DAP Series

Digital
Signal Processing
Library

(man013.03)

iv

man013.03

AMT

Contents

1 Introduction

1.1 Gemeral e
1.2 Fast Fouriertransforms
1.3 Signal format conversion
1.4 Using the library on different ranges of DAP machines
1.5 Compilation and Linking Procedure

15.1 InaSun UNIXenvironment

15.2 InaVAX/VMSenvironmentuuuunn.nn..

2 DSPLIB quick reference catalogue

3 Fast Fourier transforms

3.1 Complexforward FFT
3.1.1 CF.FFT1.In i e
3.1.2 CF.FFTLRn e e e e s

3.2 Complexinverse FFT
321 CI.FFTL.In e
322 CIFFTI.Rm.

Digital signal processing library man(013.03

CONTENTS CONTENTS

33 Realforward FFT e 20
331 RF.FFTLIn T 20

332 RE.FFTLRn ittt i 22

34 Realinverse FFT e e 24
341 RI_FFTLIn e 24

342 RI_FFTI.Rn. @ i i e e e e 26

35 FFTinitialisation. 28
35.1 IN.FFTLIn it 28

352 INLFFTIRnt e e e e e i e e 30

4 High performance FFTs 33
41 Forward FFTs o e 34
411 CF.FFT.T_n.len.IN.m, 34

42 Inverse FFTs i e e e e e 39
42.1 CLLFFTT.nllen IN_m 39

5 Windowing 45
51 Windowing v vt i e e e e e e e e e e e e 46
51.1 WINL.In e e e e 46

512 WINILRn e e e e e 48

52 Window initialisation o o o 50
52.1 INWINLInt e e e 50

52.2 INWINILRR e e 53

6 Signal generation 57
6.1 SINEWAVEt v it e e e e e e e e e e e e e 58
6.1.1 CSINE_In e 58

6.1.2 CSINE_Rn e 60

i manf112 N2 ANT

CONTENTS CONTENTS

6.2 Chirpsine Wave v v vt i i e e e e e e 62
62.1 CHIRP.In ettt 62
622 CHIRP.Rn i iii . 64

8.3 Expomential decay e 66
6.3.1 EXDECAY.In i 66
6.3.2 EXDECAY.Rn i, 68

7 Signal format conversion 71

7.1 In-phase and quadature to powerandphase 72
711 IQPWR.In. e 72
712 IQ.PWR.Rn e 74

7.2 Power and phase to in-phase and quadrature 76
72.1 PWR.IQ.In e 76
722 PWR.UIQ.Rn e 78

7.3 In-phase and quadrature to magnitude and phase 80
731 IQMAG.In. e e e 80
732 IQMAG.Rn e e 82

7.4 Magnitude and phase to in-phase and quadrature 84
741 MAGLIQIn e 84
742 MAGIIQ-Rn e 86

Digital signal processing librarv man013.03 vii

CONTENTS CONTENTS

ity manN12 N2 ARLT

Chapter 1

Introduction

1.1 General

DSPLIB is the Digital Signal Processing LIBrary. Release 2 of DSPLIB contains over 200 routines,
that variously can perform:

e Fast Fourier transforms (FFT)
o Windowing
e Signal generation

o Signal format conversion

In general, for each function provided by DSPLIB there are 14 subroutines, one for each FORTRAN-
PLUS data precision: INTEGER*1 to INTEGER*8 and REAL*3 to REAL*S. In the detailed
specifications that follow, for each function the INTEGER*1 to INTEGER*8 variants are grouped
into the generic INTEGER*n, and the REAL*3 to REAL*8 variants are grouped into the generic
REAL*n,

The exception to this generality is the group of high performance FFT subroutines, which can
handle input data precisions of 8 to 11 bits, and in some cases up to 16 bits.

The DAP is based on an ES by ES array of single bit processing elements, where ES is the
edge size of the DAP: 32 for DAP 500 machines, 64 for DAP 600 machines, and so on. All of
the subroutines in Release 2 operate on N-point arrays of matrices, treated as ES? 1-dimensional
N-point data sets. Each complete data set is manipulated by only 1 processing element and stored
in the memory directly associated with that processing element. The subroutines operate on all
ES5? data sets in parallel.

Points to note:

e The number of processing elements in the DAP (the square of ES, the ‘edge size’, in DAP
terminology) does not affect the running of any subroutine in the library. However, the rou-
tines can be tuned at software configuration time for particular sizes of DAP array memory,

Digital signal processing librarv man013.03 1

Fast Fourier transforms Chapter 1: Introduction

to optimise subroutine performance; you should make sure that the DSPLIB supplied to you
has been configured by AMT for your DAP’s memory size. If you try to run the library on a
larger array memory you should have no problems (other than reduced performance); if you
try to run it on a smaller array memory, some of the subroutines will not work.

e Various system routines are used internally by the DSPLIB; the names of these routines
start with SPL_, and are listed under Auxiliary routines in the reference section of this
manual. You should make sure that none of the routines you write has the same name as any
of these system routines; if any do you may get unexpected results when you use DSPLIB.

1.2 Fast Fourier transforms

Two chapters in the manual are devoted to fast Fourier transforms. Chapter 3 describes 10 groups
of subroutines, that take input data from arrays X and Y, calculate the transform, and put result
back in X and Y. One of the user-defined parameters to those FFTs is N, the required length of the
transform — both the number of pairs of input data to be operated on to form the transform, and
the number of terms in the Fourier series that are to be evaluated to form the required transform.
There is a maximum permitted size to the value of N, given by the formula:

Noas = £ (256 Mem)

bytes
where:
Nmaz is the maximum length of the transform that can be specified in the routine
Mem is the size of the DAP array store, in Mbytes
bytes is the number of bytes in each data element being transformed
&(z) = z, where z = 29, 2V <z < 2¥*!, and y is an integer.
Chapter 4 describes 2 groups of high performance FFTs, that give an improvement in performance

of the order of 3 or 4 over those described in chapter 3. They also allow you more freedom in the
way you input the data to be transformed, at the expense of being more difficult to use.

The discrete Fourier transforms (DFTs), and the inverse discrete Fourier transforms, on which fast
Fourier transforms (FFTs) are based, are calculated from the series:

N-1
the k** component of the DFT: X (k) = Z z(n) exp (——j 2?k> for k=90,1,...,.N =1
n=0

and

2 man013.03 AMT

Chapter 1: Introduction Signal format conversion

N-1
the n'* component of the inverse DFT: z(n) = 1 Z X(k) exp j27mlc)
N k=0 N

forn=0,1,..,.N~1

where N is the user-specified length of the required transform.

1.3 Signal format conversion

In the section of the library concerned with signal format conversion, routines exist to convert
signal format between:

e In-phase and quadrature components, and magnitude and phase angle components

e In-phase and quadrature components, and power and phase angle components

The algorithms used for the conversion are:

Magnitude = \/2? + y2
Power = 20log,, \/22 + 2

Phase angle = arctan (%)
where:
z is the in-phase component of the signal

y is the quadrature component of the signal

DSPLIB’s subroutines are described in the following chapters. Chapter 2 contains a quick reference
list of the routines; chapters 3 to 7 describe each subroutine in detail.

1.4 Using the library on different ranges of DAP machines

In general the signal processing software has been written for use on any of the models in the whole
range of DAP machines, although some limitations to full portability do exist, mainly because of
the characteristics of the various host operating systems. These limitations are discussed in the
next sections.

Digital signal processing library man013.03 3

Compilation and Linking Procedure Chapter 1: Introduction

1.5 Compilation and Linking Procedure

1.5.1 In a Sun UNIX environment

You can link the digital signal processing library into a program by using the -1 option to either
dapa or dapf (see DAP Series: Program Development under UNIX (man003) for more details).

For example, a FORTRAN-PLUS source program in a file sigproc.df can be compiled and linked
with the AMT-supplied DSPLIB routines, and the object code put into a DOF file sigproc by
executing the command:

dapf -o sigproc sigproc.df -1 dsplib

If you want to port FORTRAN-PLUS or APAL code containing calls to signal processing subrou-
tines to a DAP of different edge size, also operating under UNIX, then you have to recompile and
relink the code.

The UNIX environment variable that ‘knows’ the size of the target DAP is DAPSIZE, and DAP-
SIZE defaults to 32 when you run dapf or dapa. Hence, if you want to compile and link code to
run on a DAP 500, you do not have to set DAPSIZE explicitly. If you want to compile and link
code to run on a DAP 600, then before you use dapf or dapa you should enter:

setenv DAPSIZE 64

and so on for other sizes of DAP.

1.5.2 In a VAX/VMS environment

You can link the digital signal processing library into a program by including it in the list of input
files to the DLINK command (see DAP Series: Program Development Under VAX/VMS (man004)
for further details). In release 3.0V of the basic software, two versions of the graphics library are
supplied, DSPLIB5 for DAP 500, and DSPLIB6 for DAP 600; when you link the signal processing
library into your program you need to specify the appropriate version of DSPLIB.

