
ALms 586 AIID ACS 868. CORPDBR SYS~

XB1IIX DBVBLOPIIBft SYSTEM

PROGRAIIIIER' S REPERBRCB GUmB

Al tos Computer Systems
2641 Orchard Park Way

San Joser CA 95134

mE IBPORIIA'.fIOR IB mIS DOCUMBft IS SUBJBC'.f TO
CHARGE WI'.fHOUT NOTICE. NEW EDITIONS OP THIS
DOCUMBft WILL IBCORPORATB CBAlIGES AS mBY ARB
PUBLISHEl).

Copyright ©1983. All rights reserved. Altos COliputer Systeas.

ALTOS Manual Number: 698-13588-8.1 May 1983

ACDatLBDGBllBftS

ALTOS is a registered trademark of Altos Computer
Systems.

XENIX is a trademark of Microsoft, Incorporated and
is a l6-bit microcomputer implementation of the
UNIX operating system, version 7.

UNIX is a trademark of Bell Laboratories

UNET is a trademark of 3Com Corporation

I>

TABLE OF CONTENTS

1. INTRODUCTION

USING THIS MANUAL
Purpose/Scope
Organization

OTHER DOCUMENTATION AVAILABLE
Altos 586 or ACS 8600 Operator's Guide
Altos Introduction to XENIX Manual
XENIX Reference Card
Altos Application Software Guide
Altos UNET User Guide
Bell Laboratories Manuals

UNIX Programmer's Manual
Commercially Available Books

2. USING XENIX

TOPICS COVERED IN INTRODUCTION TO XENIX MANUAL

INSTALLING XENIX DEVELOPMENT SYSTEM

LEARN PROGRAM
Installing Learn
Running Learn

CREATING N~'l MENUS

3 • UTILITY PROGRAMS REFERENCE GUIDE

USEFUL UTILITIES

UNIX MANUAL CHANGES AND ADDITIONS

ADD .CT (1)
ADD. HD (l)
AEMAIL (1)
APROPOS (1)
BSH (1)
CSE (1)
CXREF(l)
DATE (1)
DIGEST(l)
DISABLE(C)
DUMP.HD (1)
ENABLE (C)
EDIT(l)
EX (1)
FCOPY(l)
FINGER (1)
FLEECE(l)

i

1-2
1-2
1-2

1-4
1-4
1-4
1-4
1-4
1-4
1-4
1-4
1-5

2-2

2-3

2-7
2-7
2-8

2-9

3-1

3-3

3-6
3-7
3-8
3-l0A
3-11
3-15
3-38A
3-38B
3-39
3-40A
3-40B
3-40C
3-41
3-45
3-49
3-49A
3-49B

TABLE OF CO~ENTS

3. UTILITY PROGRAMS REFERENCE GUIDE (Continued)

FOLD(l)
FO&\1AT(1)
FROM (1)
FSCK (1)
FTP (1)
HEAD (1)
IUL (1)
LAST (1)
LAYOUT (1)
LEAVE(l)
LS (1)
MAIL{l)
MAKE.HD(l)
MAKEWHATIS(l)
MAP(l)
MKCONF(lM)
MODEM(l) , UNMODEM(l)
MORE (1)
MULTIUSER(l)
PAGE (1)
PRINTENV (1)
PS (1)
RANLIB(l)
RESET(l)
RESTORE.HD(l)
SDDATE(lM)
SETMODE(l)
SIZEFS(l)
TAR(l)
TRANSP(l)
UA (1)
VI (1)
LOCKING (2)
RDCHK(2)
CURSES (3)
MENU S (5)
TERMCAP (5)
TTYTYPE(5)

3-49C
3-50
3-50A
3-51
3-54
3-55A
3-55B
3-55C
3-56
3-57A
3-58
3-61
3-68A
3-68B
3-69
3-69A
3-69C
3-69D
3-70
3-70A
3-71
3-72
3-74A
3-75
3-75A
3-75B
3-76
3-77
3-78
3-80A
3-81
3-85
3-87
3-89
3-90
3-92
3-97
3-108

APPENDICES:

A. NUMERIC FORMATS, C, ABD FORTRAlI 77

INTEGER FORMATS
FLOATING-POINT FORMATS
VALUES IN MEMORY

B. SAMPLE LIST OF XERIX DEVELOP~ SYSTEM ~LITIBS

C. TRANSFERRIRG PILES BETWEEN ACS 86.1 AND ALTOS 586 OR OI.rBBR
COIIPOTER SYSTBKS (ASYNCHROROOS CORII1JRICATIORS)

USING CU FACILITY
TRANSFERRING FILES UNDER UUCP FACILITY

CONNECTING THE ACS 8600 AND THE 586
PREPARING THE CONFIGURATION FILES

Recommended Entries
IF YOU HAVE SPECIAL REQUIREMENTS

Assigning the System Names
Defining the Communications Line Characteristics
Supplying the Login Information
Defining the File Accessibility

DISABLING AND ENABLING THE TTY PORTS
TESTING THE UUCP NETWORK
COPYING FILES USING UUCP
USING THE UUCP COMMAND

USING MODEMS WITH ALTOS XENIX SYSTEMS

D. al86 ASSEMBLY LARGUAGE REFERERCB MARUAL

XENIX Software Development Extract from Microsoft Manual

E. TUTORIAL ABD REFERERCE MATERIAL
(UNIVERSITY OP CALIFORNIA, BERKBLEY MARUALS)

An Introduction to the C Shell
An Introduction to Display Editing with Vi

Quick Reference for Ex,Vi
Ex Reference Manual
Edit: A Tutorial

Ex/Edit Command Summary (Version 2.0)
Mail Reference Manual
-ME Reference Manual
Screen Updating and Cursor Movement Optimization: A Library

Package

v

CI1AftBR 1:
IftRODUC'.rIOR

This manual describes the Altos XENIX Development System on the
Altos 586 and ACS 8600 Computer Systems. It provides reference
information and step-by-step (tutorial) procedures, which are
primarily aimed at the programmer or the advanced system user. A
first-time computer user can use this manual also, but it is
recommended that the Introduction to XBIIIX Manual be read first.

1-1

USING THIS MAROAL

Purpose/Scope

This manual describes items that are unique to the Altos
implementation of the XENIX operating system or that are useful
for the programmer or advanced system user. It also serves as a
guide to the other documentation that is available on XENIX/UNIX.

Organization

This manual is divided into three chapters:

Chapter 1 lists other Altos documents that you receive as part of
your XENIX operating system. It also lists commercially-avail­
able documentation.

Chapter 2 provides instructions for installing the XENIX Develop­
ment System, and discusses the online tutorial, learn, and tells
you how to create new menus.

Chapter 3 lists useful utilities and describes the changes and
addi tions that exist between the Al tos implementa tion of XENIX
and the Bell Laboratories Standard Version 7 of the UNIX
operating system.

The variations and additions are documented in the standard Bell
Laboratories format. The Altos documentation can be left in this
supplement or can be inserted into the Bell Laboratories OBIX
Program.erls Manual.

The Appendices contain general reference material.

Appendix A. Numeric Formats, C, and Fortran 77:

Reference information on the internal format used
for numerical representation in these languages.

Appendix B. Sample List of XENIX Utilities:

A sample list of utilities fUrnished with your
system.

Appendix C. Transferring Files Between ACS 8688 and
ALTOS 586 or Other Computer Systems
(Asynchronous Communications):

A description on how to transfer files between the
ACS 8688 and Altos 586 XENIX computer systems, or
between two Altos XENIX computer systems which
support asynchronous (serial) communications. It
discusses the ~ (call UNIX) and .I.W.&R (UNIX-to-UNIX
copy) facilities. For ACS 8608 versions 2.2d and
A1tos 586 versions 2.3 and higher, refer to a
description of the File Transfer Utility for Xenix-

1-2

to-Xenix (ftp), discussed in Appendix H of the
Introduction ~ Xenix manual. It also discusses how
to use modems with your Altos XENIX systems.

Appendix D. 8086 Assembly Language Reference Manual:

A description of the XENIX 8086 Assembly Language.

Appendix E. Tutorial and Reference Material
(University of California, Berkeley Manuals) :

Documentation describing UNIX modifications
developed at the University of California,
Berkeley. The material is supplied from the
Regents of the University.

1-3

omBR DOCtJIIBJr.rA'rIOR AVAILABLE

The follow ing documentation is furnished with your XENIX
operating system. The only commercially-available book that is
provided is A User Guide to the ORIX Systea.

Altos 586 or ACS 8688 Operator's Guide

This manual describes the Altos computer system and its operating
specifications. It provides step-by-step procedures on how to
unpack and set up the computer system, how to install
peripherals, how to verify proper functioning of the system, and
briefly describes how to use the Altos diagnostics software.

Altos Introduction to XBRIX Manual

This manual, describes the Altos implementation of the XENIX
operating system on the Altos 586 and ACS 8600 computer systems.
It provides background information and step-by-step procedures,
which are primarily aimed at a first-time computer user, on how
to install XENIX, how to log on/off, how to shut down the system
properly, how to save and restore files, and describes system
maintenance.

XBIIX Reference card

A concise reference card, which contains information on how to
use the Altos implementation of XENIX, describes the XENIX
commands, and lists the Business Shell (BSH) menus.

Altos Application Software Guide

(The ASS Shell is an optional package.) The Altos XBJlIX Applica­
tions Software Guide provides information on how to install the
optional ABS Menu Shell and the application programs, and how to
access the ASS menus.

Altos ORB~ User Guide

(The communication network services is an optional package.)
This document p~ovides information on how to install the optional
communication network services and how to use them.

Bell Laboratories Manuals

OJIIX Prograaaer's Manual, Seventh Edition. This is a three­
volume set.

Volume 1 provides general information about UNIX and
about the manual set. It contains reference informa­
tion on utilities and system calls, organized into
chapters.

1-4

Volume 2A contains supplementary and tutorial
information. For example, this volume includes an index
to volume 2A and 2B, tutorials for the UNIX text
editor, information on document preparation, and
information on Unix programming (C language).
Volume 2B contains additional reference material, and
includes advanced topics and languages. For example,
this volume includes information or supporting tools
and languages such as yacc, which is a tool for writing
compilers for other languages. It also includes
information on system implementation and maintenance.

Commercially Available Books

There are numerous commercially available books on UNIX that
explain it and give tutorial material. Two such books are:

A User Guide to the UNIX System, by Thomas and Yates.
(This book is supplied with the XENIX operating system.) It
explains UNIX concepts and provides tutorials for getting started
with UNIX and for the most useful commands. All the utilities
listed in the book may not be provided with your XENIX operating
system. Refer to Appendix B, Sample Listing of XENIX Development
System Utilities, for a listing of utilities provided with your
system.

Using the UNIX Systea, by Richard Gauthier.

This book is more like a textbook than the Thomas and Yates'
book. It presents a more in depth explanation of UNIX, which is
of value to the programmer and those who are already familiar
with A User's Guide to the UNIX System.

Three useful programming books related to UNIX are:

The C Programming Language, by Kernighan and Ritchie.
This book describes the C programming language, which is the
language that the UNIX operating system is written in. It
provides tutorials as well as a reference chapter.

Software Tools, by Kernighan and Plauger.
This books is a guide to good programming techniques and a source
of proven, useful programs written in RatFor (Rational Fortan).
The C language, which is designed for UNIX, provided the model
for RatFor. Many of the tools described in this book are based
on UNIX models.

Learning to Program in C, by Thomas Plum. This book teaches
the C programming language from the ground up. With or without
previous experience, anyone acquainted with computers will find a
clear description of how the language works from this book.

1-5

CIIAftBll 2:
OS:IBG XBRIX

The Altos Introduction to XZBIX lIanual covers the XENIX Run-Time
and portions of the Development System. Topics that are unique
to the development system are described in this chapter.

2-1

'fOPICS OOVBBBD IR nr.rRODUCl'IOR 'fO XBIlIX IlARUAL

This manual covers the bas ic XENIX utili ties and how to use the
business shell menu system. Topics covered include:

Introduction to Operating System Concepts
Introduction to XENIX Operating System Concepts
Introduction to the Business Shell Menu System
Introduction to System Administration and Maintenance
Installing XENIX Run-Time System
Upgrading Older Versions of XENIX
Getting Started with XENIX

Configuring the Ports
Creating and Changing User Accounts

Starting Up XENIX (Booting from Hard Disk)
Log In, Log Off, and Quit

Setting and Changing Passwords
Using XENIX on a Regular Basis

Using the Business Shell Menu System
Basic Utilities
System Administration Utilities

Saving and Restoring Files
Random-Access Diskette Files
Checking and Cleaning Up Files
Shutting Down System

Using the ~ Text Editor
Appendices:

Hard Disk Organizatin
Floppy Disk Organization
Cartridge Tape Organizatio
Printer Information
Terminal Capabilities
File Transfer Program

For more information, refer to the Introduction to XBI1IX BaDual.

2-2

IBS~I-'; URIX DBVBLOPIlBft SYS~

To install the XENIX Development System on your Al tos Computer
System, you should:

1. Install the Xenix Run-Time System by following the instruc­
tions in the Altos Introduction to Xenix Manoal. Do not
shut the system down.

If you interrupt the installation procedure for some reason,
or your system was shut down by a power failure or system
crash, see the Resuming rnterrupted Installation section in
the Altos Introduction to XBRIX Manoal.

2. Make sure you are logged in as super-user (root).

3. Enter

cd / (CR)

This command causes the system to go to the top directory
(or parent directory) of the XENIX system.

4. Insert the diskette labeled nXENIX DEVELOPMENT SYSTEM
UTILITIES #1 of n,n where nnn is the total number of utility
diskettes.

5. Enter

tar xv (CR)

This command causes the directories and files on the utility
diskette to be loaded onto the XENIX System. As files are
copied from diskette to hard disk, you will see messges of
the form:

x nFilename n, nnnnn bytes, nn tape blocks
•
•
•

x "Filename n, nnnnn bytes, nn tape blocks

ROTE

DO RO~ ~OUCB ANY KBYS OR ~BE KBYBOARD OR
REIIOVE DISKE~'lE UR~IL YOU SEE 'lBE SUPBR-USBR
PROIIP'l CBARACUR (I).

2-3

6. When you see the super-user prompt character (#), remove the
diskette and store it in a safe place.

7. Repeat steps 4 through 6 for each XENIX Development System
utility diskette.

ROTE:

IF AVAILABLE DISK SPACE IS A PROBLEIl OR YOUR
SYSDIl, YOU CAlI IBSIJIALL I:J()ftIORS OF 1'IIB XBJ[[X
DEVBLOPIlER~ SYS~EIl RATHER ~ ~E ER~IRE
PACKAGE. IF YOU DBSIRE, YOU CAR DISPLAY DE
COR~ER~S OF A DISKE~IJIB BY ER~BRIBG tar tv
(CR>. NO~E THE URWAR~BD FILBS YOU WART ~O
RBIIOVE AF~ER IBS~ALLIBG DISKE~~B PBR ABOVB
IBS'lRUCfiOBS.

8. When you have loaded all of the utility diskettes, enter

install (CR>

9. This step is optional.

An optional unlinked kernel can be installed. It contains a
new swapping algorithm, which swaps out processes that are
waiting for other processes first. The old swapping
algorithm swapped out the largest process that wasn't
actually running. This would occur even if the process was
a large application that was just waiting for terminal
input.

If you wish to load the "Unlinked Kernel," you should:

Insert the diskette labeled "UNLINKED KERNEL."

Enter

tar "XV (CR>

Enter

install (CR>
Unlinked Kernel installed.

Remove the diskette and store it in a safe place.

You have just installed the Unlinked Kernel.

2-4

10. To load the C compiler onto the XENIX system, you should:

Insert the diskette labeled "C COMPILER."

Enter

t tar xv <CR.)

Enter

t iDstall <CR)
C compiler installed.

Remove the diskette and store it in a safe place.

You have just loaded the C Compiler.

11. If you wish to load the XENIX Fortran compiler, you should:

Insert the diskette labeled "F77."

Enter

Enter

Enter

t cd /tap (Cll)

i tar xv <CR.)

t install (CR>
F77 installed/Remove diskette and store it in a safe
place.

You have just loaded the UNIX Fortran compiler.

12. If the prior steps were successful, your XENIX Development
System is correctly installed.

If you purchased the optional Altos communication network
services, refer to the Altos ~ User Guide for information
on how to install the communication network services.

2-5

If you purchased the ABS package or other Altos application
packages, refer to the Altos XB.IX Application Software
Guide for information on how to install the ABS Menu Shell
and application programs.

If you wish to start up XENIX, see the Getting Started with
XENIX chapter in the Altos Introduction to XBBIX Manual.

If you don't plan on using your XENIX system at this time,
you can shut the system down by entering:

sync <CR.>
etc/baltsys <CR>
** Normal System Shutdown **

2-6

The learn program is an automated instructional facility which
provides tutorial information about the XENIX system and some of
the programs that run under it. Learn is especially useful for
the first-time user because it is interactive and requires no
prior UNIX experience.

At present, the learn program covers the following topics:

Basic File handling commands
The UNIX ~ text editor
Advanced file handling
The ~ language for typing mathematics
The n-msn macro package for document formatting
The C programming language

For more information, refer to the UNIX Progra •• er's Kanua1,
Seventh Edition, Volume 2A, chapter 7, LEARN - Computer Aided
Instruction of UNIX (Second Edition).

Insta11ing Learn

After you have installed the XENIX Development System, install
learn as follows:

1) Log in as root.

2) Enter:

t cd /usr/lib/leara (CR>
t .ake (CR>
t .ake p1ay log (CR>

3) When the prompt (t) appears, the learn program is completely
activated.

4) To check that the required files are set up properly, enter:

i .ake check (CR>

2-7

Running Learn

Learn may be run by any user, from any directory in the system,
by entering:

(system prompt) lear.n <CR>

OR

(system prompt) lear.n Pilaaa.e <CR>

where: Filename = lesson desire, such as "editor."

2-8

CREAnBG BBW IIBBUS

A menu system is defined as a collection of menus, each of which
is an ASCII text file. It is relatively easy to create a new,
customized Business Shell (BSH) menu system or to modify the
default menu system. The procedure to create a menu system is as
follows:

Create a text file containing the source menu in the following
format:

&Menuidentifier
• • • the substance of the JleDU • •
• • • not over 24 lines length

&Actions
• • • zero
(-> prompt

• • •
• • •

or .ore sequences of • • •
size

sequences of actions • • •
for this proapt • • •

This sequence may be repeated as often as desired. The amper­
sand (&) and tilde (-) must appear in the first column. &Actions
must appear, even if there are no actions.

The substances of each menu is composed of text which will be
reproduced exactly as it appears in the location where it
appears. There are five exceptions where characters have special
meanings:

"!date"

"luser n

n !pwdn

R 1 @n

denotes a valid RpromptR string (it is the text of
the actual prompt)

inserts the current date and time:

Fri Oct 28 16:28 1983

inserts the current user id: Don

inserts the current directory: /user/don/2

: indicates where to leave the cursor

The n! n may appear as a suff ix, in which case the str ing w ill be
right-justified instead of left-justified.

The prompts must be reproduced as they are expected to be typed,
in the Actions chapter. The actions may be composed of BSH
commands or commands which are executed by the standard XENIX
shell (/bin/sh). The actions should all be indented one tab
stop. RSize R rows will be reserved at the bottom of the screen
for output. If size is omitted, a value of 5 will be used. If
size is 9, the entire screen will be used. After executing the
actions, the message

2-9

[Type return to continue]

will appear .t the bottom of the screen. If size is -1 the
entire screen is used, but no message [Type return to continue]
is issued; and BSH resumes without pause after all the actions
have been executed.

Transfer to another menu is specified by writing the name of the
destination menu in the semantics field.

Commands to be executed by the BSH interpreter must be typed one­
per-line.

Commands to be executed by UNIX follow the usual conventions.
See the URZX Progra.aer·s Manual.

For example, the the menu for Electronic Mail can be created as
follows:

&Mail

!date

&Actions
-a

\ELECTRONIC-MAIL-SERVICES

-a - Receive-mail
-b - Send-mail
-c - Return-to-starting-menu

o
mail

-1
echo -n "To whom do you wish to send mail?"
read x
echo "Now type the message."
echo "Terminate it by typing a control _d."
mail $x

Start

See the ~, digest, menus, and ~m~ utilities in the V.IX
Progra •• er's Kanual and Chapter 3, Utility Programs Reference
Guide, for more information.

2-11

USEFUL UTILI~IES

CBAPrBR 3:
ftILlft PROGRAIIS RBFBRElICE GUIDE

Table 3-1 lists some useful utilities that are supplied with
the Altos implementation of XENIX. This list is not intended to
be complete, but merely a summary of those utilities you will
find useful in getting started with XENIX. A complete listing
and description for all utilities may be found in the UNIX
Programmer's Manual, Volume 1.

You may list the full set of utilities supplied with any
particular release of XENIX by displaying the contents of the
/bin, /usr/bin, and /etc directories. Appendix F contains a
sample list of utilities.

The Altos implementation of XENIX provides some utilities which
differ from standard UNIX, and also some new utilities. This
chapter documents the changed and new utilities. See Table 3-2
for a quick reference. Note in particular: .f.su:mAt, fcopy,
multiuser, and YA, and the new version of~. The Business
Shell, hAh, has two accompanying utilities, menus and digest.

See also Appendix I for reference and tutorial material on the
University of California, Berkeley utilities, such as the screen
editior n.

3-1

~able 3-1. A List of Useful Utilities for Getting Started

UTILITY DESCRIPTION
ar Object library manager and archiver

as XENIX 8986relocatable assembler

cat Display a file

cc ·C· language compiler

cd Change directory. Changes your current posi tion
in the File System hierarchy.

chmod Change mode. Changes file protection attributes

chown Change file ownership

cmp Compare two files

cp Copy a file

ed The standard UNIX editor

ftp XENIX file transfer program

ld XENIX linkage editor

Is List. Displays the contents of the current directory

mkdir Make a new directory

mv Move. Renames files and directories

od Displays an octal dump of a file

ps Display system status

pwd P r in two r kin g d ire c tor y • Dis P I a y s cur r en t
position in the directory hierarchy

rm

rmdir

setmode

stty

Remove. Deletes a file

Delete a directory

Sets mode for serial printer not run at 9699 baud

Set terminal options, such as baud rate

tar File system archiver. May be used for file system
dumps and restores

wall Write to all users.

write Write to other logged in users.

3-2

UNIX MANUAL CHARGES AND ADDI~IONS

The material in this chapter may remain in this supplement or be
inserted in Chapters 1 through 5 of Volume 1 of the U8IX
Progra •• er's Kanoa~, as you wish. If you insert these documents
into the manual, place them in the chapters corresponding to the
number in parentheses after the utility name. (Entries within
chapters are in alphabetic order.)

Some of the utilities are enhancements or variations of existing
Bell Laboratories UNIX utilities. Others are completely new.

The origin of each utility is specified (in abbreviated form) in
column 2 of Table 3-2.

Utilities labelled "(altos)" are provided by Altos Computer
Systems.

Utilities labelled "(bell)" were developed by Bell
Laboratories after their current manual was published.

Utilities labelled "(msoft)" were developed by Microsoft, Inc.

Utilities labelled "(uofcb)" were developed at the
University of California, Berkeley. They are supplied under
license from the Regents of the University.

!fable 3-2.

UTILITY

add.ct(l}

add.hd(l)

aemail (1)

bsh (1)

csh (1)

digest (1)

List of UNXX Kan~ Changes and Additions

SOURCE

(altos)

(altos)

(altos)

(altos)

(uofcb)

(altos)

DESCRIPTION

Optional. Add cartridge tape to system.

Optional. Add additional hard disk to
system.

Optional. Altos Electronic Mail Facili­
ty is an intelligent, screen-oriented
"user friendly" mail processing system.

Business Shell. A menu-driven user
system with special guidance and
convenience features. It enables you to
access the more commonly used UNIX
utilities via menus.

A shell (command interpreter) with C­
like syntax.

Create menu systems for the Business
Shell.

3-3

'lable 3-2.

UTILITY

edit (1)

ex (l)

fcopy(l)

format (1)

fsck (1)

ftp(l)

layout (1)

ls (1)

Mail (1)

map(l)

mul tiuser (1)

printenv(l)

ps(l)

reset (1)

setmode(l)

sizefs(l)

tar(l)

List of DlIIX lIanaal Changes and Additions (cont.)

SOURCE

(uofcb)

(uofcb)

(al tos)

(altos)

(bell)

(altos)

(al tos)

(uofcb)

(uofcb)

(altos)

(altos)

(uofcb)

(uofcb)

(uofcb)

(altos)

(altos)

(bell)

DESCIUPTION

Text editor (variant of the ex editor
for new or casual users).

Text editor.

Copy a floppy diskette, while in XENIX.

Format a floppy diskette, while in
XENIX.

File system consistency check and inter­
active repair.

File transfer program.

Configure a hard disk.

List contents of directory.

Send and receive mail. (The U.C.B.
"Mail" utility goes in front of, and
makes use of, the Bell Labs "mail" util­
ity. The names of the two utilities are
distinguished by whether the first let­
ter is capitalized or lower case.)

Create an alternate sector map for a
hard disk drive.

Bring the system up multiuser.

Print out the environment.

Processor status.

Reset the terminal status bits to a
predef ined state.

Sets mode for serial printer not run at
9680 baud.

Determine the size of a logical device
from the layout information associated
with a hard disk.

Tape or floppy archiver.
restores hard disk files.

3-4

Dumps and

Table 3.2.

UTILITY

ua(l)

vi (1)

locking (2)

rdchk (2)

curses(3)

menus(s)

termcap(5)

ttytype(5)

List of UNIX Manual Changes and Additions (Cant.)

SOURCE

(altos)

(uofcb)

(msoft)

(msoft)

(uofcb)

(al tos)

(uofcb)

(altos)

DESCRIPTION

User administration. Adds and deletes
user accounts on the system.

Screen oriented (visual) display editor.

Lock or unlock a record of a file.

Check if there is data to be read.

Screen functions with "optional" cursor
motion. (Has window capability.)

Develop menus for Business Shell.

Data base which defines cursor-control
sequences for most commonly used CRT
terminals. It is used by most "screen
oriented n software, such as the Altos
shell and visual screen editor, ~.

Data base for defining terminal type
associated with each serial port.

3-5

ADD.~(l) ADD.~(l)

NAME
add.ct - add a cartridge tape drive

SYNOPSIS
add.ct

DESCRIPTION
Add.ct is a shell script which assists the installer of a
cartridge tape drive under XENIX. This script requires no
interaction with the installer.

The purpose of this script is to produce a device entry for
the cartridge tape drive in the /dev directory. When this
script is invoked, a device named /dev/ct9 will be created
in /dev for the ACS 8699.

lion

Add'Gt is an option on the ACS 8688 only, it
is only provided with the cartridge tape.
~he 586 Kernel includes cartridge tape
devices na.ed /dev/ct, /dev/rct, /dev/nct,
and /dev/nrct in the /dev directory.

3-6

ADD.BD(l) ADD.BD(l)

NAME
add.hd - add a second hard disk

SYNOPSIS
add.hd

DESCRIPTION
A~~~ is a shell script which helps the user to install a
second hard disk under XENIX. The first thing that the
script does is prompt the user for the size of the second
drive. It asks you whether you have a 10, 20, 30, or a 40
megabyte drive. Once you reply with a correct number it
will tell you that it is making the appropriate sized disk.

Part of the process of making the extra disk is to run the
layout(l) program, which divides the disk into two areas.
One area is reserved for spare sectors (in case of bad
spots), and the other area is ready to be made into a file
system. The layout program is immediately followed by the
map(l) program, which checks the second drive for bad spots.
If there are any, it maps them into the spare area. When
the map(l) program is complete (10-20 minutes), a file
system is created on the second drive and checked.

As its final act the script creates the directory /usr2, and
tells you how to insert the second drive into the XENIX
directory hierarchy.

When the shell script is completed and you see the XENIX
prompt again, you should add to the file /etc/rc a line
which mounts the second drive as a subdirectory, such as:

/etc/mount /dev/hdla /usr2

This means that each time you bring the system up multi­
user, files and directories created in the directory /usr2
will be physically located on the second drive.

SEE ALSO
layout(l)

BUGS
Add.hd runs significantly slower (3-4 times), when running
multi-user.

3-7

AEMAIL{l} XENIX Programmer's Manual AEMAIL(l}

NAME
aemail - send and receive mail

SYNOPSIS
aemail

DESCRIPTION
The Altos Electronic Mail facility is ~n intelligent, screen
oriented, "user friendly" mail processing system. It incor­
porates the delivery facilities of both Mail(l) and umtp(l),
as well as letting the user specify which editor to use for
text composition.

Aemail is designed around boxes and files. Commands are
shown on the top of the screen, boxes or files are numbered.
When a command or box/file is chosen it is highlighted (if
the users terminal has reverse video). In addition to the
commands listed, AL and ftR (control-L and -R) cause the
screen to be cleared and redrawn, backspace (usually AH)
unselects the chosen comamnd, and interrupt (the RUB or DEL
key) stops the current command. The message "Status: ••• "
that appears on the bottom right part of the screen always
states what the program is currently doing.

Reading mail. Incoming mail is automaticly picked up and
put in the Inbox. It remains here until it is deleted by the
user.

Sending mail. The send command invokes the editor (see
Options below) on a file with the header lines "To:", "Sub­
ject:" and "Archive-a-copy (yin) ? nne The user must put at
least one addressee on the "To: "line. (See Addresses
below.) The "Subject:" line is optional, and the last line
tells whether or not to save a copy of this in the users
Archive Box. The user adds whatever text they desire to the
rest of the file. When the user exits from the editor,
aemail checks the addressee(s) to make sure they exist. If
it finas one" (or more') addressees that it doesn't recognize,
it asks if the user wishes to invoke the editor again to
correct this. If not, the piece of mail is undeliverable
and is left in the users Outbox. If all addresses are
recognized, it is temporarily put in the users Outbox and
then delivered. .

Addresses And Distribution lists. There are three types of
addresses: a local name, (account name on this machine), a
UNET machine and name (of 'the form "user_name on machine" or
"user_name at machine"), or a UUCP address
("siteluser_name"). Any or all of these three types can be
used in the same distribution list or one "To:" line. The
"To:" line can also have Distribution list names mixed in,
but a Distributiori list cannot have any other distribution

3-8

/

AEMAIL (1) XENIX Programmer's Manual AEMAIL (1)

list names in it. A distribution list has the form:

DistName: address {, address, address, • • • } .
Note the colon (':') after the DistName, the commas seperat­
ing addresses and the ending period ('.'). Distribution
list can extend over several lines. A file in the users
Distribution List Box can contain several Distribution
lists.

Archiye ~ Sayed Mail~. When the user archives a piece
of mail, a copy of it is put in this box.

Recipient ~~. This box contains two lists, of all the
addresses the aemail systems knows about. One is a list of
the users on this machine, the other is a list of all the
other machines this machine has UNET connections to.

Options. The user can set four options, either by editing
them once the user is running the aemail program, or by set­
ting the appropriate environment variables. They are: Edi­
tor (environment variable "EDITOR"), a program that takes
one argument, the name of a file to edit, Maildrops ("MAIL­
DROP"), filename(s) of where incoming mail is to be picked
up, Printer ("PRINTPROG"), program that takes one argument,
the name of the file to be printed; and Shell, ("SHELL").
(See below for defaults.)

FILES
-/.aemail_dir/Inbox/*
-/.aemail_dir/Outbox/*

-/.aemail_dir/SavedMail/*
-/.aemail_dir/DistLists/*
/etc/passwd
/etc/UNET/UNET.routes

/usr/bin/vi (8600/586)
/usr/ucb/vi (68000)
/usr/bin/lpr
/bin/csh
Mail
mail
/etc/UNET/umtp (8600/586)
/usr/UNET/umtp (68000)
/usr/bin/aedeliver

/usr/bin/aepickup

SEE ALSO
vi, Mail(l)

users incoming mail
outgoing mail and undeliverable
mail
mail that is "archived"
distribution lists
to identify recipients
to identify UNET machine con­
nections
default editor
default editor
default print program
default shell
to deliver local or UUCP mail
used by Mail to send things
to deliver UNET mail
" " " "

figures out whether to call Mail
or umtp
transfers mail from "maildrops"
to -/.aemail_dir/Inbox

3-9

AEMAIL(I) XENIX Programmer's Manual AEMAIL(I}

BUGS
Addresses can not be a mixture of UNET, UUCP and distribu­
tion list names.

Distribution list entries should be able to contain other
distribution names.

The locking mechanism has Mail (I) 's imperfections.

The users PATH environment variable must have the proper
path for Mail, vi and lpr.

Due to a curses bug the screen must be redrawn after high­
lighting.

3-11

APROPOS (1) APROPOS (I)

NAME
apropos - locate commands by keyword looKup

SYNOPSIS
apropos keyword .••

DESCRIPTION

FILES

Apropos shows which manual sections contain instances of any
of the given keywords in their title. Each word is consi­
dered separately and case of letters is ignored. Words
which are part of other words are considered, thus looking
for compile will hit all instances of 'compiler' also. Try

apropos password

and

apropos editor

If the line starts 'name(section) you can do 'man
section name l to get the documentation for it. Try 'apropos
format l and then 'man 3s printf l to get the manual on the
subroutine printf.

AprQ~ is actually just the -k option to the m.an(l) com­
mand.

/usr/lib/whatis data base

SEE ALSO
makewhatis(l) I man(l), catrnan(8)

3-1SA

BSB(1) BSB(1)

NAME
bsh -- Altos Computer Systems Business Shell

SYNOPSIS
hah [-fh£a] [menu system]

DESCRIPTION
~ is a menu-driven command language interpreter. It may
be installed as the "login shell" in the password file, or
it may be invoked directly by the user.

The command is implemented using the termcap and curses
facilities from UC Berkeley. It must be run from a terminal
which is defined within /etc/termcap.

This command should only be run interactively. A user's
terminal may be left in a very strange state if han is run
in the background.

In the options described below, either "line feed" or
"return" performs the newline function.

Options

-L Start hah in "fast" mode. In this mode, a prompt whose
first letter is a lower-case alphabetic or numeric
character is executed immediately when the first letter
is typed. The system does not wait for a terminating
newline. Prompts whose first letter is upper-case
alphabetic wait for a terminating newline before exe­
cuting the requested actions. Fast mode is the default
initial mode, if not over-ridden by the command line or
the BSHINIT variable (see below). The current mode may
be changed during execution through use of the "?mode"
command (described below).

-h displays a short help message describing how to invoke
hall.

-g displays a one-line descriptive summary of the syntax
used to invoke bah.

-~ Start ~ in "slow" mode. In this mode, all prompts
must be terminated by newline before execution occurs.
The current mode may be changed during execution
through use of the "?mode" command (described below).

A menu system may be specified if desired. In this case,
~ utilizes the designated menu system instead of the
default one (/etc/menusys.bin). Prior to use by hall a menu
system must be "digested" using the digest(l) utility. If
the specified menu system does not exist or if it is not
read-accessible, bah issues an error message and terminates.

3-11

8SB(1) BSB(1)

How to create a new menu system and how to update or modify
an existing menu system is described in menus(S).

Commands

prompts
Typing any of the prompts on the current menu screen
immediately causes the actions associated with the
prompt to be executed. It is the responsibility of the
menu designer to ensure that reasonable actions exist
for each prompt. Selecting a prompt with no associated
action causes an error message to be displayed.

An action may be anyone of the following:

> Go to a specified menu
> Execute a shell script
> Execute a bsh internal command

(e.g., chdir(l)}

menuname
Typing the name of a menu
become the current menu.
spelled, or if it does not
system, an error message is

newline

causes it to immediately
If the menu name is mis­
exist in the current menu
displayed.

Typing a newline causes the immediately preceding menu
to become the current one. If there is no previous
menu, an error message is displayed. ~ does not dis­
tinguish between "line feed" and "return" -- both
generate a newline.

? Typing a question mark (?) causes the "help" menu
associated with the current menu to be displayed. Help
menus are no different from normal menus (except,
perhaps, in the type of information they contain).
When the current menu is named "xyz", typing a question
mark is entirely equivalent to typing "xyz?"

?? Typing a pair of question marks {??} causes the ~
system help informa tion to be displayed. It contains
much the same information as is presented here.

menuname?
Typing the name of a menu followed by question mark
causes the designated help menu to become the cur rent
one.

manualpage??
Typing the name of an entry in the Unix manual followed
by two question marks causes the designated manual page
to be displayed. Thus, to see the entry for hs.h one

3-12

BSB(I) BSB(I)

may type "bsh??" This is precisely equivalent to
typing "lman bsh."

1 command
The exclamation point (1) allows the user to "escape"
to the standard shell (sh(l». The command must follow
the usual rules as described in the shell documenta­
tion. In particular, the command may consist of a
sequence of shell commands separated by semicolons -­
thus several actions may be invoked. If the command is
absent, sh(l) is invoked as a sub-shell with no argu­
ments. In this case, ~ will be resumed as soon as
the sub-shell terminates. (Usually, this is accomp­
lished by sending the sub-shell an end-of-file. End­
of-file is Control-d on most terminals.) You may
escape to the Berkeley C shell (csh(l» by typing
"lcsh."

?index

?mode

This special command causes hah to display its internal
"index" for the current menu system. The index
contains the names of every accessible menu.

This special command allows the user to change from
"slow" mode to "fast" mode and vice versa. The us~r is
asked if he wishes to change to the alternate mode. If
your response begins with "yn or "y", the change is
made, otherwise the current mode remains in effect.

interrupt
~ will immediately return to the top-level command
interpreter upon receipt of ,an interrupt signal. Such
a signal is usually generated via the DEL, RUBOUT or
BREAJ< key.

backspace
~ understands the Backspace function (as obtained
from /etc/termcap).

CANcel
llahinterprets the CANcel key to mean "restart input."
The CANcel key is Control-x on many of the more popular
terminals.

ESCape
Typing an ESCape has the same effect as does typing
CANcel.

DC2 If the screen becomes "dirty" for some reason, you can
force ~~h to clear it and redisplay the current
contents by transmitting an ASCII "DC2." This is
Control-r on most of the currently popular terminals.

q Typing a "q", "Q" or "Quit" all have the same effect:

3-13

8SH(1) BSB(1)

FILES

.b..:Ul is terminated. If l:uih is your login shell, "quit"
also results in your being logged out.

Enyironment

BSHINIT
The BSHlNIT environment variable contains the initial
val ue of the defaul t mode ("fast" or "slow"). If this
variable does not exist in the environment, hah assumes
"fast" mode. BSHINIT should be set by inserting the
line BSHINIT="fast" or BSHINIT="slow" into your
.prof ile file.

Note that even if .b..:Ul is designated as the "login
shell" in /etc/passwd, your .profile file will be
interpreted correctly. (See login(l) and sh(l).) In
particular, any overriding definitions you may have for
the kill and erase characters will be correctly inter­
preted by hah.

-/.profile

/etc/menusys.bin
/etc/passwd

/etc/termcap

/usr/lib/bsh.messages

contains commands to be executed
during login(l)
default menu system used by bsh
used to define a user1s login name,
password, home directory, shell,
etc.
contains terminal attribute des­
criptions
system warning and error messages

SEE ALSO
digest(lM), login(l), menus(S), sh(l), termcap(S)

DIAGNOSTICS

BUGS

The diagnostics produced by .b..:Ul are intended to be self­
explanatory.

~ probably should never allow itself to be run in the
background.

~ should detect the fact that the current terminal is not
defined in /etc/termcap and abort gracefully.

3-14

CSH(l} XENIX Programmer's Manual CSH(l}

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [arg •••]

DESCRIPTION
~ is a command language interpreter. It begins by execut­
ing commands from the file '.cshrc' in the ~ directory of
the invoker. If this is a login shell then it also executes
commands from the file '.login' there. In the normal case,
the shell will then begin reading commands from the termi­
nal~ prompting with '% '. Processing of arguments and the
use of the shell to process files containing command scripts
will be described later.

The shell then repeatedly performs the following actions: a
line of command input is read and broken into words. This
sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is
executed.

When a login shell terminates it executes commands from the
file '.logout' in the users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs
with the following exceptions. The characters '&' 'I' ';'
'(I ')' '(I ')' form separate words. If doubled in '&&',
'I I', '«' or '»' these pairs form single words. These
parser metacharacters may be made part of other words, or
prevented their special meaning, by preceding them with '\'.
A newline preceded by a '\' is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations,
'I " "~I or 'R', form parts of a word; metacharacters in
these strings, including blanks and tabs, do not form
separate words. These quotations have semantics to be
described subsequently. Within pairs of " or 'ft, charac­
ters a newline preceded by a '\' gives a true newline char­
acter.

When the shell's input is not a terminal, the character 'Ii
introduces a comment which continues to the end of the input
line. It is prevented this s~ecial meaning when preceded by
'\' and in quotations using' ., 'I " and 'ft'.

Commands

A simple command is a sequence of words, the first of which
specifies the command to be executed. A simple command or a

3-15

CSB{l) XENIX Programmer's Manual CSH (1) .

sequence of simple commands separated by 'I' characters
forms a pipeline. The output of each command in a pipeline
is connected to the input of the next. Sequences of pipe­
lines may be separated by 'I', and are then executed sequen­
tially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with an '&'.
Such a sequence is automatically prevented from being ter­
minated by a hangup signal, the nohup command need not be
used.

Any of the above may be placed in '(' ')' to form a simple
command (which may be a component of a pipeline, etc.) It is
also possible to separate pipelines with 'II' or '&&' indi­
cating, as in the C language, that the second is to be exe­
cuted only if the first fails or succeeds respectively. (See
Expressions.)

Substitutions

We now describe the various transformations the shell per­
forms on the input in the order in which they occur.

History substitutions

History substitutions can be used to reintroduce sequences
of words from previous commands, possibly performing modifi­
cations on these words. Thus history SUbstitutions provide
a generalization of a ~. function.

History substitutions begin with the character 'I' and may
begin anywhere in the input stream if a history substitution
is not already in progress. This '1' may be preceded by an
'\' to prevent its special meaning, a 'I' is passed
unchanged when it is followed by a blank, tab, newline, '='
or '(I. History substitutions a1so occur when an input line
begins with 'T'. This special abbreviation will be
described later. .

Any input line which' contains history substi.tution is echoed
on the terminal before it is executed as it could have been
typed without history substitution.

Commands input from the terminal which consist of one or
more words are saved on the history list, the size of which
is controlled by the history variable. The previous command
is always retained. Commands are numbered sequentially from
1.

For definiteness, consider the following output from the
history command:

3-16

CSH(l) XENIX Programmer's Manual

9 write michael
H) ex write.c
11 cat oldwrite.c
12 diff *write.c

CSH (1)

The commands are shown with their event numbers. It is not
usually necessary to use event numbers, but the current
event number can be made part of the prompt by placing an
'I' in the prompt string.

With the current event 13 we can refer to previous events by
event number 'Ill', relatively as in '1-2' (referring to the
same event), by a prefix of a command word as in 'ld' for
event 12 or 'lw' for event 9, or by a string contained in a
word in the command as in 'l?mic?' also referring to event
9. These forms, without further modification, simply rein­
troduce the words of the specified events, each separated by
a single blank. As a special case '11' refers to the previ­
ous command 1 thus '11' alone is essentially a ~. The form
'Ii' references the current command (the one being typed
in). It allows a word to be selected from further left in
the line, to avoid retyping a long name, as in 'li:l'.

To select words from an event we can follow the event
specification by a ':' and a designator for the desired
words. The words of a input line are numbered from 0, the
first (usually command) word being 0, the second word (first·
argument) being 1, etc. The basic word deSignators are:

o first (command) word
n n'th argument
1 first argument, i.e. '1'
$ last argument
% word matched by (immediately preceding) ?~? search
x-~ range of words
-~ abbreviates '0-~'
* abbreviates 'i-$', or nothing if only 1 word in event
x* abbreviates 'X-Sf
X- like 'X*' but omitting word '$'

The ':' separating the event specification from the word
deSignator can be omitted if the argument selector begins
with a 'i', '$', '*' '-' or '%'. After the optional word
deSignator can be placed a sequence of modifiers, each pre­
ceded by a ':'. The following modifiers are defined:

h
r
s/l1";
t
&
g

Remove a trailing pathname component, leaving the head
Remove a trailing '.xxx' component, leaving the root ru

Substitute ~ for L
Remove all leading pathname components, leaving the ta:
Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g. '

3-17

eSB(l) XENIX Programmer's Manual eSB (1)

p Print the new command but do not execute it.
q Quote the substi tuted words, preventing further substi tl
x Like q, but break into words at blanks, tabs and newlinE

Unless preceded by a ~g' the modification is applied only to
the first modifiable word. In any case it is an error for
no word to be applicable.

The left hand side of substitutions are not regular expres­
sions in the sense of the editors, but rather strin~s. Any
character may be used as the delimiter in place of /'; a
~\' quotes the delimiter into the ~ and·~ strings. The
character '&' in the right hand side is replaced by the text
from the left. A '\' quotes '&' also. A null ~ uses the
previous string either from a ~ or from a contextual scan
string ~ in '1?~?'. The trailing delimiter in the substitu­
tion may be omitted if a newline follows immediately as may
the trailing '?' in a contextual scan.

A history reference may be given without an event specifica­
tion, e.g. '1$'. In this case the reference is to the pre­
vious command unless a previous history reference occurred
on the same line in which case this form repeats the previ­
ous reference. Thus 'l?foo?1 1$' gives the first and last
arguments from the command matching '?foo?l.

A special abbreviation of a history reference occurs when
the first non-blank character of an input line is a 'T'.
This is equivalent to 'l:s1 1 providing a convenient short­
hand for substitutions on the text of the previous line.
Thus 'TlbTlib' fixes the spelling of 'lib' in the previous
command. Finally, a history substitution may be surrounded
with '{I and '}I if necessary to insulate it from the char­
acters which follow. Thus, after 'Is -ld "'paul l we might do
'l{l}a' to do 'Is -ld "'paula l , while ~11al would look for a
command starting 'la'.

Quotations with I and •

The· quotation "of strings by .. I I and '" I can be used to
prevent all or some of the remainin9substitutions. Strings
enclosed in 'II are prevented any further interpretation.
Strings enclosed in 'ftl are yet variable and command
expanded as described below.

In both cases the resulting text becomes·· (all or part of) a
single word; only in one special case (see Gommand Substiti­
.tJ.sm below) does a '"I quoted string yield parts of more
than one word; 'I quoted strings never do.

Alias sUbstitution

3-18

eSH (1) XENIX Programmer's Manual eSH(l)

The shell maintains a list of aliases which can be esta­
blished, displayed and modified by the alias and unalias
commands. After a command line is scanned, it is parsed
into distinct commands and the first word of each command,
left-to-right, is checked to see if it has an alias. If it
does, then the text which is the alias for that command is
reread with the history mechanism available as though that
command were the previous input line. The resulting words
replace the command and argument list. If no reference is
made to the history list, then the argument list is left
unchanged.

Thus if the alias for 'Is' is 'Is -1' the command 'Is /usr'
would map to 'Is -1 /usr', the argument list here being
undisturbed. Similarly if the alias for 'lookup' was 'grep
!T /etc/passwd' then 'lookup bill' would map to 'grep bill
/etc/passwd' •

If an alias is found, the word transformation of the input
text is performed and the aliasing process begins again on
the reformed input line. Looping is prevented if the first
word of the new text is the same as the old by flagging it
to prevent further aliasing. Other loops are detected and
cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus we can 'alias print 'pr \1* I lpr" to
make a command which ~'~ its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as
value a list of zero or more words. Some of these variables
are set by the shell or referred to by it. For instance,
the ~ variable is an image of the shell's argument list,
and words of this variable's value are referred to in spe­
cial ways.

The values of variables may be displayed and changed by
using the ~ and unset commands. Of the variables referred
to by the shell a number are togglesl the shell does not
care what their value is, only whether they are set or not.
For instance, the verbose variable is a toggle which causes
command input to be echoed. The setting of this variable
results from the -v command line option.

Other operations treat variables numerically. The '@' com­
mand permits numeric calculations to be performed and the
result assigned to a variable. Variable values are, how­
ever, always represented as (zero or more) strings. For the
purposes of numeric operations, the null string is con­
sidered to be zero, and the second and subsequent words of

3-19

csa (1) XENIX Programmer's Manual CSH(l)

multiword values are ignored.

After the input line is aliased and parsed, and before each
command is executed, variable substitution is performed
keyed by '$' characters. This expansion can be prevented by
preceding the "'$' with a .. \' except within ''''s where it
always occurs, and within ""s where it never occurs.
Strings quoted by ' are interpreted later (see Commang
subst;j,tution below) so "'$' substitution does not occur there
until later, if at all. A '$' is passed unchanged if fol­
lowed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable
expansion, and are variable expanded separately. Otherwise,
the command name and entire argument list are expanded
together. It is thus possible for the first (command) word
to this point to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in ... ". or given the ':q' modifier the
results of variable substitution may eventually be command
and filename substituted. Within , a variable whose value
consists of multiple words expands to a (portion of) a sin­
gle word, with the words of the variables value separated by
blanks. When the ":q' modifier is applied to a sUbstitution
the variable will expand to multiple words with each word
separated by a blank and quoted to prevent later command or
filename substitution.

The following meta sequences are provided for introducing
variable values into the shell input. Except as noted, it
is an error to reference a variable which is not set.

$name
${name}

Are replaced by the words of the value of variable
.na.m.e., each separated by a blank. Braces insulate .ruun.e.
from following characters which would otherwise be part
of it. Shell variables have names consisting of up to
29 letters, digits, and underscores.

If name is not a shell variable, but is set in the environ­
ment, then that value is returned (but : modifiers and the
other forms given below are not available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the
value of ~. The selector is subjected to '$' substi­
tution and may consist of a single number or two
numbers separated by a "'-'. The first word of a

3-28

:SB (1) XENIX Programmer's Manual CSB (1)

variables value is numbered '1'. If the first number
of a range is omitted it defaults to 'I'. If the last
member of a range is omitted it defaults to '$#name'.
The selector '*' selects all words. It is not an error
for a range to be empty if the second argument is omit­
ted or in range.

$#name
${#name}

$0

Gives the number of words in the variable. This is
useful for later use in a '[selector] '.

Substitutes the name of the file from which command
input is being read. An error occurs if the name is
not known.

$number
${number}

Equivalent to '$argv[number] '.

$*
Equivalent to '$argv[*] '.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied
to the substitutions above as may ':gh', ':gt' and ':gr'.
If braces '{' '}' appear in the command form then the modif­
iers must appear within the braces. The current implementa­
tion allows only one ':' modifier on each '$' expansion.

The following substitutions may not be modified with
modifiers.

, . , .

$?name
${?name}

$?0

$$

Substitutes the string 'I' if name is set, '0' if it is
not.

Substitutes "I' if the current input filename is know,
'0' if it is not.

Substitute the (decimal) process number of the (parent)
shell.

Command and filename substitution

The remaining substitutions, command and filename substitu­
tion, are applied selectively to the arguments of builtin
commands. This means that portions of expressions which are
not evaluated are not subjected to these expansions. For

3-21

CSH{I} XENIX Programmer's Manual eSB(I)

commands which are not internal to the shell, the command
name is substituted separately from the argument list. This
occurs very late, after input-output redirection is per­
formed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in
"~I. The output from such a command is normally broken into
separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original
string. Within 'n,s, only newlines force new words; blanks
and tabs are preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command substitu­
tion to yield only part of a word, even if the command out­
puts a complete line.

Filename substi tution

If a word contains any of the character s '*', '1', '[' or
'{I or begins with the character '-', then that word is a
candidate for filename substitution, also known as 'glob­
bing'. This word is then regarded as a pattern, and
replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying
filename substitution it is an error for no pattern to match
an existing file name, but it is not required for each pat­
tern to match. Only the metacharacters '*', '?' and '[I
imply pattern matching, the characters '-I and '{I being
more akin to abbreviations.

In matching filenames, the character '.' at the beginning of
a filename or immediately following a 'II, as well as the
character '/' must be matched explicitly. The character '*'
matches any string of characters, including the null string.
The character '1' matches any Single character. The
sequence '[•• el' matches anyone of the character s enclosed.
Within '[•••] " a pair of characters separated by '_I

matches any character lexically between the two.

The character '-I at the beginning of a filename is used to
refer to home directories. Standing alone, i.e. '-I it
expands to the invokers home directory as reflected in the
value of the variable ~. When followed by a name consist­
ing of letters, digits and '_I characters the shell searches
for a user with that name and substitutes their home direc­
tory; thus '-ken' might expand to '/usr/ken' and
'-ken/chmach' to '/usr/ken/chmach'. If the character '-I is
followed by a character other than a letter or '/' or
appears not at the beginning ofa word, it is left

3-22

:SB (1) XENIX Programmer's Manual CSB (1)

undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand .for 'abe ace
adele Left to right order is preserved, with results of
matches being sorted separately at a low level to preserve
this order. This construct may be nested. Thus
'-source/sl/{oldls,ls}.c' expands to '/usr/source/sl/oldls.c
/usr/source/sl/ls.c' whether or not these files exist
without any chance of error if the home directory for
'source' is '/usr/source'. Similarly ' •• /{memo,*box}, might
expand to ' •• /memo •• /box •• /mbox'. (Note that 'memo' was
not sorted with the results of matching '*box-'.) As a spe­
cial case '{I, 'I' and '{I' are passed undisturbed.

Input/output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Open file ~ (which is first variable, command and
filename expanded) as the standard input.

« word
Read the shell input up to a line which is identical to
~. ~ is not subjected to variable, filename or
command substitution, and each input line is compared
to E.I.S1 before any substitutions are done on this input
line. Unless a quoting '\', '.', '" or "I appears in
~ variable and command substitution is performed on
the intervening lines, allowing '\1 to quote '$1, '\1
and "I. Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the
final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to
the command as standard input.

> name
>1 name
>& name
>&1 name

The file ~ is used as standard output. If the file
does not exist then it is created, if the file exists,
its is truncated, its previous contents being lost.

If the variable nOQlobber is set, then the file must
not exist or be a character special file (e.g. a termi­
nal or '/dev/null') or an error results. This helps
prevent accidental destruction of files. In this case
the 'I' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output

3-23

CSB (1) XENIX Programmer's Manual CSB(l)

into the specified file as well as the standard output.
~ is expanded in the same way as '<I input filenames
are.

» name
»& name
»1 name
»&1 name

Uses file .naB as standard output like '>' but places
output at the end of the file. If the variable
noclobber is set, then it is an error for the file not
to exist unless one of the '!' forms is given. Other­
wise similar to '>'.

If a command is run detached (followed by '&') then the
default standard input for the command is the empty file
'/dev/null'. Otherwise the command receives the environment
in which the shell was invoked as modified by the input­
output parameters and the presence of the command in a pipe­
line. Thus, unlike some previous shells, commands run from
a file of shell commands have no access to the text of the
commands by default; rather they receive the original stan­
dard input of the shell. The '«' mechanism should be used
to present inline data. This permits shell command scripts
to function as components of pipelines and allows the shell
to block read its input.

Diagnostic output may be directed through a pipe with the
standard output. Simply use the form '/&' rather than just
, / ' .
Expressions

A number of the builtin commands (to be described subse­
quently) take expressions, in which the operators are simi­
lar to those of C, with the same precedence. These expres­
sions appear in the @, ~, if, and while commands. The
following operators are available:

" / % 1
&& / T & == 1= <= >= < > « » +

()

Here the precedence increases to the right, '==' and '1=',

*

, < =' '> = I '<' and '>', , < <, and'" > > " ... +' and '-', , *' ... / '
and '%' being, in groups, at the same level. The '==' and
'1=' operatoI:'s compare their arguments as strings, all oth­
ers operate on numbers. Strings which begin with '9' are
considered octal numbers. Null or missing arguments are
considered '9'. The result of all expressions are strings,
which represent decimal numbers. It is important to note
that no two components of an expression can appear in the
same word; except when adjacent to components of expressions

3-24

:SH (1) XENIX Programmer's Manual CSH (1)

which are syntactically significant to the parser ('&' 'I'
'<I ')' '(I ') ') they should be surrounded by spaces.

Also available in expressions as primitive operands are com­
mand executions enclosed in '{I and '}' and file enquiries
of the form '-~ name' where ~ is one of:

r read access
w write access
x execute access
e existence
o ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then
tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible
then all enquiries return false, i.e. 'B'. Command execu­
tions succeed, returning true, i.e. 'I', if the command
exits with status B, otherwise they fail, returning false,
i.e. 'B'. If more detailed status information is required
then the command should be executed outside of an expression
and the variable status examined.

Control flow

The shell contains a number of commands which can be used to
regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to
reread or skip in its input and, due to the implementation,
restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the
if-~-~ form of the if statement require that the major
keywords appear in a single simple command on an input line
as shown below.

If the shell's input is not seekable, the shell buffers up
input whenever a loop is being read and performs seeks in
this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto's
will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a buil­
tin command occurs as any component of a pipeline except the
last then it is executed in a subshell.

3-25

CSB(I) XENIX Programmer's Manual CSB (1)

alias
alias name
alias name wordlist

alloc

break

The first form prints all aliases. The second form
prints the alias for name. The final form assigns the
specified wordlist as the alias of ~i wordlj.st is
command and filename substituted. ~ is not allowed
to be alias or unalias

Shows the amount of dynamic core in use, broken down
into used and free core, and address of the last loca­
tion in the heap. With an argument shows each used and
free block on the internal dynamic memory chain indi­
cating its address, size, and whether it is used or
free. This is a debugging command and may not work in
production versions of the shell; it requires a modi­
fied version of the system memory allocator.

Causes execution to resume after the smsi of the nearest
enclosing forall or while. The remaining commands on
the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory ~.
If no argument is given then change to the horne direc­
tory of the user •.

If ~ is not found as a subdirectory of the current direc­
tory (and does not begin with '/', './', or ' •• /'), then
each component of the variable cdpath is checked to see if
it has a subdirectory.ruune.. Finally, if all else fail s but
~ is a shell variable whose value begins with '/', then
this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or
foreach. The rest of the commands on the current line
are executed.

3-26

:SH (1) XENIX Programmer's Manual CSH (1)

default:
Labels the default case in a switch statement. The
default should come after all ~ labels.

echo wordlist

else
end
endif
endsw

The specified words are written to the shells standard
output. A '\c' causes the echo to complete without
printing a newline, akin to the '\c' in nroff(l). A
'\n' in wordlist causes a newline to be printed. Oth­
erwise the words are echoed, separated by spaces.

See the description of the foreach, ~, switch, and
while statements below.

exec command
The specified command is executed in place of the
current shell.

exit
exit(expr)

The shell exits either with the value of the status
variable (first form) or with the value of the speci­
fied ~ (second form).

for each name (wordlist)

end
. . .
The variable ~ is successively set to each member of
wordlist and the sequence of commands between this com­
mand and the matching ~ are executed. (Both foreach
and ~ must appear alone on separate lines.)

The builtin command continue may be used to continue
the loop prematurely and the builtin command break to
terminate it prematurely. When this command is read
from the terminal, the loop is read up once prompting
with '?' before any statements in the loop are exe­
cuted. If you make a mistake typing in a loop at the
terminal you can rub it out.

glob wordlist
Like ~ but no '\' escapes are recognized and words
are delimited by null characters in the output. Useful
for programs which wish to use the shell to filename
expand a list of words.

goto word
The specified ~ is filename and command expanded to

3-27

CSB(l) XENIX Programmer's Manual CSB(l)

yield a string of the form 'label'. The shell rewinds
its input as much as possible and searches for a line
of the form 'label:' possibly preceded by blanks or
tabs. Execution continues after the specified line.

histor¥
D1splays the history event list.

if (expr) comman,d
If the specified expression evaluates true, then the
single command with arguments is executed. Variable
substitution on cgrnmand happens early, at the same time
it does for the rest of the .if command. Cgrnmand must
be a simple command, not a pipeline, a command list, or
a parenthesized command list. Input/output redirection
occurs even if ~ is false, when command is not exe­
cuted (this is a bug).

if (expr) then
• ••

else if (expr2) then
• ••

else
• • •

endif
If the specified ~ is true then the commands to the
first ~ are executed, else if expr2 is true then the
commands to the second else are executed, etc. Any
number of ~-ifpairs are possible, only one endif is
needed. The ~ part is likewise optional. (The
words ~ and endif must appear at the beginning of
input lines, the if must appear alone on its input line
or after an ~.) ,

login
Terminate a login shell, replacing it with an instance
of /bin/login. This is one way to log off, included for
compatibil,ity with /bin/sh.

logout

nice

Terminate a login shell. Especially useful if
igngreegf is set.

nice +number
nice command
nice +number command

The first form sets the ~ for this shell to 4. The
second form sets the ~ to the given number. The
final two forms run command at priority 4 and number
respectively. The super-user may specify negative
niceness by using 'nice -number ••• '. Command is

3-28

:SH (1)

nohup

XENIX Programmer's Manual CSH (1)

always executed in a sub-shell, and the restrictions
place on commands in simple if statements apply.

nohup command
The first form can be used in shell scripts to cause
hangups to be ignored for the remainder of the script.
The second form causes the specified command to be run
with hangups ignored. On the Computer Center systems
at UC Berkeley, this also submits the process. Unless
the shell is running detached, nohup has no effect.
All processes detached with "&" are automatically
nohup'~. (Thus, nohup is not really needed.)

on~ntr
onintr
onintr label

Control the action of the shell on interrupts. The
first form restores the default action of the shell on
interrupts which is to terminate shell scripts or to
return to the terminal command input level. The second
form 'onintr -' causes all interrupts to be ignored.
The final form causes the shell to execute a 'goto
label' when an interrupt is received or a child process
terminates because it was interrupted.

In any case, if the shell is running detached and
interrupts are being ignored, all forms of onintr have
no meaning and interrupts continue to be ignored by the
shell and all invoked commands.

rehash
Causes the internal hash table of the contents of the
directories in the ~ variable to be recomputed.
This is needed if new commands are added to directories
in the ~ while you are logged in. This should only
be necessary if you add commands to one of your own
directories, or if a systems programmer changes the
contents of one of the system directories.

repeat count command

set

The specified command which is subject to the same res­
trictions as the command in the one line if statement
above, is executed count times. I/O redirections
occurs exactly once, even if count is 9.

set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all

3-29

CSH (1) XENIX Programmer's Manual CSH (1)

shell variables. Variables which have other than a
single word as value print as a parenthesized word
list. The second form sets ~ to the null string.
The third form sets ~ to the single ~. The fourth
form sets the index'th component of name to word; this
component must already exist. The final form sets ~
to the list of words in wordlist. In all cases the
value is command and filename expanded.

These arguments may be repeated to set multiple values
in a single set command. Note however, that variable
expansion happens for all arguments before any setting
occurs.

setenv name value
(Version 7 systems only.) Sets the value of environment
variable ~ to be value, a single string. Useful
environment variables are 'TERM' the type of your ter­
minal and 'SHELL' the shell you are using.

shift
shift variable

The members of ~ are shifted to the left, discarding
~[lJ. It is an error for ~ not to be set or to
have less than one word as value. The second form per­
forms the same function on the specified variable.

source name
The shell reads commands from name. Source commands may
be nested; if they are nested too deeply the shell may
run out of file descriptors. An error in a source at
any level terminates all nested source commands. Input
during source commands is never placed on the history
list.

switch (string)
case strl:

•••
breaksw

•••
default:

•••
breaksw

endsw
Each case label is successively matched, against the
specified string which is first command and filename
expanded. The file metacharacters '*', '?' and '[••• l'
may be used in the case labels, which are variable
expanded. If none of the labels match before a
'default' label is found, then the execution begins
after the default label. Each case label and the
default label must appear at the beginning of a line.

3-38

:SH (1)

time

XENIX Programmer's Manual CSH(I)

The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case
labels and default labels as in C. If no label matches
and there is no default, execution continues after the
endsw.

time command

umask

With no argument, a summary of time used by this shell
and its children is printed. If arguments are given
the specified simple command is timed and a time sum­
mary as described under the ~ variable is printed.
If necessary, an extra shell is created to print the
time statistic when the command completes.

umask value
The file creation mask is displayed (first form) or set
to the specified value (second form). The mask is
given in octal. Common values for the mask are 992
giving all access to the group and read and execute
access to others or 922 giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by 'unalias
*'. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of
executed programs is disabled.

unset pa ttern

wait

All variables whose names match the specified pattern
are removed. Thus all variables are removed by 'unset
*'; this has noticeably distasteful side-effects. It
is not an error for nothing to be unset.

All child processes are waited for. It the shell is
interactive, then an interrupt can disrupt the wait, at
which time the shell prints names and process numbers
of all children known to be outstanding.

while (expr)

end
• • •

While the specified expression evaluates non-zero, the
commands between the wbile and the matching end are
evaluated. Break and continue may be used to terminate
or continue the loop prematurely. (The while and ~

3-31

CSB(l)

@

XENIX Programmer's Manual CSB (1)

must appear alone on their input lines.) Prompting
occurs here the first time through the loop as for the
foreach statement if the input is a terminal.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell vari­
ables. The second form sets the specified ~ to the
value of ~. If the expression contains '<', ')', '&'
or 'I' then at least this part of the expression must
be placed within '(' ')'. The third form assigns the
value of ~ to the index'th argument of ~. Both
~ and its index'th component must already exist.

The operators '*=', '+=', etc are available as in C.
The space separating the name from the assignment
operator is optional. Spaces are, however, mandatory
in separating components of ~ which would otherwise
be single words.

Special postfix "++' and ' __ I operators increment and
decrement .name. respectively, i.e. '.@ i++'.

Pre-defined variables

The following variables have special meaning to the shell.
Of these, ~, child, l:l.Qms;, ~, prompt, shell and status
are always set by the shell. Except for chilg and status
this setting occurs only at initialization; these variables
will not then be modified unless this is done explicitly by
the user.

The shell copies the environment variable PATH into the
variable ~, and copies the value back into the environ­
ment whenever ~ is set. Thus is is not necessary to
worry about its setting other than in the file .cshrc as
inferior ~ processes-will import the definition of ~
from the environment. (It could be set once in the .login
except that commands through ~(l) would not see the defin­
i tion.)

argv

cdpath

child

Set to the arguments to the shell, it is from
this variable that positional parameters are
substituted, i.e. '$1' is replaced by
'$argv[l] " etc.

Gives a list of alternate directories
searched to find subdirectories in chdir com­
mands.

The process number printed when the last

3-32

SH(I)

echo

histchars

history

home

ignoreeof

mail

XENIX Programmerls Manual CSH(I)

command was forked with '&'. This variable
is unset when this process terminates.

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For non­
builtin commands all expansions occur before
echoing. Builtin commands are echoed before
command and filename substitution, since
these substitutions are then done selec­
tively.

Can be assigned a two character string. The
first character is used as a history charac­
ter in place of "1 II, the second character
is used in place of the "AI I sUbstitution
mechanism. For example, "set
histchars=",;"I' will cause the history char­
acters to be comma and semicolon.

Can be given a numeric value to control the
size of the history list. Any command which
has been referenced in this many events will
not be discarded. Too large values of ~
~ may run the shell out of memory. The
last executed command is always saved on the
history list.

The home directory of the invoker, initial­
ized from the environment. The filename
expansion of '-I refers to this variable.

If set the shell ignores end-of-file from
input devices which are terminals. This
prevents shells from accidentally being
killed by control-D's.

The files where the shell checks for mail.
This is done after each command completion
which will result in a prompt, if a specified
interval has elapsed. The shell says 'You
have new mail.' if the file exists with an
access time not greater than its modify time.

If the first word of the value of mail is
numeric it specifies a different mail check­
ing interval, in seconds, than the default,
which is 19 minutes.

If multiple mail files are specified, then
the shell says 'New mail in ~' when there
is mail in the file name.

3-33

csa (1)

noclobber

noglob

nonomatch

path

prompt

shell

XENIX Programmer's Manual csa (1)

As described in the section on Input/output,
restrictions are placed on output redirection
to insure that files are not accidentally
destroyed, and that '»' redirections refer
to existing files.

,

If set, filename expansion is inhibited.
This is most useful in shell scripts which
are not dealing with filenames, or after a
list of filenames has been obtained and
further expansions are not desirable.

If set, it is not an error for a filename
expansion to not match any existing files;
rather the primitive pattern is returned. It
is still an error for the primitive pattern
to be malformed, i.e. 'echo [' still gives
an error.

Each word of the path variable specifies a
directory in which commands are to be sought
for execution. A null word specifies the
current directory. If there is no ~ vari­
able then only full pa th names will execute.
The usual search path is '.', '/bin' and
'/usr/bin l , but this may vary from system to
system. For the super-user the default
search path is '/etc', '/bin' and '/usr/bin'.
A shell which is given neither the -c nor the
-t option will normally hash the contents of
the director ies in the l2£.t.b. variable after
reading .cshrc, and each time the l2£.t.b. vari­
able is reset. If new commands are added to
these directories while the shell is active,
it may be necessary to give the rehash or the
commands may not be found •

. The string which is printed before each com-
'. mand is read from an interactive terminal

input. If a '11 appears in the string it
will be replaced by the current event number
unless a preceding '\1 is given. Default is
'% I, or '# I for the super-user.

The file in which the shell resides. This is
used in forking shells to interpret files
which have execute bits set, but which are
not executable by the system. (See the
description of EQn-builtin Command Execution
below.) Initialized to the (system-dependent)
home of the shell.

3-34

:SH (1)

status

time

verbose

XENIX Programmer's Manual CSH (1)

The status returned by the last command. If
it terminated abnormally, then 0200 is added
to the status. Builtin commands which fail
return exit status 'I', all other builtin
commands set status '0'.

Controls automatic timing of commands. If
set, then any command which takes more than
this many cpu seconds will cause a line giv­
ing user, system, and real times and a utili­
zation percentage which is the ratio of user
plus system times to real time to be printed
when it terminates.

Set by the -v command line option, causes the
words of each command to be printed after
history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin
command the shell attempts to execute the command via
~(2). Each word in the variable ~ names a directory
from which the shell will attempt to execute the command.
If it is given neither a -c nor a -t option, the shell will
hash the names in these directories into an internal table
so that it will only try an ~ in a directory if there is
a possibility that the command resides there. This greatly
speeds command location when a large number of directories
are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a -c or
-t argument, and in any case for each directory component of
~ which does not begin with a "/'1, the shell concaten­
ates with the given command name to form a path name of a
file which it then attempts to execute.

Parenthesized commands are always executed in a subshell.
Thus '(cd; pwd) ; pwd' prints the ~ directory; leaving
you where you were (printing this after the home directory),
while 'cd ; pwd l leaves you in the ~ directory.
Parenthesized commands are most often used to prevent qhdir
from affecting the current shell.

If the file has execute permissions but is not an executable
binary to the system, then it is assumed to be a file con­
taining shell commands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias
will be prepended to the argument list to form the shell
command. The first word of the alias should be the full
path name of the shell (e.g. '$shell l). Note that this is a
special, late occurring, case of alias substitution, and

3-35

csa (1) XENIX Programmer's Manual

only allows words to be prepended to the argument list
without modification.

Argument list processing

If argument 8 to the shell is '_I then this is a login
shell. The flag arguments are interpreted as follows:

csa (1)

-c Commands are read from the (single) following argument
which must be present. Any remaining arguments are
placed in ~.

-e The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

-f The shell will start faster, because it will neither
search for nor execute commands from the file '.cshrc'
in the invokers home directory.

-i The shell is interactive and prompts for its top-level
input, even if it appears to not be a terminal. Shells
are interactive without this option if their inputs and
outputs are terminals.

-n Commands are parsed, but not executed. This may aid in
syntactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A '\' may
be used to escape the newline at the end of this line
and continue onto another line.

-v Causes the verbose variable to be set, with the effect
that command input is echoed after history substitu­
tion.

-x Causes the ~ variable to be set, so that commands
are echoed immediat.ely before execution.

-v Causes the verbose variable to be set even before
'.cshrc' is executed.

-x Is to -x as -V is to -v.

After processing of flag arguments if arguments remain but
none of the -c, -i, -s, or -t options was given the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by '$S'. Since many systems use
either the standard version 6 or version 7 shells whose
shell scripts are not compatible with this shell, the shell

3-36

:SH (I) XENIX Programmer's Manual CSH (1)

will execute such a 'standard' shell if the first character
of a script is not a 'i', i.e. if the script does not start
with a comment. Remaining arguments initialize the variable
.a..r..s:sz: •
Signal handling

The shell normally ignores guit signals. The interrupt and
SYit signals are ignored for an invoked command if the com­
mand is followed by '&'; otherwise the signals have the
values which the shell inherited from its parent. The
shells handling of interrupts can be controlled by onintr.
Login shells catch the terminate signal; otherwise this sig­
nal is passed on to children from the state in the shell's
parent. In no case are interrupts allowed when a login
shell is reading the file '.logout'.

AUTHOR
William Joy

FILES
-/.cshrc Read at beginning of execution by each shell.

Read by login shell, after '.cshrc' at login.
Read by login shell, at logout.

-/.login
-/.logout
/bin/sh
/tmp/sh*
/dev/null
/etc/passwd

Standard shell, for shell scripts not starting with a
Temporary file for '«'.
Source of empty file.
Source of home directories for '-name'.

LIMITATIONS
Words can be no longer than 512 characters. The number of •
characters in an argument varies from system to system.
Early version 6 systems typically have 512 character limits
while later version 6 and version 7 systems have 5120 char­
acter limits. The number of arguments to a command which
involves filename expansion is limited to 1/6'th the number
of characters allowed in an argument list. Also command
substitutions may SUbstitute no more characters than are
allowed in an argument list.

To detect looping, the shell restricts the number of alias
substititutions on a single line to 20.

SEE ALSO

BUGS

access (2), exec (2), fork (2), pipe (2), signal (2), umask (2) ,
wait(2), a.out(S), environ(S), 'An introduction to the C
shell'

Control structure should be parsed rather than being recog­
nized as built-in commands. This would allow control com­
mands to be placed anywhere, to be combined with 'I', and to

3-37

CSH(l) XENIX Programmer's Manual CSH (1)

be used with '&' and ';' metasyntax.

CommandS within loops, prompted for by'?', are not placed
in the history list.

It should be possible to use the ':' modifiers on the output
of command SUbstitutions. All and more than one ':' modif­
ier should be allowed on '$' substitutions.

Some commands should not touch status or it may be so tran­
sient as to be almost useless. Oring in 9290 to status on
abnormal termination is a kludge.

In order to be able to recover from failing ~ commands on
version 6 systems, the new command inherits several open
files other than the normal standard- input and output and
diagnostic output. If the input and output are redirected
and the new command does not close these files, some files
may be held open unnecessarily.

There are a number of bugs associated with the
importing/exporting of the PATH. For example, directories
in the path using the - syntax are not expanded in the PATH.
Unusual paths, such as (), can cause csh to core dump.

This version of ~ does not support or use the process con­
trol features of the 4th Berkeley Distribution.

3-38

c:R.EF(l) "-~ \..LJ

NAME
cxref - a simple C routine referencing program

SYNOPSIS
cxref file

DESCRIPTION
Cxref is a simple shell scr ipt which uses ~(1) and .az.(l)
and sort(l) to ma~e a listing of the routines in the speci­
fied C program files and the lines on which they are
defined. It is useful as a summary when prowling in a large
program, especially since cref has a habit of looping on
large program input.

SEE ALSO
cref(l)

BUGS
CxreL assumes that routines begin in the first column of
lines, and that type names are given on different lines than
the routine names. If you have a program which is in a
different format than this, cxref will fail miserably. The
operating system, C compiler, Pascal translator, ~ editor,
etc. all work with cxref.

3-38A

DATE (1) DATE (I)

NAME
date - print and set the date

SYNOPSIS
date [-cms] [yymmddhhmm [.ss]

DESCRIPTION

FILES

If no argument is given, the current date and time are
printed. If an argument is given, the current date is set.
'2S. is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; h.h is the
hour number (24 hour system); the second mm is the minute
number; .~ is optional and is the seconds. For example:

da te 1 QH180" 45

sets the date to Oct 8, 12:45 AM.
may be omitted, the current values
system operates in GMT (Greenwich
care of the conversion to and from
1 igh t ti me.

The year, month, and day
being the defaults. The
Mean Time). Date takes
local standard and day-

The -c option causes date to use the hardware real-time
clock. Thus, date -c prints the current date and time from
the hardware real-time clock, and date -c yymmddhhmm sets
the real-time clock.

