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The Deterministic Reset Test is a diagnostic test 
program that was developed for the AMDAHL 470 V /6 
computer. This paper describes the development and 
usage of this test. 

The test executes in the diagnostic processor used to 
monitor and control the state of the 470 V/6 
mainframe. The objective of the test is to identify 
any hardware problems that prevent the initialization 
of the mainframe to a known state. This known state 
is used as a basis for fault isolation in subsequent 
diagnostic programs. The sequence used by the test 
can reset the machine from any initial hardware state 
and has embedded in it some 4000 different scan-outs 
of latch values. The sequence 'ends with a final scan 
of apprOXimately 8000 latches. At any point during 
the test sequence, only the latches that have been 
initialized at that point are scanned out. The 
determination of the latches initialized at each cycle 
was performed by off-line computer analYSis of scan 
data. 

INTRODUCTION 

Part of the diagnostic strategy for the AMDAHL 470 V/6 
computer was to develop tests capable of detecting any 
deviation of the internal machine state from its 
expected behavior. To accomplish this, the hardware 
response to a test must be predictable and repeat­
able. The above requirement can be assured if the 
test always starts from the same initial machine state 
because the 470 V/6 executes synchronously. This 
initial machine state is achieved by the use of the 
470 V/6 console processor in conjunction with special 
console-to-mainframe interface hardware. 

The deterministic reset sequence is designed to 
initialize the machine to a state in which most of the 
mainframe latches and memories have known value. This 
sequence is used by other diagnostic tests for 
initializing the machine hardware. The Deterministic 
Reset Test hereafter referred to as "the test," 
identifies any hardware failure which prevents the 
reset sequence from executing successfully. It 
observes and analyzes the machine latches after each 
step of the sequence. The test can be thought of as a 
4000 line logic analyzer monitoring and comparing the 
hardware during the initialization operation. It 
executes in the same fashion regardless of the initial 
machine state. This allows restarting the test after 
it detects a failure and stopping it one or more 
cycles prior to the failure in order to identify its 
source. 

The test uses a bootstrapping technique, meaning that 
it uses the hardware initialized in earlier steps to 
initialize additional hardware in subsequent steps. 
At any step of the bootstrap, only those latches 
having known values are observed for fault indica­
tion. All the to-be-scanned latch values are combined 
into a 16-bit checksum which is compared to an 
expected value stored in the test. The expected 

checksum values were obtained by running the test on a 
fault free computer. If the checksum miscompares, a 
remote database can be used to identify the names of 
the miscomparing latches. This database contains 
approximately ten megabytes and is stored on magnetic 
tape. The number of observed latches continues to 
increase as the test proceeds. To speed its overall 
operations, the test runs in two modes: detection and 
isolation. In the detection mode, one checksum is com­
pared at the end of each function within the reset se­
quence. Once a miscompare is identified, the test is 
rerun in isolation mode and checksums are compared for 
each cycle within the failing function. This iden­
tifies the firs't miscomparing cycle of that function. 

The comparison of actual to expect values in a 
diagnostic test is commqnly employed by the 
indus try. Some approaches L 3] employ two ident ical 
units performing the same function, with a third[unit 
continuously comparing them. Other approaches 4, 5J 
employ hardware simulation and modeling to generate 
expected values. 

The use of ch~cksums for diagnostic purposes is 
discussed in [1,2J. The primary reason for its use is 
to reduce the size of the test's expected-values 
database. 

HARDWARE ENVIRONMENT 

The test executes in the diagnostic processor of the 
AMDAHL 470 V/6. This processor is a mini-computer 
supporting a fixed-head disk, two floppy drives, a 
modem, and a keyboard/display unit. 

This processor interfaces to the mainframe via 
special-purpose hardware. This hardware allows diag­
nostic programs to scan-out the mainframe, alter its 
registers and memories, and control its operating 
state. 

The 470 V/6 is built using Emitter Coupled Logic 
circuits. Most of the machine is packaged in Large 
Scale Integration chips mounted on Multiple Chip 
Carriers. External interface logic and some memories 
are built using Medium Scale Integration chips mounted 
on Basic Logic Cards. The main storage uses dynamic 
Metal Oxide Semiconductor technology. 