For example, to compile and link the DAP program in the file SIGPROC.DFP to run on a
DAP 600, you can use the following commands:

$ DFORTRAN/DAPSIZE=64 SIGPROC
$ DLINK/DAPSIZE=64 SIGPROC,SYS$LIBRARY:DSPLIB6/LIBRARY

To compile and link code in file SIGCALCS.DFP to run on a DAP 500 the above commands
would be:

$ DFORTRAN/DAPSIZE=32 SIGCALCS
$ DLINK/DAPSIZE=32 SIGCALCS,SYS$LIBRARY:DSPLIB5/LIBRARY

4 man013.03 AMT

Chapter 1: Introduction Compilation and Linking Procedure

As an alternative to specifying that the signal processing routines which the code in SIGPROC
references are to be found in library SYSSLIBRARY:DSPLIB6.DLB, or the routines for SIGCALCS
are in library SYS$LIBRARY:DSPLIB5.DLB you can define the logical name DAPn LIBRARY

by using the command: ‘
$ DEFINE DAPn.LIBRARY SYSSLIBRARY:DSPLIBn

where n is 5 (for DAP 500) or 6 (for DAP 600). This will cause DLINK to search DSPLIBn
automatically for unsatisfied external references. If you are going to use DSPLIBn frequently, you
could insert the above DEFINE into your LOGIN.COM file. If there are several DAP users on the
system, linked to a DAP 600 say, the system manager could include the command:

$ DEFINE/SYSTEM DAP6_LIBRARY SYS$LIBRARY:DSPLIB6

into the site system start-up command file which would give all users automatic access to the
library.

Similarly, the command:
$ DEFINE/SYSTEM DAPS5_LIBRARY SYS$LIBRARY:DSPLIBS

would achieve the same thing for a DAP 500 system.

On a system that has available both DAP 500 and DAP 600, then both DAP5_LIBRARY and
DAP6_.LIBRARY can be defined, and users will pick up the appropriate version of DSPLIB when
they specify DAPSIZE in their DFORTRAN and DLINK commands.

Digital signal processing library man013.03 5

Compilation and Linking Procedure Chapter 1: Introduction

"manl1T2 N2 ARLT

Chapter 2

DSPLIB quick reference
catalogue

Listed below are the groups of subroutines in DSPLIB, and the subroutines in each group. For
details of each group’s use, consult the relevant section in the chapters that follow.

You may find this chapter helpful in the initial selection of suitable routines for the job in hand.

Chapter 3 — Fast Fourier transforms

1 Complex forward FFT starts on page 12
CF_FFT1_In calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

CF.FFT1.Rn calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

2 Complex inverse FFT starts on page 16
CI.FFT1_In calculates an inverse fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

CI_FFT1.Rn calculates an inverse fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

3 Real forward FFT starts on page 20
RF_FFT1_In calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

RF_FFT1.Rn calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type REAL*n, where n can have any value from 3 to 8.

4 Real inverse FFT starts on page 24
RI_FFT1_In calculates an inverse fast Fourier transform (FFT) of complex conjugate sy-
metric input data held in an array of numbers of type INTEGER*n, where n can have any
value from 1 to 8, and produces a real output.

RI_FFTI1_Rn calculates an inverse fast Fourier transform (FFT) of complex conjugate sy-
metric input data held in an array of numbers of type REAL*n, where n can have any value
from 3 to 8, and produces a real output.

Digital signal processing library man013.03 7

10

Chapter 2: DSPLIB quick reference catalogue

man013.03 AMT

Chapter 3

Fast Fourier transforms

Contents:

Subroutine
CF_FFT1_In
CF_FFT1_Rn
CL.FFT1.In
CLFFT1_Rn
RF_FFT1.In
RF_FFT1.Rn
RI.LFFT1.In
RI_FFT1_Rn
IN_.FFT1_In

IN.FFT1.Rn

Digital signal processing library

man013.03

Page
12
14
16
18
20
22
24
26
28

30

11

‘Complex forward FFT Chapter 3: Fast Fourier transforms

3.1 Complex forward FFT

3.1.1 CF_FFT1_1In release 2

12

Purpose

CF_FFTI1.In calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

Specification

SUBROUTINE CF.FFT1.In (X, Y, N, M, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

CF.FFT1.In simultaneously evaluates £S? N-point complex FFTs, where ESE is the edge
size of the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output data will be stored in X and Y, and the user’s input data over-written.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

Arguments
X ~ INTEGER*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y - INTEGER*n matrix variable N-deep

Contains the imaginary input data on entry to the subroutine, and the imaginary spec-
trum on exit.

N - INTEGER*4 scalar variable
Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man13.03 AMT

Chapter 3: Fast Fourler transforms Complex forward FFT

7 Auxiliary routines

IN_FFT1_In - Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RAD2-In
SPL_RAD4-In
SPL_IRADS-In
SPL.LRADS-In

SPL_MR_REV_82
SPL.MR_REV_84
SPL_.MR_REV_88

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used — SPL_.FFT.In, SPL_.MACH, SPL.TMP0.In to SPL.TMP4.In,
SPL_TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 13

Complex forward FFT Chapter 3: Fast Fourier transforms

3.1.2 CF_FFT1_Rn release 2

14

Purpose

CF_FFT1_Rn calculates a forward fast Fourier transform (FFT) of complex input data held
in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

Specification

SUBROUTINE CF_FFT1.Rn (X, Y, N, M, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

CF.FFT1.Rn simultaneously evaluates £S? N-point complex FFTs, where ES is the edge
size of the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output spectral data will be stored in X and Y, and the user’s input data over-written.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974,

Arguments
X - REAL*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y - REAL*n matrix variable N-deep

Contains the imaginary input data on entry to the subroutine, and the imaginary spec-
trum on exit.

N - INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, and N is the user-specified length of the
transform.

IFAIL ~ INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

manN13.03 AMT

Chapter 3: Fast Fourier transforms Complex forward FFT

7 Auxiliary routines

IN_FFT1.Rn - Initialises the FFT’s coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RAD2-Rn
SPL_RAD4-Rn
SPL_.IRADS-Rn
SPL_LRADS8-Rn

SPL_MR.REV_82
SPL_MR_REV_84

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used — SPL.FFT_Rn, SPL_.MACH, SPL.TMPO_.In to SPL.TMP4.In,
SPL_.TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing librarv man013.03 15

Complex inverse FFT Chapter 3: Fast Fourier transforms

3.2 Complex inverse FFT

3.2.1 CI_FFT1_In release 2

16

1

Purpose

CI.FFTI1.In calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type INTEGER*n, where n can have any value from 1
to 8.

Specification
SUBROUTINE CI_FFT1.In (X, Y, N, M, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

CI.FFT1.In simultaneously evaluates £S? N-point complex inverse FFTs, where ES is the
edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix
arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm
is used, so the output data will be stored in X and Y, and the user’s input data over-written.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

Arguments

X — INTEGER*n matrix variable N-deep
Contains the real spectrum on entry to the subroutine, and real data on exit.

Y - INTEGER*n matrix variable N-deep

Contains the imaginary spectrum on entry to the subroutine, and imaginary data on
exit.

N — INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL ~ INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man(013.03 AMT

Chapter 3: Fast Fourier transforms Complex inverse FFT

7 Auxiliary routines

IN_FFT1_In - Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RADI2-In
SPL_RADI4-In
SPL_IRADI8-In
SPL_LRADI&-In

SPL.MR_REV_82
SPL_MR_REV_84
SPL_MR_REV_88

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used — SPL_FFT.In, SPL.MACH, SPL_.TMPO.In to SPL.TMP4.In,
SPL.TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 17

Complex inverse FFT Chapter 3: Fast Fourier transforms

3.2.2 CI_FFT1_Rn release 2

18

Purpose

CI.FFT1.Rn calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type REAL*n, where n can have any value from 3 to 8.

Specification

SUBROUTINE CI_FFT1.Rn (X, Y, N, M, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

CI_FFT1.Rn simultaneously evaluates £S? N-point complex inverse FF'Ts, where ES is
the edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep
matrix arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT
algorithm is used, so the output data will be stored in X and Y, and the user’s input data
over-written.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974.

Arguments
X ~ REAL*n matrix variable N-deep

Contains the real spectrum on entry to the subroutine, and real data on exit.

Y - REAL*n matrix variable N-deep

Contains the imaginary spectrum on entry to the subroutine, and imaginary data on
exit.

N - INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2 where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators
0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man(113.03 AMT

Chapter 3: Fast Fourier transforms Complex inverse FFT

-7 Auxiliary routines

IN_FFT1_Rn - Initialises the FF'T’s coefficient arrays for a given length N (the Mth power
of 2). '
System Routines

SPL_RADI2-Rn
SPL.RADHM-Rn
SPL.IRADI8-Rn
SPL.LRADI8-Rn

SPL.MR_REV_82
SPL_MR_REV_84
SPL.MR_REV_88

8 Further comments

COMMON blocks used ~ SPL_.FFT_Rn, SPL_.MACH, SPL_.TMP0_In to SPL.TMP4.In,
SPL_TRIG

9 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library ‘ man013.03 19

Real forward FFT Chapter 3: Fast Fourier transforms

3.3 Real forward FFT

3.3.1 RF_FFT1_In release 2

n

Purpose

RF_FFT1_In calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type INTEGER*n, where n can have any value from 1 to 8.

Specification

SUBROUTINE RF_FFTL In (X, Y, N, M, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

RF.FFT1.In simultaneously evaluates £S? N-point real FFTs, where ES is the edge size od
the target DAP. X (real part) and Y (set to zero) are both N-deep matrix arrays with data
arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the output
spectral data will be stored in X and Y, and the user’s input data over-written.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

Arguments
X — INTEGER*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y - INTEGER*n matrix variable N-deep

Set to zero on entry to the subroutine, and contains the imaginary spectrum on exit.

N —~ INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,
where M is a positive integer.