The -s option sets the system (i.e., the software) clock to
the current time and date from the hardware real-time clock.

The -m option should be used at midnight. Its primary
function is to update the year on the hardware real-time
clock if it is January 1 and to make adjustments to the
real-time clock if it is Feb r uary 29 in a leap yea r. (Th e
hardware real-time clock does not automatically increment
the year on January 1, and it does not allow February 29.)
If -m is specified, date waits for the hardware real-time
clock to reach midnight (if it hasn't already), handles
January 1 and February 29, and then sets the software system
clock to the current time on the hardware real-time clock.
For the -m option to work correctly, the software clock and
the hardware clock should be within twelve hours of one
another, and date -m should be executed approximately at
midnight. Usecron(S) to execute date -m at midnight each
day.

Xenix normally uses only the system (Le., software) clock.
The only time that Xenix uses the hardware real-time clock
is with the ~ command.

jusrjadmwtmp to record time-setting

DA~E(l) lJA:l."J:i\~J

SEE ALSO
cron(8), utmp(5)

DIAGNOSTICS
'No permission' is you aren't the super-user and you try to
change the date; 'bad conversion' if the date is syntacti­
cally incorrect; 'waiting for midnight ••• ' if date -m is
executed before the hardware clock reacheS midnight.

3-38C

DIGBS'r(lll) DIGBft(lll)

NAME
digest -- create menu system(s) for the Business Shell

SYNOPSIS
digest [options] menufile •••

DESCRIPTION
Digest is used to create a menu system for use by the
Business Shell (bsh(l». This program is also used to
modify an existing menu system.

One or more menu systems may be created under control of the
options described below:

-n Display an informative summary of the available options
and defaults. -a is the same as -h.

-~ number
Check for menus longer than ~m~ lines in length.
The default value is 25 if none is specified. This is
the correct maximum number for a conventional 24-line
crt screen. In general, ~m~ should be one larger
than the length of the screen area (as defined by nlin
in termcap) for ~he terminal to be used. The user is
responsible for ensuring that the width of a menu will
fit onto the terminal(s) he uses. Bsh(l) will truncate
lines which are too wide (without issuing a warning
message).

-m Multiple menu systems: For each menu file (which must
be a directory), produce a separate menu system. The
names for each menu system are created by suffixing
n.b in n to the menu file name.

-..e. ~
The starting menu for the generated menu system is the
one specified. This option doesn't make much sense
if used with the -m option. If no starting menu is
specified, the alphabetically first menu name is used
for each menu system.

-~ Verbose: echo menu names as they are processed.

-,2 .f..i.l.e
The digested output is sent to the named file. By con­
vention, a digested menu system file name should end
with a n.binn suffix.

A menu file may contain one or more menus or directories
containing menus. Digest will recursively process all menus
within a directory structure.

3-39

Dl:GBft(lJI) DIGBft(lJI)

Note that the -m and -~ options are mutually exclusive. The
-m option indicates that each menu is to produce a separate
n.binn file: -~ indicates that a single output file is to
be produced with the name given.

The default output file is nmenul.binn if none is specified
via the -~ option, where nmenul n is the first menu file
name.

The recommended way to create a menu system is to create a
tree of directories containing the various portions of the
system. Each subtree contains all the menus related to a
given subject. Thus, a primary menu (directory) is created
for, say, system management functions and subsidiary menus
are placed beneath (within) the directory for each of the
individual system management functions or function areas.
Help menus m.ay be placed wherever appropriate in the
structure.

SEE ALSO
bsh(l), menus(S), termcap(S)

DIAGNOSTICS

BUGS

The diagnostics produced by digest are intended to be self­
explanatory.

No outstanding bugs are known.

Digest might check each menu for validity and each menu
system for consistency.

3-4'

DISABLE {C) DISABLE (C)

NAME
disable - turns off terminals.

SYNOPSIS
disable [-d] [[-e] tty ...

DESCRIPTION
This program manipulates the /etc/ttys file and signals init
to disallow logins on a particular terminal. The -d and -e
options "disable" and "enable" terminals, respectively.

EXAMPLES
A simple example follows:

disable tty0l
Multiple terminals can be disabled or enabled using the
-d and -e switches before the appropriate terminal
name:

disable tty0l -e tty02 -d tty03 tty04

FILES
/dev/tty*
/etc/ttys

SEE ALSO
login(C), enable(C), ttys(F) I getty(M), init(M)

CAO'l'ION

Be absolutely certain to pause at least one
minute before reusing this command or before
using the enable com~and. Failure to do so
may cause the system to crash.

3-4!3A

DUMP.BD{l) DUXP.HD (l)

NAME
dump.hd - dump a hard disk to tape

SYNOPSIS
dump.hd

DESCRIPTION
The .du.ml.h.h.d com mand dumps the en ti re f il e sys tern f rom the
h a r d dis k tot h e car t rid get a pe • Illl..mlhhd s h au 1 d be run in
single-user mode in order to guarantee that the hard disk is
not being used by any other users while dump.hd is running.

Illl.ml.h.h.d produces a level 0 dump tape with today's date.
Refer to ~(l) for further information about dump levels.

Dump.hd only dumps the file system from the first hard disk
to tape; it does not dump the second hard disk. If you want
to dump the second hard disk (i.e., the add-on hard disk) to
tape, use dump(l).

SEE ALSO
dump(l), dump(S), dumpdir(l} , restore.hd(l), restor(l)

ENABLE (C) ENABLE (C)

NAME
enable - turns on terminals.

SYNOPSIS
enable [-d] [[-e] tty ...

DESCRIPTION
This program manipulates the /etc/ttys file and signals init
to allow log ins on a particular terminal. The -e and -d
options may be used to allow logins on some terminals and
disallow logins on other terminals in a single command.

EXPu'1PLES
A simple command to enable tty0l follows:

enable tty0l
Multiple terminals can be disabled or enable using the
-d and -e switches before the appropriate terminal
name:

enable tty0l -e tty02 -d tty03 tty04

FILES
/dev/tty*
/etc/ttys

SEE ALSO
login(C) , disable(C) 1 ttYS(F) , getty(M), init(M)

CAUTIOJN

Be absolutely certai~ to pause at least one
minut:e before reusing this COi:l::lana or before
using the disable command. Failure to do so
may cause the system to crash.

>IT (1) XElnx Programmer I s Manual EDIT(I)

~ME
edit - text editor (variant of the ex editor for new or
casual user s)

{NOPSIS
edit [-r] name ...

ESCRIPTION
~ is a variant of the text editor ~ recommended for new
or casual users who wish to use a command oriented editor.
The following brief introduction should help you get started
with ~. A more complete basic introduction is provided by
~: A tutorial • A ~/~ command summary (yersion z.a)
is also very useful. See ~(l) for other useful documents;
in particular, if you are using a CRT terminal you will want
to learn about the display editor ~.

,RIEF INTRODUCTION
To edit the contents of an existing file you begin with the
command "edit name' I to the shell. ~ makes a copy of
the file which you can then edit, and tells you how many
lines and characters are in the file. To create a new file,
just make up a name for the file and try to run ~ on it;
you will cause an error diagnostic, but don't worry.

~ prompts for commands with the character ':1, which you
should see after starting the editor. If you are editing an
existing file, then you will have some lines in ~I~
buffer (its name for the copy of the file you are editing).
Most commands to ~ use its "current line l I if you donlt
tell them which line to use. Thus if you say print (which
can be abbreviated p) and hit carriage return (as you should
after all ~ commands) this current line will be printed.
If you delete (d) the current line, ~ will print the new
current line. When you start editing, ~ makes the last
line of the file the current line. If you delete this last
line, then the new last line becomes the current one. In
general, after a delete, the next line in the file becomes
the current line. (Deleting the last line is a special
case.)

If you start with an empty file, or wish to add some new
lines, then the append Ca) command can be used. After you
give this command (typing a carriage return after the word
append) ~ will read lines from your terminal until you
give a line consisting of just a ".11, placing these lines
after the current line. The last line you type then becomes
the current line. The command insert Ci) is like append but
places the lines you give before, rather than after, the
current line.

3-41

EDIT(l) XENIX Programmer's Manual EDIT (1)

~ again to get it back. Note that commands such as write
and ~ cannot be undone.

To look at the next line in the buffer you can just hit car­
riage return. To look at a number of lines hit AD (control
key and, while it is held down D key, then let up both)
rather than carriage return. This will show you a half
screen of lines on a CRT or 12 lines on a hardcopy terminal.
You can look at the text around where you are by giving the
command "z.". The current line will then be the last line
printed; you can get back to the line where you were before
the "z." command by saying "" ". The z command can also
be given other following characters "z-" prints a screen
of text (or 24 lines) ending where you are; "z+" prints
the next screenful. If you want less than a screenful of
lines do, e.g., '·z.12" to get 12 lines total. This method
of giving counts works in general; thus you can delete 5
lines starting with the current line with the command
"delete 5".

To find things in the file you can use line numbers if you
happen to know them; since the line numbers change when you
insert and delete lines this is somewhat unreliable. You
can search backwards and forwards in the file for strings by
giving commands of the form /text/ to search forward for
llll or ?text? to search backward for ~. If a search
reaches the end of the file without finding the text it
wraps, end around, and continues to search back to the line
where you are. A useful feature here is a search of the
form /A text/ which searches for ~ at the beginning of a
line. Similarly /text$/ searches for ~ at the end of a
line. You can leave off the trailing / or ? in these com­
manas.

The current line has a symbolic name "."; this is most
useful in a range of lines as in ".,$print" which prints
the rest of the lines in the file. To get to the last line
in the file you· can refer to it by its symbolic name' '$" •
Thus the command "$ delete" or "$d" deletes the last
line in the file, no matter which line was the current line
before. Arithmetic with line references is also possible.
Thus the line "$-5" is the fifth before the last, and
".+20" is 20 lines after the present.

You can find out which line you are at by doing ".=' '.
This is useful if you wish to move or copy a section of text
within a file or between files. Find out the first and last
line numbers you wish to copy or move (say 10 to 20). For a
move you can then say "10,20move "al' which deletes these
lines from the file and places them in a buffer named A •
.E.di.t has 26 such buffers named A through z.. You can later
get these lines back by doing ""a move ." to put the

3-42

E:DIT(l) XENIX Programmerls Manual EDIT (1)

!dit numbers the lines in the buffer, with the first line
having number 1. If you give the command "1 11 then ~
wi~l type this first line. If you then give the command
delete ~ will delete the first line, and line 2 will
become line 1, and ~ will print the current line (the new
line 1) so you can see where you are. In general, the
current line will always be the last line affected by a com­
manCl.

You can make a change to some text within the current line
by using the substitute (s) command. You say "S/~/~II
where ~ is replaced by the old characters you want to get
rid of and ~ is the new characters you want to replace it
with.

The command file (f) will tell you how many lines there are
in the buffer you are editing and will say "[Modified] II if
you have changed it. After modifying a file you can put the
buffer text back to replace the file by giving a write (w)
command. You can then leave the editor by issuing a quit
(q) command. If you run ~ on a file, but don't change
it, it is not necessary (but does no harm) to write the file
back. If you try to quit from .e.sti.t. after modifying the
buffer without writing it out, you will be warned that there
has been "No write since last change" and edit will await
another command. If you wish not to write the buffer out
then you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line
numbers to see lines in the file you can make any changes
you desire. You should learn at least a few more things,
however, if you are to use ~ more than a few times.

The change (c) command will change the current line to a
sequence of lines you supply (as in append you give lines up
to a line consisting of only a ".11). You can tell change
to change more than one line by giving the line numbers of
the lines you want to change, i.e. "3,5change ll • You can
print lines this way too. Thus "1,23p l' prints the first
23 lines of the file.

The undo Cu) command will reverse the effect of the last
command you gave which changed the buffer. Thus if give a
SUbstitute command which doesn't do what you want, you can
say undo and the old contents of the line will be restored.
You can also undo an undo command so that you can continue
to change your mind. ~ will give you a warning message
when commands you do affect more than one line of the
buffer. If the amount of change seems unreasonable, you
should consider doing an ~ and looking to see what hap­
pened. If you decide that the change is ok, then you can

3-43

EDIT (1) XENIX Programmer's Manual EDIT(l)

contents of buffer A after the current line. If you want to
move or copy these lines between files you can give an edit
(e) command after copying the lines, following it with the
name of the other file you wish to edit, i.e. "·edit
chapter2 11 • By changing ~ to ~ above you can get a
pattern for copying lines. If the text you wish to move or
copy is all within one file then you can just say
"lS,2Smove $" for example. It is not necessary to use
named buffers in this case (but you can if you wish).

SEE ALSO
ex (1), vi (1), 'Edit: A tutorial', by Ricki Blau and James
Joyce

AUTHOR
William Joy

BUGS
See .0.(1) •

3-44

~X (1) XENIX Programmer's Manual EX(l)

~AME
ex - text editor

SYNOPSIS
ex [-] [-v] [-t tag] [-r] [+lineno] name •••

DESCRIPTION
~ is the root of a family of editors: ~, ~ and ~. ~
is a superset of ~, with the most notable extension being a
display editing facility. Display based editing is the
focus of ~.

If you have not used~, or are a casual user, you will find
that the editor ~ is convenient for you. It avoids some
of the complexities of ~ used mostly by systems programmers
and persons very familiar with ~.

If you have a CRT terminal, you may wish to use a display
based editor: in this case see ~(l), which is a command
which focuses on the display editing portion of ~.

DOCUMENTATION
For ~ and ~ see the !x/~ command summary - version
~.a. The document ~: A tutorial provides a comprehensive
introduction to ~ assuming no previous knowledge of com­
puters or the UNIX system.

The Ex Reference Manual - version ~.a is a comprehensive and
complete manual for the command m~de features of ~, but you
cannot learn to use the editor by reading it. For an intro­
duction to more advanced forms of editing using the command
mode of ~ see the editing documents written by Brian Ker­
nighan for the editor ~: the material in the introductory
and advanced documents works also with ~.

An Introduction ~ Display Editing lli.t.h .vi introduces the
display editor ~ and provides reference material on ~. The
.vi Quick Reference card summarizes the commands of ~ in a
usetul, functional way, and is useful with the Introduction.

FOR ED USERS
If you have used ~ you will find that ~ has a number of
new features useful on CRT terminals. Intelligent terminals
and high speed terminals are very pleasant to use with ~.
Generally, the editor uses far more of the capabilities of
terminals than ~ does, and uses the terminal capability
data base termcap(l) and the type of the terminal you are
using from the variable TERM in the environment to determine
how to drive your terminal efficiently. The editor makes
use of features such as insert and delete character and line
in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using ~(l).

3-45

EX(l) XENIX Programmer's Manual EX (1)

There is also an interline editing open (0) command which
works on all terminals.

EX contains a number of new features for easily viewing the
text of the file. The z command gives easy access to win­
dows of text. Hitting AD causes the editor to scroll a
half-window of text and is more useful for quickly stepping
through a file than just hitting return. Of course, the
screen oriented visual mode gives constant access to editing
context. .

EX gives you more help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes
astray. IX gives you a lot of feedback, normally printing
changed lines, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a
command has affected more lines than it should have.

The editor also normally prevents overwriting existing files
unless you edited them so that you don't accidentally
clobber with a write a file other than the one you are edit­
ing. If the system (or editor) crashes, or you accidentally
hang up the phone, you can use the editor recover command to
retrieve your work. This will get you back to within a few
lines of where you left off.

EX has several features for dealing with more than one file
at a time. You can give it a list of files on the command
line and use the next (n) command to deal with each in turn.
The next command can also be given a list of file names, or
a pattern as used by the shell to specify a new set of files
to be dealt with. In general, filenames in the editor ma~
be formed with full shell metasyntax. The metacharacter %'
is also available in forming filenames and is replaced by
the name of the current file. For editing large groups of
related files you can use ~'a tag command to quickly locate
functions and other important points in any of the files.
This is useful when working on a large program when you want
to quickly fin4the definition of a particular function.
The command ctags(l) builds a .tas.a. file or a group of C pro­
grams.

For moving text between files and within a file the editor
has a group of buffers, named 4 through ~. You can place
text in these named buffers and carry it over when you edit
another file. .

There is a command & in ~ which repeats the last substitute
command. In addition there is a confirmed substitute com­
mand. You give a range of SUbstitutions to be done and the
editor interactively asks whether each substitution is
desired.

3-46

~X (1)

FILES

XENIX Programmer's Manual EX(l)

You can use the sUbstitute command in ~ to systematically
convert the case of letters between upper and lower case.
It is possible to ignore case of letters in searches and
substitutions. ~ also allows regular expressidns which
match words to be constructed. This is convenient, for
example, in searching for the word "edit" if your document
also contains the word "editor."

~ has a set of options which you can set to tailor it to
your liking. One option which is very useful is the autoin­
~ option which allows the editor to automatically supply
leading white space to align text. You can then use the AD
key as a backtab and space and tab forward to align new code
easily.

Miscellaneous new useful features include an intelligent
join (j) command which supplies white space between joined
lines automatically, commands < and> which shift groups of
lines, and the ability to filter portions of the buffer
through commands such as ~.

/usr/lib/ex2.Bstrings
/usr/lib/ex2.Brecover
/usr/lib/ex2.Bpreserve
/etc/termcap
N/. exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve

error messages
recover command
preserve command

describes capabilities of terminals
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO
awk(l), edell, grep(l), sed(l}, edit(l), grepCl),
termcap(l), viCl)

AUTHOR

BUGS

William JOy

The..\1D.S:lQ command causes all marks to be lost on lines
changed and then restored if the marked lines were changed.

llndQ never clears the buffer modified condition.

The £ command prints a number of logical rather than physi­
cal lines. More than a screen full of output may result if
long lines are present.

File input/output errors don't print a name if the command
line '_I option is used.

3-47

EX(l) XENIX Programmer's Manual EX (1)

There is no easy way to do a single scan ignoring case.

Because of the implementation of the arguments to ~, only
512 bytes of argument list are allowed there.

The format of /~termcap and the large number of capabili­
ties of terminals used by the editor cause terminal type
setup to be rather slow.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are discarded in input files, and cannot
appear in resultant files.

3-48

PCOn(l) PmPY(l)

NAME
fcopy - copy a floppy diskette

SYNOPSIS
fcopy

DESCRIPTION

586

ACS

BUGS

Fcopy is used to make duplicate copies of either a single
(ACS 8600 only) or double density floppy diskette. FCoPY is
menu dr iven and w ill ask whether you w ish to copy a single
or double density disk or quit. After one copy has been
made, it will ask if you desire to make more copies of the
same diskette •. All disks must have been previously
formatted. See Format to prepare diskettes (Format) before
making copies. Also check to verify there is enough disk
space available by entering the ~ command.

OUTPUT
1440 records in
1440 records out

8690 OUTPUT
for double density disks:

13+0 records in
13+0 records out

900+0 records in
909+9 records out

for single density disks:
500+0 records in
500+0 records out

Since the routine was written for a single floppy disk
system, it reads the entire disk off and then back on,
requiring 1440 blocks of space on the hard disk (for the 586
system) and either 913 or 500 blocks of space on the hard
disk (for the ACS 8600 system).

FILES
./junk.?????? Temporary working file, created and subse­
quently removed by fcopy.

3-49

POBIIH{l) POBIIH{l)

NAME
format - format a floppy disk while running XENIX

SYNOPSIS
format

DESCRIPTION
Format is a menu-driven program for formatting floppy disks.

For the Altos 586 computer systems, diskettes are formatted
in Altos 5-1/4 inch, double-density, double-sided format.

For the ACS 8600 computer systems, diskettes can be
formatted in either 8-inch standard IBM single-density
format, Altos standard double-density format for XENIX and
for diagnostics, or finally double-sided double-density
format, if that drive is available.

To use the format utility, enter:

format (CR>

You are then prompted by the menu to select the desired
format and to insert a diskette.

All double-density diskettes are a combina tion of two
formats for the ACS 8600. See Appendix B in the
Introduction to XBBIX Kanual. The first two cylinders are
single-density, and the rest of the floppy diskette is in
double-density.

3-58

FCOPY {I} PCOPY(l)

NAME
fcopy - copy a floppy diskette

SYNOPSIS
fcopy

DESCRIPTION
Fcopy is used to make duplicate copies of a floppy diskette.
Fcopy is menu driven and will ask whether you wish to copy a
diskette or quit. After one copy has been made, it will ask
if you desire to make more copies of the same diskette. All
diskettes must have been previously formatted. See ~~
mat(l) to prepare diskettes (format) before making copies.
Also check to verify there is enough disk space available by
entering the df command.

586 OUTPUT
I 44fl+fl
144fl+0

records in
records out

BUGS

FILES

Since the routine was written for a single floppy disk
system, it copies the entire diskette to the hard disk and
then copies it from the hard disk to the new diskette re­
quiring 144fl blocks of space on the hard disk (for the 586
system) .

./junk.?????? Temporary working file, created and subse­
quently removed by fcopy.

3-4.9

FINGER(l) FINGER(l)

NAME
finger - user information lookup program

SYNOPSIS
finger [options] name . . .

DESCRIPTION

FILES

By default finger lists the login name, full name, terminal
name and write status (as a '*' before the terminal name if
write permission is denied), idle time, login time, and
office-location and phone number (if they are known) for
each current UNIX user. (Idle time is minutes if it is a
single integer, hours and minutes if a ':' is present, or
days and hours if a 'd' is present.)

A longer format also exists and is used by finger whenever a
list of people's names is given. (Account names as well as
first and last names of users are accepted.) This format is
multi-line, and includes all the information described above
as well as the user's home directory and login shell, any
plan which the person has placed- in the file .plan in their
home directory, and the project on which they are working
from the file .project also in the home directory. . .

Finger options include:

-m Match arguments only on user name.

-1 Force long output format.

-p Suppress printing of the .~ files

-s Force short output format.

/etc/utmp
/etc/passwd
/usr/adm/lastlog
-/ • plan
-/ .project

who file
for users names, offices, •••
last login times
plans -
projects

SEE ALSO
who (1)

BUGS
Only the first line of the .project file is printed.

The encoding of the gcos field is UCB dependent - it knows
that an office '197MC' is '197M Cory Hall', and that '529BE'
is '529B Evans Hall'.

FLEECE(l) FLEECE (1)

NAME
fleece - look for files in home directories

SYNOPSIS
fleece name

DESCRIPTION
Flee~ looks for the named file in every home directory on
the system and makes a list on standard output of those
which exist.

FILES
/etc/passwd to find home directories

3-49B

FOLD(l) FOLD{l)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-width] [file ••.

DESCRIPTION .

