

Y - REAL*n

On input the routine expects to find the imaginary part of the complex initial values
for the required decay function in the first matrix of the array; on exit the whole array
contains the imaginary part of the function

AMPL - REAL*4

The initial amplitude of the decay function

N - INTEGER*4 scalar

Specifies the array length. N must be a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine
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6 Error Indicators
0 The subroutine worked correctly

1 N was not specified correctly

2 The magnitude of one or more of the input complex initial values was greater than 1

3 The value given to AMPL was zero

7 Auxiliary Routines
SPL..CMPY... Rn

8 Accuracy
Details to be supplied

9 Further Comments
None

10 Keywords
Exponential, decay, exponential decay function
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7.1 In-phase and quadature to power and phase

7.1.1 IQ...PWR_In release 2

1 Purpose

IQ..PWR.. In converts signal data from the in-phase and quadrature form to the ‘power’ and
phase angle form, with INTEGER*n precision, where n can have any value form 1 to 8.

2 Specification

SUBROUTINE IQ.YWR..In (X, Y, N, IFML)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

3 Description
IQYWR. In converts data representing signal in-phase and quadrature amplitudes to the
equivalent ‘power’ and phase angle form, with INTEGER*n precision, where n can have any
value form 1 to 8. The angle is given in degrees. The output ‘power’ data is presented in
decibels relative to unity ‘power’.

The subroutine places the output data in the arrays initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - INTEGER*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the ‘power’ component is placed

Y - INTEGER*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in degrees, is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly
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7 Auxiliary Routines
System routines

SPL. IQPOW.. In
SPL.UNWRAP... In
SPL...ATAN2.. In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPL.TRIG

10 Keywords
Amplitude to power, in-phase and quadrature to power and phase angle, conversion
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7.1.2 IQ_PWR_Rn release 2

1 Purpose
IQYWILRn converts signal data from the in-phase and quadrature form to the ‘power’ and
phase angle form, with REAL*n precision, where n can have any value form 3 to 8.

2 Specification
SUBROUTINE IQ.PWILRn (I, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, IFML

3 Description
IQ_PWR. Rn converts data representing signal in-phase and quadrature amplitudes to the
equivalent ‘power’ and phase angle form, with REAL*n precision, where n can have any
value form 3 to 8. The angle is given in radians. The output ‘power’ data is presented in
decibels relative to unity ‘power’.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - REAL*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the ‘power’ component is placed

Y_REAL*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in radians, is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL wifi be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly

7 Auxiliary Routines
System routines

SPL..IQPOW..In
SPL.UNWRAP In
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SPL.ATAN2In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPL.TRIG

10 Keywords
Amplitude to power, in-phase and quadrature to power and phase angle, conversion
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72 Power and phase to in-phase and quadrature

7.2.1 PWR_IQ_In release 2

1 Purpose
PWR_IQ_In converts signal data from the ‘power’ and phase angle form to the in-phase and
quadrature form, with INTEGER*n precision, where n can have any value from 1 to 8.

2 Specification
SUBROUTINE PWR.IQ..In (X, Y, N, IFAIL)
INTEGER*n X( , , N), Y( , , N)
INTEGER*4 N, IFAIL

3 Description
PWR.JQ_In converts data representing signal ‘power’ and phase angle values to the equiv
alent in-phase and quadrature power form, with INTEGER*n precision, where n can have
any value from 1 to 8. The routine assumes that the angles are expressed in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - INTEGER’’n

The array from which the subroutine takes the power component of the data to be
converted, and into which the in-phase component is placed

Y - INTEGER*n

The array from which the subroutine takes the phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly

7 Auxiliary Routines
System routines

SPL.. POWIQ... In
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8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPLTRIG

10 Keywords
Power to amplitude, power and phase angle to in-phase and quadrature, conversion
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7.2.2 PWR_IQ_Rn release 2

1 Purpose
PWR.IQ.. Rn converts signal data from the ‘power’ and phase angle form to the in-phase
and quadrature form, with REAL*n precision, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE PWR.IQ..Rn (X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