M - INTEGERX*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL - INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man{112 N} AMT

Chapter 3: Fast Fourler transforms Real forward FFT

7 Auxiliary routines

IN_FFT1.In - Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RRAD2-In
SPL_RRAD4-In
SPL_IRRADS-In
SPL_LRRADS-In

SPL.MR.REV_82
SPL_.MR_REV_84
SPL_.MR_REV._88

8 Accuracy
 Details to be supplied

9 Further comments

COMMON blocks used - SPL_FFT_In, SPL_.MACH, SPL.TMPO.In to SPL_.TMP4.In,
SPL_TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 21

Real forward FFT Chapter 3: Fast Fourier transforms

3.3.2 RF_FFT1_Rn release 2

22

Purpose

RF_FFT1_Rn calculates a forward fast Fourier transform (FFT) of real input data held in
an array of numbers of type REAL*n, where n can have any value from 3 to 8.

Specification

SUBROUTINE RF_FFTI.Rn (X, Y, N, M, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

RF.FFT1.Rn simultaneously evaluates ES? N-point real FFTs, where ES is the edge size
od the target DAP. X (real part) and Y (set to zero) are both N-deep matrix arrays with
data arranged sequentially ‘down the PEs’. An ‘in-place’ FFT algorithm is used, so the
output spectral data will be stored in X and Y, and the user’s input data over-written.

References
[1] Brigham E O
The Fast Fourier Transform: ‘Prentice-Hall, 1974.

Arguments
X - REAL*n matrix variable N-deep

Contains the real input data on entry to the subroutine, and the real spectrum on exit.

Y — REAL*n matrix variable N-deep

Set to zero on entry to the subroutine, and contains the imaginary spectrum on exit.

N -~ INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, and N is the user-specified length of the
transform.

IFAIL - INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man013.03 AMT

Chapter 3: Fast Fourier transforms Real forward FFT

7 Auxiliary routines

IN_FFT1.Rn - Initialises the FFT’s coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RRAD2-Rn
SPL.RRAD4-Rn
SPL_IRRADS-Rn
SPL_LRRADS-Rn

SPL_.MR_REV_82
SPL.MR.REV_84
SPL.MR_REV_88

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used ~ SPL_FFT_-Rn, SPL_.MACH, SPL_.TMP0.In to SPL_.TMP4.In,
SPL_TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man(013.03 23

Real inverse FFT Chapter 3: Fast Fourier transforms

3.4 Real inverse FFT

3.4.1 RI_FFT1_In release 2

24

1

Purpose

RI_FFT1.In calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type INTEGER*n, where n can have any value from 1
to 8, and produces a real output.

Specification
SUBROUTINE RI_FFT1.In (X, Y, N, M, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

RI.FFT1.In simultaneously evaluates £S? N-point real inverse FFTs, where ES is the edge
size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix arrays
with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm is used,
so the output data will be stored in X, and the user’s input data over-written. Y will be set
to zero.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

Arguments
X - INTEGER*n matrix variable N-deep

Contains the real spectral data on entry to the subroutine, and real data on exit.

Y - INTEGER*n matrix variable N-deep

Contains the imaginary spectral data on entry to the subroutine, and zero on exit.

N - INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2M,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL ~ INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man013.03 AMT

Chapter 3: Fast Fourler transforms Real inverse FFT

7 Auxiliary routines

IN_FFT1_In - Initialises the FFTs coefficient arrays for a given length N (the Mth power
of 2).

System Routines

SPL_RRADI2-In
SPL.RRADI4-In
SPL_RIRADI8-In
SPL_LRRADIS8-In

SPL_.MR_REV_82
SPL_MR_.REV_84
SPL_MR_REV_88

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used ~ SPL_FCODE_In, SPL_FFT.In, SPL.MACH, SPL.TMPO0.In to
SPL_TMP4.1In, SPL.TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 25

Real inverse FFT Chapter 3: Fast Fourier transforms

3.4.2 RI_FFT1_Rn release 2

26

Purpose

RI_FFT1_.Rn calculates an inverse fast Fourier transform (FFT) of complex spectral input
data held in an array of numbers of type REAL*n, where n can have any value from 3 to 8,
and produces a real output.

Specification

SUBROUTINE RI_.FFT1_.Rn (X, Y, N, M, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, M, IFAIL

Description

RI_FFT1_Rn simultaneously evaluates £S? N-point real inverse FFTs, where ES is the
edge size od the target DAP. X (real part) and Y (imaginary part) are both N-deep matrix
arrays with data arranged sequentially ‘down the PEs’. An ‘in-place’ inverse FFT algorithm
is used, so the output data will be stored in X, and the user’s input data over-written. Y
will be set to zero.

References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974.

Arguments
X — REAL*n matrix variable N-deep

Contains the real spectral data on entry to the subroutine, and real data on exit.

Y - REAL*n matrix variable N-deep

Contains the imaginary spectral data on entry to the subroutine, and zero on exit.

N ~ INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2",
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2, where N is the user-specified length of the
transform.

IFAIL - INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

Error indicators

0 The subroutine function has worked correctly
1 N is not correctly specified

2 M is not correctly specified

man013.03 AMT

Chapter 3: Fast Fourler transforms Real inverse FFT

7 Auxiliary routines
IN_FFT1.Rn ~ Initialises the FFT’s arrays for a given length N (the Mth power of 2).
System Routines

SPL_RRADI2-Rn
SPL_RRADI4-Rn
SPL_IRRADIS8-Rn
SPL_LRRADIS-Rn

SPL_MR_REV_82
SPL_MR_REV_84
SPL.MR_REV_88

'8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used ~ SPL.FFT.Rn, SPL_.MACH, SPL_.TMPO0.In to SPL.TMP4.In,
SPL_TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 27

FFT initialisation Chapter 3: Fast Fourler transforms

3.5 FFT initialisation

3.5.1 IN_FFT1_In release 2

1 Purpose

IN.FFT1_In initialises coefficients and parameters for CF.FFT1.In, CI.FFT1.In, RF.FFT1.In
and RI_FFT1.In, where n can have any value between 1 and 8.

2 Specification

SUBROUTINE IN_FFT1.In (N, M, IFAIL)
INTEGER*4 N, M, IFAIL

3 Description

IN.FFT1_In generates two arrays of coefficients for use in CF_FFT1.In, CI_FFT1.In,
RF_FFT1.In and RI_FFT1_In; where n can have any value from 1 to 8.

The arrays produced — CIn and SIn — are held in the common block SPL.FFT_In, and are
used by the system software. You need only call IN_.FFT1_In once before using any of the
FFT subroutines listed above and having the same value of n.

4 References
[1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments
N - INTEGER*4 scalar variable

Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL - INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
0 The subroutine function has worked correctly
1 N is not correctly specified
2 M is not correctly specified
3

N and M are not mutually compatible

7 Auxiliary routines

None

28 man(013.03 AMT

Chapter 3: Fast Fourler transforms FFT initialisation

8 Accuracy
Details to be supplied

9 Further comments

COMMON blocks used ~ SPL.FCODE_In, SPL.FFT_In, SPL_MACH, SPL_.TMPO_In to
SPL.TMP4_In, SPL_TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 29

FFT initialisation Chapter 3: Fast Fourier transforms

3.5.2 IN_FFT1_.Rn release 2

1 Purpose

IN_FFT1.Rn initialises coeflicients and parameters for CF_.FFT1.Rn, CI.FFT1.Rn, RF_FFT1_Rn
and RI_FFT1_Rn, where n can have any value between 3 and 8.

2 Specification

SUBROUTINE IN_FFT1_Rn (N, M, IFAIL)
INTEGER*4 N, M, IFAIL

3 Description

IN_FFT1.Rn generates two arrays of coefficients for use in CF_FFT1_Rn, CI_FFT1_Rn,
RF_FFT1_Rn and RI.FFT1.Rn; where n can have any value from 3 to 8.

The arrays produced — CRn and SRn — are held in the common block SPL_.FFT_Rn, and
are used by the system software. You need only call IN_FFT1.Rn once before using any of
the FFT subroutines listed above and having the same value of n.

4 References
(1] Brigham E O
The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

N - INTEGER*4 scalar variable
Specifies the length of the transform. N must be an integer power of 2, that is, N = 2™,
where M is a positive integer.

M - INTEGER*4 scalar variable

M is a positive integer such that N = 2™, where N is the user-specified length of the
transform.

IFAIL — INTEGER*4 scalar variable

Unless the routine detects an error IFAIL will be set to zero on exit from the subroutine.

6 Error indicators
0 The subroutine function has worked correctly
1 N is not correctly specified
2 M is not correctly specified
3

N and M are not mutually compatible

7 Auxiliary routines
None

8 Accuracy

Details to be supplied

30 man013.03 AMT

Chapter 3: Fast Fourier transforms FFT initialisation

9 Further comments

COMMON blocks used ~ SPL.FCODE_Rn, SPL_FFT_Rn, SPL_MACH, SPL_.TMPO0_In to
SPL_.TMP4_In, SPL_.TRIG

10 Keywords

FFT, fast Fourier transforms, spectral analysis

Digital signal processing library man013.03 31

FFT initialisation

32

man013.03

Chapter 3: Fast Fourler transforms

AMT

Chapter 4

High performance FFTs

Contents:
Subroutine Page
CF.FFT.T.n_len.IN_m 34
CLLFFT.T.n_len.IN_.m 39

The fast Fourier transform routines described in this chapter offer improved performance over the
routines described in the previous chapter. The new routines offer you a faster way to calculate
FFTs, and provide a more general way to specify your input and required output data.