BUGS

~~~a is a filter which will fold the contents of the 
specified files, or the standard input if no files are 
specified, breaking the lines to have maximum width width. 
The default for width is 80. Width should be a multiple of 
8 if tabs are present, or the tabs should be expanded using 
expand(l) before coming to fQld. 

If underlining is present it may be messed up by folding. 



FOR.'!AT (1) FOR.:"!AT ( 1) 

NAME 
format - format a floppy diskette while running XENIX 

SYNOPSIS 
format 

DESCRIPTION 
fQLmAt is a menu-driven program for formatting floppy 
diskettes. 

For the Altos 586 computer systems, diskettes are formatted 
in Altos 5-1/4 inch, double-density, double-sided format. 

To use the format utility, enter: 

format <CR> 

You are then prompted by the menu to format (and to insert a 
diskette) or to quit. 

3-5~ 



FROM(l) 

NAME 
from - who is my mail from? 

SYNOPSIS 
from 

DESCRIPTION 

FROM(l} 

.£..r...Q.m pr in tsout the mail header lines in your mailbox file 
to show you who your mail is from 

FILES 
/usr/spool/mail/* 

SEE ALSO 
mail (1), Mail (1), aemai1 (1) 



PSCIC(1) PSCX(1) 

NAME 
fsck - file system consistency check and interactive repair 

SYNOPSIS 
fsck [option] ••• [filesystemJ • • • 

DESCRIPTION 
Fsck audits and interactively repairs inconsistent condi­
tions for the named file systems. If a file system is 
consistent, then the number of files, number of blocks used, 
and number of blocks free are reported. If the file system 
is inconsistent, the operator is prompted for concurrence 
before each correction is attempted. Most corrections lose 
data: all losses are reported. The default action for each 
correction is to wait for the operator to respond 'yes' or 
"no". Without write permission ~ defaults to -n action. 

These options are recognized: 

-y Assume a yes response to all questions 

-n Assume a no response to all questions 

-sX Ignore the actual free list and (unconditionally) 
construct a new one by rewriting the super-block of the 
file system. The file system should be unmounted while 
this is done, or extreme care should be taken that the 
system is quiescent and that it is rebooted immediately 
afterwards. This precaution is necessary so that the 
old, bad, in-core copy of the superblock will not 
continue to be used, or written on the file system. 

The free list is created with optimal interleaving 
according to the specification X: 

-S&:~ space free blocks ~ blocks apart in 
cylinders of & blocks each. 

If X is not given, the values used when the filesystem 
was created are used. If these values were not 
specified, then & = 4fiHJ, ~ = 9 is assumed. 

-SA Condi tionally reconstruct the free list. This option 
is like -sx except that the free list is rebuilt only 
if there were no discrepancies discovered in the file 
system. It is useful for forcing free list 
reorganization on uncontaminated file systems. -S 
forces -n. 

3-51 



PSCK(l) 

-t 

PSCK(l) 

If ~ cannot obtain enough memory to keep its tables, 
it uses a scratch file. If the -t is specified, the 
file named in the next argument is used as the scratch 
file. Without the -t option, ~ prompts if it needs 
a scratch file. The file should not be on the file 
system being checked, and if it is not a special file 
or did not already exist, it is removed when fsck 
completes. 

If no file systems are given to ~, then a default list of 
file systems is read from the file jetc/checklist. 

Inconsistencies checked are as follows: 

1. Blocks claimed by more than one i-node or the free 
list. 

2. Blocks claimed by an i-node or the free list outside 
the range of the file system. 

3. Incorrect link counts. 

4. Size checks: 

Incorrect number of blocks in file. 
Directory size not a multiple of 16 bytes. 

5. Bad i-node format. 

6. Blocks not accounted for anywhere. 

7. Directory checks: 

File pointing to unallocated i-node. 
I-node number out of range. 

8. Super Block checks: 

More than 65536 i-nodes. 
More blocks for i-nodes than there are in the file 
system. 

9. Bad free block list format. 

10. Total free block andjor free i-node c~unt incorrect. 

Orphaned files and directories (allocated but unreferenced) 
are, with the operator's concurrence, reconnected by placing 
them in the "lost+found" directory. The name assigned is 
the i-node number. The only restriction is that the 
directory "lost+found" must preexist in the root of the 
filesystem being checked and must have empty slots in which 
entr ies can be made. This is accomplished by making 
"lost+found", copying a number of files to the directory, 
and then removing them (before ~ is executed). 

3-52 



PSCK(l) PSCK(l) 

FILES 

Checking the raw device is almost always faster. 

/etc/checklist contains default list of file systems to 
check. 

SEE ALSO 

BUGS 

dcheck(l), icheck(l), checklist(S), fs(S), crash(8) 

I-node numbers for • and •• in each directory should be 
checked for validity. 
The -b option of icheckll) should be available. 

3-53 



PU(l) Pft(l) 

NAME 
ftp - transfer files between machines 

SYNOPSIS 
ftp [ -f device ] [ -s speed ] [ name ] 

DESCRIPTION 

BUGS 

~ allows file transfer between two Altos Computer Systems 
via an asynchronous serial channel. On the sending side, 
lUlm~ is a file or list of files to be sent. If lUl~ is If_A, 

standard input is sent. On the receiving side, lUl~ is an 
existing directory into which the files are received. If 
name is omitted, files are received into the current direc­
tory. If nam~ is " __ ", received files are written to stan­
dard output. 

The following options are interpreted by ~: 

-.f The special file device is used to transfer files 
between the machines. The ports associated with the 
devices on each machine should be connected via a null 
modem cable. The default device is /dev/tty6, which 
uses port 6. 

-a The transmission rate is set to speed. Currently sup­
ported speeds are 1299, 24gB, 4899, and 96BB bits per 
second. The default transmission rate is 9699 baud. 

~ is compatible with the ~ program available for Altos 
CP/M and MP/M systems, so files can be transferred betwen 
CP/M-MP/M systems and Xenix systems. See the CP/M-MP/M 
documentation for details of the CP/M-MP/M ~. 

~ must be run on both the sending and receiving computer. 
The port that .ftR is running on must have login disabled 
(see disableCl». Either side may be started first, but 
both sides must be started within about 1 minute of each 
other. The sending side will output's' every £ew seconds 
until communication is established with the other side; 
likewise,' the receiving side will output 'w' every few 
seconds. During file transfer, .f...tJ2 will output a '.' every 
time a 128 byte block is successfully transmitted, and a '1' 
every time a block is retransmitted to overcome a transmis­
sion error. 

Since MP/M and CP/M pad files with control-Z's (octal 32), 
control-Z's are deleted from the end of files sent to Xenix 
systems. 

Files sent to MR/M and CP/M systems must have filenames 
which are legal on those systems. Files sent from MP/M and 
CP/M sys~ems to Xenix systems may end up with filenames 



r.rP(1) P'fP(1) 

containing and sometimes ending with spaces; the Xenix 
shells can deal wi th these filenames if the enti re name is 
enclosed in double quotes. 

If the cable gets disconnected during transmission, you must 
wait for.f..t.ll to die (which might take up to a minute) before 
you can restart on the same port, otherwise the first ~ 
will interfere with the second. 

3-55 



LAYom(l) LAY~(l) 

NAME 
layout - configure a hard disk 

SYNOPSIS 
layout layout-device 586 

DESCRIPTION 
Lg~~~~ creates a table defining a number of "logical 
devices" associated with each physical disk in the XENIX 
system. Layout records this table on cylinder zer-o of each 
disk. Each entry in the table is in the following format: 

struct layout { 
daddr_t l_blkoff; /*Block offset to area */ 
daddr_t l_nblocks; /*Number of blocks in area */ 

} ; 

Layout defines ten "logical devices" on the hard disk: 

9 The whole disk, with the alternate sector 
mechanism disabled. 

1 The swap area. 

2 The root file system. 

3-8 Unused. 

9 Alternate sector area into which bad disk sectors 
are automatically mapped by the XENIX kernel. 

The logical device numbers above correspond to device 
numbers in the hard disk driver. 

Other device numbers are pre-defined in the XENIX kernel as 
follows: 

19 Future expansion. 

11 All of track9. 

12 Boot program area. 

13 Portion of cylinder zero used for ~ temporary 
file. 

14 Layout information created by this utility. 

15 Alternate sector map (see map(l». 

The options to layout are used to create some very common 
layouts. 

3-56 



?'TP{l} FTP(l} 

containing and sometimes ending with spaces; the Xenix 
shells can deal with these filenames if the entire name is 
enclosed in double quotes. 

If the cable gets disconnected during transmission, you must 
wait for ~ to die (which might take up to a minute) before 
you can restart on the same port, otherwise the first ~ 
will interfere with the second. 

3-55 



BEAD{l} BEAD (1) 

NAME 
head - give first few lines 

SYNOPSIS 
head [ -count] [ file .•• 

DESCRIPTION 
This filter gives the first coun~ lines of each of the 
specified files, or of the standard input. If count is 
omitted it defaults to 10. 

SEE ALSO 
tail(l) 



IllL(l) IUL(I} 

NAME 
iul - do underlining 

SYNOPSIS 
iul [ -i ] [ -t terminal J [ n..a.m.e ••• ] 

DESCRIPTION 
~ reads the named files (or standard input if none are 
given) and translates occurrences of underscores to the 
sequence which indicates underlining for the terminal in 
uses, as specified by the environment variable TERM. The-t 
option overrides the terminal kind specified in the environ­
ment. The file /~termcap is read to determine the appro­
priate sequences for underlining. If the terminal is in­
capable of underlining, but it capable of a standout mode 
then that is used instead. If the terminal can overstrike, 
or handles underlining automatically, ~ degenerates to 
~(l). If the terminal cannot underline, underlining is 
ignored. 

The -i option causes ~ to indicate underlining onto 5 
separate line containing appropriate dashes I-'i this is 
useful when you want to look at the underlining which is 
present in an nrQff output stream on a crt-terminal. 

SEE ALSO 

BUGS 

man(l), nroff(l) 

Nroff usually outputs a series of backspaces and underlines 
intermixed with the text to indicate underlining. No 
attempt is made to optimize the backward motion. 

3-55B 



L..~T(l) LAST(l) 

NAME 
last - indicate last logins of users and teletypes 

SYNOPSIS 
last [ -N ] [ name ••• ] [ tty ••• ] 

DESCRIPTION 

FILES 

Last will look back in the li~m~ file which records all 
logins and logouts for information about a user, a teletype 
or any group of users and teletypes. Arguments specify 
names of users or teletypes of interest. Names of teletypes 
may be given fully or abbreviated. For example 'last 0' is 
the same as 'last tty0'. If multiple arguments are given, 
the information which applies to any of the arguments is 
printed. For example 'last root console' would list all of 
"root's" sessions as well as all sessions on the console 
terminal. L~ will print the sessions of the specified 
users and teletypes, most recent first, indicating the times 
at which the session began, the duration of the session, and 
the teletype which the session took place on. If the ses­
sion is still continuing or was cut short by a reboot, ~ 
so indicates. 

The pseudo-user reboot logs in at reboots of the system; 
thus 

last reboot 

will give an indication of mean time between reboot. 

Last with no arguments prints a record of all logins and 
logouts, in reverse order. The -N option limits the report 
to N lines. 

If ~ is interrupted, it indicates how far the search has 
progressed in ~~m~. If interrupted with a quit signal 
(generated by a control-l) ~ indicates how far the search 
has progressed so far, and the search continues. 

/ u s r / a dm/ w tmp 
/usr/adm/shutdownlog 

login data base 
which records shutdowns and reasons 
for same 

SEE ALSO 
wtmp(S), ac(8), 



LAYOO'r(1) LAYOO'.r (1) 

USAGE 
layout /dev/hd0.1ayout 586 

SEE ALSO 
map (I) , sizefs(l} 

3-57 



LS(!) LS(!) 

NAME 
Is - List contents of directory 

SYNOPSIS 
Is [-ltasdrucifgmnICqbxFRA] [Filenames] 

DESCRIPTION 
For each directory argument, ~ lists the contents of the 
directory; for each file argument, ~ repeats its name and 
any other information requested. The output is sorted 
alphabetically by defalt. When no argument is given, the 
current directory is listed. When several arguments are 
given, the arguments are first sorted appropriately, but 
file arguments appear before director ies and their contents. 

There are three major listing formats. The format chosen 
depends on whether the output is going to a teletype, and 
may also be controlled by option flags. The default format 
for a teletype is to list the contents of directories in 
multi-column format, with the entries sorted down the 
columns. (Files which are not the contents of a directory 
being interpreted are always sorted across the page 
rather than down the page in columns. This is because 
the individual file names may be arbitrarily long.) If the 
standard output is not a teletype, the default format is to 
list one entry per line. Finally, there is a stream 
output format in which files are listed across the page, 
separated by"." characters. The -m flag enables this 
;ormat; when invoked as ~ this format is also used. 

The following options are available: 

-1 List in long format, giving mode, number of links, 
owner, size in bytes, and time of last modification for 
each file. (See below.) If the file is a special 
file, the size field contain instead the major and 
minor device numbers. 

-t Sort by time modified (latest first) instead of by 
name; as is normal. 

-a List all entr ies; usually '.' and ' •• ' are not sup­
pressed. 

-s Give size in blocks, including indirect blocks, for 
each entry and total blocks. 

-d If argument isa directory, list only its name, not its 
contents (mostly used with -1 to get status on 
directory) • 

-r Reverse the order of sort to get reverse alphabetic or 
oldest first as appropriate. 

3-58 



LEAVE (1) LEAVE (I) 

NAME 
leave - remind you when you have to leave 

SYNOPSIS 
leave hhmm ] 

DESCRIPTION 
Leaye waits until the specified time, then reminds you that 
you have to leave. You are reminded 5 minutes and 1 minute 
before the actual time, at the time, and every minute 
thereafter. When you log off, leave exits just before it 
would have printed the next message. 

The time of day is in the form hhmm where hh is a time in 
hours (on a 12 or 24 hour clock). All times are converted 
to a 12 hour clock, and assumed to be in the next 12 hours. 

If no argument is given, leave prompts with "When do you 
have to leave?". A reply of newline causes .l.e.a...v.a to exit, 
othe rw is e the repl y is as sumed to be a time. Th is form is 
suitable for inclusion in a .login or .profile. 

Leave ignores interrupts, quits, and terminates. To get rid of 
it you should either log off or use "kill -9" giving its process 
id. 

SEE ALSO 
calendar(l) 

3-571\ 



LS(l) LS(l) 

NAME 
Is - List contents of directory 

SYNOPSIS 
Is [-ltasdrucifgmnlCqbxFRA] [Filenames] 

DESCRIPTION 
For each directory argument, ~ lists the contents of the 
directory; for each file argument, .l.a repeats its name and 
any other information requested. The output is sorted 
alphabetically by default. When no argument is given, the 
current directory is listed. When several arguments are 
given, the arguments are first sorted appropriately, but 
file arguments appear before directories and their contents. 

There are three major listing formats. The format chosen 
depends on whether the output is going to a teletype, and 
may also be controlled by option flags. The default format 
for a teletype is to list the contents of directories in 
multi-column format, with the entries sorted down the 
columns. (Files which are not the contents of a directory 
being interpreted are always sorted across the page 
rather than down the page in columns. This is because 
the individual file names may be arbitrarily long.) If the 
standard output is not a teletype, the default format is to 
list one entry per line. Finally, there is a stream 
output format in which files are listed across the page, 
separated by ".n characters. The -m flag enables this 
formatj when invoked as ~ this format is also used. 

The following options are available: 

-1 List in long format, giving mode, number of links, 
owner, size in bytes, and time of last modification for 
each file. (See below.) If the file is a special 
file, the size field contain instead the major and 
minor device numbers. 

-t Sort by time modified (latest first) instead of by 
name, as is normal. 

-a Lis t all en t r i e s ; us u all y I. ' and ' •• I are no t s u p­
. pressed. 

-s Give size in blocks, including indirect blocks, for 
each entry and total blocks. 

-d If argument is a directory, list only its name, not its 
contents .(mostly used with -1 to get status on 
directory) • 

-r Reverse the order of sort to get reverse alphabetic or 
oldest first as appropriate. 



LS(l) 

-u 

-c 

-i 

-f 

-g 

-m 

-n 

LS(l) 

Use time of last access instead of last modification 
for sorting (-t) or printing (-1). 

Use time of file creation for sorting or printing. 

Print i-number in first column of the report for each 
file listed. 

Force each argument to be interpreted as a directory 
and list the name found in each slot. This option 
turns off -1, -t, -s, and -r, and turns on -a; the 
order is the order in which entries appear in the 
directory. 

Give group ID instead of owner ID in long listing. 

Force stream output format. 

List in long format (similary to 1 option), except that 
it lists user number rather than file owner. 

-1 Force one entry per line output format, e.g., to a 
teletype. 

-C Force multi-column output, e.g., to a file or a pipe. 

-q Force printing of non-graphic characters in file names 
as the character '1'; this normally happens only if the 
output device is a teletype. 

-b Force printing of non-graphic characters to be in the 
'ddd notation in octal. 

-x Force columnar printing to be sorted across rather than 
down the page; this is the default if the last 
character of the name the program is invoked with is an 
, x ' • 

-F Cause directories to be marked with a trailing II' and 
executable files to be marked with a trailing '*'; this 
is the default if the last character of the name the 
program is invoked with is a 'fl. 

-R Recursively list subdirectories encountered. 

-A List all entries; usually'.' and ' •• ' are suppressed. 

The mode printed under the -1 option contains 11 characters 
which are interpreted as follows: the first character is 

d if the entry is a directory; 
b if the entry is a block-type special file; 
c if the entry is a character-type special file; 

3-59 



LS(l) LS(l) 

m if the entry is a multiplexor-type character special 
file: 
if the entry is a plain file. 

The next nine characters are interpreted as three sets of 
three bits each. The first set refers to owner permissions: 
the next to permissions to others in the same user-group: 
and the last to all others. Within each set the three 
characters indicate permission respectively to read, to 
write, or to execute the file as a program. For a 
directory, "execute" permission is interpreted to mean 
permission to search the directory for a specified file. 
The permissions are indicated as follows: 

r if the file is readable; 
w if the file is writable; 
x if the file is executable: 

if the indicated permission is not granted. 

The group-execute permission character is given as ~ if the 
file has set-group-ID mode; likewise, the user-execute 
permission character is given as ~ if the file has set-user­
ID mode. 

The last character of the mode (normally 'x' or '-') is "t" 
if the 1000 bit of the mode is on. See .c..hm.Q.d(l) for the 
meaning of this mode and instructions on changing the file 
mode. 

When the sizes of the files in a directory are listed, a 
total count of blocks, including indirect blocks is printed. 

FILES 

BUGS 

/etc/passwd to get user ID's for 'Is -1' 
/etc/group to get group ID's for 'ls -g' 

Newline and tab are considered printing characters in file 
names. 

The output device is assumed to be 80 columns wide. 

The option setting based on whether the output is a teletype 
is undesirable as "ls -s" is much different than "Is -
s/lpr". On the other hand, not using this setting would make 
old shell scripts which used .la. ineffective. 

3-68 



IAIL (1) XENIX Programmer's Manual MAIL (1) 

mail send and receive mail 

SYNOPSIS 
mail [ -f [ name 1. 1 [ people ••• ] 

IN'!'RODUCT ION 
Bail is a intelligent mail processing system, which has a 
command syntax reminiscent of ~ with lines replaced by mes­
sages. 

Sending mail. To send a message to one or more other peo­
ple, mail can be invoked with arguments which are the names 
of people to send to. You are then expected to type in your 
message, followed by an EOT (control-D) at the beginning of 
a line. The section below, labeled Replying ~ ~ originat­
ing mail, describes some features of mail available to help 
you compose your letter. 

Reading mail. In normal usage, mail is given no arguments 
and checks your mail out of the post office, then printing 
out a one line header of each message there. The current 
message is initially the first message (numbered 1) and can 
be printed using the print command (which can be abbreviated 
pl. You can move among the messages much as you move 
between lines in ~, with the commands '+' and '-' moving 
backwards and forwards, and simple numbers typing the 
addressed message. 

Disposing .Qf. u.i.l. After examining a message you can delete 
Cd) the message or reply (r) to it. Deletion causes the 
mail program to forget about the message. This is not 
irreversible, the message can be undeleted (u) by giving its 
number, or the mail session can be aborted by giving the 
exit (x) command. Deleted messages will, however, usually 
disappear never to be seen again. 

Specifying meseages. Commands such as print and delete 
often can be given a list of message numbers as argument to 
apply to a number of messages at once. Thus "delete 1 2" 
deletes messages 1 and 2, while "delete 1-5" deletes mes­
sages 1 through 5. The special name ,'*', addresses all 
messages, and "$" addresses the last message1 thus the 
command top which ~rints the first few lines of a message 
could be used in ' top *1' to print the first few lines of 
all messages. 

Replying tQ ~ originating mail. You can use the reply com­
mand to set up a response to a message, sending it back to 
the person who it was from. Text you then ty~e in, up to an 
end-of-file (or a line consisting only of a ' .1') defines 
the contents of the message. While you are composing a 

3-61 



MAIL (I) XENIX Programmer's Manual MAIL (I) 

message, .mail treats lines beginning wi ththe character'-' 
specially. For instance, typing "-m" (alone on a line) 
will place a copy of the current message into the response 
right shifting it by a tabstop. Other escapes will set up 
subject fields, add and delete recipients to the message and 
allow you to escape to an editor to revise the message or to 
a shell to run some commands. (These options will be given 
in the summary below.) 

Ending ~ mail srocessing session. You can end a mail ses­
sion with the quit (q) command. Messages which have been 
examined go to your mbQx file unless they have been deleted 
in which case they are discarded. Unexamined messages go 
back to the post office. The -f option causes mail to read 
in the contents of your mbQx (or the specified file) for 
processing; when you quit mail writes undeleted messages 
back to this file. 

Personal and systemwide distribution lists. It is also pos­
sible to create a personal distribution lists so that, for 
instance, you can send mail to "cohorts" and have it go to 
a group of people. Such lists can be defined by placing a 
line like 

alias cohorts bill ozalp sklower jkf mark cory:kridle 

in the file .mailrc in your home directory. The current 
list of such aliases can be displayed by the alias (a) com­
mand in mail. System wide distribution lists can be created 
by editing /usr/lib/aliases, see aliases(S} and deliyer­
mail(8); these are kept in a slightly different syntax. In 
mail you send, personal aliases will be expanded in mail 
sent to others so that they will be able to reply to the 
recipients. System wide aliases are not expanded when the 
mail is sent, but any reply returned to the machine will 
have the system wide alias expanded as all mail goes through 
deliyermail. If you edit /usr/lib/aliases, you must run the 
program newalia§es(l). 

Network .mail (AReA, ~, Berknet) Mail to sites on the 
ARPA network and sites within Bell laboratories can be sent 
using "name@si te' 'for ARPA-net sites or "machine luser' , 
for Bell labs sites, provided appropriate gateways are known 
to the system. (Be sure to escape the ! in Bell si tes when 
giving it on a ~ command line by preceding it with an \. 
Machines on an instance of the Berkeley network are 
addressed as "machine:user", e.g. "csvax:bill". When 
addressed from the arpa-net, "csvax:bill " is known as 
"csvax.bill@berkeley". 

Mail has a number of options which can be set in the .mailrc 
file to alter its behavior; thus "set askcc" enables the 

3-62 



mIL (1) XENIX Programmer's Manual MAIL (1) 

... aSkcc" feature. (These options are summarized below.) 

SUMMARY 
(Adapted from the "Mail Reference Manual') Each command is 
typed on a line by itself, and may take arguments following 
the command word. The command need not be typed in its 
entirety - the first command which matches the typed prefix 
is used. For the commands which take message lists as argu­
ments, if no message list is given, then the next message 
forward which satisfies the command's requirements is used. 
If there are no messages forward of the current message, the 
search proceeds backwards, and if there are no good messages 
at all, mail types '''No applicable messages" and aborts the 
command. 

? 

! 

alias 

chdir 

delete 

dp 

edit 

exit 

from 

Goes to the previous message and prints it out. 
If given a numeric argument n , goes to the n ~ 
previous message and prints it. 

Prints a brief summary of commands. 

Executes the UNIX shell command which follows. 

(a) With no arguments, prints out all 
currently-defined aliases. With one argument, 
prints out that alias. With more than one argu­
ment, adds the users named in the second and 
later arguments to the alias named in the first 
argument. 

(c) Changes the user's working directory to that 
specified, if given. If no directory is given, 
then changes to the user's login directory. 

(d) Takes a list of messages as argument and 
marks them all as deleted. Deleted messages 
will not be saved in mb2x , nor will they be 
av.ailable for most other commands. 

(also dt) Deletes the current message and prints 
the next message. If there is no next message, 
mail says .... at EOF." 

(e) Takes a list of messages and pOints the text 
editor at each one in turn. On return from the 
editor, the message is read back in. 

(ex or x) Effects an immediate return to the 
Shell without modifying the user's system mail­
box, his mb2x file, or his edit file in -f • 

(f) Takes a list of messages and prints their 

3-63 



MAIL (1) 

headers 

help 

hold 

mail 

next 

preserve 

print 

quit 

reply 

respond 

save 

XENIX Programmer's Manual MAIL (1) 

message headers. 

(h) Lists the current range of headers, which is 
an 18 message group. If a "+" argument is 
given, then the next 18 message group is 
printed, and if a "-" argument is given, the 
previous 18 message group is printed. 

A synonym for ? 

(ho, also preserve) Takes a message list and 
marks each message therein to be saved in the 
user's system mailbox instead of in mbQA. Does 
not override the delete command. 

(m) Takes as argument login names and distribu­
tion group names and sends mail to those people. 

(n like + or CR) Goes to the next message in 
sequence and types it. with an argument list, 
types the next matching message. 

A synonym for hold. 

(p) Takes a message list and types out each mes­
sage on the user's terminal. 

(q) Termina tes the session, saving all 
undeleted, unsaved messages in the user's mbQx 
file in his login directory, preserving all mes­
sages marked with hold or preserve or never 
referenced in his system mailbox, and removing 
all other messages from his system mailbox. If 
new mail has arrived during the session, the 
message "You have new mail" is given. If 
given while editing a mailbox file with the -f 
flag, then the edit file is rewritten. A return 
to the Shell is effected, unless the rewrite of 
edit file fails, in which case the user can 
escape with the exit command. 

(r) Takes a message list and sends mail to each 
message author just like the mail command. The 
default message must not be deleted. 

A synonym for reply • 

(s) Takes a message list and a filename and 
appends each message in turn to the end of the 
file. The filename in quotes, followed by the 
line count and character count is echoed on the 
user's terminal. 

3-64 



AIL (1) 

set 

shell 

size 

top 

type 

unalias 

undelete 

unset 

visual 

write 

xit 

XENIX Programmer's Manual MAIL (I) 

(se) With no arguments, prints all variable 
values. Otherwise, sets option. Arguments are 
of the form "option=value" or '''option.'' 

(sh) Invokes an interactive version of the 
shell. 

Takes a message list and prints out the size in 
characters of each message. 

Takes a message list and prints the top few 
lines of each. The number of lines printed is 
controlled by the variable toplines and defaults 
to five. 

(t) A synonym for print • 

Takes a list of names defined by alias commands 
and discards the remembered groups of users. 
The group names no longer have any significance. 

(u) Takes a message list and marks each one as 
nQt being deleted. 

Takes a list of option names and discards their 
remembered values; the inverse of set • 

(v) Takes a message list and invokes the display 
editor on each message. 

(w) A synonym for save • 

(x) A synonym for exit. 

Here is a summary of the tilde escapes, which are used when 
composing messages to perform special functions. Tilde 
escapes are only recognized at the beginning of lines. The 
name "t11de escape" is somewhat of a misnomer since the 
actual escape character can be set by the option escape. 

-1 command 

-c name ••• 

Execute the indicated shell command, then return 
to the message. 

Add the given names to the list of carbon copy 
recipients. 

Read the file "dead.letter" from your home 
directory into the message. 

Invoke the text editor on the message collected 
so far. After the editing session is finished, 
you may continue appending text to the message. 

3-65 



MAIL (1) XENIX Programmer's Manual MAIL (1) 

Edit the message header fields by typing each 
one in turn and allowing the user to append text 
to the end or modify the field by using the 
current terminal erase and kill characters. 

-m messages Read the named messages into the message being 
sent, shifted right one tab. If no messages are 
specified, read the current message. 

Print. out the message collected so far, prefaced 
by the message header fields. 

Abort the message being sent, copying the mes­
sage to "dead.letter" in your home directory 
if save is set. 

-r filename Read the named file into the message. 

-t name ••• 

Cause the named string to become the current 
subject field. 

Add the given names to the direct recipient 
list. 

Invoke an alternate editor (defined by the 
VISUAL option) on the message collected so far. 
Usually, the alternate editor will be a screen 
editor. After you quit the editor, you may 
resume appending text to the end of your mes­
sage. 

-w filename write the message onto the named file. 

-Icommand Pipe the message through the command as a 
filter. If the command gives no output or ter­
minates abnormally, retain the original text of 
the message. The command fmt(l) is often used 
as .command to rejustify the message. 

Insert the string of text in the message pre­
faced by a single -. If you have changed the 
escape character, then you should double that 
character in order to send it. 

Options are controlled via the set and unset commands. 
Options may be either binary, in which case it is only sig­
nificant to see whether they are set or not, or string, in 
which case the actual value is of interest. The binary 
opt~ons include the following: 

append Causes messages saved in mQQx to be appended 
to the end rather than prepended. (This is 

3-66 



AIL (I) 

ask 

askcc 

autoprint 

ignore 

metoo 

quiet 

save 

XENIX Programmer's Manual MAIL (I) 

set in /usr/lib/Mail.rc on version 7 sys­
tems.) 

Causes mail to prompt you for the subject of 
each message you send. If you respond with 
simply a newline, no subject field will be 
sent. 

Causes you to be prompted for additional car­
bon copy recipients at the end of each mes­
sage. Responding with a newline indicates 
your satisfaction with the current list. 

Causes the delete command to behave like dp -
thus, after deleting a message, the next one 
will be typed automatically. 

Causes interrupt signals from your terminal 
to be ignored and echoed as @'s. 

Usually, when a group is expanded that con­
tains the sender, the sender is removed from 
the expansion. Setting this option causes 
the sender to be included in the group. 

Suppresses the printing of the version when 
first invoked. 

Causes the message collected prior to a 
interrupt to be saved on the file 
"dead.letter" in your home directory on 
receipt of two interrupts (or after a -q.) 

The following options have string values: 

EDITOR 

SHELL 

VISUAL 

escape 

record 

Pathname of the text editor to use in the 
edit command and -e escape. If not defined, 
then a default editor is used. 

Pathname of the shell to use in the ! command 
and the -1 escape. A default shell is used 
if this option is not defined. 

Pathname of the text editor to use in the 
visual command and -v escape. 

If defined, the first character of this 
option gives the character to use in the 
place of - to denote escapes. 

If defined, gives the pathname of the file 
used to record all outgoing mail. If not 

3-67 



MAIL (1) XENIX Programmer's Manual MAIL (1) 

toplines 

defined, then outgoing mail is not so saved. 

If defined, gives the number of lines of a 
message to be printed out with the top com­
mand; normally, the first five lines are 
printed. 

FILES 
/usr/spool/mail/* 
-/mbox 
-/.mailrc 
/tmp/R# 
/usr/lib/Mail.help* 
/usr/lib/Mail.rc 
/bin/mail 
/etc/delivermail 

SEE ALSO 
binmail(l), fmt(l), 
mail (8) 
'The Mail Reference 

AUTHOR 
Kurt Shoens 

BUGS 

post office 
your old mail 
file giving initial mail commands 
temporary for editor escape 
help files 
system initialization file 
to do actual mailing 
postman 

newaliases(l), aliases(S), deliver-

Manual' 

3-68 



MAKE.BD(l) MAKE.HD(l) 

NAME 
make.hd - initialize a hard disk 

SYNOPSIS 
make.hd [ swapblocks [inodes] ] 

DESCRIPTION 
The make.hd command initializes the hard disk for use with 
Xenix. The operator is prompted for the size of the hard 
disk (l~, 2~, 3~, or 4~ megabytes), and then make.hd creates 
the layout table, builds the bad sector map, makes the 
special files, and then asks the operator to re-boot the 
system. The load.bd command can then be used to copy the 
rest of the utilities to the hard disk. 

The swapblocks option specifies the number of blocks in the 
swap area; if not specified, the default value of swapblocks 
depends on the size of the hard disk as shown below. 
Likewise, the inodes option specifies the number of i-nodes 
and if it is not specified, the default value of ioodes 
depends on the size of the hard disk as shown below: 

SEE ALSO 

hard disk size 
l~ megabytes 
2~ megabytes 
3~ megabytes 
4~ megabytes 

default 
swap blocks 

332~ 
332~ 
5l2~ 
5l2~ 

1 a you t ( 1) 1 rna P ( I), s i z e f s ( I ) 

EXAMPLE 
make.hd 3~~~ 5~00 

3-68A 

default 
i-nodes 

6~~~ 
6~~~ 

. l~~~~ 
l~~~~ 



MAKEWBA~IS(l) 

NAME 
makewhatis - descr ibe what a command is 

SYNOPSIS 
makewhatis command . . . 

DESCRIPTION 
Makewhatis makes a data base that whatis uses. Makewhatis looks 
up a given command and gives the header line from the manual 
section. You can then run the man(1) command to get more infor­
mation. If the line starts 'name(section ••• ' you can do 'man 
section name' to get the documentation for it. Try 'whatis ed' 
and then you should do 'man 1 ed' to get the manual. 

Whatis is actually just the -f option to the man(1) command. 

FILES 
/usr/lib/whatis 

SEE ALSO 
man (1) 

Data base 



M&P(1) RAP (1) 

NAME 
map - create an alternate sector map for a hard disk drive 

SYNOPSIS 
map layout mapfile drive 

DESCRIPTION 
Map creates a bad sector map, on mapfile, using the layout 
information, in layout, created by layout(l). The last 
argument is the logical device name which references the 
whole drive. 

The standard invocation is: 

map /dev/hdS.layout /dev/hdS.secmap /dev/hdS 

The structure used for the bad sector to alternate sector 
mapping is as follows: 

struct mapsec { 

} ; 

int bad_cyl; /* Cylinder number of bad sector */ 
char bad_hed; /* Head number of bad sector */ 
char bad_sec; /* Sector number of bad sector */ 
int ba~good; /* Offset into alternate sector 

area */ 

This structure provides a way for the XENIX hard disk driver 
to recover from bad sectors it encounters when reading the 
hard disk. If a bad sector is read, a search of a table of 
the above structures is made. If an exact match of 
cylinder, head and sector is found, the corresponding offset 
is used as an index into the area reserved on the disk for 
alternate sectors. 

SEE ALSO 
layout(l), sizefs(l) 

3-69 



MUL~IUSER(l) JIOL~IUSBR(l) 

NAME 
multiuser - bring the system up multiuser 

SYNOPSIS 
multiuser 

DESCRIPTION 
Multiuser prompts the user to set the current system date 
and time, and then brings the system up multiuser. 

First, multiuser displays the current system date and time 
and asks the user to confirm or change the date and then the 
time. Confirmation is done by entering Return. The format 
for entering the date i~ "yymmdd." Time is entered as a 24-
hour clock in the form "hhmm." 

SEE ALSO 
date(l) 

3-7. 



KULTIUSER(l} 

NAME 
multiuser - bring the system up multiuser 

SYNOPSIS 
multiuser 

DESCRIPTION 
Multiuser prompts the user to set the current system date 
and time, and then brings the system up in multiuser mode. 

Fi rst, multiuser displays the cur rent system da te and time 
and asks the user to confirm or change the date and then the 
time. Confirmation is done by entering Return. The format 
for entering the date is "yymmdd." Time is entered as a 24-
hour clock in the form "hhmm." 

SEE ALSO 
da te (1) 

3-79 



PAGE{l) PAGE(l) 

NAME 
page - file perusal filter for crt viewing 

SYNOPSIS 
~ [-cdflsu] [-n] [+linenumber] [+/pattern] [name •.. ] 

page more options 

DESCRIPTION 
Page is a filter which allows examination of a continuous 
text one screenful at a time on a soft-copy terminal. It 
normally pauses after each screenful, pr inting --More-- at 
the bottom of the screen. If the user then types a carriage 
return, one more line is displayed. If the user hits a 
space, another screenful is displayed. Other possibilities 
are enumerated later. 

The command line options are: 

-n An integer which is the size (in lines) of the window 
which more will use instead of the default. 

-c ~ will draw each page by beginning at the top of the 
screen and erasing each line just before it draws on 
it. This avoids scrolling the screen, making it easier 
to read while more is writing. This option will be 
ignored if the terminal does not have the ability to 
clear to the end of a line. 

-d ~ will prompt the user with the message "Hi t space 
to continue, Rubout to abort" at the end of each 
screenful. This is useful if page is being used as a 
filter in some setting, such as a class, where many 
users may be unsophisticated. 

-f This causes page to count logical, rather than screen 
lines. That is, long lines arc not folded. This 
options is recommended if nroff output is being piped 
through .u.l, since the latter may generate escape 
sequences. These escape sequences contain characters 
which would ordinarily occupy screen positions, but 
which do not print when they are sent to the terminal 
as part of an escape sequence. Thus page may think 
that lines are longer than they actually are, and fold 
1 ines erroneously. 

-1 Do not treat .... L (form feed) specially. If this option 
is not given, ~~ will pause after any line that 
contains a .... L, as if the end of a screenful had been 
reached. _~lso, if a file begins with a form feed, the 
screen will be cleared before the file is printed. 



PAGE (I) 

-s 

-u 

Squeeze multiple blank lines from the output, producing 
only one blank line. Especially helpful when viewing 
nroff output, this option maximizes the useful informa~ 
tion present on the screen. 

Normally, ~ will handle underlining such as produced 
by nroff in a manner appropriate to the particular 
terminal: if the terminal can perform underlining or 
.has a stand-out mode, page will output appropriate 
escape sequences to enable underlining or stand-out 
mode for underlined information in the source file. 
The -u option suppresses this processing. 

+linenumber 
Start up at linenumber. 

+/pattern 
Start up two lines before the line containing the 
regular expression pattern. 

The screen is cleared before each screenful is printed (but 
only if a full screenful is being printed), and k - 1 rather 
than k - 2 lines are printed in each screenful, where k is 
the number of lines the terminal can display. 

~ looks in the file /etc/termcap to determine terminal 
character istics, and to detez:mine the defaul t window siz eQ 
On a terminal capable of displaying 24 lines, the defaul 
window size is 22 lines. 

~ looks in the environment variable MORE to pre-set any 
flags desired. For example, if you prefer to view files 
using the -c mode of operation, the csh command setenv MORE 
-c or the sh command sequence MORE= l-C I i expor t MORE woul: 
cause all invocations of pag~, including invocations by 
programs such as man and IDASa, to use this mode. Normally, 
the user will place the command sequence which sets up " 
MORE environment variable in the .cshrc or .profile filee 

If page is reading from a file, rather than a pipe, then 
percentage is displayed along with the --More-- prompt. 
This gives the fraction of the file (in characters, not 
lines) that has been read so far. 

Other sequences which may be typed when page pauses, and 
their effects, are as follows (i is an optional integer 
argument, defaulting to 1): 

i<space> 
display i more lines, (or another screenful if no 
argument is given) 

..... D display 11 more lines (a "scroll"). If i is gillen~ 
then the scroll size is set to i. 

3-7~B 



PAGE (1) PAGE(l) 

d same as ~D (control-D) 

iz same as typing a space except that i, if pr esent, 
becomes the new window size. 

is skip i lines and print a screenful of lines 

if skip i screenfuls and print a screenful of lines 

q or Q 
Exit from ~. 

= Display the current line number. 

v Start up the editor Yi at the current line. 

h Help command; give a description of all the more 
commands. 

i/expr 
search for the i-th occurrence of the regular expres­
sion expr. If there are less than i occurrences of 
expr, and the input is a file (rather than a pipe), 
then the position in the file remains unchanged. 
Other~ise, a screenful is displayed, starting two lines 
bef or e the place wher e the expr es s ion W(1S found. The 
user's erase and kill characters may be used to edit 
the regular expression. Erasing back past the first 
column cancels the search command. 

in search for the i-th occurrence of the last regular 
expression entered. 

(single quote) Go to the point from which the last 
search started. If no search has been performed in the 
current file, this command goes back to the beginning 
of the file. 

!corrunand 
invoke a shell with command. The characters 1%1 and 
'I' in "command" are replaced with the current file 
name and the previous shell command respectively. If 
there is no current file name, '%1 is not expanded. 
The sequences "\%" and "\1" are replaced by "%" and "!" 
respectively. 

i:n skip to the i-th next file given in the command line 
(skips to last file if n doesn't make sense) 

i:p skip to the i-th previous file given in the command 
line. If this command is given in the middle of print­
ing out a file, then ~ goes back to the beginning of 



PAGE(l) PAGE(l} 

FILES 

the file. If i doesn't make sense, page skips back to 
the first file. If page is not reading from a file, 
the bell is rung and nothing else happens. 

:f display the current file name and line number. 

: q or : Q 
exit from ~ (same as q or Q) • 

(dot) repeat the previous command. 

The com man d s take e f f e c tim m e d i a tel y, i. e. , i t is no t 
necessary to type a carriage return. Up to the time when 
the command character itself is given, the user may hit the 
line kill character to cancel the numerical argument being 
formed. In addi tion, the user may hi t the erase character 
to redisplay the --More--(xx%) message. 

At any time when output is being sent to the terminal, the 
us e rca n hit t he qui t key ( no r m ally con t r 01- \) . P age will 
stop sending output, and will display the usual --More-­
prompt. The user may then enter one of the above commands 
in the normal manner. Unfortunately, some output is lost 
when this is done, due to the fact that any characters 
wai ting 'in the terminal's output queue are flushed when the 
quit signal occurs. 

The terminal is set to noecho mode by this program so that 
the output can be continuous. What you type will thus not 
show on your terminal, except for the / and ! commands. 

If the standard output is not a teletype, then ~~ acts 
just like ~, except that a header is printed before each 
file (if there is more than one) • 

A sample usage of page in previewing nroff output would be 

nroff -ms +2 doc.nlpage -s 

/etc/termcap 
/usr/lib/more.help 

Terminal data base 
Help file 

SEE ALSO 
csh(l) f man(l), more(l), msgs(l) 1 script(l) f sh(l), 
environ(7) 





MAP(l) I4.AP(1) 

NAME 
map - create an alternate sector map for a hard disk drive 

SYNOPSIS 
map layout mapfile drive 

DESCRIPTION 
M.~ creates a bad sector map, on mapf ile, using the layout 
information, in layout, created by layout(l}. The last 
argument is the logical device name which references the 
whole dr i vee 

The standard invocation is: 

map /dev/hd~.layout /dev/hd~.secmap /dev/hd3 

The structure used for the bad sector to alternate sector 
mapping is as follows: 

struct mapsec { 

} . . , 

int bad_cyl; 
char badJledi 
char bad_sec; 
int bad_good; 

/* Cylinder number of bad sector */ 
/* Head number of bad sector */ 
/* Sector number of bad sector .*/ 
/* Offset into alternate sector 

area */ 

This structure provides a way for the XENIX hard disk driver 
to recover from bad sectors it encounters when reading the 
hard disk. If a bad sector is read, a search of a table of 
the above structures is made. If an exact match of 
cylinder,. head and sector is found, the corresponding offset 
is used as an index into the area reserved on the disk for 
alternate sectors. 

SEE ALSO 
layout(l), sizefs(l) 

3-69 



GCOD ( IX) DCOD (ll4) 

NAME 
mkconf - generate configuration tables 

. SYNOPSIS 
mkconf 

DESCRIPTION 
Mkconf examines a machine configuration table on its stan­
dard input. Its output is a f ile s:..~, which contains a 
vectored interrupt switch, block and character device switch 
tables and declarations for system variables. 

Input to mkconf is a sequence of lines. The following 
describe devices on the machine: 

c8 (Central Data 8 line serial interface) 
lp (Line printer) 
cf (Central Data floppy controller) 
cd (Central Data cartridge disk controller) 
mf (Codata mini-floppy controller) 
mw (Codata mini-winchester controller) 
wp (IMI disk interface) 
sa (SA lBBB disk ,controller) 

The Codata console is automatically included. Also included 
automatically are several pseudo device drivers. 

The following lines are also accepted. 

root ~ minor 
The specified block device (e.g., hp) is used for the 
root. .minor is a decimal number giving the minor 
device. This line must appear exactly once. 

swap ~ minor 
The specified block device is used for swapping. If 
not given the root is used. 

pipe .d..e.2 minor 
The specified block device is used to store pipes. If 
not given the root is used. 

swplo number 

nswap numbez; 
Sets the origi~ (block number) and size of the area 
used for swapplng. By default, the not very useful 
numbers 4000 and 872. 

tim e z..o..ru; .ds..t. 
Change the default timezone to be zone. Zone may be 
the name of any timezone in the continental u.S. or the 



MXCOfiF ( IH) MKCONF(l.M) 

FILES 

number of minutes westward of Greenwich. ~ should be 
1 if the daylight savings time conversion should be 
done. 

nbufs ru;un 
The number of sys tern buf fe r s is se t to .n..um. The 
default value is taken from the parameter DNBUF in 
param.h. 

c.c output file 

SEE ALSO 
Device driver descriptions in section 4. 
Setting up XENIX, in Volume 2B. 

3-69B 



MODEI4(l) MOD EX (1) 

N.r..ME 
modem - set up tty port to be used with a modem 

unmodem - unset modem port 

SYNOPSIS 
/etc/modem /dev/ttyn 
/etc/unmodem /dev/ttyn 

DESCRIPTION 
The m~m command is used to set up /~ttyn to be used 
with a compatible modem. The modem command should be exe­
cuted for every port that has a modem attached, every time 
the system is booted. 

The modem command ensures that a dial-up tty will be logged 
out if the user simply hangs up while logged onto the sys­
tern. 

The XENIX tty device ignores the state of the RTS signal 
(Pin 4) by default. This works well with terminals, which 
may become momentarily disconnected. However, modems must 
be made aware of tbe RTS signal to maintain system security. 
The use of the modem command ensures that a particular tty 
will be logged out if the RTS signal goes inactive. 

The Ynmodem command does the opposite of the modern command, 
Le., it tells the kernel to ignore the state of the RTS 
signal. 

SEE ALSO 
disable(l) , tty(4) 

DIAGNOSTICS 
The modem(l) command will hang if run on a port that has 
already been declared a modem port. Do not run modem(l) 
tw ice for the same por t. 

EXAMPLE 
/etc/modem /dev/tty3 
fete/modem tty3 

These commands are equivalent and tell the system that a 
modern is being used on serial port 3. 

3-·59C 



MORE (1) MORE (I) 

NA11E 
more - file perusal filter for crt viewing 

SYNOPSIS 
more [-cdf1su] [-n] [+linenumber] [+/pattern] [name .•• ] 

page more options 

DESCRIPTION 
~ is a filter which allows examination of a continuous 
text one screenfu1 at a time on a soft-copy terminal. It 
normally pauses after each screenful, pr in ting --Mor e-- at 
the bottom of the screen. If the user then types a carriage 
return, one more line is displayed. If the user hits a 
space, another screenful is displayed. Other possibi1i ties 
are enumerated later. 

The command line options are: 

-n An integer which is the size (in lines) of the window 
which m~ will use instead of the default. 

-c M.~ will draw each page by beginning at the top of the 
screen and erasing each line just before it draws on 
it. This avoids scrolling the screen, making it easier 
to read while ID~ is writing. This option will be 
ignored if the terminal does not have the ability to 
clear to the end of a line. 

-d M 0 r e will pro m p t the use r wit h the m e s sag e n Hit spa c e 
to continue, Rubout to abort" at the end of each 
screenful. This is useful if ID~~ is being used as a 
filter in some setting, such as a class, where many 
users may be unsophisticated. 

-f This causes ID.Q..l:...a to count logical, rather than screen 
lines. That is, long lines are not folded. This 
options is recommended if nroft output is being piped 
through .u.l., since the latter may generate escape 
sequences. These escape sequences contain characters 
which would ordinarily occupy screen positions, but 
which do not print when they are sent to the terminal 
as part of an escape sequence. Thus m~ may think 
that lines are longer than they actually are, and fold 
lines er roneously. 

-1 Do not treat ..... L (form feed) specially. If this option 
is not given, more will pause after any line that 
contains a ..... L, as if the end of a screenful had been 
reached. Also, if a file begins with a form feed, the 
screen will be cleared before the file is printed. 

3-690 



MOR.E(l) 

-s 

-u 

MORE(l) 

Squeeze multiple blank lines from the output, producing 
only one blank line. Especially helpful when view ing 
nroff output, this option maximizes the useful- informa­
tion present on the screen. 

Normally, m~ will handle underlining such as produced 
by Droff in a manner appropriate to the particular 
terminal: if the terminal can perform underlining or 
has a stand-out mode, m~ will output appropriate 
escape sequences to enable underlining or stand-out 
mode for underlined information in the source file. 
The -u option suppresses this processing. 

+linenumber 
Start up at linenumber. 

+/pattern 
Start up two lines before the line containing the 
regular expression pattern. 

If the program is invoked as page, then the screen is 
cleared before each screenful is printed (but only if a full 
screenful is being printed), and k - 1 rather than k - 2 
lines are printed in each screenful, where k is the number 
of lines the terminal can display. 

M..Q.U looks in the file /etc/termcap.·to determine terminal 
characteristics, and to determine the default window size. 
On a terminal capable of displaying 24 lines, the default 
window size is 22 lines. 

~ looks in the environment variable MORE to pre-set any 
flags desired. For example, if you prefer to view files 
using the -c mode of operation, the csh command setenv MORE 
-c or the sh command sequence MORE='-C'i export MORE would 
cause all invocations of more, including invocations by 
programs such as man and msgs, to use this mode. Normally, 
the user will place the command sequence which sets up the 
MORE environment variable in the .cshrc or .profile file. 

If m~ is reading from a file, rather than a pipe, then a 
percentage is displayed along with the --More-- prompt. 
This gives the fraction of the file (in characters, not 
lines) that has been read so far. 

Other sequences which may be typed when m~ pauses, and 
their effects, are as follows (i is an optional integer 
argument, defaulting to 1) : 

i<space> 
display i more lines, (or another screenful if no 
argument is given) 

... D display 11 more lines (a " s c r 011 11 ) • If i i sg i v en, 
then the scroll size is set to i. 



MORE (1) 

d same as AD (control-D) 

iz same as typing a space except tha t i, if pr esent 1 

becomes the new window size. 

is skip i lines and print a screenful of lines 

if skip i screenfuls and print a screenful of lines 

q or Q 
Exit from .Ill.Q...t..a. 

= Display the current line number. 

v Start up the editor Yi at the current line. 

h Help command; give a description of all the more 
commands. 

i/expr 
search for the i-th occurrence of the regular expres­
sion expr. If there are less than i occurrences of 
expr, and the input is a file (rather than a pipe), 
then the position in the file remains unchanged. 
Otherwise, a screenful is displayed, starting two lines 
before the place where the expression was found. The 
user's erase and kill characters may be used to edit 
the regular expression. Erasing back past the first 
column cancels the search command. 

in search for the i-th occurrence of the last regular 
expr es si on enter ed. 

(single quote) Go to the point from which the last 
search started. If no search has been performed in the 
current file, this command goes back to the beginning 
of the file. 

!cornmand 
invoke a shell with command. The characters '%' and 
'II in "command" are replaced with the current file 
name and the previous shell command respectively. If 
there is no current file name, '%' is not expanded. 
The sequences "\%" and "\1" are replaced by 1'%" and "1" 
respectively. 

i:n skip to the i-th next file given in the command line 
(skips to last file if n doesn't make sense) 

i:p skip to the i-th previous file given in the command 
line. If this command is given in the middle of print~ 
ing out a file, then more goes back to the beginning of 

3-69F 



MORE (1) MORE (1) 

FILES 

the file. If i doesn't make sense, ID.Q...I.:..e.. skips back to 
the first file. If m~ is not reading from a file, 
the bell is rung and nothing else happens. 

:f display the current file name and line number. 

: q or : Q 
exit from ~ (same as q or Q) • 

(dot) repeat the previous command • . 
The com mands tak e ef fect immedia tely, i.e., it is not 
necessary to type a carriage return. Up to the time when 
the command character itself is given, the user may hit the 
line kill character to cancel the numerical argument being 
formed. In addition, the user may hit the erase character 
to redisplay the --More--(xx%) message. 

At any time when output is being sent to the terminal, the 
use rca n hit the qui t key ( nor mall y con t r 01-\) • M.Q.L..e. will 
stop sending output, and will display the usual --More-­
prompt. The user may then enter one of the above commands 
in the normal manner. Unfortunately, some output is lost 
when this is done, due to the fact that any characters 
waiting in the terminal's'output queue are flushed when the 
quit signal occurs. 

The terminal is set to noecho mode by this program so that 
the output can be continuous. What you type will thus not 
show on your terminal, except for the / and ! commands. 

If the standard output is not a teletype, then m~ acts 
just like ~, except that a header is printed before eacl) 
file (if there is more than one) • 

A sample usage of more in previewing nroff output would be 

nroff -ms +2 doc.nlmore -s 

/etc/termcap 
/usr/lib/more.help 

Terminal data base 
Help file 

SEE ALSO 
csh(l), man(l), msgs (1), script(l), sh(l), environ(7) 

3-69G 



PRINTENV(l) XENIX Programmer's Manual PRINTENV(l) 

NAME 
printenv - print out the environment 

SYNOPSIS 
printenv [ name ] 

DESCRIPTION 
Printenv prints out the values of the variables in the 
environment. If a ~ is specified, only its value is 
printed. 

If a ~ is specified and it is not defined in the environ­
ment, printeny returns exit status 1, else it returns status 
~. 

SEE ALSO 
shell, environ (5) , csh(l) 

BUGS 

3-71 



PS(I) XENIX Programmer's Manual PS(I) 

NAME 
ps - process status 

SYNOPSIS 
ps [ acgklrstuvwxi [ corefile ] [ swapfile ] [ system ] ] 

DESCRIPTION 
~ prints certain indicia about active processes. To get a 
complete printout on the console or lpr, use "ps axlgw" 
For a quick snapshot of system activity, "ps au" is recom­
mended. A minus may precede options with no effect. The 
following options may be specified. 

a aSks for information about all processes with terminals 
(ordinarily only one's own processes are displayed). 

c causes only the ~ field to be displayed instead of 
the arguments. (The comm field is the tail of the path 
name of the file the process last exec'ed.) This option 
speeds up ~ somewhat and reduces the amount of output. 
It is also more reliable since the process can't scrib­
ble on top of it. 

g Asks for all processes. Without this option, 1lli only 
prints "interesting" processes. Processes are deemed 
to be uninteresting if they are process group leaders, 
or if their arguments begin with a '_I. This normally 
eliminates shells and getty processes. 

k causes the file /~~/~ is used in place of 
/~kmem and /~~. This is used for postmortem 
system debugging. 

I asks for a long listing. The short listing contains 
the user name, process ID, tty, the cumulative execu­
tion time of the process and an approximation to the 
command line. 

r asks for "raw output". A non-human readable sequence 
of structures is output on the standard output. There 
is one structure for each process, the format is 
defined by <psout.h> 

s Print the size of the kernel stack of each process. 
This may only be used with the short listing, and is 
for use by system developers. 

tttyname 
restricts output to processes whose controlling tty is 
the·specifiedttyname (which should be specified as 
printed by~, e.g. ~ for tty3, tconsole for con­
sole,tttydQ.for ttydQ, .t.? for processes with no tty, 

3-72 



?S (1) XENIX Programmer's Manual PS (1) 

etc). This option must be the last one given. 

u A user oriented output is produced. This includes the 
name of the owner of the process, process id, nice 
value, size, resident set size, tty, cpu time used, and 
the command. 

w tells ~ you are on a wide terminal (132 columns). ~ 
normally assumes you are on an 80 column terminal. 
This information is used to decide how much of long 
commands to print. The w option may be repeated, e.g. 
ww, and the entire command, up to 128 characters, will 
be printed without regard to terminal width. 

x aSKS even about processes with no terminal. 

# A process number may be given, (indicated here by i), 
in which case the output is restricted to that process. 
This option must also be last. 

A second argument tells ~ where to "look for ~ if the k 
option is given, instead of /vrncore. A third argument is 
the name of a swap file to use instead of the default 
/dev/drum. If a fourth argument is given, it is taken to be 
the file containing the system's namelist • Otherwise, 
"/vrnunix" is used. 

The output is sorted by tty, then by process ID. 

The long listing is columnar and contains 

F Flags associated with the process. These are defined 
by idefine lines in /usr/include/sys/proc.h. 

S The state of the process. 0: nonexistent; s: sleeping; 
W: waiting; R: running; I: intermediate; Z: terminated; 
T: stopped. 

UID The user id of the process owner. 

PID The process ID of the process; as in certain cults it 
is possible to kill a process if you know its true 
name. 

PPID The process ID of the parent process. 

CPU Processor utilization for scheduling. 

PRI The priority of the process; high numbers mean low 
priority. 

NICE Used in priority computation. 

3-73 



PS{l) 

FILES 

XENIX Programmer's Manual PS (1) 

ADDR The memory address of the process if resident, other­
wise the disk address. 

SZ The size in blocks of the memory image of the process. 

WCHAN 
The event for which the process is waiting or sleeping; 
if blank, the process is running. 

TTY The controlling tty for the process. 

TIME The cumulative execution time for the process. 

COMMAND 
The command and its arguments. 

A process that has exited and has a parent, but has not yet 
been waited for by the parent is marked <defunct). E£ makes 
an educated guess as to the file name and arguments given 
when the process was created by examining memory or the swap 
area. The method is inherently somewhat unreliable and in 
any event a process is entitled to destroy this information, 
so the names cannot be counted on too much. 

/vmunix 
/dev/kmem 
/dev/drum 
/vmcore 
/dev 

system nameli st 
kernel memory 
swap device 
core file 
searched to find swap device and tty names 

SEE ALSO 

BUGS 

kill(l), well 

Things can change while ~ is running; the picture it gives 
is only a close approximation to reality. 

Processes with" large environments, which have all or part of 
the command in a block other than the top block in memory, 
are not correctly printed by ps, which only looks at the top 
block in memory. Thus, users using the TERMCAP environment 
variable will probably only have their command name shown. 

3-74 



NAME 
ranlib - convert archives to random libraries 

SYNOPSIS 
ranlib archive •.• 

DESCRIPTION 
Ranlib converts each archive to a form which the loader can 
load more rapidly. Ranlib does this by adding a table of 
contents called _.SYMDEF to t~e beginning of ,the archive. 
Ranlib uses ar(l) to reconstruct the archive, so that suffi­
cient temporary file space must be available in the file 
system which contains the current directory. 

SEE ALSO 

BUGS 

Id(l), ar(l), lorder(l) 

Because generation of a library by su:. and randomization of 
the library by ranlib are separate processes, phase errors 
are possible. The loader, l..d, warns when the modification 
date of a library is more recent than the creation date of 
its dictionary; but this means that you get the warning even 
if you only copy the library. 

3-74A 





RBSft(l) RBSB~(l) 

NAME 
reset - reset the teletype bits to a sensible state 

SYNOPSIS 
reset 

DESCRIPTION 
Reset sets the teletype bits to 'soft-copy terminal standard 
model with the erase character set to control-h and the kill 
character to '0'. Reset is most useful when you crap out in 
raw mode. 

SEE ALSO 
stty(l), stty(2), gtty(2) 

AUTHOR 

BUGS 

Kurt Shoens 

If you are in a funny state you may well have to type 
"reset" followed by linefeed (control-j if there is no such 
key. ) 

3-75 



SftllODB(l) SBftODB(l) 

NAME 
setmode - printer modes utility 

SYNOPSIS 
setmode dev modes 

DESCRIPTION 
Setmode sets tty modes (see tty(4» for tty ports which are 
used for serial printers, i.e., not logged in (see 
disable{l». The primary use of this program is to set up 
serial baud, tab expansion, and newline actions for programs 
that do output directly to a serial port. 

Setmode takes a list of tty modes from its command line, 
does an stty(l) on the indicated device, and sleeps forever. 
This has the effect of keeping the device open with the 
desired modes. Setmode should be invoked once for each 
printer device that is to be used by a program which does 
not use the print spooler, lpr(l). The lpr(l) program uses 
a different technique for setting modes on the serial ports 
it uses (see lpr(l». The /etc/rc file is a good place to 
invoke setmode since it ensures that setmode will be run 
every time the system is brought up. 

Setmode must be invoked with at least two arguments, which 
are the name of the device (special file) and at least one 
tty mode. Setmode will complain if it cannot fork, exec 
stty, or it has a s·trange tty mode handed to it. 

FILES 
/usr/bin/setmode 
/dev/lp? 

SEE ALSO 

the setmode program 
printer de.vices 

lpr(l), stty(l), disable(l), tty 

3-76 



RESET(l) RESET{.L) 

NAME 
reset - reset the teletype bits to a sensible state 

SYNOPSIS 
reset 

DESCRIPTION 
Reset sets the teletype bits to 'soft-copy terminal standard 
mode' with the erase character set to control-h and the kill 
character to '0'. Reset is most useful when you bomb out in 
raw mode. 

SEE ALSO 

BUGS 

stty(l), stty(2), gtty(2) 

If you are in a funny state you may well have to type 
"reset" followed by linefeed (control-j if there is no sur' 
key) • 

3-75 



RESTORB. an ( 1 ) RES'.OORE. BD ( 1) 

NAME 
restore.hd - restore a hard disk from tape 

SYNOPSIS 
restore.hd [ swapblocks [inodes] ] 

DESCRIPTION 
The testore.hdcommand restores the entire file system from 
cartridge tape to the hard disk. ~estore,hd must be run 
from the Xenix boot diskette. That is, boot the system from 
the Xenix Root System diskette and enter restore,hd. 

Caution: RestQre.hd Qyerlirites ALL· data Qn ~ bard disk 
.a..rui teplaces i..t Nl.t.h .t.ru; files fi.Q.m .t..b.a cartridge tape. 

The swapblQcks option specifies the number of blocks in the 
swap area; if not specified, the default value of swapblocks 
depends on the size of the hard disk as shown below. Like­
wise, the ioodes options specifies the number of i-nodes and 
if it is not specified, the default value of inQdes depends 
on the size of the hard disk as shown below: 

SEE ALSO 

hard disk size 
10 megabytes 
20 megabytes 
30 megabytes 
40 megabytes 

default 
swap blocks 

3320 
3320 
5120 
5120 

1ayout(1) , map(l) 1 sizefs(l) 

EXAMPLE 
restore.hd 3500 9100 

default 
i-nodes 

6000 
6000 

10000 
10000 



SDDATE(l.M) SDDATE ( 1M) 

NAME 
sddate - print and set dump dates 

SYNOPSIS 
sddate [ name lev date J 

DESCRIPTION 
If no argument is given, the contents of the dump date file 
'/etc/ddate ' are printed. The dump date file is maintained 
by .d.um12(lm), and contains the date of the most recent dump 
for each dump level for each filesystem. 

If arguments are given, an entry is replaced or made in 
'/etc/ddate ' • nam~ is the last component of the device 
pa thname. .l.e.Y is the dump level numbe r (f rom 0 to 9), and 
~ is a time in the for taken by date(l) • . 
Some sites may wish to backup filesystems by copying them 
verbatim to dismountable packs. Sddate could be used to 
make a 'level 0' entry in '/etc/ddate', which would then 
allow incremental mag tape dumps. 

For example:. 

sddate rrp3 5 10081520 

makes an '/etc/ddate ' entry showing a level 5 dump of 
'/dev/rrp3 1 on October 8, at 3:20 PM. 

FILES 
/etc/ddate 

SEE ALSO 
dump(lm), date(l) 

DIAGNOSTICS 
'bad conversion' if the date set is syntactically incorrec 

3-75B 



SE'mODE(l) SET:~ODE (I) 

NA11E 
setmode - printer modes utility 

SYNOPSIS 
setmode dev modes 

DESCRIPTION 
Setmode sets tty modes (see tty(4) for tty ports which are 
used for serial printers, i.e., not logged in (see 
disable(l». The primary use of this program is to set up 
serial baud, tab expansion, and newline actions for programs 
that do output directly to a serial port. 

Setmode takes a list of tty modes from its command line, 
does an stty(l) on the indicated device, and sleeps forever. 
This has the effect of keeping the device open with the 
desired modes. Setmode should be invoked once for each 
printer device that is to be used by a program which does 
not use the print spooler, lpr(l). The lpr(l) program uses 
a different technique for setting modes on the serial ports 
it uses (see lpr{l»). The /etc/rc file is a good place to 
invoke setmode since it ensures that setmode will be run 
every time the system is brought up. 

Setmode must be invoked with at least two arguments, which 
are the name of the device (special file) and at least one 
tty mode. Setmode will complain if it cannot fork, exec 
stty, or it has a strange tty mode t.landed to it. 

FILES 
/usr/bin/setmode 
/ dev/lp? 

SEE ALSO 

the setmode program 
printer devices 

lpr (1), stty(l) , disable{l), tty 

..., -­~- _ 1,'" 



SXIBPS(l) SXIBPS(l) 

NAME 
sizefs - determine the size of a logical device from the 
layout information associated with a hard disk. 

SYNOPSIS 
sizefs layout-file logical-device-number 

DESCRIPTION 
Sizefs prints on the standard output the size in blocks of 
the specified area on the disk. It gets its information out 
of the structure created by layout(l). Its most common use 
is in shell scripts for creating a file system on the hard 
disk, where its output is used as an argument to mkfs(l). 

SEE ALSO 
layout(l), map(l), mkfs(l) 

3-77 



TAR(I) 'lAR(I) 

NAME 
tar - tape or floppy archiver 

SYNOPSIS 
tar -[txru] [cvfbslm] [tapefile] [blocksize] [tapesize] filel 

file2 

DESCRIPTION 
~ saves and restores files on magnetic tape, floppy 
diskette, or add-on hard disk. Its actions are controlled 
by the ~ argument. The ~ is a string of characters 
containing at most one function letter and followed by 
possibly one or more function modifiers. Other arguments to 
the command are file or directory names specifying which 
files are to be dumped or restored. In all cases, 
appearance of a directory name refers to the files and 
(recursively) subdirectories of that directory. 

Note that XENIX contains a new version of tar, which permits 
a file to extend across media boundaries. For compatability 
considerations with the previous version of tar, refer to 
the BUGS chapter below. 

The function portion of the key is specified by one of the 
following letters: 

r The named files are written on the end of the tape. 
The c fUnction implies this. 

x The named files are extracted from the tape. If the 
named file matches a directory whose contents had been 
written onto the tape, this directory is (recursively) 
extracted. The owner and mode are restored (if 
possible). If no file argument is given, the entire 
content of the tape or floppy is extracted. Note that 
if multiple entries specifying the same file are on the 
tape, the last version will overwrite all preceeding 
versions. 

t The names of the specified files are listed each time 
they occur on the tape. If no file argument is given, 
all of the names on the tape are listed. 

u The named files are added to the tape if either they 
are not already there or have been modified since last 
put on the tape. 

c Create a new tape; writing begins on the beginning of 
the tape instead of after the last file. This command 
implies r. When this command is used all previous data 
is erased. 

3-78 



TAR(l) DR(l) 

FILES 

The following characters may be used in addition to the 
letter which selects the function desired. 

v Normally ~ does its work silently. The v (verbose) 
option causes it to type the name of each file it 
treats preceded by the function letter. With the t 
function, v gives more information about the tape 
entries than just the name and path. 

w Causes ~ to print the action to be taken followed by 
file name, then wait for user confirmation. If a word 
or the letter beginning with 'y' is given, the action 
is performed. Any other input means don't do it. 

f Causes .taL to use the next argument as the name of the 
archive instead of /dev/tar. If the name of the file 
is I_I, tar writes to standard output or reads from 
standard input, whichever is appropriate. Thus, ~ 
can also be used to move hierarchies with the command 

cd fromdir; tar cf - • I (cd todir; tar xf -) 

This option must be used with magnetic tapes and add-on 
hard disk. Default is to floppy diskette. 

b Causes ~ to use the next argument as the blocking 
factor for tape records. The default is 1, the maximum 
is 8. This option should only be used with raw 
magnetic tape archives (see f above). Altos requires a 
blocking factor of 8 when using the cartridge tape. 

I Tells ~ to notify you if it cannot resolve all the 
links to the files dumped. If this is not specified, 
no error messages are printed. 

s Obsolete. No longer supported. (Formerly size 
parameter, used when files did not cross diskette boun­
daries. ) 

/dev/tar 
/tmp/tar* 

default input/output device 

DIAGNOSTICS 
Complains about bad key characters and tape read/write 
errors. 
Complains if not enough memory is available to hold the link 
tables. 
Tar will tell you to change volumes when the current volume 
(floppy or tape) becomes full. It expects you to type one 
or more characters beginning with "y" and then press the 
Return key. 

3-79 



BIl(I) DR(I) 

BUGS 
This version of ~ can read old style tar disks, and the 
old tar program can read new style tar disks, as long as 
they do not extend over multiple floppies. 
Note that the old version of tar cannot be used to read 
mUltiple volume archives created by the new version of tar. 
There is no way to ask for the n-th occurrence of a file. 
Tape errors are handled ungracefully. 
The u option can be slow. 

The b opti on should not be used with archives that are going 
to be updated. If the archive is on a disk file, the b 
option should not be used at all, as updating an archive 
stored in this manner can destroy it. 

EXAMPLES 
To dump the directory /usr/john to diskette(s), enter the 
command 

tar cv /uar/john (OR> 

To restore the files under /usr/john, check that there is a 
directory entry for /usr/john. Use the mkdir command to 
create one, if necessary. 

Load the first diskette, and enter 

cd./uar/jobn (CR> 
tar xv (OR> 

For more information, see the tutorials in the Introduction. 
to XERIX Manual. 

3-8' 



TRANSP(l) 'l"RAllSP ( 1) 

NAME 
transp - set up transparent printer 

SYNOPSIS 
/etc/transp /dev/ttyn /dev/lpm 

DESCRIPTION 
The trans12 command is used to set up the proper device files 
for serial printers hooked to the back of an Altos II termi­
nal. The /~~ argument specifies which tty device (n) 
has the daisy-chained printer attached to its auxiliary 
port. This terminal must be an Altos II terminal. The 
/~1Dm argument specifies the name of the printer device 
(e.g., /dev/lp2). If the specified printer is /dev/lp, then 
this will be the default printer in the system. 

The transp command creates a link between a tty port and a 
printer port. Once this link is established, it is not 
necessary to perform this command again unless the printer 
is moved. Output destined for a printer hooked to the back 
of an Altos II switches the terminal into transparent mode, 
and the terminal becomes inoperative while the printer is 
working. When printing stops (i.e., the user program closes 
the print device), the terminal becomes active again. 

SEE ALSO 
mkn od ( I), tty ( 4 ) 

EXAMPLE 
transp /dev/tty6 /dev/lp 

This command sets up serial port 6, which has an Altos II 
terminal attached, to also be the default printer port in 
the system. 

transp /dev/tty5 /dev/lp2 
transp tty5 Ip2 
transp 5 2 

All these commands are equivalent. They set up serial port 
5 to also be line printer 2 in the system. 





OA(lK) OA(II1) 

NAME 
ua -- user administration 

SYNOPSIS 
.ua [ -h ] 

DESCRIPTION 
ua is used for the addition, deletion and modification of 
users and groups. It provides an effective means for 
maintaining the system password (/etc/passwd) and system 
group (/etc/group) files. 

The command is implemented using the ~m~ and curses 
facilities from UC Berkeley. It must be run interactively 
from a terminal which is defined within /etc/termcap. 

This command should only be run by Super User -- improper 
results may occur if it is run by a normal user. 

The following option is interpreted by .ua: 

-h Displays the program's current version and copyright 
notice as well as a short description of the program's 
functions. 

ua displays its legal commands at the top of the screen. 
The "Command?" prompt at the bottom of the screen indicates 
that .ua is awaiting input. The command language syntax is: 

[ addldeletelshowlchange ] [ user <name> I group <name> ] 

show [ Users I Groups ] 

[ help I ? 

! [ <shell command(s}> ] 

quit 

The system responds as soon as the first letter of a command 
is typed. Full command words are not acceptable as input. 
The case of each word is significant: "group" is not the 
same as "Group." 

Typing an interrupt (usually RUBOUT or DEL) will cause YA to 
immediately return to the top-level command interpreter. 

~ allows the addition of a new user or group. After 
user/group is specified and a new name provided, the system 
immediately enters the change command so as to allow 
modification of the new entry. At the conclusion of the 
change command the addition is made. If a directory already 
exists for a new user, it is not removed. All files under 

3-81 



OA(lJl) OA(lJl) 

/etc/newuser are copied to the new directory during the user 
installation process. Typically /etc/newuser will contain 
the standard versions of the following files: .cshrc, 
.login, .logout, .profile. The initial value given to a new 
user ID is one more than the maximum user ID currently in 
use. The same is true for a new group ID. 

Delete allows the deletion of 'an existing user or group. 
Deleting a user optionally also deletes his directory and 
all files contained within it. Deleting a user will not 
cause .s.l.l files throughout the system owned by the user to 
be deleted -- only those beneath his directory. Thus, some 
files may have an "unknown" owner after a user is deleted. 
And, if a user is later added with the same user ID as the 
deleted user, these files will suddenly belong to the new 
user. The same problem may arise with the deletion and 
later addition of a group • 

.s..h211 will show an individual user or group or all users or 
groups. The word nshown may be omitted if desired. 

Change allows the modification of any existing user or 
group. A special display mode is entered with a menu of 
fields for selection of the item to be modified. Typing 
RETURN or LINE FEED in response to a field change request 
will empty the field. Changes to a user or group change the 
corresponding entries in the /etc/passwd and /etc/group 
files. Changing a user's directory entry will ~ cause a 
renaming of the actua~ directory. It is the user's re­
sponsibility to ensure that the /etc/passwd and /etc/group 
files remain consistent. 

Help displays a short informative text on the screen. "?" 
is equivalent to help. The message is the same one as ob­
tained by invoking Ya with the "-h" option. 

! escapes to the shell (see sh(l». If no arguments are 
given, a shell is invoked which will continue until it 
receives an end-of-file. Then ya resumes. If arguments are 
present, a shell is invoked with the "-c" option and the ar­
guments are passed along. lla resumes immediately there­
after. If csh(l) is desired rather than sh(l), the command 
lcsh should be used. 

Qyit immediately terminates ~ and returns to the system. 

Any command which is not understood by ~A causes an 
appropriate message to be displayed. As a side-effect, the 
working portion of the screen is cleared. 

Us does not distinguish between RETURN and LINE FEED. They 
may be used interchangably. 

If the screen becomes "dirty· for some reason, you can force 
~A to clear it and redisplay the current contents by 

3-82 



UA(a) OA(a) 

FILES 

transmitting an ASCII "OC2." This is Control-r on most of 
the currently popular terminals. 

UA understands the Backspace function (as obtained from 
/etc/termcap). In addition, any time a word is partially 
formed, the ESCape key will cause the partial word to be 
discarded and input restarted. 

llg interprets the CANcel key to mean "terminate the current 
operation." The CANcel key is Control-x on many of the more 
popular terminals. The CANcel key is more powerful than 
ESCape, but not so powerful as "interrupt." 

US will immediately return to the top-level command inter­
preter upon receipt of an interrupt signal. Such a signal 
is usually generated via the DEL, RUBOUT or BREAK key. 

ua creates a special user named "standard" in /etc/passwd if 
one is not already present. This entry is used as the 
template for installing new users. Thus, if it is desired 
to have all new users defaulted to the standard UNIX shell 
(/bin/sh) for the Shell field, it is only necessary to 
update the Shell field in the "standard" user. 

Before adding a new user with a new group, the new group 
should be added. Otherwise, YA has no way to properly 
create the new entry in /etc/passwd since it contains group 
numbers rather than group names. 

During program initialization YA copies /etc/passwd and 
/etc/group to /etc/opasswd and /etc/ogroup, respectively. 
Thus, if a mistake or disaster occurs during the use of this 
program, the user may recover the prior state of either or 
both files. 

/etc/passwd 
/etc/group 
/etc/opasswd 

/etc/ogroup 

/etc/newuser 

/etc/termcap 
/tmp/passwd 
/tmp/group 
/etc/ua.lock 

used for login name to user IO conversions 
used for group name to group ID conversions 
this file is a copy of /etc/passwd before any 
modifications are made 
this file is a copy of /etc/group before any 
modifications are made 
directory containing files which will be in­
stalled in a new user's account 
contains terminal attribute descriptions 
temporary file 
temporary file 
lock file 

SEE ALSO 
group(5), passwd(5) 

3-83 



UA(lll) UA(lll) 

DIAGNOSTICS 

BUGS 

The diagnostics produced by YA are intended to be self­
explanatory. 

ua should allow specification of alternate passwd and group 
files. 

Complete consistency checking between the /etc/passwd and 
/etc/group files is not done. In particular, it is possible 
to install a use r with an unknown group in the passwd file 
and it is possible to install a group with an unknown user 
in the group file. The shells and directories specified in 
the / etc/passwd file are not checked for existence or 
accessibility. 

us does not check for duplicated user IDs or duplicated 
group IDs. 

Impossible user IDs and group IDs are permitted. 

Impossible or non-existent names may be specified for a 
user's Directory and Shell fields. 

The System 3 commands pwck(IM) and grpck(lm) should be in­
corporated into ya. 

ltO:rB: 

DO NOT USB JlA If'O SBIJI A USBR'S PASSWORD. The 
password would be incorrectly encryptedr and 
the user would NOT be able to log in success­
fully. Passwords may only be set with the 
passyd command, explained in PASSWD(l). The 
password field displayed by ~ is the 
encrypted version contained in /etc/passwd. 

3-84 



rI (1) XENIX Programmer's Manual VI(l) 

~AME 
vi - screen oriented (visual) display editor based on ex 

;YNOPSIS 
vi [ -t tag] -r] [ +lineno ] name ••• 

DESCRIPTION 

FILES 

Yl (vlsual) is a display oriented text editor based on 
~(l). ~ and ~ run the same code; it is possible to get 
to the command mode of ~ from within ~ and vice-versa. 

The Yi Ouick Reference card and the Introduction ~ Display 
Editing ~ Yi provide full details on using 21. 

See ..ez.(l). 

SEE ALSO 

BUGS 

ex (1), vi (1); "Vi Quick Reference' I card, "An Introduc­
tion to Display Editing with Vi' '. 

Scans with / and? begin on the next line, skipping the 
remainder of the current line. 

Software tabs using AT work only immediately after the 
autoindent. 

Left and right shifts on intelligent terminals don't make 
use of insert and delete character operations in the termi­
nal. 

The wrapmargin option can be fooled since it looks at output 
columns when blanks are typed. If a long word passes 
through the margin and onto the next line without a break, 
then the line won't be broken. 

Insert/delete within a line can be slow if tabs are present 
on intelligent terminals, since the terminals need help in 
dOing this correctly. 

Occasionally inverse video scrolls up into the file from a 
diagnostic on the last line. 

Saving text on deletes in the named buffers is somewhat 
inefficient. 

The source command does not work when executed as :source; 
there is no way to use the :append, :change, and :insert 
commands, since it is not possible to give more than one 
line of input to a : escape. To use these on a :global you 
must Q to ~ command mode, execute them, and then reenter 

3-85 



VI(l) XENIX Programmer's Manual VI(l} 

the screen editor with ~ or ~. 

3-86 



LOCKIBG(2) LOCKDG(2) 

NAME 
locking - lock or unlock a record of a file 

SYNOPSIS 
locking(fildes, ltype, nbytes), int fildes, ltype, nbytes, 

DESCRIPTION 
locking performs a locking action Itype on a record of the 
open file specified by fildes. The record starts at the 
current file position and has a length of nbytes. If the 
value of nbytes is a, the entire file is locked. Nbytes may 
extend beyond the end of the file, in which case only the 
process issuing the lock call may access or add information 
to the file within the boundary defined by nbytes. Thus, 
lock defines a range in the file controlled by the locking 
process, and this control may extend to records that have 
yet to be added to the end of the file. The available 
values for Itype are: 

UNLOCK a 

LOCK 1 

NBLOCK 2 

RLOCK 3 

NBRLOCK 4 

Unlock the record. 

Lock the given record, the calling process 
will sleep if any part of the record has been 
locked by a different process. 

Lock the given record, if any part of the 
record is already locked by a different 
process, return the error EACCESS. 

Same as LOCK except that reading is allowed 
by other processes. 

Same as NBLOCK except that reading of the 
record is allowed by other processes. 

Any process that attempts a read or write on a locked record 
will sleep until the record is unlocked. If the record is 
locked with an RLOCK then reading is permissible. When a 
process terminates, all locked records are unlocked. 

SEE ALSO 
read (2), write (2), open (2) 

DIAGNOSTICS 
If an error occurs, -1 is returned. The error code EACCESS 
is returned if any portion of the record has been locked by 
another process for the LOCK & RLOCK actions. The error 
code EDEADLOCK is returned if locking the record would cause 
a deadlock. This error code is also returned if there are 
no more free internal locks. 

3-87 



LOCUBG(2) LOCIIM:(2) 

FILES 
/usr/include/user.h contains definitions for EACCESS and 
EDEADLOCK. 

/usr/include/sys/locking.h contains definitions for UNLOCK, 
LOCK, NBLOCK, RLOCK, NBRLOCK. 

3-88 



RDCB(2) BDCIIK(2) 

NAME 
rdchk - check if there is data to be read 

SYNOPSIS 
rdchk(fdes), 
int fdes, 

DESCRIPTION 
Rdchk checks to see if a process will block if it attempts 
to read the file designated by fdes. Rdchk returns 1 if 
there is data to be read or if it is the end of the file 
(EOF) •. In this context, the proper sequence of calls using 
rdchk is: 

if (rdchk(fildes) > I) read(fildes, buffer, nbytes), 

SEE ALSO 
read(2) 

DIAGNOSTICS 
Rdchk returns -1 if an error occurs (e.g., EBADF), S if the 
process will block if it issues a read and 1 if it is okay 
to read. EBADF is returned if a rdchk is done on a 
semaphore file or if the fil.e specified doesn't exist. 

3-89 



CURSES (3) XENIX Programmer's Manual CURSES (3) 

NAME 
curses - screen functions with "optimal" cursor motion 

SYNOPSIS 
~ [ flags 1 files -lcurses -ltermlib [ libraries ] 

DESCRIPTION 
These routines give the user a method of updating screens 
with reasonable optimization. They keep an image of the 
current screen, and the user sets up an image of a new one. 
Then the refresh () tells the routines to make the current 
screen look like the new one. In order to initialize the 
routines, the routine initscr () must be called befor e any of 
the other routines that deal with windows and screens are 
used. 

SEE ALSO 
Screen Updating ~ Cursor Moyement Optimizgtion: A Library 
Packgge, Ken Arnold, 
termcap (5), stty (2), setenv (3), setenv (3), 

AUTHOR 
Ken Arnold 

FUNCTIONS 
addch(ch) add a character to stdscr 
addstr(str) add a string to stdscr 
box{win,vert,hor) draw a box around a window 
crmode() set cbreak mode 
clear() clear stdscr 
clearok(scr,boolf) set clear flag for ~ 
clrtobot() clear to bottom on stdscr 
clrtoeol() clear to end of line on stdscr 
delwin(win) delete ~ 
echo () set echo mode 
eraser) erase stdscr 
getch() get a char through stdscr 
getstr(str) get a string through stdscr 
gettmode () get tty modes 
getyx(win,y,x) get (y,x) co-ordinates 
inch() get char at current (y,x) co-ordinates 
initscr{) initialize screens 
leaveok(win,boolf) set leave flag for ~ 
longname(termbuf,name) get long name from termbuf 
move(y,x) move to (y,x) on stdscr 
mvcur(lasty,lastx,newy,newx) actually move cursor 
newwin(lines,cols,begin-y,begin_x) create a new window 
nl () set newline mapping 
nocrmode() unset cbreak mode 
noecho () unset echo mode 
nonl () unset newline mapping 
noraw () unset raw mode 

3-9. 



:URSES (j) XENIX Programmer's Manual CURSES(3} 

overlay (winl,win2) overlay winl on win2 
overwrite (winl,win2) overwrite winl on top of win2 
printw(fmt,argl,arg2, ••• ) printf on stdscr 
raw () set raw mode 
refresh() make current screen look like stdscr 
restty() reset tty flags to stored value 
savetty() stored current tty flags 
scanw(fmt,argl,arg2, ••• ) scanf through stdscr 
scroll (win) scroll ~ one line 
scrollok(win,boolf) set scroll flag 
setterm(name) set term variables for name 
unctrl(ch) printable version of ~ 
waddch(win,ch) add char to ~ 
waddstr(win,str) add string to ~ 
wclear(win) clear ~ 
wclrtobot(win) clear to bottom of ~ 
wclrtoeol(win} clear to end of line on ~ 
werase{win) erase ~ 
wgetch(win) get a char through ~ 
wgetstr(win,str) get a string through ~ 
winch (win) get char at current (y,x) in ~ 
wmove(win,y,x) set current (y,x) co-ordinates on ~ 
wprintw(win,fmt,argl,arg2, ••• ) printf on ~ 
wrefresh(win) make screen look like ~ 
wscanw{win,fmt,argl,arg2, ••• ) scanf through ~ 

3-91 



MBBUS(5) MEJlUS(5) 

MENUS 
menus format of a Business Shell menu system 

DESCRIPTION 
A menu system is a collection of menus which has been 
processed (digested) by digest (1M). The Business Shell, 
bsh(l), requires a menu system upon which to operate: it 
contains all the menus which are normally displayed to 
accomplish some set of functions. As distributed, the 
Business Shell includes the default menu system 
(/usr/lib/menusys and /etc/menusys.bin). 

A menu source file may contain one or more individual menus. 
However, in the interest of maintainability, it is 
recommended that each menu source file contain only a single 
menu, or only very closely related menus. It is also 
recommended that the name of the menu source file and the 
menuidentifier be the same. 

A source menu system may be a single menu file (containing 
one or more menus) or a directory structure containing menu 
files and subordinate directories. 

Each menu file is an ASCII file consisting of two logical 
parts: the ~ and the actions. A (digested) menu system 
contains an additional part, the index. The index appears 
prior to the body. It specifies the byte-offset locations 
of each of the body and action chapters as well as the 
associated menuidentifiers. Users should never attempt to 
construct an index by hand -- that is the function of 
digest(IM). Moreover, users should never attempt to edit a 
digested menu system; rather, the source menu files should 
be edited and then the menu system recreated using 
digest(IM} • 

The precise format of a menu source file is described below: 

&Menuidentifier 
The sUbstance of the menu represented 
essentially as it is to be displayed. 
Within this area there usually will be 
one or more occurrences of: 

-prompt strings 

as well as other special commands as 
described below. 

&Actions 
Zero or more occurrences of: 

-prompt size 
The sequence of actions to be taken 

3-92 



IIBJIDS(5) 

for this prompt. These are bsh(l} 
commands and/or sh(l) commands. 

IIBJIUS(5) 

An example menu for Electronic Mail Services is: 

&Mail 

1date \ELECTRONIC-MAIL-SERVICES 

-a - Receive-mail 
-b - Send-mail 
-c - Return-to-starting-menu 

&Actions 
-a Ii) 

mail 

-b -1 
echo -n "To whom do you wish to send mail?" 

I read x 
I echo "Now type the message." 
I echo "Terminate it by typing a control -d." 
I mail $x 
I-c 
I Start 1 ________________________________________________ __ 

&Henuidentifier must appear beginning in column one. 
Menuidentifier is any string having relevance to the 
user. A short descriptive string is usually best. The 
string may not contain any blanks or punctuation and it 
must begin with a capital letter. If the string ends 
with a ques tion mark ("?"), the menu is called a "help 
menu." It will be invoked automatically when bsh is 
displaying the base menu and the user types a"?" 
command. Thus, the &Admin? menu is invoked when &Admin 
is the current menu and "?" is typed. The remainder of 
the &Menuidentifier line should be empty. 

The body of each menu is composed of text which w ill be 
reproduced on the screen exactly as it appears (with 
exceptions as described below). 

-~m~ may occur one or more times within the body. 
This indicates a prompt for which there will be an 
associated action within the &Actions portion of the 
menu. Usually there will be a short phrase or sentence 
describing the action just to the right of the 
-prompt. A prompt may be any letter, numeral or string 
of characters not containing punctuation. Usually 
shorter (1-2 character) prompts are preferred. A 
prompt must be separated from its surroundings by one 

3-93 



MDUS(5) MDUS(S) 

or more spaces or tabs. If a menu name and a prompt 
both have the same spelling, the prompt is given 
preference in all cases. 

!~ inserts the current date and time, left-justified 
on the "!." The date/time format is "Wed Jul 13 17:10 
1983." !date may appear more than once if desired. 

!user inserts the current user id, left-justi£ied on 
the "!." !user may appear more than once if desired. 

!lllUl inserts the current directory, 
the "!." The full path name is 
/usr/jones/admin/currwork. !pwd may 
once if desired. 

left-j ustif ied on 
displayed, e.g. 
appear more than 

!@ indicates where the cursor is to be placed on the 
screen. Usually this should be just slightly to the 
right of the current prompt. If!@ is omitted, the 
cursor will be placed at the bottom left corner of the 
screen. At most, one occurrence of !@ should appear in 
each menu. 

Wi th the exception of !@, the "!" may appear as a 
suffix in which case the string will be right-justified 
instead of left-justified. 

The "!" is an "escape character," and may not be used 
for any other purpose within a menu. 

\string denotes a string which is to be "highlighted" 
using the terminal's highlighting capabilities (usually 
reverse video). The "\" character must be on the left 
of the string. It is converted into the appropriate 
highlighting information during display. The string 
may be of any length up to the width of the display 
screen. 

'string denotes a string which is to be "underlined" 
using the terminal's underlining capabilities (usually 
true underline). The "'" character must be on the left 
of the string. It is converted into the appropriate 
underlining information during display. The string may 
be of any length up to the width of the display screen. 

The backslash "\" and backquote "'" as the initial 
letter of a string are "escape characters" and will 
always have the interpretations given above. 

In order to create a highlighted or underlined string 
containing spaces, "significant spaces" may be 
represented as tildes (n-,,) within a string. Thus, 
\-hi-there- will create a highlighted ten-character 
string. 

3-94 



JlBllUS(5) IIBIIOS(5) 

The tilde "-" is an "escape character," and may not be 
used for any other purpose within a menu. 

Each of the special escape sequences described above 
must be separated from surrounding text by one or more 
spaces or tabs. 

It is important to know the number of lines and columns 
of the terminal(s) to be used with a menu system and to 
be certain not to create menus longer or wider than 
these values. Their values are specified within the 
termcap(5) file for each terminal upon which the 
Business Shell may be run. 

Actions 

&Actions must appear beginning in column one. &Actions 
must appear, even if there are no actions. 

Each prompt in the actions chapter must be reproduced 
exactly as it appears in the body of the menu. It is 
the user's responsibility to ensure that the spelling 
of prompts in the ~ and actions chapters match. The 
case of characters is significant; so "A" is not the 
same as "a." 

Size is optional. It specifies the length of the 
window to be used during execution of the actions. If 
omitted, the default value is 5, and a window 5 rows by 
column columns will be reserved at the bottom of the 
screen for output. CQlumn is the terminal column width 
as obtained from termcap(5). A ~ of 0 will reserve 
the entire screen. In this case, the screen is blanked 
prior to execution of the actions; and a prompt 
requesting a return or line feed is issued after 
execution. A negative size will reserve the entire 
screen similarly to the zerp case, but after execution, 
the Business Shell is immediately resumed without 
waiting for a return or line feed. It is the user's 
responsibility to ensure that the action window is 
large enough. 

The actions may be composed of bsh(l) commands or 
commands which are executed by the standard shell, 
shell. The actions should all be indented one tab stop 
from the left side of the file. 

A bsh(l) command is the instruction to transfer 
immediately to a particular menu. This is specified by 
writing the name of the destination menu in the 
semantics field. Bsh(l) commands must be typed one­
per-line. 

Shell commands follow the usual rules as described in 
Volume 1 of th~ Progra •• er's Reference Kanual. 

3-95 



KBBUS(S) KBBOS(S) 

Since a menu file may contain one or more menus or 
directories containing menus, the recommended way to create 
a menu system is to create a tree of directories containing 
the various portions of the system. Each subtree contains 
all the menus related to a given subject. Thus, a primary 
menu (directory) is created for, say, system management 
functions: and subsidiary menus are placed beneath (within) 
the directory for each of the individual system management 
functions or function areas. Help menus may be placed 
wherever appropriate in the structure. 

FILES 
/usr/lib/menusys 
/etc/menusys.bin 

SEE ALSO 

source directory for /etc/menusys.bin 
digested default menu system for bsh(l) 

bsh(l), digest (1M), shell, termcap(5) 

3-96 



~ERMCAP (5) XENIX Programmer's Manual TERMCAP(5) 

\lAME 
termcap - terminal capability data base 

3YNOPSIS 
/etc/termcap 

DESCRIPTION 
Termcap is a data base describing terminals, used, ~.S., by 
~(l) and curses(3). Terminals are described in termcap by 
giving a set of capabilities which they have, and by 
describing how operations are performed. Padding require­
ments and initialization sequences are included in termcap. 

Entries in termcap consist of a number of ':' separated 
fields. The first entry for each terminal gives the names 
which are known for the terminal, separated by 'I' charac­
ters. The first name is always 2 characters long and is 
used by older version 6 systems which store the terminal 
type in a 16 bit word in a systemwide data base. The second 
name given is the most common abbreviation for the terminal, 
and the last name given should be a long name fully identi­
fying the terminal. The second name should contain no 
blanks; the last name may well contain blanks for readabil­
ity. 

CAPABILITIES 
(P) indicates padding may be specified 
(P*) indicates that padding may be based on no. lines affected 

Name 
ae 
al 
am 
as 
bc 
bs 
bt 
bw 
CC 
cd 
ce 
ch 
cl 
cm 
co 
cr 
cs 
cv 
da 
dB 
db 
dC 

Type 
str 
str 
bool 
str 
str 
bool 
str 
bool 
str 
str 
str 
str 
str 
str 
num 
str 
str 
str 
bool 
num 
bool 
num 

Pad? 
(P) 
(P*) 

(P) 

(P) 

(P*) 
(P) 
(P) 
(P*) 
(P) 

(P*) 
(P) 
(P) 

Description 
End alternate character set 
Add new blank line 
Terminal has automatic margins 
Start alternate character set 
Backspace if not AH 
Terminal can backspace with AH 
Back tab 
Backspace wraps from column B to last column 
Command character in prototype if terminal settable 
Clear to end of display 
Clear to end of line 
Like cm but horizontal motion only, line stays same 
Clear screen 
Cursor motion 
Number of columns in a line 
Carriage return, (default AM) 
Change scrolling region (vtlBB), like cm 
Like ch but vertical only. 
Display may be retained above 
Number of mil Ii sec of bs delay needed 
Display may be retained below 
Number of millisec of cr delay needed 

3-97 



TERMCAP(5} 

dc 
dF 
dl 
dIn 
dN 
do 
dT 
ed 
ei 
eo 
ff 
hc 
hd 
ho 
hu 
hz 
ic 
if 
im 
in 
ip 
is 
kB-k9 
kb 
kd 
ke 
kh 
kl 
kn 
ko 
kr 
ks 
ku 
IB-19 
Ii 
11 
ma 
mi 
ml 
mu 
nc 
nd 
nl 
ns 
os 
pc 
pt 
se 
sf 
sg 
so 
sr 

str 
num 
str 
str 
num 
str 
num 
str 
str 
str 
str 
bool 
str 
str 
str 
str 
str 
str 
bool 
bool 
str 
str 
str 
str 
str 
str 
str 
str 
num 
str 
str 
str 
str 
str 
num 
str 
str 
bool 
str 
str 
bool 
str 
str 
bool 
bool 
str 
bool 
str 
str 
num 
str 
str 

XENIX Programmer's Manual TERMCAP (5) 

(P*) 

(P*) 

(P*) 

(P) 

(P*) 

(P*) 

(P) 

(P) 

Delete character 
Number of millisec of ff delay needed 
Delete line 
Delete mode (enter) 
Number of millisec of nl delay needed 
Down 0 ne line 
Number of millisec of tab delay needed 
End delete mode 
End insert mode; give :ei=: if ic 
Can erase overstrikes with a blank 
Hardcopy terminal page eject (default AL) 
Hardcopy terminal 
Half-line down (forward 1/2 linefeed) 
Home cursor (if no cm) 
Half-line up (reverse 1/2 linefeed) 
Hazeltine; can't print -'s 
Insert character 
Name of file containing is 
Insert mode (enter); give :im=: if ic 
Insert mode distinguishes nulls on display 
Insert pad after character inserted 
Terminal initialization string 
Sent by other function keys B-9 
Sent by backspace key 
Sent by terminal down arrow key 
Out of keypad transmit mode 
Sent by home key 
Sent by terminal left arrow key 
Number of other keys 
Termcap entries for other non-function keys 
Sent by terminal right arrow key 
Put terminal in keypad transmit mode 
Sent by terminal up arrow key 
Labels on other function keys 
Number of lines on screen or page 
Last line, first column (if no cm) 
Arrow key map, used by vi version 2 only 
Safe to move while in insert mode 
Memory lock on above cursor. 
Memory unlock (turn off memory lock). 
No correctly working carriage return (DM25BB,H2~ 
Non-destructive space (cursor right) 
Newline character (default \n) 
Terminal is a CRT but doesn't scroll. 
Terminal overstrikes 
Pad character (rather than null) 
Has hardware tabs (may need to be set with is) 
End stand out mode 
Scroll forwards 
Number of blank chars left by so or se 
Begin standout mode 
Scroll reverse (backwards) 

3-98 



rERMCAP (5) 

ta str 
tc str 
te str 
ti str 
uc str 
ue str 
ug num 
ul bool 
up str 
us str 
vb str 
ve str 
vs str 
xb bool 
xn bool 
xr bool 
xs bool 
xt bool 

XENIX Programmer's Manual TERMCAP (5) 

(P) Tab (other than AI or with padding) 
Entry of similar terminal - must be last 
String to end programs that use cm 
String to begin programs that use cm 
Underscore one char and move past it 
End underscore mode 
Number of blank chars left by us or ue 
Terminal underlines even though it doesn't overstri} 
Upline (cursor up) 
Start underscore mode 
Visible bell (may not move cursor) 
Sequence to end open/visual mode 
Sequence to start open/visual mode 
Beehive (fl=escape, f2=ctrl C) 
A newline is ignored after a wrap (Concept) 
Return acts like ce \r \n (Delta Data) 
Standout not erased by writing over it (HP 264?) 
Tabs are destructive, magic so char (Teleray le61) 

A Sample Entry 

The following entry, which describes the Concept-lee, is 
among the more complex entries in the termcap file as of 
this writing. (This particular concept entry is outdated, 
and is used as an example only.) 

cllcleelconceptlee:is=\EU\Ef\E7\ES\E8\El\ENH\EK\E\2ee\Eo&\2ee:\ 
:al=3*\E"R:am:bs:cd=16*\E"'C:ce=16\E"S:cl=2*"L:cm=\Ea%+ %+ :co#8e:\ 
:dc=16\E~A:dl=3*\E"B:ei=\E\2ee:eo:im=\EAP:in:ip=16*:li#24:mi:nd=\E=: 
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn: 

Entries may continue onto multiple lines by giving a \ as 
the last character of a line, and that empty fields may be 
included for readability (here between the last field on a 
line and the first field on the next). Capabilities in 
termcap are of three types: Boolean capabilities which indi­
cate that the terminal has some particular feature, numeric 
capabilities giving the size of the terminal or the size of 
particular delays, and string capabilities, which give a 
sequence which can be used to perform particular terminal 
operations. 

Types of Capabilities 

All capabilities have two letter codes. For instance, the 
fact that the Concept has automatic margins (i.e. an 
automatic return and linefeed when the end of a line is 
reached) is indicated by the capability am. Hence the 
description of the Concept includes am. Numeric capabili­
ties are followed by the character 'if and then the value. 
Thus co which indicates the number of columns the terminal 
has gives the value '8e' for the Concept. 

3-99 



TERMCAP(5} XENIX Programmer's Manual TERMCAP (5) 

Finally, string valued capabilities, such as ce (clear to 
end of line sequence) are given by the two character code, 
an '=', and then a string ending at the next following ':'. 
A delay in milliseconds may appear after the '=' in such a 
capability, and padding characters are supplied by the edi­
tor after the remainder of the string is sent to provide 
this delay. The delay can be either a integer, e.g. '2fiJ', 
or an integer followed by an '*', i.e. '3*'. A '*' indi­
cates that the padding required is proportional to the 
number of lines affected by the operation, and the amount 
given is the per-affected-unit padding required. When a '*' 
is specified, it is sometimes useful to give a delay of the 
form '3.5' specify a delay per unit to tenths of mil­
liseconds. 

A number of escape sequences are provided in the string 
valued capabilities for easy encoding of characters there. 
A \E maps to an ESCAPE character, ~x maps to a control-x for 
any appropriate x, and the sequences \n \r \t \b \f give a 
newline, return, tab, backspace and formfeed. Finally, 
characters may be given as three octal digits after a \, and 
the characters A and \ may be given as \" and \\. If it is 
necessary to place a : in a capability it must be escaped in 
octal as \072. If it is necessary to place a null character 
in a string capability it must be encoded as \2fiJfiJ. The rou­
tines which deal with termcap use C strings, and strip the 
high bits of the output very late so that a \200 comes out 
as a \000 would. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. 
The most effective way to prepare a terminal description is 
by imitating the description of a similar terminal in 
termcap and to build up a description gradually, using par­
tial descriptions with ~ to check that they are correct. 
Be aware that a very unusual terminal may expose deficien­
cies in the ability of the termcap file to describe it or 
bugs in H. To easily test a new terminal description you 
can set the env:ironment variable TERMCAP to a pathname of a 
file containing the description you are working on and the 
editor will look there rather than in /~/termcap. TERMCAP 
can also be set to the termcap entry itself to avoid reading 
the file when starting up the editor. (This only works on 
version 7 systems.) 

Basic capabilities 

The number of columns on each line for the terminal is given 
by the co numeric capability. If the terminal is a CRT, 
then the number of lines on the screen is given by the Ii 
capabili ty. If the terminal wraps around to the beginning 

3-11' 



~ERMCAP (5) XENIX Programmer's Manual TERMCAP (5) 

of the next line when it reaches the right margin, then it 
should have the am capability. If the terminal can clear 
its screen, then this is given by the cl string capability. 
If the terminal can backspace, then it should have the bs 
capability, unless a backspace is accomplished by a charac­
ter other than AH (ugh) in which case you should give this 
character as the bc string capability. If it overstrikes 
(rather than clearing a position when a character is struck 
over) then it should have the os capability. 

A very important point here is that the local cursor motions 
encoded in termcap are undefined at the left and top edges 
of a CRT term~nal. The editor will never attempt to back­
space around the left edge, nor will it attempt to go up 
locally off the top. The editor assumes that feeding off 
the bottom of the screen will cause the screen to scroll up, 
and the am capability tells whether the cursor sticks at the 
right edge of the screen. If the terminal has switch 
selectable automatic margins, the termcap file usually 
assumes that this is on, i.e. am. 

These capabilities suffice to describe hardcopy and glass­
tty terminals. Thus the model 33 teletype is described as 

t3133Itty33:coi72:os 

while the Lear Siegler ADM-3 is described as 

clladm3131lsi adm3:am:bs:cl=~Z:lii24:coi80 

Cursor addressing 

Cursor addressing in the terminal is described by a cm 
string capability, with printf(3s) like escapes %x in it. 
These sUbstitute to encodings of the current line or column 
position, while other characters are passed through 
unchanged. If the cm string is thought of as being a func­
tion, then its arguments are the line and then the column to 
which motion is desired, and the % encodings have the fol­
lowing meanings: 

%d 
%2 
%3 
%. 
%+x 
%>xy 
%r 
%i 
%% 
%n 
%B 

as in printf, 0 origin 
like %2d 
like %3d 
like %c 
adds X to value, then %. 
if value > x adds y, no output. 
reverses order of line and column, no 
increments line/column (for 1 origin) 
gives a single % 
exclusive or row and column with 0140 
BCD (16* (x/10» + (x%10), no output. 

3-111 

output 

(DM2500) 



TERMCAP(5) XENIX Programmer's Manual TERM CAP (5) 

%D Reverse coding (x-2*(x%16», no output. (Delta Data). 

Consider the HP2645, which, to get to row 3 and column 12, 
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note 
that the order of the rows and columns is inverted here, and 
that the row and column are printed as two digits. Thus its 
cm capability is cm=6\E&%r%2c%2Y. The Microterm ACT-IV 
needs the current row and column sent preceded by a AT, with 
the row and column simply encoded in binary, cm=~T%.% •• 
Terminals which use %. need to be able to backspace the cur­
sor Cbs or bc}, and to move the cursor up one line on the 
screen (up introduced below). This is necessary because it 
is not always safe to transmit \t, \n AD and \r, as the sys­
tem may change or discard them. 

A final example is the LSI ADM-3a, which uses row and column 
offset by a blank character, thus cm=\E=%+ %+ • 

Cursor motions 

If the terminal can move the cursor one position to the 
right, leaving the character at the current position 
unchanged, then this sequence should be given as nd (non­
destructive space). If it can move the cursor up a line on 
the screen in the same column, this should be given as up. 
If the terminal has no cursor addressing capability, but can 
home the cursor (to very upper left corner of screen) then 
this can be given as hOi similarly a fast way of getting to 
the lower left hand corner can be given as 11; this may 
involve going up with up from the home position, but the 
editor will never do this itself (unless 11 does) because it 
makes no assumption about the effect of moving up from the 
home position. 

Area clears 

If the terminal can clear from the current position to the 
end of the line, leaving the cursor where it is, this should 
be given as ce. If the terminal can clear from the current 
position to the end of the display, then this should be 
given as cd. The editor only uses cd from the first column 
of a line. 

Insert/delete line 

If the terminal can open a new blank line before the line 
where the cursor is, this should be given as al: this is 
done only from the first position of a line. The cursor 
must then appear on the newly blank line. If the terminal 
can delete the line which the cursor is on, then this should 
be given as dl: this is done only from the first position on 
the line to be deleted. If the terminal can scroll the 

3-182 



rERMCAP(5) XENIX Programmer's Manual TERMCAP(5) 

screen backwards, then this can be given as sb, but just al 
suffices. If the terminal can retain display memory above 
then the da capability should be given~ if display memory 
can be retained below then db should be given. These let 
the editor understand that deleting a line on the screen may 
bring non-blank lines up from below or that scrolling back 
with sb may bring down non-blank lines. 

Insert/delete character 

There are two basic kinds of intelligent terminals with 
respect to insert/delete character which can be described 
using termcap. The most common insert/delete character 
operations affect only the characters on the current line 
and shift characters off the end of the line rigidly. Other 
terminals, such as the Concept 199 and the Perkin Elmer Owl, 
make a distinction between typed and untyped blanks on the 
screen, shifting upon an insert or delete only to an untyped 
blank on the screen which is either eliminated, or expanded 
to two untyped blanks. You can find out which kind of ter­
minal you have by clearing the screen and then typing text 
separated by cursor motions. Type abc def using local 
cursor motions (not spaces) between the abc and the def. 
Then position the cursor before the abc and put the terminal 
in insert mode. If typing characters causes the rest of the 
line to shift rigidly and characters to falloff the end, 
then your terminal does not distinguish between blanks and 
untyped positions. If the abc shifts over to the def which 
then move together around the end of the current line and 
onto the next as you insert, you have the second type of 
terminal, and should give the capability in, which stands 
for insert null. If your terminal does something different 
and unusual then you may have to modify the editor to get it 