The machine operates as a collection of independent 
functional units that interface using well-defined 
protocols. It can operate in the same fashion both 
when mainframe clocks are running or when clocks are 
stepped in single-cycle mode. The major units of the 
470 V/6 mainframe are: 

Instruction Unit: This unit has a 9-stage pipeline 
that controls the instruction execution flow of the 
machine. 

Execution Unit: This unit has a 2-stage pipeline that 
performs the data computations of the machine. 



Storage Unit: This unit has a 3-stage pipeline that 
supports the accesses to mainstorage for both real and 
virtual DXlde operations. It holds the High-Speed 
Cache. 

Main Storage: The storage can be expanded to 16 
Megabytes. 

Channel Unit: This unit has a 16-stage circulating 
pipeline that controls the interfacing of peripherals. 

Channel Diagnos tic Processor: This is a micro-pro­
grammed diagnostic tool. It is permanently connected 
to the channel unit. 

overall 
They are 

for fault 
the test 

The following tools are a part of the 
diagnostic system of the 470 V/6 computer. 
used by the test as it is being run 
isolation, and were also used during 
development. 

Isolation Monitor: This is a system [6] running in 
the 470 V/6 diagnostic console. It interacts with the 
reset test to provide support for scan masks, 
checksums, and test positioning. The test passes scan 
mask specifications to the DXlnitor which uses them to 
control the scanning operation. The test requests the 
monitor to perform a scan operation. The monitor, in 
turn, scans the machine and generates a checksum from 
that scan., The monitor then compares this value to an 
expected checksum for that cycle stored with the 
test. At the beginning of each step in the reset 
sequence, the test performs an identification call to 
the monitor. A monitor command can be used to 
position the test at any of these critical points. 

Channel Diagnostic Processor: The Channel Diagnostic 
Processor is a diagnostic tool physically connected to 
the 470 V/6 channel as an external device. This 
processor is implemented using specially designed 
microcode. This device uses the 470 V/6 system clocks 
and therefore executes synchronously with the rest of 
the machine. The microcode is designed so that the 
device behaves identically whether the system clocks 
are running or stepped in single-cycle mode. 

Console to Computer Interface Processor: This 
hardware allows the console to specify a sixteen-bit 
address and retrieve the latch value corresponding to 
that address. When checksums are being generated, 
values for all 64K scan addresses of the 470 are 
scanned out. A 64K masking memory specifies for each 
latch address if that latch value is to be included in 
the generated checksum. A sixteen-bit checksum is 
computed by exclusive or-ing all to-be-used latch 
values sixteen bits at a time. This ensures that any 
single-bit error is detectable. 

This section 
performed by 
three groups: 
ialization of 

SCOPE OF THE TEST 

describes the different functions 
the test. These can be divided into 
1) reset and synchronization, 2) init­

memories, 3) initialization of latches. 

The reset and synchronization portion of the test 
issues a hardware reset to all the units and clears 
all the registers of the machine. This reset clears 
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any error condition that may exist. It further 
initializes most of the control latches and 
synchronizes the various counters and sequential 
machines of the mainframe. This synchronization is 
essential if cycle-by-cycle operation is to be 
repeatable. 

The initialization of the 470 V/6 ,memories is 
performed by console operations. The memories 
initialized are the main storage, the high-speed 
cache, the segment base register stack, the channel 
and subchannel buffer stores, the channel diagnostic 
processor micros tore, and the translation lookaside 
buffer. 

The latches to be initialized are mostly data path 
registers. To initialize these it is necessary to 
execute an operation that uses them since they are not 
cleared by the hardware reset. Other latches initial­
ized by the deterministic reset sequence are latches 
that are dedicated for executing a given instruction 
(such as edit and mark). The only way of initializing 
these latches is to execute the corresponding 
instruction. The main operations performed for 
initialization latches are: 

1. test I/O to the Channel Diagnostic Processor 
2. start I/O to the Channel Diagnostic Processor to 

move data in and out 
3. edit and mark 
4. divide float and divide decimal 
5. move character long 
6. virtual mode operations 

At the end of the execution of these operations, most 
of the CPU latches are at a known state. Figure 1 is a 
flow-chart of the reset test operations. 