Digital signal processing library ' man013.03 33

Forward FFTs Chapter 4: High performance FFTs

4.1 Forward FFTs

4.1.1 CF_FFT_T_n_len_.IN_m release 2

1 Purpose

CF.FFT_T.n_len.IN_m calculates with tapered arithmetic the forward fast Fourier trans-
form of complex input data held in a data array of type INTEGER*p. n is the length of the
required transform, and can take any of the values 2, 4, 8, 16, 32, 64, 128, 256 or 512; len is
the size of the array needed to hold the input (and output) data, and can take the value S or
L corresponding to a value for p of 2 or 3; the real and imaginary components of the input
data are assumed to have a precision of m bits, where m takes an integer value in the range
8 to 11 or up to 16 in some cases. The routine will accept input data components that are
interleaved with, or separated from each other, and which can be digit-reversed or naturally
ordered.

2 Specification

SUBROUTINE CF.FFT.T-n.len.IN.m (DATA, INFLAG, OUTFLAG)
INTEGER*p DATA(,,2n +2)
INTEGER*4 INFLAG, OUTFLAG

3 Description

CF_FFT_T.n_.len.IN.m simultaneously calculates ES? n-point complex FFTs, where n is
the length of the FFT that is to be calculated. The same data array, DATA, is used for
input and output.

The routine assumes that the real and imaginary components of the input data have a
precision of m bits, with a system limit of 16 on m. The number of bits needed to store the
output spectra is at least (m + 1), and increases with n, the length of the transform. The
‘precision growth’ of the output spectral data compared with the input data puts a limit on
the possible precision of the input data the routine will handle.

If you specify len to have the value L, then you have to declare the matrix array DATA as
INTEGER*3, so 24 bits are available to hold each data value. For an n of 512, the precision
growth is 5 bits, so for input data with m of 16 bits, output data is only 21 bits long.
Hence, if you declare DATA as INTEGER*3, the routine puts no n-related restrictions on
the precision of your input data, and an input data limit of 16 bits applies for FFTs of any
length.

You may wish to conserve array memory space as much as possible — and specify len to have
a value of S, and DATA as INTEGER*2. In this case, precision growth with n does affect
the maximum possible input data precision the routine can handle. The table below lists
the relationship between n and m,,,;, the maximum value of m the routine will handle with
an INTEGER*2 data array:

n 2 4 8 16 32 64 128 256 512

Mmaz 15 15 14 14 13 13 12 12 11

For example, if you want to calculate the FFTs of ES? sets of data, 32 pairs of data in each
set (n = 32), if you specify len as S and DATA as INTEGER*2, then the maximum precision
of your input data the routine will handle is 13 bits, and you might use the routine:

34 man(113.03 AMT

Chapter 4: High performance FFTs Forward FFTs

CF_FFT.T_32_S_IN_13

Under these conditions, if you specify m to be more than 13, perhaps by using the routine
CF.FFT.T.32.S.IN.15, your program will fail at the linking stage, with an error message
similar to ‘Names undefined ...’.

In all cases there is a limit to the values that the components of the input data can take for
a given precision. Suppose one instance of the complex input data is a + jb, and an input
data precision of m bits is assumed; a, b and m must satisfy the relationship:

V(@ +b%) < 2™

If the relationship is not satisfied, there will be overflow during the calculations, but because
these routines have been written to work at maximum speed, the normal DAP error reporting
features have not been used, and you may not know overflow had occurred.

The output data is ‘normalised’, by dividing it by 2[("’9'9")"’9], where pg is the precision
growth for the length of transform concerned. The normalisation factors N F and precision
growths for different lengths of transform are:

n 2 4 8 16 32 64 128 256 512
pg 1 1 2 2 3 3 4 4 5
NF 1 2 2 4 4 8 8 16 16

References

None

Arguments

DATA - INTEGER*p

On entry, the routine expects to find the data to be transformed in DATA, and to
be right aligned (that is, in the least significant end of each element in DATA), in a
mapping defined by the value in INFLAG. If you specify len to be L then you must
declare DATA as INTEGER*3 (24 bits); if you specify len to be S you must declare
DATA as INTEGER*2 (16 bits).

Note that you should declare DATA two matrices larger than needed to cope with the
input data; this extra area is used for workspace.

On output, DATA holds the normalised spectral output of the transform, in a format
defined by OUTFLAG, right-aligned, and sign-extended to the most significant end of
each element of DATA, to use all of the bits in each element.

Digital signal processing library man013.03 35

Forward FFTs Chapter 4: High performance FFTs

5 Arguments - continued
INFLAG - INTEGER*4

Specifies the assumed input data mapping, and can have any one of the following values:

0 The input data is assumed to be digit-reversed with real and imaginary parts
interleaved

1 The input data is assumed to be digit-reversed with real and imaginary parts
separated

2 The input data is assumed to be naturally ordered with real and imaginary
parts interleaved

3 The input data is assumed to be naturally ordered with real and imaginary
parts separated

The routine expects to find its input data in the first 2n blocks of INTEGER*p planes
in DATA. If the real and imaginary parts of the complex input data are separated, the
first n blocks of DATA will contain the real parts of all the input data, and second n
blocks all the imaginary parts. If the real and imaginary parts are interleaved, then the
real part of any given data input pair is immediately followed by the pair’s imaginary
part. In all cases, the last two blocks of INTEGER*p planes of DATA are used by the
routine for workspace.

‘Naturally ordered’ and ‘digit-reversed’ refer to the ordering the routine assumes for the
input data in DATA. The table below lists the address bits needed to address the real and
imaginary components of the input data for different values of n for input data assumed
to be naturally ordered. ag is the most significant bit of the address of the input data pair;
a, is the bit that differentiates between the real and the imaginary components of the
data, so is the most significant bit of the total address for data assumed to be separated,
and the least significant bit for data assumed to be interleaved. The real component of
a data pair is assumed to have a lower address in DATA than the imaginary component.

Length ‘n’ Naturally ordered address bits
of transform interleaved data components separated data components
2 ap a, a, ag
4 dpa; a, a, aga;
8 apgaias a; a; apaids
16 agaias ag a; a, apaiaz as
32 apaias asds a, a, apaids asay
64 apg@162 QzG4as a; a; agaidz a3G44a5
128 Qpaiag dazaqds dg a, a, QgG1G3 030485 Og
256 agdi1a3 dasztads dedy a4 a; Qaopadidg azaqas dagar
512 Gga18 Q30405 Qeavag @, a, ag@i1Gy azd40s5 agdras

The table on the next page shows the effect of ‘digit-reverse’ of the ordering of address
bits, using the same conventions as in the table above.

36 man013.03 AMT

Chapter 4: High performance FFTs Forward FFTs

5 Arguments - continued

Length ‘n’ Digit-reversed address bits
of transform interleaved data components separated data components

2 ap a; a, 4ag

4 apai ay a; aodi

8 apaias 4, a; apdigy

16 az agaias a, a; ag agG1a2

32 aza4 Qagaids a, a, Qazas agdids

64 aszaqds dapgGraz a; a, asza4Gs apaas

128 Qg a3as05 apaidz a; a; Gg Q3a4Gs agadias
256 agQ7 (3a4G5 GgQi1Gz G, a, Gea7 G3a4a; aodids
512 Gga7Gg G3G4G5 QpG1dz G, G, Ggd7Gg Q30485 Gglidsg

For example, if n is 32, and the routine expects naturally ordered input data with real
and imaginary parts interleaved (INFLAG = 2), then it would assume that the imaginary
part of the fifth input data pair would be stored in DATA(,, 10) (that is, would have
binary address within DATA of (001 00 1) (note that the first plane is numbered 1 in
FORTRAN-PLUS, but is numbered 0 as far as the actual address bits are concerned).

If naturally ordered and separated data were expected (INFLAG = 3), the address of the
imaginary part of the fifth input data pair would be DATA(,, 37), with a binary address
of (1 001 00).

If the routine expects the input data to be digit-reversed and interleaved (INFLAG =0),
then it would assume that the imaginary part of the fifth data pair had a binary address
of (00 001 1) and would be stored in DATA(, ,4).

If the routine expects the input data to be digit-reversed and separated (INFLAG = 1),
then it would assume that the imaginary part of the fifth data pair had a binary address
of (1 00 001) and would be stored in DATA(,, 34).

OUTFLAG - INTEGER*4
Specifies the required mapping of the normalised spectral data in DATA on output, and
can have either of the following values:
. 0 The real and imaginary parts of the output spectra are interleaved, and are
naturally ordered

1 The real and imaginary parts of the output spectra are separated, and are
naturally ordered

As with the assumed mapping of the input data, the output data is held either interleaved
or separated, in the first 2n blocks of DATA

6 Error indicators

None — in order to process the input data at maximum speed, no error detection is used.

7 Auxiliary routines

None

Dizital signal processing library man013.03 37

Forward FFTs

8 Accuracy
Details to be supplied

9 Further comments

None

10 Keywords

FFT, fast Fourier transforms

38

man(113.03

Chapter 4: High performance FFTs

AMT

Chapter 4: High performance FFTs Inverse FFTs

4.2 Inverse FFTs

4.2.1 CI_LFFT T_n_len.IN_m release 2

1 Purpose

CL.LFFT_.T_n.len.IN.m calculates with tapered arithmetic the inverse fast Fourier trans-
form of complex input spectral data held in a data array of type INTEGER*p. n is the
length of the required transform, and can take any of the values 2, 4, 8, 16, 32, 64, 128,
256 or 512; len is the size of the array needed to hold the input (and output) data, and
can take the value S or L corresponding to a value for p of 2 or 3; the real and imaginary
components of the input spectra are assumed to have a precision of m bits, where m takes
an integer value in the range 8 to 11 or up to 16 in some cases. The routine will accept input
data components that are interleaved with, or separated from each other, and which can be
digit-reversed or naturally ordered.