to use the insert mode your terminal defines. We have seen 
no terminals which have an insert mode not not falling into 
one of these two classes. 

The editor can handle both terminals which have an insert 
mOde, and terminals which send a simple sequence to open a 
blank position on the current line. Give as im the sequence 
to get into insert mode, or give it an empty value if your 
terminal uses a sequence to insert a blank position. Give 
as ei the sequence to leave insert mode (give this, with an 
empty value also if you gave im so). Now give as ic any 
sequence needed to be sent just before sending the character 
to be inserted. Most terminals with a true insert mode will 
not give ic, terminals which send a sequence to open a 
screen position should give it here. (Insert mode is 
preferable to the sequence to open a position on the screen 
if your terminal has both.) If post insert padding is 
needed, give this as a number of milliseconds in ip (a 
string option). Any other sequence which may need to be 

3-183 



TERMCAP(S) XENIX Programmer's Manual TERMCAP(S) 

sent atter an insert of a single character may also be given 
in ip. 

It is occasionally necessary to move around while in insert 
mode to delete characters on the same line (e.g. if there is 
a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capabil­
ity mi to speed up inserting in this case. Omitting mi will 
affect only speed. Some terminals (notably Datamedia's) 
must not have mi because of the way their insert mode works. 

Finally, you can specify delete mode by giving dm and ed to 
enter and exit delete mode, and dc to delete a single char­
acter while in delete mode. 

Highlighting, underlining, and visible bells 

If your terminal has sequences to enter and exit standout 
mode these can be given as so and se respectively. If there 
are several flavors of standout mode (such as inverse video, 
blinking, or underlining - half bright is not usually an 
acceptable standout mode unless the terminal is in inverse 
video mode constantly) the preferred mode is inverse video 
by itself. If the code to change into or out of standout 
mode leaves one or even two blank spaces on the screen, as 
the TVI 912 and Teleray 1961 do, this is acceptable, and 
although it may confuse some programs slightly, it can't be 
helped. 

Codes to begin underlining and end underlining can be given 
as us and ue respectively. If the terminal has a code to 
underline the current character and move the cursor one 
space to the right, such as the Microterm Mime, this can be 
given as uc. (If the underline code does not move the cur­
sor to the right, give the code followed by a nondestructive 
space.) 

If the terminal has a way of flashing the screen to indicate 
an error quietly (a bell replacement) then this can be given 
as vb; it must not move the cursor. If the terminal should 
be placed in a different mode during open and visual modes 
of ~, this can be given as vs and ve, sent at the start and 
end of these modes respectively. These can be used to 
change, e.g., from a underline to a block cursor and back. 

If the terminal needs to be in a special mode when running a 
program that addresses the cursor, the codes to enter and 
exit this mode can be given as ti and tee This arises, for 
example, from terminals like the Concept with more than one 
page of memory. If the terminal has only memory relative 
cursor addressing and not screen relative cursor addressing, 
a one screen-sized window must be fixed into the terminal 

3-184 



rERMCAP (5) XENIX Programmer's Manual TERMCAP(5) 

for cursor addressing to work properly. 

If your terminal correctly generates underlined characters 
(w~th no special codes needed) even though it does not over­
strike, then you should give the capability ul. If over­
strikes are erasable with a blank, then this should be indi­
cated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the 
keys are pressed, this information can be given. Note that 
it is not possible to handle terminals where the keypad only 
wor ks in local (th is applies, for example, to the unshifted 
HP 2621 keys). If the keypad can be set to transmit or not 
transmit, give these codes as ks and ke. Otherwise the 
keypad is assumed to always transmit. The codes sent by the 
left arrow, right arrow, up arrow, down arrow, and home keys 
can be given as kl, kr, ku, kd, and kh respectively. If 
there are function keys such as f9, fl, ••• , f9, the codes 
they send can be given as k9, kl, ••• , k9. If these keys 
have labels other than the default f9 through f9, the labels 
can be given as 19, 11, ••• , 19. If there are other keys 
that transmit the same code as the terminal expects for the 
corresponding function, such as clear screen, the termcap 2 
letter codes can be given in the ko capability, for example, 
:ko=cl,ll,sf,sb:, which says that the terminal has clear, 
home down, scroll down, and scroll up keys that transmit the 
same thing as the cl, 11, sf, and sb entries. 

The ma entry is also used to indicate arrow keys on termi­
nals which have single character arrow keys. It is obsolete 
but still in use in version 2 of vi, which must be run on 
some minicomputers due to memory limitations. This field is 
redundant with kl, kr, ku, kd, and kh. It consists of 
groups of two characters. In each group, the first charac­
ter is what an arrow key sends, the second character is the 
corresponding vi command. These commands are h for kl, j 
for kd, k for ku, 1 for kr, and H for kh. For example, the 
mime would be :ma=~KjRZkAXl: indicating arrow keys left 
(AH), down (AK), up (A Z), and right (AX). (There is no home 
key on the mime.) 

Miscellaneous 

If the terminal requires other than a null (zero) character 
as a pad, then this can be given as pc. 

If tabs on the terminal require padding, or if the terminal 
uses a character other than AI to tab, then this can be 
given as ta. 

3-115 



TERMCAP (5) XENIX Programmer's Manual TERM CAP (5) 

Hazeltine terminals, which don't allow ,-, characters to be 
printed should indicate hz. Datamedia terminals, which echo 
carriage-return linefeed for carriage return and then ignore 
a following linefeed should indicate nc. Early Concept ter­
minals, which ignore a linefeed immediately after an am 
wrap, should indicate xn. If an erase-eol is required to 
get rid of standout (instead of merely writing on top of 
it), xs should be given. Teleray terminals, where tabs turn 
all characters moved over to blanks, should indicate xt. 
Other specific terminal problems may be corrected by adding 
more capabilities of the form xz. 

Other capabilities include is, an initialization string for 
the terminal, and if, the name of a file containing long 
initialization strings. These strings are expected to prop­
erly clear and then set the tabs on the terminal, if the 
terminal has settable tabs. If both are given, is will be 
printed before if. This is useful where if is 
/~lib/tabset/~ but is clears the tabs first. 

Similar Terminals 

If there are two very similar terminals, one can be defined 
as being just like the other with certain exceptions. The 
string capability tc can be given with the name of the simi­
lar terminal. This capability must be .J.a.Q.t and the combi.ned 
length of the two entries must not exceed 1924. Since term­
lib routines search the entry from left to right, and since 
the tc capability is replaced by the corresponding entry, 
the capabilities given at the left override the ones in the 
similar terminal. A capability can be canceled with xx@ 
where xx is the capability. For example, the entry 

hn/262lnl:ks@:ke@:tc=262l: 

defines a 262lnl that does not have the ks or ke capabili­
ties, and hence does not turn on the function key labels 
when in visual mode. This is useful for different modes for 
a terminal, or for different· user preferences. 

FILES 
/etc/termcap file containing terminal descriptions 

SEE ALSO 
ex (1), curses (3), termcap (3), tset (1), vi (1), ul (1), more (1) 

AUTHOR 
William Joy 
Mark Horton added underlining and keypad support 

BUGS 
~ allows only 256 characters for string capabilities, and 

3-116 



TERMCAP(S) XENIX Programmer's Manual TERMCAP(S) 

the routines in termcap(~) do not check for overflow of this 
buffer. The total length of a single entry (excluding only 
escaped newlines) may not exceed 1024. 

The ma, vs, and ve entries are specific to the ~ program. 

Not all programs support all entries. There are entries 
that are not supported by any program. 

3-117 



1"i't'!'t PH ( 5 ) 'HtftPB(5) 

NAME 
ttytype - data base defining terminal type; used for 

associating terminals with serial ports 

DESCRIPTION 
The ttytype data base is used to associate a manufacturer's 
terminal with the different serial ports on the system. 
Each line contains the name of a terminal, a tab character, 
and then the XENIX device entry for the serial ports 
associated with that terminal. The terminal name must 
correspond to an entry in /etc/termcap. 

Making an entry in the ttytype file for your terminals 
allows the system to make maximum use of terminal features 
for certain system facilities that use full screen 
capabilities. Among these programs are vi(l), bsh(l), and 
ua (1) • 

FILES 
/etc/ttytype 

SEE ALSO 

USAGE 

vi(l), bsh(l), ua(l), termcap(5) 

A typical line in the ttytype file might look like "dumb 
/dev/tty3" or "wyse /dev/tty5." The first says that serial 
port 3 is connected to a terminal described in /etc/termcap 
as having no special characteristics such as cursor move­
ment. The second entry tells XENIX that serial port 5 is 
connected to a terminal manufactured by Wyse Technology that 
is described in termcap under the name "wyse." The terminal 
name is the name found between the first and second vertical 
bars of the appropriate entry in /etc/termcap. 

3-118 



Appendix AI 

8UIIBkIC PO~, C, AlII) pOftBAll 77 

The following information is for reference only. This 
information on the internal .formats used for numeric representa­
tion is not necessary for general use of the C language or 
Fortran 77. It can be useful when examining actual memory 
contents or doing other specialized system programming work. 

The same formats are used by both languages. 

For more information on Fortran 77, see UJlIX Progra •• erls .anDa~, 
Volu.e 2B, A Portab~e Fortran 77 ea.piler. 

Fortran 77 Flies are opened at end-of-file. Use the REWIND 
statement to get to the beginning of the file. 

A-~ 



IftBGBR POBIIA~S 

Integers and "short integers" are 16 bits in length. "Long 
integers" are 32 bits. For both sizes, the leftmost bit is a 
sign bit and the other 15 or 31 bits are magnitude. The sign is 
zero for positive, one for negative. Negative numbers are in 
twos-complement form. 

The range of values is as follows: 

Sign and 15 bits 

Sign and 31 bits 

-32,768 to 32,767 

-2,147,483,648 to 2,147,483,647 

A-2 



PLOATIBG-POIft POlUlATS 

Single precision floating point is 32 bits in length, double is 
64. The leftmost eight bits consist of an exponent in excess 80 
notation. RExcess 80 R means that the hexadecimal values from 80 
to FF are positive exponents, corresponding to 0 through 7F. 
Values less than 80 are negative exponents; 7F through 0 cor re­
spond to -1 through -7E. 

The remaining 24 or 56 bits consist of a leading sign bit and 
magnitude values. Magnitudes are normalized. RNormalized" means 
that the representation of magnitude and exponent is adjusted so 
that each magnitude value can be thought of as starting with 
.lnnn •••• 

For example, the value of 101, decimal 5, would be .101 with an 
exponent of 3. The leftmost digit of magnitude does not need to 
be represented, because it is always 1 except for the special 
case of a value of zero. Therefore, the leftmost magnitude bit 
is not stored but is implied. It is referred to as the "hidden 
bit. R 

Example: 

The value 15.25, decimal. In binary, this is 1111.01 

(In binary, .1 = .5 decimal; .01 = .25, etc. Moving to the right 
of the pOint halves the value at each move, just as moving to the 
left of the point doubles the base 2 value.) 

So, 1111.01 represents 15.25 decimal. Normalizing our binary 
value, we have .111101 with an exponent of 4. The exponent 
becomes 84 in excess 80 notation, or 1000 0100 in binary. The 
sign bit is zero (positive), and the magnitude is 11101000 ••• 
with as many trailing zeros as needed. Notice that the leading 
R.l" has disappeared. It is the unnecessary Rhidden bit." The 
binary and hexadecimal values are shown below. 

1000 0100 0111 0100 0000 0000 0000 0000 
8 4 s 7 4 0 0 0 0 

The example is single-precision. Double precision, in this case, 
would be the same with eight bytes (32 bits) of trailing zeros. 

Other examples: 

The fractional decimal value .625. In binary, this is .101; that 
is, .5 plus .125. The value is normalized as it is, the exponent 
is 0, the sign is positive, 0. 

1000 0000 0010 0000 • • • 
80s 2 0 • • • 

A-3 



Negative 5. In binary, 5 is IB1. Before taking the twos­
complement, we supply a leading zero which will become the 
negative sign bit: BIB1. ~he twos-complement is IBll. Removing 
the sign bit, Bll. Normalizing, .11BB with the exponent-2. In 
excess 8B, -2 is 7E. Resul t: 

Blll 1119 119B BBBB ••• 
7 Ese B ••• 

Zero, the exception. This is an all zero value. 

B9BB 9BS9 BB9B 9B99 • • • 
B B B B • • • 

All zeros can be thought of as zero by convention. Otherwise, it 
would represent the smallest positive number possible in the 
scheme. 

Too many intrinsic functions, or too many logical operators in 
the same statement can cause the error: "Floating-point 
exception." It means that the expression is too complicated and 
should be split into several statements. 

A-4 



VALUES IN IIBIIORY 

As with other values in 8~86 memory, floating point values are 
stored "back-words." The least signficant 16-bit word is stored 
first, then the next, and so forth. If the single-precision 
value 8474~~~~ is stored at location x, it will show as follows 
when displaying memory contents: 

x ~~~~ 
x + 2 8474 

However, long integers are stored in order. The long integer 
with a hexadecimal value of 128A34BF will show as: 

x 
x + 2 

l28A 
34BF 

A-5 





Appendix B: 

SAULB r.xft OP ZBIIIX DBVBLOPIIBIl.r SYS~ O'.rILI~IBS 

The following is a sample listing of the typical utilities 
provided in a full XENIX Development System. 

You can obtain a list of your Xenix operating system's utilities 
by entering: 

cd / (cr> 
18 -PCRllpr(cr> 

LIft OP XBBXX ~LI~IBS 

bin dev install 
boot etc lib 
boot.fd fd load.hd 
boot.fdhd load.hd lost+found 

./bin: 
ac df look 
adb diff 1pr 
ar du 1s 
arcv dump m4 
as dumpdir mail 
at echo make 
awk ed man 

B-1 

priboot 
pribootfd 
tmp 
usr 

refer 
restor 
rev 
rm 
rmai1 
rmdir 
sa 

xenix 
xenix.fd 

test 
time 
tk 
touch 
tp 
tr 
troff 



basename edit mesg sed true 
bc esrep mkdir sh tsorj 
bsh enroll mntchk size tty 
cal eqn multiuser sleep uniq 
calendar ex mv sort unitl 
cat expr ncheck sp uucp 
cb f77 ndump spell uulo~ 
cc false neqn spline uux 
checkeq fgrep newgrp split v7gr~ 
chgrp file nice strip v7loc 
chmod find nm struct v7ls 
chown flagbad nroff stty v7ps 
clri fsck od su vi 
cmp graph osh sum vplo1 
col grep passwd sync vpr 
comm icheck pr t300 who 
cp join prep t300s wrib 
crypt kill prof t450 xget 
csh I ps tabs xsenc 
cu ld ptx tail yacc 
date learn pwd tar yes 
dc lex quot tbl 
dcheck lint random tc 
dd In ranlib tee 
deroff login ratfor tek 

./dev: 
altosnet hd0 lp rhd0.layout swap 
console hd0.boot mem rhd0.roc0 tar 
cua0 hd0.layout nct** rhd0.secmap tty 
cul0 hd0.roc0 nrct** rhd0.spares tty2 
ct** hd0.secmap null rhd0.track0 tty3 
ct0* hd0.spares rct** rhd0a tty4 
ether hd0.track0 rfd0 rhd0b tty5 
fd0 hd0a rfdl root tty6 
fd0.swap hd0b rhd0 rroot tty7 
fdl kmem rhd0.boot rswap tty8 

./etc: 
accton getty menusys newuser ttys 
asktime group mknod rc umou 
checklist haltsys motd shutdown upda 
cron inir mount systemid utmp 
ddate init mtab termcap wall 

dial-login menusys.bin passwd 
dmesg mkfs ttytype 

./etc/newuser: 

./fd: 

*ACS 8600 only 
**58b only 

B-2 



./lib: 
c0 f77cl libI77.a libm.a libt4014.a 
cl f77c2 libc.a libmp.a libt450.a 
c2 f77crt0.o libcurses.a libplot.a libtermlib, 
cpp f77passl libdbm.a libt300.a libunet.a 
crt0.o libF77.a libln.a libt300s.a libvt0.a 

./lost+found: 

./tmp: 

./usr: 
adm dict lib src unix 
altos games preserve sys user 
bin include spool tmp 

./usr/adm: 
acct mssbuf usracct 
messages savacct wtmp 

./usr/altos: 
qa.text 

./usr/bin: 

l-lail double last plot ua 
apropos enable layout print ucp 
chessclock error leave printenv ul 
chfn expand lock reset users 
chsh fcopy lookbib script uudecode 
ckdir ffmt lorder sddate uuencode 
clear finser makewhatis see uusend 
clock fleece map sendnet uversion 
copy fmt mkstr settime v7wc 
ctags fold more sizefs w 
cxref format msgs soelim wc 
daytime from nohup ssp whatis 
decode setNAME num strings whereis 
diff3 sets page tod whoami 
disest head pcc tra whom 
disable iul pconfig tset xstr 

./usr/dict: 
hlista hstop spellhist 
hlistb papers words 

./usr/dict/papers: 
Ind.ia Ind.ib Ind.ic Rv7man runinv 

./usr/games: 
arithmetic fish master random wump 
backgammon fortune number snake 
banner hangman quiz snscore 
craps lib quiz.k ttt 

B-3 



./usr/games/lib: 
fortunes mmhow snake. log snakerawscores 

./usr/games/quiz.k: 
africa chinese index posneg spell 
america collectives latin pres state 
areas ed locomotive province trek 
arith elements midearth seq-easy ucc 
asia europe morse seq-hard 
babies greek murders sexes 
bard inca poetry sov 

./usr/include: 
a.out.h errno.h olda.out.h setty.h time.t 
ar.h execargs.h olddump.h signal.h tp-def 
assert.h grp.h pack •. h stddef.h utmp.t 
core.h ident.h psout.h stdio.h vararC1 
ctype.h local pwd.h symbol.h whoamj 
curses.h math.h regexp.h sys xout8E 
dk.h mp.h saio.h sys.s 
dumprestor.h mtab.h setjmp.h sysexits.h 

./usr/include/local: 
layout.h sspare.h uparm.h 

./usr/includes/sys: 
acct.h file.h mount.h pr.oc.h timeb. 
buf.h filsys.h mpx.h res.h times. 
callo.h ino.h mx.h sc.h tty.h 
chars.h i-node.h param.h sites.h types. 
conf.h ioctl.h pk.h stat.h user .1 
dir.h locking.h pk.p systm.h 
fblk.h map.h prim.h text.h 

./usr/lib: 
Mail.help crontab font llib-port tabset 
Mail.help.- crontab.noUNET learn lpd term 
atrun diff3 lex me tmac 
bsh ex2.l3reserve lintl menusys uucp 
bsh.messages ex2.l3recover lint2 more. help yaccpc 
calendar ex2 .. l3strings llib-lc refer 
cign ffmt llib-lm struct 

./usr/lib/font: 
ftB ftCE ftCS ftGl ftl ftPA ftR ftSl ft~ 
ftBC ftCl ftCW ftGM ftL ftPB ftS ftSM 
ftC ftCK ftG ftGR ftLl ftPl ftSB ftUD 

./usr/lib/learn: 
C.a Xinfo files .a makefile 
Linfo editor.a lcount morefiles.a 
READ....;ME eqn.a macros.a tee 

./usr/lib/lex: 
ncform 

B-4 



./usr/lib/me: 
acm.me 
chars.me 
deltext.me 

eqn.me 
float.me 
footnote.me 

./usr/lib/menusys: 
Backup Dir 
Backup? Dir? 
Commands? Execute 

./usr/lib/refer: 
hunt inv 

./usr/lib/struct: 
beautify structure 

./usr/lib/tabset: 
beehive std 
diablo teleray 

./usr/lib/term: 
tab3BB tab3B8s-l2 
tab3BB-l2 tab37 
tab38Bs tab458 

./usr/lib/tmac: 
tmac.an tmac.help 
tmac.e tmac.r 

./usr/lib/uucp: 
L-devices L.sys 
L-dialcodes USERFILE 

./usr/preserve: 

./usr/spool: 
at 
lpd 

mail 
msgs 

./usr/spool/at: 
lasttimedone past 

./usr/spool/at/past: 

./usr/spool/lpd: 

./user/spool/mail: 

./usr/spool/msgs: 
bounds 

./usr/spool/uucp: 

./usr/spool/uucppublic: 

index.me 
local.me 
nUll.me 

Execute? 
Help 
Help? 

mkey 

vtlBB 
xeroxl72B 

tab458-l2 
tab45B-l2-8 
tab832 

tmac.s 
tmac.scover 

uucico 
uuclean 

tunetmail 
unetmail 

8-5 

revisions 
sh.me 
tbl.me 

Mail 
Mail? 
Start 

tabal 
tablp 
tabn3BB 

tmac.sdisp 
tmac.skeep 

uuxqt 

uucp 
uucppublic 

thesis.mt 

Start? 
SysAdmin 
SysAdmin' 

tmac. sre: 



./usr/src: 
cmd 

./usr/srs/cmd: 
decode.c 

./usr/sys: 

./usr/tmp: 

./usr/unix: 

./usr/user: 



Appendix c: 
TRARSFERRIBG FILES BEWED ACS 8611 AIm ALms 586 

OR omBR COIIPMBR SYSBIIS (AS!1fCBBOIIOOS COIlIiOllICA~IORS) 

This appendix describes how to transfer files between the ACS 
8699 and the Altos 586 XENIX computer systems, or betwe~n two 
Altos XENIX computer systems (586 or 8699), or between your Altos 
computer system and other computer systems which support 
asynchronous (serial) communications. This appendix also 
describes how to use modems with your Altos XENIX systems. 

The ~ (call UNIX) and uucp (UNIX-to-UNIX copy) facilities are 
standard UNIX programs that enable you to transfer files and 
execute commands on remote systems. The ~ program, which is 
easier to use than the uUQP program but not as powerful, should 
be used to communicate with non-UNIX computer systems. Because 
of user difficulty in implementing uUQP, Altos has developed a 
File Transfer Utility for Xenix-to-Xenix transfer (ftp). Refer 
to Appendix H of the Introduction ~ XENIX manual for step-by­
step instructions for running~. Note that only ACS 8699 
versions 2.2d and Altos 586 versions 2.3 and higher have the 
XENIX ~ utility. If you have an earlier version, the uucp 
program should be used. 

C-l 



PSIJIG CD· PACILI" 

The ~~ program can be used for foreground asynchronous 
communications with almost any other computer system. Under 
light to medium system loads, communication is possible at 12BB 
baud. Under heavy loads, 6BB baud or 3BB baud is the maximum 
data rate. Facilities are provided for executing commands on the 
remote system, and transferring files to or from the remote 
system. 

To use cu, follow these steps: 

1. Determine the serial port to be used for communication. Any 
port not utilized by a terminal or a printer can be used, 
for purposes of demonstration, we will assume that port 5 is 
available. See Figure C-l for Setup. 

ACS8600 PORTS NULL MODEM CABLE 

OR 
ANOTHER 
COMPUTER 

ACSS86 

ANY 
PORT 

-

CONSOLE 

Figure C-l. Cu Facility Setup 

2. Become the super-user (using the su command), then execute: 

# di8~le /dev/tty5 <CR> 

This command will prevent a terminal from using port 5. 

3. Execute the command: 

i en -t -8 1211 -1 /dev/tty5 -a /dev/nnll <CR> 

The cu program will attempt to establish a connection with 
the other computer, using serial port 5. The speed of the 
conection will be 12BrfJ baud (cu will not function properly 
at baud rates greater than 12BrfJ baud). The following 
message should be displayed after the connection has been 
successfully established: 

C-2 



• 

Connected 

All characters typed from this point onwards will be 
processed by the remote system, and all output from the 
remote system will be displayed on the screen. If a line 
begins with the tilde character (-), it will be processed by 
the local UNIX system, and will NOT be passed to the remote 
system. The following commands are available when 
communicating with a UNIX or a non-UNIX remote system: 

Terminate the connection • 

-<filename Send the contents of the named file to the remote 
system, as if it was typed at the terminal. 

-!command 

-$command 

Execute the specified command on the local system. 

Execute the specified command on the local system, 
and send the output to the remote system. 

The following commands are available only if communicating with a 
UNIX system: 

-%takeremotefilelocalfile 
Copy'remotefile ' to 'localfile ' 

-%put localfile remotefile 
Copy 'localfile ' to remotefile ' 

If an output line FROM the remote system begins with the 
character 101, all output will be diverted to a local file. The 
following output-diversion commands are available: 

-)filename Divert output to the named file, and display each 
line as it is received. 

-»filename Append output to the named file, and display each 
line as it is received. 

-):filename .Divert output to the named file, but do not 
display each line. 

-»:filename Append output to the named file, but do not 
display each line. 

All characters sent from the remote system to the local system 
will be diverted to the named file until the following line is 
encountered: 

0) Terminate output diversion. 

The diversion commands can be used to transfer files between a 
UNIX system and a non-UNIX system. The exact way in which these 

C-3 



commands should be used depends upon the non-UNIX operating 
system on the remote computer. Altos supplies a program called 
"TOXENIX" as part of its standard distribution package. This 
program can be used to transfer files from an MP/M system to a 
Xenix system. Similar programs can be written to facilitate 
communication with other systems. Consult your local Altos 
dealer or Altos Customer Service for information on how to commu­
nicate with other systems. 

C-4 



TRANSfERRING fILES USING OPCP PACILIty 

The uucp facili ty can be used for background asynchronous 
communications with almost any other UNIX system. The baud rate 
can be up to 9699 baud. Uucp cannot be used for communications 
with a non-UNIX system. Two commands are provided with the ~ 
facility: the uucp command allows one to transfer files to or 
from a remote system; the uux command allows one to execute 
commands on a remote system. 

Bell Labs developed the ~ facility of programs to facilitate 
the regular transfer of files between systems using the UNIX 
operating system. (Uucp stands for Unix-to-Onix Copy.) This 
appendix describes how to use uucp for a different purpose: The 
one-time transfer of a large number of files from an 8699 to a 
586. Two assumptions are made here about your needs: 

It's assumed that you don't want to regularly transfer 
files. 

It's assumed that the two systems can be placed together so 
they can be directly hooked up. (If modems are required, 
refer to the section in this appendix, nUsing Modems with 
Altos XENIX Systems. n 

If these assumptions don't match your needs, then you should turn 
to the description of uucp networks in the ONIX Programmer's 
Manual, Volume 2B, Sections 35 and 36, that came with your XENIX 
operating system. You can find complete documentation of these 
networks there. This document describes only those features of 
~ needed for a one-time transfer. 

Both systems must be using the XENIX Development System with the 
uucp program installed. 

The information in this appendix is organized into five major 
chapters: 

1. Connecting the 8699 and the 586 

2. Preparing the Configuration Files 

3. Disabling and Enabling the TTY Ports 

4. Testing the ~ Network 

5. Copying Files Using Uucp 

It's assumed that you are familiar with the XENIX operating sytem 
and its major features. It's also assumed that you know how to 
use at least one of the XENIX editors. If you need more informa­
tion on either XENIX or its editors, refer to the Altos 
Introduction to XENIX Mannal and ONIX Progra •• er's RannaL 

C-5 



The implementation of uucp on the Altos XENIX system differs from 
the typical ~ implementation in one respect. The name of the 
local system, which is usually imbedded in the ~ source code, 
must be specified in the file /etc/systemid. The standard 
release assigns the name "altos86" to each system. The systemid 
file must be modified if more than one Altos system is included 
in a uucp network. 

Each system in a uucp network is, at any given time, either an 
active system or a passive system. An active system can initiate 
communication with other systems; a passive system cannot 
initiate communication. Users on passive systems can still 
execute uucp commands; the only difference is that passive 
systems cannot initiate calls (i.e., they must be called from an 
active system). Ifa system is active, a modem is required for 
remote communication over distances shorter than a few hundred 
feet. If remote communication is desired, a user-written auto­
dial program is needed to take full advantage of the auto-dial 
capabilities of most modems; such a program is not included as 
part of the standard Xenix release. The use of modems with cu 
and uucp is discussed later in this appendix. 

The llll.s;,,R facility consists of a series of programs. The 
following programs are executed directly by the user: 

/bin/uucp 

/bin/uux 

This program requests that file(s) be copied to or 
from another system. The f1le(s) are not copied 
immediately. A request to copy them is placed in 
the /usr/spool/uucp directory, where the request 
is acted upon at a later time by the uucico 
program. 

This program requests that command (s) be executed 
on another system. As with the uucp command, the 
request is queued in the spool directory. 

Other programs in the uucp facility are usually initiated 
indirectly. These programs are: 

/usr/lib/uucp/uucico This program performs all communications 
between systems. On an active system, 
it does the following: 

1. It scans the spool directory for 
work. 

2. It attempts to login on each remote 
system. 

3. If successful, it starts the uucico 
program on each remote system. 

4. It executes each request from both 
systems. 

C-6 



/usr/lib/uucp/uuclean 

/usr/lib/uucp/uuxqt 

/bin/uulog 

5. It enters information about each 
transaction in the log files in the 
spool directory. 

On an active system, uucico is automati­
cally started whenever any user runs the 
uucp or uux programs. It can also be 
started by the /etc/cron program. On a 
passive system, uucico can only be 
started by another copy of uucico 
running on a remote system. 

This program is used to remove old files 
from the spool directory. 

This program is started by uucico to 
execute remote commands. 

This program is normally executed every 
few days (or weeks, depending upon 
frequency of uucp usage). It cleans up 
the log files in the /usr/spool/uucp 
directory. 

C-7 



CORRBC'lIBG mB ACS·· 8688 AND mB 586 

The 8699 and 586 systems should be placed close enough together 
that they can be directly connected by a single null-modem cable. 
You can connect the cable to any port on the two systems that 
isn't the port used by the system terminal on that system. You 
can have any arrangement of peripheral devices attached to either 
system so long as both systems at least have a system terminal 
connected to them. 

'!he syste.s must be connected using a null­
mode. cable for the procedure to work. 

We suggest that you connect the two systems through their tty5 
ports. The examples in. this appendix show the systems connected 
through these ports. If you connect the systems through other 
ports, be sure to modify the examples to reflect your setup. 

Figure C-2 shows the ~ setup. 

PORTS NULL MODEM CABLE PORTS 

586 ACS8600 

PORT 1 PORT 1 

586 AGS8600 
MAIN CONSOLE MAIN CONSOLE 

Figure C-2. Uucp Setup 

Also, ensure that both systems are set up for multiple users. If 
either system is in single-user mode, log in as super-user and 
type in 

multiuser (CR> 

C-8 



PBBPAlUBG '!BE CORPIGORA~IOR PILBS 

The uucp program comes ready to use. It does need, however, 
certain information to establish the connection between the 586 
and 86~~ systems. You provide this information by adding entries 
to several files on each system. The follow ing table gives the 
steps needed for ~ system to prepare the files: 

TASK: 

Assign a system name 
to the system 

Define the communications 
line characteristics 

Give information needed 
to login to the other 
system 

Specify file accessibility 

~ EFFECTED: 

/etc/systemid 

/usr/lib/uucp/L-devices 

/usr/lib/uucp/L.sys 

/usr/lib/uucp/USERFILE 

Unless you have special requirements, you probably can edit the 
files on both systems in a few minutes. To make the task simpler, 
this chapter gives recommended entries. Some versions of XENIX 
that come with the 586 already have the recommended entries 
placed in the files. In this case, you don't have to add 
anything to the 586 files, but must still modify the 86~~ files. 
You can use the XENIX editor to check the contents of the 586's 
files to see if you must modify them. 

In case you have some special requirements, this document also 
describes how to prepare your own entries. 

You'll use one of the XENIX editors to add the entries to the 
files. To edit the files, you must be a XENIX superuser (root). 
You can become a superuser either by logging in as root or by 
using the ~ command. 

Recommended Entries 

You can use a set of standard entries to set up the 586's files 
if your requirements meet these assumptions: 

1. You must assign the system name Altos86 to the 86~~ system 
and the name AltosS86 to the 586 system. If you don't, you 
must give different system names in the /etc/systemid, 
/usr/lib/uucp/L.SYS, and /usr/lib/uucp/USERFILE files. 

2. The line connecting the two systems must connect into port 
tty5 on the each system. If it doesn't, you must give 
different port names in the /usr/lib/uucp/L-devices and 
/usr/lib/uucp/L.Sys files. 

C-9 



3. The connection between the two systems must be direct. That 
is, it can't go through a telephone system. If it isn't a 
direct connection, you must give a different baud rate in 
the /usr/lib/uucp/L-devices and /usr/lib/uucp/L.SYS files. 

If your requirements don't meet these assumptions, read the 
instructions in the chapter nIf You Have Special Requirements. n 
They tell you how to tailor the file entries to yor requirements. 
If your requirements do match these assumptions, copy these 
entries into the files shown if they are not already there: 

.!D.B DB 586; 

~ ENTRY 

/etc/systemid Altos586 

/usr/lib/uucp/L-devices tty5 0 9600 

/usr/lib/uucp/L.sys Altos86 Any ttys 9600 ttys ogin:-AM­
ogin:-~M-ogin: uucp 

/usr/lib/uucp/USERFILE root, / 
, /usr /tmp 

/usr/lib/crontab 0 0-23 * * * /usr/lib/uucico -rl -s 
Altos 86 
o 4 * * * /usr/lib/uucp/uuclean -pTM 

The entry for the /usr/lib/uucp/L.sys file must have the carriage 
returns (AM) embedded as shown. See the UNIX manuals for 
information on how to embed carriage returns within a character 
string using .your editor • 

.lOB DB 86,n,; 

~ EN~RY 

/etc/systemid Altos86 

/usr/lib/uucp/L-devices ttys 0 9600 

/usr/lib/uucp/L"Sys Altoss86 Never ttys 9600 ttys 

/usr/lib/uucp/USERFILE root, / 
, /usr /tmp 

/usr/lib/crontab o 4 * * * /usr/lib/uucp/uuclean -pTM 

If these recommended entries meet your needs, skip the next 
chapter and go to the chapter nDisabling and Enabling the TTY 
ports. n 

Refer to Table C-l for a summary of what data should be in the 
appropriate 586 and 8600 files to support the uucp package. 

C-li 



~able C-l. Su..ary of Pile BDtries Required for 586 and 86.1 

Files on the 586: 

/etc/systemid: 
AltosS86 

/usr/lib/uucp/L-devices: 
ttyS 0 9688 

/usr/lib/uucp/L.sys: 
Altos86 Any ttyS 9688 ttyS ogin:-... M-ogin: ...... M-ogin:uucp 

/usr/lib/uucp/USERFILE: 
root, / 
, /usr /tmp 

/usr/lib/crontab: 
o 0-23 * * * /usr/lib/uucp/uucico -rl -sAltos86 
8 4 * * * /usr/lib/uucp/uuclean -pTM 

Files on the 8611: 

/etc/systemid: 
Altos86 

/usr/lib/uucp/L-devices: 
ttyS 0 9688 

/usr/lib/uucp/L.sys: 
Altos586 Never ttyS 9688 ttyS 

/usr/lib/uucp/USERFILE: 
root, / 
, /usr /tmp 

/usr/lib/crontab: 
8 4 * * * /usr/lib/uucp/uuclean -pTM 

C-ll 



IF YOU HAVE SPECIAL REQUIREMBftS 

If you can't use the suggested entries, the following subchapters 
give instructions on prepar ing each file. This chapter is 
organized as follows: 

Assigning System Names 

Defining the Communications Line Characteristics 

Supplying the Login Information 

Defining the File Accessibility 

Assigning the System Names 

Uucp needs a unique name for each system. The names identi fy each 
system in commands and during the login. To assign a system 
name, use an editor to add a line to the file /etc/syste.id. 
This line should contain a single word entry that can be any 
legal UNIX name. The name cannot be the same name as any other 
system name that this system will communicate with through uucp. 

Defining the Ca.munications Line Characteristics 

Uucp needs certain information about the communications line it 
will use. To· provide this information, edit the file 
/usr/lib/uucp/L-devices on each system to add a line of this 
format: 

format for both systems: 

port call-unit baud-rate 

where: 

port 

call-unit 

baud-rate 

This entry: 

tty5 0 9600 

names the port to be used. 

Enter a " (zero) for this field. 

gives the baud rate of the line. If the 
systems are directly connected, the baud rate 
is 9600. 

states that the line connects through port tty5 and has a baud 
rat e 0 f 96 00. 

If the communications line can operate at more than one baud 
rate, you must include a separate entry for each baud rate as 
done here: 

C-12 



tty5 0 300 
tty5 0 600 

Supplying the Login Information 

Uucp needs certain information to establish a connection between 
the systems. To provide this information, edit the file 
/usr/lib/uDCp/L.Sys ,to add a line of this format: 

format for the 586 system: 

system-name time port baud-rate phone login 
format for the 8600 system: 

system-name time port baud-rate phone 

where: 

system-name 

time 

port 

baud-rate 

phone 

login 

gives the name assigned to the other system 
in ita /etc/systemid file. 

gives the times that the uucp program is to 
try to login to the other system. For 586 
system, state Any. This has uucp establish 
the connection any time you call it. For the 
8600 system, state Rever. This prevents the 
8600 from ever making the connection. 
names the port through which the connection 
is made to the other system. The port name 
must match the port name given in the 
system's /usr/lib/uucp/L-devices file. 

gives the baud rate that is to be used. The 
baud rate must match one of the baud rates 
given for the port in the system's 
/usr/lib/uucp/L-devices file. 

must be the same name given for the port 
field of this entry. 

for the 586 only, consists of a series of 
fields telling uucp how to login to the 8600 
system. The entry should be: 

ogin:-AM-ogin:-AM-ogin: uucp 

The AM characters in the string are carriage 
returns (CONTROL-M) embedded with the string. 
These carriage returns must appear within the 
file as shown. See the UNIX documentation 
for information on how to embed control 
characters within strings using your editor. 

C-l3 



Defining the File Accessibility 

Uucp needs permission to access files on either system. To 
provide permission, edit the file /usr/lib/uucp/USERFILE on each 
system to lines of this format: 

format for both systems: 

root, I 
, lusr Itmp 

where: 

root, I 

, lusr Itmp 

gives the superuser on either system access 
to any file in any directory through uucp. 

gives any non-superuser on either system 
access to any file in any daughter directory 
of the lusr Itmp directories through uucp. 

C-14 



DXSABLIS &lID BllABLDG BB ft'r PO~ 

Before testing the uucp network and copying files using uucp, 
the following steps must be performed: 

1. On the 586, enter: 

disable /dev/tty5 (CIl> 

Substitute the name of the port you're using in this command 
if the connection to the 8688 isn't through port tty5. 

2. On the 8688, enter: 

enable /dev/tty5 (CR) 

If necessary, substitute the name of the port you're using 
in this command. 



Before you begin copying files from the 8600 to the 586, you 
should test the network by copying a single file. If the copy 
succeeds, you can start copying over the bulk of your files. If 
it doesn't succeed, you must check your connection and your 
configuration files. 

The test copies the file /etc/passwd from the 586 to the the file 
/tmp/passwd on the 8600. To conduct the test, follow these steps: 

1. Boot and become a superuser (root) 'on both systems. 
I 

2. On the 586, enter: 

uucp /etc/passvd Altos86\1/tIIp/passvd <CR> 

Substitute the system name you gave the 8600 in this command 
if you didn't name it Altos8600 in its /etc/systemid file. 

3. The copy takes about one minute to complete. After that 
time, on the 8600, enter: 

cat /tmp/passwd <CR> 

If cat shows that the file /tmp/passwd contains the contents 
of the file /etc/passwd on the 586, then the uucp copy 
worked. If the /tmp/passwd file doesn't exist or is empty, 
then the copy didn't work. 

If the copy works, then go on to the chapter "Copying Files Using 
Uucp." If the copy didn't work, check the connection between the 
two systems. Once you're sure that the cable is prope rly 
connected (and that nothing is wrong with the cable) try the 
steps above again. If they still don't work, check the contents 
of the configuration files you prepared. Once you're sure that 
they are correct, again try the copy. 

If you still have problems, use the informa tion below to try to 
debug your setup. These steps describe what happens when uucp 
performs a copy. By looking at the files mentioned, you should 
be able to determine where the problem lies. Then turn to the 
OBXX progra •• :er's Manual. It contains more information on uucp 
that should be helpful for solving your problem. 

When uucp performs the copy, these steps should occur: 

1. The uucp program creates two files in the 586's 
/usr/spool/uucp directory. The first, D.Altos8600n0001, 
contains a copy of the file /etc/passwd. The second file, 
C.Altos8600n0001, contains control information. (The names 
of these files will be different if you didn't assign the 
name Altos86 to the 8600J 

C-l6 



Uucp also places the message, "QUEUED (C.Altos8600n090l)" in 
the file /usr/spool/uucp/LOGFILE on the 586. 

At the end of this step, the program uucp stops execution. 

If a file /usr/spool/uucp/STST* exists on the 586, remove it 
before retrying the procedure. 

2. The program uucico then begins execution. Its first task is 
to examine the 586 file /usr/lib/uucp/L.SYS. The entry in 
the file tells uucico to immediately login to the 8600. The 
following steps occur as part of the login: 

Uucico sends a carriage return to the 8600, which 
should respond with a login message. Uucico then logs 
in on the 8600. 

The uucico program on the 586 executes the uucico 
program on the 8600. 

The uucico program on the 586 creates two temporary 
files in the 586's /usr/spool/uucp directory that are 
prefixed with "LCR". 

Uucico on the 586 places the message "SUCCEEDED (call 
to Altos86)" in the 586 file /usr/spool/uucp/LOGFILE. 

3. The uucico program on the 586 checks its spool directory and 
learns that it should transfer a file -from the 586 to the 
8600. The message "REQUEST (S /etc/passwd /tmp/passwd 
username) is placed in the /usr/spool/uucp/LOGFILE files on 
both systems. 

4. Uucico on the 586 transfers the file D.Altos8600nOOOl, which 
is a copy of /etc/passwd, from the 586 to the 8600. The 
uucico program on the 8600 places the file in the directory 
/usr/spool/uucp. It then moves the file to the file 
/tmp/passwd. 

5. The message "REQUEST (SUCCEEDED)" is placed in the 
/usr/spool/uucp/LOGFILE files on both systems. 

C-17 



COPYIBG PILES USIBG UUCP 

After you've tested the connection and the configuration files, 
you can begin copying files from the 8600 to the 586. Follow 
these steps to do the copying: 

1. Turn on and boot both systems. Log in as the superuser on 
both systems. 

2. If any of the 8600 files you want to copy aren't part of the 
8600 directories, copy them into a directory. (These typi­
cally would be files that you've copied onto a diskette or 
tape using the tar command.) 

3. Use the uucp command on the 586 to copy files from the 8600 
to the 586. The last chapter in this appendix, nUsing the 
Uucp Command," gives instructions on using the uucp command. 
You can use the uucp command as many times as necessary to 
copy files. 

C-18 



OSIBG mE UOCP COIIIlA.ND 

Once you've enabled and disabled the ports, you can begin using 
uucp to copy files. The basic format of the uucp command is: 

uucp [-d] Altos86lsource-file destination-file <CR> 

where: 

-d 

Altos86 

source-file 

is an optional parameter that has uucp 
create, if necessary, all necessary 
directories to place the source file(s) in 
the destination file given 

gives the name you assigned to the 8699 in 
its /etc/systemid file. You must follow the 
system name with an exclamation mark (1). 

gives the name of the source file or files to 
be copied from the 8699. The name must 
include the pathname to the directory that 
contains the file or files. The name can 
include the metacharaters ? * [] that the 
8600 will expand. Uucp will copy every file 
whose name fits in the expanded name. 

destination-file 

gives the name of the file into which uucp 
will place the contents of the source file. 
If a pathname is given, uucp places the 
copied file into the named directory. 
Otherwise, the copied file goes into the 
current directory. If more than one file is 
copied, then the copied files are placed into 
files of the same name as the files on the 
8690 system. 

Let's say that you want to copy the entire contents of the 
directory /usr/marketing/reports from the 8600 to a directory of 
the same name on the 586. You would use this command on the ACS 
8600: 

uucp -d /usr/aarketing/reports/* Altos586\1/usr/marketing/reports <CR> 

Theasterick (*) following the Altos86 pathname has uucp copy all 
the files in the directory. The -d has uucp create the directory 
/usr/marketing/reports on the 586 if it doesn't already exist. 

C-19 



OSING MODgS WID ALms JUII sYS'lEMS 

The ..cJl and ~ programs can be used for local dedicated point­
to-point communication between computers in the same office, or 
for remote communication over telephone lines, in which case a 
modem must be used at both ends of the connection. Most commer­
cially available asynchronous modems can be attached to an Altos 
XENIX system using a standard computer-to-modem cable. Examples 
of modems which have been used successfully with Altos systems 
include Racal-Vadic, Cermatek, and Hayes. Figure C-3 shows the 
Altos XENIX system connected to another system via a modem. 

MODEM TELEPHONE 

ACS8600 
CABLE I MODEM I LINE 

I I ANOTHER 
OR COMPUTER 

ACS586 
ANY 
PORT 

CONSOLE 

Figure C-3. Altos XENIX System with Modem 

A special cable (usually called a "computer to modem" cable) must 
be used to attach a modem to either the ACS 8600 or the 586. 
Most modem manufacturers and cable manufacturers supply these 
cables as off-the-shelf items. However, if the proper cable 
cannot be found, it may be necessary to build your own cable. To 
assist you, the RS-232C pins used by the 8600 and the 586 are 
shown in Figure C-4. 

C-28 



~ 

... 
RS-232C 

CONNECTOR 
ONTHE ... 

586 OR THE 
-8600 

... 

TD .. 
~ 

RD 

RTS 

CTS .. 

DSR 

GND ... -
DCD ... 

~ 

DTR 

2 USUALLY CONNECTED TO PIN 3 ON THE MODEM 

3 USUSALL Y CONNECTED TO PIN 2 ON THE MODEM 

4 USUALLY CONNECTED TO PIN 5 ON THE MODEM 

5 USUALLY CONNECTED TO PIN 4 ON THE MODEM 

6 USUALLY CONNECTED TO PIN 20 ON THE MODEM 

7 USUALLY CONNECTED TO PIN 7 ON THE MODEM 

8 USUALLY NOT CONNECTED 

10 USUALLY CONNECTED TO PIN 6 ON THE MODEM 

Figure C-4. RS-232C Connector Pin Assignments 

Modems can be used with ~ or uucp. To use a modem without auto­
dial capability, manually dial the desired number to establish 
the connection. Then execute the cu command or one or more uucp 
commands. ~ and ~ will operate normally. At the conclusion 
of the session, you must manually dis-establish the telephone 
connection (i.e., hang up the phone). 

Modems with auto-dial capability can also be used. To use cu, 
simply execute the cu command. Most modems will ask one or more 
questions in response to a particular key being pressed. The 
modem will then automatically establish the connection. 

A special program (named "dial") is necessary to use uucp with an 
auto-dial modem. An example of such a program is given on the 
next page. For example, the dial program can be invoked by the 
following entry in the file /usr/lib/crontab on the 586: 

o 0 * * * dial/dev/tty5 4085551234 /usr/lib/uucp/uucico-rl-sAtlos8E 

This entry means that the dial program will be run every night at 
midnight. The dial program automatically dials the number 408-
555-1234, and then starts the uucico program. 

C-21 



/* 
* 

" * (', ,:* 
The dial command has the format: 

dial ttyline number program 
* . [ 

J. 

\ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 

where: 

ttyline is the name of the serial line 
number is the phone number 
program is the name of the program to run 

Forexample: 

dial /dev/tty5' 4985551234 /usr/lib/uucp1uucico -rl-sAltos 

This version of dial works only with the Cermatek 212A. 

iin~lude <stdio.h> 
iin~lude <signal.h> 
iinclude <sgtty.h> 
struct sgttyb termio; 

main (argc, argv) 
int arge; 

!char **argv; 
" { 
t int cflag, fd; 
1 char *Pi , 

signal- (SIGNUP, SIG_IGN); /* Ignore hang-up si,]nal 
p, ,setbuf (stdin, (char *) 9) ; /* Don't buffer standard input 

setbuf (stdout, (char *)9); /* Don't buffer standard output 

*/ 
*/ 
*/ 
*/ ' 
*/ ' 
*/; 

setbuf (stderr, (char *)9); /* Don't buffer standard error 
signal (SIGALRM, SIG_DFL); /* Allow 69 seconds to make the 
alarm(60); /* connection 
if «fd = open (argv[l], 2» <9) { 

} 

printf ("Can't oper %s\n", argv [1]) ; 
exit(l); 

ioctl (fd, TIOCGETP, &termio); /*get the terminal I/O structure */ 
/* 

* if called as Idial, use 399 baud else use 1299 bau9_._ .... _, 
*/ . -----~-.--.:~----'-~-.. '-' ... ~---, ~ ."'-.~-\" 

. II :....---..... f ' ......... -~ 

termio.sg_ispeed = termio.sg_ospeed = (rep = rindex(argv[9], '/')} \ 

~'(, 
, \' 

? * ( ++E) : argv [ 9 ] [ 9] ) '== '1') ? B399 : B1290; 
termio.sg_flags &= -(ECHO 1 CRMOD); /* turn off echo and crmod modes 
termio.sg_flags 1= CBREAK; /* set cbreak mode 

'" ) ioctl (fd, TIOCSETP, &termio); /*restore the terminal i/o 

'y'output("\n\r\n\r", fd); 
\ wait ("NUMBER? •• ", fd); 

-C:.,output{argv[2], fd); 
--~ .. ~ toutput("\r", fd); 

.·~t.,-wait("DATA MODE.", fd); 
1"alarm(0) ; 
.1:",;,. ~'1 .' ,:...... c' 

i} ; 

/* structure 
/* enter interactive mode of modem 
/* wait for response from modem 
/* dial number 
/* output carriage return 
/* wait for response 

/* connection made, turn off 

C-22 

*/ 
*/ 
*/ .' 
*/ 
*/ 

alar] 



execvp(argv[3], &argv[3]); /* execute the remaining part of 
/* command 

} Ii.,; j.~i'i';~ ,\",.1:;'\""" ¥:I 
/* 'Output characters S LOW L Y 
output (p, fd) 

*/ 

char *p; 
int fd; 
{ 

char c; 
while (c = *p++) { 

sleep (2); 
write(fd, &c, 1); 

} 
} 
wait (s, fd) 
char *s; 
int fd; 
{ 

} 

char c; 
char *p; 
int unget = 0; 
while (1) { 

p = s; 

do { 

} 

/* point to the strings to be compared */ 
/* read until the first character matches */ 

if (unget) 
unget = 0; 

else 
read (fd, &c, 1); 

} while (c 1= *p); 
while (1) { 

/* done if last character */ 
if (*++p == '\0') { 

return; 
} 

/* read in the next character */ 
read (fd, &c, 1); 

/* if the next character doesn't compare •• 8 */ 

} 

if (*p ! = c) { 

} 

/* start allover again */ 
unget = 1; 
break; 

C-23 

* I 
* I 





Appendix D: 

8186 ASSBllBLY LAIIGOAGB REPBRBRCB IIAROAL 

The following pages represent an 8986 Assembly Language Reference 
Manual extracted with permission from a Microsoft, Inc. publica­
tion. The section numbers of this excerpt reflect the 
enumeration of the original publication. 

D-l 



8086 Assembler Reference Manual 

~. Introduction 

Microsoft Corporation. 
XENIX Support Group 

10700 Northup Ave. 
Bellevue, WA 98004 

This document describes the usage and input syntax of 
the XENIX 8086 assembler ~. 

The input syntax of the XENIX 8086 assembler is gen­
erally similar to that of the UNIX PDP-II assembler ~. 

AQ is an assembler which produces an output file that 
contains relocation infor~ation and a complete symbol table. 
The output is acceptable to the XENIX link-editor.lJ;i, which 
may be used to combine the outputs of several assembler runs 
and to obtain object programs from libraries. The output 
format has been designed so that if a progr~ contains no 
unresolved references to external symbols, it is executable 
without further processing • 

.2.. Usage 

~ is used as follows: 

as ( -1 ] [ -0 output ] ~ 

If the optional "-1" argument is given, an assembly list­
ing is produced which includes the source, the assembled 
(binary) code, and any assembly errors, and placed in 
.fli.e.L. 

The assembler is expecting the source input to be in 
.fli.e • .a., where .f.ll.e is any valid XENIX filename. The output 
of the assembler is by default placed on the file ~ • .Q. in 
the current directory; the "-0" flag causes the output to 
be placed on the named ~. 

D-2 



~. Lexical conventions 

Assembler tokens 
(alternatively,"symbols" or 
operators. 

~.~. Identifiers 

include 
"names"), 

identifiers 
constants, and 

An identifier consists of a sequence of 
alphanumeric characters (including period '.' and 
underscore '_'as alphanumeric) of which the first may 
not be numeric. Only the first eight characters are 
significant. The case of alphabetics in identifiers is 
significant. 

~.2. Constants 

A hex constant consists of a sequence of digits 
and the letters "4", "h", "~'I, "~II, "~II, and 
"~II (any of which may be capitalized), preceeded by 
the character 'I'. The letters are interpreted with 
the following values: 

HEX DECIMAL 
A IB 
B 11 
C 12 
D 13 
E 14 
F 15 

An octal constant consists of a series of digits, 
preceeded by the tilde character "-I I. The digits 
must be in the range from ~ to 2. 

A decimal constant consists simply of a sequence 
of digits. The magnitude of the constant should be 
representable in ~ bits; i.e., be less than 32,768. 

~.~. Blanks 

Blank and tab characters may be freely inter­
spersed between tokens, but may not be used within 
tokens (except in character constants). A blank or tab 
is required to separate adjacent identifiers or con­
stants not otherwise separated. 

~.~. Comments 

The character 'I I introduces a comment, which 
extends through the end of the line on which it 
appears. Comments are ignored by the assembler. 

D-3 



.!. Segments 

Assembled code and data fall into three segments: the 
text segment, the data segment, and the bss segment. The 
text segment is the one in which the assembly begins, and it 
is the one into which instructions are typically placed. 
The XENIX system will, if desired, enforce the purity of the 
text segment of programs by trapping write operations into 
it. Object programs produced by the assembler must be pro­
cessed by the link-editor ~ (using its '_~I flag) if the 
text segment is to be write-protected. A single copy of the 
text segment is shared among all processes executing such a 
program. 

The data segment is available for placing data or 
instructions which will be modified during execution. Any­
thing which may go in the text segment may be put into the 
data segment. In programs with write-protected, sharable 
text segments, the data segment contains the initialized but 
variable parts of a program. If the text segment is not 
pure, the data segment begins immediately after the text 
segment; if the text segment is pure, the data segment is in 
an address space of its own, starting at location zero (B). 

The bss segment may not contain any explicitly initial­
ized code or data. The length of the bss segment (like that 
of text or data) is determined by the high-water mark of the 
location counter within it. The bss segment is actually an 
extension of the data segment and begins immediately after 
it. At the start of execution of a program, the bss segment 
is set to B. The advantage in using the bss segment for 
storage that starts off empty is that the initialization 
information need not be stored in the output file. See also 
location counter and assignment statements below. 

~. ~ location counter 

The special symbol, '.', is the location counter. Its 
value at any time is the offset within the appropriate seg­
ment from the start of the statement in which it appears. 
The location counter may be aSSigned to, with the restric­
tion that the current segment may not change; furthermore, 
the value of ' • I may not decrease • If. the effect of the 
assignment is to increase the value of ' • " the required 
number of null bytes are generated (but see Segments above) • 

.[. Statements 

A source program is composed of a sequence of state­
ments. Statements are separated by new-lines. There are 
four kinds of statements: null statements, expression state­
ments, aSSignment statements, and keyword statements. 

The format for most 8B 86 assembly language source 

D-4 



statements is: 

[<label field>] 2R-~ [<operand field>] [<comment>] 

Any kind of statement may be preceded by one or more labels • 

.[.~. Labels, 

There are two kinds of labels: name labels and 
numeric labels. A name label consists of a identifier 
followed by a colon (:). The effect of a name label is 
to aSSign the current value and type of the location 
counter '.'1 to the name. An error is indicated in 
pass 1 if the name is already defined1 an error is 
indicated in pass 2 if the '., value assigned changes 
the definition of the label. 

A numeric label consists of a string of digits ~ 
to ~ and dollar-~ ($) fOllowed by a colon (:). Such 
a label serves to define local symbols of the form 
'n$', where n is the digit of the label. The scope of 
the numeric label is the labelled block in which it 
appears. As an example, the label ~$ is defined only 
between the labels £oobar and ~: 

£oobar: 
~$: .byte ~ 

• 
• 
• 

.f..Q.Q. : .lfQ..t.d .a 

As in the case of name labels, a numeric label assigns 
the current value and type of '., to the symbol • 

.[.~. ~. statements 

A null statement is an empty statement (which may, 
however, have labels and a comment). A null statement 
is ignored by the assembler. Common examples of null 
statements are empty lines or lines containing only a 
label • 

.[.~. Expression statements 

An expression statement consists of an arithmetic 
expression not beginning with a keyword. The assembler 
computes its value and places it in the output stream, 
together with the appropriate relocation bits • 

.[.~. Assignment statements 

An assignment statement consists of an identifier, 
an equal sign (=), and an expression. The value and 

0-5 



type of the expression are assigned to the identifier. 
It is not required that the type or value be the same 
in pass 2 as in pass 1, nor is it an error to redefine 
any symbol by assignment. 

Any external attribute of the expression is lost 
across an assignment. This means that it is not possi­
ble to declare a global symbol by assigning to it, and 
that it is impossible to define a symbol to be offset 
from a non-locally defined global symbol. 

As mentioned, it is permissible to ~ssign to the 
location counter '.'. It is required, however, that 
the type of the expression assigned be af the same type 
as " .', and it is forbidden to decrease the value of 
'.'. In practice, the most common assignment to 
, .' has the form'.= .+n· for some number .n; this has 
the effect of generating .n null bytes. 

~.~. Keyword statements 

Keyword statements are numerically the most common 
type, since most machine instructions are of this sort. 
A keyword statement begins with one of the many prede­
fined keywords of the assembler; the syntax of the 
remainder depends on the keyword. All the keywords are 
listed below with the syntax they require. 

2. Expressions 

An expression is a sequence of symbols representing a 
value. Its constituents are identifiers, constants, and 
operators. Each expression has a type. 

Arithmetic is 
equal precedence, 
left to right. 

two's complement. All operators have 
and expressions are evaluated strictly 

2.~. Expression operators 

The operators are: 

operator 

(blank) 
+ 

* 
/ ,. 
& 
! 
> 
< 

Description 

same as + 
Addition 
Subtraction 
Multiplication 
Division 
Modulo 
Logical AND 
Logical OR 
Right Shift· 
Left Shift 

D-6 



Logical NOT 

2.2.. Types 

The assembler deals with expressions, each of 
which may be of a different type. Most types are 
attached to the keywords and are used to select the 
routine which treats that keyword. The types likely to 
be met explicitly are: 

undefined 
Upon first encounter, each symbol is 
undefined. It may become undefined if 
it is assigned an undefined expression. 

undefined external 

absolute 

text 

data 

A symbol which is declared .globl but 
not defined in the current assembly is 
an undef1ned external. If such a symbol 
is declared, the link editor ~ must be 
used to load the assembler's output with 
another routine that defines the unde­
fined reference. 

An absolute symbol is defined ultimately 
from a constant. Its value is unaf­
fected by any possible future applica­
tions of the link-editor to the output 
file. 

The value of a text symbol is measured 
with respect to the beginning of the 
text segment of the program. If the 
assembler output is link-edited, its 
text symbols may change in value since 
the program need not be the first in the 
link editor's output. Most text symbols 
are defined by appearing as labels. At 
the start of an assembly, the value of 
, .' is text ". 

The value of a data symbol is measured 
with respect to the origin of the data 
segment of a program. Like text sym­
bols, the value of a data symbol may 
change during a subsequent link-editor 
run since previously loaded programs may 
have data segments. After the first 
.data statement, the value of '.' is 
data" • 

D-7 



bss 
The value of a bss symbol is measured 
from the beginning of the bss segment of 
a program. Like text and data symbols, 
the value of a bss symbol may change 
during a subsequent link-editor run, 
since previously loaded programs may 
have bss segments. After the first .bss 
statement, the value of "." is bss 9. 

external absolute, text, data, or bss 
Symbols declared .globl but defined 
within an assembly as absolute, text, 
data, or bss symbols may be used exactly 
as if they were not declared .globl1 
however, their value and type are avail­
able to the link editor so that the pro­
gram may be loaded with others that ref­
erence these symbols. 

other types 
Each keyword known to the assembler has 
a type which is used to select the rou­
tine which processes the associated key­
word statement. The behavior of such 
symbols when not used as keywords is the 
same as if they were absolute. 

2.~. ~ propagation in expre§sions 

When operands are combined by expression opera­
tors, the result has a type which depends on the types 
of the operands and on the operator. The rules 
involved are complex to state but were intended to be 
sensible and predictable. For purposes of expression 
evaluation the important types are 

undefined 
absolute 
text 
data 
bss 
undefined external 
other 

The combination rules are then: If one of the operands 
is undefined, the result is undefined. If both 
operands are absolute, the result is absolute. If an 
absolute is combined with one of the "other types" 
mentioned above, the result has the other type. If two 
operands of ... 'other type" are combined, the result has 
the numerically larger type. An 'other type' combined 
with an explicitly discussed type other than absolute 
acts like an absolute. 

0-8 



Further rules applying to particular operators 
are: 

+ If one operand is text-, data-, or bss-segment 
relocatable, or is an undefined external, the 
result has the postulated type and the other 
operand must be absolute. 

If the first operand is a relocatable text-, 
data-, or bss-segment symbol, the second operand 
may be absolute (in which case the result has the 
type of the first operand); or the second operand 
may have the same type as the first (in which case 
the result is absolute). If the first operand is 
external undefined, the second must be absolute. 
All other combinations are illegal. 

others 
It is illegal to apply these operators to any but 
absolute symbols. 

~. Pseudo-operations 

The keywords listed below introduce statements that 
influence the later operations of the assembler. The 
metanotation 

[ stuff ] ••• 

means that 9 or more instances of the given stuff may 
appear. Also, boldface tokens are literals, italic words 
are substitutable. 

~.~ .. ~ 
If the location counter '.1 is odd, it is advanced 

by one so the next statement will be assembled at a 
word boundary. This is useful for forcing storage 
allocation to be on a word boundary after a .byte or 
.ascii directive. 

~.~. .float, .double 

.float 31459E4 

The .float psuedo operation accepts as its operand 
an optional string of tabs and spaces, then an optional 
sign, then a string of digits optionall~ containing a 
decimal point, them an optional 'e l or EI, followed by 
an optionally signed integer. The string is inter­
preted as a floating point number. The difference 
between .float and .double is in the number of bytes 

D-9 



for the result; .float sets aside four bytes, while 
.double sets aside eight bytes • 

.B. • .l. • globl 

.globl ~ [ , name 1 • • • 

This statement makes the names external. 'If they 
are otherwise defined (by assignment or appearance as a 
label) they act within the assembly exactly as if the 
.globl statement were not given; however, the link edi­
tor ~ may be used to combine this routine with other 
routines that refer to these symbols. 

Conversely, if the given symbols are not defined 
within the current assembly, the link editor can com­
bine the output of this assembly with that of others 
which define the symbols. As discussed in 7, it is 
possible to force the assembler to make all otherwise 
undefined symbols external. 

These three pseudo-operations cause the assembler 
to begin assembling into the text, data, or bss segment 
respectively. Assembly starts in the text segment. It 
is forbidden to assemble any code or data into the bss 
segment, but symbols may be defined and ~.' moved about 
by assignment • 

.B.. 5.. .~ 

The format of the .comm is: 

.comm ARRAY 

Provided the name is not defined elsewhere, this 
statement is equivalent to .globl. That is, the type of 
~ is "undefined external' " and its size is exgres­
~. In fact the ~ behaves in the current assembly 
just like an undefl.ned external. However, the link­
editor ,lg has been special-cased so that all external 
symbols which are not otherwise defined, and which have 
a non-zero value, are defined to lie in the bss seg­
ment, and enough space is left after the symbol to hold 
exgression bytes. All symbols which become defined in 
this way are located before all the explicitly defined 
bss-segment locations • 

.B..'[. • insrt 

The format of a .insrt is: 

.insrt "filename" 

D-18 



where filename is any valid XENIX filename. Note that 
the filename must be enclosed within double quotes. 

The assembler will attempt to open this file for 
input. If it succeeds, source lines will be read from 
it until the end of file is reached. If ~ was unable 
to open the file, a Cannot ~ insert ~ error mes­
sage will be generated. 

This statement is useful for including a standard 
set of comments or symbol aSSignments at the beginning 
of a program. It is also useful for breaking up a 
large source program into easily managable pieces. 

A maximum depth of 19 (ten) files may be .insrted 
at anyone time. 

System call names are not predefined. They may be 
found in the file I~include/~.~. 

~.2. .ascii, .asciz 

The .ascii directive translates character strings 
into their 7-bit aSC11 (represented as 8-bit bytes) 
equivalents for use in the source program. The format 
of the .ascii directive is as follows: 

.ascii Icharacter stringl 

where 

character string 

I and I 

contains any character valid 
in a character constant. Obvi­
ously, a <newline> must not 
appear within the character 
string. (It can be represented 
by the escape sequence \en). 

are delimiter characters, 
which may be any character not 
appearing in character string 

Several examples follow: 

~ Code Generated: 

22 68 65 
68 65 72 
77 61 72 
2D 97 97 

6C 6C 6F 29 74 
65 22 
6E 69 6E 67 29 
29 9A 

61 62 63 64 65 66 67 

.ascii 

.ascii 

Statement: 

I"hello there n I 

nWarning-\997\997 \nn 

.ascii *abcdefg* 

D-ll 



The .asciz directive is equivalent to the .aSC11 
directive with a zero (null) byte automatically 
inserted as the final character of the string. Thus, 
when a list or text string is to be printed, a search 
for the null character can terminate the string. Null 
terminated strings are used as arguments to some XENIX 
system calls. 

~.~. .liat, .nlist 

These pseudo-directives control the assembler out­
put listing. These, in effect, temporarily override the 
"-I' switch to the assembler. This is useful when cer­
tain portions of the assembly output is not necessarily 
desired on a printed listing • 

• list turns the listing on 
.nlist. turns the listing off 

The .~ and .~ directives are used to reserve 
blocks of storage: .blkb reserves bytes, .blkw reserves 
words. 

The format is: 

.blkb (expression] 

.blkw (expression] 

where expression is the number of bytes or words to 
reserve. If no argument is given a value of 1 is 
assumed. The expression must be absolute, and defined 
during pass 1. 

This is equivalent to the statement ..... =.+expres­
~II, but has a much more transparent meaning. 

The .~ and .ll2..tJ1 directives are used to reserve 
bytes and words and to initialize them with certain 
values. 

The format is: 

.byte [expression] 

.word (expression] 

The .~ directive reserves one byte for each expres­
sion in the operand field and initializes the value of 
the byte to be the low-order byte of the corresponding 
expression. 

D-12 



For example, 

.byte ~ reserves an byte, with a value 
of zero. 

state: • byte ~ reserves a byte with a zero 
value called state. 

The semantics for .~ are identical, except that 
l6-bit words are reserved and initialized • 

.a. .ll. . .end 

The • .end directive indicates the physical end of 
the source program. The format is: 

.end [expression] 

where expression is an optional 
present, indicates the entry pOint 
the starting poine for execution. 
of a program is not specified 
defaults to zero. 

argument which, if 
of the program, i.e. 
If the entry point 
during assembly, it 

Every source program must be terminated with a 
• end statement. Inserted files which contain a .end 
statement will terminate assembly of the entire pro­
gram, not just the inserted portion. 

~. Instruction Syntax 

The 8~86 instructions treat different types of operands 
uniformly. Nearly every instruction can operate on either 
byte or word data. In the table that follows, with some not­
able execeptions, an instruction that operates on a byte 
operand will have a b suffix on the opcode. 

The 8~86 instruction mnemonics which follow are imple­
mented by the Microsoft 8086 assembler desribed in this 
document. Some of the opcodes are not found in any other 
8086 manual. 

For example, this document describes branch instruc­
tions not found in any 8~86 manual. The branch instructions 
expand into a jump on the inverse of the condition speci­
fied, followed by an an unconditional intra-segment jump. 
The operand field format for the branch opcodes is the same 
as the operand field for the jump long opcodes. The opcodes 
which are implemented only in this assembler will be anno­
tated by an asterisk, and will be fully defined and 
described in this document. 

8086 Assembler Opcodes 

D-13 



Opcode 

Opcode 

aaa 
aad 
aam 
aas 
adc 
adcb 
add 
addb 
and 
andb 
*beq 
*bge 
*bgt 
*bhi 
*bhis 
*ble 
*blo 
*blos 
*blt 
*bne 
*br 
call 
calli 
cbw 
clc 
cld 
cli 
cmc 
cmp 
cmpb 
cmps 
cmpsb 
cwd 
daa 
das 
dec 
decb 
div 
divb 
hlt 
idiv 
idivb J 
imul 1 
imulb 1 
in 1 
inc .1 
incb 1 
int 1 

8086 Assembler Opcodes 

Description 

Description 

asc11 adjust for 
ascii adjust for 
ascii adjust for 
ascii adjust for 
add with carry 
add with carry 

addition 
division 
multiply 
subtraction 

add 
add 
logical AND 
logical AND 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 
long branch 

equal 
grt or equal 
grt 
on high 
high or same 
les or equal 
on low 
low or same 
less than 
not equal 

intra segment call 
inter segment call 
convert byte to word 
clear carry flag 
clear direction flag 
clear interrupt flag 
complement carry flag 
compare 
compare 
compare string 
compare string 
covert word to double word 
decimal adjust for addition 
decimal adjust for subtraction 
decrement by one 
decrement by one 
divison unsigned 
divison unsigned 
halt 
integer division 
integer division 
integer multiplication 
integer multiplication 
input byte . 
increment by one 

1 
1 
I 
1 
1 
1 
I 
1 
I 
1 
I 
1 
1 
I 
I 
1 
1 
I 
I 
I 
I 

I 
1 
1 
1 
1 
I 
I increment by one 

interrupt __ . __ --1. 
D-14 



I 8886 Assembler Opcodes 
I 

Description I Opcode 
I 
I into interrupt if overflow 
I inw input word 
I iret interrupt return 
I j short jump 
I ja short jump if above 
I jae short jump if above or equal 
I jb short jump if below 

jbe short jump if below or equal 
jcxz short jump if ex is zero 
je short jump on equal 
jg short jump on greater than 
jge short jump greater than or equal 
jl short jump on less than 
jle short jump on less than or equal 
jmp jump 
jmpi inter segment jump 
jna short jump not above 
jnae short jump not above or equal 
jnb short jump not below 
jnbe short jump not below or equal 
jne short jump not equal 
jng short jump not greater 
jnge short jump not greater or equal 
jnl short jump not less 
jnle short jump not less or equal 
jno short jump not overflow 
jnp short jump not parity 
jns short jump not sign 
jnz short jump not zero 
jo short jump on overflow 
jp short jump if parity 
jpe short jump if parity even 
jpo short jump if parity odd 
js short ~ump if signed 
jz short Jump if zero 
lahf load AH from flags 
Ids load pointer using DS 
lea load effective address I 
les load pointer using ES I 
lock lock bus I 
lodb load string byte I 
lodw load string word I 
loop loop short label I 
loope loop if equal I 
loopne loop if not equal I 
loopnz loop is not zero I 
loopz loop if zero I 
mov move J 
movb move byte I 
mQ~~ mQ~e ~t;tiD9 J 

D-15 





I 
I 

8086 Assembler Opcodes 

I Opcode 
I 

Description 

I wait 
I xchg 

wait while TEST pin 
exchange 

I xchgb 
I xlat 

exchange 
translate 

I xor 
I xorb 

xclusive OR 
xclusiye OR 

.2..~. Addressing Modes 

The 8086 assembler provides many different ways to 
access instruction operands. Operands may be contained 
in registers, within the instruction itself, in memory, 
or in I/O ports. In addition, the addresses of memory 
and I/O port operands can be calculated in several dif­
ferent ways • 

.2..~.~. Register Operands 

Instructions that specify only register 
operands are generally the most compact and 
fastest executing of all the instruction forms. 
This is because the register 'addresses' are 
encoded in the instructions with just a few bits, 
and because these operations are performed 
entirely within the CPU. Registers may serve as 
source operands, destination operands, or both. 

EXAMPLES OF REGISTER ADDRESSING 

sub cx,di 
mov ax,/3*4 
mov /3*4,ax 
mov ax,*l 

.2..~.2.. Imme~ti.ate Qpetaoaa 

Immediate operands are constant data con­
tained in an instruction. The data may be either 
8 or 16 bits in length. Immediate operands can be 
accessed quickly because they are available 
directly from the instruction queue; it is possi­
ble that no bus cycles will be needed to obtain an 
immediate operand. An immediate operand is always 
a constant value and can only be used as a source 
operand. 

The assembler can accept both 8 and 16 bit 

D-17 



operands. It does not do any checking on the 
operand size, but determines the size of the 
operand by the following symbols: 

*expr 
#expr 

an 8 bit immediate 
a 16 bit immediate 

EXAMPLES OF IMMEDIATE ADDRESSING 

mov cx,*PAGSIZ 
mov cx,#l 
mov map, #/2 
add ax,*4 

~.~. Memory Addressing Modes 

When reading or writing a 
called the offset is required. 
called the effective address is 
in bytes from the beginning of 
resides. 

~.~.~. Direct Addressing 

memory operand, a value 
This offset value, also 
the operand's distance 
the segment in which it 

Direct addressing is the simplest memory 
addressing mode since no registers are involved. 
The effective address is taken directly from the 
displacement field of the instruction. It is typ­
ically used to access simple (scalar) variables. 

EXAMPLES OF DIRECT ADDRESSING 

call savstk 

~.~.~. Register Indirect Addressing 

The effective address of a memory operand may 
be taken from a base or index register. One 
instruction can operate on many different memory 
locations if the value in the base or index regis­
ter is. updated appropriately. Indirect addressing 
is denoted by an ampersand @ preceding the 
operand. 

EXAMPLES OF INDIRECT ADDRESSING 

call @moncall 

D-18 



~.2.~. Based Addressing 

In based addressing, the effective address is 
the sum of a displacement value and the content of 
register bx or bp. Based addressing also provides 
a straightforward way to address structures which 
may be located in different places in memory. A 
base register can be pointed at the base of the 
structure and elements of the structure addressed 
by their displacements from the base. Different 
copies of the same structure can be accessed by 
simply changing the base register. 

EXAMPLES OF BASED ADDRESSING" 

push *6(bp) 

~.2.~. Indexed Addressing 

In indexed addressing, the effective address 
is calculated from the sum of a displacement plus 
the content of an index register. Indexed 
addressing often is used to access elements in an 
array. The displacement locates the beginnning of 
the array, and the value of the index register 
selects one element. Since all array elements are 
the same length, simple arithmetic on the index 
register will select any element. 

EXAMPLES OF INDEXED ADDRESSING 

mov cat, (bx) 

~.2.~. Based Indexed Addressing 

Based indexed addressing generates an effec­
tive address that is the sum of a base register, 
an index register, and a displacement. Based 
indexed addressing is a very flexible mode because 
two address components can be varied at execution 
time. 

Based indexed addressing provides a con­
venient way for a procedure to address an array 
allocated on a stack. Register bp can contain the 
offset of a reference point on the stack, typi­
cally the top of the stack after the procedure has 
saved registers and allocated local storage. The 
offset of the beginning of the array from the 
reference point can be expressed by a displacement 
value, and an index register can be used to access 
individual array elements. 

D-19 



EXAMPLES OF BASED INDEXED ADDRESSING 

mov (bx) (dx),_sym 
mov *2(bx} (dx),_sym 
mov t/lSS(bx)(dx),_~m 

li. piagnostics 

When syntactic errors occur, the line number and 
the file in which they occur is displayed. Errors in 
pass 1 cause cancellation of pass 2. 

***ERROR*** syntax error, line XX 
filA: ~ errors 

where XX represents the line number(s) in error, and ~ 
represents the total number of errors. 

0-21 



Appendix E: 

mmRIAL .um REFERBRCE MATERIAL 
(URIVBRSIft' OF CALIFORRIA, BBBKBLBY, BERKELEY MAIIOALS) 

On the following pages is informational material developed at the 
University of California, Berkeley. The material is supplied 
under license from the Regents of the University. 

An Introduction to tbe C Sbell 

An Introduction to Display Editing with Vi 

Quick Reference for Ex, Vi 

Ex Reference Manual 

Edit: A Tutorial 

Ex/Edit Coeaand Sum.ary 

-ME Reference Manual 

Mail Reference Manual 

Screen Updating and Cursor Kove.ent Optimization: 
A Library Package 

E-l 



An introduction to the C shell 

ABSTRACT 

~ is a new command language interpreter for 
UNIX systems. It incorporates good features of 
other shells and a history mechanism similar to 
the ~ of INTERLISP. While incorporating many 
features of other shells which make writing shell 
programs (shell scripts) easier, most of the 
features unique to ~ are designed more for the 
interactive UNIX user. 

UNIX users who have read a general introduc­
tion to the system will find a valuable basic 
explanation of the shell here. Simple terminal 
interaction with ~ is possible after reading 
just the first section of this document. The 
second section describes the shells capabilities 
which you can explore after you have begun to 
become acquainted with the shell. Later sections 
introduce features which are useful, but not 
necessary for all users of the shell. 

Back matter includes an appendix listing spe­
cial characters of the shell and a glossary of 
terms and commands introduced in this manual. 

B-2 



An introduction to the C shell 

Introduction 

A shell is a command language interpreter. ~ is the 
name of one particular command interpreter on UNIX. The 
primary purpose of ~ is to translate command lines typed 
at a terminal into system actions, such as invocation of 
other programs. ~ is a user program just like any you 
might write. Hopefully, ~ will be a very useful program 
for you in interacting with the UNIX system. 

In addition to this document, you will want to refer to 
a copy of the "UNIX Programmers Manual. I ' The ~ documen­
tation in the manual provides a full description of all 
features of the shell and is a final reference for questions 
about the shell. 

Many words in this document are shown in italics. 
These are important words: names of commands, and words 
which have special meaning in discussing the shell and UNIX. 
Many of the words are defined in a glossary at the end of 
this document. If you don't know what is meant by a word, 
you should look for it in the glossary. 

B-3 



1.. Terminal usage .Q.f .t.b..e. shell 

1..1.. ~ basic notion .Q.f commands 

A shell in UNIX acts mostly as a medium through which 
other gommands are invoked. While it has a set of builtin 
commands which it performs directly, most useful commands 
are, in fact, external to the shell. The shell is thus dis­
tinguished from the command interpreters of other systems 
both by the fact that it is just a user program, and by the 
fact that it is used almost exclusively as a mechanism for 
invoking other programs. 

Commands in the UNIX system expect a list of strings or 
words as arguments. Thus the command 

mail bill 

consists of two words. The first word mail names the com­
mand to be executed, in this case the mail program which 
sends messages to other users. The shell uses the name of 
the command in attempting to run it for you. It will look 
in a number of diregtories for a file with the name .m.a.il 
which is expected to contain the mail program. 

The rest of the words of the command are given to the 
command itself to execute. In this case we specified also 
the word ~ which is interpreted by the mail program to be 
the name of a user to whom mail is to be sent. In normal 
terminal usage we might use the mail command as follows. 

% mail bill 
I have a question about 
My document seems to be 
Does a page five exist? 

% 
,---Bill 

the csh documentation. 
missing page 5. 

Here we typed a message to send to ~ and ended this 
message with a control-d which sent an end-of-file to the 
mail program. Themail program then transmitted our mes­
sage. The characters '% ' were printed before and after the 
mail command by the shell to indicate that input was needed. 

After typing the '% ' prompt the shell was reading com­
mand input from our terminal. We typed a complete command 
'mail bill'. The shell then executed the mail program with 
argument ~ and went dormant waiting for it to complete. 
The mail program then read input from our terminal until we 
signalled an end-of-file after which the shell noticed that 
mail had completed and signaled us that it was ready to read 
from the terminal again by printing another '% ' prompt. 

£-4 



This is the essential pattern of all interaction with 
UNIX through the shell. A complete command is typed at the 
terminal, the shell executes the command and when this exe­
cution completes prompts for a new command. If you run the 
editor for an hour, the shell will patiently wait for you to 
finish editing and obediently prompt you again whenever you 
finish editing. 

~.2. ~ arguments 

A useful notion in UNIX is that of a flaQ argument • 
. While many arguments to commands specify file names or user 

names some arguments rather specify an optional capability 
of the command which you wish to invoke. By convention, 
such arguments begin with the character '_I. Thus the com-
mand 

Is 

will produce a list of the files in the current directory. 
The option -a is the size option, and 

Is -s 

causes ~ to also give, for each file the size of the file 
in blocks of 512 characters. The manual page for each com­
mand in the UNIX programmers manual gives the available 
options for each command. The ~ command has a large number 
of useful and interesting options. Most other commands have 
either no options or only one or two options. It is hard to 
remember options of commands which are not used very fre­
quently, so most UNIX utilities perform only one or two 
functions rather than having a large number of hard to 
remember options. 

~.~. Output ~ files 

Many commands may read input or write output to files 
rather than simply taking input and output from the termi­
nal. Each such command could take special words as argu­
ments indicating where the output is to go. It is simpler, 
a.nd usually sufficient, to connect these commands to files 
to which they wish to write, within the shell itself, and 
just before they are executed. 

Thus suppose we wish to save the current date in a file 
called 'now'. The command 

date 

will print the current date on our terminal. This is 
because our terminal is the default standard output for the 
date command and the date command prints the date on its 
standard output. The shell lets us redirect the standard 

B-5 



output of a command through a notation using the metacharac­
.t.e.L. ')' and the name of the file where output is to be 
placed. Thus the command 

date ) now 

runs the ~ command in an environment where its standard 
output is the file 'now' rather than our terminal. Thus 
this command places the current date and time in the file 
'now'. It is important to know that the ~ command was 
unaware that its output was going to a file rather than to 
our terminal. The shell performed this redirection before 
the command began executing. 

One other thing to note here is that the file 'now' 
need not have existed before the ~ command was executed; 
the shell would have created the file if it did not exist. 
And if the file did exist? If it had existed previously 
these previous contents would have been discarded! A shell 
option noclobber exists to prevent this from happening 
accidentally; it is discussed in section 2.2. 

~.~. Metacharacters in ~ shell 

The shell has a large number of special characters 
(like ')') which indicate special functions. We say that 
these notations have syntaCtic and semantic meaning to the 
shell. In general, most characters which are neither 
letters nor digits have special meaning to the shell. We 
shall shortly learn a means of Quotation which allows us to 
create words which contain metacharacters and to thus work 
without constantly worrying about whether certain characters 
are metacharacters. 

Note that the shell is only reading input when it has 
prompted with '% '. Thus metacharacters will normally have 
effect only then. We need not worry about placing shell 
metacharacters in a letter we are sending via mail. 

~.5.. Input.f..t..Qm files; pipelines 

We learned above how to route the standard output of a 
command to a file. It is also possible to route the stan­
dard input of a command from a file. This is not often 
necessary since most commands will read from a file name 
given as argument. We can give the command 

sort < data 

to run the ~ command with standard input, where the com­
mand normally reads, from the file 'data'. We would more 
likely say 

sort data 
E-6 



letting the ~ command open the file 'datal for input 
itself since this is less to type. 

We should note that if we just typed 

sort 

then the sort program would sort lines from its 
input. Since we did not redirect the standard 
would sort lines as we typed them on the terminal 
typed a control-d to generate an end-of-file. 

standard 
input, it 
until we 

A most useful capability is the ability to combine the 
standard output of one command with the standard input of 
the next, i.e. to run the commands in a sequence known as a 
pipeline. For instance the command 

Is -s 

normally produces a list of the files in our directory with 
the size of each in blocks of 512 characters. If we are 
interested in learning which of our files is largest we may 
wish to have this sorted by size rather than by name, which 
is the default way in which ~ sorts. We could look at the 
many options of ~ to see if there was an option to do this 
but would eventually discover that there is not. Instead we 
can use a couple of simple options of the ~ command, com­
bining it with ~ to get what we want. 

The -n option of sort specifies a numeric sort rather 
than an alphabetic sort. Thus 

Is -s I sort -n 

specifies that the output of the ~ command run with the 
option -~ is to be piped to the command ~ run with the 
numeric sort option. This would give usa sorted list of 
our files by size, but with the smallest first. We could 
then use the -~ reverse sort option and the ~ command in 
combination with the previous command doing 

Is -s I sort -n -r I head -5 

Here we have taken a list of our files sorted alphabeti­
cally, each with the size in blocks. We have run this to 
the standard input of the ~ command asking it to sort 
numerically in reverse order (largest first). This output 
has then been run into the command ~ which gives us the 
first few lines out. In this case we have asked ~ for 
the first 5 lines. Thus this command gives us the names and 
sizes of our 5 largest files. 

The metanotation introduced above is called the ~ 
mechanism. Commands separated by 'I' characters are 

E-7 



connected together by the shell and the output of each is 
run into the input of the next. The leftmost command in a 
pipeline will normally take its standard input from the ter­
minal and the rightmost will place its standard output on 
the terminal. Other examples of pipelines will be given 
later when we discuss the history mechanism; one important 
use of pipes which is illustrated there is in the routing of 
information to the line printer. 

~.~. Filenames 

Many commands to be executed will need the names of 
. files as arguments. UNIX pa thnames consist of a number of 
components separated by 'I'. Each component except the last 
names a directory in which the next component resides. Thus 
the pa thname 

letclmotd 

specifies a file in the directory 'etc' which is a subdirec­
tory of the ~ directory 'I'. Within this directory the 
file named is 'motd' which stands for 'message of the day'. 
Filenames which do not begin with 'I' are interpreted start­
ing at the current working directory. This directory is, by 
default, your ~ directory-and can be changed dynamically 
by the chdir change directory command. 

Most filenames consist of a number of alphanumeric 
characters and '.'s. In fact, all printing characters 
except 'I' may appear in filenames. It is inconvenient to 
have most non-alphabetic characters in filenames because 
many of these have special meaning to the shell. The char­
acter '.' is not a shell-metacharacter and is often used as 
the prefix with an extension of a base name. Thus 

prog.c prog.o prog.errs prog.output 

are four related files. They share a LQ2t portion of a name 
(a root portion being that part of the name that is left 
when a trailing '.' and following characters which are not 
'.' are stripped off). The file 'prog.c' might be the 
source for a C program, the file 'prog.o' the corresponding 
object file, the file 'prog.errs· the errors resulting from 
a compilation of the program and the file 'prog.output' the 
output of a run of the program. 

If we wished to refer to all four of these files in a 
command, we could USe the metanotation 

prog.* 

This word is expanded by the shell, before the command to 
which it is an argument is executed, into a list of names 
which begin with'prog.' •. The character '*' here matches 

8-8 



any sequence (including the empty sequence) of characters in 
a file name. The names which match are sorted into the 
argument list to the command alphabetically. Thus the com­
mand 

echo prog.* 

will echo the names 

prog.c prog.errs prog.o prog.output 

Note that the names are in lexicographic order here, and a 
different order than we listed them above. The ~ command 
receives four words as arguments, even though we only typed 
one word as as argument directly. The four words were gen­
erated by filename expansion of the metasyntax in the one 
input word. 

Other metanotations for filename expansion are also 
available. The character '?' matches any single character 
in a filename. Thus 

echo ? ?? ??? 

will echo a line of filenames; first those with one 
ternames, then those with two character names, and 
those with three character names. The names of each 
will be independently lexicographically sorted. 

charac­
finally 

length 

Another mechanism consists of a sequence of characters 
between '[I and '] I. This metasequence matches any single 
character from the enclosed set. Thus 

prog.[co] 

will match 

prog.c prog.o 

in the example above. We can also place two characters 
astride a '_I in this notation to denote a range. Thus 

chap. [1-5] 

might match files 

chap.l chap.2 chap.3 chap.4 chap.5 

if they existed. This is shorthand for 

chap. [12345] 

and otherwise equivalent. 

E-9 



An important point to note is that if a list of argu­
ment words to a command (an argument ~) contains filename 
expansion syntax, and if this filename expansion syntax 
fails to match any existing file names, then the shell con­
siders this to be an error and prints a diagnostic 

No match. 

Another very important point is that the character 
at the beginning of a filename is treated specially. 
ther '*' or '?' or the '[' ']' mechanism will match 
This prevents accidental matching of the filenames '.1 

•• 1 in the current directory which have special meaning 
the system, as well as other files such as .cshrc which 
not normally visible. We will discuss the special role 
the file .cshrc later. 

, I 
• 

Nei-
it. 
and 
to 

are 
of 

Another filename expansion mechanism gives access to 
the pathname of the ~ directory of other users. This 
notation consists of the character ,-, followed by another 
users login name. For instance the word 'Nbill l would map 
to the pathname '/mnt/bill ' if the horne directory for 'bill' 
was in the directory '/mnt/bill'. Since, on large systems, 
users may have login directories scattered over many dif­
ferent disk volumes with different prefix directory names, 
this notation provides a reliable way of accessing the files 
of other users. 

A special case of this notation consists of a 'NI 
alone, e.g. '-/mbox ' • This notation is expanded by the 
shell into the file 'mbox ' in your ~ directory, i.e. into 
'/mnt/bill/mbox ' for me on the Cory Hall UNIX system. This 
can be very useful if you have used chdir to change to 
another users directory and have found a file you wish to 
copy using~. You can do 

cp thatf ile -

which will be expanded by the shell to 

cp thatfile /mnt/bill 

e.g., which the copy command will interpret as a request to 
make a copy of 'thatfile' in the directory '/mnt/bill ' • The 
'-I notation doesn't, by itself, force named files to exist. 
This is useful, for example, when using the ~ command, e.g. 

cp thatf ile - /savei t 

There also exists a mechanism using the characters '{I 
and '}I for abbreviating a set of word which have common 
parts but cannot be abbreviated by the above mechanisms 

B-18 



because they are not files, are the names of files which do 
not yet exist, are not thus conveniently described. This 
mechanism will be described much later, in section 4.1, as 
it is used much less frequently • 

.l.2. Quotation 

We have already seen a number of metacharacters used by 
the shell. These metacharacter pose a problem in that we 
cannot use them directly as parts of words. Thus the com­
mand 

echo * 

will not echo the character '*'. It will either 
sorted list of filenames in the current directory, 
the message 'No match' if there are no files in the 
directory. 

echo an 
or print 
current 

The recommended mechanism for placing characters which 
are neither numbers, digits, 'I', '.' or '_I in an argument 
word to a command is to enclose it with single quotation 
characters 'I', i.e. 

echo '*1 

There is one special character 'I' which is used by the hia= 
~ mechanism of the shell and which cannot be escaped in 
this way. It and the character 'II itself can be preceded 
by a single '\1 to prevent their special meaning. These two 
mechanisms suffice to place any printing character into a 
word which is an argument to a shell command • 

.l.~. Terminating commands 

When you are running a command from the shell and the 
shell is dormant waiting for it to complete there are a cou­
ple of ways in which you can force such a command to com­
plete. For instance if you type the command 

cat letclpasswd 

the system will print a copy of a list of all users of the 
system on your terminal. This is likely to continue for 
several minutes unless you stop it. You can send an INTER­
RUPT signal to the ~ command by hitting the DEL or RUBQUT 
key on your terminal. Actually, hitting this key sends this 
INTERRUPT signal to all programs running on your terminal, 
including your shell. The shell normally ignores such sig­
nals however, so that the only program affected by the 
INTERRUPT will be~. Since ~ does not take any precau­
tions to catch this signal the INTERRUPT will cause it to 
terminate. The shell notices that ~ has died and prompts 
you again with "% '. If you hit INTERRUPT again, the shell 

E-11 



will just repeat its prompt since it catches INTERRUPT sig­
nals and chooses to continue to execute commands rather than 
going away like ~ did, which would have the effect of log­
ging you out. 

Another way in which many programs terminate is when 
they get an end-of-file from their standard input. Thus the 
mail program in the first example above was terminated when 
we hit a control-d which generates and end-of-file from the 
standard input. The shell also terminates when it gets an 
end-of-file printing 'logout'; UNIX then logs you off the 
system. Since this means that typing too many control-d's 

. can accidentally log us off, the shell has a mechanism for 
preventing this. This ignoreeof option will be discussed in 
section 2.2. 

If a command has its standard input redirected from a 
file, then it will normally terminate when it reaches the 
end of this file. Thus if we execute 

mail bill < prepared. text 

the mail command will terminate without our typing a 
control-d. This is because it read to the end-of-file of 
our file 'prepared.text' in which we placed a message for 
'bill' with an editor. We could also have done 

cat prepared. text I mail bill 

since the ~ command would then have written the text 
through the pipe to the standard input of the mail command. 
When the ~ command completed it would have terminated, 
closing down the pipeline and the mail command would have 
received an end-of-file from it and terminated. Using a 
pipe here is more complicated than redirecting input so we 
would more likely use the first form. These commands could 
also have been stopped by sending an INTERRUPT. 

If you write or run programs which are not fully 
debugged then it may be necessary to stop them somewhat 
ungracefully. This can be done by sending them a QUIT sig­
nal, generated by a control-\. This will usually provoke 
the shell to produce a message like: 

a.out: Quit -- Core dumped 

indicating that a file 'core' has been created containing 
information about the program 'a.out's state when it ran 
amuck. You can examine this file yourself, or forward 
information to the maintainer of the program telling him/her 
where the ~ Lilg is. 

If you run background commands (as explained in section 
2.6) then these commands will. ignore INTERRUPT and QUIT 

8-12 



signals at the terminal. To stop them you must use the kill 
program. See section 2.6 for an example. 

1. • .9.. ~.D.Qlf? 

We have so far seen a number of mechanisms of the shell 
and learned a lot about the way in which it operates. The 
remaining sections will go yet further into the internals of 
the shell, but you will surely want to try using the shell 
before you go any further. To try it you can log in to UNIX 
and type the following command to the system: 

chsh myname /bin/csh 

Here 'myname' should be replaced by the name you typed to 
the system prompt of "login:' to get onto the system. Thus 
I would use 'chsh bill /bin/csh ' • ~ ~ ~ ~ ~ ~ 
~1 ~ takes effect At ~ login. You are now ready to 
try using ~. 

Before you do the "chsh' command, the shell you are 
using when you log into the system is "/bin/sh'. In fact, 
much of the above discussion is applicable to "/bin/sh'. 
The next section will introduce.many features particular to 
~ so you should change your shell to ~ before you begin 
reading it. 

B-13 



~. Details QU ~ shell ~ terminal users 

z.~. Shell startup ~ termination 

When you login, the shell is placed by the system in 
your ~ directory and begins by reading commands from a 
file .cshrc in this directory. All shells which you may 
create during your terminal session will read from this 
file. We will later see what kinds of commands are usefully 
placed there. For now we need not have this file and the 
shell does not complain about its absence. 

A login shell, executed after you login to the system, 
will, after it reads commands from .cshrc, read commands 
from a file .login also in your home directory. This file 
contains commands which you wish to do each time you login 
to the UNIX system. My .login file looks something like: 

tset -d adm3a -p adm3a 
fixexrc 
set history=2~ 
set time=3 

on the CORY Hall UNIX system. This file contains four com­
mands to be executed by UNIX each time I login. The first 
is a ~ command which informs the system that I usually 
dial in on a Lear-Siegler ADM-3A terminal and that if I am 
on a patchboard port on the fifth floor of Evans Hall I am 
probably also on an ADM-3A. The second command is a fixexrc 
which manipulates my ~ startup file in certain ways if I am 
on a dialup port. We need not be concerned with exactly 
what this command does. In general you may have certain 
commands in your • login which are particular to you. 

The next two ~ commands are interpreted directly by 
the shell and affect the values of certain shell variables 
to modify the future behavior of the shell.· Setting the 
variable ~ tells the shell to print time statistics on 
commands which take more than a certain threshold of machine 
time (in this case 3 CPU seconds). Setting the variable 
history tells the shell how much history of previous command 
words it should save in case I wish to repeat or rerun modi­
fied versions of previous commands. Since there is a cer­
tain overhead in this mechanism the shell does not set this 
variable by default, but rather lets users who wish to use 
the mechanism set it themselves. The value of 2~ is a rea­
sonably large value to assign to history. More casual users 
of the history mechanism would probably set a value of 5 or 
l~. The use of the histpry mechanism will be described sub­
sequently. 

After executing commands from .login the shell reads 
commands from your terminal, prompting for each with '% I. 

When it recei vesan end-of-file from the terminal, the shell 

E-14 



will print 'logout' and execute commands from the file 
'.logout' in your home directory. After that the shell will 
die and UNIX will log you off the system. If the system is 
not going down, you will receive a new login message. In 
any case, after the 'logout' message the shell is doomed and 
will take no further input from the terminal. 

~.~. Shell variables 

the 
The shell maintains a set of variables. We saw above 
variables history and ~ which had values '28' and 

'3'. In fact, each shell variable has as value an array of 
zero or more strings. Shell variables may be assigned 
values by the set command. It has several forms, the most 
useful of which was given above and is 

set name=value 

Shell variables may be used to store values which are 
to be reintroduced into commands later through a substitu­
tion mechanism. The shell variables most commonly refer­
enced are, however, those which the shell itself refers to. 
By changing the values of these variables one can directly 
affect the behavior of the shell. 

One of the most important variables is the variable 
~. This variable contains a sequence of directory names 
where the shell searches for commands. The ~ command 
shows the value of all variables currently defined (we usu­
ally say~) in the shell. The default value for path will 
be shown by ~ to be 

% set 
argv 
home 
path 
prompt 
shell 
status 
% 

/mnt/bill 
(. /bin /usr/bin) 
% 
/bin/csh 
8 

This notation indicates that the variable path points to the 
current directory'.' and then '/bin' and '/usr/bin ' • Com­
mands which you may write might be in '.' (usually one of 
your directories). The most heavily used system commands 
live in '/bin'. Less heavily used system commands live in 
'/usr/bin'. 

A number of new programs on the system live in the 
directory '/usr/new'. If we wish, as well we might, all 
shells which we invoke to have access to these new programs 
we can place the command 

E-15 



set path= (. /usr/new /bin /usr/bin) 

in our file .cshrc in our home directory. 
and then logging out and back in and do 

set 

Try doing this 

again to see that the value assigned to ~ has changed. 

Other useful built in variables are the variable ~ 
which shows your home directory, the variable ignoreeof 
which can be set in your .login file to tell the shell not 
to exit when it receives an end-of-file from a terminal. To 
logout from UNIX with ignoreeof set you must type 

logout 

This is one of several variables which the shell does not 
care about the value of, only whether they are ~ or unset. 
Thus to set this variable you simply do 

set ignoreeof 

and to unset it do 

unset ignoreeof 

Both ~ and unset are built-in commands of the shell. 

Finally, some other built-in shell variables of use are 
the variables noclobber and mail. The metasyntax 

> filename 

which redirects the output of a command will overwrite and 
destroy the previous contents of the named file. In this 
way you may accidentally overwrite a file which is valuable. 
If you would prefer that the shell not overwrite files in 
this way you can 

set noclobber 

in your .login file. Then trying to do 

date> now 

would cause a diagnostic if 'now' existed already. You 
could type 

date >1 now 

if you really wanted to overwrite the contents of "now' • 
The '>!' is a special metasyntax indicating that clobbering 

8-16 



the file is ok. 

If you receive mail frequently while you are logged in 
and wish to be informed of the arrival of this mail you can 
put a command 

set mail=/usr/mail/yourname 

in your .login file. Here you should change 'yourname' to 
your login name. The shell will look at this file every 10 
minutes to see if new mail has arrived. If you receive mail 
only infrequently you are better off not setting this vari­
able. In this case it will only serve to delay the shells 
response to you when it checks for mail. 

The use of shell variables to introduce text into com­
mands, which is most useful in shell command scripts, will 
be introduced in section 2.4. 

~.~. ~ shell'a history ~ 

The shell can maintain a history list into which it 
places the words of previous commands. It is possible to 
use a metanotation to reintroduce commands or words from 
commands in forming -new commands. This mechanism can be 
used to repeat previous commands or to correct minor typing 
mistakes in commands. 

Consider the following transcript: 

% where michael 
michael is on tty0 dialup 300 baud 
% write 1$ 
write michael 
Long time no see michael. 
Why don't you call me at 524-4510. 
EOF 
% 

642-7927 

Here we asked the system where michael was logged in. It 
told us he was on 'tty0' and we told the shell to invoke a 
'write' command to '1$'. This is a history notation which 
means the last word of the last command executed, in this 
case 'michael ' • The shell performed this substitution and 
then echoed the command as it would execute it. Let us 
assume that we don't hear anything from michael. We might 
do 

B-17 



% ps tf(J 
PID TTY TIME COMMAND 

4af(Ja f(J f(J:f(JS -
% 11 
ps tf(J 

PID TTY TIME COMMAND 
Slf(J4 f(J f(J:f(Jf(J - 7 

% lwhere 
where michael 
michael is not logged in 
% 

Here we ran a ~ on the teletype michael was logged in on to 
see that he had a shell. Repeating this command via the 
history substitution '11' we saw that he had logged out and 
that only a getty process was running on his terminal. 
Repeating the where command showed that he was indeed gone, 
most likely having hung up the phone in order to be able to 
call. 

This illustrates several useful features of the history 
mechanism. The form ~!1' repeats the last command execu­
tion. The form ~!string' repeats the last command which 
began with a word of which 'string' is a prefix. Another 
useful command form is ~TlhsTrhs' performing a substitute 
similar to that in .e.Q or u. Thus after 

% cat -bill/csh/sh •• c 
/mnt/bill/csh/sh •• c: No such file or directory 
% T •• (ua. 
cat -bill/csh/sh.c 
#include nsh.h" 

/* 
* C Shell 
* 
* Bill Joy, UC Berkeley 
* October, 197 a 
*/ 

char 
% 

*pathlist [] = { SRCHP 

here we used the SUbstitution to correct a typing mistake, 
and then rubbed the command out after we saw that we had 
found the file that we wanted. The substitution changed the 
two '.' characters to a single '.' character. 

After this command we might do 

% !! I lpr 
cat -bill/csh/sh.c I lpr 

£-18 



to put a copy of this file on the line printer, or (immedi­
ately after the ~ which worked above) 

% pr ! $ I lpr 
pr -bill/csh/sh.c I lpr 
% 

to print a copy on the printer using ~. 

More advanced forms of the history mechanism are also 
possible. A notion of modification on substitutions allows 
one to say (after the first successful ~ above) • 

% cd ! $: h 
cd -bill/csh 
% 

The trailing ':h' on the history substitution here causes 
only the head portion of the pathname reintroduced by the 
history mechanism to be substituted. This mechanism and 
related mechanisms are used less often than the forms above. 

A complete description of history mechanism features is 
given in the C shell manual pages in the UNIX Programmers 
t-ianual. 

2. • .i. Aliases 

The shell has an alias mechanism which can be used to 
make transformations on input commands. This mechanism can 
be used to simplify the commands you type, to supply default 
arguments to commands, or to perform transformations on com­
mands and their arguments. The alias facility is similar to 
the macro facility of many assemblers. 

Some of the features obtained by aliasing can be 
obtained also using shell command files, but these take 
place in another instance of the shell and cannot directly 
affect the current shells environment and commands such as 
chdir which must be done in the current shell. 

As an example, suppose that there is a new 
the mail program on the system called 'Mail' 
use, rather than the standard mail program which 
'mail'. If you place the shell command 

alias mail Mail 

version of 
you wish to 
is called 

in your .login file, the shell will transform an input line 
of the form 

mail bill 

into a calIon 'Mail'. More generally, suppose we wish the 

E-19 



command 'lsi to always show sizes of files, that is to 
always do '-st. We can do 

alias lsls -s 

or even 

alias dir ls -s 

creating a new command syntax 'dirt which does an 'ls -st. 
If we say 

dir -bill 

then the shell will translate this to 

ls -s /mnt/bill 

Thus the alias mechanism can be used to provide short 
names for commands, to provide default arguments, and to 
define new ·short commands in terms of other commands. It is 
also possible to define aliases which contain multiple com­
mands or pipelines, showing where the arguments to the ori­
ginal command are to be substituted using the facilities of 
the history mechanism. Thus the definition 

alias cd 'cd \1* ; ls ' 

would do an ~ command after each change directory ~ com­
mand. We enclosed the entire alias definition in 'II char­
acters to prevent most substitutions from occurring and the 
character ';' from being recognized as a parser metacharac­
ter. The '1.1 here is escaped with a '\' to prevent it from 
being interpreted when the alias command is typed in. The 
'\1*1 here substitutes the entire argument list to the pre­
aliasing ~ command, without giving an error if there were 
no arguments. The ';1 separating commands is used here to 
indicate that one command is to be done and then the next. 
Similarly the definition 

alias whois Igrep \!T /etc/passwd l 

defines a command which looks up its first argument in the 
password file. 

~.~. Detached commands; » and >& redirection 

There are a few more metanotations useful to the termi­
nal user which have not been introduced yet. The metachar­
acter '&1 may be placed after a command, or after a sequence 
of cOmmands separated by ';' or "'. This causes the shell 
to not wait for the commands to terminate before prompting 
again. We say that they are detached or backgrqund 

B-21 



processes. Thus 

% pr -bill/csh/sh.c I lpr & 
5120 
5121 
% 

Here the shell printed two numbers and came back very 
quickly rather than waiting for the ~ and ~ commands to 
finish. These numbers are the process numbers assigned by 
the system to the ~ and lRL commands.+ 

Since havoc would result if a command run in the back­
ground were to read from your terminal at the same time as 
the shell does, the default standard input for a command run 
in the background is not your terminal, but an empty file 
called '/dev/null'. Commands run in the background are also 
made immune to INTERRUPT and QUIT Signals which you may sub­
sequently generate at your terminal.* 

If you intend to log off the system before the command 
completes you must run the command immune to HANGUP signals. 
This is done by placing the word 'nohup' before each program 
in the command, i.e.: 

nohup man csh I nohup lpr & 

In addition to the standard output, commands also have 
a diagnostic output which is normally directed to the termi­
nal even when the standard output is directed to a file or a 
pipe. It is occasionally desirable to direct the diagnostic 
output along with the standard output. For instance if you 
want to redirect the output of a long running command into a 
file and wish to have a record of any error diagnostic it 
produces you can do 

command >& file 

The '>&' here tells the shell to route both the diagnostic 
output and the standard output into 'file'. of the standard 
output. Similarly you can give the command 

command 1& lpr 

+Running commands in the background like this tends to 
slow down the system and is not a good idea if the sys­
tem is overloaded. When overloaded, the system will 
just bog down more if you run a large number of 
processes at once. 
*If a background command stops suddenly when you hit 
INTERRUPT or QUIT it is likely a bug in the background 
program. 

E-21 



to route both standard and diagnostic output through the 
pipe to the line printer daemon ~.# 

Finally, it is possible to use the form 

command » file 

to place output at the end of an existing file.t 

~.~. Useful built-in commands 

We now give a few of the useful built-in commands of 
the shell describing how they are used. 

The alias command described above is used to assign new 
aliases and to show the existing aliases. With no arguments 
it prints the current aliases. It may also be given an 
argument such as 

alias Is 

to show the current alias for, e.g., ~ls'. 

The ~ and chdir commands are equivalent, and 
the working directory of the shell. It is useful to 
directory for each project you wish to work on and to 
all files related to that project in that directory. 
after you login you can do 

% pwd 
/mnt/bill 
% mkdir newpaper 
% chdir newpaper 
% pwd 
/mnt/bill/newpaper 
% 

change 
make a 
place 

Thus 

after which you will be in the directory newpaper. You can 

#A command form 

command >&1 file 

exists, and is used when noclobber is set and ~ al­
ready exists. 
tIf nQclobber is set, then an error will result if ~ 
does not exist, otherwise the shell will create ~ if 
it doesn't exist. A form 

command »! file 

makes it not be an error for file to not exist when ll.2-
clobber is set. 

£-22 



place a group of related files there. You can return to 