IpUT 470 V/6 MAINFRAME IN SINGLE CYCLE RATE I 

I ISSUE HARDWARE RESET TO ALL MAINFRAME UNITS 

ISYNCHRONIZE COUNTERS AND SEQUENTIAL MACHINES I 
IINITIALIZE CHANNEL UNIT STORE~1 

I CLEAR MAINSTORAGEI 

IINITIALIZE PROGRAM STATUS WORD I 
AND MAINFRAME REGISTERS I 

I INITIALIZE CPU TIMER, TIME OF 
DAY CLOCK, AND CLOCK COMPARATOR 

rLOAD INSTRUCTIONS IN THE HIGH SPEED CACHEl 

I LOAD THE CHANNEL DIAGNOSTIC I 
PROCESSOR MICROCODE 

I EXECUTE TEST I/O TO THE J 
CHANNEL DIAGNOSTIC PROCESSOR 

I 
EXECUTE THE INSTRUCTIONS LOADED IN THE HIGH 
SPEED CACHE IN ORDER TO 1) DO A START I/O TO 
THE CHANNEL DIAGNOSTIC PROCESSOR, 2) EXECUTE 
SPECIAL, INSTRUCTIONS (EDMK, DD, MP, DP, SSK, 
RIm, AND ISK), 3) EXECUTE A MOVE CHARACTER 
LONG INSTRUCTION TO INITIALIZE THE CACHE, 4) 
PERFORM A LOOP TO INITIALIZE THE SEGMENT 
BASE REGISTER STACK,S) PERFORM A LOOP TO 
INITIALIZE THE TRANSLATION LOOKASIDE BUFFER 

FIGURE 1. FLOW-CHART OF TEST OPERATIONS 



The approximate number of cycles required for each 
function of the reset sequence are as follows: 

1. reset--------------------
2. mains tor age--------------
3. other memories-----------
4. registers----------------
5. latches------------------

1000 
800000 

70000 
800 

4000 

Due to the large number of cycles involved only a 
subset are monitored. The selection of the cycles to 
be monitored is based upon the amount of new hardware 
involved in each new cycle. For example, only the 
loading of the first location in the cache is 
monitored, since loading of subsequent locations uses 
the same hardware. In general, most of the non­
scanned cycles occur in the initialization of 
memories. 

APPLICATION AND USE 

Manufacturing System Test: After the individual 
components of the 470 V/6 are checked out, the 
computer is assembled and tested as a complete system. 
During such testing, more than one fault may exist in 
the machine. As the test executes many machine 
operations, it detects a substantial percentage of 
these faults (about 70 percent), and isolates them, 
one at a time. The test is particularly useful for 
isolating failures in the control logic part of the 
machine which are hard to isolate using manual 
techniques. In order to run the test, specially 
trained operators are needed and an on-line computer 
is required. These requirements are satisfied in the 
system test environment becuase the test and its 
support system is repeatedly used during the assembly 
of every machine. 

Return Part Testing: Field maintenance activity 
results in the isolation of failures to the level of a 
field replaceable component. These are returned and 
individually tested to determine the exact cause of 
failure so that they may be repaired. Parts with 
faults that cannot be identified by individual 
component testing have to be tested on a working 
machine. The test is a powerful tool for this purpose 
because it can rapidly pin-point a failing component 
if the failure is within the scope of the reset 
sequence. 

Field Test: Though intended for use at the customer's 
site, the operation of the reset test proved difficult 
in that environment. Many variations of machine 
design level, coupled with the test's extreme 
sensitivity to the internal operation of the machine 
logic, limited its use. 

OPERATING PROCEDURES 

This section describes the procedure used to detect 
and isolate a fault using the Deterministic Reset 
Test. The procedure has five major steps. 