2 Specification

SUBROUTINE CLLFFT.T.n.len_.IN.m (DATA, INFLAG, OUTFLAG)
INTEGER*p DATA(,,2n +2)
INTEGER*4 INFLAG, OUTFLAG

3 Description

CLLFFT_T_n_len.IN_m simultaneously calculates £S? n-point complex inverse FFTs, where
n is the length of the FFT that is to be calculated. The same data array, DATA, is used for
input and output.

The routine assumes that the real and imaginary components of the input spectral data
have a precision of m bits, with a system limit of 16 on m. The number of bits needed to
store the output data is at least (m + 1), and increases with n, the length of the transform.
The ‘precision growth’ of the output data compared with the input data puts a limit on the
possible precision of the input data the routine will handle.

If you specify len to have the value L, then you have to declare the matrix array DATA as
INTEGER*3, so 24 bits are available to hold each data value. For an n of 512, the precision
growth is 5 bits, so for input data with m of 16 bits, output data is only 21 bits long.
Hence, if you declare DATA as INTEGER*3, the routine puts no n-related restrictions on
the precision of your input data, and an input data limit of 16 bits applies for FFTs of any
length.

You may wish to conserve array memory space as much as possible — and specify len to have
a value of S, and DATA as INTEGER*2. In this case, precision growth with n does affect
the maximum possible input data precision the routine can handle. The table below lists
the relationship between n and my, 4., the maximum value of m the routine will handle with
an INTEGER*2 data array:

n 2 4 8 16 32 64 128 256 512

Mimaz 15 15 14 14 13 13 12 12 11

For example, if you want to calculate the inverse FFTs of ES? sets of spectral data, 128
pairs of data in each set (n = 128), if you specify len as S and DATA as INTEGER*2, then

Digital signal processing library ' man013.03 39

Inverse FFTs Chapter 4: High performance FFTs

the maximum precision of your input data the routine will handle is 12 bits, and you might
use the routine:

CI_FFT.T_32_S_IN_12

Under these conditions, if you specify m to be more than 12, perhaps by using the routine
CLLFFT_T.32.S.IN.15, your program will fail at the linking stage, with an error message
similar to ‘Names undefined ...".

In all cases there is a limit to the values that the components of the input data can take for
a given precision. Suppose one instance of the complex input data is a + 7, and an input
data precision of m bits is assumed; a, b and m must satisfy the relationship:

V(@ +b?) < 2m-1-1

If the relationship is not satisfied, there will be overflow during the calculations, but because
these routines have been written to work at maximum speed, the normal DAP error reporting
features have not been used, and you may not know overflow had occurred.

The output data is ‘normalised’, by dividing it by 2[(19927)-Pd] where pg is the precision
growth for the length of transform concerned. The normalisation factors NF and precision
growths for different lengths of transform are:

n 2 4 8 16 32 64 128 256 512

Py 1 1 2 2 3 3 4 4 5
NF 1 2 2 4 4 8 8 16 16

4 References

None

5 Arguments
DATA - INTEGER*p

On entry, the routine expects to find the spectral data to be transformed in DATA, and
to be right aligned (that is, in the least significant end of each element in DATA), in
a mapping defined by the value in INFLAG. If you specify len to be L then you must
declare DATA as INTEGER*3 (24 bits); if you specify len to be S you must declare
DATA as INTEGER*2 (16 bits).

Note that you should declare DATA two matrices larger than needed to cope with the
input data; this extra area is used for workspace.

On output, DATA holds the normalised output of the transform, in a format defined by
OUTFLAG, right-aligned, and sign-extended to the most significant end of each element
of DATA, to use all of the bits in each element.

40 man013.03 AMT

Chapter 4: High performance FFTs - Inverse FFTs

5 Arguments - continued
INFLAG - INTEGER*4

Specifies the assumed input data mapping, and can have any one of the following values:

0 The input data is assumed to be digit-reversed with real and imaginary parts
interleaved

1 The input data is assumed to be digit-reversed with real and imaginary parts
separated

2 The input data is assumed to be naturally ordered with real and imaginary
parts interleaved

3 The input data is assumed to be naturally ordered with real and imaginary
parts separated

The routine expects to find its input data in the first 2n blocks of INTEGER*p planes
in DATA. If the real and imaginary parts of the complex input data are separated, the
first n blocks of DATA will contain the real parts of all the input data, and second n
blocks all the imaginary parts. If the real and imaginary parts are interleaved, then the
real part of any given data input pair is immediately followed by the pair’s imaginary
part. In all cases, the last two blocks of INTEGER*p planes of DATA are used by the
routine for workspace. '

‘Naturally ordered’ and ‘digit-reversed’ refer to the ordering the routine assumes for the
input data in DATA. The table below lists the address bits needed to address the real and
imaginary components of the input data for different values of n for input data assumed
to be naturally ordered. aq is the most significant bit of the address of the input data pair;
a; is the bit that differentiates between the real and the imaginary components of the
data, so is the most significant bit of the total address for data assumed to be separated,
and the least significant bit for data assumed to be interleaved. The real component of
a data pair is assumed to have a lower address in DATA than the imaginary component.

Length ‘n’ Naturally ordered address bits
of transform interleaved data components separated data components
2 apg a4, a, 4ap
4 aga; a, a, agd
8 apgai1as a, a; apaias
16 apai1a2 az a; a, agGias das
32 agaias asas a, a, @pQids aszay
64 agaias aszasas a, a, Qgaids G3zG4ds
128 apaias Q30405 ag G, a, agGiGs Qaszdsds dg
256 agaias aza4as agd7 a, a, GgGi1ag asG4ds Ggat
512 aga1G2 0a3Q44ds agd7a3 Gy a4, apaiaz a3zQads agdras

The table on the next page shows the effect of ‘digit-reverse’ of the ordering of address
bits, using the same conventions as in the table above.

Digital signal processing library man013.03 41

Inverse FFTs Chapter 4: High performance FFTs

5 Arguments - continued

Length ‘n’ Digit-reversed address bits
of transform interleaved data components separated data components

2 ag a; a, ag

4 agay a; a, apgai

8 agdiaz a; a, agaiay

16 ag agaias a, a, as agaids

32 asas GgaGi1as Gy a; agas agaids

64 asdals GoG1G9 4y a; Qasaqas aodids

128 Gg G3Q4G5 Qgaia; a; a, Qg 033405 agadids
256 agQ7 aza4as apGias a; a; agQ7 aza4Gs Ggaias
512 Gsa7G3 (34485 GpQ1G2 G; G; GgG7a3 G3G405 GgGida

For example, if n is 64, and the routine expects naturally ordered input data with real
and imaginary parts interleaved (INFLAG = 2), then it would assume that the real part
of the twentieth input data pair would be stored in DATA(,,39) (that is, would have
binary address within DATA of (010 011 0) (note that the first plane is numbered 1 in
FORTRAN-PLUS, but is numbered 0 as far as the actual address bits are concerned).

If naturally ordered and separated data were expected (INFLAG = 3), the address of the
real part of the twentieth input data pair would be DATA(,, 20), with a binary address
of (0 010 011).

If the routine expects the input data to be digit-reversed and interleaved (INFLAG = 0),
then it would assume that the real part of the twentieth data pair had a binary address
of (011 010 0) and would be stored in DATA(,,53).

If the routine expects the input data to be digit-reversed and separated (INFLAG = 1),
then it would assume that the real part of the twentieth data pair had a binary address
of (0 011 010) and would be stored in DATA(,, 27).

OUTFLAG - INTEGER*4

Specifies the required mapping of the normalised data in DATA on output, and can have
either of the following values:

0 The real and imaginary parts of the output data are interleaved, and are nat-
urally ordered

1 The real and imaginary parts of the output data are separated, and are natu-
rally ordered

As with the assumed mapping of the input data, the output data is held either interleaved
or separated, in the first 2n blocks of DATA

6 Error indicators

None — in order to process the input data at maximum speed, no error detection is used.

7 Auxiliary routines

None

42 man13.03 AMT

Chapter 4: High performance FFTs Inverse FFTs

8 Accuracy
Details to be supplied

9 Further comments

None

10 Keywords

FFT, fast Fourier transforms

Digital signal processing library man013.03 43

Inverse FF'Ts

44

man13.0N3

Chapter 4: High performance FFTs

AMT

Chapter 5

Windowing

Contents:

Subroutine
WINL.In
WIN1.Rn
IN.WINi.In
IN.WIN1.Rn

Digital signal processing library man013.03

Page
46
48
50

33

45

Windowing Chapter 5: Windowing

5.1 Windowing

5.1.1 WIN1_.In release 2

1 Purpose

WIN1._1In is a windowing subroutine for INTEGER*n real or imaginary arrays, where n can
have any value from 1 to 8.

2 Specification

SUBROUTINE WIN1.In (X, N, IFAIL)
INTEGER*n X(,,N)
INTEGER*4 N, IFAIL

3 Description

WIN1_In windows an INTEGER*n data array with a window function held in a COMMON
block, where n can have any value from 1 to 8. Scaling arithmetic is included to avoid
overflows and underflows.