your 'home l login directory by doing just 

chdir 

with no arguments. We used the ~ print working directory 
command to show the name of the current directory here. The 
current directory will usually be a subdirectory of your 
home directory, and have it (here '/mnt/bill l ) at the start 
of it. 

The ~ command prints its arguments. It is often 
used in shell scripts or as an interactive command to see 
what filename expansions will yield. 

The history command will show the contents of the his­
tory list. The numbers given with the history events can be 
used to reference previ~us events which are difficult to 
reference using the contextual mechanisms introduced above. 
There is also a shell variable called prompt. By placing a 
'11 character in its value the shell will there SUbstitute 
the index of the current command in the history list. You 
can use this number to refer to this command in a history 
substitution. Thus you could 

set prompt='\! % ' 

Note that the 'I' character had to be escaped here even 
within 'I' characters. 

The logout command can be used to terminate a login 
shell which has ignoreeof set. 

The repeat command can be used to repeat a command 
several times. Thus to make 5 copies of the file ~ in the 
file ~ you could do 

repeat 5 cat one » five 

The setenv command can be used, on version 7 UNIX sys­
tems, to set variables in the environment. Thus 

setenv TERM adm3a 

will set the value of the environment variable TERM to 
'adm3a'. A user program printeny exists which will print 
out the environment. It might then show: 

% printenv 
HOME /usr/bill 
SHELL /bin/csh 
TERM adm3a 
% 

B-23 



The source command can be used to force the current 
shell to read commands from a file. Thus 

source • cshrc 

can be used after editing in a change to the .cshrc file 
which you wish to take effect before the next time you 
login. 

The ~ command can be used to cause a command to be 
timed no matter how much CPU time it takes. Thus 

% time cp 
0.0u 0.3s 
% time wc 

1200 
1.2u 0.5s 
% 

five five. save 
0: 01 26% 
five. save 

6300 37650 five. save 
0:03 55% 

indicates that the ~ command used less that 1/10th of a 
second of user time and only 3/10th of a second of system 
time in copying the file 'five' to 'five.save'. The command 
word count 'wc' on the other hand used 1.2 seconds of user 
time and 0.5 seconds of system time in 3 seconds of elapsed 
time in counting the number of words, character and lines in 
'five.save'. The percentage '55%' indicates that over this 
period of 3 seconds, our command 'wc' used an average of 55 
percent of the available CPU cycles of the machine. This is 
a very high percentage and indicates that the system is 
lightly loaded. 

The unalias and unset commands can be used to remove 
aliases and variable definitions from the shell. 

The ~ command can be used after starting processes 
with '&' to quickly see if they have finished. If the shell 
responds immediately with another prompt, they have. Other­
wise you can wait for the shell to prompt at which point 
they will have finished, or interrupt the shell by sending a 
RUB or DELETE character. If the shell is interrupted, it 
will print the names and numbers of the processes it knows 
to be unfinished. Thus: 

% nroff paper I Ipr & 
2450 
2451 
% wait 

2451 lpr 
2450 nroff 

wait: Interrupted. 
% 

You can check again later by doing another ~, or see 

E-24 



which commands are still running by doing a~. As 'time' 
will show you, ~ is fairly expensive. It is thus counter­
productive to run many ~ commands to see how a background 
process is doing.+ 

If you run a background process and decide you want to 
stop it for whatever reason you must use the kill program. 
You must use the number of the processes you wish to kill. 
Thus to stop the nroff in the above pipeline you would do 

% kill 24513 
% wait 
24513: nroff: Terminated. 
% . 

Here the shell printed a 
'nroff' only after we did 
discover the termination of 
must, in general, use ~. 

diagnostic that we terminated 
a~. If we want the shell to 
all processes it has created we 

This concludes the basic discussion of the shell for 
terminal users. There are more features of the shell to be 
discussed here, and all features of the shell are discussed 
in its manual pages. One useful feature which is discussed 
later is the for each built-in command which can be used to 
run the same command sequence with a number of different 
arguments. 

If you intend to use UNIX a lot 
through the rest of this document and 
to become familiar with the other 
available to you. 

you you should look 
the shell manual pages 
facilities which are 

tIf you do you are usurping with these .~ commands the 
processor time the job needs to finish, thereby delay­
ing its completion! 

£-25 



~. Shell control structures ~ command scripts 

~.~. Introduction 

It is possible to place commands in files and to cause 
shells to be invoked to read and execute commands from these 
files, which are called shell scripts. We here detail those 
features of the shell useful to the writers of such scripts. 

It is important to first note what shell scripts are 
n2t useful for. There is a program called ~ which is 
very useful for maintaining a group of related files or per­
forming sets of operations on related files. For instance a 
large program consisting of one or more files can have its 
dependencies described in a makefil~ which contains defini­
tions of the commands used to create these different files 
when changes occur. Definitions of the means for printing 
listings, cleaning up the directory in which the files 
reside, and installing the resultant programs are easily, 
and most appropriately placed in this makefile. This format 
is superior and preferable to maintaining a group of shell 
procedures to maintain these files. 

Similarly when working on a document a makefile may be 
created which defines how different versions of the document 
are to be created and which options of nroff or troff are 
appropriate. 

~.~. Invocation And ~ ~ variable 

A ~ command script may be interpreted by saying 

% csh script ••• 

where script is the name of the file containing a group of 
~ commands and .••• , is replaced by a sequence of argu­
ments. The shell places these arguments in the variable 
~ and then begins to read commands from the script. 
These parameters are then available through the same mechan­
isms which are used to reference any other shell variables. 

If you make the file 'script' executable by doing 

chmod 755 script 

and place a shell comment at the beginning of the shell 
script (i.e. begin the file with a '#' character) then a 
'/bin/csh' will automatically be invoked to execute 'script' 
when you type 

script 

8-26 



If the file does not begin with a '#' then the standard 
shell '/bin/sh' will be used to execute it. This allows you 
to convert your older shell scripts to use ~ at your con­
venience. 

~.~. variable ~ubstitution 

After each input line is broken into words and history 
substitutions are done on it, the input line is parsed into 
distinct commands. Before each command is executed a 
mechanism know as variable substitution is done on these 
words. Keyed by the character '$' this sUbstitution 
replaces the names of variables by their values. Thus 

echo $argv 

when placed in a command script would cause the current 
value of the variable ~ to be echoed to the output of the 
shell script. It is an error for ~ to be unset at this 
point. 

A number of notations are provided for accessing com­
ponents and attributes of variables. The notation 

$?name 

expands to 'I' if name is ~ or to '0' if name is not ~. 
It 1S the fundamental mechanism used for checking whether 
particular variables have been assigned values. All other 
forms of reference to undefined variables cause errors. 

The notation 

$#name 

expands to the number of elements in the variable nam&. 
Thus 

% set argv=(a b c) 
% echo $?argv 
1 
% echo $#argv 
3 
% unset argv 
% echo $?argv 
o 
% echo $argv 
Undefined variable: argv. 
% 

It is also possible to access the components of a vari­
able which has several values. Thus 

B-27 



$argv[l] 

gives the first component of ~ or in the example above 
, a'. Similarly 

$argv[$iargv] 

would give 'c ' , and 

$argv[l-2] 

Other notations useful in shell scripts are 

$n 

where n is an integer as a shorthand for 

$argv [n] 

the nth parameter and 

$* 

which is a shorthand for 

$argv 

The form 

$$ 

expands to the process number of the current shell. Since 
this process number is unique in the system it can be used 
in generation of unique temporary file names. 

One minor difference between '$nl and '$argv[n]' should 
be noted here. The form '$argv[n], will yield an error if Jl 
is not in the range 'l-$iargv' while '$n' will never yield 
an out of range subscript error. This is for compatibility 
with the way older shells handled parameters. 

Another important point is that it is never an error to 
give a subrange of the form 'n-'1 if there are less than Jl 
components of the given variable then no words are substi­
tuted. A range of the form 'm-n l likewise returns an empty 
vector without giving an error when m exceeds the number of 
elements of the given variable, provided the subscript Jl is 
in range. 

~.~. Expressions 

In or.der for interesting shell scripts to be con­
structed it must be possible to evaluate expressions in the 

B-28 



shell based on the values of variables. In fact, all the 
arithmetic operations of the language C are available in the 
shell with the same precedence that they have in C. In par­
ticular, the operations '==' and '1=' compare strings and 
the operators '&&' and 'II I implement the boolean and/or 
operations. 

The shell also allows file enquiries of the form 

-? filename 

where '?I is replace by a number of single characters. For 
instance the expression primitive 

-e filename 

tell whether the file "filename' exists. Other primitives 
test for read, write and execute access to the file, whether 
it is a directory, or has non-zero length. 

It is possible to test whether a command terminates 
normally, by a primitive of the form '{ command }' which 
returns true, i.e. '11 if the command succeeds exiting nor­
mally with exit status ~, or '~I if the command terminates 
abnormally or with exit status non-zero. If more detailed 
information about the execution status of a command is 
required, it can be executed and the variable '$status' 
examined in the next command. Since '$status' is set by 
every command, it is very transient. It can be saved if it 
is inconvenient to use it only in the single immediately 
following command. 

For a full list of expression components available see 
the manual section for the shell. 

~.~. Sample shell script 

A sample shell script which makes use of the expression 
mechanism of the shell and some of its control structure 
follows: 

E-29 



% cat copyc 
'# 
'# Copyc copies those C programs in the specified list 
# to the directory - /backup if they differ from the files 
'# already in -/backup 
# 
set noglob 
for each i ($argv) 

if ($i:r.c 1= $i) continue '# not a .c file so do nl 

if (1 -r -/backup/$i:t) then 
echo $i:t not in backup ••• not cp\'ed 
continue 

end 

endif 

cmp -s $i -/backup/$i:t 

if ($status 1= 0) then 

endif 

echo new backup of $i 
cp $i -/backup/$i:t 

'# to set $status 

This script makes use of the foreach command, which 
causes the shell to execute the commands between the foreach 
and the matching ~ for each of the values given between 
... (I and "')' with the named variable, in this case ... i I set to 
successive values in the list. Within this loop we may use 
the command break to stop executing the loop and continue to 
prematurely terminate one iteration and begin the next. 
After the for each loop the iteration variable (~ in this 
case) has the value at the last iteration. 

We set the variable noglob here to prevent filename 
expansion of the members of~. This is a good idea, in 
general, if the arguments to a shell script are filenames 
which have already been expanded or if the arguments may 
contain filename expansion metacharacters. It is also pos­
sible to quote each use of a '$' variable expansion, but 
this is harder and less reliable. 

The other control construct used here is a statement of 
the form 

if expression) then 
command 
• • • 

endif 

The placement of the keywords here is ll.Q.t flexible due to 
the current implementa tion of the shell. t 

E-38 
tThe following two formats are not currently acceptable 



The shell does have another form of the if statement of 
the form 

if ( expression ) command 

which can be written 

if ( expression ) \ 
command 

Here we have escaped the newline for the sake of appearance, 
and the '\' must immediately. The command must not involve 
'I', '&' or ';' and must not be another control command. 
The second form requires the final '\'to immediately pre­
cede the end-of-line. 

The more general i! statements above also admit a 
sequence of ~-i! pairs followed by a single ~ and an 
endif, e.g.: 

if ( expression ) then 
commands 

else if (expression ) then 
commands 

• • • 

else 
commands 

endif 

Another important 
':' modifiers. We can 
a root of a filename. 
'foo. bar' then 

mechanism used in shell scripts is 
use the modifier ':r' here to extract 
Thus if the variable ~ has the value 

% echo $i $i: r 
foo.bar foo 
% 

to the shell: 

and 

if ( expression 
then 

command 
••• 

endif 

* Won't work! 

if ( expression ) then command endif 

B-31 

* Won't work 



shows how the ':r' modifier strips off the trailing ... bar'. 
Other modifiers will take off the last component of a pa th­
name leaving the head ':h' or all but the last component of 
a pathname leaving the tail ':t'. These modifiers are fully 
described in the ~ manual pages in the programmers manual. 
It is also possible to use the command substitution mechan­
ism described in the next major section to perform modifica­
tions on strings to then reenter the shells environment. 
Since each usage of this mechanism involves the creation of 
a new process, it is much more expensive to use than the ':' 
modification mechanism.i Finally, we note that the character 
'i' lexically introduces a shell comment in shell scripts 
(but not from the terminal). All subsequent characters on 
the input line after a 'i' are discarded by the shell. This 
character can be quoted using '" or '\' to place it in an 
argument word. 

~.2. Other control structures 

The shell also has control structures while and switch 
similar to those of C. These take the forms 

while 

end 

and 

expression ) 
commands 

iIt is also important to note that the current imple­
mentation of the shell limits the number of ':' modif­
iers on a '$' SUbstitution to 1. Thus 

% echo $i $i:h:t 
/a/b/c /a/b:t 
% 

does not do what one would expect. 

E-32 



switch ( word ) 

case strl: 
commands 
breaksw 

••• 

case strn: 
commands 
breaksw 

default: 
commands 
breaksw 

endsw 

For details see the manual section for~. C programmers 
should note that we use breaksw to exit from a switch while 
break exits a while or foreach loop. A common mistake to 
make in ~ scripts is to use break rather than breaksw in 
switches. 

Finally, ~ allows a gQtQ statement, with labels look­
ing like they do in C, i.e.: 

loop: 
commands 
goto loop 

~.~. Supplying input ~ commands 

Commands run from shell scripts receive by default the 
standard input of the shell which is running the script. 
This it is different from previous shells running under 
UNIX. It allowing shell scripts to fully participate in 
pipelines, but mandates extra notation for commands which 
are to take inline data. 

Thus we need a metanotation for supplying 
to commands in shell scripts. As an example, 
script which runs the editor to delete leading 
the lines in each argument file 

B-33 

inline. data 
consider this 
blanks from 



% cat deblank 
i deblank -- remove leading blanks 
for each i ($argv) 
ed - $i « 'EOF' 
1 ,$s/T [ ] * II 
w 
q 
'EOF' 
end 
% 

The notation '« 'EOF" means that the standard input for 
the ~ command is to come from the text in the shell script 
file up to the next line consisting of exactly "EOF". The 
fact that the 'EOF' is enclosed in '" characters, i.e. 
quoted, causes the shell to not perform variable substitu­
tion on the intervening lines. In general, if any part of 
the word following the '«' which the shell uses to ter­
minate the text to be given to the command is quoted then 
these substitutions will not be performed. In this case 
since we used the form '1,$' in our editor script we needed 
to insure that this '$' was not variable substituted. We 
could also have insured this by preceding the '$' here with 
a '\', l' .e.: 

1, \$s/T [ ] * II 

but quoting the 'EOF' terminator is a more reliable way of 
achieving the same thing. 

~.~. Catching interrupts 

If our shell script creates temporary files, we may 
wish to catch interruptions of the shell script so that we 
can clean up these files. We can then do 

onintr label 

where label is a label in our program. If an interrupt is 
received the shell will do a 'goto label' and we can remove 
the temporary files and then do a ~ command (which is 
built in to the shell) to exit from the shell script. If we 
wish to exit with a non-zero status we can do 

exit(l) 

e.g. to exit with status '1'. 

There. are other features of the shell useful to writers 
of shell procedures. The verbose and ~ options and the 
related -,X. and -x, command line options can be used to help 

8 .... 34 



trace the actions of the shell. The -n option causes the 
shell only to read commands and not to execute them and may 
sometimes be of use. 

One other thing to note is that ~ will not execute 
shell scripts which do not begin with the character 'ii, 
that is shell scripts that do not begin with a comment. 
Similarly, the '/bin/sh' on your system may well defer to 
'csh' to interpret shell scripts which begin with '#'. This 
allows shell scripts for both shells to live in harmony. 

There is also another quotation mechanism using 'ft, 
which allows only some of the expansion mechanisms we have 
so far discussed to occur on the quoted string and serves to 
make this string into a single word as '" does. 

E-35 



~. Misgellaneous, ~ generally useful, shell mechanisms 

~.~. LOQPs At ~ terminal; variables ~ vectors 

It is occasionally useful to use the foreach control 
structure at the terminal to aid in performing a number of 
similar commands. For instance, there were at one pOint 
three shells in use on the Cory UNIX system at Cory Hall, 
'/bin/sh', '/bin/nsh', and '/bin/csh'. To count the number 
of persons using each shell one could issue the commands 

% grep -c csh$ /etc/passwd 
27 
% grep -c nsh$ /etc/passwd 
128 
%grep -c -v sh$ /etc/passwd 
43e 
% 

Since these commands are very similar we can use foreach to 
do this more easily. 

%foreach i (' sh$ I I csh$ I I-V sh $ ') 
? grep -c $i /etc/passwd 
? end 
27 
128 
43e 
% 

Note here that the shell prompts for input with '? 
reading the body of the loop. 

when 

Very useful with loops are variables which contain 
lists of filenames or other words. You can, for example, do 

% set a=( 'IS') 
% echo $a 
csh.n csh.rm 
% Is 
csh.n 
csh.rm 
% echo $#a 
2 
% 

The u.t. command here gave the variable .a a list of all the 
filenames in the current directory as value. We can then 
iterate over these names to perform any chosen function. 

The output of a command within ""I characters is con­
verted by the shell toalist of words. You can also place 
the'" quoted string within "'n, characters to take each 
(non-empty) line as a .component of the variable1 preventing 

B-36 



the lines from being split into words at blanks and tabs. A 
modifier ':x' exists which can be used later to expand each 
component of the variable into another variable splitting it 
into separate words at embedded blanks and tabs. 

~.z. Braces { ••• } in argument expansion 

Another form of filename expansion, alluded to before 
involves the characters '{' and oJ'. These characters 
specify that the contained strings, separated by',' are to 
be consecutively substituted into the containing characters 
and the results expanded left to right. Thus 

A{strl,str2, ••• strn}B 

expands to 

AstrlB Astr2B ••• AstrnB 

This expansion occurs before the other filename expansions, 
and may be applied recursively (i.e. nested). The results 
of each expanded string are sorted separately, left to right 
order being preserved. The resulting filenames are not 
required to exist if no other expansion mechanisms are used. 
This means that this mechanism can be used to generate argu­
ments which are not filenames, but which have common parts. 

A typical use of this would be 

mkdir -/{hdrs,retrofit,csh} 

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your 
home directory. This mechanism is most useful when the com­
mon prefix is longer than in this example, i.e. 

chown bin /usr/{bin/{ex,edit},lib/{exl.1strings,how_ex}} 

~.~. Command substitution 

A command enclosed in "I characters is replaced, just 
before filenames are expanded, by the output from that com­
mand. Thus it is possible to do 

set pwd='pwd' 

to save the current directory in the variable ~ or to do 

ex 'grep -1 TRACE *.c' 

to run the editor ~ suppling as arguments those files whose 
names end in '.c' which have the string 'TRACE' in them.* 

*Command expansion also occurs in input redirected with 

E-37 



~.~. Other detail~ nQt covered ~ 

In particular circumstances it may be necessary to know 
the exact nature and order of different substitutions per­
formed by the shell. The exact meaning of certain combina­
tions of quotations is also occasionally important. These 
are detailed fully in its manual section. 

The shell has a number of command line option flags 
mostly of use in writing UNIX programs, and debugging shell 
scripts. See the shells manual section for a list of these 
options. 

'«~I and within 'ftl quotations. Refer to the shell 
manual section for full details. 

E-38 



Appendix - Special characters 

The following table lists the special characters 
the UNIX system, giving for each the section(s) 
is discussed. A number of these characters also 
cial meaning in expressions. See the ~ manual 
a complete list. 

of £ah and 
in which it 
have spe­

section for 

Syntactic metacharacters 

; 
I 
( 
& 

2.4 
1.5 
2.2,3.6 
2.5 

separates commands to be executed sequentially 
separates commands in a pipeline 
brackets expressions and variable values 
follows commands to be executed without waiting for 
completion 

Filename metacharacters 

/ 
? 
* 
[ 1 

{ } 

1.6 separates components of a file's pathname 
1.6 expansion character matching any single character 
1.6 expans~on character matching any sequence of characters 
1.6 expans~on character matching any single character 

from a set 
1.6 used at the beginning of a filename to indicate home 

directories 
4.2 used to specify groups of arguments with common parts 

Quotation metacharacters 

\ , 
" 

1.7 
1.7 
4.3 

prevents meta-meaning of following single character 
prevents meta-meaning of a group of characters 
like " but allows variable and command expansion 

Input/output metacharacters 

< 
> 

1.3 
1.5 

indicates redirected input 
indicates redirected output 

Expansion/substitution metacharacters 

$ 
! . . 
T , 

3.4 
2.3 
3.6 
2.3 
4.3 

Other metacharacters 

3.6 
1.2 

indicates variable substitution 
indicates history sUbstitution 
precedes sUbstitution modifiers 
used in special forms of history sUbstitution 
indicates command substitution 

begins a shell comment 
prefixes option (flag) arguments to commands 

£-39 



Glossary 

This glossary lists the most important terms introduced 
in the introduction to the shell and gives references to 
sections of the shell document for further information about 
them. References of the form 'pr (1)' indicate that the 
command la.t is in the UNIX programmers manual in section 1. 
You can get an online copy of its manual page by doing 

man 1 pr 

References of the form (2.5) indicate that more information 
can be found in section 2.5 of this manual. 

• 

• • 

alias 

argument 

Your current directory has the name '.' as 
well as the name printed by the command ~. 
The current directory'.' is usually the 
first component of the search path contained 
in the variable~, thus commands which are 
in '.' are found first (2.2). The character 
'.' is also used in separating components of 
filenames (1.6). The character ".' at the 
beginning of a component. of a pathname is 
treated specially and not matched by the 
filename expansion metacharacters '1', '*', 
and '[. ']' pa irs (1.6). 

Each directory has a file .••• in it which is 
a reference to its parent directory. After 
changing into the directory with chdir, i.e. 

chdir paper 

you can return to the parent directory by 
doing 

chdir • • 

The current directory is printed by ~ 
(2.6). 

An alias specifies a shorter or different 
name for a UNIX command, or a transformation 
on a command to be performed in the shell. 
The shell has a command alias which estab­
lishes aliases and can print their current 
values. The command unalias is used to 
remove aliases (2.6). 

Commands in UNIX receive a list of argument 
words. Thus the command 

echo abc 

B .... 48 



argv 

background 

bin 

break 

builtin 

case 

cat 

cd 

consists of a command name 'echo' and three 
argument words 'a', 'b' and 'c' (1.1). 

The list of arguments to a command written in 
the shell language (a shell script or shell 
procedure) is stored in a variable called 
~ within the shell. This name is taken 
from the conventional name in the C program­
ming language (3.4). 

Commands started without waiting for them to 
complete are called background commands 
(1.5). 

A directory containing binaries of programs 
and shell scripts to be executed is typically 
called a 'bin' directory. The standard sys­
tem 'bin' directories are '/bin' containing 
the most-heavily used commands and '/usr/bin' 
which contains most other user programs. 
Other binaries are contained in directories 
such as '/usr/new' where new programs are 
placed. You can place binaries in any direc­
tory. If you wish to execute them often, the 
name of the directories should be a component 
of the variable ~. 

Break is a built-in command used to exit from 
loops within the control structure of the 
sh e 11 ( 3 .6) • 

A command executed directly by the shell is 
called a builtin command. Most commands in 
UNIX are not built into the shell, but rather 
exist as files in 'bin' directories. These 
commands are accessible because the direc­
tories in which they reside are named in the 
~ variable. 

A ~ command is used as a label in a switch 
statement in the shells control structure, 
similar to that of the language C. Details 
are given in the shells documentation 'csh 
(NEW)' ( 3 .7) • 

The ~ program catenates a list of specified 
files on the standard output. It is usually 
used to look at the contents of a single file 
on the terminal, to 'cat a file' (1.8, 2.3). 

The ~ command is used 
directory. With no 
your working directory 
tory (2.3) (2.6). 

£-41 

to change the working 
arguments, ~ changes 
to be your ~ direc-



chdir 

chsh 

The chdir command is a synonym for~. ~ is 
usually used because it is easier to type. 

The ~ command is used to change the shell 
which you use on UNIX. By default, you use 
an older 'standard' version of the shell 
which resides in '" /bin/sh '. You can change 
your shell to '/bin/csh' by doing 

chsh your-Iogin-name /bin/csh 

Thus I would do 

chsh bill /bin/csh 

It is only necessary to do this once. The 
. next time you log in to UNIX after doing this 

command, you will be using ~ rather than 
the shell in '/bin/sh' (1.9). 

cmp ~ is a program which compares files. It is 
usually used on binary files, or to see if 
two files are identical (3.6). For comparing 
text files the program Qiff, described in 
'diff (I) I is used. 

command A function performed by the system, either by 
the shell (a builtin command) or by a program 
residing in a file in a directory within the 
UNIX system is called a command (l.l). 

command substitution 

component 

continue 

core dump 

The replacement of a command enclosed in "',' 
characters by the text output by that command 
is called command substitution (3.6, 4.3). 

A part of a pathname between "'/1 characters 
is called a component of that pathname. A 
variable which has multiple strings as value 
is said to have several components, each 
string is a component of the variable. 

A builtin command which causes execution of 
the enclosing foreach or while loop to cycle 
prematurely. Similar to the continue command 
in the programming language C (3.6). 

When a program terminates abnormally, the 
system places an image of its current state 
in a file named 'corel. This "'core dump' can 
be examined with the system debuggers 'db 
(1)1 and "'cdb (1)' in order to determine what 

went wrong with the program (1.8). If the 
shell produces a message of the form: 

E-42 



cp 

.cshrc 

date 

debugging 

default 

DELETE 

detached 

diagnostic 

commandname: Illegal instruction -- Core dumped 

(where 'Illegal instruction' is only one of 
several possible messages) you should report 
this to the author of the program and save 
the 'core' file. If this was a system pro-
gram you should report this with the trouble 
command 'trouble (I) '. 

The ~ (copy) 
contents of 
is one of the 
mands ( 2 .6) • 

program is used to copy the 
one file into another file. It 
most commonly used UNIX com-

The file .cshrc in your h.Qme. directory is 
read by each shell as it begins execution. 
It is usually used to change the setting of 
the variable ~ and to set alias parameters 
which are to take effect globally (2.1). 

The ~ command prints the current date and 
time (1.3). 

Debugging is the process of correcting mis­
takes 1n programs and shell scripts. The 
shell has several options and variables which 
may be used to aid in shell debugging (4.4). 

The label default: is used within shell 
switch statements, as it is in the C language 
to label the code to be executed if none of 
the ~ labels matches the value switched on 
(3.7). 

The DELETE or RUBOUT key on the terminal is 
used to generate an INTERRUPT signal in UNIX 
which stops the execution of most programs 
(2.6) • 

A command run without waiting for it to com­
plete is said to be detached (2.5) • 

An error message produced by a program is 
often referred to as a diagnostic. Most 
error messages are not written to the stan­
dard output, since that is often directed 
away from the terminal (1.3, 1.5). Error 
messages are instead written to the diagnos­
~ output which may be directed away from 
the terminal, but usually is not. Tbus diag­
nostics will usually appear on the terminal 
(2.5) • 

£-43 



directory 

echo 

else 

EOF 

escape 

/etc/passwd 

A structure which contains files. At any 
time you are in one particular directory 
whose names can be printed by the command 
'pwd'. The chdir command will change you to 
another directory, and make the files in that 
directory visible. The directory in which 
you are when you first login is your ~ 
directory (1.1, 1.6). 

The ~ command prints its arguments (1.6, 
2.6, 3.6, 3.19). 

The ~ command is part of the 'if-then­
else-endif' control command construct (3.6). 

An .e.rui-gf,-.f.i.l.e is generated by the terminal 
by a control-d, and whenever a command reads 
to the end of a file which it has been given 
as input. Commands receiving input from a 
~ receive an end-of-file when the command 
sending them input completes. Most commands 
terminate when they receive an end-of-file. 
The shell has an option to ignore end-of-file 
from a terminal input which may help you keep 
from logging out accidentally by typing too 
many control-d's (1.1, 1.8, 3.8). 

A character \ used to prevent the special 
meaning of a metacharacter is said to escape 
the character from its special meaning. Thus 

echo \* 

will echo the character ~*' while just 

echo * 
will echo the names of the file in the 
current directory. In this example, \ 
escapes '*' (1.7). There is also a non­
printing character called escape, usually 
labeled ESC or ALTMODE on terminal keyboards. 
Some UNIX systems use this character to indi­
cate that output is to be suspended. Other 
systems use control-s. 

This file contains information about the 
accounts currently on the system. If con­
sists of a line for each account with fields 
separated by':' characters (2.3). You can 
look at this file by saying 

cat /etc/passwd 

8-44 



exit 

exit status 

expansion 

expressions 

extension 

filename 

The command ~ is often used to search for 
information in this file. See 'passwd (5)' 
and 'grep (1)' for more details. 

The ~ command is used to force termination 
of a shell script, and is built into the 
shell (3.9). 

A command which discovers a problem may 
reflect this back to the command (such as a 
shell) which invoked (executed) it. It does 
this by returning a non-zero number as its 
~ status, a status of zero being con­
sidered 'normal termination'. The ~ com­
mand can be used to force a shell command 
script to give a non-zero exit status (3.5). 

The replacement of strings in the shell input 
which contain metacharacters by other strings 
is referred to as the process of expansion. 
Thus the replacement of the word '*' by a 
sorted list of files in the current directory 
is a 'filename expansion'. Similarly the 
replacement of the characters '11' by the 
text of the last command is a 'history expan­
sion'. Expansions are also referred to as 
substitutions (1.6, 3.4, 4.2). 

Expressions are used in the shell to control 
the conditional structures used in the writ­
ing of shell scripts and in calculating 
values for these scripts. The operators 
available in shell expressions are those of 
the language C (3.5). 

Filenames often consist of a ~ name and an 
extension separated by the character '.'. By 
convention, groups of related files often 
share the same root name. Thus if 'prog.c' 
were a C program, then the object file for 
this program would be stored in 'prog.o'. 
Similarly a paper written with the '-me' 
nroff macro package might be stored in 
'paper.me' while a formatted version of this 
paper might be kept in 'paper.out' and a list 
of spelling errors in 'paper.errs' (1.6). 

Each file in UNIX has a name consisting of up 
to 14 characters and not including the char­
acter 'I' which is used in pathname building. 
Most file names do not begin with the charac­
ter '.', and contain only letters and digits 
with perhaps a '.' separating the root por­
tion of the filename from an extension (1.6). 

E-45 



filename expansion 

. flag 

for each 

getty 

goto 

grep 

Filename expansion uses the metacharacters 
"*', '?' and . [' and "]' to provide a con­
venient mechanism for naming files. Using 
filename expansion it is easy to name all the 
files in the current directory, or all files 
which have a common root name. Other 
filename expansion mechanisms use the meta­
character ,~, and allow files in other users 
directories to be named easily (1.6, 4.2). 

Many UNIX commands accept arguments which are 
not the names of files or other users but are 
used to modify the action of the commands. 
These are referred to as flag options, and by 
convention consists of one or more letters 
preceded by the character '_I (1.2). Thus 
the ~ list file commands has an option "-s' 
to list the sizes of files. This is speci­
fied 

Is -s 

The foreach command is used in shell scripts 
and at the terminal to specify repetition of 
a sequence of commands while the value of a 
certain shell variable ranges through a 
specified list (3.6, 4.1). 

The getty program is part of the system which 
determines the speed at which your terminal 
is to run when you first log in. It types 
the initial system banner and 'login:'. When 
no one is logged in on a terminal a R2 com­
mand shows a command of the form '- 7' where 
'7' here is often some other single letter or 
digit. This '7' is an option to the getty 
command, indicating the type of port which it 
is running on. If you see a getty command 
running on a terminal in the output of R2 you 
know that no one is logged in on that termi­
nal (2.3). 

The~shell has a command SQtQ used in shell 
scripts to transfer control to a given label 
(3.7) • 

The ~ command searches through a list of 
argument files for a specified string. Thus 

grep bill /etc/passwd 

will print each line in the file· 

£-46 



hangup 

head 

history 

~/etc/passwd' which contains the string 
~bill'. Actually, ~ scans for regular 
expressions in the sense of the editors ~ed 
(I)' and "ex (I)' (2.3). ~ stands for 
"globally find regular expression and print.' 

When you hangup a phone line, a HANGUP signal 
is sent to all running processes on your ter­
minal, causing them to terminate execution 
prematurely. If you wish to start commands 
to run after you log off a dialup you must 
use the command nohup (2.6). 

The ~ command prints the first few lines 
of one or more files. If you have a bunch of 
files containin~ text which you are wondering 
about it is sometimes is useful to run ~ 
with these files as arguments. This will 
usually show enough of what is in these files 
to let you decide which you are interested in 
(1.5, 2.3). 

The history mechanism of the shell allows 
previous commands to be repeated, possibly 
after modification to correct typing mistakes 
or to change the meaning of the command. The 
shell has a history liat where these commands 
are kept, and a history variable which con­
trols how large this list is (1.7, 2.6). 

home directory Each user has a home directory, which is 
given in your entry in the password file, 
1~/passwd. This is the directory which you 
are placed in when you first log in. The ~ 
or chdir command with no arguments takes you 
back to this directory, whose name is 
recorded in the shell variable~. You can 
also access the home directories of other 
users in forming filenames using a file 
expansion notation and the character 'N' 
(1.6). 

if 

ignoreeof 

A conditional command within the shell, the 
if command is used in shell command scripts 
to make decisions about what course of action 
to take next (3.6). 

Normally, your shell will exit, printing 
'logout' if you type a control-d at a prompt 
of ~% '. This is the way you usually log off 
the system. You can ~ the ignoreeofvari­
able if you wish in your .1Qgin file and then 
use the command logout to Ipgout. This is 
useful if you sometimes accidentally type too 

£-47 



input 

interrupt 

kill 

.login 

logout 

many control-d characters, logging yourself 
off. If the system is slow, this can waste 
much time, as it may take a long time to log 
in again (2.2, 2.6). 

Many commands on UNIX take information from 
the terminal or from files which they then 
act on. This information is called input. 
Commands normally read for input from their 
standard input which is, by default, the ter­
minal. This standard input can be redirected 
from a file using a shell metanotation with 
the character '<'. Many commands will also 
read from a file specified as argument. Com­
mands placed in pipelines will read from the 
output of the previous command in the pipe­
line. The leftmost command in a pipeline 
reads from the terminal if you neither 
redirect its input nor give it a file name to 
use as standard input. Special mechanisms 
exist for suppling input to commands in shell 
s c r i pt s ( 1 • 2, 1.6, 3. 8) • 

An interrupt is a signal to a program that is 
generated by hitting the RUBOUT or DELETE 
key. It causes most programs to stop execu­
tion. Certain programs such as the shell and 
the editors handle an interrupt in special 
ways, usually by stopping what they are doing 
and prompting for another command. While the 
shell is executing another command and wait­
ing for it to finish, the shell does not 
listen to interrupts. The shell often wakes 
up when you hit interrupt because many com­
mands die when they receive an interrupt 
(1.8, 2.6, 3.9). 

A program which terminates processes run 
without waiting for them to complete. (2.6) 

The file .10gin in your ~ directory is 
read by the shell each time you log in to 
UNIX and the commands there are executed. 
There are a number of commands which are use­
fully placed here especially ~ commands 
and ~ commands to the shell itself (2.1). 

The logout command causes a login shell to 
exit. Normally, a login shell will exit when 
you hit control-d generating an end-of-file, 
but if you have set ignoreeof in you .login 
file then this will not work and you must use 
logout to log off the UNIX system (2.2). 

E-48 



• logout 

Ipr 

Is 

mail 

make 

makefile 

manual 

When you log off of UNIX the shell will exe­
cute commands from the file .logout in your 
~ directory after it prints 'logout'. 

The command ~ is the line printer daemon. 
The standard input of lBL is spooled and 
printed on the UNIX line printer. You can 
also give ~ a list of filenames as argu­
ments to be printed. It is most common to 
use ~ as the last component of a pipeline 
(2.3) • 

The ~ list files command is one of the most 
commonly used UNIX commands. With no argu­
ment filenames it prints the names of the 
files in the current directory. It has a 
number of useful !lAg arguments, and can also 
be given the names of directories as argu­
ments, in which case it lists the names of 
the files in these directories (1.2). 

The mail program is used to send and receive 
messages from other UNIX users (1.1, 2.2). 

The ~ command is used to maintain one or 
more related files and to organize functions 
to be performed on these files. In many ways 
~ is easier to use, and more helpful than 
shell command scripts (3.2). 

The file containing command for ~ is 
called 'makef ile I (3.2). 

The 'manual' often referred to is the 'UNIX 
programmers manual.' It contains a number of 
sections and a description of each UNIX pro­
gram. An online version of the manual is 
accessible through the man command. Its 
documentation can be obtained online via 

man man 

metacharacter Many characters which are neither letters nor 
digits have special meaning either to the 
shell or to UNIX. These characters are 
called metacharacters. If it is necessary to 
place these characters in arguments to com­
mands without them having their special mean­
ing then they must be Quoted. An example of 
a metacharacter is the character ')' which is 
used to indicate placement of output into a 
file. For the purposes of the history 
mechanism, most unquoted metacharacters form 

E-49 



mkdir 

modifier 

noclobber 

nohup 

nroff 

onintr 

output 

separate words (1.4). The appendix to this 
user's manual lists the metacharacters in 
groups by their function. 

The mkdir command is used to create a new 
directory (2.6). 

Substi tutions with the history mechanism, 
keyed by the character '1' or of variables 
using the metacharacter '$' are often sub­
jected to modifications, indicated by placing 
the character ':' after the substitution and 
following this with the modifier itself. The 
command substitution mechanism can also be 
used to perform modification in a similar 
way, but this notation is less clear (3.6). 

The shell has a variable noclobber which may 
be set in the file .login to prevent acciden­
tal destruction of files by the ')1 output 
redirection metasyntax of the shell (2.2, 
2.5) • 

A shell command used to allow background com­
mands to run to completion even if you log 
off a dialup before they complete. (2.5) 

The standard text formatter on UNIX is the 
program nroff. Using nroff and one of the 
available macro packages for it, it is possi­
ble to have documents automatically formatted 
and to prepare them for phototypesetting 
using the typesetter program troff (3.2). 

The onintr command is built into 
and is used to control the action 
command script when an interrupt 
received (3.9). 

the shell 
of a shell 
signal is 

Many commands in UNIX result in some lines of 
text. which are called their output. This 
output is usually placed on what is known as 
the standard output which is normally con­
nected to the users terminal. The shell has 
a syntax using the metacharacter ')1 for 
redirecting the standard output of a command 
to a file (1.3). Using the ~ mechanism 
and the metacharacter 'II it is also possible 
for the standard output of one command to 
become the standard input of another command 
(1.5). Certain commands such as the line 
printer daemon .lpL, do not place their results 
on the standard output but rather in more 
useful places such as on the line printer 

8-58 



path 

pathname 

(2.3) • Similarly the write command places 
its output on another users terminal rather 
than its standard output (2.3). Commands 
also have a diagnostic output where they 
write their error messages. Normally these 
go to the terminal even if the standard out­
put has been sent to a file or another com­
mand, but it is possible to direct error 
diagnostics along with standard output using 
a special metanotation (2.5). 

The shell has a variable ~ which gives the 
names of the directories in which it searches 
for the commands which it is given. It 
always checks first to see if the command it 
is given is built into the shell. If it is, 
then it need not search for the command as it 
can do it internally. If the command is not 
builtin, then the shell searches for a file 
with the name given in each of the direc­
tories in the ~ variable, left to right. 
Since the normal definition of the ~ vari­
able is 

path (. /bin /usr/bin) 

the shell normally looks in the current 
directory, and then in the standard system 
directories '/bin' and '/usr/bin l for the 
named command (2.2). If the command cannot 
be found the shell will print an error diag­
nostic. Scripts of shell commands will be 
executed using another shell to interpret 
them if they have 'execute l bits set. This 
is normally true because a command of the 
form 

chmod 755 script 

was executed to turn these execute bits on 
(3.3) • 

A list of names, separated by '/1 characters 
forms a pathname. Each component, between 
successive '/1 characters, names a directory 
in which the next component file resides. 
Pathnames which begin with the character .. '/1 
are interpreted relative to the ~ direc­
tory in the filesystem. Other pathnames are 
interpreted relative to the current directory 
as reported by~. The last component of a 
pathname may name a directory, but usually 
names a file. 

£-51 



pipeline 

pr 

. printenv 

process 

program 

A group of commands which are connected 
together, the standard output of each con­
nected to the standard input of the next is 
called a pipeline. The ~ mechanism used 
to connect these commands is indicated by the 
shell metacharacter ~I 1 (1.5,2.3). 

The ~ command is used to prepare listings of 
the contents of files with headers giving the 
name of the file and the date and time at 
which the file was last modified (2.3) • 

The printeny command is used on version 7 
UNIX systems to print the current setting of 
variables in the environment. As of this 
writing, only the VAX/UNIX system on the 
fifth floor of Evans Hall is running a ver­
sion 7 UNIX system. The other systems are 
running version 6, which does not have or 
need printeny (2.6). 

A instance of a running program is called a 
process (2.6). The numbers used by kill and 
printed by ~ are unique numbers generated 
for these processes by UNIX. They are useful 
in kill commands which can be used to stop 
background processes. (2.6) 

Usually synonymous with command; a binary 
file or shell command script which performs a 
useful function is often called a program. 

programmers manual 

prompt 

ps 

Also referred to as the manual. 
glossary entry for ~manuall. 

See the 

Many programs will print a prompt on the ter­
minal when they expect input. Thus the edi­
tor ~ex (NEW)' will print a ':1 when it 
expects input. The shell prompts for input 
with '% I and occasionally with ~? I when 
reading commands from the terminal (1.1). 
The shell has a variable prompt which may be 
set to a different value to change the shells 
main prompt. This is mostly used when debug­
ging the shell (2.6). 

The ~ command is used to show the processes 
you are currently running. Each process is 
shown with its unique process number, an 
indication of the terminal name it is 
attached to, and the amount of CPU time it 
has used so far. The command is identified 
by printing some of the words used when it 

8-52 



pwd 

quit 

quotation 

redirection 

repeat 

RUBOUT 

script 

set 

setenv 

was invoked (2.3, 2.6). Login shells, such 
as the ~ you get when you login are shown 
as '- 1 • 

The ~ command prints the full pathname of 
the current (working) directory. 

The SYit signal, generated 
used to terminate programs 
unreasonably. It normally 
image file (1.8). 

by a control-\ is 
which are behaving 

produces a core 

The process by which metacharacters are 
prevented their special meaning, usually by 
using the character 'I in pairs, or by using 
the character '\1 is referred to as Quotation 
(1.4) • 

The routing of input or output from or to a 
file is known as redirection of input or out­
put (1.3). 

The repeat command iterates another command a 
specified number of times (2.6). 

The RUBOUT or DELETE key generates an inter­
rupt signal which is used to stop programs or 
to cause them to return and prompt for more 
input (2.6). 

Sequences of shell commands placed in a file 
are called shell command scripts. It is 
often possible to perform simple tasks using 
these scripts without writing a program in a 
language such as C, by using the shell to 
selectively run other programs (3.2, 3.3, 
3.10) • 

The builtin ~ command is used to aSSign new 
values to shell variables and to show the 
values of the current variables. Many shell 
variables have special meaning to the shell 
itself. Thus by using the set command the 
behavior of the shell can be affected (2.1). 

On version 7 systems variables in the 
environment 'environ (5) 1 can be changed by 
using the seteny builtin command (2.6). The 
printeny command can be used to print the 
value of the variables in the environment. 
Currently, only the VAX/UNIX system on the 
fifth floor of Evans Hall is running version 
7 UNIX. The other systems are running ver­
sion 6, where seteny is not necessary and 

£-53 



shell 

shell script 

sort 

source 

does not exist. 

A shell is a command language interpreter. 
It is possible to write and run your own 
shell, as shells are no different than any 
other programs as far as the system is con­
cerned. This manual deals with the details 
of one particular shell, called~. 

See script (3.2, 3~3, 3.la). 

The ~ program sorts a sequence of lines in 
ways that can be controlled by argument flags 
(1.5) • 

The source command causes the shell to read 
commands from a specified file. It is most 
useful for reading files such as .cshrc after 
changing them (2.6). 

special character 

standard 

status 

substitution 

switch 

term ina ti on 

See metacharacters and the appendix to this 
manual. 

We refer often to the standard input and 
standard output of commands. See input and 
output (1.3, 3.8). 

A command normally returns a status when it 
finishes. By convention a status of zero 
indicates that the command succeeded. Com­
mands may return non-zero status to indicate 
that some abnormal event has occurred. The 
shell variable status is set to the status 
returned by the last command. It is most 
useful in shell command scripts (3.5, 3.6). 

The shell implements a number of substitu­
tions where sequences indicated by metachar­
acters are replaced by other sequences. Not­
able examples of this are history SUbstitu­
tion keyed by the metacharacter 'I' and vari­
able substitution indicated by '$'. We also 
refer to substitutions as expansions (3.4). 

The switch command of the shell allows the 
shell to select one of a number of sequences 
of commands based on an argument string. It 
is similar to the- switch statement in the 
language C (3.7). 

When a command which is being executed 
ished we say it undergoes termination or 
minates. Commands .normally terminate 

£-54 

fin­
Ul:= 
when 



then 

time 

troff 

tset 

unalias 

UNIX 

unset 

they read an end-of-file from their standard 
input. It is also possible to terminate com­
mands by sending them an interrupt or ~ 
signal (1.8). The kill program terminates 
specified command whose numbers are given 
(2.6) • 

The ~ command is part of the shells 'if­
then-else-endif' control construct used in 
command scripts (3.6). 

The ~ command can be used to measure the 
amount of CPU and real time consumed by a 
specified command (2.1, 2.6). 

The troff program is used to typeset docu­
ments. See also nroff (3.2). 

The ~ program is used to set standard 
erase and kill characters and to tell the 
system what kind of terminal you are using. 
It is often invoked in a .login file (2.1). 

The unalias command removes aliases (2.6). 

UNIX is an operating system on 
runs. UNIX provides facilities 
~ to invoke other programs such 
and text formatters which you 
use. 

which ~ 
which allow 
as editors 
may wish to 

The unset command removes the definitions of 
shell variables (2.2, 2.6). 

variable expansion 

variables 

verbose 

See variables and expansion (2.2, 3.4). 

Variables in ~ hold one or more strings as 
value. The most common use of variables is 
in controlling the behavior of the shell. 
See ~, noclobber, and ignoreeof for exam­
ples. Variables such as ~ are also used 
in writing shell programs (shell command 
scripts) (2.2). 

The verbose shell variable can be set to 
cause commands to be echoed after they are 
history expanded. This is often useful in 
debugging shell scripts. The verbose vari­
able is set by the shells -~ command line 
option (3.10). 

E-55 



wait 

where 

while 

The builtin command ~ causes the shell to 
pause, and not prompt, until all commands run 
in the background have terminated (2.6). 

The wbere command shows where the users named 
as arguments are logged into the system 
(2.3) • 

The while builtin control construct is used 
in shell command scripts (3.7). 

word A sequence of characters which forms an argu­
ment to a command is called a~. Many 
characters which are neither letters, digits, 
'- I , , • I or '/ I form words all by themselves 
even if they are not surrounded by blanks. 
Any sequence of character may be made into a 
word by surrounding it with 'II characters 
except for the characters ~II and ~11 which 
require special treatment (1.1, 1.6). This 
process of placing special characters in 
words without their special meaning is called 
guoting. 

working directory 
At an given time you are in one particular 
directory, called your working directory. 
This directories name is printed by the ~ 
command and the files listed by lA are the 
ones in this directory. You can change work­
ing directories using chdir. 

write The write command is used to communicate with 
other users who are logged in'to UNIX (2.3). 

8-56 



An Introduction to Display Editing with Vi 

Reyised ~ versions ~.5/Z.~ ~ 

ABSTRACT 

Yi (visual) is a display oriented interactive 
text editor. When using ~ the screen of your 
terminal acts as a window into the file which you 
are editing. Changes which you make to the file 
are reflected in what you see. 

Using ~ you can insert new text any place in 
the file quite easily. Most of the commands to Yi 
move the cursor around in the file. There are 
commands to move the cursor forward and backward 
in units of characters, words, sentences and para­
graphs. A small set of operators, like .d for 
delete and ~ for change, are combined with the 
motion commands to form operations such as delete 
word or change paragraph, in a simple and natural 
way. This regularity and the mnemonic assignment 
of commands to keys makes the editor command set 
easy to remember and to use. 

Yi will work on a large number of display 
terminals, and new terminals are easily driven 
after editing a terminal description file. While 
it is advantageous to have an intelligent terminal 
which can locally· insert and delete lines and 
characters from the display, the editor will func­
tion quite well on dumb terminals over slow phone 
lines. The editor makes allowance for the low 
bandwidth in these situations and uses smaller 
window sizes and different display updating algo­
rithms to make best use of the limited speed 
available. 

It is also possible to use the command set of 

£-57 



n on hardcopy terminals, storage tubes and 
"glass tty'sl' using a one line editing window; 
thus ri',Q, command set is available on all termi i-

nals. The full command set of the more tradi­
tional, line oriented editor ~ is available 
within ri.; it is quite simple to switch between 
the two modes of editing. 

E-58 

, 
"' 



" , 
i 

An Introduction to Display Editing with Vi 

Revised .f..Q.r. versions .l.'v.2...ll ~ 

~. Getting started 

This document provides a quick introduction to Yi. 
(Pronounced ~-~.) You should be running Yi on a file you 
are familiar with while you are reading this. The first 
part of this document (sections 1 through 5) describes the 
basics of using Yi. Some topics of' special inte.rest are 

-presented in section 6, and some nitty-gritty details of how 
the editor functions ,are saved for section 7 to avoid 
cluttering the presentation here. 

There is also a short appendix here, which gives for 
each character the special meanings which this character has 
in 21. Attached to this document should be a quick refer­
ence card. This card summarizes the commands of ~ in a 
very compact format. You should have the card handy while 
you are learning ~. 

~.~. Specifying terminal type 

Before you can start Yi you must tell the system what 
kind of terminal you are using. Here is a (necessarily 
incomplete) list of terminal type codes. If your terminal 
does not appear here, you should consul t with one of the 
staff members on your system to find out the code for your 
terminal. If your terminal does not have a code, one can be 
assigned and a description for the terminal can be created. 

Code Full name Type 

2621 Hewlett-Packard 2621A/P Intelligent 

The financial support of an IBM Graduate Fellowship and 
the National Science Foundation under grants MCS74-
07644-A03 and MCS78-0729l is gratefully acknowledged. 

E-59 



2645 
act4 
act5 
adm3a 
adm3l 
c100 
dm1520 
dm2500 
dm3025 
fox 
h1500 
h19 
i100 
mime 
t106l 
vt52 

Hewlett-Packard 264x 
Microterm ACT-IV 
Microterm ACT-V 
Lear Siegler ADM-3a 
Lear Siegler ADM-3l 
Human Design Concept 100 
Datamedia 1520 
Datamedia 2500 
Datamedia 3025 
Perkin-Elmer Fox 
Hazeltine 1500 
Heathkit h19 
Infoton 100 
Imitating a smart act4 
Teleray 1061 
Dec VT-52 

Intelligent 
Dumb 
Dumb 
Dumb 
Intelligent 
Intelligent 
Dumb 
Intelligent 
Intelligent 
Dumb 
Intelligent 
Intelligent 
Intelligent 
Intelligent 
Intelligent 
Dumb 

Suppose for example that you have a Hewlett-Packard 
HP262lA terminal. The code used by the system for this ter­
minal is '2621'. In this case you can use one of the fol­
lowing commands to tell the system the type of your termi­
nal: 

% setenv TERM 2621 

This command works with the shell ~ on both version 6 and 
7 systems. If you are using the standard version 7 shell 
then you should give the commands 

$ TERM=2621 
$ export TERM 

If you want to arrange to have your terminal type set 
up automatically when you log in, you can use the tset pro­
gram. If you dial in on a~, but often use hardwired 
ports, atypical line for your .login file (if you use csh) 
would be 

setenv TERM 'tset - -d mime' 

or for your .profile file (if you use sh) 

TERM="tset - -d mime' 

~ knows which terminals are hardwired to each port and 
needs only to be told that when you dial in you are probably 
on a~. ~ is usually used to change the erase and 
kill characters, too. 

8-68 

\ 



" 

l. • .2.. Editing.a.f..i.l.e 

After telling the system which kind of terminal you 
have, you should make a copy of a file you are familiar 
with, and run ~ on this file, giving the command 

% vi ~ 

replacing ~ with the name of the copy file you just 
created. The screen should clear and the text of your file 
should appear on the screen. If something else happens 
refer to the footnote.++ 

l..~. ~ editor'~~: ~ buffer 

The editor does not directly modify the file which you 
are editing. Rather, the editor makes.a copy of this file, 
in a place called the buffer, and remembers the file's name. 
You do not affect the contents of the file unless and until 
you write the changes you make back into the original file. 

l..~. Notational conventions 

In our examples, input which must be typed as 
be presented in bold face. Text which should be 
with appropriate input will be given in italics. 
represent special characters in SMALL CAPITALS. 

l..2. Arrow ~ 

is will 
replaced 
We will 

The editor command set is independent of . the terminal 
you are using. On most terminals with cursor positioning 

++ If you gave the system an incorrect terminal type 
code then the editor may have just made a mess out of 
your screen. This happens when it sends control codes 
for one kind of terminal to some other kind of termi­
nal. In this case hit the keys:q (colon and the q 
key) and then hit the RETURN key. This should get you 
back to the command level interpreter. Figure out what 
you did wrong (ask someone else if necessary) and try 
again. 

Another thing which can go wrong is that you typed 
the wrong file name and the editor just printed an er­
ror diagnostic. In this case you should follow the 
above procedure for getting out of the editor, and try 
again this time spelling the file name correctly. 

If the edi tor dO'esn' t seem to respond to the com­
mands which you type here, try sending an interrupt to 
it by hitting the DEL or RUB key on your terminal, and 
then hitting the :q command again followed by a car­
riage return. 

£-61 



keys, these keys will also work within the editor. If you 
don't have cursor positioning keys, or even if you do, you 
can use the h j k and 1 keys as cursor positioning keys 
(these are labeled with arrows on an adm3a).* 

(Particular note for the HP2621: on this terminal the 
,:function keys must be shifted (ick) to send to the machine, 

".' otherwise they only act locally. Unshifted use will leave 
the cursor positioned incorrectly.) 

~.~. Special characters: ESC, ~ and ~ 

Several of these special characters are very important, 
so be sure to find them right now. Look on your keyboard 
for a key labeled ESC or ALT. It should be near the upper 
left corner of your terminal. Try hitting this key a few 
times. The editor will ring the bell to indicate that it is 
in a quiescent state.++ Partially formed commands are can­
celed by ESC, and when you insert text in the file you end 
the text insertion with ESC. This key is a fairly harmless 
one to hit, so you can just hit it if you don't know what is 
going on until the editor rings the bell. 

The CR or RETURN key is important because it is used to 
terminate certain commands. It is usually at the right side 
of the keyboard, and is the same command used at the end of 
each shell command. 

Another very useful key is the DEL or RUB key, which 
generates an interrupt, telling the editor to stop what it 
is doing. It is a forceful way of making,the editor listen 
to you, or to return it to the quiescent state if you don't 
know or don't like what is going on. Try hitting the 'II 
key on your terminal. This key is used when you want to 
specify a string to be searched for. The cursor should now 
be positioned at the'bottom line of the terminal after a 'II 
printed as a prompt. You can get the cursor back to the 
current pOSition by hitting the DEL or RUB keY7 try this 
now.* From now on we will simply refer to hitting the DEL or 
RUB key as "sending an interrupt. I 1** 

* As we will see later, h moves back to the left (like 
control-h which is a backspace), i moves down (in the 
same column), ok. moves up (in the same column), and ~ 
moves to the right. 
++ On smart terminals where it is possibl~, the editor 
will quietly flash the screen rather than ringing the 
bell. 
* Backspacing over the 'II will also cancel the search. 
** On some systems, this interruptibility comes at a 
price: you cannot type ahead when the editor is comput­
ing with the cursor on the bottom line. 

£-62 

, 
"' 



The editor often echoes your commands on the last line 
of the terminal. If the cursor is on the first position of 
this last line, then the editor is performing a computation, 
such as computing a new position in the file after a search 
or running a command to reformat part of the buffer. When 
this is happening you can stop the editor by sending an 
interrupt. 

~.2. Getting ~ Qf ~ editor 

After you have worked with this introduction for a 
while, and you wish to do something else, you can give the 
command zz to the editor. This will write the contents of 
the editor's buffer back into the file you are editing, if 
you made any changes, and then quit from the editor. You 
can also end an editor session by giving the command :qlCR;+ 
this is a dangerous but occasionally essential command which 
ends the editor session and discards all your changes. You 
need to know about this command in case you change the 
editor's copy of a file you wish only to look at. Be very 
careful not to give this command when you really want to 
save the changes you have made. 

2. Moying around in ~ ~ 

2.~. Scrolling ~ paging 

The editor has a number of commands for moving around 
in the file. The most useful of these is generated by hit­
ting the control and 0 keys at the same time, a control-O or 
'AO'. We will use this two character notation for referring 
to these control keys from now on. You may have a key 
labeled ,A, on your terminal. This key will be represented 
as 'T' in this document; "'A, is exclusively used as part of 
the 'AX' notation for control characters.++ 

As you know now if you tried hitting ~O, this command 
scrolls down in the file. The 0 thus stands for down. Many 
editor commands are mnemonic and this,makes them much easier 
to remember. For instance the command to scroll up is ~U. 
Many dumb terminals can't scroll up at all, in which case 
hitting ~U clears the screen and refreshes it with a line 
which is farther back in the file at the top. 

If you want to see more of the file below where you 
are, you can hit "E to expose one more line at the bottom of 
the screen, leaving the cursor where it is. ++++ The 

+ All commands which read from the last display line 
can also be terminated with a ESC as well as an CR. 
++ If you don't have a ,A, key on your terminal then 
there is probably a key labeled 'T'; in any case these 
characters are one and the same. 
++++ Version 3 only. 

£-63 



command -Y (which is hopelessly non-mnemonic, but next to ~U 
on the keyboard) exposes one more line at the top of the 
screen. 

There are other ways to move around in thefile1 the 
keys AF and ftB ++ move forward and backward a page, keeping 
a couple of lines of continuity between screens so that it 
is possible to read through a file using these rather than 
ftD and -U if you wish. 

Notice the difference between scrolling and paging. If 
you are trying to read the text in a file, hitting ftF .to 
move forward a page will leave you only a little context to 
look back at. Scrolling on the other hand leaves more con­
text, and happens mor e" smoothly. You can continue to read 
the text as scrolling is taking place • 

. 2..2.. Searching, SQ.t.Q, .and previous context 

Another way to position yourself i~ the file is by giv­
ing the editor a string to search for. Type the character / 
followed by a string of characters terminated by CR. The 
editor will position the cursor at the next occurrence of 
this string. Try hitting n to then go to the next 
occurrence of this string. The character? will search 
backwards from where you are, and is otherwise like /.+ 

If 
in the 
line of 
initial 

the search string you give the editor is not present 
file the editor will print a diagnostic on the last 

the screen,. and the cursor will be returned to its 
position. 

If you wish the search to match only at the beginning 
of a line, begin the search string with an T. To match only 
at the end of a line, end the search string with a $. Thus 
/fsearchCR will search for the word .. search I at the begin­
ning of a line, and /last $CR searches for the word 'last I at 
the end of a line.* 

++ Not available in all v2 editors due to memory con­
straints. 
+ These searches will normally wrap around the end of 
the file, and thus find the string even if it is not on 
a line in the direction you search provided it is any­
where else in the file. You can disable this wra­
paround in scans' by giving the command :se 
nowrapscanCR, or more briefly :se nowsCR. 
*Actually, the string you give to search for here can 
be a regular expression in the sense of the editors 
~(l) and ~(l). If you don't wish to learn about this 
yet, you can disable this more general facility by do­
ing :se nomagicCR: by putting this command in EXINIT in 
your environment, you can have this always be in effect 
(more about EXINIT later.) 

£-64 

, 
" 



" " 

i 

The~command G, when preceded by a 
the cursor at that line in the file. 
cursor to the first line of the file. 
count, then it moves to the end of the 

number will position 
Thus lG will move the 

If you give G no 
file. 

If you are near the end of the file, and the last line 
is not at the bottom of the screen, the editor will place 
only the character '-I on each remaining line. This indi­
cates that the last line in the file is on the screen; that 
is, the '-I lines are past the end of the file. 

You can find out the state of the file you are editing 
by typing a A G• The editor will show you the name of the 
file you are editing, the number of the current line, the 
number of lines in the buffer, and the percentage of the way 
through the buffer which you are. Try doing this now, and 
remember the number of the line you are on. Give a G com­
mand to get to the end and then another G command to get 
back where you were. 

You can also get back to a previous position by using 
the command ., (two back quotes). This is often more con­
venient than G because it requires no advance preparation. 
Try giving a G or a search with / or ? and then a " to get 
back to where you were. If you accidentally hit n or any 
command which moves you far away from a context of interest, 
you can quickly get back by hitting " • 

.2. • .1. Moving around .Q..U ~ screen 

Now try just moving the cursor around on the screen. 
If your terminal has arrow keys (4 or 5 keys with arrows 
going in each direction) try them and convince yourself that 
they work. (On certain terminals using v2 editors, they 
won't.) If you don't have working arrow keys, you can always 
use h, i, k, and~. Experienced users of ~ prefer these 
keys to arrow keys, because they are usually right under­
neath their fingers. 

Hit the + key. Each time you do, notice that the cur­
sor advances to the next line in the file, at the first 
non-white position on the line. The - key is like + but 
goes the other way., 

These are very common keys for moving up and down lines 
in the file. Notice that if you go off the bottom or top 
with these keys then the screen will scroll down (and up if 
possible) to bring a line at a time into view. The RETURN 
key has the same effect as the + key. 

Yi also has commands to take you to the top, middle and 
bottom of the screen. H will take you to the top (home) 
line on the screen. Try preceding it with a number as in 
3H. This will take you to the third line on the screen. 

E-65 



Many Yi commands take preceding numbers and do interesting 
things with them. Try M, which takes you to the middle line 
on the screen, and L, which takes you to the last line on 
the screen. L also takes counts, thus SL will take you to 
the fifth line from the bottom. 

2.~. Moying within ~ ~ 

Now try picking a word on some line on the screen, not 
the first word on the line. move the cursor using RETURN 
and - to be on the line where the word is. Try hitting the 
w key. This will advance the cursor to the next word on the 
line. Try hitting the b key to back up words in the line. 
Also try the e key which advances you to the end of the 
current word rather than to the beginning of the next word. 
Also try SPACE (the space bar) which moves right one charac­
ter and the BS (backspace or ~H) key which moves left one 
character. The key h works as -H does and is useful if you 
don't have a BS key. (Also, as noted just above, 1 will 
move to the right.) 

If the line had punctuation in it you may have noticed 
that that the wand b keys stopped at each group of punctua­
tion. You can also go back and forwards words without stop­
ping at punctuation by using Wand B rather than the lower 
case equivalents. Think of these as bigger words. Try 
these on a few lines with punctua tion to see how they differ 
from the lower case wand b. . 

The ,wor d keys wrap around the end of line, rather than 
stopping at the end. Try moving to a word on a line below 
where you are by repeatedly hitting w. 

2 • .5.. Summary 

SPACE 
~B 

"'D 
"'E 
AF 
"G 
"H 
AN 
"p 
-u 
Ay 

+ 

/ 
? 
B 
G 
H 

advance the cursor one position 
backwards to previous page 
scrolls down in the file 
exposes another line at the bottom (v3) 
forward to next page 
tell what is going on 
backspace the cursor 
next line, same column 
previous line, same column 
scrolls up in the file 
exposes another line at the top (v3) 
next line, at the beginning 
previous line, at the beginning 
scan for a following string forwards 
scan backwards 
back a word, ignoring punctuation 
go to specified line, last default 
home screen line 

E-66 



« 
., 

M ~ middle screen line 
L last screen line 
W forward a word, ignoring punctuation 
b back a word 
e end of current word 
n scan for next instance of / or ? pattern 
w word after this word 

2. • .2.e ~ ++ 

If you want to use the editor 
than to make changes, invoke it as 
will set the readonly option which 
accidently overwriting the, file., 

to look at a file, rather 
.:x.W instead of n. This 

will prevent you from 

~. Making simple changes 

.l.~. Inserting 

One of the most useful commands is the i (insert) com­
mand. After you type i, everything you type until you hit 
ESC is inserted into the file. Try this now; pOSition your­
self to some word in the file and try inserting text before 
this word. If you are on an dumb terminal it will seem, fo~ 
a minute, that some of 'the characters in your line have been 
overwritten, but they will reappear when you hit ESC. 

Now try finding a'word which can, but does not, end in 
an "s'. Position yourself at this word and type e (move to 
end of word), then a for append and then 'sESC' to terminate 
the textual insert. This sequence of commands can be used 
to easily pluralize a word. 

Try inserting and appending a few times to make sure 
you understand how this works; i placing text to the left of 
the cursor, a to the right. 

It is often the case that you want to add new lines to 
the file you are editing, before or after some specific line 
in the file. Find a line where this makes sense and then 
give the command 0 to create a new line after the line you 
are on, or the command 0 to create a new line before the 
line you are on. After you create a new line in this way, 
text you type up to an ESC is inserted on the new line. 

Many related editor commands are invoked by 
letter key and differ only in that one is given 
case key and the other is given by an upper case 
these cases, the upper case key often differs from 

the same 
by a lower 

key. In 
the lower 

++ Not available in all v2 editors due to memory con­
straints. 

£-67 



'I"' 

case key in its sense of direction, with the upper case key 
working backward and/or up, while the lower case key moves 
forward and/or down. 

Whenever you are typing in text, you can give many 
'lines of input or just a few characters. To type in more 
than one line of text, hi t a RETURN at the middle of your 
input. A new line will be created for text, and you can 
continue to type. If you are on a slow and dumb terminal 
the editor may choose to wait to redraw the tail of the 
screen, and will let you type over the existing screen 
lines. This avoids the lengthy delay which would occur if 
the editor attempted to keep the tail of the screen always 
up to date. The tail of the screen will be fixed up, and 
the missing lines will reappear, when you hit ESC. 

While you are inserting new text, you can use the char­
acters you normally use at the system command level (usually 
ftH or i) to backspace over the last character which you 
typed, and the character which you use to kill input lines 
(usually @, AX, or ftu) to erase the input you have typed on 
the current line.+ The character -W will erase a whole word 
and leave you after the space after the previous word;.it is 
useful for quickly backing up in an insert. 

Notice that when you backspace during an insertion the 
characters you backspace over are not erased; the cursor 
moves backwards, and the characters remain on the display. 
This is often useful if you are planning to-type in some­
thing similar. In any case the characters disappear when 
when you hit, ESC: if you want to get rid of them immedi­
ately, hit an ESC and then a again. 

Notice also that you can't erase characters which you 
didn't insert, and that you can't backspace around the end 
of a line. If you need to back up to the previous line to 
make a correction, just hit ESC and move the cursor back to 
the previous line. After making the correction you can 
return to where you were apd use the insert or append com­
mand again. 

~.z. Making small corrections 

You can make small corrections in existing text quite 
easily. Find a single character which is wrong or just pick 
any character. Use the arrow keys to find the character, or 
get near the character with the word motion keys and then 
either backspace (hit the BS key or ftH or even just h) or 
SPACE (using the space bar) until the cursor is on the 

+ In fact, the character -H (backspace) always works to 
erase the last input character here, regardless of what 
your erase character is. 

E-68 , 
" 



\ 

'i 
\ 

character 
then hit 
file. It 
you make 
messy) • 

which is wrong. If the character is not needed 
the x key; this deletes the character from the 

is analogous to the way you x out characters when 
mistakes on a typewriter (except it's not as 

If the character is incorrect, you can replace it with 
the correct character by giving the command r~, where ~ is 
replaced by the cor;rect character. Finally if the character 
which is incorrect should be replaced by more than one char­
acter, give the command s which substitutes a string of 
characters, ending with ESC, for it. If there are a small 
number of characters which are wrong you can precede s with 
a count of the number of characters to be replaced. Counts 
are also useful with x to specify the number of characters 
to be deleted. . 

~.~. ~ corrections: operators 

You already know almost enough to make changes at a 
higher level. All you need to know now is that the ~ key 
acts as a delete operator. Try the command ~ to delete a 
word. Try hitting • a few times. Notice that this repeats 
the effect of the dw. . The command • repeats the last com­
mandwpich made a change. You can remember it by analogy 
with an ellipsis ' ••• '. 

Now try db. This deletes a'word backwards, namely the 
preceding word. Try dSPACE. This deletes a single charac­
ter, and is equivalent to the x command. 

Another very useful operator is ~ or change. The com­
mand ~ thus changes the text of a single word. You follow 
it by the replacement text ending with an ESC. Find a word 
which you can change to another, and try this now. Notice 
that the end of the text to be changed was marked with the 
character '$' so that you can see this as you are typing in 
the new material. 

~.~. Operating ~ lines 

It is often the case that you want to operate on lines. 
Find a line which you want to del~te, and type dd, the ~ 
operator twice. This will delete the line. If you are on a 
dumb terminal, the editor may just erase the line on the 
screen, replacing it with a line with only an @ on it. This 
line does not correspond to any line in your file, but only 
acts as a place holder. It helps to avoid a lengthy redraw 
of the rest of the screen which would be necessary to close 
up the hole created by the deletion on a terminal without a 
delete line capability. 

Try repeating the ~ operator twice; this will change a 
whole line, eraSing its previous contents and replacing them 

£-69 



with text you type up to an ESC.+ 

You can delete or change more than one line by preced­
ing the ~ or ~ with a count, i.e. Sdd deletes S lines. 
You can also give a command like dL to delete all the lines 
up to and including the last line on the screen, or d3L to 
delete through the third from the bottom line. Try some 
commands like this now.* Notice that the editor lets you 
know when you change a large number of lines so that you can 
see the extent of the change. The editor will also always 
tell you when a change you make affects text which you can­
not see • 

.1 • .5.. Undoing 

Now suppose that the last change which you made was 
incorrect; you could use the insert, delete and append com­
mands to put the correct material back. However, since it 
is often the case that we regret a change or make a change 
incorrectly, the editor provides a ~ (undo) command to 
reverse the last change which you made. Try this a few 
times, and give it twice in a row to notice that an ~ also 
undoes a .\.1. 

The undo command lets you reverse only a single change. 
After you make a number of changes to a line, you may decide 
that you would rather have the original state of the line 
back. The.l! command restores the current line to the state 
before you started changing it. 

You can recover text which you delete, even if 'undo 
will not bring it back: see the section on recovering lost 
text below • 

.1 • .6... Summary 

SPACE advance the cursor one pOSition 
AH backspace the cursor 
AW erase a word during an insert 
erase your erase (usually AH or i), 

kill 

• 

erases a character during an insert 
your kill (usually @, AX, or AH) I 

kills the insert on this line 
repeats the changing command 

+ The command S is a convenient synonym for for ce , by 
analogy with s. Think of S as a substitute on lines, 
while s is a sUbstitute on characters. 
* One subtle point here involves using the / search 
after a d. This will normally delete characters from 
the current position to the point of the match. If 
what is desired is to delete whole lines including the 
two points, give the pattern as /pat/+0, a line ad­
dress. 

E-78 

\ 



, 
. 

0 
U 
a 
c 
d 
i 
0 
u 

'. 

i 
\ 
.~ 

opens and inputs new lines, above the current 
undoes the changes you made to the current line 
appends text after the cursor 
changes the object you specify to the following text 
deletes the object you specify 
inserts text before the cursor 
opens and inputs new lines, below the current 
undoes the last change ' 

~. Moying about; rearranging ~ duplicating text 

~.~. ~ level character motions 

Now move the cursor to a line where there is a punctua­
tion or a bracketing character such as a parenthesis or a 
comma or period. Try the command fx where X is this charac­
ter. This command finds the next X character to the right 
of the cursor in the current line. Try then hitting a ;, 
which finds the next instance of the same character. By 
using the f command and then a sequence of ;'s you can often 
get to a particular place in a line much faster than with a 
sequence of word motions or SPACEs. There is also a F com­
mand, which is like f, but searches backward. The; command 
repeats F also. 

When you are operating on the text in a line it is 
often desirable to deal with the characters up to, but not 
including, the first instance of a character. Try dfx for 
some A now and notice that the X character is deleted. Undo 
this with u and then try dtx; the t here stands for to, 
i.e. delete up to the next X, but not the x. The command T 
is the reverse of ~. 

When working with the text of a single line, an T moves 
the cursor to the first non-white position on the line, and 
a $ moves it to the end of the line. Thus $a will append 
new text at the end of the current line. 

Your file may have tab ("I) characters in it. These 
characters aI:e represented as a number of spaces expanding 
to a tab stop, where tab stops are every 8 positions.* When 
the cursor is at a tab, it sits on the last of the several 
spaces which represent that tab. Try moving the cursor back 
and forth over tabs so you understand how this works. 

On rare occasions, your file may have nonprinting char­
acters in it. These characters are displayed in the same way 

* This is settable by a command of the form :se tS=XCR, 
where X is 4 to set tabstops every four columns. This 
has effect on the screen representation within the edi-
tor. 

£-71 



they are represented in this document, that is with a two 
character code, the first character of which is ~ft'. On the 
scr een non-pr inting ,characters resemble a ''', character 
adjacent to another, but spacing or backspacing over the 
character will reveal that the two characters are, like the 
spaces representing a tab character, a single character. 

The editor sometimes discards control characters, 
depending on the character and the setting of the beautify 
option, if you attempt to insert them in your file. You can 
get a control character in the file by beginning an insert 
and then typing a ~V before the control character. The"V 
quotes the following character, causing it to be inserted 
directly into the file. 

~.z. Higher level ~ objects 

In working with a document it is often advantageous to 
work in terms of sentences, paragraphs, and sections. The 
operations ( and) move to the beginning of the previous and 
next sentences respectively.. Thus the command d) will 
delete the rest of the current sentence7 likewise d ( will 
delete the previous sentence if you are at the beginning of 
the current sentence, or the current sentence up to where 
you are if you are not at the beginning of the current sen­
tence. 

. 
A sentence is defined to end ata '.', 'I' or '?' which 

is followed by either the end of a line, or by tw.o spaces. 
Any number of closing ') " '] " 'ft, and 'II characters may 
appear after the '.', 'I' or ~?' before the spaces or end of 
line. 

The operations { and } move over paragraphs and the 
operations [[ and ]] move over sections.+ 

A paragraph begins after each empty line, and also at 
each of a set of paragraph macros, specified by the pairs of 
characters in the definition of the string valued option 
paragraphs. The default setting for this option defines the 
paragra~h macros of the -~ and -mm macro packages, i.e. the 
'.IP', .LP', '.PPI and '.QP', '.P' and '.LI' macros.++ Each 

+ The [[ and ]] operations require the operation char­
acter to be doubled because they can move the cursor 
far from where it currently is. While it is easy to 
get back with the command ", these commands would 
still be frustrating if they were easy to hit acciden­
tally. 
++ You can easily change or extend this set of macros 
by assigning a different string to the paragraphs op-
tion in your EXINIT. See section 6.2 for details. The 
'.bp' directive is also considered to start a para-

8-72 

, 
" 



,', 

\ 
paragraph1 boundary is also a sentence boundary. The sen­
tence and paragraph commands can be given counts to operate 
over groups of sentences and paragraphs. 

Sections in the editor begin after 'each macro in the 
sections option, normally '.NH', '.SH', '.H' and '.HU', and 
each line with a formfeed -L in the first column. Section 
boundaries are always line and paragraph boundaries also. 

Try experimenting with the sentence and paragraph com­
mands until you are sure how they work. If you have a large 
document, try looking through it using the section commands. 
The section commands interpret a preceding count as a dif­
ferent window size in which to redraw the screen at the new 
location, and this window size is the base size for newly 
drawn windows until another size is specified. This is very 
useful if you are on a slow terminal and are looking for a 
particular section. You can give the first section command a 
small count to then see each successive section heading in a 
small window. 

~.~. Rearranging ~ duplicating ~ 

The editor has a single unnamed buffer where the last 
deleted or changed away text is saved, and a set of named 
buffers a-z which you can use to save copies of text and to 
move text around in your file and .between files. 

The operator ~ yanks a copy of the object which follows 
into the unnamed buffer. If preceded by a buffer name, "AY, 
where X here is replaced by a letter a-z, it places the text 
in the named buffer. The text can then be put back in the 
file with the commands ~ and ~i p puts the text after or 
below the cursor, while P puts the text before or above the 
cursor. 

If the text which you yank forms a part of a line, or 
is an object such as a sentence which partially spans more 
than one line, then when you put the text back, it will be 
placed after the cursor (or before if you use P). If the 
yanked text forms whole lines, they will be put back as 
whole lines, without changing the current line. In this 
case, the put acts much like a 0 or 0 command. 

Try the command YP. This makes a copy of the current 
line and leaves you on this copy, which is placed· before the 
current line. The command Y is a convenient abbreviation 
for yy. The command Yp will also make a copy of the current 
line, and place it after the current line. You can give Y a 
count of lines to yank, and thus duplicate several· lines; 
try 3YP. 

graph. 

E-73 



To move text within the buffer, you need to delete it 
in one place, and put it back in another. You can precede a 
delete operation by the name of a buffer in which the text 
is to be stored as in "a5dd deleting 5 lines into the named 
buffer~. You can then move the cursor to the eventual 
resting place of the these lines and do a nap or naP to put 
them back. In fact, you can switch and edit another file 
before you put the lines back, by giving a command of the 
form :e ~CR where ~ is the name of the other file you 
want to edit. You will have to write back the contents of 
the current editor buffer (or discard them) if you have made 
changes before the editor will let you switch to the other 
file. An ordinary delete command saves the text in the 
unnamed buffer, so that an- ordinary put can move it else­
where. However, the unnamed buffer is lost when you change 
files, so to move text from one file to another you should 
use an unnamed buffer • 

.i . .i. Summary. 

r first non-white on line 
$ end of line 
) forward sentence 
} forward paragraph 
]] forward section 
( backward sentence 
{ backward paragraph 
[[ backward section" 
fZ find A forward"in line 
p put text back, after cursor or below current line 
y yank operator, for copies and moves 
tz up to Z forward, for operators 
FX f backward in line 
P put text back, before cursor or above current line 
TZ t backward" in line 

..5.. Hish level commands 

..5.~~. Writing, guitting, editing.n.elt files 

So far we have seen how to enter ri. and to write out 
our file using either ZZ or :wCR. The first exits from the 
editor, (writing if changes were made), the second writes 
and stays in the editor. 

If you have changed the editor I s copy of the file but 
do not wish to save your changes, ei ther because you messed 
up the file or decided that the changes are not an improve­
ment to the file, then you can give the command :qlCR to 
quit from the editor without writing the changes. You can 
also reedit the same file (starting over) by giving the com­
mand :e lCR. These commands should be used only rarely, "an,d 

~~ 

E-74 

, 
" 



with caution, as it is not possible to recover the changes 
you have made after you discard' them in this manner. 

You can edit a different file without leaving the edi­
tor by giving the command :e ~CR. If you have not writ­
ten out your file before you try to do this, then the editor 
will tell you this, and delay editing the other file. You 
can then give the command :wCR to save your work and then 
the :e ~CR command again, or carefully give the command 
:e! ~CR, which edits the other file discarding the 
changes you have made to the current file. To have the edi­
tor automatically save changes, include ~ autowrite in 
your EXINIT, and use :n instead of :e. 

~.2. 'Escaping ~ A shell 

You can get to a shell to execute a single command by 
giving a Yi command of the form :!&mdCR. The system will 
run the single command ~ and when the command finishes, 
the editor will ask you to hit a RETURN to continue. When 
you have finished looking at the output on the screen, you 
should hit RETURN and the editor will clear the screen and 
redraw it. You can then continue editing. You can also 
give . another : command when it asks you for a RETURN; in 
this case the screen will not be redrawn. 

If you wish to execute more than one command in the 
shell, then you can give the command :shCR. This will give 
you a new shell, and when you finish with the shell, ending 
it by typing a ~D, the editor will clear the screen and con­
tinue. 

On systems which support it, -Z will suspend the editor 
and return to the (top level) shell. When the editor is 
resumed, the screen will be redrawn. 

~.~. Marking And returning 

The command " returned to the previous place after a 
motion of the cursor by a command such as I, ? or G. You 
can also mark lines in the file with single letter tags and 
'return to these marks later by naming the tags. Try marking 
the current line with the command mx, where you should pick 
some letter for ~, say 'al. Then move the cursor to a dif­
ferent line (any way you like) and hit 'a. The cursor will 
return to the place which you marked. Marks last only until 
you edit another file. 

When using operators such as ~ and referring to marked 
lines, it is often desirable to delete whole lines rather 
than deleting to the exact position in the line marked by m. 
In this case you can use the form 'X rather than 'x. Used 
without an operator, 'X will move to the first non-white 
character of the marked line; similarly" moves to the 

E-75 



first non-white character of the line containing the previ­
ous context mark "~a 

2.~. Adjusting ~ sCreen 

If the screen image is messed up because of a transmis­
sion error to your terminal, or because some program other 
than the editor wrote output to your terminal, you can hit a 
~L, the ASCII form-feed character, to cause the screen to be 
refreshed. 

On a dumb terminal, if there are @ lines in 
of the screen as a result of line deletion, you 
of these lines by typing ~R to cause the editor 
the screen, closing up these holes. 

the middle 
may get rid 

to retype 

Finally, if you wish to place a certain line on the 
screen at the top middle or bottom of the screen, you can 
position the cursor to that line, and then give a z command. 
You should follow the z command with a RETURN if you want 
the line to appear at the top of the window, a • if you want 
it at the center, or a - if you want it at the bottom. (z., 
z-, and z+ are not available on all v2 editors.) 

~. Special topics 

Q.~. Editing Qn ~ terminals 

When you are on a slow terminal, it is important to 
limit the amount of output which is generated to your screen 
so that you will not suffer long delays, waiting for the 
screen to be refreshed. We have already pointed out how the 

.editor optimizes the updating of the screen during inser­
tions on dumb terminals to limit the delays, and how the 
editor erases lines to @ when they are deleted on dumb ter-
minals. . 

The use of the slow terminal insertion mode is con­
trolled by the slowopen option. You can force the editor to 
use this mode even on faster terminals by giving the command 
:se slowCR. If your system is sluggish this helps lessen 
the amount of output coming to your terminal. You can dis­
able this option by :se noslowCR. 

The editor can simulate an intelligent terminal on a 
dumb one. Try giving the command :se redrawCR. This simu­
lation generates a great deal of output and is generally 
tolerable only on lightly loaded systems and fast terminals. 
You can disable this by giving the command 

:se noredrawCR. . 

The editor also makes editing more pleasant at low 
speed by starting editing in a small window, and letting the 
window expand as you edit. This works particularly well on 

E-76 

\ 
\ 



intelligent 
easily when 
terminals. 
terminal to 

terminals. The editor can expand the window 
you insert in the middle of the screen on these 

If possible, try the editor on an intelligent 
see how this works. ' 

You can control the size of the window which is redrawn 
each time the screen is cleared by giving window sizes as 
argument to the commands which cause large screen motions: 

: / ? [[ ]] " 

Thus if you are searching for a particular instance of a 
common string in a file you can precede the first search 
command by a small number, say 3, and the editor will draw 
th ree line wlndows around each instance of the str ing which 
it locates. 

You can easily expand or contract the window, placing 
the current line as you choose, by giving a number on a z 
command, after the z and before the following RETURN, • or 

• Thus the command zS. redraws the screen with the current 
line in the center of a five line window.+ 

If the editor is redrawing or otherwise updating large 
portions of the display, you can interrupt this updating by 
hitting a DEL or RUB as usual. If you do this you may par­
tially confuse the editor about what is displayed on the 
screen. You can still edit the text on the screen if you 
wish; clear up the confusion by hitting a ~L; or move or 
search again, ignoring the current state of the display. 

See section 7.8 on ~ mode for another way to use the 
~ command set on slow terminals. 

~.z. Options,~, And editor startup files 

The editor has a set of options, some of which have 
been mentioned above. The most useful options are given in 
the following table. 

The options are of· three kinds': numeric options, 
string options, and toggle options. You can set numeric and 
string options by a statement of the form 

+ Note that the command 5z. has an entirely different 
effect, placing line 5 in the center of a new window. 

B-77 



Name 

autoindent 
autowrite 
ignorecase 
lisp 

Default 

noai 
noaw 
noic 
nolisp 

Description 

Supply indentation automatically 
Automatic write before :n, :ta, ~f, 
Ignore case in searching 

list 
magic 
number 
paragraphs 
redraw 
sections 
shiftwidth 
showmatch 
slowopen 
term 

nolist 
nomagic 
nonu 
para=IPLPPPQPbpP LI 
nore 

( { ) } commands deal with S-expressions 
Tabs print as AI; end of lines marked with $ 
The characeers • [ and * are special in scans 
Lines are displayed prefixed with line numbeI 
Macro names which start paragraphs 

sect=NHSHD DU 
Simulate a smart terminal on a dumb one 
Marco names which start new sections 

sw=S 
nosm 
slow 
dumb 

Shift distance for <,>' and input ~D and ~T 
Show matching ( or { as ) or } is typed 
Postpone display updates during inserts 
The kind of terminal you are using 

set ~=nJ. 

and toggle options can be set or unset by statements of one 
of. the forms 

set ~ 
set no.w2,t 

These statements can be placed in your EXINIT in your 
environment, or given while you are running ~ by preceding 
them with a : and fol~owing them with a CR. 

You can get a list of all options which you have 
changed by the command :setCR, or the value of a single 
option by the command :set ~?CR. A list of all possible 
options and their values is generated by :set allCR. Set 
:can be abbreviated see Multiple options can be placed on 
.~ne.line, e.g. :se ai aw nuCR •. 

Options set by the set command only last while you stay 
in the editor. It is common to want to have certain options 
set whenever· you use the edi tor. This can be accomplished 
by creating a list of .ex commands+ which are to be run every 
time you start up .ex, ~, or~. A typical list includes 
a set command, and possibly a few map commands (on v3 edi­
tors). Since it is advisable to get these commands on one 
line, they can be separated with the I character, for exam­
ple: 

set ai aw terselmap @ ddlmap i x 

which sets the options autoindent, autowrite, terse, (the 
.s..e.t command), makes @ delete a line, (the first mAl1), and 

.--'II: 

+ All commands which start with : are .ex commands. 

E-78 

, 
" 



" .. 
. 
'. 

makes ~Hdelete a character, (the second ~) • (See section 
6.9 for a description of the map command, which only works 
in version 3.) This string should be placed in the variable 
EXINIT in your environment. If you use ~, put this line 
in the file .login in your home directory: 

setenv EXINIT 'set ai aw terse I map @ ddlmap i x' 

If yOll use the standard v7 shell, put these lines in the 
file .profile in your home directory: 

EXINIT='set ai aw terselmap @ ddlmap i x' 
export EXINIT 

On a version 6 system, the concept of environments is not 
present. In this case, put the line in the file .exrc in 
your home directory. 

set ai aw terselmap @ ddlmap t x 

Of course, the particulars of the line would depend on which 
options you wanted to set. 

~.~. Recoyering ~ lines 

You might have a serious problem if you delete a number 
of lines and then regret that tney were deleted. Despair 
not, the editor saves the last 9 deleted blocks of text in a 
set· of numbered registers 1-9. You can get the n' thprevi­
ous deleted text back in your file by the command wnp. The 
n here says that a buffer na~e is to follow, n is the number 
of the buffer you wish to try (use the number 1 for now), 
and ~ is the put command, which puts text in the buffer 
after the cursor. If this doesn't bring back the text you 
wanted, hit y to undo this and then. (period) to repeat 
the put command. In general the. command will repeat the 
last change you made. As a special case, when the last com­
mand refers to a numbered text buffer, the • command incre­
ments the number of the buffer before repeating the command. 
Thus a sequence of the form 

"lpu.u.u. 

will, if repeated long enough, show you all the deleted' text 
which has been saved for you. You can omit the y commands 
here to gather up all this text in the buffer, or stop after 
any • command to keep just the then recovered text. The 
command ~. can also be used rather than R to put the 
recovered text before rather than after the cursor. 

~.~. Recoyering ~ files 

If the system crashes, you can recover the work you 
were doing to within a few changes. You will normally 

£-79 



receive mail when you next login g1v1ng you the name of the 
, file which has been saved for you. You should then change to 
the directory where. you were when the system crashed and 
give a command of the form: 

% vi - r 1l.allle. 

replacing name with the name of the file which you were 
editing. This will recover your work to a point near where 
you left off.+ 

You can get a listing of the files which are saved for 
you by giving the command: 

% vi -r 

If there is more than one instance of a particular file 
saved, the edi tor gives you the newest instance each time 
you recover it. You can thus get an older saved copy back 
by first recovering the newer copies. 

For this feature to work, ~ must be correctly 
installed. by a super user on your system, and the mail pro­
gram must exist to receive mail. The invocation "~ -L" 
will not always list all saved files, but they can be 
recovered even if they are not listed. 

~.~. Continuous ~ input 

When you are typing in large amounts of text it is con­
venient to have lines broken near the right margin automati­
cally. You can cause this to happen by giving the command 
:se wm=l0CR. This causes all lines to be broken at a space 
at least 10 columns from the right hand edge of the screen.* 

If the editor breaks an input line and you wish to put 
it back together you can tell it to j·oin the lines with J. 
You can give J a count of the number of lines to be joined 
as in 3J to join 3 lines. The editor supplies white space, 
if appropriate, at the juncture of the joined lines, and 
leaves the cursor at this white space. You can kill the 

+ In rare cases, some of the lines of the file may be 
lost. The editor will give you the numbers of these 
lines and the text of the lines will be replaced by the 
string 'LOST'. These lines will almost always be among 
the last few which you changed. You can either choose 
to discard the changes which you made (if they are easy 
to remake) or to replace the few lost lines by hand. 
* This feature is not available on some v2 editors. In 
v2 editors where it is available, the break can only 
occur to the right of the specified boundary instead of 
to the left. 

B-81 

, 
\ 



white space with x if you don't want it. 

~.~. Features ~ editing programs 

The editor has a number of commands for editing pro­
grams. The thing that most distinguishes editing of pro­
grams from editing of text is the desirability of maintain­
ing an indented structure to the body of the program. The 
editor has a autoindent facility for helping you generate 
correctly indented programs. 

To enable this facility you can give the command :se 
aiCR. Now try opening a new line with 0 and type some char­
acters on the line after a few tabs. If you now start 
another line, notice that the editor supplies white space at 
the beginning of the line to line it up with the previous 
line. You cannot backspace over this indentation, but you 
can use AD key to backtab over the supplied indentation. 

Each time you type -0 you back up one pOSition, nor­
mally to an 8 column boundary. This amount is settable: the 
editor has an option called shiftwidth which you can set to 
change this value. Try giving the c'ommand :se sw=4CR and 
then experimenting with autoindent again. 

For shifting lines in the program left and right, there 
are operators < and >~ These shift the lines you specify 
right or left by one shiftwidth. Try« and » which· shift 
one line left or right, and <L and >L shifting the rest of 
the display left and right. 

If you have a complicated expression and 
how the parentheses match, put the cursor at a 
parenthesis and hit %. This will show you 
parenthesis. This works also for braces { and 
ets [ and ]. 

wish to see 
left or right 
the rna tching 
}, and brack-

If you are editing C programs, you can use the [[ 
]] keys to advance or retreat to a line starting with 
i.e. a function declaration at a time. When]] is used 
an operator it stops after a line which starts with }; 
is sometimes useful with y]]. 

~.2. Filtering pOrtions Qf ~ buffer 

and 
a {, 
with 
this 

You can run system commands over portions of the buffer 
using the operator 1. You can use this to sort lines in the 
buffer, or to reformat portions of the buffer with a 
pretty-printer. Try typing in a list of random words, one 
per line and ending them with a blank line. Back'up to the 
beginning of the list, and then give the command l}sortCR. 
This says to sort the next paragraph of material, and the 
blank line ends a paragraph. 

£-81 



~.~. Commands ~ editing ~+ 

If you are editing a LISP program you should set the 
option .l.i..w2 by doing :se lispCR. This changes the ( and ) 
commands to move backward and forward over s-expressions. 
The { and } commands are like ( and) but don't stop at 
atoms. These can be used to skip to the next list, or 
through a comment quickly. 

The auto indent option works differently for LISP, sup­
plying indent to align at the first argument to the last 
open list. If there is no such argument then the indent is 
two spaces more than the last level. 

There is another option which is useful for typing in 
LISP, the showmatch option. Try setting it with :se smeR 
and then try typing a '(I some words and then a ') I. Notice 
that the cursor shows the position of the '(I which matches 
the ') I briefly. This happens only if the matching '(I is on 
the screen, and the cursor stays there for at most one 
second. 

The editor also has an operator to realign eXisting 
lines as though they had been typed in with ~ and autoin­
~ set. This is the = operator. Try the command =% at 
the beginning of a function. This will realign all the 
lines of the function declaration. 

When you are editing LISP" the [[ and]] advance and 
retreat to lines beginning with a (, and are useful for 
dealing with entire function definitions. 

~ • .2... Macros++ 

Yi has a parameterless macro facility, which lets you 
set it up so that when you hit a single keystroke, the edi­
tor will act as though you had hit some longer sequence of 
keys. You can set this up if you find yourself typing the 
same sequence of commands repeatedly. 

Briefly, there are two flavors of macros: 

a) Ones where you put the macro body in a buffer register, 
say x. You can then type @x to invoke the macro. The 
@ may be followed by another @ to repeat the last 
macro. 

+ The LISP features are not available on some v2 
tors due to memory ponstraints. 
++ The macro feature is available only in version 
itors. 

E-82 

edi-

3 ed-

, 
\ 



\ 
b) You; can use the maR command from ti (typically in your 

EXINIT) with a command of the form: 

:map .lha .t.b..aCR 

mapping-lhQ into~. There are restrictions: lha 
should be one keystroke (either I character or one 
function key) since it must be entered within one 
second (unless notimeout is set, in which case you can 
type i.t as slowly as you wish, and n will wait for you 
to finish it before it echoes anything). The.lha. can 
be no longer than 19 characters, the Lha no longer than 
199. To get a space, tab or newline into.lha. or ~ 
you should escape them with a ~V. (It may be necessary 
to double the -V if the map command is given inside ti, 
rather than in ~.) Spaces and tabs inside the Lha need 
not be escaped. . 

Thus to make the q key write and exit the editor, you 
can give the command 

:map q :wq··V"VCR CR 

which means that whenever you type q, it will be as though 
you had typed the four characters :wqCR. A "V's is needed 
because without it the CR would end the : command,_ rather 
than becoming part of the ~ definition. There are two 
Ay'S because from within ti, two "y's must be typed to get 
one. The first CR is part of the~, the second terminates 
th e : command.· 

Macros can be deleted with 

unmap lhs 

If the ~ of a macro is "19" through '~i9", this 
maps the particular function key instead of the 2 character 
"~I"~ sequence. So that terminals without function keys can 
access such definitions, the form "Ix" will mean function 
key X on all terminals (and need not be typed within one 
second.) The character "i" can be changed by using a macro 
in the usual way: 

:map AV"V"I I 

to use tab, for example. 
mand, which still uses 
visual mode. 

(This won't affect the maR com­
I, but just the invocation from 

The undo command reverses an entire macro call as a 
unit, if it made any changes. 

Placing a 'I' after the word ~ causes the mapping to 

E-83 



,. 

".' 

apply to input mode, rather than command mode. Thus, to 
arrange for ftT to be the same as 4 spaces in input mode, you 
can type: 

"T fttn.n.lww :map v"",,,","'''' 

where ~ is a blank. The ftV is necessary to prevent the 
blanks from being taken as white space between the lha and 
.r.h.a. 

2. ~ Abbreviatione ++++ 

A feature similar to macros in input mode is word 
abbreviation. This allows you to type a shor t wor d and have 
it expanded into a longer word or words. The commands are 
:abbte~;i.gte and :uDabbte~iate . (:ab and :WlA) and have the 
same syntax as : maR· For example: 

:ab eecs Electrical Engineering and Computer Sciences 

causes the word 'eecs' to always be changed into the phrase 
'Electrical Engineering and Computer Sciences'. Word abbre­
viation is different from macros in that only whole words 
are affected. If 'eecs' were typed as part of a larger 
word, it would be left alone. Also, the partial word is 
echoed as it is typed. There is no need for an abbreviation 
to be a Single keystroke, as it should be with a macro. 

2.~. AbbteviatioDS 

The editor has a number of short commands'which abbre­
viate longer commands which we have introduced here. You 
can find these commands easily on the quick reference card. 
They often save a bit of typing and you can learn them as 
convenient. 

~. Nitty-gtitty detaile 

~.~. ~ tePteeentation in ~ display 

The editor folds long logical lines onto many physical 
lines in the display. Commands which advance lines advance 
logical lines and will skip over all the segments of a line 
in o·ne motion. The command I moves the cursor to a specific 
column, and may be useful for getting near the middle of a 
long line to split it in half. Try 801 on a line which is 
more than 80 columns long.+ 

The editor only puts full lines on the display; if 

++++ Version 3 only. 
+ You can make long lines very easily by using J to 
join together short lines. 

£-84 



there is'lnot enough room on the display to fit a logical 
line, the editor leaves the physical line empty, placing 
only an @ on the line as a place holder. When you delete 
lines on a dumb terminal, the editor will often just clear 
the lines to @ to save time (rather than rewriting the rest 
of the screen.) You can always maximize the information on 
the screeu by giving the ~R command. 

If you wish, you can have the editor place line numbers 
before each line on the display. Give the command :se nuCR 
to enable this, and the command :se nonuCR to turn it off. 
You can have tabs represented as ~I and the ends of lines 
indicated with "$' by giving the command :se listCR: :se 
nolistCR turns this off. 

Finally, lines consisting of only the character ,-, are 
displayed when the last line in the file is in the middle of 
the screen. These represent physical lines which are past 
the logical end of file • 

.a..2.. Counts 

Most ~ commands will use a preceding count to affect 
their behavior in some way. The following table gives the 
common ways in which the counts are used: 

new window size 
scroll amount 
line/column number 
repeat effect 

:. / ? [[ ]] 
AD "U 
z G I 
most of the rest 

.. 

The editor maintains a notion of the current default 
window size. On terminals which run at speeds greater than 
1200 baud the editor uses the full terminal screen. On ter­
minals which are slower than l2SS baud (most dialup lines 
are in this group) the editor uses 8 lines as the default 
window size. At l2SS baud the default is 16 lines. 

This size is the size u.sed when the editor clears and 
refills the screen after a search or other motion moves far 
from the edge of the current window. The commands which 
take a new window size as count all often cause the screen 
to be redrawn. If you anticipate this, but do not need as 
large a window as you are currently using, you may wish to 
change the screen size by specifying the new size before 
these commands. In any case, the number of lines used on 
the screen will expand if you move off the top with a or 
similar command or off the bottom with a command such as 
RETURN or ~D. The window will revert to the last specified 
size the next time it is cleared and refilled.+ 

B-85 



',. 

The scroll commands ~D and ··U likewise remember the 
amount of 'scroll last specified, using half the basic window 
size initially. The simple insert commands use a count to 
specify a repetition of the inserted text. Thus lea+----ESC 
will insert a grid-like string of text. A few commands also 
use a preceding count as a line or column number. 

Except for a few commands which ignore any counts (such 
as "R), the rest of the editor commands use a count to indi­
cate a simple repetition of their effect. Thus 5w advances 
five words on the current line, while 5RETURN advances five 
lines. A very useful instance of a count as a repetition is 
a count given to the • command, which repeats the last 
changing command. If you do dw and then 3., you will delete 
first one and then three words. You can then delete two 
more words with 2 •• 