The first step is to execute a keyboard command that 
invokes the reset sequence from the console's fixed­
head disk. This is a go/no-go operation taking about 
five seconds. The command performs a limited scanout 
of latches after the completion of its reset sequence. 
If the reset sequence does not initialize the machine, 
the test is loaded and run to isolate the cause of the 
failure. 
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The second step is to load the test floppy and run the 
test in fault detection mode. This step takes at most 
two minutes. Detection is accomplished by scanning 
after each function of the reset sequence until the 
failing function is identified. Once this identi­
fication is made, further isolation within that 
function can be attempted. 

The third step involves rerunning the test in fault 
isolation mode. This step takes at most seven 
minutes. Isolation is accomplished in three steps: 
1) the test is restarted, 2) all functions preceding 
the failing functions are executed, 3) the failing 
function is examined on a cycle-by-cycle basis. 

This identifies the first miscomparing cycle in that 
function. To identify the miscomparing latches at that 
cycle, a connection must be made to the remote 
database. 

The fourth step involves a connection to the Amdahl 
Diagnostic Assistance Center (AMDAC) over telephone 
lines. Once the datalink is established, an image of 
the machine state at the failing cycle is transmitted 
to an on-line computer system. This system compares 
the received image to an expected image and identifies 
the names of the miscomparing latches. These names 
pOint into the 470 V /6 logic diagrams so that the 
exact source of the failure can be traced. The time 
needed for this step is in excess of ten minutes. 
Figure 2 shows the connections between the different 
components used in isolating a machine fault. 

470 V/6 
MAINFRAME 

TELEPHONE LINE 

ONLINE 
REMOTE 

FIGURE 2. CONNECTIONS BETWEEN SYSTEM COMPONENTS 

The fifth and final step involves a command that 
allows the user to re-execute the test and stop one or 
more cycles prior to the'miscomparing cycle. At that 
time, various parts of the machine can be observed 
using the console formatted scan display in order to 
identify the failing component. The test may be run 
in a "forced isolation" mode on a fault free 
machine. In this mode, after each scan, the checksum 
is compared to its expected values. This takes 
approximately 10 minutes. 

COVERAGE 

The 470 V/6 contains approximately 17000 scannable 
latches. Of these, 8000 are initialized by the reset 
sequence. Latches not initialized by the sequence 
fall into three categories: 

1. those that cannot be initialized without the use 
of external I/O devices, which number about 2000 
latches, 



2. those related to optional hardware features that 
do not exist on all tested 470 V/6s, which number 
about 10000 latches. 

3. and those that differ in operation depending on 
the hardware design level of the 470 V/6 
mainframe, which number about 6000 latches. 

The final scan of the test includes all 8000 latches 
initialized by the reset sequence. The exact cycle of 
initialization is known for only 4000 because of 
limitations of the identification method used. Each 
one of these latches is scanned at the cycle it is 
first initialized and all cycles thereafter. The 
other 4000 latches are scanned only at the last cycle 
of the test. 

TEST DEVELOPMENT 

The first step of the development process was to study 
the machine design in order to identify the operations 
needed to initialize the latches of the machine. 
Design engineers were consulted to identify the 
operations required for each particular unit. The 
initialization of the channel unit required 
interfacing to an external device in a synchronous 
fashion. This led to execute synchronously with the 
mainframe. The result of this first step was the 
development of the deterministic reset sequence. This 
sequence was coded in a diagnostic test language and 
transferred to a floppy disk. 

The second step of the development process was to 
identify which latches were to be scanned during the 
reset operation. This involved running the reset 
sequence from various initial machine states. These 
states were established by powering-down and powering 
up the machine without performing any power-on resets, 
and by running selected init ializa tion rou tines and 
other system level programs. These functions were 
performed on many different machines. There wete 
approximately 300 initial states used. For each of 
these "runs," the machine state was scanned-out at 
selected cycles. The scan information was recorded on 
magnetic tape and saved for later processing that 
would extract the first cycle at which each latch 
became deterministic. In this sense, a latch is said 
to have become "deterministic" at a given cycle of the 
reset sequence if for each subsequent cycle of the 
sequence the value assumed by the latch is consistent 
for all the runs. 