4 References
[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments
X - INTEGER*n

On input the array contains the user input data, which is replaced on output by the
windowed data.

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M
is a positive integer.

IFAIL — INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine.
6 Error Indicators
0 The subroutine function has worked correctly

1 N is not correctly specified

7 Auxiliary Routines

System routine
SPL_WIN1.In

8 Accuracy
Details to be supplied

46 man013.03 AMT

Chapter 5: Windowing

9 Further Comments
COMMON blocks used — SPL_.MACH, SPL_TRIG, SPL_WINF1_In

10 Keywords
FFT, Fast Fourier Transforms, Spectral analysis

Digital signal processing library man013.03

Windowing

47

Windowing Chapter 5: Windowing

5.1.2 WIN1_Rn release 2

48

1

Purpose

WIN1.Rn is a windowing subroutine for REAL*n real or imaginary arrays, where n can
have any value from 3 to 8.

Specification

SUBROUTINE WIN1.Rn (X, N, IFAIL)
REAL*n X(,,N)
INTEGER*4 N, IFAIL

Description

WIN1.Rn windows an REAL*n data array with a window function held in a COMMON
block, where n can have any value from 3 to 8. Scaling arithmetic is included to avoid
overflows and underflows.

References
[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

Arguments
X - REAL*n

On input the array contains the user data, which is replaced on output by the windowed
data.

N — INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2, that is, N = 2M, where M
is a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine.

Error Indicators
0 The subroutine function has worked correctly

1 N is not correctly specified

Auxiliary Routines

System routine
SPL.WIN1.Rn

Accuracy
Details to be supplied

Further Comments
COMMON blocks used - SPL_MACH, SPL.TRIG SPL.WINF1_.Rn

man013.03 AMT

Chapter 5: Windowing Windowing

10 Keywords
FFT, Fast Fourier Transforms, Spectral Analysis

Digital signal processing library man013.03 49

Window initialisation Chapter 5: Windowing

5.2 Window initialisation

5.2.1 IN.WIN1_In release 2

50

Purpose

IN_WIN1.In is a window initialisation subroutine for INTEGER*n precision, where n can
have any value from 1 to 8.

Specification

SUBROUTINE IN_.WIN1.In (FUNC, ALPHA, BETA, N, IFAIL)
REAL*4 ALPHA, BETA
INTEGER*4 FUNC, N, IFAIL

Description

IN_WINI1.In initialises an array with a suitably scaled window function, where n can have
any value from 1 to 8.

Scaling is essential because the window functions used are never greater than unity; the scale
factor gives a maximum window value of half the full positive range - 1, that is, for n = 5,
the maximum window value is 15.

References
[1] Harris F J

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

Arguments

FUNC - INTEGER*4

When you call IN.WIN1.In you must always give a value for each of the four parameters
to the routine, even though the values you give for ALPHA or BETA or both are not
used for some values of FUNC. In release 1 of DSPLIB FUNC must lie in the range 1-7;
the list below gives the various functions that can be called, details of the use made of
ALPHA and BETA, and the algorithms used to calculate the window function w(n):

1 - Hamming; neither parameter is used
2mn
= 0.54—0.46 ¢ ——

w(n) cos(i)

2 — Hanning; only ALPHA is used

w(n) = sin® (%ﬁ)

3 - Gaussian; only ALPHA is used, it must be positive

w(n) = exp (_-;- <aﬁ%>2)

man{l1132 N3 AMT

Chapter 5: Windowing Window initialisation

4 — Dolph-Chebyshev; only ALPHA is used, it must be positive

w(n) = F~Y(W(k))
where:

F-1is the inverse DFT

5 c0s (N cos™! (B cos (Z£)))

W(k) =(-1) cosh (N cosh™1(B))

B = cosh (-1%/- cosh'l(lo"))
¢ is the number of decades of sidelobe level

5 — Blackman; neither parameter is used

w(n) = f:(—l)’" m . cos (2”;’")

n=0

5
E)
where Z am = 1.0

mz=0
6 — Blackman-Harris; only ALPHA is used, it must take the value 3.0 or 4.0 - the
number of samples in the truncated series. The window function w(n) is a
truncated BLACKMAN series

7 — Kaiser; only ALPHA used, it must be positive

()

Iy[ma]
where:
) z\k 2
L(z)=)" ((—2‘2“‘)
k=0 ’

meo is the time-bandwidth product

ALPHA - REAL*4
BETA - REAL*4
N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

Digital signal processing library man013.03 7 51

Window initialisation Chapter 5: Windowing

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine.

6 Error Indicators ,

The subroutine has worked correctly
N was not specified correctly

The value of ALPHA was not valid
The value of BETA was not valid

The function was not known

Gt b W N = O

The function’s parameters were not valid

7 Auxiliary Routines
System routines

SPL_IWIN1_In
SPL_ICSH .Rm
SPL_CSH.Rm
SPL_ICOS_Rm
SPL_BESSELIO.Rm

where m=3forn=1,2and m =n for n = 3,4,5,6,7,8

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used — SPL_.MACH, SPL_TRIG, SPL.WINF1_.In

10 Keywords
FFT, Fast Fourier Transforms, Spectral analysis

52 man013.03 AMT

Chapter 5: Windowing Window initialisation

5.2.2 IN_WIN1_Rn release 2

1 Purpose

IN_.WIN1.Rn is a window initialisation subroutine for REAL*n precision, where n can have
any value from 3 to 8.

2 Specification

SUBROUTINE IN.WIN1.Rn (FUNC, ALPHA, BETA, N, IFAIL)
REAL*4 ALPHA, BETA
INTEGER*4 FUNC, N, IFAIL

.3 Description

IN_.WIN1.Rn initialises an array with a window function, where n can have any value from
3 to 8.

4 References
(1] Harris FJ

On the use of windows for harmonic analysis with the discrete Fourier transform: Proc
IEEE, Vol 66, No 1, January 1978, pp 51-83.

5 Arguments

FUNC - INTEGER*4

When you call IN.WIN1.In you must always give a value for each of the four parameters
to the routine, even though the values you give for ALPHA or BETA or both are not
used for some values of FUNC. In release 1 of DSPLIB FUNC must lie in the range 1-7;
the list below gives the various functions that can be called, details of the use made of
ALPHA and BETA, and the algorithms used to calculate the window function w(n):

1 ~ Hamming; neither parameter is used
2
w(n) = 0.54—0.46 cos (-—;—rvz)

2 -~ Hanning; only ALPHA is used

w(n) = sin® (%)

3 ~ Gaussian; only ALPHA is used, it must be positive

w(n) = exp (—% <a—1§:—1/-§)2)

Digital signal processing library man013.03 53

Window initialisation Chapter 5: Windowing

4 — Dolph-Chebyshev; only ALPHA is used, it must be positive

w(n) = F~Y(W(k))
where:

F—1 is the inverse DFT

(N cos™* (Bcos (5)))
cosh (N cosh™!(8))

W(k) = (-1)*=

B = cosh (-]% cosh—1(10°‘)>

« is the number of decades of sidelobe level

5 — Blackman; neither parameter is used

¥

m 2rnm
w(n) _.'?;;(—-1) . Gm . cos(¥)
&
where Z am = 1.0
m=0

6 — Blackman-Harris; only ALPHA is used, it must take the value 3.0 or 4.0 - the
number of samples in the truncated series. The window function w(n) is a

truncated BLACKMAN series

7 — Kaiser; only ALPHA used, it must be positive

o (/o)

w(n) = Iy[ma]
where:
oo z\k 2
Lz)=) (‘(‘g,“}—)
k=0 :

wa is the time-bandwidth product

ALPHA - REAL*4
BETA - REAL*4
N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

54 manf113.03 AMT

Chapter 5: Windowing Window initialisation

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine.

6 Error Indicators

The subroutine has worked correctly
N was not specified correctly

The value of ALPHA was not valid
The value of BETA was not valid

The function was not known

Tt b W = O

The function’s parameters were not valid

7 Auxiliary Routines
System routines

SPL_IWIN1_Rn
SPL_ICSH _Rn
SPL_CSH _.Rn
SPL_ICOS_Rn
SPL_BESSELIO_Rn

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used — SPL._ MACH, SPL.TRIGR, SPL_.WINF1_Rn

10 Keywords
FFT, Fast Fourier Transforms, Spectral analysis

Digital signal processing librarv man013.03 55

Window initialisation

56

man013.03

Chapter 5: Windowing

AMT

Chapter 6

Signal generation

Contents:

Subroutine
CSINE.In
CSINE_Rn
CHIRP_In
CHIRP_Rn
EX_DECAY_In
EX_DECAY_Rn

Digital signal processing library man013.03

Page
58
60
62
64
66

68

57

Sine wave Chapter 6: Signal generation

6.1 Sine wave

6.1.1 CSINE.In

A8

Purpose

CSINE_In generates a sine wave of INTEGER*n precision, where n can have any value from
1 to 8.

Specification

SUBROUTINE CSINE_In (X, FREQ, AMPL, N, IFAIL)
INTEGER*n X(,,N)

REAL*4 FREQ, AMPL

INTEGER*4 N, IFAIL

Description

CSINE_In sets a suitably scaled sine function into an array, where n can have any value
from 1 to 8.