~~~. ~ ~ manipulation commands 

The following table lists the fil·e manipulation com­
mands which you can use when you are in ~.

:w
:wq
:x
:e~

:e!
:e + .na..m.e.
:e +n

.:e i
:w .ruu:n.e
:w! n..mn.e
: X, ::lw .wllIUit
: r .ruu:n.e
:r !~
:n
:n!
:n ..a.t..SLa
:ta .tag

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit file Jl.alDf:.
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines X through :t. to name
read file Jl.alDf:. into buffer
read output of ~ into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag ~, at .tag

All of these commands are followed by a CR or ESC. The most
basic commands are :w and :e. A normal editing session on a
Single file will end with a ZZ command. If you are editing
for a long period of time you can give :w commands occasion­
ally after major amounts of editing, and then finish with a
ZZ. When you edit more than one file, y~u can· finish with
one with a :w and start editing a new file by giving a :e
command, or set autowrite and use :n <file>.

+ But not by a AL which just redraws the screen as it
is.

£-86

"

.,

"
,
:'1

\

If~you make changes to the editor's copy of a file, but
do not' wish to write them back, then you must give an !
after the command you would otherwise use; this forces the
editor to discard any changes you have made. Use this care­
fully.

The :e command can be given a + argument to start at
the end of the file, or a +n argument to start at line n.
In actuality, n may be any editor command not containing a
space, usefully a scan like +/~ or +?~. In forming new
names to the e command, you can use the character % which is
replaced by the current file name, or the character # which
is replaced by the alternate file name. The alternate file
name is generally the last name you typed other than the
current file. Thus if you try to do a :e and get a diagnos­
tic that you haven't written the file, you can give a :w
command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding
out the lines that bound the range to be written using A G,
and ,giving these numbers after the : and before the w,
separated by,'s. You can also mark these lines with m and
then use an address of the form 'x,'~ on the w command here.

You can read another
current line by using
read in the output from a
a file name.

file into the buffer after the
the :r command. You can similarly
command, just use 19nsi instead of

If you wish to edit a set of files in succession, you
can give all the names on the command line, and then edit
each one 'in turn using the command :n. It is also possible
to respecify the list of files to be edited by giving the :n
command a list of file names, or a pattern to be expanded as
you would have given it on the initial .Do. command.

If you are editing large programs, you will find the
:ta command very useful. It utilizes a data base of func­
tion names and their locations, which can be created by pro­
grams such as ctags, to quickly find a function whose name
you give. If the :ta command will require the editor to
switch files, then you must :w or abandon any changes before
switching. You can repeat the :ta command without any argu­
ments to look for the same tag again. (The tag feature is
not available in some v2 editors.)

~.~. ~ about searching ~ strings

When you are searching for strings in the file with /
and ?, the editor normally places you' at the next or previ­
ousoccurrence of the string. If you are using an operator
such as d, c or y, then you may well wish to affect lines up
to the line before the line containing the pattern. You can
give a search of the form /~-n to refer to the n'th line

E-87

before the next line containing ~, or you can use +
instead of - to refer to the lines after the one containing
~. If you don't give a line offset, then the editor will
affect characters up to the match place, rather than whole
lines; thus use .. '+0" to affect to the line which matches.

You can have the editor ignore the case of words in the
searches it does by giving the command :se icCR. The com­
mand :se noicCR turns this off.

Strings given to searches may actually be regular
expressions. If you do not want or need this facility, you
should

set nomagic

in your'EXINIT. In this case, only the characters T and $
are special in patterns. The character \ is also then spe­
cial (as it is most everywhere in the system), and may be
used to get at the an extended pattern matching facility.'
It is also necessary to use a \ before a / in a forward scan
or a ? in a backward scan, in any case. The following table
gives the extended forms when magic is set.

T at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line
• matches any character
\< matches the beginning of a word
\> matches the end of a word
[nl:l matches any single character in .s.t.I.
[Tnl:l matches any single character not in ~
[x.-ltl matches any character between X and ~
* matches any number of the preceding pattern

If you use nomagic mode, then the • [and * primitives are
given with a preced,ing \.

~.~. ~ about input ~

There are a number of characters which you can use to
make corrections during input mode. These are summarized in
the following table.

£-88

"'H deletes the last input character
deletes the last input word, defined as by b
your erase character, same as "'H

"'w
erase
kill
\
ESC

your kill character, deletes the input on this line
escapes a following "H and your erase and kill
ends an insertion

DEL
CR

interrupts an insertion, terminating it abnormally
starts a new line

"'0 backtabs over autoindent
kills all the autoindent
same as B"'O, but restores indent next line

B"'O
1"0
"'v quotes the next non-printing character into the file

The most usual way of making corrections to input is by
typing "'H to correct a single character, or by typing one or
more "WIS to back over incorrect words. If you use t as
your erase character in the normal system, it will work like
"'H.

Your system kill character, normally @, "'X or "'u, will
erase all the input you have given on the current line. In
general, you can neither erase input back around a line
boundary nor can you erase characters which you did not
insert with this insertion command. To make corrections on
the previous line after a new line has been started you can
hit ESC to end the insertion, move over and make the correc­
tion, and then return to where you were to continue. The
command A which appends at the end of the current line is
often useful for continuing.

If you wish to type in your erase or kill character
(say t or'@) then you must precede it with a \, just as you
would do at the normal system command level. A more general
way of typing non-printing characters into the file is to
precede them with a "'V. The "'V echoes' as a T character on
which the cursor rests. This indicates that the editor
expects you to type a control character. In fact you may
type any character and it will be inserted into the file at
that point.*

* This is not quite true. The implementation of the
editor does not allow the NULL ("@) character to appear
in files. Also the LF (linefeed or "'J) character is
used by the editor to separate lines in the file, so it
cannot appear in the middle of a line. You can insert'
any other character, however, if you wait for the edi­
tor to echo the T before you type the character. In
fact, the editor will treat a following letter as a re­
quest for the corresponding control character. This is
the only way to type "'s or "0, since the system normal-

B-89

-,

If you are using autoindent you can backtab over the
indent which it supplies by typing a ftD. This backs up to a
shiftwidth boundary. This only works immediately after the
supplied autoindent.

When you are using autoindent you may wish to place a
label at the left margin of a line. The way to do this
easily is to type T and then ~D. The editor will move the
cursor to the left margin for one line, and restore the pre­
vious indent on the next. You can also type a B followed
immediately by a ~D if you wish to kill all the indent and
not have it come back on the next line.

~.~. Upper ~ ~ terminals

If your terminal has only upper case, you can still use
vi by using the normal system convention for typing on such
a terminal. Characters which you normally type are con­
verted to lower case, and you can type upper case letters by
preceding them with a \. The characters { - } I ' are not
available on such terminals, but you can escape them as \(
\T \) \1 \1. These characters are represented on the
display in the same way they are typed.++ ++

Y..i is actually one mode of editing within the editor
.ex. When you are running n you can escape to the line
oriented editor of .ex by giving the command O. All of the :
commands .which were introduced above are available in ~.
Likewise, most .ex commands can be invoked from n 'using :.
Just give -them without the : and follow them with a CR.

In rare instances, an internal error may occur in n.
In this case you will get a diagnostic and be left in the
command mode of .ex. You can then save your work and quit if

. you wish by giving a command x after the : which ~ prompts
you with, or you can reenter n by giving ~ a n command.

There are a number of things which you can do more
easily in ~ than in n. Systematic changes in line
oriented material are particularly easy. You can read the
advanced editing documents for the editor ~ to find out a
lot more about this style of editing. Experienced users
often mix their use of ~ command mode and n command mode
to speed the work they 'are doing.

ly uses them to suspend and resume output and never
gives them to the editor to process.
++ The \ character you give will not echo until you
type another key.
++ Not available in all v2 editors due to memory con­
straints.

E-98

,

B..B.. o1.en ~: .ti. .2n hardcopy terminals .and ' 'glass
J;.U r .§. r r':f=

If you are on a hardcopy terminal or a. terminal which
does not have a cursor which can move off the bottom line,
you can still use the command set of ~, but in a different
mode. When you give a ~ command, the editor will tell you
that it is using ~ mode. This name comes from the ~
command in ~, which is used to get into the same mode.

The only difference between visual mode and open mode
is the way in which the text is displayed.

In ~ mode the editor uses a single line window into
the file, and moving backward and forward in the file causes
new lines to be displayed, always below the current line.
Two commands of ~ work differently in open: Z and ftR. The
Z command does not take parameters, but rather draws a win­
dow of context around the current line and then returns you
to the current line.

If you are on a hardcopy terminal, the ftB command will
retype the current line. On such terminals, the editor nor­
mally. uses two lines to represent the current line. The
first line is a copy of the line as you started to edit it,
and you work on the line below this line. When you delete
characters, the editor types a number of \'s to show you the
characters which are deleted. The editor also ~eprints the
current line soon after such changes so that you can see
what the line looks like· again.

It is sometimes useful to use this mode on very slow
terminals which can support n in the full screen mode. You
can do this by entering ~ and using an ~. command.

£-91

.,
,.'

till
I
~
N

Ex Quick Reference

Entering/leaving ex

, ex JlAlll.e
, ex +n JlAlll.e
, ex -I; .tAg
, ex -r
, ex - r JlAlll.e
, ex JlAlll.e •••
, ex -R JlAlll.e

x
ql

Ex statel

Command

Insert

Open/visual

Ex commands

abbrev ab
append a
args ar
change c
copy co
celete d
edit e
file f
global 9
insert i
join j
list 1
map
mark ma
move m

edit name, start at end
••• at line Jl
start at .tAg
list savee files
recover file name
edit first: rest via :n
read only mode
exit, saving changes
exit, discarding changes

Normal and initial
state. Input
proRtpted for by :.
Your kill character
cancels partial com­
mand.

Entered by a i and
c. Arbitrary text
then term ina tes wi th
line having only.
character on it or
abnormally with
interrupt.

Entered by open or
vi, termina tes with
Q or ~\.

next n unabbrev
number nu undo
open 0 unmap
preserve pre

..
version

print p visual
put pu write
quit q xit
read re yank
recover rec ldndax
rewind rew ~
set se l.Ihif..t
shell sh ~Jlnt
source so teaubat
stop st nh.ill
substitute s G.t.o.ll

.,."Excomrriand addresses

11 li ne Jl /RAt
• current ?RAt
$ last .I.-n
+ next .I.,~

previous '.I.
+n Jl forward " , 1,$

next with RAt
previous with Rat
n before .I.
.I. through JJ.
marked with .&
previous context

una
u
unm
ve
vi
w
x
ya
z
I
<
CR

• >
~D

Specifying terminal type .
, setenv TERM ~ ~ and all version 6
$ TER~i=.t.Y.Re1 export TERM .lib in Version 7
See also 11iH.(1)

Some terminal types

2621 43 adm31 dwl h19
264S 733 adm3a dw2 il""
3 Us 14S cUl8 gl:48 mime
33 act4 dmlS28 gl:42 owl
31 actS dm2SIJ8 hlS88 tl861
4814 adm] dm3825 h1518 vt52

Initializing options

EXINIT
set .I.
set no.l.
set .I.-W
set
set all
set .&?

place set's here in environment var.
enable option
disable option
give value JfllJ.
show changed options
show all options
show value of option .&

Useful options

autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () { } are s-exp's
Ust print ~I for tab, $ at end
magic • (• special in patterns
number nu number lines
paragraphs para macro names which start
redraw Simulate smart terminal
scroll command mode lines
sections sect macro names •••
shiftwidth sw for (>, and input ~D
showmatch am to) and } as typed
slowopen slow choke updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin -,. automatic line splitting

Scanning pattem formation

T beginning of line
$ end of line

\<
\>
(all)
(Tau)
lx-~)
•

any character
beginning of word
end of word
any char in .a.tJ:.

not in .a.tJ:.
••• between X and JJ.
any number of preceding

Vi Quick Reference

Entering/leaving vi

, vi JlAlll.e
, vi +11 nAme.
, vi + nAme.
, vi -r

edit nAme. at top
••• at line 11
••• at end
list saved files
recover file nAme. , vi -r nAme.

, vi nAme. •••
, vi -1:.tAg

edit first, rest via :n
start at .tAg

, vi +/RAt nAme.
, view nAme.

search for Rat
read only mode

ZZ
~z

The display

Last line

@ lines
- lines
~X

tabs

Vi statas

Command

Insert

Last line

exit from vi, saving change
stop vi for later resumpti~

Error messages, echoing input to
I / ? and I, feedback about i/o
and large changes.
On screen only, not in file.
Lines past end of file.
Control characters, ~? is delete.
Expand to spaces, cursor at last.

Normal
state.
here.
cancels
mand.

and initial
Others return

ESC (escape)
partial com-

Entered by a i A I 0 0
c CaS R. Arbitrary
text then terminates
with ESC character, or
abnormally with inter­
rupt.

Reading input for: /
? or 11 terminate with
ESC or CR to execute,
interrupt to cancel.

Counts before vi commands

line/column number
scroll amount
replicate insert
repeat effect

Simple Commands

dw
de
dd
3dd
i.t..e.xJ;ESC

cw.D.eltESC

ea,aESC

z G ,
~D ·'0
a i A I
most rest

delete a word
••• leaving punctuation
delete a line
••• 3 linea
insert text A1u::

change word to Jl£K

plurali:le word
transpose characters

,.
~

Interrupting, cancelling
ESC end insert or incomplete cmd
~? (delete or ruboutl interrupts
~L reprint screen if ~? scrambles it

File manipulation

:w
:wq
:q
Iql
Ie na.ow.
lei

write back changes
write and quit
quit
quit, discard changes
edit file JlAIIIa

Ie + ~
Ie +.11

reedit, discard changes
edit, starting at end
edit starting at line B
edit alternate file
synonym for :e •

Ie •
~T

IW na.ow.
IW I na.ow.
Ish
I I gad
In
In JU:SUl
If
~G

Ita .tAIl
~J

write file ~
overwrite file nAmA
run shell, then return
run gad, then return
edit next file in arglist
specify new arglist
show current file and line
synonym for If
to tag file entry .tAIl
Ita, following word 1s .tAIl

Positioning within file
~r

AB
-D
AU
G
lat
?u.t
n
N
Iat/+a
?u.t?-a
JI
II ,

forward screenfull
backward acreenfull
scroll down half screen
scroll up half screen
goto line (end default)
next line matching u.t
prev line matching RAt
repeat last / or ?
reverse last I or ?
n'th line after RAt
n'th line before RAt
next section/function
previous section/function
find matching (I { or }

Adjusting the screen

-L
-R
zCR
z­
z.
lat/z-
zn.
-E
·Y

clear and redraw
retype, eliminate @ lines
redraw, current at window top

at bottom
••• at center
at line at bottom
use .11 line window
scroll window down I line
scroll window up 1 line

Marking and retuming

"
m,lt

'x
'x

previous conte·xt
••• at first non-white in line
mark position with letter X
to mark JI.
••• at first non-white in line

Line positioning

U
L
M
+

CR
or j

l or k.

home window line
last wir.dow line
middle window line
next line, at first non-white
previous line, ,at first non-white
return, same as +
next line, same column
previous line, same column

Character positioning

T

" $
h or -)
1 or (­
AU
space
fx
F,lt
tll.
T,lt ,
,
I ,

first non white
beginning of line
end of line
forward
backwards
same as (-
same as -)
find ,It forward
f backward
upto ,It forward
back upto ,It
repeat last f F t or T
inverse of ,
to specified column
find matching (() or

Words, sentences, paragraphs

w word forward
b back word
e end of word.
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B back W
E to end of W

Commands for LISP
Forward a-expression
••• but don't atop at at~ls
Back s-expression
••• but don't stop at atoms

Corrections during insert
~u

-W
erase
kill
\
ESC
~?

~D

T"o
1l~0

-V

erase last character
erases last word
your eraEe, same as -U
your kill, erase input this line
escapes ~U, your erase and kill
ends insertion, back to command
interrupt, terminates insert
backtab over autoindent
kill autoiqdent, save for next
••• but at margin next also
quote non-prjnting character

Insert and replace

a
i
I.
I
o
o
rll.
R

append after cursor
inse r t bef or e
append at end of line
insert before filst n0r.~~~k
open line belOW , .• ,,-
open above
replace Single char with lI.
replace characters

Operators (double to affect lines)

d delete
c change
< left shift
> right shift
I filter through command

indent for LISP
y yank lines to buffer

Miscellaneous operations

C change rest of line
o delete rest of line
s substitute chars
S substitute lines
J join lines
x delete characters
X .,. before cursor
Y yank lines

Vmkmdp~

p put back lines
P put before
-JtP put from buffer ,It
-JtY yank to buffer ,It
-lI.d delete into buffer ,It

Undo, redo, retrieve

u
U

-dp

undo last change
restore current line
repeat last change
retrieve g'th last delete

,

Ex Reference Manual
Version 3.5/2.13 - September, 1989

Revised ~ versions ~.5/2.~

ABSTRACT

~ a line oriented text editor, which sup­
ports both command and display oriented editing.
This reference manual describes the command
oriented part o·f .e..x1 the display editing features
of .e..x are described in An Introduction ~ Display
Editing ~~. Other documents about the editor
include the introduction ~: A tutorial, the
~/~ Command Summa;y, and a Yi Quick Reference
card.

B-94

\
\

-.
\

Ex Reference Manual
Version 3.5/2.13 - September, 1989

Reyised ~ versions ~.5/2.~

1.. Starting n

Each instance of the editor has a set of options, which
can be set to tailor it to your liking. The command ~
invokes a version of ~ designed for more casual or begin­
ning users by' changing the default settings of some of these
options. To simplify the descriptio~ which follows we
assume the default settings of the options.

When invoked, n determines the terminal type from the
TERM variable in the environment. It there is a TERMCAP
variable in the environment, and the type of the terminal
described there matches the TERM variable, then that
description is used. Also if the TERMCAP variable contains
a pathname (beginning with a I) then the editor will seek
the description of the terminal in that file (rather than
the default letc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands
in that variable, otherwise if there is a file .~ in your
HOME directory n reads commands from that file, simulating
a source command. Option setting commands placed in EXINIT
or .~ will be executed before each editor session.

A command to enter ~ has the following prototype:t

ex [-] [-v] [-t ..t..a.g] [-r] [-1] [-Wll] [-x] [-R] [+comma

The most common case edits a single file with no options,
i. e. :

The financial support of an IBM Graduate Fellowship and
the National Science Foundation under grants MCS74-
97644-A93 and MCS78-9729l is gratefully acknowledged.
+ Brackets '[I '] 1 surround optional parameters here.

8-95

ex name

The command line option option suppresses all
interactive-user feedback and is useful in processing editor
scripts in command files. The -y option is equivalent to
using Yi rather than~. The -~ option is equivalent to an
initial ~ command, editing the file containing the ~ and
positioning the editor at its definition. The -L option is
used in recovering after an editor or system crash, retriev­
ing the last saved version of the named file or, if no file
is specified, typing a list of saved files. The -~ option
sets up for editing LISP, setting the showmatch and ~
options. The -~ option sets the default window size to n,
and is useful on dialups to start in small windows. The-x
option causes ~ to prompt for a ~, which is used to
encrypt and decrypt the contents of the file, which should
already be encrypted using the same key, see crypt(l). The
-R option sets the readonly option at the start. + ~
arguments indicate files to be edited. An argument of the
form +command indicates that the editor should begin by exe­
cuting the specified command. If command is omitted, then
it defaults to "$", positioning the editor at the last
line of the first file initially. Other useful commands
here are scanning patterns of the form "/pat" or line
numbers, e.g. "+100" starting at line 100.

2. ~ ~anipulation

Z.~. Current ~

~ is normally editing the contents of a single file,
whose name is recorded in the current file name. ~ per­
forms all editing actions in a buffer (actually a temporary
file) into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out
to the file with a write command. After the buffer contents
are written, the previous contents of the written file are
no longer accessible. When a file is edited, its name
becomes the current file name, and its contents are read
into the buffer.

The current file is almost always considered to be
edited. This means that the contents of the buffer are log­
ically connected with the current file name, so that writing
the current buffer contents onto. that file, even if it
exists, is a reasonable action. If the current file is not
edited then ~ will not normally write on it if it already
exists.*

~ Not available in all v2 editors due to memory con­
straints.
* The ~ command will say "[Not edited]" if the

£-96

\
\

2.2: Alternate ~

Each time a new value is given to the current file
name, the previous current file name is saved as the alter­
~ file name. Similarly if a file is mentioned but does
not become the current file, it is saved as the alternate
file name.

2.~. Filename expansion

Filenames within the editor may be specified using the
normal shell expansion conventions. In addition, the char­
acter '%' in filenames is replaced by the current file name
and the character 'it by the alternate file name.+

2.~. Multiple files AnQ named buffers

If more than one file is given on the command line,
then the first file is edited as described above. The
remaining arguments are placed with the first file in the
argument~. The current argument list may be displayed
with the ~ command. The next file in the argument list
may be edited with the ~ command. The argument list may
also be respecified by specifying a list of names to the
~ command. These names are expanded, the resulting list
of names becomes the new argument list, and ~ edits the
first file on the list.

For saving blocks of text while editing, and especially
when editing more than one file, ~ has a group of named
buffers. These are similar to the normal buffer, except
that only a limited number of operations are available on
them. The buffers have names .a through Z.:f:

It is possible to use ~ in ~ ~ mode to look at
files that you have no intention of modifying. This mode
protects you from accidently overwriting the file. Read
only mode is on when the readonly option is set. It can be
turned on with the -R command line option, by the ~ com­
mand line invocation, or by setting the readonly option. It
can be cleared by setting noreadonly. It is possible to

current file is not considered edited.
+ This makes it easy to deal alternately with two files
and eliminates the need for retyping the name supplied
on an ~ command after a HQ write since l.aat change
diagnostic is received.
:f: It is also possible to refer to A through Z; the
upper case buffers are the same as the lower but com­
mands append to named buffers rather than replacing if
upper case names are used.

£-97

write, even while in read only mode, by indicating
really know what you are doing. You can write
ferent file, or can use the ! form of write, even
read only mode •

.1. Exceptional Conditions

.1.~. Errors And interrupts

that you
to a dif­
while in

When errors occur ~ (optionally) rings the terminal
bell and, in any case, prints an error diagnostic. If the
primary input is from a file, editor processing will ter­
minate. If an interrupt Signal is received,.ex prints
"Interrupti. and returns to -its command level. If the pri­
mary input is a file, then n will exit when this occurs •

.1.2. Recovering!LQm hangups And crashes

If a hangup signal is received and the buffer has been
modified since it was last written out, or if the system
crashes, either the editor (in the first case) or the system
(after it reboots in the second) will attempt to preserve
the buffer. The next time you log in you should be able to
recover the work you were doing, lOSing at most a few lines
of changes from the last point before the hangup or editor
crash. To recover a file you can use the -L option. If you
were editing the file resume, then you should change to the
directory where you were when the crash occurred, giving the
command

ex -r resume

After checking that the retrieved file is indeed ok, you can
write it over the previous contents of that file.

:.' You will normally get mail from the system telling you
when a file has been saved after a crash. The command

ex -r

will print a list of the files which have been saved for
you. (In the case of a hangup, the file will not appear in
the list, although it can be recovered.)

~. Editing modes

~ has five distinct modes. The primary mode is ~
ma.n,g mode. Commands are entered in command mode when a':'
prompt is present, and are executed each time a complete
line is sent. In ~ input mode .ex gathers input lines and
places them in the file. The append, insert, and change
commands use text input mode. No prompt is printed when ~ou
are in text input mode. This mode is left by typing a .'
alone at the beginning of a line, and command mode resumes.

,

£-98
,

'6 .
,
"

\

The last three modes are ~ and visual modes, entered
by the commands of the same name, and, within open and
visual modes ~ insertion mode. ~ and visual modes
allow local editing operations to be performed on the text
in the file. The.QJ2.fm command displays one line at a time
on any terminal while visual works on CRT terminals with
random positioning cursors, using the screen as a (single)
window for file editing changes. These modes are described
(only) in An Introduction ~ Display Editing ~ Yi.

~. Command structure

Most command names are English words, and initial pre­
fixes of the words are acceptable abbreviations. The ambi­
guity of abbreviations is resolved in favor of the more com­
monly used commands.*

~.~. Command parameters

Most commands accept prefix addresses specifying the
lines in the file upon which they are to have effect. The
forms of these addresses will be discussed below. A number
of commands also may take a trailing count specifying the
number of lines to be involved in the command.+ Thus the
command "19p,J will print the tenth line in the buffer
while "delete 5" will delete five lines from the buffer,
starting with the current line.

Some commands take other information or parameters,
this information always being given after the command name.+

2.2. Command variants

A number of commands have two distinct variants. The
variant form of the command is invoked by placing an '1'
immediately after the command name. Some of the default
variants may be controlled by options; in this case, the 'I'
serves to toggle the default.

~.~. Flags after commands

The characters 'it, 'pi and 'I' may be placed after
many commands.** In this case, the command abbreviated by

* As an example, the command substitute can be abbrevi­
ated 's' while the shortest available abbreviation for
the ~ command is 'set.
+ Counts are rounded down if necessary.
+ Examples would be option names in a ~ command i.e.
"set number", a file name in an ~ command, a regu­
lar expression in a substitute command, or a target ad­
dress for a ~ command, i.e. "1,5 copy 25".
** A 'pi or 'I' must be preceded by a blank or tab ex­
cept in the single special case 'dp'.

£-99

these characters is executed after the command completes.
Since ~ normally prints the new current line after each
change, 'p' is rarely necessary. Any number of '+' or '-'
characters may also be given with these flags. If they
appear, the specified offset is applied to the current line
value before the printing command is executed •

.5. • .4.. Comments

It is possible to give editor commands which are
ignored. This is useful when making complex editor scripts
for which comments are desired. The comment character is
the double quote:". Any command line beginning with W is
ignored. Comments beginning with " may also be placed at
the ends of commands, except in cases where they could be
confused as part of text (shell escapes and the substitute
and map commands).

5...5... Multiple commands ~ ~

More than one command may be placed on a line by
separating each pair of commands by a 'I' character. How­
ever the global commands, comments, and the shell escape 'I'
must be the last command on a line, as they are not ter­
mina ted by a 'I' .

.5..~. Reporting large changes

Most commands which change the contents of· the editor
buffer' give feedback if the scope of the change exceeds a
threshold given by the report option. This feedback helps
to detect undesirably large changes so that they may be
quickly and easily reversed with an~. After commands
with more global effect such as global or visual, you will
be informed if the net change in the number of lines in the
buffer during this command exceeds this threshold.

~.

•

n

$

Command addressing

Addressing primitives

The current line. Most commands leave
the current line as the last line which
they affect. The default address for
most commands is the current line, thus
'.' is rarely used alone as an address.

The nth line
lines being
1.

in the editor's buffer,
numbered sequentially from

The last line in the buffer.

B-18'

,
\

%

+n -n

/ l2.at/ ? l2.at?

II 'x.

,

An abbreviation for "1,$", the entire
buffer.

An offset relative to the current buffer
line.+

Scan forward and backward respectively
for a line containing ~, a regular
expression (as defined below). The
scans normally wrap around the end of
the buffer. If all that is desired is
to print the next line containing ~,
then the trailing / or ? may be omitted.
If Rat is omitted or explicitly empty,
then the last regular expression speci­
fied is located.+

Before each non-relative motion of the
current line '.', the previous current
line is marked with a tag, subsequently
referred to as "". This makes it easy
to refer or return to this previous con­
text. Marks may also be established by
the maLK command, using single lower
case letters ~ and the marked lines
referred to as ... , X'.

~.~.Combining addressing primitives

Addresses to commands con.sist of a series of addressing
primitives, separated by',' or 'I'. Such address lists are
evaluated left-to-right. When addresses are separated by
';' the current line '.' is set to the value of the previous,
addressing expression before the next address is inter­
preted. If more addresses are given than the command
requires, then all but the last one or two are ignored. If'
the command takes two addresses, the first addressed line
must precede the second in the buffer.+

+ The forms '.+3' '+3' and '+++' are all equivalent; if
the current line is line 100 they all address line 103.
+ The forms \1 and \? scan using the last regular ex­
pression used in a scanl after a substitute II and ??
would scan using the substitute's regular expression.
+ Null address specifications are permitted in a list
of addresses, the default in this case is the'current
line '; thus ',100' is equivalent to ,100'. It is
an error to give a prefix address to a command which
expects none.

B-181

2. Command descriptions

The following form is a prototype for all ~ commands:

address command 1 parameters count flags

All parts are optional; the degenerate case is the empty
command which prints the next line in the file. For sanity
with use from within visual mode, ~ ignores a ":" preced­
ing any command.

In the following command descriptions, the default
addresses are shown in parentheses, which a,re.D.Qt., however,
part of the command.

abbreviate ~ Lhs abbr: ab

Add the named abbreviation to the current list. When
in input mode in visual, if ~ is typed as a complete
word, it will be changed to Lha.

,
(•) append

.t..eKt
abbr: a

•

al
.t.e.x.t
•

args

Rea,ds the input text and places it after the specified
line. After the command, '.' addresses the last line
input or the specified line if no lines were input. If
address '9 1 is given, text is placed at the beginning
of the buffer.

The variant flag to append toggles the setting for the
autoindent option during the input of ~.

The members of the argument list are printed, with the
current argument delimited by '[I and '] '.

(• , .) change count
.t.e.x.t

abbr: c

•

E-112

,
\

,

c!
~
•

Replaces the specified lines with the input~. The
current line becomes the last line input; if no lines
were input it is left as for a delete.

The variant toggles autoindent during the change.

(• , •) copy ~ flags abbr: co

A ~ of the specified lines is placed after ~,
which may be '9'. The current line '.' addresses the
last line of the copy. The command ~ is a synonym for
~.

(• , •)delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line
after the last line deleted becomes the current line;
if the lines deleted were or iginally at the end, the
new last line becomes the current line. If a named
buffer is specified by giving 'a letter, then the speci­
fied lines are saved in that buffer, or appended to it
if an upper case letter is used.

edit ~.
ex .f..il..e.

abbr: e

Used to begin an editing session on a new file. The
editor first checks to see if the buffer has been modi­
fied since the last write command was issued. If it
has been, a warning is issued and the command is
aborted. The command otherwise deletes the entire con­
tents of the editor buffer, makes the named file the
current file and prints the new filename. After insur­
ing that this file is sensible+ the editor reads the
file into its buffer.

If the read of the file completes without error, the
number of lines and characters read is typed. If there
were any non-ASCII characters in the file they are
stripped of their non-ASCII high bits, and any null

+ I.e., that it is not a binary file such as a directo­
ry, a block or character special file other than
/~~, a terminal, or a binary or executable file
(as indicated by the first word).

B-113

characters in the file are discarded. If none of these
errors occurred, the file is considered edited. If the
last line of the input file is missing the trailing
newline character, it will be supplied and a complaint
will be issued. This command leaves the current line
'.' at the last line read.+

e! .f..il.e

The variant form suppresses the complaint about modifi­
cations having been made and not written from the edi­
tor buffer, thus discarding all changes which have been
made before editing the new file.

e +n~

file

Causes the editor to begin at line n rather than at the
last line; n may also be an editor command containing
no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been
'[Modified]' since the last write command, whether it
is ~~, the current line, the number of lines in
the buffer, and the percentage of the way through th'e
buffer of the current line.*

file .~

The current file name is changed to ~ which is con­
sidered '[Not edited] '.

(I , $) global /R£t/ ~ abbr: g

First marks
matches the
command list
marked line.

each line among those specified which
given regular expression. Then the given

is executed with '.' initially set to each

+ If executed from within ~ or visual, the current
line is initially the first line of the file.
* In the rare case that the current file is '[Not edit­
ed]' this is noted also; in this case you have to use
the form w! to write to the file, since the editor is
not sure that a write will not destroy a file unrelated
to the current contents of the buffer.

£-184

" \

,

The command list consists of the rema~n~ng commands on
the current input line and may continue to multiple
lines by ending all but the last such line with a '\1.
If ~ (and possibly the trailing / delimiter) is
omitted, each line matching ~ is printed. Append,
insert, and change commands and associated input are
permitted: the '.' terminating input may be omitted if
it would be on the last line of the command list~ ~
and visual commands are permitted in the command list
and take input from the terminal.

The global command itself may not appear in~. The
~ command is also not permitted there, as ~
instead can be used to reverse the entire global com­
mand. The options autoprint and autoindent are inhi­
bited during a global, (and possibly the trailing /
delimiter) and the value of the report option is tem­
porarily infinite, in deference to a report for the
entire global. Finally, the context mark 'III is set
to the value of '.f before the global command begins
~nd is not changed during a global command, except
p~rhaps by an ~ or visual within the global.

g1 /~~ abbr: v

The variant form of global runs ~ at each line not·
matching ~.

(•) insert
~

abbr: i

i 1
~
•

Places the given text before the specified line. The
current line is left at the last line input; if there
were none input it is left at the line before the
addressed line. This command differs from append only
in the placement of text.

The variant toggles autoindent during the insert.

(• , .+1) join count flags abbr: j

Places the text from a specified
together on one line. White space is
jonction to provide at least one blank
if there was a '.f at the end of the

£-115

range of lines
adjusted at each
character, two

line, or none if

j !

the first following character is a ') '. If there is
already white space· at the end of the line, then the
white space at the start of the next line will be dis­
carded.

The variant causes a simpler j,Q.i.n with no white space
processing; the characters in the lines are simply con­
catenated.

(.)k.x.

The k command is a synonym for~. It does not
.require a blank or tab before the following letter.

(• , •) list count flags

Prints the specified lines in a more unambiguous way:
tabs are printed as 'AI' and the end of each line is
marked with a trailing '$'. The current line is left
at the last line printed.

ma p .lb.Q .th.a

The mAR command is used to define macros for use in
visual mode. Lha should be a single cha~acter, or the
sequence "tn", for n a digit, referring to function
key~. When this character or function key is typed in
visual mode, it will be as though the corresponding .th.a
had been typed. On terminals without function keys,
you can type "tn". See section 6.9 of the "Intro­
duction to Display Editing with Vi" for more details.

(•) mark .x

Gives the 'specified line mark .x, a single lower case
letter. The.x must be preceded by a blank or a tab.
The addressing form "x' then addresses this line. The
current line is not affected by this command.

(• , •) move ~ abbr: m

The ~ command repositions the specified lines to be
after~. The first of the moved lines becomes the
current line.

B-116

,
"

,

next

n!

abbr: n

The next file from the command line argument list is
edited.

The variant suppresses warnings about the modifications
to the buffer not having been written out, discarding
(irretrievably) any changes which may have been made.

n filelist
n +command filelist

The specified filelist is expanded and the resulting
list replaces the current argument list; the first file
in the new list is then edited. If command is given
(it must contain no spaces), then it is executed after
editing the first such file.

(• , • .) number count flags abbr: t or nu

Prints each specified line preceded by its buffe·r line
number. The current line is left at the last line
printed.

(•) open flags abbr: 0
(•) open/Rat! flags

Enters intraline editing .2J2Jm mode at each addressed
line. If ~ is given, then the cursor will be placed
initially at the beginning of the string matched by the
pattern. To exit this mode use O. See An Introduction
~ Display Editing ~ Yi for more details.
+

preserve

The current editor buffer is saved as though the system
had just crashed. This command is for use only in
emergencies when a write command has resulted in an
error and you don't know how to save your work. After
a preserve you should seek help.

+ Not available in all v2 editors due to memory con­
straints.

E-187

(• , •)print count abbr: p or P

Prints the specified lines with non-printing characters
printed as control characters ·~X'7 delete (octal 177)
is represented as '~?I. The current line is left at
the last line printed.

(•) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally
used with delete to effect movement of lines, or with
~ to effect duplication of lines. If no buffer is
specified, then the last deleted or yanked text is
restored.* By using a named buffer, text may be
restored that was saved there at any previous time.

abbr: q

Causes ~ to terminate. No automatic write of the edi­
tor buffer to a file is performed. However, AX issues
a warning message if the file has changed since the
last write command was issued, and does not ~.+ Nor­
mally, you will wish to save your changes, and you
should give a write command; if you wish to discard
them, use the q! command variant.

Quits from the editor, discarding changes to the buffer
without complaint •

•) read ~ abbr: r

Places a copy of the text of the given file in the
editing buffer after the specified line. If no ~ is
given the current file name is used. The current file
name is not changed unless there is none in which case
~ becomes the current name. The sensibility res­
trictions for the ~ command apply here also. If the
file buffer is empty and there is no current name then
~ treats this as an ~ command.

* But no modifying commands may intervene between the
gelete or ~ and the ~, nor may lines be moved
betwe.en files without using a named buffer.
+ ~ will also issue a diagnostic if there are more
files in the argument list.

£-118

\
\

-, ..

Address '9' is legal for this command and causes the
file to be read at the beginning of the buffer.
Statistics are given as for the ~ command when the
~ successfully terminates. After a ~ the current
line is the last line read.+

(•) read 1 command

Reads the output of the command command into the buffer
after the specified line. This is not a variant form
of the command, rather a read specifying a command
rather than a filename; a blank or tab before the ! is
mandatory.

recover ~

Recovers ~ from the system save area. Used after a
accidental hangup of the phone** or a system crash** or
preserve command. Except when you use preserve you
will be notified by mail when a file is saved.

rewind abbr: rew

rew!

The argument list is rewound, 'and the first file in the
list is edited.

Rewinds the argument list discarding any changes made
to the current buffer.

set parameter

With no arguments, prints those options whose values
have been changed from their defaults; with parameter
~ it prints all of the option values.

Giving an option name followed by a '?' causes the
current value of that option to be printed. The '?' is
unnecessary unless the option is Boolean valued.
Boolean options are given values either by the form
'set option' to turn them on or 'set nooption' to turn
them off; string and numeric options are aSSigned via

+ Within ~ and visual the current line is set to the
first line read rather than the last.
** The system saves a copy of the file you were editing
only if you have made changes to the file.

B-119

shell

the form 'set option=value'.

More than one parameter may be given to..&.e.t; they are
interpreted left-to-right.

abbr: sh

A new shell is created. When it terminates, editing
resumes.

source .f.J..a abbr: so

Reads and executes commands from the specified file.
Source commands may be nested.

(• , •) substi~ute /pat/repl/ options count flagsabbr: s

On each specified line, the first instance of pattern
~ is replaced by replacement pattern~. If the
global indicator option character 'g' appears, then all
instances are substituted; if the confirm indication
character 'c' appears, then before each SUbstitution
the line to be substituted is typed with the string to
be substituted marked with 'T' characters. By typing
an 'y' one can cause the substitution to be performed,
any other input causes no change to take place. After
a . SUbstitute the current line is the last line substi­
tuted.

Lines may be split by substituting new-line characters
into them. The newline in ~ must be escaped by
preceding it with a '\'. Other metacharacters avail­
able in ~ and ~ are described below.

Suspends the editor, returning control to the top level
shell. If aytowrite is set and there are unsaved
changes, a write is done first unless the form ~1
is used. This commands is only available where sup­
ported by the teletype driver and operating system.

(• , •) substitute options count flagsabbr: s

If ~ and ~ are omitted, then the last substitution
is repeated. This is a synonym for the & command.

£-118

(• , •) t ~ flags

The ~ command is a synonym for ~.

ta .tag

The focus of editing switches to the location of .tag,
switching to a different line in the current file where
it is defined, or if necessary to another file.+

The tags file is normally created by a program such as
ctags, and consists of a number of lines with three
fields separated by blanks or tabs. The first field
gives the name of the tag, the second the name of the
file where the tag resides, and the third gives an
addressing form which can be used by the editor to find
the tag; this field is usually a contextual scan using
'IRati' to ·be immune to minor changes in the file.
Such scans are always performed as if nomagi~ was set.

The tag names in the tags file must be sorted alphabet­
ically. :+:

unabbreviate ~ abbr: una

undo

Delete ~ from the list of abbreviations.

abbr: u

Reverses the changes made in the buffer by the last
buffer editing command. Note that global commands are
considered a single command for the purpose of ~ (as
are ~ and yisual.) Also, the commands write and ~
which interact with the file system cannot be undone.
llndQ is its own inverse.

UndQ always marks the previous value of the current
line '.' as ~"'. After an ~ the current line is
the first line restored or the line before the first
line deleted if no lines were restored. For commands
with more global effect such as global and visual the
current line regains it's pre-command value after an
.wl.dQ.

:+: If you have modified the current file before g1v1ng a
1£g command, you must write it out; giving another ~

. command, specifying no tag will reuse the previous tag.
:+: Not available in all v2 editors due to memory con­
straints.

B-lll

unmap .l.b.a

The macro expansion associated by ~ for lhQ is
removed.

(I , $) v IRatI ~

A synonym for the global command variant gl, running
the specified ~ on each line which does not match
Rat.

version abbr: ve

Prints the current version number of the editor as well
as the date the editor was last changed.

(•) visual ~ count flags abbr: vi

Enters visual mode at the specified line. ~ is
optional and may be '-' , 'T' or '.' as in the z com­
mand to specify the placement of the specified line on
the screen. By default, if ~ is omitted, the speci­
fied line is placed as the first on the screen. A
count specifies an initial window size; the default is
the value of the option window. See the document An
In-troduction .t.Q Display Editing ld.th Yi. for mor e
details. To exit this mode, type O.

visual file
visual +n file

From visual mode, this command is the same as edit.

(I , $) write ~ abbr: w

writes changes made back to ~, printing the number
of lines and characters written. Normally ~ is
omitted and the text goes back where it came from. If
a -~ is specified, then text will be written to that
file.* If the file does not exist it is created. The
current file name is changed only if there is no
current file name; the current line is never changed.

* The editor writes to a file only if it is the current
file and is edited, if the file does not exist, or if
the file is actually a teletype, I~~, I~~.
Otherwise, you must give the variant form wI-to force
the write.

B-112

If an error occurs while writing the current and edited
file, the editor considers that there has been "No
write since last change" even if the buffer had not
previously been modified.

(1 , $) write» ~ abbr: w»

Writes the buffer contents at the end of an existing
file.

w! n.run..e.

Overrides the checking of the normal write command, and
will write to any file which the system permits.

(1 , $) w I command

Writes the specified lines into command. Note the
difference between wI which overrides checks and w
which writes to a command.

wq n.run..e.

Like a write and then a gait command.

wq! n.run..e.

The variant overrides checking on the sensibility of
the write command, as w! does.

xit n.run..e.

If any changes have been made and not written, writes
the buffer out. Then~ in any case, quits.

(• , •)yank buffer count abbr: ya

Places the specified lines in the named buffer, for
later retrieval via~. If no buffer name is speci­
fied, the lines go to a more volatile p1ace1 see the
~ command description •

• +1) z count

B-113

Print the next count lines, default window.