3 Description
PWLIQ_ Rn converts data representing signal ‘power’ and phase angle values to the equiv
alent in-phase and quadrature power form, with REAL*n precision, where n can have any
value from 3 to 8.The routine assumes that the angles are expressed in radians.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - REAL*n

The array from which the subroutine takes the power component of the data to be
converted, and into which the in-phase component is placed

Y - REAL*n

The array from which the subroutine takes phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly

7 Auxiliary Routines
System routines

SPL.. POWIQ.. In
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8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPLTRIG

10 Keywords
Power to amplitude, power and phase angle to in-phase and quadrature, conversion
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7.3 In-phase and quadrature to magnitude and phase

7.3.1 IQ_MAG_In release 2

1 Purpose

IQ..MAG_In converts signal data from the in-phase and quadrature form to the magnitude
and phase angle form, with INTEGER*n precision, where n can have any value from 1 to 8.

2 Specification
SUBROUTINE IQ...MAG...In (X, Y, N, IFAIL)
INTEGER*n X(, , N), Y( , , N)
INTEGER*4 N, IFAIL

3 Description
IQJVIAG_ In converts data representing signal in-phase and quadrature values to the equiv
alent magnitude and phase angle form, with INTEGER*n precision, where n can have any
value from 1 to 8. The phase angle is given in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - INTEGER’’n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the magnitude component is placed

Y - INTEGER*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in degrees, is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N 2M, where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly

cn I1Qfl? ALfT’



Chapter 7: Signal format conversion In-phase and quadrature to magnitude and phase

8 Auxiliary Routines
System routines

SPL. IQMAG... In
SPL.UNWRAP.. In
SPLJJAN2.Jn

9 Accuracy
Details to be supplied

10 Further Comments
COMMON blocks used - SPLJvIACH, SPL.TfflG

11 Keywords
Amplitude to magnitude, in-phase and quadrature to magnitude and phase angle, conversion
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73.2 IQ_MAG_Rn release 2

1 Purpose
IQ..MAG..Rn converts signal data from the in-phase and quadrature form to the magnitude
and phase angle form, with REAL*n precision, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE IQJvIAG...Rn ( X, Y, N, IFAIL)
REAL*n X( , , N), Y(, , N)
INTEGER*4 N, IFAIL

3 Description
IQ..MAG_ Rn converts data representing signal in-phase and quadrature values to the equiv
alent magnitude and phase angle form, with REAL*n precision, where n can have any value
from 3 to 8. The phase angle is given in radians.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - REAL*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the magnitude component is placed

Y - REAL*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in radians, is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M is
a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
O The subroutine worked correctly

1 N was not specified correctly

7 Auxiliary Routines
System routines

SPL.. IQMAG.. In
SPLUNWRAR.In
SPL..ATAN2..In
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S Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL. MACH, SPLTfflG

.10 Keywords
Amplitude to magnitude, in-phase and quadrature to magnitude and phase angle, conversion
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7.4.2 MAG_IQ_Rn release 2

1 Purpose
MAG_ IQ_ Rn converts signal data from the magnitude and phase angle form to the in-phase
and quadrature form, with REAL*n precision, where n can have any value from 3 to 8.

2 Specification
SUBROUTINE MAG..IQ..Rn ( X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

3 Description
MAG_ IQ_ Rn converts data representing signal magnitude and phase angle values to the
equivalent in-phase and quadrature form, with REAL*n precision, where n can have any
value from 3 to 8. The routine assumes that the phase angle is expressed in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References
None

5 Arguments

X - REAL*n

The array from which the subroutine takes the magnitude component of the data to be
converted, and into which the in-phase component is placed

Y - REAL*n

The array from which the subroutine takes phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou
tine

6 Error Indicators
o The subroutine worked correctly

1 N was not specified correctly

7 Auxiliary Routines
System routines

SPL MAGIQJn
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8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL.MACH, SPL.TRIG

10 Keywords
Magnitude to amplitude, magnitude and phase angle to in-phase and quadrature, conversion
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