References

None

Arguments
X - INTEGER*n

A data array into which the sine function is to be put

FREQ - REAL*4

The frequency of the sine function; that is, the number of cycles set into the array

AMPL - REAL*4

The amplitude of the sine function

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2; that is N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine has worked correctly

1 N was not specified correctly

2 The value given to FREQ was not valid

3 The value given to AMPL was not valid

manfl12 N2 AMT

Chapter 6: Signal generation Sine wave

7 Auxiliary Routines
System routines
SPL_CSINE_In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_.MACH, SPL.TRIG

10 Keywords

Sine, sine generation, sine wave generation

Digital signal processing library . man013.03 59

Sine wave Chapter 6: Signal generation

6.1.2 CSINE_Rn release 2

1 Purpose

CSINE_Rn generates a sine wave of REAL*n precision, where n can have any value from 3
to 8.

2 Specification

SUBROUTINE CSINE_Rn (X, FREQ, AMPL, N, IFAIL)
REAL*n X(,,N)

REAL*4 FREQ, AMPL

INTEGER*4 N, IFAIL

3 Description

CSINE_Rn sets a suitably scaled sine function into an array, where n can have any value
from 3 to 8.

4 References

None

5 Arguments
X - REAL*n

A data array into which the sine function is to be put

FREQ - REAL*4
The frequency of the sine function; that is, the number of cycles set into the array
AMPL - REAL*4

The amplitude of the sine function

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2; that is N = 2™, where M is
a positive integer.

IFAIL — INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

6 Error Indicators

0 The subroutine has worked correctly

1 N was not specified correctly

2 The value given to FREQ was not valid

3 The value given to AMPL was not valid

7 Auxiliary Routines

System routines
SPL.CSINE.Rn

60 man013.03 AMT

Chapter 6: Signal generation Sine wave

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used — SPL_MACH, SPL_.TRIG

10 Keywords

Sine, sine generation, sine wave generation

Digital signal processing library man013.03 61

Chirp sine wave Chapter 6: Signal generation

6.2 Chirp sine wave

6.2.1 CHIRP_In release 2

1 Purpose

CHIRP_In generates a chirp sine wave with INTEGER*n precision, where n can have any
value from 1 to 8.

2 Specification

SUBROUTINE CHIRP.In (X, FREQS, FREQE, AMPL, N, IFAIL)
INTEGER*n X(,,N)

REAL*4 FREQS, FREQE, AMPL

INTEGER*4 N, IFAIL

3 Description

CHIRP.In sets a suitably scaled chirp sine function into an array, where n can have any
value from 1 to 8.

4 References

None

5 Arguments
X - INTEGER*n
The data array into which the chirp function will be put
FREQS - REAL*4
The start frequency of the chirp
FREQE - REAL*4
The end frequency of the chirp

AMPL - REAL*4
The amplitude of the chirp sine function

N - INTEGER¥*4 scalar

Specifies the array length. N must be an integer power of 2; that is N = 2M, where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

6 Error Indicators

62 man013.03 AMT

Chapter 6: Signal generation

The subroutine worked correctly

N was not specified correctly

The values given to both FREQS and FREQE were not valid
The value given to FREQS was not valid

The value given to FREQE was not valid

The value given to AMPL was not valid

G b W N = O

7 Auxiliary Routines
System routines
SPL.CHIRP.In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_MACH, SPL.TRIG

10 Keywords

Chirp, chirp generation, chirp sine function

Digital signal processing library man013.03

Chirp sine wave

63

Chirp sine wave Chapter 6: Signal generation

6.2.2 CHIRP_Rn ' release 2

1 Purpose

CHIRP.Rn generates a chirp sine wave with REAL*n precision, where n can have any value
from 3 to 8.

2 Specification

SUBROUTINE CHIRP_Rn (X, FREQS, FREQE, AMPL, N, IFAIL)
REAL*n X(,,N)

REAL*4 FREQS, FREQE, AMPL

INTEGER*4 N, IFAIL

3 Description

CHIRP.Rn sets a suitably scaled chirp sine function into an array, where n can have any
value from 3 to 8.

4 References
None

5 Arguments
X - REAL*n
The data array into which the chirp function will be put

FREQS - REAL*4
The start frequency of the chirp

FREQE - REAL*4
The end frequency of the chirp

AMPL - REAL*4
The amplitude of the chirp sine function

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2; that is N = 2™, where M is
a positive integer.
IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine
6 Error Indicators
The subroutine worked correctly
N was not specified correctly '
The value given to FREQS was not valid
The values given to both FREQS and FREQE were not valid
The value given to FREQE was not valid
The value given to AMPL was not valid

Gt R W NN = O

64 man013.03 AMT

Chapter 6: Signal generation Chirp sine wave

7 Auxiliary Routines
System routines
SPL.CHIRP.Rn

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_MACH, SPL.TRIG

10 Keywords

Chirp, chirp generation, chirp sine function

Digital signal processing librarv man013.03 65

Exponential decay Chapter 6: Signal generation

6.3 Exponential decay

6.3.1 EX_DECAY_.In release 2

66

1

Purpose

EX_DECAY_In generates an exponential decay function with INTEGER*n precision, where
n can have any value from 1 to 8.

Specification

SUBROUTINE EX_DECAY.In (X, Y, AMPL, N, IFAIL)
INTEGER*n X(,,N), Y(,,N)

REAL*4 AMPL

INTEGER*4 N, IFAIL

Description

EX_DECAY_In sets a suitably scaled complex exponential decay function into X and Y,
where n can have any value from 1 to 8. The (i + 1)*» matrix in each array contains values
given by:

Xi+jY; = AMPL.Z} for i=0,1, ... ,N-1

where 7 — _Etiy

and z and y are initial values, input in the first matrices of the X and Y arrays respectively.

References
None

Arguments

X - INTEGER*n

On input the routine expects to find the real part of the complex initial values for the
required decay function in the first matrix of the array; on exit the whole array contains
the real part of the function

Y - INTEGER*n

On input the routine expects to find the imaginary part of the complex initial values
for the required decay function in the first matrix of the array; on exit the whole array
contains the imaginary part of the function

AMPL - REAL*4

The initial amplitude of the decay function

N - INTEGER*4 scalar

Specifies the array length. N must be a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

man(013.03 AMT

Chapter 6: Signal generation

6 Error Indicators

0

1
2
3

The subroutine worked correctly
N was not specified correctly
The magnitude of one or more of the input complex initial values was zero

The value given to AMPL was zero

7 Auxiliary Routines
SPL.CMPY_Rn

8 Accuracy

Details to be supplied

9 Further Comments
COMMON blocks used - SPL_.MACH, SPL_TRIG

10 Keywords

Exponential, decay, exponential decay function

Digital signal processing library man013.03

Exponential decay

67

Exponential decay Chapter 6: Signal generation

6.3.2 EX_DECAY_Rn release 2

1 Purpose

EX_DECAY_Rn generates an exponential decay function with REAL*n precision, where n
can have any value from 3 to 8.

2 Specification

SUBROUTINE EX_DECAY_Ra (X, Y, AMPL, N, IFAIL)
REAL*n X(,,N), Y(,,N)

REAL*4 AMPL

INTEGER*4 N, IFAIL

3 Description

EX_DECAY_Rn sets a suitably scaled complex exponential decay function into X and Y,
where n can have any value from 3 to 8. The (i + 1)** matrix in each array contains values
given by:

Xi+jY; = AMPL.Z} fori=0,1, ... ,N~1
where Z=z+jy

and z and y are initial values, input in the first matrices of the X and Y arrays respectively,
and where /22 + y2 < 1 for all element pairs in those first matrices.

4 References

None

5 Arguments
X - REAL*n

On input the routine expects to find the real part of the complex initial values for the
required decay function in the first matrix of the array; on exit the whole array contains
the real part of the function

Y - REAL*n

On input the routine expects to find the imaginary part of the complex initial values
for the required decay function in the first matrix of the array; on exit the whole array
contains the imaginary part of the function

AMPL - REAL*4

The initial amplitude of the decay function

N - INTEGER*4 scalar

Specifies the array length. N must be a positive integer.

IFAIL — INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Chapter 6: Signal generation

6 Error Indicators
0 The subroutine worked correctly

1 N was not specified correctly

Exponential decay

2 The magnitude of one or more of the input complex initial values was greater than 1

3 The value given to AMPL was zero

7 Auxiliary Routines
SPL.CMPY.Rn

8 Accuracy
Details to be supplied

9 Further Comments
None

10 Keywords
Exponential, decay, exponential decay function

Digital signal processing library

man013.03

69

Exponential decay

70

manf112 N2

Chapter 6: Signal generation

AMMT

Chapter 7

Signal format conversion

Contents:

Subroutine
IQ PWR.In
IQ.-PWR_Rn
PWR.IQ.In
PWR_IQ.Rn
IQMAG_In
IQ.MAG.Rn
MAG.IQ_In
MAG.IQ-Rn

Digital signal processing library

man013.03

Page
72
74
76
88
80
82
84
86

71

In-phase and quadature to power and phase Chapter 7: Signal format conversion

7.1 In-phase and quadature to power and phase

7.1.1 IQ_PWR_.In release 2

72

Purpose

IQ-PWR_In converts signal data from the in-phase and quadrature form to the ‘power’ and
phase angle form, with INTEGER*n precision, where n can have any value form 1 to 8.

Specification

SUBROUTINE IQ_.PWR_In (X, Y, N, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

Description

IQ_PWR_In converts data representing signal in-phase and quadrature amplitudes to the
equivalent ‘power’ and phase angle form, with INTEGER*n precision, where n can have any
value form 1 to 8. The angle is given in degrees. The output ‘power’ data is presented in
decibels relative to unity ‘power’.