(•) z ~ count

Prints a window of text with the specified line at the
top. If ~ is '-' the line is placed at the bottom;
a '.' causes the line to be placed in the center.* A
count gives the number of lines to be displayed rather
than double the number specified by the scroll option •

. On a CRT the screen is cleared before display begins
unless a count which is less than the screen size is
given. The current line is left at the last line
printed.

command

The remainder of the line after the ·'1' character is
sent to a shell to be executed. Within the text of
cOmmand the characters '%' and '#' are expanded as in
filenames and the character 'I' is replaced with the
text of the previous command. Thus, in particular,
'11' repeats the last such shell escape. If any such
expansion is performed, the expanded line will be
echoed. The current line is unchanged by this command.

If there has been "[No write]" of the buffer contents
since the last change to the .edi ting buffer, then a
diagnostic will be printed before the command is exe­
cuted as a warning. A single 'I' is printed when the
command completes.

~ , ~) 1 command

Takes the specified address range and supplies it as
standard input to command; the resulting output then
replqces the input lines.

($) =

* Forms 'z=' and 'zT' also exist; 'z=' places the
current line in the center, surrounds it with lines of
'-' characters and leaves the current line at this
line. The form 'zT' prints the window before 'z-'
would. The characters '+', 'T' and '-' may be repeated
for cumulative effect. On some v2 editors, no ~ may
be given.

£-114

Prints the line number of the addressed line. The
current line is unchanged.

(• , •) > count flags
(• , •) < count flags

Perform intelligent shifting on the specified lines; <
shifts left and> shift right. The quantity of shift
is determined by the shiftwidth option and the repeti­
tion of the specification character. Only white space
(blanks and tabs) is shifted; no non-white characters
are discarded in a left-shift. The current line be­
comes the last line which changed due to the shifting.

An end-of-file from a terminal input scrolls through
the file. The scroll option specifies the size of the
scroll, normally a half screen of text.

(.+1 , .+1)
(.+1 , .+1)

An address alone causes
printed. A blank line
file.

(• , •) & options count flags

the addressed lines to be
prints the next line in the

Repeats the previous substitute command.

(• , •) - options count flags

Replaces the previous regular expression with the pre­
vious replacement pattern from a sUbstitution.

~. Regular expressions and substitute replacement patterns

~.~. Regular expressions

A regular expression specifies a set of strings of
characters. A member of this set of strings is said to be
matched by the regular expression. £X remembers two previ­
ous regular expressions: the previous regular expression
used in a substitute command and the previous regular
expression used elsewhere (referred to as the previous scan­
ning regular expression.) The previous regular expression
can always be referred to by a null ~, e.g. 'IIi or '??'.

E-115

~.~. Magic ~ nomaqic

The regular expressions allowed by ~ are constructed
in one of two ways depending on the setting of the magic
option. The ~ and ~ default setting of magic gives quick
access to a powerful set of regular expression metacharac­
ters. The disadvantage of magic is that the user must
remember that these metacharacters are magic and precede
them with the character '\' to use them as .. 'ordinary' I

characters. with nomagic, the default for ~, regular
expressions are much simpler, there being only two metachar­
acters. The power of the other metacharacters is still
available by preceding the (now) ordinary character with a
'\'. Note that "\1 is thus always a metacharacter.

The remainder of the discussion of regular expressions
assumes that that the setting of this option is magic.+

~.~. Basic regular expression summary

The following basic constructs are used to construct
magic mode regular expressions.

T

$

•

\<

An ordinary character matches itself. The
characters 'T' at the beginning of a line,
~$I at the end of line, "*1 as any character
other than the first, '.', '\1, '[I, and '-I
are not ordinary characters and must be
escaped (preceded) by .. \' to be treated as
such.

At the beginning of a pattern forces the
match to succeed only at the beginning of a
line.

At the end of a regular expression forces the
match to succeed only at the end of the line.

Matches any single character except the new­
line character.

Forces the match to occur only at the begin­
ning of a variable" or word"1 that is,
ei ther at the beginning of a line, or just
before a letter, digit, or underline and

+ To discern what is true with nomagi~ it suffices to
remember that the only special characters in this case
will be 'TI at the beginning of a regular expression,
'$' at the end of a regular expression, and '\'. With
nomagic the characters 'HI and '&' also lose their spe­
cial meanings related to the replacement pattern of a
substitute.

£-116

\
\

\>

[string]

after a character not one of these.

Similar to '\<', but matching the end of a
"variable" or "word", i.e. either the end
of the line or before character which is nei­
ther a letter, nor a digit, nor the underline
character.

Matches any (single) character in the class
defined by string. Most characters in string
define themselves. A pair of characters
separated by '_I in string defines the set of
characters collating between the specified
lower and upper bounds, thus '[a-z] I as a
regular expression matches any . (single)
lower-case letter. If the first character of
string is an 'T' then the construct matches
those characters which it otherwise would
'not; thus' [Ta-z]' matches anything but a
lower-case letter (and of course a newline).
To place any of the characters 'T', '[I, or
'-' in string you must escape them with a
preceding '\ I.

~.~. Combining regular expression primitives

The concatenation of two regular expressions matches
the leftmost and then longest string which can be divided
with the first piece matching the first regular expression
and the second piece matching the second. Any of the (sin~
gle character matching) regular expressions mentioned above
may be followed by the character '*' to form a regular
expression which matches any number of adjacent occurrences
(including 9) of characters matched by the regular expres­
sion it follows.

The character '-I may be used in a regular expression,
and matches the text which defined the replacement part of
the last substitute command. A regular expression may be
enclosed between the sequences '\(' and '\)' with side
effects in the substitute replacement patterns.

~.~. Substitute repl~cement patterns

The basic metacharacters for the replacement pattern
are '&' and '-I; these are given as '\&' and '\-' when
nomagic is set. Each instance of '&' is replaced by the
characters which the regular expression matched. The meta­
character ,-, stands, in the replacement pa ttern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern
are always introduced by the escaping character '\1. The
sequence '\n' is replaced by the text matched by the n-th

E-117

regular subexpression enclosed between '\(' and '\) '.+ The
sequences '\u' and '\1' cause the immediately following
character in the replacement to be converted to upper- or
lower-case respectively if this character is a letter. The
sequences '\U' and '\L' turn such conversion on, either
until '\E' or 'O\e' is encountered, or until the end of the
replacement pattern.

~. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured pro­
gram text. At the beginning of each append, change or
insert command or when a new line is opened or created
by an append, change, insert, or substitute operation
within ~ or visual mode, ~ looks at the line being
appended after, the first line changed or the line
inserted before and calculates the amount of white
space at the start of the line. It then aligns the
cursor at the level of indentation so determined.

If·the user then types lines of text in, they will con­
tinue to be justified at the displayed indenting level.
If more white space is typed at the beginning of a
line, the following line will start aligned with the
first non-white character of the previous line. To
back the cursor up to the preceding tab stop one can
hit ~D. The tab stops going backwards are defined at
multiples of theshiftwidth option. You cannot back­
space over the indent; except by sending an end-of-file
with a ~D.

Specially processed in this mode is a line with no
characters added to it, which turns into a completely
blank line (the white space provided for the autoindent
is discarded.) Also specially processed in this mode
are lines beginning with an 'OT' and immediately fol­
lowed by a ~D. This causes the input to be reposi­
tioned at the beginning of the line, but retaining the
previous indent for the next line. Similarly, a '9'
followed by a ~D repositions at the beginning but
without retaining the previous indent.

Autoindent doesn't happen in global commands or when
the input is not a terminal.

+ When nested, parenthesized subexpressions are
present, n 1S determined by counting occurrences of
'\(' starting from the left.

E-118

autoprint, ap default: ap

Causes the current line to be printed after each
delete, ~,JQ4n,~, substitute, ~, YndQ or shift
command. This has the same effect as supplying a
trailing 'p' to each such command. Autoprint is
suppressed in globals, and only applies to the last of
many commands on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the
current file if you have modified it and give a ~,
rewind, ~, tsg, or ! command, or a ~T (switch
files) or~] (tag goto) command in visual. Note, that
the ~ and ~ commands do nQt autowrite. In each
case, there is an equivalent way of switching when
autowrite is set to avoid the autowrite (~ for ~,
rewind! for .I rewind ,~! for~,~! for
~, shell for 1, and :e # and a :ta! command from
within visual).

beaut1fy, bf default: nobeautify

Causes all control characters except tab, newline and
form-feed to be discarded from the input. A complaint
is registered the first time a backspace character is
discarded. Beautify does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ~ places its buffer
file. If this directory in not writable, then the edi­
tor will exit abruptly when it fails to be able to
create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of S and ~ suffixes on
substitute commands to be remembered, and to be toggled
by repeating the suffices. The suffix ~ makes the sub­
stitution be as in the - command, instead of like &.

**

** Version 3 only.

E-119

errorbells, eb default: noeb

Error messages are preceded by a bell.* If possible the
editor always places the error message in a standout
mode of the terminal (such as inverse video) instead of
ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs
are set (or on which the system expands tabs).

ignorecase, ic default: noic

lisp

list

magic

mesg

All upper case characters in the text are mapped to
lower case in regular expression matching. In addi­
tion, all upper case characters in regular expressions
are mapped to lower case except in character class
specif ica tions.

default: nolisp

Autoindent indents appropriately for lis~ code, and the
() { } [[and]] commands in o~en and visual are modi­
fied to have meaning for lisp.

default: nolist

All printed lines will be
ously, showing tabs and
command.

displayed (more) unambigu­
end-of-lines as in the liat

default: magic for ~ and ~+

If nomagic is set, the number of' regular expression
metacharacters is greatly reduced, with only 'TI and
'$' having special effects. In addition the metachar­
acters --, and -&1 of the replacement pattern are
treated as normal characters. All the normal metachar­
acters may be made magic when nomagic is set by preced­
ing them with a".

default: mesg

Causes write permission to be turned off to the termi­
nal while you are in visual mode, if nomesg is set. ++

* Bell ringing in ~ and
suppressed by setting ~.
+ Nomagic for ~.

visual on

£-128

errors is not

++ Version 3 only. ,
\

,

number, nu default: nonumber

open

Causes all output lines to be printed with their line
numbers. In addition each input line will be prompted
for by supplying the line number it will have.

default: open

If·noopen, the commands ~ and visual are not permit­
ted. This is set for ~ to prevent confusion result­
ing from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal
to not do automatic carriage returns when printing more
than one (logical) line of output, greatly speeding
output on terminals without addressable cursors when'
text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp

Specifies the pazagraphs for the { and } operations in
~ and visual. The pairs of characters in the
option's value are the names of the macros which start
paragraphs.

prompt default: prompt

Command mode input is prompted for with a .. , . .
redraw default: noredraw

remap

The editor simulates (using great amounts of output),
an intelligent terminal on a dumb terminal (e.g. during
insertions in visual the characters to the right of the
cursor position are refreshed as each input character
is typed.) Useful only at very high speed.

default: remap

If on, macros are repeatedly tried until
unchanged. +* For example, if ~ is mapped to
is mapped to~, then if remap is set, ~ will
but if noremap is set, it will map to Q.

they are
Q, and Q
map to ~,

** Version 3 only.

£-121

report default: report=5+

Specifies a threshold for feedback from commands. Any
command which' modifies more than the specified number
of lines will provide feedback as to the scope of its
changes. For commands such as global, ~, ~, and
visual which have potentially more far reaching scope,
the net change in the number of lines in the buffer is
presented at the end of the command, subject to this
same threshold. Thus notification is suppressed during
a global command on the individual commands performed.

scroll default: scroll=I/2 window

Determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in com­
mand mode, and the number of lines printed by a command
mode Z command (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] opera­
tions in .QJ2M and visual. The pairs of characters in
the option's value are the names of the macros which
start paragraphs.

shell, sh

Gives the path name of
escape command 'I',
default is taken from
present.

shiftwidth, sw

default: sh=/bin/sh

the shell forked for the shell
and by the shell command. The
SHELL in the environment, if

default: sw=8

Gives the width a software tab stop, used in reverse
tabbing with ~D when using autoindent to append text,
and by the shift commands.

sh owma tch , sm default: nosm

In open and visual mode, when a) or } is typed, move
the cursor to the matching (or { for one second if
this matching character is on the screen. Extremely
useful with ~.

+ 2 for .e.Q.i.t..

E-122

\

,

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode,
holding off display updating during input of new text
to improve throughput when the terminal in use is both
slow and unintelligent. See An Introduction ~ Display
Editing~ Yi for more details. -

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on
tabstop boundaries for the purposes of display.

taglength, tl default: tl=9

Tags are not significant beyond this many characters.
A value of zero (the default) means that all characters
are significant.

tags
/usr/lib/tags

default: tags=tags

term

terse

warn

A path of files to be used as tag files for
command •. ++ A requested tag is searched for
specified files, sequentially. By -default
version 2) files called .tas..s. are searched for
current directory and in /usr/lib (a master
the entire system.)

from environment TERM

The terminal type of the output device.

default: noterse

the .t.a.sl
in the

(even in
in the

file for

Shorter error diagnostics are produced for the experi­
enced user.

default: warn

Warn if there has been '[No write since last change] I

before a '11 command escape.

window default: window=speed dependent

++ Version 3 only.

8-123

The number of lines in a text window in the visual com­
mand. The default is 8 at slow speeds (699 baud or
less), 16 at medium speed (1299 baud), and the full
screen (minus one line) at higher speeds.

w309, w1290, w9600

These are not true options but set window only if the
speed is slow (309), medium (1290), or high (9699),
respectively. They are suitable for an EXINIT and make
it easy to change the 8/l6/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing
will wrap around past the end of the file.

wrapmargin, wm default: WID=9

Defines a margin for automatic wrapover of text during
input in ~ and visual modes. See An Introduction ~
~ Editing ~ Yi for details •.

writeany, wa default: nowa

Inhibit the checks .normally made before write commands,
allowing a .write to any file which the system protec­
tion mechanism will allow.

~. Limitations

Editor limits that the user is likely to encounter are
as follows: 1024 characters per line, 256 characters per
global command list, 128 characters per file name, 128 char­
acters in the previous inserted and deleted text in ~ or
visual, 109 characters in a shell escape command, 63 charac­
ters in a string valued option, and 30 characters in a tag
name, and a limit of 250009 lines in the file is silently
enforced.

The visual implementation limits the number of macros
defined with map to 32, and the total number of characters
in macros to be less than 512.

£-124

\

Edit: A Tutorial

ABSTRACT

This narrative introduction to the use of the
text editor ~ assumes no prior familiarity with
computers or with text -editing. Its aim is to
lead the beginning UNIX+ user through· the funda­
mental steps of writing and revising a file of
text. Edit, a version of the text editor~, was
designed to provide an informative environment for
new and casual users.

This edition documents Versions 2.0 thru 3.1
of edit and ~.

We welcome
this tutorial
eral. Contact
642-4072.

comments and suggestions about
and the UNIX documentation in gen­

the UNIX consultant in 217 Evans,

+UNIX is a trademark of Bell Laboratories.

E-125

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 9472e

Text editing using a terminal connected to a computer
allows a user to create, modify, and print text easily.
Creating text is as easy as typing it much as one would on
an electric typewriter. Modifying text involves telling the
text editor what to add, change, or delete. Text is printed
by giving the proper command to print the file contents,
with or without special instructions as to the format of the
desired output.

These lessons assume no prior familiarity with comput~
ers or with text editing. They consist of a series of text
editing sessions which will lead you through the fundamental
steps of creating and revising a file of text. After scan­
ning each lesson and before beginning the next, you should
follow the examples at a terminal to get a feeling for the
actual process of text editing. Set aside some time for
experimentation, and you will soon become familiar with
using the computer to write and modify text. In addition to
the actual use of the text editor, other features of UNIX
will be very important to your work. You can begin to learn
about these other features by reading "Communicating with
UNIX I 'or one of the other tutorials which provide a general
introduction to the system. You will be ready to proceed
wi th this lesson as soon as you are familiar with your ter­
minal and its special keys, the login procedure, and the
ways of correcting typing errors. Let's first define some
terms:
program A set of instructions given to the computer,

describing the sequence of steps which the com­
puter performs in order to accomplish a specific
task. As an example, a series of steps to bal­
ance your checkbook is a program.

E-126

,

UNIX

edit

file

filename

disk

buffer

UNIX is a special type of program, called an
operating system, that supervises the machinery
and all other programs comprising the total com­
puter system.

~ is the name of the UNIX text editor which
you will be learning to use, a program that aids
you in writing or revising text. Edit was
designed for beginning users, and is a simpli­
fied version of an editor called ~.

Each UNIX account is allotted space for the per­
manent storage of information, such as programs,
data or text. A file is a logical unit of data,
for example, an essay, a program, or a chapter
from a book, which is stored on a computer sys­
tem. Once you create a file, it is kept until
you instruct the system to remove it. You may
create a file during one UNIX session, log out,
and return to use it at a later time. Files
contain anything you choose to write and store
in them. The sizes of files vary to suit your
needs 1 one file might hold only a single number
while another might contain a very long document
or program. The only way to save information
from one session to the next is to store it in a
file.

Filenames are used to distinguish one file from
another, serving the same purpose as the labels
of manila folders in a file cabinet. In order
to write or access information in a file, you
use the name of that file in a UNIX command, and
the system will automatically locate the file.

Files are stored on an input/output device
called a disk, which looks something like a
stack of phonograph records. Each surface is
coated with a material similar to the coating on
magnetic recording tape, on which information is
recorded.

A temporary work space, made available to the
user for the duration of a session of text edit­
ing and used for building and modifying the text
file. We can imagine the buffer as a blackboard
that is erased after each class, where each ses­
sion with the editor is a class.

£-127

Session~: Creating A ~ Qf Text

To use the editor you must first make contact with the
computer by logging in to UNIX. We'll quickly review the
standard UNIX login procedure.

If the terminal you are using is directly linked to the
computer, turn it on and press carriage return, usually
labeled ~~RETURN'J. If your terminal connects with the com­
puter over a telephone line, turn on the terminal, dial the
system access number, and, when you hear a high-pitched
tone, place the receiver of the telephone in the acoustic
coupler. Press carriage return once and await the login
message:

:login:

Type your login name, which identifies you to UNIX, on
the same line as the login message, and press carriage
return. If the terminal you are using has both upper and
lower case, be sure you enter your login name in lower case~
otherwise UNIX assumes your terminal has only upper case and
will not recognize lower case letters you may type. UNIX
types ":login:" and you reply with your login name, for
example "susan":

':login: susan (and press carriage return)

(In the examples, input typed by the user appears in ~
face to distinguish it from the responses from UNIX.)

UNIX 'will next respond with a request for a password as
an additional precaution to prevent unauthorized people from
using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (~~ passwQrd and press carriage return).

If any of the information you gave during the login sequence
was mistyped or incorrect, UNIX will respond with

Login incorrect.

:login:

in which case you should start the login process anew.
Assuming that you have successfully logged in, UNIX will
print the message of the day and eventually will present you
with a % at the beginning of a fresh line. The % is the
UNIX prompt symbol which tells you that' UNIX is ready to
accept a command.

£-128

,

Asking .f.Q..t. rl.i.t.

You are ready to tell UNIX that you want to work with
edit, the text editor. Now is a convenient time to choose a
name for the file of text which you are about to create. To
begin your editing session type ~ followed by a space and
then the filename which you have selected, for example
"text' '. When you have completed the command, press car­
riage return and wait for edit's response:

% edit text (followed ~ A carriage return)
"text" No such file or directory

If you typed the command correctly, you will now be in com­
munication with edit. Edit has set aside a buffer for use
as a temporary working space during your current editing
session. It also checked to see if the file you named,
'"text' " already existed. As we expected, it was unable to
find such a file since "text" is the name of the new file
that we will create. Edit confirms this with the line:

"text" N6 such file or directory

On the next line appears edit's prompt ":", announcing
that edit expects a command from you. You may now begin to
create the new file.

~ "nQt found" message

If you misspelled edit by typing, say, "editor' " your
request would be handled as follows:

% editor
editor: not found
%

Your mistake in calling edit "editor" was treated by UNIX
as a request for a program named "editor". Since there is
no program named "editor' " UNIX reported that the program
was "not found". A new % indicates that UNIX is ready for
another command, so you may enter the correct command.

A summary

Your exchange with UNIX as you logged in and made con­
tact with edit should look something like this:

E-129

:login: susan
Password:
Computer Center UNIX System
••• A Message of General Interest
% edit text
"text" No such file or directory

Entering ~

•••

You may now begin to enter text into the buffer. . Thi s
is done by appending text to whatever is currently in the
buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing: in effect, you are creat­
ing text. Most edit commands have two forms: a word which
describes what the command does and a shorter abbreviation
of that word. Either form may be used. Many beginners find
the full command names easier to remember, but once you are
familiar with editing you may prefer to type the shorter
abbreviations. The command to input text is "append"
which may be abbreviated "a". Type append and press car­
riage return.

% edit text
: append

Messages- from ~

If you make a mistake in entering a command and type
something that edit does not recognize, edit will respond
with a message intended to help you diagnose your error.
For example, if you misspell the command to input text by
typing, perhaps, "add" instead of "append" or • 'a' " you
will receive this message:

:add
add: Not an editor command . .

When you receive a diagnostic message, check what you typed
in order to determine what part of your command confused
edit. The message above means that edit was unable to
recognize your mistyped command and, therefore, did not exe­
cute it. Instead, a new":" appeared to let you know that
edit is again ready to execute a command •

.I.ext input ~

By giving the command "append" (or using the abbrevi­
ation "a' I), you entered text input mode, also known as
append mode. When you enter text input mode, edit responds

B-138

,

by doing nothing. You will not receive any prompts while in
text input mode. This is your signal that you are to begin
entering lines of text. You can enter pretty much anything
you want on the lines. The lines are transmitted one by one
to the buffer and held there during the editing session.
You may append as much text as you want, and ~ ~ wish
1Q ~ entering ~ lines ~ should ~ a period ~ ~
Qllly character ~ ~ line ~ press carriage return. When
you give this signal that you want to stop appending text,
you will exit from text input mode and reenter command mode.
Edit will again prompt you for a command by printing ":".

Leaving append mode does not destroy the text in the
buffer. You have to leave append mode to do any of the
other kinds of editing, such as changing, adding, or print­
ing text. If you type a period as the first character and
type any other character on the same line, edit will believe
you want to remain in append mode and will not let you out.
As this can be very frustrating, be sure to type ~ the
period and carriage return.

This is as good a place as any to 'learn an important
lesson about computers and text: a blank space is a charac­
ter as far as a computer is concerned. If you so much as
type a period followed by a blank (that is, type a period
and then the space bar on the keyboard), you will remain in
append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type
exactly what you see, including "thiss' I):

~ II ..Q.Q.ID..e sample ~.
Aru1 thiss II ~ ~ ~.
~ editing II strange, ~ ~ •
•

The last line is the period followed by a carriage return
that gets you out of append mode. If while typing the line
you hit an incorrect key, recall that you may delete the
incorrect character or cancel the entire line of input by
eraSing in the usual way. Refer to "Communicating with
UNIX" if you need to review the procedures for making a
correction. Erasing a character or cancelling a line must
be done before the line has been completed by a carriage
return. We will discuss changes in lines already typed in
session 2.

Wr i t i ng llx.t. .tQ. .din

You are now ready to edit the text. The simplest kind
of editing is to write it to disk as a file for safekeeping
after the session is over. This is the only way to save

E-131

information from one session to the next, since the editorls
buffer is temporary 'and will last only until the end of the
editing session. Thus, learning how to write a file to disk
is second in importance only to entering the text. To write
the contents of the buffer to a disk file, use the command
"write" (or its abbreviation '''W ll):

:write

Edit will copy the buffer to a disk file. If the file does
not yet exist, a new file will be created automatically and
the presence of a "[New file] 'I will be noted. The newly­
created file will be given the name specified when you
entered the editor, in this case "text". To confirm that
the disk file has been successfully written, edit will
repeat the filename and give the number of lines and the
total number of characters in the file. The buffer remains
unchanged by the . 'write' I command. All of the lines which
were written to disk will still be in the buffer, should you
want to modify or add to them.

Edit must have a filename to use before it can write a
file. If you forgot to indicate the name of the file when
you began the editing session, edit will print

No current filename

in response to your write command. If this happens, you can
specify the filename in a new write command:

:write text

After the "write'l (or "wl ') type a space and then the
name of the file.

Signing .Q..f:f

We have done enough for this first lesson on using the
UNIX text editor, and are ready to quit the session with
edit. To do this we type "quitll (or "qll) and press car­
riage return:

:write
ntext" [New file] 3 lines, 90 characters
:quit
%

The % is from UNIX to tell you that your session with edit
is over and you may command UNIX further. Since we want to
end the entire session at the terminal we also need to exit
from UNIX. In response to the UNIX prompt of "%11 type a
"control d l I. This is done by holding down the control key
(usually labeled "'CTRL") and simultaneously pressing the d
key. This will end your session with UNIX and will ready

£-132

' . ..

the terminal for the next user. It is always important to
type a "control-d" at the end of a session to make abso­
lutely sur e no one could accidentally stumble into your
abandoned session and thus gain access to your files, tempt­
ing even the most honest of souls.

This is the end of the first session on UNIX text edit-
ing.

E-133

Session .2.

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (~ password ~ carriage return)

computer Center UNIX System
%

This time when you say that you want to edit, you can
specify the name of the file you worked on last time. This
will start edit working and it will fetch the contents of
the file into the buffer, so that you can resume 'editing the
same file. When edit has copied the file into the buffer,
it will repeat its name and tell you the number of lines and
characters it contains. Thus,

% ~.t.eAt
"text" 3 lines, 9~ characters
· ·

means you asked edit to fetch the file named "text" for
editing, causing it to copy the 9~ characters of text into
the buffer. Edit awaits your further instructions. In this
session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of, a
line.

Adding ~ text ~ ~ ~

If you want to add more to the end of your text you may
do so by using the append command to enter text input mode.
Here we'll use the' abbreviation for the append command,
~'a":

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.
•

Interrupt

Should you press the RUBOUT key (sometimes labeled
DELETE) while working with edit, it will send this message
to you:

Interrupt
· •

Any command that edit might be executing is terminated by
rubout or delete, causing edit to prompt you for a new

E-134

,

command. If you are appending text at the time, you will
exit from append mode and be expected to give another com­
mand. The line of text that you were typing when the append
command was interrupted will not be entered into the buffer.

Making corrections

If you have read a general introduction to UNIX, such
as "Communicating with UNIX", you will recall that it is
possible to erase individual letters that you have typed.
This is done by typing the designated erase character, usu­
ally the number sign (i), as many times as there are charac­
ters you want to erase. If you make a bad start in a line
and would like to begin again, this technique is cumbersome

what if you had 15 characters in your line and wanted to
get rid of them? To do so either requires:

~ ~ yukky ~iiittttttitittt

with no room for the great text you'd like to type, or,

.nu...a .ia yukky ~@~ .ia great ~.

When you type the at-sign (@), you erase the entire line
typed so far. You may immediately begin to retype the line.
This, unfortunately, does not help after you type the line
and press carriage return. To make corrections in lines
which have been completed, it is necessary to use the edit­
ing commands covered in this session and those that follow.

Listing ~'~ in ~ buffer

Having appended text to what you wrote in Lesson 1, you
might be curious to see what is in the buffer. To print the
contents of the buffer, type the command:

:l,$p

The "1'1 stands for line 1 of the buffer, the "$" is a
special symbol designating the last line of the buffer, and
"pI' (or print) is the command to print from line 1 to the
end of the buffer. Thus, "l,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character
which can't be printed, which is done by striking a key
while the CTRL key is depressed. In printing lines, edit
uses a special notation to show the existence of non-

E-135

printing cha~acters. Suppose you had introduced the non­
printing character "control-a" into the word "illus­

. trate l ' by accidently holding down the CTRL key while typing
"al'. Edit would display

it does illustrAAte the editor.

if you asked to have the line printed. To represent the
control-a, edit shows' "AA'·. The sequence' , .. ,' followed
by a capital letter stands for the one character entered by
holding down the CTRL key and typing the letter which
appears after the , .. ft.,. We'll soon discuss the commands
which can be used to correct this typing error.

In looking over the text we see that "this" is typed
as "thiss" in the second line, as suggested. Let's
correct the spelling.

Finding things in ~ buffer

In order to change something in the buffer we first
need to find it. We can find "thiss" in the text we have
entered by looking a t a listing of the lines. Physically
speaking, we search the lines of text looking for "thiss"
and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash
marks:

:/thiss/

By typing /thiss/ and pressing carriage return edit is
instructed to search for thiss· I. If we asked edit to
look for a pattern of characters which it could not find . in
the buffer, it would respond "'Pattern not found". When
edit finds the characters "thiss' " it will print the line
of text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it
just printed, ready to make a change in' the line.

~ current line

At all times during an editing session, edit keeps
track of the line in the buffer where it is positioned. In
general, the line which has been most recently printed,
entered, or changed is considered to be the current position
in the buffer. You can refer to your current position in
the buffer by the symbol period (.) usually known by the
name "dot". If you type • ... 1' and carriage return you
will be instructing edit to print the current line:

E-136

,

,

· · .
And thiss is some more text.

If you want to know the number of the current line, you
can type.= and carriage return, and edit will respond with
th e line numbe r :

· -· .-
2

If you type the number of any line and a carriage return,
edit will position you at that line and print its contents:

:2
And thiss is some more text.

You should experiment with these commands to assure yourself
that you understand what they do.

Numbering lines (nY)

The number (nY) command is similar to print,
both .the number and the text of each printed line.
the "number and the text of the current line type

:nu
2 And thiss is some more text.

giving
To see

Notice that the shortest abbreviation for the number command
is "nu'l (and not "nil which is used for a different com­
mana). You may specify a range of lines to be listed by the
number command in the same way that lines are specified for
print. For example, "l,$nu' I lists all lines in the buffer
with the corresponding line numbers.

Substitute command (~)

Now that we have found our misspelled word it is time
to change it from "thissl I to "thisll. As far as edit is
concerned, changing things is a matter of substituting one
thing for another. As A stood for a~pend, so ~ stands for
substitute. we will use the abbreviation "S'I to reduce
the chance of mistyping the SUbstitute command. This com­
mand will instruct edit to make the change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then
type an "Sl I to indicate we want substitution. Inside the
first set of slashes are the characters that we want to
change, . followed by the characters to replace them and then
a closing slash mark. To summarize:

E-137

2s1 lihat ~ !Q Qe changed I ~ !Q change ~ I

If edit finds an exact match of the characters to be changed
it will make the change only in the first occurrence of the
characters. If it does not find the characters to be
changed it will respond:

Substitute pattern match" failed

indicating your instructions could not be carried out. When
edit does find the characters which you want to change, it
will make the substitution and automatically print the
changed line, so that you can check that the correct substi­
tution was made. In the example,

:2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters
"thissl I, and when the first exact match is found,
• "thiss' I will be changed to "this' '. Strictly speaking,
it was not necessary above to specify the number of the
line to be changed. In

:s/thiss/this/

edit will assume that we mean to change the line where we
are currently positioned (".'"'). In this case, the command
without a line number would have produced the same result
because we were already positioned at the line we wished to
change.

For another illustration of substitution we may choose
the line:

Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could
take out the characters "strange, but' I so the line would
read:

Text editing is nice.

A command which will first position edit at that line and
then make the substitution is:

:/strange/s/strange, but II

What we have done here is combine our search with
substitution. Such combinations are perfectly legal.
illustrates that we do not necessarily have to use

E-138

our
This
line

\

numbers to identify a line to edit. Instead, we may iden­
tify the line we want to change by asking edit to search for
a specified pattern of letters which occurs in that line.
The parts of ~he above command are:

Istrangel
s

tells edit to find the characters "strange" in the tex1
tells edit we want to make a substitution

Istrange, but II substitutes nothing at all for the characters
"strange, but" -

You should note the space after "but" in "/strange,
but I". If you do not indicate the space is to be taken
out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space
between "is" and "nice". Again, we realize from this
that a blank space is a real character to a computer, and in
editing text we need to be aware of spaces within a line
just as we would be aware of an "a" or a "4".

Another ~ ~ ~ ~'a in ~ buffer (z)

Although the print command is useful for looking at
specific lines in the buffer, other commands can be more
convenient for viewing large sections of text. You can ask
to see a screen full of text at a time by using the command
z. If you type

:lz

edit will start with line I and
stopping either when the screen
when the last line in the buffer
want to read the next segment of

:z

continue printing lines,
of your terminal is full or
has been printed. If you
text, give the command

If no starting line number is given for the z command,
printing will start at the "current" line, in this case
the last line printed. Viewing lines in the buffer one
screen full at a time is known as paging. Paging can also
be used to print a section of text on a hard-copy terminal.

Saying ~ modified ~

This seems to be a good place to pause in our work, and
so we should end the second session. If you (in haste) type
"q" to quit the s~ssion your dialogue with edit will be:

:q
No write since last change (q! quits)
:

E-139

This is edit's warning that you have not written the modi­
fied contents of the buffer to disk. You run the risk of
losing the work you have done during the editing session
since the latest write command. Since in this lesson we
have not written to disk at all, everything we have done
would be lost. If we did not want to save the work done
during this editing session, we would have to type "q11' to
confirm that we indeed wanted to end the session immedi­
ately, losing the contents of the buffer. However, since we
want to preserve what we have edited, we need to say:

:w
"text" 6 lines, 171 characters

and then,

:q
% {control~}

and hang up the phone or turn off the terminal when UNIX
asks for a name. This is the end of the second session on
UNIX text editing.

\
E-148 '.

Session ~

Bringing ~ intQ ~ buffer (~)

Login to UNIX and make contact with edit. You should
try to login without looking at the notes, but ~f you must
then by all means do.

Did you remember to give the name of the file you
wanted to edit? That is, did you say

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way
will bring a copy of the file named "text" into the
buffer. If you did forget to tell edit the name of your
file, you can get it into the buffer by saying:

:e text
"text" 6 lines, 171 characters

The command~, which may be abbreviated "e", tells edit
that you want to erase anything that might already be in the
buffer and bring a copy of the file "text" into the buffer
for editing. You may also use the edit (e) command to
change files in the middle of an editing session or to give
edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive
a warning if you try to edit a new file without having saved
a copy of the old file. This gives you a chance to write
the contents of the buffer to disk before editing the next
file.

Moying ~ in ~ buffer (m)

Edit allows you to move lines of text from one location
in the buffer to another by means of the ~ (m) command:

:2,4m$

This command directs
end of the buffer
that you specify the
to be moved, the
which the moved text

:1,6m2~

edit to move lines 2, 3, and
($). The format for the move
first line to be moved, the
move command "m" , and the
is to be placed. Thus,

4 to the
command is
last line
line after

would instruct edit to move lines 1 through 6 (inclusive) to
a position after line 2~ in the buffer. To move only one

E-141

11ne, say, line 4, to a position in the buffer after line 6,
the command would be "4m6".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line
of the buffer, edit tells how many lines were affected by
the change. The last moved line is printed for your inspec­
tion. If you want to see more than just the last line, use
the print (p), z, or number (nu) command to view more text.
The buffer should now contain: '

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

:4,$ml

or, combining context searching a.nd the mov,e command: .
:/And this is some/,/This is text/m/This is some samplel

The problem with combining context searching with the move
command is that the chance of making a typing error in such
a long command is greater than if one types line numbers.

Copying lines (~)

The ~ command is used to make a second copy of
specified lines, leaving the original lines where they were.
Copy has the same format as the move command, for example:

:12,15copy $

makes a copy of lines 12- through 15, placing the added lines
after the buffer's end ($). Experiment with the copy com­
mand so that you can become familiar with how it works.
Note that the shortest abbreviation for copy is "co" (and
nQt the letter "c" which has another meaning).

Del~ting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

E-142

'. ,

",
,

from the buffer. If you know the number of the line to be
deleted, you can type that number followed by "delete" or
"d' '. This example deletes line 4:

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted and
"delete" or "d" is the command to delete the line.
After executing the delete command, edit prints the line
which has become the current line (' .•••).

If you do not happen to know the line number you can
search for the line and then delete it using this sequence
of commands:

:/added in Session 2./
This is text added in Session 2.
:d
It doesn't mean much here, but

The "/added in Session 2./" asks edit to locate and print
the next line which contains the indicated text. Once you
are sure that you have correctly specified the line that you
want to delete, you can enter the ~elete (d) command. In
this case it is not necessary to specify a line number
before the "d". If no line number is given, edit deletes
the current line (, .• '.), that' is, the line found by our
search. After the deletion, your buffer should contain:

This is some sample text.
Ahd this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

: 2,3d

which specifies the range of lines from 2 to 3, and the
operation on those lines - "d" for delete.

Again, this presumes that you know the line numbers for
the lines to be deleted. If you do not you might combine
the search command with the delete command as so:

:/And this is some/,/Text editing is nice./d

8-143

A ~ ~ ~ Qf caution:

In using the search function to locate lines to be
deleted you should be absolutely sure the characters you
give as the basis for the search will take edit to the line
you want deleted. Edit will search for the first occurrence
of the characters starting from where you last edited - that
is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the
wrong lines being deleted, which edit will do as easily as
if you had meant it. For this reason, it is usually safer
to specify the search and then delete in two separate steps,
at least until you become familiar enough with using the
editor that you understand how best to specify searches.
For a beginner it is not a bad idea to double-check each
command before pressing carriage return to send the command
on its way.

~ (M) tQ ~ rescue

The ~ (M) command has the ability to reverse the
effects of the last command. To undo the previous command,
type "u" or "undo". Undo can rescue the contents of the
buffer from many an unfortunate mistake. However, its
powers are not unlimited, so it is still wise to be reason­
ably careful about the commands you give. It is possible to
undo only commands which have the power to chan-ge the
buffer, for example delete, append, move, copy, substitute,
and even undoritself. The commands wr~te (w) and edit (e)
which interact with disk files cannot be undone, nor can
commanas such as print which do not change the buffer. Most
importantly, the ~ command which can be reversed by undo
is the last "undo-able" command which you gave.

To illustrate, let's issue an undo command. Recall
that the last buffer-changing command we gave deleted the
lines which were formerly numbered 2 and 3. Executing undo
a t this moment will reverse the effects of the deletion,
causing those two lines to be replaced in the buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more
than one line, and prints the text of the line which is now
"dot" (the current line).

~ about ..t.b.e.do.t (.) arui buffer Jmd ($)

The function assumed by the symbol dot depends on its
context. It can be used:

£-144

\

,

1. to exit from append mode we type dot (and only a
dot) on a line and press carriage return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the
number of the line currently being edited:

. -.. -
Thus if we type ".=1 I we are asking for the number of the
line and if we type ".11 we are asking for the text of the
l~ne.

In this editing session and the last, we used the dol­
lar sign to indicate the end of the buffer in commands such
as print, copy, and move. The dollar sign as a command asks
edit to print the last line in the buffer. If the dollar
sign is combined with the equal sign ($=) edit will print
the line number corresponding to the last line in the
buffer.

".11 and "$11 therefore represent line numbers.
Whenever appropriate, these symbols can be used in place of
line numbers in commands. - For example

:.,$d

instructs edit to delete all lines from the current line (.)
to the end of the buffer.

Moying around .in ~ buffer (+.and-)

It is frequently convenient during an editing session
to go back and re-read a previous line. We could specify a
context search for a line we want to read if we remember
some of its text, but if we simply want to see what was
written a few, say 3, lines ago, we can type

-3p

This tells edit to move back to a position 3 lines before
the current line (.) and print that line. We can move for­
ward in the buffer similarly:

+2p

instructs edit to print the line which is 2 ahead of our
current position.

You may use "+11 and "_II in any command where edit
accepts line numbers. Line numbers specified with "+11 or
"_" can be combined to print a range of lines. The com­
mana

£-145

:-I,+2copy$

makes a copy of 4 lines: the current line, the line before
it, and the two after it. The copied lines will be placed
after the last line in the buffer ($) •.

Try typing only ~~-' '; you will move back one line just
as if you had typed '~-lp' '. Typing the command ~'+" works
similarly. You might also try typing a few plus or minus
signs in a row (such as ~~+++") to see edit's response.
Typing a carriage return alone on a line is the equivalent
of typing "+lp"; it will move you one line ahead in the
buffer and print that line.

If you are at the last line of the buffer
move further ahead, perhaps by typing a "+"
return alone on the line, edit will remind you
at the end of the buffer:

At end-of-file

and try to
or a carriage
that you are

Similarly, if you try to move to a position before the first
line, edit will print one of these messages:

Nonzero address required on ~his command
Negative address - first buffer line is I

The number associated with a buffer line is the line's
"address", in that 'it can be used to locate the line.

Changing lines (~)

There may be occasions when you want to delete certain
lines and insert new text in their place. This can be
accomplished easily with the change (~) command. The change
command instructs edit to delete specified lines and then
sWitch to text input mode in order to accept the text which
will replace them. Let's say we want to change the first
two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you can type:

E-146

,

:1,2c
2 lines changed
~ ~ ~ created nth ~ .IlN.IX ~ editor.
•
· ·

In the command ~,2& we specify that we want to change the
range of lines beginning with 1 and ending with 2 by giving
line numbers as with the print command. These lines will be
deleted. After a carriage return enters the change command,
edit notifies you if more than one line will be changed and
places you in text input mode. Any text typed on the fol­
lowing lines will be inserted into the position where lines
were deleted by the change command. You will remain in text
input mode until you exit in the usual way, by typing a
period alone on a line. Note that the number of lines added
to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing
with UNIX.

E-147

SessiQn .!

This lessQn CQvers several tQpics, starting with CQm­
mands which apply thrQughQut the buffer, characters with
special meanings, and hQW tQ issue UNIX cQmmands while in
the editQr. The next tQpics deal with files: mQre Qn read­
ing and writing, and methQds Qf recQvering files IQst in a
crash. The final sectiQn suggests SQurces Qf further infQr­
rna ti Qn.

Making cQmmands glQbal (g)

One disadvantage tQ the cQmmands we have used fQr
searching Qr substituting is that if YQU have a number Qf
instances Qf a wQrd tQ change it appears that YQU have tQ
type the command repeatedly, Qnce fQr each time the change
needs to be made. Edit, hQwever, provides a way to make
commands apply tQ the entire contents Qf the buffer - the
glQbal (g) command.

TQ print all lines cQntaining a certain sequence of
characters (say, "text' ') the cQmmand is:

:g/text/p

The "~gil instructs edit to make a glQbal search fQr all
lines in the buffer containing the characters "text' '.
The "p" prints the lines fQund.

TQ issue a global cQmmand, start by typing a "g" and
then a search pattern identifying the lines to be affected.
Then, on the same line, type the command to be executed on
the identified lines. Global substitutions are frequently
usetul. For example, to change all instances of the wQrd
"text" to the word "material" the command would be a
combination Qf the glQbal search and the substitute command:

:g/text/s/text/material/g

NQte the "g" at the end of the global cQmmand which
instructs edit tQ change each and every instance of "text"
tQ "material' '. If YQU dQ not type the "~gIl at the end Qf
the command only the first instance Qf "text" in each line
will be changed (the nQrmal result of the substitute com­
mand). The "g" at the end Qf the cQmmand is independent
of the "~gil at the beginning. You may give a cQmmand such
as:

:14s/text/material/g

to change every instance Qf "text'l in line 14 alone.
Further, neither cQmmand will change "Text" tQ
"material" because "Text" begins with a capital rather
than a lower-case ~.

E-148

Edit does not automatically print the lines modified by
a global command. If you want the lines to be printed, type
a "p" at the end of the global command:

:g/text/s/text/material/gp

The usual qualification should be made about using the glo­
bal command in combination with any other - in essence, be
sure of what you are telling edit· to do to the entire
buffer. For example,

:g/ fd
72 less lines in file after global

will delete every line containing a blank anywhere in it.
This could adversely affect your document, since most lines
have spaces between words and thus would be deleted. After
executing the global command, edit will print a warning if
the command added or deleted more than one line. For­
tunately, the undo command can reverse the effects of a glo­
bal command. You should experiment with the global command
on a small buffer of text to see what it can do for you.

~ about searching 4nd substituting

In using slashes to identify a charact·er string that we
want to search for or change, we have always specified the
exact characters. There isa less tedious way to repeat the
same string of characters. To change "noun" to ··nouns"
we may type either

:/noun/s/noun/nouns/

as we have done in the past, or a somewhat abbreviated com­
mand:

:/noun/s//nouns/

In this example, the characters to be changed are not speci­
fied there are no characters, not even a space, between
the two slash marks which indicate what is to be changed.
This lack of characters between the slashes is taken by the
editor to mean "use the characters we last searched for as
the characters to be changed."

Similarly, the last context search may be repeated by
typing a pair of slashes with nothing between them:

:/does/
It doesn't mean much here, but
:/f
it does illustrate the editor.

Because no characters are specified for the second search,

£-149

the editor scans the buffer for the next occurrence of the
characters "does".

Edit normally searches forward through the buffer,
" wrapping around from the end of the buffer to the beginning,

until the specified character string is found. If you want
to search in the reverse direction, use question marks (7)
instead of slashes to surround the character string.

Special characters

Two characters have special meanings when used in
specify~ng searches: ~'$" and ~~ft". "$11 is taken by
the editor to mean "end of the line" and is used to iden­
tify strings which occur at the end of a line.

, :g/ing$/s//ed/p

tells the editor to search for all lines ending in '"ing'l
(and nothing else, not even a blank space), to change each
final "ing" to "ed" and print the changed lines.

The symbol "" "" -, I indicates the beginning of a line.
Thus,

:s/"'/l. /

instructs the editor to insert ~ '1. ' , and a space at the
beginning of the current line.

The characters "$" and "ft" have special meanings
only in the context of searching. At other times, they are
ordinary characters. If you ever need to search for a char­
acter that has a special meaning, you must indicate that the
character is to temporarily lose its special Significance by
typing another special character, the backslash (\), before
it.

:s/\$/dollar/

looks for the character "$1' in the current line and
replaces it by the word' ~dollar' '. Were it not for the
backslash, the "$" would haverepr esented ~. the end of the
line" in your search, not necessarily the character "$".
The backslash retains its special significance at all times.

Issuing ~ commands from ~ editor

After creating several files with the editor, you may
want to delete files no longer useful to you or ask for a
list of your files. Removing and listing files are not
functions of the editor, and so they require the use of UNIX
system commands (also referred to as "shell'l commands, as
, 'shell" is the name of the program that processes UNIX

\
\'
"

E-158 .

,

commandS). You do not need to quit the editor to execute a
UNIX command as long as you indicate that it is to be sent
to the shell for execution. To use the UNIX command Lm to
remove the file named "junk" type:

:!rm junk
!

The exclamation mark (1) indicates that the rest of the line
is to be processed as a UNIX command. If the buffer con­
tents have not been written since the last change, a warning
will be printed before the command is executed. The editor
prints a "I" when the command is completed. The tutorial
"Communicating with UNIX" describes useful features of the
system, of which the editor is only one part.

Filenames ~ ~ manipulation

Throughout each editing session, edit keeps track of
the name of the file being edited as the current filename.
Edit remembers as the current filename the name given when
you entered the editor. The current filename changes when­
ever the edit (e) command is used to specify a new file.
Once edit has recorded a current filename, it inserts that
name into any command where. a filename has been omitted. If
a write command dO'es not specify a file, edit, as we have
seen, supplies the current filename. You can have the edi­
tor write onto a different file by including its name in the
write command:

:w' chapter3
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editor ~ ~ .~
changed ~ A result ~ ~ write command unless ~ ~ ~
first filename given in ~ editing session. Thus, in the
next write command which does not specify a name, edit will
write onto the current file and not onto the file
, . ch apt e r 3 ' • •

~ ~ (~) command

To ask for the current filename, type file (or ~) • In
response, the editor provides current information about the
buffer, including the filename, your current position, and
the number of lines in the buffer:

:f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last
time the file was written, the editor will tell you that the
file has been "[Modified] ". After you save the changes by

£-151

writing onto a disk file, the buffer will no longer be con­
sidered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Beading additional files (L)

The ~ (L) command allows you to add the contents of
a file to the buffer without destroying the text already
there. To use it, specify the line after which the new text
will be placed, the command ~, and then the name of the
file.

:$r bibliography
"bibliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to
the buffer after the last line. The current filename is not
changed by the read command unless it is the first filename
given in the editing session.

Writing parts Qf ~ buffer

The write (~) command can write all or part of the
buffer to a file you specify. We are already familiar with
writ1ng the entire contents of the buffer to a disk file.
To write only part -of the buffer onto a file, indicate the
beginning and ending lines before the write command, for
example

:45,$w ending

, Here all lines from 45 through the end of the buffer are
written onto the file named ending. The lines remain in the
buffer as part of the document you are editing, and you may
continue to edit the entire buffer. .

Recoyering files

Under most circumstances, edit's crash recovery mechan­
ism is able to save work to within a few lines of changes
after a crash or if the phone is hung up accidently. If you
lose the contents of an editing buffer in a system crash,
you will normally receive mail when you login which gives
the name of the recovered file. To recover the file, enter
the editor and type the command recover (rec), followed by
the name of the lost file.

:recover chap6
i ,
"

E-152

\

Recover {s sometimes unable to save the entire buffer suc­
cessfully, so always check the contents of the saved buffer
carefully before writing it back onto the original file.

Other recovery technigues

If something goes wrong when you are using the editor,
it may be possible to save your work by using the command
preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message
"Quota exceeded ' ·, you have tried to use more disk storage
than is allotted to your account. Proceed ~ caution
because it is likely that only a part of the editor IS buffer
is now present in the file you tried to write. In this case
you should use the shell escape from the editor (1) to
remove some files you don't need and try to write the file
again. If this is not possible and you cannot find someone
to help you, enter the command

:preserve

and then seek help. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save
your file. After a preserve, you can use the recover com­
mand once the problem has been corrected.

If you make an undesirable change to the buffer and
issue a write command before discovering your mistake, the
modified version will replace any previous version of the
file. Should you ever lose a good version of a document in
this way, do not panic and leave the editor. As long as you
stay in the editor, the contents of the buffer remain acces­
sible. Depending on the nature of the problem, it may be
possible to restore the buffer to a more complete state with
the undo command. After fixing the damaged buffer, you can
again write the file to disk.

Further reading And other information

Edit is an editor designed for beginning and casual
users. It is actually a version of a more powerful editor
called~. These lessons are intended to introduce you to
the editor and its more commonly-used commands. We have not
covered all of the editor's commands, just a selection of
commands which should be sufficient to accomplish most of
your editing tasks. You can find out more about the editor
in the ~ Reference Manual, which is applicable to both ~
and edit. The manual is available from the Computer Center
Library, 218 Evans Hall. One way to become familiar with
the manual is to begin by reading the description of com­
mands that you already know.

£-153

Using ..ex

As you become more experienced with using the editor,
you may still find that edit continues to meet your needs.
However, should you become interested in using ex, it is
easy to switch. To begin an editing session with ex, use
the name ..ex in your command instead of edit.

Edit commands work the same way in ex, but the editing
environment is somewhat different. You should be aware of a
few differences that exist between the two versions of the
editor. In edit, only the characters "~", "$", and
, '\" have special me'anings in searching the buffer or indi­
cating characters to be changed by a sUbstitute command.
Several additional characters have "magic" meanings in ex,
as described in the Ex Reference Manual. Another feature of
the edit environment prevents users from accidently entering
two alternative modes of editing, ~ and visual, in which
the editor behaves quite differently than in normal command
mode. If you are using ex and the editor behaves strangely,
you may have accidently entered open mode by typing "0".
Type the ESC key and then a "q'l to get out of open or
visual mode and back into the regular editor command mode.
The document An Introduction ~ Display Editing ~ Yi pro­
vides a full discussion of visual mode.

~ tutorial ~ produced ~ ~ Computer
Center Qf ~ University Qf California, Berke­
~. ~ welcome comments ~ suggestions ~
cerning ~ ~ ~ ~ ~ documentation
in general. Contact ~ ~ consultant in
212 Evans, ~-4072.

E-154

,

£A and'.e.d.it. are text edi­
tors, used for creating and
modifying files of text on the
UNIX computer system. Edit is
a variant of ~ with features
designed to make it less com­
plicated to learn and use. In
terms of command syntax and
effect the editors are essen­
tially identical, and this com­
mand summary applies to both.

The summary is meant as a
quick reference for users
already acquainted with ~ or
~. Fuller explanations of the
editors are available in the
documents Edit: A Tutorial (a
self-teaching introduction) and
the £A Reference Manual (the
comprehensive reference source
for both ~ and ~). Both of
these writeups are available in
the Computing Services Library.

In the examples included
with the summary, commands and
text entered by the user are
printed in boldface to distin­
guish them from responses
printed by the computer.

~ Editor Buffer

In order to perform its
tasks the editor sets aside a
temporary work space, called a
buffer, separate from the
user's permanent file. Before
starting to work on an existing
file the editor makes a copy of
it in the buffer, leaving the
original untouched. All edit­
ing changes are made to the
buffer copy, wnich must then be
written back to the permanent
file in order update the old
version. The buffer disappears
at the end of the editing ses­
sion.

Editing: Command And ~ ~
~

During an editing session
there are two usual modes of
operation: command mode and
.t.e.At. .i.n.ru.J..t. mode. (This disre­
gards, for the moment, ~ and
visual modes, discussed below.)
In command mode, the editor
issues a colon prompt (:) to
show that it is ready to accept
and execute a command. In text
input mode, on the other hand,
there is no prompt and the edi­
tor merely accepts text to be
added to the buffer. Text
input mode is initiated by the
commands append, insert, and
change, and is terminated by
typing a period as the first
and only character on a line.

Ex/Edit Command Summary (Version 2.0)

Line Numbers and Command Syntax

The editor keeps track of
lines of text in the buffer by
numbering them consecutively
starting with I and renumbering
as lines are added or deleted.
At any given time the editor is
positioned at one of these
lines; this position is called
the current~. Generally,
commands that change the con­
tents of the buffer print the
new current line at the end of
their execution.

Most commands can be pre­
ceded by one or two line-number
addresses which indicate the
lines to be affected. If one
number is given the command
operates on that line only; if
two, on an inclusive range of
lines. Commands that can take
line-number prefixes also
assume default prefixes if none
ar given. The default assumed
by each command is designed to
make it convenient to use in
many instances without any
line-number prefix. For the
most part, a command used with­
out a prefix operates on the
current line, though exceptions
to this rule should be noted.
The ~ command by itself,
for instance, causes one line,
the current line, to be printed
at the terminal. The summary
shows the number of line
addresses that can be prefixed
to each command as well as the
defaults assumed if they are
omitted. For example, (.,.)
means that up to 2 line­
numbers may be given, and that
if none is given the command
operates on the current line.
(In the address prefix nota­
tion, "." stands for the
current line and "$" stands for
the last line of the buffer.)
If no such notation appears, no
line-number prefix may be used.
Some commands take trailing
information; only the more
important instances of this are
mentioned in the summary.

.owm and Visual ~

Besides command and text
input modes, ~ and ~ pro­
vide on some CRT terminals
other modes of editing, ~
and visual. In these modes the
cursor can be moved to indivi­
dual words or characters in a
line. The commands then given
are very different from the
standard editor commands; most
do not appear on the screen

E-155

when typed. An Introduction
Display Editing ~ Yi pr
vides a full discussio

Special Characters

Some characters take on sp
cial meanings when used
context searches and in pa
terns given to the substitu
command. For~, these a
"An and "$", meaning the begi
ning and end of a line, respe
tively. ~ has the followi
additional special character
• $ * []
To use one of the special cha
acters as its Simple graph
representation rather than wi
its speCial meaning, precede
by a backslash (\). The bac
slash always has a speci
meaning.

Name

(.)append

(.,.)change

Abbr Description

a Begins text input mode,
adding lines to the buffer
after the line specified.
Appending continues until
"." is typed alone at the
beginning of a new line,
followed by a carriage
return. fa places lines
at the beginning of the
buffer.

c Deletes indicated line(s)
and initiates text input
mode to replace them with
new text which follows.
New text is terminated the
same way as with append.

(.,.)copy AddL co Places a copy of the
specified lines after the
line indicated by AddL.
The example places a copy
of lines 8 through 12,
inclusive, after line 25.

(.,.)delete

edit ~
edit! .f.i.l.e

file ~

d

e
el

f

Removes lines from the
buffer and prints the
current line after the
deletion.

Clears the editor buffer
and then. copies into it
the named .fi.l.f:., which
becomes the current file.
This is a way of shifting
to a different file with­
out leaving the ~ditor •.
The editor issues a
warning message if this
command is used before
saving changes made to the
file already in the
buffer; using the form e!
overrides this protective
mechanism.

If followed by a name,
renames the current file
to name. If used without
~, prints the name of
the current file.

Example

:a
Three lines of
text are added to
the buffer after
the current line.

· ·

:5,6c
Lines 5 and 6 are
deleted and re­
placed by these
three lines.
• · ·
:8,12co 25
Last line copied
is printed

:13,l5d
New current line
is printed
• ·
:e chlO
No write since
last chang~
:el chlO
"chlO" 3 lines, 62
characters
· ·

:f ch9
"ch9" [Modified] 3
lines •••
:f
"ch9" [Modified] 3
lines ••• . .

,

Name

(l,$)global
(l,$}global!

(.) insert

(.,.+l)join

(.,.)list

Abbr Description

g global/pattern/commands
g! Searches the entire buffer
or (unless a smaller range is
v specified by line-number

prefixes) and executes
commands on every line
with an expression
matching pattern. The
second form, abbreviated
either gl or v, executes
commands on lines that dQ
~ contain the expression
pattern.

i Inserts new linei of text
immediately before the
specified line. Differs
trom append only in that
text is placed before,
rather than after, the
indicated line. In other
words, Ii has the same
effect as 0a.

j

1

Join lines together, ad­
justing white space
(spaces and tabs) as
necessary. '

Prints lines in a more
unambiguous way than the
print command does. The
end of a line, for exam­
ple, is marke~ with a "$",
and tabs printed as "-I".

(.,.)move ~ m Moves the specified lines
to a position after the
line indicated by ~.

(.,.)number nu

(.) open o

Prints each line preceded
by its buffer line number.

Too involved to discuss
here, but if you enter
open mode accidentally,
press the ESC key followed
by q to get back into
normal editor command
mode. Edit is designed to
prevent accidental use of
the open command.

E-157

Example

:g/nonsense/d . .

:li
These lines of
text will be added
prior to line 1.

:2,5j
Resulting line is
printed . .
: 91
This is line 9$

:12,15m 25
New current line
is printed

:nu
13 This is line

13
:

Name

preserve

(.,.)print

quit
quit!

(.)read ~

recover .f..il.e.

Abbr Description

pre Saves a copy of the
current buffer contents as
though the system had just
crashed. This is for use
in an emergency when a
write command has failed
and you don't know how
else to save your work.
Seek assistance from a
consultant as soon as
possible after saving a
file with the preserve
command, because the file
is saved for only one
week.

p

q
q!

r

Prints the text of
line(s).

Ends the editing session.
You will receive a warning
if you have changed the
buffer since last writing
its contents to the file.
In this event you must
either type w to write, or
type q! to exit from the
editor without saving your
changes.

Places a copy of ~ in
the buffer after the spe­
cified line. Address 0 is
permissable and causes the
copy of ~ to be placed
at the beginning of the
buffer. The ~ command
does not erase any text
already in the buffer. If
no line number is speci­
fied, .f..il.e. is placed after
the current line.

rec Retrieves a copy of the
editor buffer after a sys­
tem crash, editor crash,
phone line disconnection,
or preserve command.

E-158

Example

:preserve
File preserved.

:+2,+3p
The second and
third lines after
the curent line . .
:q
No write since
last change
: q!
%

:0r newfile
nnewfile n 5 lines,
86 characters

,

Name

(.,.)substi­
tute

undo

Abbr

s

u

(l,$}write Lile w
(l,$)write! ~ wI

(.)z count z

Description

substitute/pattern/replace­
ment
substitute/pattern/replace­
ment/gc
Replaces the first occur­
rence of pattern on a line
with replacement. In­
cluding a g after the
command changes all occur­
rences of pattern on the
line. The c option allows
the user to confirm each
substitute before it is
made; see the manual for
details.

Reverses the changes made
in the buffer by the last
buffer-editing command.
Note that this example
contains a notificaion
about the number of lines
affected.

Copies- data from the buf­
fer onto a permanent file.
If no ~ is named, the
current filename is used.
The file is automatically
created if it does not yet
exist. A response con­
taining the number of
lines and characters in
the file indicates that
the write has been com­
pleted successfully. The
editor's built-in protec­
tions against overwriting
existing files will in
some circumstances inhibit
a write. The form w!
forces the write, con­
firming that an existing
file is to be overwritten.

Prints a screen full of
text starting with the
line indicated: or, if
count is specified, prints
that number of lines.
Variants of the z command
are described in the
manual.

E-159

Example

:3p
Line 3 contains a
misstake
:s/misstake/mistake/
Line 3 contains a
mistake

:1,15d
15 lines deleted
new line number 1
is printed
:u
15 more lines in·
file •••
old line number 1
is printed . .
:w
"file7" 64 lines,
1122 characters
:w fileS
"fileS" File exists

•••
:wl fileS
"fileS" 64 lines,
1122 characters

Name

!command

control-d

(.+1) <cr>

Ipatterni

II

?pattern?

??

Abbr Description

Executes the remainder of
the line after ! as a UNIX
command. The buffer is
unchanged by this, and
control is returned to the
editor when the execution
of command is complete.

Prints the next scroll of
text, normally half of a
screen. See the manual
for details of the scroll
option.

An address alone followed
by a carriage return
causes the line to be
printed. A carriage re­
turn by itself prints the
line following the current
line.

Searches for the next line
in which pattern occurs
and prints it.

Repeats the most recent
search.

Searches in the reverse
direction for pattern.

Repeats the most recent
search, moving in the
reverse directin through
the buffer.

E-168

Example

: !date
Fri Jun 9 12:15:11
PDT 1978

. .

: <cr>
the line after the
current line
:

:/This patternl
This pattern next
occurs here.
:

:11
This pattern also
occurs here.
:

~ Reguest: .~

ADDENPUM lQ ~ -~
REFERENCE MANUAL

Version 1.1, Mod 4

The request .~ ~ will print unnumbered headings.
Th1s is preterable to .an ~ in a number of ways.

Parameters changed ~ .$R

Because of the request above, there are now three
parameters to .$R. The first is the section title, the
second is the section number, and the third is the sec­
t10n depth.

Correction ~ .an Section

It is nQt legal to perform a .At request on the
number registers 1n($~ through ~($~.

B-161

-~ REFERENCE MANUAL

Release .l..l/li

This document describes in extremely terse form the
features of the -~ macro package for version seven
NROFF/TROFF. Some familiarity is assumed with those pro­
grams, specifically, the reader should understand breaks,
fonts, po~ntsizes, the use and definition of number regis­
ters and strings, how to define macros, and scaling factors
for ens, po~nts, ~'s (vertical line spaces), etc.

For a more casual introduction to text processing using
NROFF, reter to the document Writing Papers xith NROFF using
-~ ..

There are a number of macro parameters that may be
adjusted. Fonts may be set to a font number only. In NROFF
font 8 is underlined, and is set in bold font in TROFF
(although font 3, bold in TROFF, is not underlined in
NROFF). Font 0 is no font change; the font of the surround­
ing text is used instead. Notice that fonts 0 and 8 are
"pseudo-fonts"; that is, they are Simulated by the macros.
Th~s means that a~though it is legal to set a font register
to zero or eight, it is not legal to use the escape charac­
ter form, such as:

Al~ distances are in basic units, so it is nearly
always necessary to use a scaling factor. For example, the
request to set the paragraph indent to eight one-en spaces
is:

+NROFF and TROFF are Trademarks of Bell Laboratories.

£-162
-M~ REFERENCE MANUAL 1

-M~ REFERENCE MANUAL

.nr pi 8n

ana not

.nr pi 8

wnich would set the paragraph indent to eight basic units,
or about 0.02 inch. Default parameter values are given in
brackets in the remainder of this document.

Registers and strings of the form $A may be used in
expreSS1Uns but snould not be changed. Macros of the form
$x perform some function (as described) and may be redefined
to change this function. This may be a sensitive operation;
look at the bOdy of the original macro before changing it.

Ali names in -me follow a rigid naming convention. The
user may detine number registers, strings, and macros, pro­
vided that s/he uses single character upper case names or
double character names consisting of letters and digits,
witn at least one upper case letter. In no case should spe­
cial characters be used in user-defined names.

On daisy wnee~ type printers in twelve pitch, the -LAl
flag can be stated to make lines default to one eighth inch
(tne norma~ spacing for a new11ne in twelve-pitch). This is
normally too small for easy readability, so the default is
to space one s1xth inch.

Th1s documentation was NROFF'ed on May 9, 1983 and
applies to version 1.1/20 of the -me macros.

~. Paragraphing

These macros are used to begin paragraphs. The stan­
dard paragrapn macro is .~; the others are all variants to
be usea for special purposes.

The first call to one of the paragraphing macros
detined in this section or the .Ah macro (defined in the
next session) initializes the macro processor. After 1n1-
t1a11zation it is not possible to use any of the following
requests: .~, .lQ, .th, or .~. Also, the effects of
changing parameters which will have a global effect on the
format of the page (notably page length and header and
footer margins) are not well defined and should be avoided.

and underlining are turned off if they were
on, the font is set to n(~ [1] the type
size is set to n(DD [10p], and a n(~ space
is inserted before the paragraph [0.35v in
TROFF, Iv or 0.5v in NROFF depending on

E-163

-ME REFERENCE MANUAL

device reSolution]. The indent is reset to
n($.i [8] plusn(~ [8] unless the paragraph
is inside a display. (see .ha). At least
the first two lines of the paragraph are kept
together on a page.

units ot indent. This is the standard para­
graph macro.

body of the following paragraph is indented ~
spaces (or n(il [5n] spaces if ~ is not
specified) more than a non-indented paragraph
(such as with .~) is. The title % is
exdented (opposite of indented). The result
is a paragraph with an even left edge and %
printed in the margin. Any spaces in % must
be unpaddable.

Numbering is reset after a .~, .RR, or .an.
The current paragraph number is in n($R •

.2.. Section Headings

Numbered sections are similiar to paragraphs except
that a sect10n number is automatically generated for each
one. The section numbers are ot the form l.2..J.. The depth
of the section is the count of numbers (separated by decimal
pOints) in the section number.

Unnumbered section heaaings are similar, except that no
number is attached to the heading.

missing the current depth (maintained in the
number register n($a) is used. The values
of the individual parts of the section number
are maintained in n($~ through n($~. There
is a n(u [Iv] space before the section. %
is printed as a section title in font n(~
[8] and size n(~ [18p]. The "name" of the
section may be accessed vian~ If n(ai
is non-zero, the base indent is set to n(ai
times the section depth, and the section
title is exdented. (See .ha.) Also, an addi­
tional indent of n(aQ [8] is added to the
section title (but not to the body of the
section). The font is then set to the para­
graph font, so that more information may
occur on the line with the section number and
title. .Ah insures that there is enough room

B-164

-ME REFERENCE MANUAL

to print the section head plus the beginning
of a paragraph (about 3 lines total). If A
through L are specified, the section number
is set to that number rather than incremented
automat1cally. If any of A through L are a
hyphen that number is not reset. If ~ is a
single underscore ("_") then the section
depth and numbering is reset, but the base
indent is not reset and nothing is printed
out. This is useful to automatically coordi­
nate section numbers with chapter numbers.

the number and title, and do not increment
the section number at level~. This has the
effect of starting a new paragraph at level
~.

printed w1th the same rules for spacing,
font, etc., as for .~.

get fancier headings. ~ is the title passed
on the .~ or .Yh line: B is the section
number for this section, and H is the depth
ot this section. These parameters are not
always present; in particular, .~ passes all
three, .Yh passes only the first, and .RA
passes three, but the first two are null
strings. Care should be taken if this macro
is redefined; it is quite complex and subtle.

every call to .$R. It is normally undefined,
but may be used to automatically put every
section title into the table of contents or
for some similiar function. ~ is the section
title for the section title which was just
printed, B is the section number, and H is
the section depth.

section. May be defined to (for example)
give variable spacing before sections. These
macros are called from .$~, so if you rede­
fine that macro you may lose this feature.

~. Headers And Footers

Headers and footers are put at the top and bottom of
every page automat1cally. They are set in font n(tL [3]
ana size n(~ [lOp]. Each of the definitions apply as ot

E-165

-ME REFERENCE MANUAL

the ~ page. Three-part titles must be quoted if there
are two blanks adjacent anywhere in the title or more than
e~ght blanks total.

The spacing of headers and fo·oters are controlled by
three number registers. n(hm [4v] is the distance from the
top ot the page to the top of the header, n(fm [3v] is the
distance from the bottom of the page to the bottom of the
footer, ntt.m [7v] is the distance from the top of the page
to the top ot the text, and n(bm [6v] is the distance from
the bottom of the page to the bottom of the text (nominal).
The macros .ml, .~, .ml, and .m! are also supplied for com­
pat~bility w~th ROFF documents.

the top of every page.

every page.

every even-numbered page.

every odd-numbered page.

every even-numbered page.

every odd-numbered page.

page.

the header [4v].

first line of text [2v].

and the footer [2v].

tom of the page [4v).

page. Useful for forcing out footnotes, but
other than that hardly every used. Must be
followed by a • .b.g, or the end of input.

£-166

/

-ME REFERENCE MANUAL

.i. Displays

May be redefined to provide fancy (e.g.,
multi-line) headers, but doing so loses the
function ot the .M, .~, . .iill, • .Q.h, • .e.f, and
.Qf requests, as well as the chapter-style
title feature of .+~.

the top of each page (after outputing the
header, initial saved floating keeps, etc.) 1
in other words, this macro is called immedi­
ately before printing text on a page. It can
be used for column headings and the like •

All displays except centered blocks and block quotes
are preceeded and followed by an extra n(ha [same as n(ua]
space. Quote spacing is stored in a separate register, cen­
tered blocks have no default initial or trailing space. The
verticai spacing of all displays except quotes and centered
blocks is stored in register n($B instead of n($L.

unfilled text. If ~ is ~, the list will be
filled. If m [Xl is X the list is indented
by n(hi [4n], if H the list is indented to
the left margin; if L the list is left justi­
fied with respect to the text (different from
H only if the base indent (stored in n{$~
and set with .ha) is not zero) 1 and if ~ the
list is centered on a line-by-line basis.
The list is set in font n{gf [9]. Must be
matched by a .)~. This macro is almost like
.(h except that no attempt is made to keep
the display on one page.

filled, moved in from the text on both sides
by n(~ [4n], preceeded and followed by
n(g,a [same as n(ha] space, and are set in
point size n(gp [one pOint smaller than sur­
rounding text].

where the text of a keep is kept together on
one page if possible (keeps are useful for

E-167

-ME REFERENCE MANUAL

.5.. Annotations

tables and figures which should not be broken
over a page). If the block will not fit on
the current page a new page is begun, unless
that would leave more than n(ht [0] white
space at the bottom of the text. If n(ht is
zero, the threshold feature is turned off.
Blocks are not filled unless ~ is ~, when
they are filled. The block will be left­
justified if m is L, indented by n(h! [4n]
if m is I or absent, centered (line-for-line)
if m is~, and left justified to the margin
(not to the base indent) if m is M. The
block is set in font n(~ [0].

the keep is floated to the bottom of the page
or the top of the next page. Therefore, its
position relative to the text changes. The
float1ng keep is preceeded and followed by
nCz.a [Iv] space. Also, it defaults to mode
M.

tered as a block, rather than on a line-by­
line basis as with .(~~. This call may be
nestea ins1de keeps •

keep is saved for output later with .~, in a
manner similar to footnotes.

register n($d and the associated string _
are incremented if _has been referenced •

. (d is printed and truncated. This might be
used at the end of each chapter.

floated to the bottom of the page and set in
font n(Lf [1] and size n(~ rap]. Each
entry is preceeded by n(ll [0.2v] space, is
indented n(!i [3n] on the first line, and is
indentea n(fu [0] from the right margin.

E-168

-ME REFERENCE MANUAL

Footnotes line up underneath two columned
output. If the text of the footnote will not
all fit on one page it will be carried over
to the next page.

the assoc1ated string _are incremented if
they have been referenced.

This macro may be redefined to give other
size lines or other types of separators.
Currently it draws a 1.Si line.

in the index X [X] until called up with .XR.
Each entry is preceeded by a n(xa [0.2v)
space. Each entry is "undented n by n(n
[0.Si); this register tells how far the page
number extends into the right margin.

with a row of dots with A [null] right justi­
fied on the last line (such as for an
author's name), followed by P [n%]. If A is
specified, ~ must be specified; n% can be
used to print the current page number. If ~
is an underscore, no page number and no row
of dots are printed.

the font, size, and so forth in effect at the
time it is printed, rather than at the time
it is collected.

~. Columned Output

is set to +~ [4n, 0.Si in ACM mode] (saved in
n($a). The column width, calculated to fill
the single column line length with both
columns, is stored in n($~. The current
column is in n($~. You can test register
n($m [1] to see if you are in single column
or double column mode. Actually, the request
enters N [2] columned output.

it begins a new column on a new page only if
necessary, rather than forcing a whole new
page if there is another column left on the

E-169

-ME REFERENCE MANUAL

current page.

2. Fonts·~ Sizes

spacing is set proportionally. The ratio of
line spacing to pOintsize is stored in n($L.
The ratio used internally by displays and
annotations is stored in n($.R(although this
is not used by .~).

vious font. To append
requests, use X = &. If
change to roman font.

different font
no parameters,

font. If no parameters, change to italic
font. Underlines in NROFF.

ous font. It no parameters, switch to bold
font. In NROFF, underlines.

ous font. It no parameters, switch to bold
font. .~ differs from .~ in that .Lh does
not underline in NROFF.

underlining, as opposed to the .~ request,
which changes to "underline font" (usually
italics in TROFF). It wonlt work right if H
is spread or broken (including hyphenated).
In other words, it is safe in nofill mode
only.

surrounds H with double quote marks ('nl),
but in TROFF uses directed quotes.

ally, sets Ii in italic and overstrikes once.
Underlines in NROFF. It won't work right if
H is spread or broken (including hyphenated).
In other words, it is safe in nofill mode
only.

in NROFF. It won't work right if H is spread
or broken (including hyphenated). . In other
words~ it is safe in nofill mode only.

8-171

-ME REFERENCE MANUAL

page if not enough room on this page.
Equivalent to a .AQ B inside a block.

Equivalent to .~ % ~.

% l.

headers and footers. This is used to leave
space for a full-page diagram which is pro­
duced externally and pasted in later. To get
a partiai-page paste-in display, say .~ B,
where B is the amount of space to leave, this
space will be output immediately if there is
room, and will otherwise be output at the top
of the next page. However, be warned: if B
is greater than the amount of available space
on an empty page, no space will ever be out­
put.

m is ~ or omitted, indented n(hi [4nJ if m
is ~, and left justified if m is L. ~ is a
title printed on the right margin next to the
equation. See Typesetting Mathematics
~'a Guide by Brian W. Kernighan and
Lorinda L. Cherry.

continued by immediately following with
another .~, the text of which can be cen­
tered aiong with this one. Otherwise, the
equation is printed, always on one page, with
n(~ [~.5v in TROFF, Iv in NROFFJ space
above and below it.

kept on one page if possible. If you have a

B-111

-ME REFERENCE MANUAL

large table which will not fit on one page,
use h = R and follow the header part (to be
printed on every page of the table) with a
.~. See ~ - A Program ~ Format Tables by
M. E. Lesk.

table.

float, in fact, it is not even guaranteed to
stay on one page if you use requests such as
.~ intermixed with the text of the table.
If you want it to float (or if you use
requests inside the table), surround the
entlre table (including the .xa and .~
requests) with the requests .(z and .)z.

li. Miscellaneous

every 0.8i in NROFF.

n($~) • All paragraphs, sections, and
displays come out indented by this amount.
Titles and footnotes are unaffected. The.~
request performs a • .b.a request if n(n [0]
is not zero, and sets the base indent to
n(n*n($11..

differs from.~ because it only affects the
current environment.

[6.0i]. This should not be used after output
has begun, and particularly not in two­
columned output. The current line length is
storeo in n($~.

page. This is useful inside floating keeps
to differentiate between the text and the
figure.

/~lib/~local.me) which is intended to be
a set of locally defined macros. These mac­
ros should all be of the form .*X, where X is
any letter (upper or lower case) or digit.