The processing to identify the cycles at which latches 
became determined was based on three axioms: 

1. A latch starting from any initial state is 
eventually forced into a deterministic state by 
the reset sequence, and 

2. That latch is forced to a deterministic state at a 
unique cycle of the sequence, and 

3. The state of every latch at the last cycle of the 
reset sequence is the same for all runs. 

To find the cycle at which each latch became 
deterministic the analysis proceeded from the final 
cycle of the reset sequence towards the first, one 
cycle at a time. This was done in order to find the 
cycle at which the latch value ceased to be the same 
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for all the runs. When the latch values in any two 
runs differed, the cycle just prior to the cycle in 
which the latch became deterministic was identified. 
The procedure was performed concurrently for all 4000 
latches. This resulted in the specification of the set 
of latches that can be scanned on each cycle of the 
reset sequence. Latches initialized by the sequence 
are not scanned until the cycle at which they become 
deterministic. Each of these scan specifications 
includes all the latches that were scanned on the 
previous cycle and may include new latches known to 
have become deterministic at that cycle. 

The third and last step of the development process was 
to run the test on a fault free computer while 
scanning the deterministic latches at each cycle of 
the test. This information was used to generate the 
expected checksum values to be stored with the test. 
The latch values were saved in a data base to be used 
for identifying miscomparing latches. 

CONCLUSIONS 

This section identifies the problems encountered 
during the development and use of the Deterministic 
Reset Test and discusses how these could have been 
averted. It also points out the positive aspects of 
the testing technique that was used. 

The following are the major problems encountered: 

Different Machine Hardware at Various Customer 
Sites: This resulted from hardware design modifi­
cations, new fetures, and differing customer 
requirements. Because the test scans out up to 8000 
latches over many machine cycles, it is very likely 
that a design change can invalidate the test 
operation. There is an intrinsic tradeoff between the 
test's ability to pin-point a failing ·latch and its 
capability to run on different machine levels. For 
example, consider comparing the operation of two 
machines, one with a performance enhancement change 
and one without it. This would result in some latches 
having different values at some cycle of the internal 
operations of the two machines due to the effect of 
the hardware change. 

This problem of the test's dependence on the ha:rdware 
design can be avoided if the test observes only errors 
indicating latches. These latches will have known 
values during fault free operation. They would not be 
affected by design changes. Any deviation would 
indicate fault detection. For this method to be 
effective, a large number of checkers must be included 
in the hardware design of the control sequencers as 
well as the data paths so that a failure can be 
detected as close to its source as possible. 

Insufficient Reset by Hardware for Diagnostic 
Use: The test required too many operations to 
initialize all the latches of the machine. The reason 
for this was that the hardware' reset of the machine 
only initialized its control logic. To initialize the 
data paths, the test had to perform specialized 
operations. This resulted in the large number of 
cycles in the test. Had the hardware reset 
initialized every latch of the machine, this problem 
would not have occurred and the development of a reset 
test would have been a simple process. 



The following discusses the positive aspects of the 
testing technique. 

Using a Diagnostic Processor: This provides a fault 
isolation capability that cannot be accomplished in 
any. other way. It allows a test to directly observe 
the machine being tested in order to identify the 
cause of a failure accurately and to ensure that the 
fault situation can be re-created. In addition, the 
test's fault analysis and isolation will not destroy 
the fault indicating state of the tested machine. Such 
testing requires that the diagnostic processor support 
altering and displaying of the internal state of the 
tested machine, and the single cycling of the machine 
clocks. 

The Channel Diagnos tic Processor: Since this device 
is attached to the mainframe and uses the system 
clocks, it will provide a synchronous and repeatable 
I/O interface. The use of a micro-programmed processor 
enables the generation of non-standard or simulated 
error response for diagnostic purposes. 

An Operating System Running in the Diagnostic 
Processor: This provides for a wide range of 
functions that can assist in the diagnosis of 
mainframe failures. These functions should include: 

1. Formatted scanning of most of the internal machine 
latches. The display can associate a register name 
to its contents. 

2. Altering of the states of significant registers 
and memories by keyboard commands. 

3. Remote maintenance capability over standard 
telephone lines. This should include observations 
and alteration of a customer's mainframe from a 
field assistance center. 
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