The subroutine places the output data in the arrays initially holding the input data, hence
the initial data is overwritten.

References

None

Arguments
X - INTEGER*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the ‘power’ component is placed

Y - INTEGER*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in degrees, is placed

N -~ INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar

Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators
0 The subroutine worked correctly

1 N was not specified correctly

manf112 N2 ANMT

Chapter 7: Signal format conversion In-phase and quadature to power and phase

7 Auxiliary Routines

System routines

SPL_IQPOW._In
SPL.UNWRAP_In
SPL_ATAN2_In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_MACH, SPL_TRIG

10 Keywords

Amplitude to power, in-phase and quadrature to power and phase angle, conversion

Digital signal processing library man013.03 73

In-phase and quadature to power and phase Chapter 7: Signal format conversion

7.1.2 IQ_.PWR_Rn release 2

74

Purpose

IQ_PWR._Rn converts signal data from the in-phase and quadrature form to the ‘power’ and
phase angle form, with REAL*n precision, where n can have any value form 3 to 8.

Specification

SUBROUTINE IQ_.PWR_Rn (X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, TFAIL

Description

IQ-PWR.Rn converts data representing signal in-phase and quadrature amplitudes to the
equivalent ‘power’ and phase angle form, with REAL*n precision, where n can have any
value form 3 to 8. The angle is given in radians. The output ‘power’ data is presented in
decibels relative to unity ‘power’.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

References

None

Arguments
X - REAL*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the ‘power’ component is placed

Y - REAL*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in radians, is placed

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine worked correctly

1 N was not specified correctly

Auxiliary Routines
System routines

SPL_IQPOW_In
SPL_.UNWRAP_In

man12 N2 ARST

Chapter 7: Signal format conversion In-phase and quadature to power and phase

SPL_ATAN2.In

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used ~ SPL_MACH, SPL_TRIG

10 Keywords

Amplitude to power, in-phase and quadrature to power and phase angle, conversion

Digital signal processing library man013.03 75

Power and phase to in-phase and quadrature Chapter 7: Signal format conversion

7.2 Power and phase to in-phase and quadrature

7.21 PWR_IQ_In ' release 2

7a

1

Purpose

PWR._IQ.In converts signal data from the ‘power’ and phase angle form to the in-phase and
quadrature form, with INTEGER*n precision, where n can have any value from 1 to 8.

Specification

SUBROUTINE PWR._IQ.In (X, Y, N, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

Description

PWR_IQ_In converts data representing signal ‘power’ and phase angle values to the equiv-
alent in-phase and quadrature power form, with INTEGER*n precision, where n can have
any value from 1 to 8. The routine assumes that the angles are expressed in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

References
None

Arguments
X - INTEGER*n

The array from which the subroutine takes the power component of the data to be
converted, and into which the in-phase component is placed

Y - INTEGER*n

The array from which the subroutine takes the phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2, where M is
a positive integer.

IFAIL — INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine worked correctly

1 N was not specified correctly

Auxiliary Routines

System routines
SPL_POWIQ.In

w12 ND A RATR

Chapter 7: Signal format conversion Power and phase to in-phase and quadrature

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_LMACH, SPL_TRIG

10 Keywords

Power to amplitude, power and phase angle to in-phase and quadrature, conversion

Digital signal processing library) man013.03 77

Power and phase to in-phase and quadrature Chapter 7: Signal format conversion

7.2.2 PWR_IQ_Rn release 2

78

Purpose

PWR_IQ.Rn converts signal data from the ‘power’ and phase angle form to the in-phase
and quadrature form, with REAL*n precision, where n can have any value from 3 to 8.

Specification

SUBROUTINE PWR_IQ.Rn (X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

Description

PWR_IQ_Rn converts data representing signal ‘power’ and phase angle values to the equiv-
alent in-phase and quadrature power form, with REAL*n precision, where n can have any
value from 3 to 8.The routine assumes that the angles are expressed in radians.

The subroutine places the outpuﬁ data in the array initially holding the input data, hence
the initial data is overwritten.

References

None

Arguments
X - REAL*n

The array from which the subroutine takes the power component of the data to be
converted, and into which the in-phase component is placed

Y - REAL*n

The array from which the subroutine takes phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine worked correctly

1 N was not specified correctly

Auxiliary Routines

System routines
SPL.POWIQ.In

manf112 N2 AMT

Chapter 7: Signal format conversion Power and phase to in-phase and quadrature

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used — SPL_.MACH, SPL.TRIG

10 Keywords

Power to amplitude, power and phase angle to in-phase and quadrature, conversion

Digital signal processing librarv man013.03 - 79

In-phase and quadrature to magnitude and phase Chapter 7: Signal format conversion

7.3 In-phase and quadrature to magnitude and phase

7.3.1 IQ.MAG.In release 2

1 Purpose

IQ.MAG.In converts signal data from the in-phase and quadrature form to the magnitude
and phase angle form, with INTEGER*n precision, where n can have any value from 1 to 8.

2 Specification

SUBROUTINE IQ.MAG.In (X, Y, N, IFAIL)
INTEGER*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

3 Description

IQ_.MAG_.In converts data representing signal in-phase and quadrature values to the equiv-
alent magnitude and phase angle form, with INTEGER*n precision, where n can have any
value from 1 to 8. The phase angle is given in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

4 References

None

5 Arguments
X - INTEGER*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the magnitude component is placed

Y - INTEGER*n

The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in degrees, is placed

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

6 Error Indicators
0 The subroutine worked correctly

1 N was not specified correctly

N manT? N2) A AT

Chapter 7: Signal format conversion In-phase and quadrature to magnitude and phase

8 Auxiliary Routines
System routines

SPL_IQMAG.In
SPL_.UNWRAP_In
SPL_ATAN2_In

9 Accuracy
Details to be supplied

10 Further Comments
COMMON blocks used - SPL._MACH, SPL.TRIG

11 Keywords

Amplitude to magnitude, in-phase and quadrature to magnitude and phase angle, conversion

Digital signal processing librarv man013.03 81

In-phase and quadrature to magnitude and phase Chapter 7: Signal format conversion

7.3.2 IQ_-MAG_Rn . release 2

9

1

Purpose

IQ.MAG_Rn converts signal data from the in-phase and quadrature form to the magnitude
and phase angle form, with REAL*n precision, where n can have any value from 3 to 8.

Specification

SUBROUTINE IQ.MAG_Rn (X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, IFAIL

Description

IQ-MAG_Rn converts data representing signal in-phase and quadrature values to the equiv-
alent magnitude and phase angle form, with REAL*n precision, where n can have any value
from 3 to 8. The phase angle is given in radians.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

References
None

Arguments
X - REAL*n

The array from which the subroutine takes the in-phase component of the data to be
converted, and into which the magnitude component is placed

Y - REAL*n
The array from which the subroutine takes the quadrature component of the data to be
converted, and into which the phase angle component, expressed in radians, is placed

N - INTEGER*4 scalar
Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL - INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine worked correctly

1 N was not specified correctly

Auxiliary Routines
System routines

SPL.IQMAG_In
SPL.UNWRAP.In
SPL_ATAN2.In

12 ND ARETY

Chapter 7: Signal format conversion In-phase and quadrature to magnitude and phase

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used ~ SPL_MACH, SPL.TRIG

10 Keywords

Amplitude to magnitude, in-phase and quadrature to magnitude and phase angle, conversion

Digital signal processing library man013.03 . 83

Magnitude and phase to in-phase and quadrature Chapter 7: Signal format conversion

7.4.2 MAG.IQ_Rn release 2

8A

Purpose

MAG.IQ_Rn converts signal data from the magnitude and phase angle form to the in-phase
and quadrature form, with REAL*n precision, where n can have any value from 3 to 8.

Specification

SUBROUTINE MAG_IQ_Rn (X, Y, N, IFAIL)
REAL*n X(,,N), Y(,,N)
INTEGER*4 N, TFAIL

Description

MAG_IQ.Rn converts data representing signal magnitude and phase angle values to the
equivalent in-phase and quadrature form, with REAL*n precision, where n can have any
value from 3 to 8. The routine assumes that the phase angle is expressed in degrees.

The subroutine places the output data in the array initially holding the input data, hence
the initial data is overwritten.

References

None

Arguments
X - REAL*n

The array from which the subroutine takes the magnitude component of the data to be
converted, and into which the in-phase component is placed

Y - REAL*n

The array from which the subroutine takes phase angle component of the data to be
converted, and into which the quadrature component is placed

N - INTEGER*4 scalar

Specifies the array length. N must be an integer power of 2, that is, N = 2™, where M is
a positive integer.

IFAIL ~ INTEGER*4 scalar
Unless the subroutine detects an error IFAIL will be set to zero on exit from the subrou-
tine

Error Indicators

0 The subroutine worked correctly

1 N was not specified correctly

Auxiliary Routines

System routines
SPLMAGIQ.In

mani12 N2 AMT

Chapter 7: Signal format conversion Magnitude and phase to in-phase and quadrature

8 Accuracy
Details to be supplied

9 Further Comments
COMMON blocks used - SPL_MACH, SPL_TRIG

10 Keywords

Magnitude to amplitude, magnitude and phase angle to in-phase and quadrature, conversion

Digital signal processing library man013.03 - 87

Magnitude and phase to in-phase and quadrature

88 man013.03

Chapter 7: Signal format conversion

AMT