E-172

-ME REFERENCE MANUAL

ll. Standard Papers

page can occur, and headers and footers are
supressed. Also, the page number is not
incremented for this page.

acceptable for a doctoral dissertation at
Berkeley. It double spaces, defines the
header to be a single page number, and
changes the margins to be 1.5 inch on the
left and one inch on the top. .++ and .+~
should be used with it. This macro must be
stated before initialization, that is, before
the first call of a paragraphing macro or
.~.

which we are entering. The section type is
defined by m. ~ means that we are entering
the chapter portion of the paper, A means
that we are entering the appendix portion of
the paper, ~ means that the material follow­
ing should be the preliminary portion
(abstract, table of contents, etc.) portion
of the paper, Aa means that we are entering
the abstract (numbered independently from 1
in Arabic numerals), and ~ means that we are
entering the bibliographic portion at the end
of the paper. Also, the variants ~ and BA
are allowed, which specify renumbering of
pages from one at the beginning of each
chapter or appenaix, respectively. The li
parameter defines the new header. If there
are any spaces in it, the entire header must
be quoted. If you want the header to have
the chapter number in it, Use the string
n{Qh. For example, to number appendixes
A.~ etc., type .++ BA "'n(Qh.%'. Each
section (chapter, appendix, etc.) should be
preceeded by the .+~ request. It should be
ment~oned that it is easier when using TROFF
to put the front material at the end of the
paper, so that the table of contents can be
cOllected and output; this material can then
be physically moved to the beginning of the
paper.

number is maintained in n(Qh. This register
is incremented every time .+~ is called with
a parameter. The title and chapter number

E-173

-ME REFERENCE MANUAL 13

are printed by .$~. The header is moved to
the footer on the first page of each chapter.
If ~ is omitted, .$~ is not called; this is
useful for doing your own "title page" at the
beginning of papers without a title page
proper. .$~ calls .$~ as a hook so that
chapter titles can be inserted into a table
of contents automat.lcally.

This macro can be redefined to your liking.
It is defined by default to be acceptable for
a PhD thesis at Berkeley. This macro calls
$~, which can be defined to make index
entries, or whatever.

undefined, but can be used to automatically
insert index entries, or whatever. K is a
keyword, either nChapter n or nAppendix n
(depending on the .++ mode); H is the chapter
or appenaix number, and ~ is the chapter or
appendix title.

environment for photo-ready papers as used by
the ACM. This format is 25% larger, and has
no headers or footers. The author1s name A
is printed at the bottom of the page (but 6ff
the part which will be printed in the confer­
ence proceedings), together with the current
page number and the total number of pages H.
Additionally, this macro loads the file
/~lib/me/a&m.~, which may later be aug­
mented with other macros useful for print.lng
papers for ACM conferences. It should be
noted that this macro will not work correctly
in TROFF, since it sets the page length wider
than the physical width of the photo­
typesetter roll.

li. Predefined Strings

Footnote number, actually n($f... This
macro is incremented after each call to .)L.

Delayed text number. Actually [n($.d].

Superscript.
ment and
POSSible,
character

This string gives upward move-
a change to a smaller point size if
otherwise it gives the left bracket
('[I).

8-174

-ME REFERENCE MANUAL

m.Q.

t.si

19

rg

Unsuperscript. Inverse to ~ For example,
to produce a superscript you might type
xlL which will produce x[Z].

Subscript. Defaults to '<' if half-carriage
motion not possible.

Inverse to ~

The day of the week, as a word.

The month, as a word.

Today's date, directly printable.· The date
is ot the form May 9, 1983. Other forms of
the date can be used by using n(~ (the day
of the month; for example, 9) ,m.Q. (as
noted above) or n(mQ (the same, but as an
ordinal number; for example, May is 5), and
n{~ (the last two digits of the current
year) •

Lett quote marks. Double quote in NROFF.

Right quote.

3/4 em dash in TROFF; two hyphens in NROFF.

~. Special Characters And Marks

There are a number of special characters and diacriti­
cal marks (such as accents) available through -me. To
ret~rence these characters, you must call the macro .~ to
detine the charac~ers before using them.

marks, as described in the remainder of this
section. This macro must be stated before
initialization.

The special characters available are listed below.
Name Usage Example
Acu~e accent a!
Grave accent e e
Umlat
Tilde
Caret
Cedilla
Czech
Circle
There exists
For all

u
n
e
c
e
A

u
fi ,..
e
~
e
A

EXISTS
FORALL

E-175

WRITING PAPERS ~ NROFF USING -a&

This document describes the text processing facilities
available on the UNIX+ operating system via NROFF+ and the
-me macro package. It is assumed that the reader already is
generally familiar with the UNIX operating system and a text
editor such as.ex. This is intended to be a casual intro­
duct~on, and as such not all material is covered. In par­
t~cular, many variations and additional features of the -me
macro package are not explained. For a complete discussion
ot this and other issues, see ~ -m& Reference Manual and
~ NROFF/TROFF Reference Manual.

NROFF, a computer program that runs on the UNIX operat­
ing system, reads an input file prepared by the user and
ou~puts a formatted paper suitable for publication or fram­
ing. The input consists of~, or words to be printed,
ana requests, which give instructions to the NROFF program
telling how to format the printed copy.

Sect~on I describes the basics of text processing.
Sect~on 2 describes the basic requests. Section 3 intro­
duces displays. Annotations, such as footnotes, are handled
in sec~~on 4. The more complex requests which are not dis­
cussea in section 2 are covered in section 5. Finally, sec­
t~on 6 discusses things you will need to know if you want to
typeset documents. If you are a novice, you probably won't
want to read beyond section 4 until you have tried some of
the basic features out.

When you have your raw text ready, call the NROFF for­
matter by typing as a request to the UNIX shell:

±UNIX, NROFF, and TROFF are Trademarks of Bell Labora­
tories

USING NROFF AND -ME £-176

USING NROFF AND -ME

nrorf -me -T~ files

where ~ describes the type of terminal you are outputting
to. Common values are ~ for a DTC 300s (daisy-wheel type)
printer ana ~ for the line printer. If the -~ flag is
omitted, a "lowest common denominator" terminal is assumed;
this is good for previewing output on most terminals. A
complete description of options to the NROFF command can be
fauna in ~ NROFF/TROFF Reference Manual.

The word argument is used in this manual
or number wnich appears on the same line as a
moaifies the mean~ng of that request. For
request

.sp

spaces one l~ne, but

.sp 4

to mean a word
request which
example, the

spaces four lines. The number ~
request wnich says to space
Arguments are separated from the
by spaces.

is an argument to the .~
four lines instead of one.
request and from each other

~. Basics Qf ~ Processing

The primary function of NROFF is to collect words
from input lines, fill output lines with those words,
justify the right hand margin by inserting extra spaces
in the line, and output the result. For example, the
input:

Now is the t~me
for all good men
to come to the aid
at their party.
Four score and seven
years ago, •••

w~ll be read, packed onto output lines, and justified to
proauce:

Now is the time for all good men to come to the
aid at their party. Four score and seven years
ago, •••

Sometimes you may want to start a new output line even
though the line you are on is not yet full; for example,
at the end of a paragraph. To do this you can cause a
break, wnich starts a new output line. Some requests
cause a break automat~cally~ as do blank input lines and

E-177

US!NG NROFF AND -ME

input lines beginning with a space.

Not all input lines are text to be formatted. Some
ot the input lines are reguests which describe how to
format the text. Requests always have a period or an
apostrophe {"I"} as the first character of the input
11ne.

The text formatter also does more complex things,
such as automatically numbering pages, skipping over page
folds, pu~ting footnotes in the correct place, and so
forth.

I can offer you a few hints for preparing text for
input to NROFF. First, keep the input lines short.
Short input lines are easier to edit, and NROFF will pack
words onto longer lines for you anyhow. In keeping with
this, it is helpful to begin a new line after every
periou, comma, or phrase, since common corrections are to
add or delete sentences or phrases. Second, do not put
spaces at the end of lines, since this can sometimes con­
fuse the NROFF processor. Third, do not hyphenate words
at the end at lines (except words that should have
hyphens in them, such as "mother-in-law") 1 NROFF is smart
enough to hyphenate words for you as needed, but is not
smart enough to take hyphens out and join a word back
together. Also, words such as "mother-in-law" should not
be broken over a line, since th~n you will get a space
where not wanted, such as "mother- in-law".

2. Basic Reguests

z.~. Paragraphs

Paragraphs are begun by using the .~ request.
For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, •••

proauces a blank line followed by an indented first
line. The result is:

Now is the time for all good men to come
to the aid of their party. Four score and
seven years ago, •••

Notice that the sentences of the paragraphs ~
n.Q.t begin with a space, since blank lines and lines
begining with spaces cause a break. For example, if I

£-178

US1NG NROFF AND -ME

had typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, •••

The output would be:

Now is the time for all good men
to come to the aid of their party. Four

score and seven years ago, •••.

A new line begins after the word "men" because the
second line began with a space character.

There are many fancier types of paragraphs, which
w111 be described later.

2.2. Headers And Footers

Arbitrary headers and footers can be put at the
top and bottom of every page. Two requests of the
form .~ title and .LQ title define the titles to put
at the head and the foot of every page, respectively.
The titles are called three-~ titles, that is,
there is a left-justified part, a centered part, and a
right-justified part. To separate these three parts
the first character of title (whatever it may be) is
usee as a delimiter. Any character may be used, but
backslash and double quote marks should be avoided.
The percent sign is replaced by the current page
number whenever found in the title. For example, the
input:

• he ,'%',
.fo 'Jane Jones I 'My Book'

results in the page number centered at the top of each
page, "Jane Jones" in the lower left corner, and "My
BOOK" in the lower right corner.

2.~. Double Spacing

NROFF will double space output text automatically

if you use the request .l£~, as is done in this sec-

tion. You can revert to single spaced mode by typing

.l£ ~.

E-179

2..J.. b.sLe. Layout

A number of requests allow you to change the way
the printed copy looks, sometimes called the layout of
the output page. Most of these requests adjust the
placing of "white space" (blank lines or spaces). In
these explanat10ns, characters in italics should be
replaced with values you wish to use1 bold characters
represent characters which should actually be typed.

The .hR request starts a new page.

The request .~ N leaves N lines of blank space.
N can be omitted (meaning skip a single line) or can
be of the form Ni (for N inches) or ~ (for N centime­
ters). For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the
line "My thoughts on the subject", followed by a sin­
gle blanK line.

The .in +N request changes the amount of white
space on the left of the page (the indent). The argu­
ment N can be of the form +.ti (meaning leave .N spaces
more than you are already leaving), -N (meaning leave
less than you do now), or just N (meaning leave
exactly N spaces). .ti can be of the form.Hi or ~
also. For example, the input:

init1al text
.in 5
some text
.in +1i
more text
.in -2c
final text

prOduces "some text" indented exactly five spaces from
the lett margin, "more text" indented five spaces plus
one inch from the left margin (fifteen spaces on a
pica typewriter), and "final text" indented five
spaces plus one inch minus two centimeters from the
margin. That is, the output is:

in1tial text
some text

more text
final text

B-18'

The .~ +H (temporary indent)
like .in +H when the indent should
only, after which it should revert
inaent. For example, the input:

.in Ii

.ti 0

request is used
apply to one line
to the previous

Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

proauces:
Ware, James R. The Best of Confucius, Halcyon House,

1950. An excellent book containing transla­
tions of most of Confucius' most delightful
sayings. A definite must for anyone
interested in the early foundations of
Chinese philosophy.

Text lines can be centered by using the .~
request. The line after the .~ is centered (horizon­
taily) on the page. To center more than one line, use
.~ H (wnere N is the number of lines to center), fol­
lowed by the H lines. If you want to center many
lines but don't want to count them, type:

.ce 1000
lines to center
.ce 0

The .~ ~ request tells NROFF to center zero more
l~nes, in other words, stop centering.

All of these requests cause a break: that is,
they always start a new line. If you want to start a
new line without performing any other action, use .~.

z.~. Underlining

Text can be underlined using the .~ request.
The .~ request causes the next input line to be
unaeri~ned when output. You can underline multiple
lines by stating a count of input lines to underline,
followed by those lines (as with the .~ request).
For example, the input:

.ul 2
Notice that these two input lines
are underlined.

£-181

USING NROFF AND -ME

Wlll underline those eight words in NROFF. (In TROFF
they wlll be set in italics.)

J.. Displays

Displays are sections of text to be set off from the
bOdy of the paper. Major quotes, tables, and figures are
types of displays, as are all the examples used in this
document. All displays except centered blocks are output
single spacea.

J..~. Major Quotes

Major quotes are quotes which are several lines
long, and hence are set in from the rest of the text
wl~hout quote marks arouna them. These can be gen­
erated using the commmands .(g and .)g to surround the
quote. For example, the input:

As Weizenbaum pOints out:
• (q
It is said that to explain is to explain away.
ThlS maxim is nowhere so well fulfilled
as in the areas of computer programming, •••
•) q

generates as output:

As Weizenbaum pOints out:

It is said that to explain is to explain away.
ThlS maxim is nowhere so well fulfilled as in
the areas of computer programming, •••

J..2.. Lists

A ~ is an indented, single spaced, unfilled
display. Lists should be used when the material to be
printed should not be filled and justified like normal
text, such as columns of figures or the examples used
in this paper. Lists are surrounded by the requests
• (~ and .)~. For example, type:

Alternatives to avoid deadlock are:
• (I
Lock in a specified order
Detec~ deadlock and back out one process
Lock all resources needed before proceeding
.) I

will produce:
Alternatives to avoid deadlock are:

E-182

USLNG NROFF AND -ME

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

1.1. Keeps

A ~ is a
single page if
would use a keep
from lists in
boundary wnereas

display of lines which are kept on a
possible. An example of where you

might be a diagram. Keeps differ
that lists may be broken over a page
keeps will not.

Blocks are the basic kind of keep. They begin
W1~n tne request .(h and end with the request .)h. If
there is not room on the current page for everything
in the block, a new page is begun. This has the
unpleasant etfect of leaving blank space at the bottom
of the page. When this is not appropriate, you can
use the alternat1ve, called floating keeps.

Floating keeps move relative to the text. Hence,
they are good for things which will be referred to by
name, such as "See figure 3". A floating keep will
appear at the bottom of the current page if it will
fit: otherw1se, it will appear at the top of the next
page. Float1ng keeps begin with the line .(z and end
with the line .)z. For an example of a floating keep,
see figure 1. The.hl request is used to draw a hor­
izontal line so that the figure stands out from the
text.

l.~. Fancier Displays

Keeps and lists are normally collected in nofill
moae, so that they are good for tables and such. If

• (z
.hl
Text of keep to be floated •
• sp
.ce
Figure 1. Example of a Floating Keep •
• hl
•) z

Figure 1. Example of a Floating Keep.

E-183

USL~u NROFF AND -ME

you want a display in fill mode (for text), type .{~ ~
(Throughout this section, comments applied to .{~ also
apply to .(h and .(z). This kind of display will be
inaented from both margins. For example, the input:

.(1 F
Ana now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.) 1

will be output as:

And now boys and girls, a newer, bigger,
better toy than ever before! Be the first on
your block to have your own computer! Yes
kids, you too can have one of these modern
data processing devices. You too can produce
beaUlafully formatted papers without even bat­
t~ng, an eye!

Lists and blocks are also normally indented
(fioating keeps are normally left justified). To get
a lett-justifiea list, type • (~L. To get a list cen­
tered l~ne-for-line, type .(~~. For example, to get
a fillea, left justified list, enter:

.(1 L F
text of block
•) 1

The input:

.(1
first line of unfilled display
more lines
•) 1

prOduces the indented text:

first line of unfiiled display
more lines

Typing the character L after the .(~ request produces
the lett justified result:

E-184

USLNG NROFF AND -ME

f~rst line of unfilled display
more lines

Using ~ instead of L produces the line-at-a-time cen­
tered output:

first line of untilled display
more lines

Somet~mes it may be that you want to center
several l~nes as a group, rather than centering them
one l~ne at a time. To do this use centered blocks,
which are surrounded by the requests .(~ and .)~. All
the l~nes are centered as a unit, such that the long­
est l~ne is centered and the rest are lined up around
that line. Notice that lines do not move relative to
each other using centered blocks, whereas they do
us~ng the ~ argument to keeps.

Centered blocks are llQt keeps, and may be used in
conjunct~on with keeps. For example, to center a
group of lines as a unit and keep them on one page,
use:

.(b L
• (c
first line of unfilled display
more lines
•) c
•) b

to produce:

first line of unfilled display
more lines

If the block requests (.(h and .)h) had been omitted
the result would have been the same, but with no
guarantee that the lines of the centered block would
have all been on one page. Note the use of the L
argument to .(h; this causes the centered block to
center within the ent~re l~ne rather than within the
l~ne minus the indent. Also, the center requests must
be nested inside the keep requests •

.i. Annotations

There are a number of requests to save text for
later printing. Footnotes are printed at the bottom of
the current page. Delayed ~ is intended to be a vari­
ant form of footnote; the text is printed only when
explicitly called for, such as at the end of each

E-185

US~~~ NROFF AND -ME

9

chapter. Indexes are a type of, delayed text having a tag
(usua~ly the page number) attached to each entry after a
row Ot dots. Indexes are also saved until called for
explicitly.

J..~. Footnotes

Footnotes begin with the request .(.f and end with
the request .).f. The current footnote number is main­
tained automat1cally, and can be used by typing ,
to produce a footnote number[l]. The number is
au~omatically incremented after every footnote. For
example, the input:

• (q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.
• (f
James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1959.
Page 77.
•) f
.) q

generates the result:

A man who is not upright and at the same time
is presumptuous; one who is not diligent and
at the same time is ignorant; one who is un­
truthful and at the same time is incompetent;
such men I do not count among acquain­
tances. [2]

It is important that the footnote appears insj"de the
quote, so that you can be sure that the footnote will
appear on the same page as the quote.

J..~. Delayed ~

Delayed text is very similar to a footnote except
that it is printed when called for explicitly. This
allows a list of references to appear (for example) at
the end of each chapter, as is the convention in some

[l]Like this.
[2]James R.

1959. Page 7/.
Ware, l.b.e. ~ .Q.f Confucj"us, Halcyon House,

£-186

USI~G NROFF AND -ME

disciplines. Use _on delayed text instead of
as on footnotes.

If you are uSing delayed text as your standard
reterence mechanism, you can still use footnotes,
except that you may want to reference them with spe­
cial characters* rather than numbers •

.i . .l. Indexes

An "inaex" (actually more like a table of con­
tents, since the entries are not sorted alphabeti­
cally) resembles delayed text, in that it is saved
until ca~led for. However, each entry has the page
number (or some other tag) appended to the last line
of the index entry after a row of dots.

Inaex entries begin with the request .(x and end
with .)x. The .)x request may have a argument, which
is the value to print as the "page number". It
deraults to the current page number. If the page
number given is an underscore ("_") no page number or
line ot dots is printed at all. To get the line of
dots without a page number, type .)x un, which speci­
fies an explicitly null page number.

The .~ request prints the index.

For example, the input:

• (x
Sealing wax
•) x
• (x
Cabbages and kings
•) x
• (x
Why the sea is bOiling hot
.)x 2.Sa
.(x
Whether pigs have wings
•) x ""
• (x
Th~s is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines •
•) x
.xp

generates:

*Such as an asterisK.
£-187

US1Nu NROFF AND -ME

Seal1ng wax ••••••••••••••••••••••••••••••••••••• 12
Cabbages and kings
Why the sea is bOiling hot •••••••••••••••••••••• 2.Sa
Whether pigs have wings •••••••••••••••••••••••••
ThiS is a terribly long index entry, such as
might be used for a list of illustrations,
tables, or figures; I expect it to take at
least two lines. ••••••••••••••••••••••••••••••• 12

The .(x request may have a single character argu­
ment, specifY1ng the "name" of the index; the normal
index is x. Thus, several "indicies" may be main­
tained simultaneously (such as a list of tables, table
ot contents, etc.).

Notice that the index must be printed at the ~
ot the paper, rather than at the beginning where it
W111 probably appear (as a table of contents); the
pages may have to be physically rearranged after
printing.

~. Fancier' Features

A large number of fancier requests exist, notably
requests to provide other sorts of paragraphs, numbered
seC~1ons of the form ~.~.~ (such as used in this docu­
ment), and multicolumn output.

~.~. ~ Paragraphs

Paragraphs generally start with a
W1~n the first line indented. It is
lett-justified block-style paragraphs
instead of .RP, as demonstrated by the

blank line and
possible to get

by using .~
next paragraph.

Sometimes you want to use paragraphs that have the
~ indented, and the first line exdented (opposite
of indented) with a label. This can be done with the
• .iJa request •. A word specified on the same line as • .iJa
is printed in the margin, and the body is lined up at
a prespecified position (normally five spaces). For
example, the input:

B-188

US1NG NROFF AND -ME

.ip one
ThiS is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph •
• ip two
And here we are at the second paragraph already.
You may not1ce that the argument to .~
appears
in the margin •
• lp
We can continue text •••

prOduces as output:

one Th1S is the first paragraph. Notice how the
first line of the resulting paragraph lines up
with the other lines in the paragraph.

two And here we are at the second paragraph already.
You may notice that the argument to .~ appears
in the margin. .

We can cont1nue text without starting a new indented
paragraph by using the .~ request.

you
lar
("

If you have spaces in the label of a .iD request,
must use an nunpaddable space" instead of a regu­

space. This is typed as a backs lash character

label "Part 1", enter:

.ip "Part 1"

If a label of an indented paragraph (that is, the
argument to .~) is longer than the space allocated
for the label, the label will not be separated from
the text, and the rest of the text will be lined up at
the old margin (and not with the first line of text).
For example, the input:

.ip longlabel
Th1s paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlmbes paragraph had a long label. The first char­
acter ot text on the first line will not line up
with the text on second and subsequent lines,

8-189

USING NROFF AND -ME

although they will line up with each other.

It is possible to change the size
USing a second argument which is
label. For example, the above example
correc~ly by saying:

.ip longlabel 10

of the label by
the size of the
could be done

wnich w111 make the paragraph indent 10 spaces for
this paragrapn only. If you have many paragraphs to
inaent all the same amount, use the number register
... For example, to leave one inch of space for the
label, type:

.nr ii Ii

somewhere before the first call to .~. Refer to the
reterence manual for more information.

If .~ is used with no argument at all no hanging
tag will be printed. For example, the input:

.ip [a]
ThiS is the first paragraph of the example.
We have seen this sort of example before •
• ip
Th1S paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

proauces as output:

[a] Tll1s is the first paragraph of the example. We
have seen this sort of example before.

ThiS paragraph is lined up with the previous
paragraph, but it has no tag in the margin.

A special case of .~ is .llJ2" which automatically
numbers paragraphs sequent1ally from 1. The numbering
is reset at the next .~, .~, or .~ (to be described
in the next section) request. For example, the input:

B-191

US1NG NROFF AND -ME

.np
This is the first pOint •
• np
ThlS is the second pOint.
POints are just regular paragraphs
which are given sequence numbers automatically
by the .np request •
• pp
ThlS paragrapn will reset numbering by .np •
• np .
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) ThiS is the second point. Points are just regu­
lar paragraphs which are given sequence numbers
automatlcally by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from
one now.

~.z. Section Headings

Sectlon numbers (such as the ones used in this
document) can be automatically generated using the .~
request. You must tell .~ the depth of the section
number and a section title. The depth specifies how
many numbers are to appear (separated by decimal
pOints) in the section number. For example, the sec­
tlon number ~.Z.~ has a depth of three.

Sectlon numbers are incremented in a fairly
intuitive fashion. If you add a number (increase the
depth), the new number starts out at one. If you sub­
trac~ sectlon numbers (or keep the same number) the
final number is incremented. For example, the input:

• sn 1 nThe Preprocessor n
.sh 2 nBasic Concepts n
.sh 2 nControl Inputs n
.sh 3
.sh 3
.sh 1 nCode Generation n
.sh 3

proauces as output the result:

B-191

US1NG NROFF AND -ME

~. ~ Preprocessor
~.~. Basic Concepts
~.~. Control Inputs
~.~.~.
~.~.~.
~. ~ Generation
l.~.~.

You can
placing the
uS1ng spaces
request:

specify the section number to begin by
section number after the section title,
instead ot dots. For example, the

.sh 3 "Another section" 7 3 4

Will begin the section numbered 2.~.~; all subsequent
.~ requests will number relat1ve to this number.

There are more complex features which will cause
each seC~10n to be indented proportionally to the
depth of the section. For example, if you enter:

.nr si li

each section will be indented by an amount lie H must
have a scaling factor attached, that is, it must be of
the form liX., where .x. is a character telling what units
H is in. Common values for .x. are ~ for inches, ~ for
centimeters, and n for ~ (the width of a single
charac~er) • For example, to indent each section one­
half inch, type:

.nr si B.Si

After this, sections will be indented by one-half inch
per level ot depth in the section number. For exam­
ple, this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three
spaces of indent per section depth.

'Section heaaers without automatically generated
numbers can be done using:

.uh "Title"

wnich w1ll do a section heading, but will put no
number on the section.

£-192

US!~u NROFF AND -ME

~.l. Parts Qf ~ Basic Paper

There are some requests which assist in setting
up papers. The .~ request initializes for a title
page. There are no headers or footers on a title
page, and unlike other pages you can space down and
leave blank space at the top. For example, a typical
ti~le page might appear as:

.tp

.sp 2i

.(1 C
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)1
.bp

The request .tA sets up the environment of the
NROFF processor to do a thesis, using the rules esta­
blished at Berkeley. It defines the correct headers
ana footers (a page number in the upper right hand
corner only), sets the margins correctly, and double
spaces.

The .+~ ~ request can be used to start chapters.
Each chapter is automatically numbered from one, and a
heading is printed at the top of each chapter with the
chapter number and the chapter name~. For example,
to begin a chapter called ·Conclusions·, use the
request:

.+c ·CONCLUSIONS·

which w1ll produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

wi~h appropriate spacing for a thesis. Also, the
header is moved to the foot of the page on the first
page of a chapter. Although the .+~ request was not
designed to work only with the.tA request, it is
tuned for the format acceptable for a PhD thesis at
Berkeley.

If the title parameter ~ is omitted from the .+~
request, the result is a chapter with no heading.
This can also be used at the beginning of a paper1 for

B-193

US!NG NROFF AND -ME

example, .+k was used to generate page one of this
document.

Although papers traditionally have the abstract,
table or contents, and so forth at the front of the
paper, it is more convenient to format and print them
last wnen using NROFF. This is so that index entries
can be collected and then printed for the table ot
contents (or whatever). At the end of the paper,
issue the .++ g request, wnich begins the preliminary
part or the paper. After issuing this request, the
.+k request will begin a preliminary section of tne
paper. Most notably, this prints the page number res­
tarteo from one in lower case Roman numbe"rs. .+k may
be usea repeatedly to begin different parts of the
front material for example, the abstract, the table of
contents, acknowledgments, list of illustrations, etc.
The request .++ ~ may also be used to begin the
bibliographic section at the end of the paper. For
example, the paper might appear as outlined in figure
2. (In this figure,. comments begin with the sequence

~.~. Eguations ~ Tables

Two special UNIX programs exist to format special
types of material. Egn and ~ set equations for the
phototypesetter and NROFF respectively. ~ arranges
to print extremely pretty tables in a variety of for­
mats. Th1s document will only describe the embellish­
ments to the standard features~ consult the reference
manua~s for those processors for a description of
their use.

The ~ and ~ programs are described fully in
the document Typesetting Mathematics - Users' Guide by
Br1an W. Kernighan and Lorinda L. Cherry. Equations
are centered, and are kept on one page. They are
introauced by the .~ request and terminated by the
.9 request.

The .~ request may take an equation number as an
opt1una! argument, which is printed vertically cen­
tered on the right hand side of the equation. If the
equation becomes too long it should be split between
two lines. To do this, type:

B-194

· USING NROFF AND -ME

TH~ GROWTH OF TOENAILS
IN UPPER PRIMATES

by

FranK Furter
Introauctl.on
text of chapter one
Next Chapter
text of chapter two
Conclusions
text of chapter three
Bibliograpny
text of bibliography
text of pretace

Figure 2. Outline of a Sample Paper

.EO (eq 34)
text of equation 34
.EN C
.EO
continuation of equation 34
.EN

£-195

USING NROFF AND -ME

The ~ on the.U request specifies that the equation
w111 be continued.

The .tlll program produces tables. It is fully
described (including numerous examples) in the docu­
ment Xbl - A Program ~ Format Tables by M. E. Lesk.
Tables begin with the .j!S, request and end with the .n
request. Tables are normally kept on a single page.
If you have a table which is too big to fit on a sin­
gle page, so that you know it will extend to several
pages, begin the table with the request .j!S,.Ii and put
the request .lR after the part of the table which you
want duplicated at the top of every page that the
table is printed on. For example, a table definition
for a long table might look like:

.TS H
c s s
n n n.
THE TABLE TITLE
.TH
text of the table
.TE

~.~. ~ Column Output

You can get two column output automatically by
using the request • .2..Q..This causes everything after
it to be output in two-column form. The request .~
will start a new column; it differs from .AR in that
.AR may leave a totally blank column when it starts a
new page. To revert to single column output, use .~.

~.~. Defining Macros

A macro ~s a collection of requests and text
Which may be used by stating a Simple request. Macros
begin with the line .~ XA (where XA is the name of
the macro to be defined) and end with the line con­
sisting of two dots. After defining the macro, stat­
ing the line .XA is the same as stating all the other
11nes. For example, to define a macro that spaces 3
lines and then centers the next input line, enter:

.de SS

.sp 3

.ce
• •

and use it by typing:

E-196

US1Nu NROFF AND -ME

.S8
Title Line
(beginning ot text)

Macro names may be one or two characters. In
order to avoid contlicts with names in -me, always use
upper case letters as names. The only names to avoid
are x.s" ,m, U, ~, and 9.

~.2. Annotations Inside Keeps

Sometimes you may want to put a footnote or index
entry inside a keep. For example, if you want to
maintain a nlist of figures n you will want to do some­
thing like:

• (z
• (c
text of figure
•) c
.ce
Figure 5 •
• (x f
Figure 5
.) x
.) z

which you may hope will give you a figure with a label
ana an entry in the index L (presumably a list of fig­
ures index). Unfortunately, the index entry is read
ana interpreted when the keep is read, not when it is
printed, so the page number in the index is likely to
be wrong. The solution is to use the magic string _
at the beginning of all the lines dealing with the
inaex. In other words, you should use:

.(z

.(c
Text of figure
•) c
.ce
Figure 5 •
• (x f
Figure 5
•) x
•) z

which w~ll defer the proceSSing of the index until the
figure is outpu~. This will guarantee that the page
number in the index is correct. The same comments
apply to blocks (with .(h and .)h) as well.

B-197

USiNG NROFF AND -ME

.[e TROFF.arui ~ Photosetter

With a little care, you can prepare documents that
w~ll print n~celY on either a regular terminal or when
phototypeset using the TROFF formatting program •

.[e~. Fonts

A !Qnt is a style of type. There are three fonts
that are available simultaneously, Times Roman, Times
Ital~c, and Times Bold, plus the special math font.
The normai font is Roman. Text which would be under­
lined in NROFF with the .~ request is set in italics
in TROFF.

There are ways of switching between fonts. The
requests .L, .~, and .~ switch to Roman, italic, and
bold fonts respectively. You can set a single word in
some font by typing (for example):

.i word

which w~ll set ~ in italics but does not affect the
surrounding text. In NROFF, italic and bold text is
underlined.

Not~ce that if you are setting more than one word
in whatever font, you must surround that word with
double quote marks ('"I) so that it will appear to the
NROFF processor as a single word. The quote marks
will not appear in the formatted text. If you do want
a quote mark to appear, you should quote the entire
string (even if a single word), and use ~ quote
marks wnere you want one to appear. For example, if
you want to produce the text:

"Master Control"

in itai~cs, you must type:

.i """Master Control"""

The _produces a very narrow space so that the "1"
does not overlap the quote sign in TROFF, like this:

"Master Control"

There are alSo several "pseudo-fonts" available.
The input:

£-198

USiNG NROFF AND -ME

• (b
.u underlined
.bi "bold italics"
.bx "words in a box"
.) b

generates

underlined
.b.Qll italics
wo r d s .in. .a 1Lo.A

In NROFF these all just underline the text. Notice
that pseudo font requests set only the single parame­
ter in the pseudo font; ordinary font requests will"
begin setting all text in the special font if you do
not provide a parameter. No more than one word should
appear with these three font requests in the middle of
lines. This is because of the way TROFF justifies
text. For example, if you were to issue the requests:

.bi "some bold italics"
and
.bx "words in a box"

in the middle of a line TROFF would produce ~ hQlg
italics and words .in..a 1Lo.A, which would look really
lousy in TROFF.

The second parameter ot all font requests is set
in the original font. For example, the font request:

.b bold face

generates "bold" in bold font, but sets "face" in the
font of the surrounding text, resulting in:

l2.Ql.gface.

To set the two words h2ld and ~ both in ~ ~,
type:

.b "bold face"

You can mix fonts in a word by using the special
sequence ~ at the end of a line to indicate "continue
text processing"; this allows input lines to be joined
together w1thout a space inbetween them. For example,
the input:

E-199

USINu NROFF AND -ME

.u under .i italics

generates underitalics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words •

. ~.z. Point Sizes

The phototypesetter supports different sizes of
type, measured in pOints. The default pOint size is
Ie p01nts for most text, 8 points for footnotes. To
change the pOintsize, type:

.sz +N

wnere N is the size wanted in pOints.
spacing (distance between the bottom
(tne baseline) between adjacent lines)
proport10nal to the type size.

The vertical
of most letters
is set to be

Warn1ng: changing pOint sizes on the photo­
typesetter is a slow mechanical operation. Size
changes should be conSidered carefully.

~ . .l. Quotes

It is conventional when using the typesetter to
use pairs of grave and acute accents to generate dou­
ble quotes, rather than the double quote character
('"'). This is because it looks better to use grave
and acute accents1 for example, compare "quote" to
, 'quote' , •

In order to make quotes compatible between the
typesetter and terminals, you may use the sequences

19 andrg to stand for the left and right quote
respec~1vely. These both appear as " on most termi­
na~s, but are typeset as " and "respectively. For
example, use:

Some things aren't true
even if they did happen.

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

USING NROFF AND -ME

.q nquotea text"

w1ll generate nquoted text n• Notice that you must
surround the material to be quoted with double quote
marks if it is more than one word.

B-2'1

MAIL REFERENCE MANUAL

Version 2.B

~. Introduction

Rail provides a simple and friendly environment for
sending and receiving mail. It divides incoming mail into
its constituent messages and allows the user to deal with
them in any order. In addition, it provides a set of ~­
like commands for manipulating messages and sending mail.
Hail offers the user simple editing capabilities to ease
the composition of outgoing messages, as well as providing
the ability to define and send to names which address
groups of users. Finally, Hail is able to send and
receive messages across such networks as the ARPANET, Bell
Telephone net, Berkeley network, and COCANET.

This document describes how to use the Hail program
to send and receive messages. The reader is not assumed
to be familiar with other message handling systems, but
should be familiar with the UNIX[l] shell, the text edi­
tor, and some of the common UNIX commands. nThe UNIX
Programmer's Manual," nAn Introduction to Csh,n and nText
Editing with Ex and Vin can be consulted for more informa­
tion on these topics.

[1] UNIX is a trademark of Bell Laboratories.

E-282

Mail Reference Manual

2.. Common usage

The Mail command has two distinct usages, according
to whether one wants to send or receive mail. Sending
mail is simple: to send a message to a user whose login
name is, say, "root," use the shell command:

% Mail root

then type your message. When you reach the end of
message, type an EOT (control-d) at the beginning
line, which will cause Mail to echo "EOT" and return
to the Shell. When the user you sent mail to next
in, he will receive the message:

You have mail.

to alert him to the existence of your message.

the
of a

you
logs

If, while you are composing the message you decide
that you do not wish to send it after all, you can abort
the letter with a RUBOUT. Typing a single RUBOUT causes
Mail to print

(Interrupt -- one more to kill letter)

Typing a second RUBOUT causes Mail to save your partial
letter on the file "dead.letter" in your home directory
and abort the letter. Once you have in fact sent mail to
someone, there is no way to undo the act, so be careful.

The message your recipient reads will consist of the
message you typed, preceded by a line telling who sent the
message (your login name) and the date and time it was
sent.

If you want to send the same message to several other
people, you can list all of their login names on the com­
mand line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
<Control-d>
EaT
%

will send the reminder to sam, bob, and john.

B-213

Mail Reference Manual

If, when you log in, you see the message,

You have mail.

you can read the mail by typing simply:

% Mail

Hail will respond by typing its version number and date
and then listing the messages you have waiting. Then it
will type an underscore and await your command. The mes­
sages are assigned numbers starting with 1 -- you refer to
the messages with these numbers.

To look at a specific message, use the ~ command,
which may be abbreviated to simply~. For example, if you
had the following messages:

1 root
2 sam

Wed Sep 21 99:21 nTuition fees n
Tue Sep 20 22:55

you could examine the first message by giving the command:

type I

which might cause Hail to respond with, for example:

Message 1:
From root Wed Sep 21 99:21:45 1978
Subject: Tuition fees

Tuition fees are due next Wednesday. Don't forget!!

Many Hail commands which operate on messages take a mes­
sage number as an argument like the ~ command. For all
of these commands, there is a notion of a current message.
When you enter the Hail program, the current message is
initially the first one. Thus, you can often omit the
message number and use, for example,

t

to type the current message. As a further shorthand, you
can type a message by simply giving its message number.
Hence,

B-214

Mail Reference Manual

1

would type the first message.

Frequently, it is useful to read the messages in your
mailbox in order, one after another. You can read the
next message in Mail by simply typing a newline. As a
special case, you can type a newline as your very first
command to Hail to type the first message.

If, after typing a message, you wish to immediately
send a reply, you can do so with the reply command.
Reply, like ~, takes a message number as an argument.
HAil then begins a message addressed to the user who sent
you the message. You may then type in your letter in
reply, followed by a <control-d> at the beginning of a
line, as before. M£il will type EOT, then type the under­
score prompt to indicate its readiness to accept another
command. In our example, if, after typing the first mes­
sage, you wished to reply to it, you might give the com­
mand:

reply

Mail responds by typing:

To: root
Subject: Tuition fees

and waiting for you to enter your letter. Note that it
copies the subject header from the original message. This
is useful in that correspondence about a particular matter
will tend to retain the same subject heading, making it
easy to recognize. If there are other header fields in
the message, the information found will also be used. For
example, if the letter had a "To:" header listing a number
of recipients, Hail would arrange to send your replay to
the same people as well. Similarly, if the original mes­
sage contained a "Cc:" (carbon copies to) field, Mail
would send your reply to those users, too. H£il is care­
ful, though, not too send the message to ~, even if you
appear in the "To:" or "Cc:" field, unless you ask to
included explicitly. See section 3 for more details.

After typing in your letter, the dialogue with HAil
might look like the following:

reply
To: root
Subject: Tuition fees

E-285

Mail Reference Manual

Thanks for the reminder
EOT

The reply command is especially useful for sustaining
extended conversations over the message system, with other
nlisteningn users receiving copies of the conversation.
The reply command can be abbreviated to ~.

If you wish, while reading your mail, to send a mes­
sage to someone, but not as a reply to one of your mes­
sages, you can send the message directly with the ma.il.
command, which takes as arguments the names of the reci­
pients you wish to send to. For example, to send a mes­
sage to nfrank,n you would do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the
file mbgx in your login directory at the time you leave
Hail. Often, however, you will not want to save a partic­
ular message you have received because it is only of pass­
ing interest. To avoid saving a message in mbQx you can
delete it using the delete command. In our example,

delete I

will prevent Mail from saving message I (from root) in
mbQx. In addition to not saving deleted messages, Hail
will not let you type them, either. The effect is to make
the message disappear altogether, along with its number.
The delete command can be abbreviated to simply ~.

A number of features of l:1a..U. can be tailored to your
liking with the ~ command. The ~ command has two
forms, depending on whether you are setting a binary
option or a valued option. Binary options are either on
or off. For example, the naskn option informs Hail that
each time you send a message, you want it to prompt you
for a subject header, to be included in the message. To
set the "askn option, you would type

set ask

B-286

Mail Reference Manual

Valued options are values which Hail uses to adapt to
your tastes. For example, the "SHELL" option tells Hail
which shell you like to use, and is specified by

set SHELL=/bin/csh

for example. Note
"SHELL=/bin/csh." A
appears in section 4.

that no
complete

spaces are allowed in
list of the Hail options

Another adaptation to user needs that H.a.il provides
is that of aliases. An alias is simply a name which
stands for one or more real user names. H.a.il sent to an
alias is actually sent to the list of real users associ­
ated with it. For example, an alias can be defined for
the members of a project, so that you can send mail to the
whole project by sending mail to just a single name. The
alias command in Mail is used to define an alias. Suppose
that the users in a project are named Sam, Sally, Steve,
and Susan. To define an alias called "project" for them,
you would use the Hail command:

alias project sam sally steve susan

The alias comman-d can also be used to provide a convenient
name for someone whose user name is inconvenient. For
example, if a user named nBob Anderson n had the login name
nanderson,"n you might want to use:

alias bob anderson

so that you could send mail to the shorter name, nbob."

While the alias and ~ commands allow you to custom­
ize Mail, they have the drawback that they must be retyped
each time you enter Hail. To make them more convenient to
use, Mail always looks for two files when it is invoked.
It first reads a system wide file "/usr/lib/Mail.rc," then
a user specific file, ".mailrc," which is found in the
user's home directory. The system wide file is maintained
by the system administrator and is usually used to define
aliases that are of general interest, such as the list of
users which constitutes the system staff. The ".mailrc"
file is usually used by each user to set options the way
he likes. For example, my .mailrc file looks like this:

set ask nosave SHELL=/bin/csh

E-287

Mail Reference Manual

As you can see, it is possible to set many options in the
same ~ command. The "nosave" option is described in
section 4.

We have seen that Hail can be invoked with command
line arguments which are people to send the message to, or
with no arguments to read mail. In addition, there are
two flag arguments to Hail which are useful. First,
unreliable'terminal connections (such as poor connections
over a phone line) cause spurious RUBOUT characters to be
produced. RUBOUT characters cause Hail to terminate a
message, as described previously. To prevent these spuri­
ous RUBOUT characters from causing trouble, you can give
the -i flag to ignore them. For example,

% Mail -i

reads your mail with RUBOUT characters ignored, and

% Mail -i bob joe sarah

mails to the named people with RUBOUT characters ignored.
Unfortunately, even if Hail ignores RUBOUT's, the system
discards all text typed on the current line when it
receives a RUBOUT. To warn the user that this has hap­
pened, Hail echoes RUBOUTs as @'s. If, when using -i an @
at appears on your terminal, you must retype the text on
the line you were typing. If the @ appears at the begin­
ning of a line, you can safely ignore it.

The other Hail flag is -f which allows you to use
Hail to examine a file of messages other than your default
system mailbox. For example, if you have a collection of
messages in the file "letters" you can use Mail. to read
them with:

% Mail -f letters

You can use all of the Mail. commands described in this
document to examine, modify, or delete messages from your
"letters" file, which will be rewritten when you leave
MAil with the suit command described below.

Since mail that you read is saved in the file mbQx in
your home directory by default, you can read mbQx in your
home directory by using simply

% Mail -f

E-288

Mail Reference Manual

Normally, messages which you examine using the ~
command are saved in the file nmboxn in your home direc­
tory if you leave Mail with the ~ command described
below. If you wish to retain a message in your system
mailbox you can use the preserve command to tell Mail to
leave it there. The preserve command accepts a list of
message numbers, just like ~ and may be abbreviated to
~.

Messages in your system mailbox which you do not
examine are normally retained in your system mailbox
automatically. If you wish to have such a message saved
in mbQ& without actually reading it, you may use the mbQ&
command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam)
to be saved in mbQ& when the ~ command is executed.
MbQx can be abbreviated to mQ.

When you have perused all of the messages of
interest, you can leave Mail with the ~ command, which
saves all of the messages you have typed but not deleted
in the file mbQ& in your login directory. Deleted mes­
sages are discarded irretrievably, and messages left
untouched are preserved in your system mailbox so that you
will see them the next time you type:

% Mail

The ~ command can be abbreviated to simply ~.

If you wish for some reason to leave Mail quickly
without altering either your system mailbox or ml2.Q.x., you
can type the X command (short for ~), which will
immediately return you to the Shell without changing any­
thing.

If, instead, you want to execute a Shell command
without leaving Mail, you can type the command preceded by
an exclamation point, just as in the text editor. Thus,
for instance:

!date

will print the current date without leaving Hail.

Finally, the ~ command is available to print out a
brief summary of the MAil commands, using only the single
character command abbreviations.

£-2'9

Mail Reference Manual

1. ~ about sending mail

1.~. Tilde escapes

While typing in a message to be sent to others, it
is often useful to be able to invoke the text editor on
the partial message, print the message, execute a shell
command, or perform some other auxiliary function • .M.a..i..l
provides these capabilities through tilde escapes, which
consist of a tilde (-) at the beginning of a line, fol­
lowed by a single character which indicates the function
to be performed. For example, to print the text of the
message so far, use:

which will print a line of dashes, the recipients of
your message, and the text of the message so far. Since
Mail requires two consecutive RUBOUT's to abort a
letter, you can use a single RUBOUT to abort the output
of -p or any other - escape without killing your letter.

If you are dissatisfied with the message as it
stands, you can invoke the text editor on it using the
escape

which causes the message to be copied into a temporary
file and an instance of the editor to be spawned. After
modifying the message to your satisfaction, write it out
and quit the editor • .M.a..i..l will respond by typing

(continue)

after which you may continue typing text which will be
appended to your message, or type <control-d> to end the
message. A standard text editor is provided by Mail.
You can override this default by setting the valued
option "EDITORn to something else. For example, you
might prefer:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alterna­
tive to the standard text editor, such as the Yi editor
from UC Berkeley. In order to use the screen, or visual
editor, on your current message, you can use the -v
escape, which works like -e, except that the screen

E-2l"

Mail Reference Manual

editor is invoked instead. A default screen editor is
defined by Hail. If it does not suit you, you can set
the valued option "VISUAL n to the path name of a dif­
ferent editor.

It is often useful to be able to include the con­
tents of some file in your message: the escape

-r filename

is provided for this purpose, and causes the named file
to be appended to your current message. Hail complains
if the file doesn't exist or can't be read. If the read
is successful, the number of lines and characters
appended to your message is printed, after which you may
continue appending text. The filename may contain shell
metacharacters like * and? which are expanded accord­
ing to the conventions of your shell.

As a special case of -r, the escape

-reads in the file "dead. letter" in your home directory.
This is often useful since Hail copies the text of your
message there when you abort a message with RUBOUT.

In order to save the current text of your message
on a file you may use the

-w filename

escape. Mail will print out the number of lines and
characters written to the file, after which you may con­
tinue appending text to your message. Shell metacharac­
ters may be used in the filename, as in -r and are
expanded with the conventions of your shell.

If you are sending mail from within Hail1a command
mode you can read a message sent to you into the message
you are constructing with the escape:

-m 4

which will read message 4 into the current message,
shifted right by one tab stop. You can name any non­
deleted message, or list of messages. This is the usual
way to forward a message.

B-211

Mail Reference Manual

If, in the process of composing a message, you
decide to add additional people to the list of message
recipients, you can do so with the escape

-t namel name2 •••

You may name as few or many additional recipients as you
wish. Note that the users originally on the recipient
list will still receive the message; in fact, you cannot
remove someone from the recipient list with -t.

If you wish, you can associate a subject with your
message by using the escape

-s Arbitrary string of text

which replaces any previous subject with "Arbitrary
string of text." The subject, if given, is sent near the
top of the message prefixed with "Subject: n You can see
what the message will look like by using -p.

For political reasons, one occasionally prefers to
list certain people as recipients of carbon copies of a
message rather than direct recipients. The escape

-c namel name2 •••

adds the named people to the nCc: n list, similar to -t.
Again, you can execute -p to see what the message will
look like.

The recipients of the message
the "To:" field, the subject the
the carbon copies the nCc: n field.
these in ways impossible with
escapes, you can use the escape

together constitute
"Subject: n field, and
If you wish to edit

the -t, -s, and-c

which prints "To:" followed by the current list of reci­
pients and leaves the cursor (or printhead) at the end
of the line. If you type in ordinary characters, they
are appended to the end of the current list of reci­
pients. You can also use your erase character to erase
back into the list of recipients, or your kill character
to erase them altogether. Thus, for example, if your
erase and kill characters are the standard I and @ sym­
bols,

£-212

Mail Reference Manual

-h
To: root kurt****bill

would change the initial recipients nroot kurt n to nroot
bill." When you type a newline, Hail advances to the
nSubject:n field, where the same rules apply. Another
newline brings you to the "ec: n field, which may be
edited in the same fashion. Another newline leaves you
appending text to the end of your message. ~ou can use
-p to print the current text of the header fields and
the body of the message.

To effect a temporary escape to the shell, the
escape

-!command

is used, which executes command and returns you to mail­
ing mode without altering the text of your message. If
you wish, instead, to filter the body of your message
through a shell command, then you can use

-Icommand

which pipes your message through the command and uses
the output as the new text of your message. If the com­
mand produces no output, Mail assumes that something is
amiss and retains the old version of your message. A
frequently-used filter is the command Lmt which is
designed to format outgoing mail.

To effect a temporary escape to Mail command mode
instead, you can use the

-:Hail command

escape. This is especially useful for retyping the mes­
sage you are replying to, using, for example:

It is also useful for setting options and modifying
aliases.

If you wish (for some reason) to send a message
which contains a line beginning with a tilde, you must
double it. Thus, for example,

B-213

Mail Reference Manual

--This line begins with a tilde.

sends the line

-This line begins with a tilde.

Finally, the escape

prints out a brief summary of the availa.ble tilde
escapes.

On some terminals (particularly
case) tilde's are difficult to type.
change the escape character with the
For example, I set

ones with no lower
Hail allows you to

nescape" option.

set escape=]

and use a right bracket instead of a tilde. If I ever
need to send a line beginning with right bracket, I dou­
ble it, just as for -. Changing the escape character
removes the special meaning of -.

~.2. Network access

The header capabilities described in the
section are useful for communicating with users
networks. This section describes other aspects
ing mail across networks.

previous
on other
of send-

Network names are distinguished from
using the naming conventions of each
effect of this is that the name "at" can
local name, because the recipient

local names
network. One
never be a

kurt at Berkeley

is a single ARPANET address, not three local names.

When you use the reply command to respond to a
letter, there is a problem of figuring out the names of
the users in the "To:" and nCc:" lists r.elatiye .t.Q .t.he.
current machine. If the original letter was sent to you
by someone on the local machine, then this problem does
not exist, but if the message carne from a remote
machine, the problem must be dealt with. Hail uses a

8-214

Mail Reference Manual

heuristic to construct the correct name for each user
relative to the local machine. For this reason, when
you reply to remote mail, the names in the "To:" and
"Cc:" lists may change somewhat.

~.~. Special recipients

As described previously, you can send mail to
either user names or alias names. It is also possible
to send messages directly to files or to programs, using
special conventions. If a recipient name has a 'I' in
it, it is assumed to be the path name of a file into
which to send the message. If the file already exists,
the message is appended to the end of the file. If you
want to name a file in your current directory (ie, one
for which a '/' would not usually be needed) you can
precede the name with './' So, to send mail to the file
"memo" in the current directory, you can give the com­
mand:

% Mail ./memo

This ability to send mail to files can be used for a
variety of purposes, such as maintaining a journal and
keeping a record of mail sent to a certain group of
users. The second example can be done automatically by
including the full pathname of the record file in the
alias command for the group_ Using our previous alias
example, you might give the command:

alias project sam sally steve susan lusr/project/mail_record

Then, all mail sent to "project" would be saved on the
file "/usr/project/mail_record" as well as being sent to
the members of the project. This file can be examined
using Mail -L.

It is sometimes useful to send mail directly to a
program, for example one might write a project billboard
program and want to access it using Hail. In order to
send messages to the billboard program, one can send
mail to the special name 'Ibillboard' for example. Hail
treats recipient names which begin with a 'I' as a pro­
gram to send the mail to. An alias can be set up to
reference a' I' prefaced name if desired. Caveats: the
shell treats 'I' specially, so it must be quoted on the
command line. Also, the 'I program' must be presented
as a single argument to mail. The safest course is to
surround the entire name with double quotes. This also
applies to usage in the alias command. For example, if
we wanted to alias 'rmsgs' to 'rmsgs -s' we would need

E-215

Mail Reference Manual

to say:

alias rmsgs "I rmsgs -so

E-216

Mail Reference Manual

~.
Additional features
This section describes some additional commands of use for
reading your mail, setting options, and handling lists of messages.

i.~.
Additional commands

This section describes additional Hail commands
available when receiving mail.

The ~ command goes to the next message and
types it. If given a message list, ~ goes to the
first such message and types it. Thus,

next root

goes to the next message sent by "root" and types
it. The ~ command can be abbreviated to simply a
newline, which means that one can go to and type a
message by simply giving its message number or one
of the magic characters "T" "." or "$". Thus,

•

prints the current message and

4

prints message 4, as described previously.

The - command goes to the previous message and
prints it. The command may be given a decimal
number n as an argument, in which case the nth pre­
vious message is gone to and printed.

It is often useful to be able to save messages
on related topics in a file. The ~ command gives
you ability to do this. The ~ command takes as
argument a lit of message numbers, followed by the
name of the file on which to save the messages. The
messages are appended to the named file, thus allow­
ing one to keep several messages in the file, stored
in the order they were put there. The ~ command
can be abbreviated to~. An example of the ~
command relative to our running example is:

s 1 2 tuitionmail

£-211

Mail Reference Manual

Sayed messages are not automatically saved in mb.Q.x.'
at quit time, nor are they selected by the ~com­
mand described above, unless explicitly specified.

The ~ command always writes the entire mes­
sage, including the headers, into the file. If you
want to write just the message itself, you can use
the write command. The write command has the same
syntax as the ~ command, and can be abbreviated
to simply ~. Thus, we could write the second mes­
sage by doing:

w 2 file.c

As suggested by this example, the write command is
useful for such tasks as sending and receiving
source program text over the message system.

The undelete command causes a message which had
been deleted previously to regain its initial
status. Only messages which are already deleted may
be undeleted. This command may be abbreviated to ~.

In order to edit individual messages using the
text editor, the ~ command is provided. The ~
command takes a list of message as described under
the ~ command and processes each by writing it
into the file Messagex where X is the message number
being edited and executing the text editor on it.
When you have edited the message to your satisfac­
tion, write the message out and quit, upon which
MAil will read the message back and remove the file.
~ may be abbreviated to ~.

It is often useful to be able to invoke one of
two editors, based on the type of terminal one is
using. To invoke a display oriented editor, you can
use the visual command. The operation of the visual
command is otherwise identical to that of the .e.d.it
command.

Both the ~ and visual commands assume some
default text editors. These default editors can be
overriden by the valued options nEDITORn and nVISU­
AL n for the standard and screen editors. You might
want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

Thechdir and shell commands allow you to
change your current directory and escape to the
shell, respectively. . Chdir takes a single argument,

B-218

Mail Reference Manual

which is taken to be the pathname of the directory
to change to. If no argument is given, chdir
changes to your home directory. Shell invokes an
interactive shell and allows you to type commands to
it. When you leave the shell, you will return to
Mail. The shell used is a default assumed by Hail;
you can override this default by setting the valued
option "SHELL," eg:

set SHELL=/bin/csh

When you start up Mail to read your mail, it
lists the message headers that you have. These
headers tell you who each message is from, when they
were sent, how many lines and characters each mes­
sage is, and the "Subject:" header field of each
message, if present. In addition, Hail tags the
message header of each message which has been the
object of the preserve command with a "P." Messages
which have been sayed or written are flagged with a
"*." Finally, deleted messages are not printed at
all. If you wish to reprint the current list of
message headers, you can do so with the headers com­
mand. The headers command (and thus the initial
header listing) only lists the first 18 message
headers. Hail maintains a notion of the current
"window" into your messages for the purposes of
printing headers. You can move Hail'~ attention
forward to the next window by giving the

headers +

command. Analogously, you can move to the previous
window with:

headers -

Finally, you can move MAilI~ notion of the current
window directly to a particular message by using,
for example,

headers 40

to move Maill~ attention to the messages around mes­
sage 40. The headers command can be abbreviated to
h.

The !LQm command takes a list of messages and
prints out the header lines for each one; hence

E-219

Mail Reference Manual

from joe

is the easy way to display all the message headers
from "joe."

The ~ command takes a message list and prints
the first five lines of each addressed message. It
may be abbreviated to tQ. If you wish, you can
change the number of lines that ~ prints out by
setting the valued option "toplines." On a CRT ter­
minal,

set toplines=19

might be preferred.

The ~ command deletes the current message and
prints the next message. It is useful for quickly
reading and disposing of mail.

~.~. Message l1sts

The ~ and delete commands described in
tion two take a list of messages as argument,
many of the commands described in section six.
section describes the construction of message
in general.

sec­
as do
This

lists

A message liat consists of a list of message
numbers, ranges, and names, separated by spaces or
tabs. Message numbers may be either decimal
numbers, which directly specify messages, or one of
the special characters "T" "." or "$" to specify the
first relevant, current, or last relevant message,
respectively. Releyant here means, for most com­
mands "not deleted" and "deleted" for the undelete
command.

A range of messages consists of two message
numbers (of the form described in the previous para­
graph) separated by a dash. Thus, to print the
first four messages, use

type 1-4

and to print all the messages from the current mes­
sage to the last message, use

type .-$

£-221

Mail Reference Manual

A ~ is a user name. All of the user names
given in the message list are collected together and
each message selected by other means is checked to
make sure it was sent by one of the named users. If
the message consists entirely of user names, then
every message sent by one those users which is
relevant (in the sense described earlier) is select­
ed. Thus, to print every message sent to you by
"root," do

type root

AS a shorthand notation, you can specify simply
"*" to get every relevant (same sense) message.
Thus,

type *

prints all undeleted messages,

delete *

deletes all undeleted messages, and

undelete *

undeletes all deleted messages.

~.~. Other options

Throughout this manual, we have seen examples
of binary and valued options. This section
describes each of the options in alphabetical order,
including some which you have not seen yet. To
avoid confusion, please note that all of the options
are either all lower case letters or all upper case
letters. When I start a sentence such as: "Ask n
causes Hail to prompt you for a subject header, I am
only capitalizing "ask" as a courtesy to English.

The "append" option is binary and causes mes­
sages saved in mb2X to be appended to the end rather
than prepended. Normally, Hailwill mb2X in the same
order that the system puts messages in your system
mailbox. By setting "append,n you are requesting
that mbQx be appended to regardless. It is in any
event quicker to append.

B-221

Mail Reference Manual

"Ask" is a binary option which causes Hail to
prompt you for the subject of each message you send.
If you respond with simply a newline, no subject
field will be sent.

"Askcc" is a binary option which causes you to
be prompted for additional carbon copy recipients at
the end of each message. Responding with a newline
indicates your satisfaction with the current list.

"Autoprint" is a binary option which causes the
delete command to behave like ~ -- thus, after
deleting a message, the next one will be typed au­
tomatically. This is useful to quickly scanning and
deleting messages in your mailbox.

The binary option "ignore" causes RUBOUT char­
acters from your terminal to be ignored and echoed
as @'s while you are sending mail. RUBOUT charac­
ters retain their original meaning in .M.ail command
mode.

When sending mail to an alias, Hail makes sure
that if you are included in the alias, that mail
will not be sent to you. This is useful if a single
alias is being used by all members of the group. If
however, you wish to receive a copy of all the mes­
sages you send to the alias, you can set the binary
option "metoo."

The binary option "quiet" suppresses the print­
ing of the version when Hail is first invoked, as
well as printing the for example "Message 4:" from
the ~ command.

Normally, when you abort a message with two RU­
BOUTs, Mail copies the partial letter to the file
"dead. letter" in your home directory. Setting the
binary option "nosave" prevents this.

The valued option "EDITOR" defines the pathname
of the text editor to be used in the ~ command
and -e. If not defined, a standard editor is used.

The valued option "SHELL" gives the path
of your shell. This shell is used for the 1
mand and -1 escape. In addition, this shell is
to expand file names with shell metacharacters
* and ? in them.

name
com­
used
like

The valued option "VISUAL" defines the pathname
of your screen editor for use in the visual command
and -v escape. A standard screen editor is used if

£-222

Mail Reference Manual

you do not define one.

In order to allow you to change the escape
character used when sending mail, you can set the
valued option ftescape. n Only the first character of
the nescape n option is used, and it must be doubled
if it is to appear literally as the first character
of a line of your message. If you change your es­
cape character, then - loses all its special mean­
ing, and need no longer be doubled at the beginning
of a line.

If you love to keep records, then the valued
option nrecordft can be set to the name of a file to
save all of your outgoing mail. Each new message
you send is appended to the end of the file.

The valued option fttoplines n defines the number
of lines that the fttopn command will print out in­
stead of the default five lines.

B-223

Mail Reference Manual

.5.. Summary.Q.f. commands, options, . .arul escapes

This section gives a quick summary of all of the
Mail commands, binary and valued options, and tilde
escapes. The following table describes the commands:

Command Description 8 __ ___

1

alias
chdir
delete
dt
edit
exit
from
headers
help
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write

Single command escape to shell
Back up to previous message
Define an alias as a set of user names
Change working directory, home by default
Delete a list of messages
Delete current message, type next message
Edit a list of messages
Leave mail without changing anything
List headers of a list of messages
List current window of messages
Print brief summary of .Mail. commands
Send mail to specified names
Arrange to save a list of messages in mbQx
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave .Mail.; update system mailbox, mbQx as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of mes:
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers

The following table describes the options. Each op­
tion is indicated as being either a binary or valued op­
tion.

£-224

Mail Reference Manual

Option Description 8 __ __

EDITOR
SHELL
VISUAL
append
ask
askcc
autoprint
escape
ignore
metoo
nosave
quiet
record
toplines

valued
valued
valued
binary
binary
binary
binary
valued
binary
binary
binary
binary
valued
valued

Pathname of editor for -e and edit
Pathname of shell for shell, -1 and!
Pathname of screen editor for -v, visual
Always append messages to end of mbgx
Prompt user for Subject: field when sending
Prompt user for additional ec's at end of message
Print next message after delete
Escape character to be used instead of -
Ignore RUBOUT while sending mail
Include sending user in aliases
Don't save partial letter in ~.letter
Suppress printing of ~ version
File to save all outgoing mail in
Number of lines to print in top

Finally, the following table summarizes the tilde
escapes available while sending mail.

Escape
8

Arguments

command
.na.m.e. •••

messages

filename
string
.na.m.e. •••

filename
command
string

Description

Execute shell command
Add names to Cc: field
Read ~.letter into message
Invoke text editor on partial message
Edit the header fields
Read named messages, right shift by tab
Print message entered so far
Abort entry of letter; like RUBOUT
Read file into message
Set Subject: field to string
Add names to To: field
Invoke screen editor on message
Write message on file
Pipe message through command
Quote a - in front of string

B-225

Mail Reference Manual

.[. Conclusion

HAil is an attempt to provide a simple user interface
to a variety of underlying message systems. Thanks are
due to the many users who contributed ideas and testing to
HAil.

8-226

Screen Updating and Cursor Movement Optimization:
A Library Package

ABSTRACT

This document describes a package of C library
functions which allow the user to:

1) update a screen with reasonable optimization,

2) get input from the terminal in a screen-oriented
fashion, and

3) independent from the above, move the cursor op­
timally from one point to another.

These routines all use the /~termcap database to
describe the capabilities of the terminal.

E-227

Contents

1 Overview •
1.1 Terminology (or, Words You Can Say to Sound
Brilliant) •

• 1.2 Compiling Things
1.3 Screen Updating
1.4 Naming Conventions

•
•

••• 2 Variables
3 Usage •

3.1 Starting up •
3.2 The Nitty-Gritty •

3.2.1 Output . . . ~ .
3.2.2 Input •
3.2.3 Miscellaneous •

3.3 Finishing up• ... -..... .
4 Cursor Motion Optimization: Standing Alone . ."

4.1 Terminal Information •
4.2 Movement Optimizations, or, Getting Over
Yonder ••••••••••••••••••••••••• - •••••• e.- •••••••••••

5 The Functions •
5.1 Output Functions
5.2 Input Functions

· -.
•

5.3 Miscellaneous Functions •
5.4 Details •

Appendixes

Appendix A •• • • • • • • • • • • • • • • •
1 Capabilities from termcap •

•
•

1.1 Disclaimer
1.2 Overview
1.3 Variables
1.4 Variables

Appendix .a
Set By setterm ()
Set By gettmode()

•
•

•
1 The WINDOW structure •
Appendix .c
1 Examples

•
•

2 Screen Updating •
• 2.1 Twinkle

2.2 Life •
3 Motion optimization •

3.1 Twinkle •

8-228

1

1
1
2
2
3
4
4
5
5
5
5
6
6
6

7
8
8

13
14
18

Screen Package

1. Overview

In making available the generalized terminal descrip­
tions in /~termcap, much information was made available
to the programmer, but little work was taken out of one's
hands. The purpose of this package is to allow the C pro­
grammer to do the most common type of terminal dependent
functions, those of movement optimization and optimal screen
updating, without doing any of the dirty work, and (hopeful­
ly) with nearly as much ease as is necessary to simply print
or read things.

The package is split into three parts: (1) Screen up­
dating; (2) Screen updating with user input; and (3) Cursor
motion optimization.

It is possible to use the motion optimization without
using either of the other two, and screen updating and input
can be done without any programmer knowledge of the motion
optimization, or indeed the database itself.

~.~. Terminology (~, Words XQy ~ SAy tQ Sound Brilli­
.an.:I;.)

In this document, the following terminology is kept to
with reasonable consistency:

window: An internal representation containing an image of
what a section of the terminal screen may look like at
some point in time. This subsection can either encom­
pass the entire terminal screen, or any smaller portion
down to a single character within that screen.

terminal: Sometimes called terminal screen. The package's
idea of what the terminal's screen currently looks
like, i.e., what the user sees now. This is a special
screen:

screen: This is a subset of windows which are as large as
the terminal screen, i.e., they start at the upper left
hand corner and encompass the lower right hand corner.
One of these, stdscr, is automatically provided for the
programmer.

l.Z. Compiling Things

In order to use the library, it is
certain types and variables defined.
grammer must have a line:

#include <curses.~>

at the top of the program source.

£-229

necessary to have
Therefore, the pro-

The header file

Screen Package

<curses.~> needs to include <sgtty.~>, so the one should not
do so oneself[l]. Also, compilations should have the fol­
lowing form:

.QQ [flags J file ••• -lcurses -ltermlib

~.~. Screen Updating

In order to update the screen optimally, it is neces­
sary for the routines to know what the screen currently
looks like and what the programmer wants it to look like
next. For this purpose, a data type (structure) named lUB=.
UQN is defined which describes a window image to the rou­
tines, including its starting position on the screen (the
(y, x) co-ordinates of the upper left hand corner) and its
size. One of these (called curscr for current screen) is a
screen image of what the terminal currently looks like.
Another screen (called stdscr, for standard screen) is pro­
vided by default to make changes on.

A window is a purely internal representation. It is
used to build and store a potential image of a portion of
the terminal. It doesn't bear any necessary relation to
what is really on the terminal screen. It is more like an
array of characters on which to make changes.

When one has a window which describes what some part
the terminal should look like, the routine refresh () (or
wrefresh() if the window is not stdscr) is called. ~
fresh() makes the terminal, in the area covered by the win­
dow, look like that window. Note, therefore, that changing
something on a window ~ nQt change ~ terminal. Actual
updates to the terminal screen are made only by calling ~
fresh() or wrefresh(). This allows the programmer to main­
tain several different ideas of what a portion of the termi­
nal screen should look like. Also, changes can be made to
windows in any order, without regard to motion efficiency.
Then, at will, the programmer can effectively say nmake it
look like this,n and let the package worry about the best
way to do this.

~.~. Naming Conventions

As hinted above, the routines can use several windows,
but two are automatically given: curscr, which knows what
the terminal looks like, and stdscr, which is what the pro­
grammer wants the terminal to look like next. The user

[lJ The screen package also uses the Standard I/O li­
brary, so <curses.~> includes <stdio.~>. It is redundant
(but harmless) for the programmer to do it, too.

B-238

Screen Package

should never really access curscr directly. Changes should
be made to the appropriate screen, and then the routine ~
fresh() (or wrefresh(» should be called.

Many functions are set up to deal with stdscr as a de­
fault screen. For example, to add a character to stdscr,
one calls addch() with the desired character. If a dif­
ferent window is to be used, the routine waddch() (for
~indow-specific addch(» is provided[2]. This convention of
prepending function names with a n~n when they are to be ap­
plied to specific windows is consistent. The only routines
which do nQt do this are those to which a window must always
be specified.

In order to move the current (y, x) co-ordinates from
one point to another, the routines ~() and wmoye() are
provided. However, it is often desirable to first move and
then perform some I/O operation. In order to avoid clumsy­
ness, most I/O routines can be preceded by the prefix "mx"
and the desired (y, x) co-ordinates then can be added to the
arguments to the function. For example, the calls

move(y, X)1
addch(ch) 1

can be replaced by

mvaddch(y, x, ch);

and

wmove(win, y, x) 1
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (~) comes before
the added (y, x) co-ordinates. If such pointers are need,
they are always the first parameters passed.

~. Variables

Many variables which are used to describe the terminal
environment are available to the programmer. They are:

type

WINDOW*
WINDOW*

char*
boo I

char*
int
int

name

curscr
stdscr

Def_term
My_term

ttytype
LINES
COLS

description

current version of the screen (terminal screen).
standard screen. Most updates are usually done
here.
default terminal type if type cannot be determine

use the terminal specification in Def term as ter­
minal, irrelevant of real terminal type
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal

E-231

int
int

ERR
OK

Screen Package

error flag returned by routines on a fail.
error flag returned by routines when thiI
right.

There are also several "#define" constants and types
which are of general usefulness:

reg
boo 1
TRUE
FALSE

.1. Usage

storage class "register" (e.g., ~ int i;)
boolean t¥pe, actually a "char" (e.g., ~ ~
boolean' true" flag (1).
boolean "false" flag (0).

This is a description of how to actually use the screen
package. In it, we assume all updating, reading, etc. is
applied to stdscr. All instructions will work on any win­
dow, with changing the function name and parameters as men­
tioned above.

J..~. Starting ~

In order to use the screen package, the routines must
know about terminal characteristics, and the space for
curscr and stdscr must be allocated. These functions are
performed by initscr(). Since it must allocate space for
the windows, it can overflow core when attempting to do so.
On this rather rare occasion, initscr() returns ERR. in=
itscr() must always be called before any of the routines
which affect windows are used. If it is not, the program
will core dump as soon as either curscr or stdscr are refer­
enced. However, it is usually best to wait to call it until
after you are sure you will need it, like after checking for
startup errors. Terminal status changing routines like nl()
and crmode() should be called after initscr().

Now that the screen windows have been allocated, you
can set them up for the run. If you want to, say, allow the
window to scroll, use scrollok (). If you want the cursor to
be left after the last change, use leayeok(). If this isn't
done, refresh() will move the cursor to the window's current
(y, x) co-ordinates after updating it. New windows of your
own can be created, too, by using the functions newwin() and
subwin() • delwin() will allow you to get rid of old win­
dows. If you wish to change the official size of the termi­
nal by hand, just set the variables LINES and m.I.uS. to be
what you want, and then call initscr(). This is best done
before, but can be done either before or after, the first
call to initscr(), as it will always delete any existing
stdscr and/or curscr before creating new ones.

E-232

~.2. ~ Nitty-Gritty

~ • .2..~. Output

Screen Package

Now that we have set things up, we will want to actual­
ly update the terminal. The basic functions used to change
what will go on a window are addch() and ~(). addch()
adds a character at the current (y, x) co-ordinates, return­
ing ERR if it would cause the window to illegally scroll,
i.e., printing a character in the lower right-hand corner of
a terminal which automatically scrolls if scrolling is not
allowed. ~() changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to
move off the window when scrolling is not allowed. As men­
tioned above, you can combine the two into myaddch() to -do
both things in one fell swoop.

The other output functions, such as addstr() and
printw(), all call addch() to add characters to the window.

After you have put on the window what you want there,
when you want the portion of the terminal covered by the
window to be made to look like it, you must call refresh().
In order to optimize finding changes, refresh() assumes that
any part of the window not changed since the last refresh()
of that window has not been changed on the terminal, i.e.,
that you have not refreshed a portion of the terminal with
an overlapping window. If this is not the case, the routine
touchwin() is provided to make it look like the entire win­
dow has been changed, thus making refresh() check the whole
subsection of the terminal for changes.

If you call wrefresh() with curscr, it will make the
screen look like curscr thinks it looks like. This is use­
ful for implementing a command which would redraw the screen
in case it get messed up.

~.2.2.. Input

Input is essentially a mirror image of output. The
complementary function to addch() is getch() which, if echo
is set, will call addch() to echo the character. Since the
screen package needs to know what is on the terminal at all
times, if characters are to be echoed, the tty must be in
raw or cbreak mode. If it is not, getch() sets it to be
cbreak, and then reads in the character.

~ • .2..~. Miscellaneous

All sorts of fun functions exists for maintaining and
changing information about the windows. For the most part,
the descriptions in section 5.4. should suffice.

E-233

Screen Package

~.~. Finishing YR

In order to do certain optimizations, and, on some ter­
minals, to work at all, some things must be done before the
screen routines start up. These functions are performed in
getttmode() and setterm(), which are called by initscr().
In order to clean up after the routines, the routine
endwin() is provided. It restores tty modes to what they
were when initscr() was first called. Thus, anytime after
the call to initscr, endwin() should be called before exit­
ing.

~. Cutsor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions
of this screen package without the overhead and additional
size of the screen updating functions. The screen updating
functions are designed for uses where parts of the screen
are changed, but the overall image remains the same. This
includes such programs as ~ and ~[3]. Certain other pro­
grams will find it difficult to use these functions in this
manner without considerable unnecessary program overhead.
For such applications, such as some "~hacks"[4] and op­
timizing ~(l)-type programs, all that is needed is the mo­
tion optimizations. This, therefore, is a description of
what some of what goes on at the lower levels of this screen
package. The descriptions assume a certain amount of fami­
liarity with programming problems and some finer points of
C. None of it is terribly difficult, but you should be
forewarned.

~.~. Terminal Infotmation

In order to use a terminal's features to the best of a
program's abilities, it must first know what they are[S].
The /~termcap database describes these, but a certain
amount of decoding is necessary, and there are, of course,
both efficient and inefficient ways of reading them in. The
algorithm that the uses is taken from ~ and is hideously
efficient. It reads them in a tight loop into a set of
variables whose names are two uppercase letters with some
mnemonic value. For example, .H.Q is a string which moves the

[2] Actually, addch() is really a "#define" macro with
arguments, as are most of the "functions" which deal with
stdsct as a default.

[3] ~ actually uses these functions, ~ does
[4] Graphics programs designed to run on

oriented terminals. I could name many, but they
go, so the list would be quickly out of date.
there have been programs such astocket and .9.Wl.

E-234

not.
character­

come and
Recently,

Screen Package

cursor to the "horne" position[61. As there are two types of
variables involving ttys, there are two routines. The
first, gettmode(), sets some variables based upon the tty
modes accessed by ~(2) and ~(2) The second, setterm(),
a larger task by reading in the descriptions from the
/~termcap database. This is the way these routines are
used by initscr():

.if (isatty(0)} {
gettmode () ;

}
.e.J..ae

.if (sp=getenv{"TERM"»
setterm(sp} ;

setterm{Def_term) ;
_puts (TI) ;
_puts (VS) ;

isatty() checks to see if file descriptor 0 is a termi­
nal[8]. If it is, gettmode() sets the terminal description'
modes from a ~(2) geteny() is then called to get the name
of the terminal, and that value (if there is one) is passed
to setterm(}, which reads in the variables from /~termcap
associated with that terminal. (geteny() returns a pointer
to a string containing the name of the terminal, which we
save in the character pointer ~.) If isatty() returns
false, the default terminal Def term is used. The.n and .ys
sequences initialize the terminal (puts() is a macro which
uses tputs{} (see termcap(3)} to put out a string). It is
these things which endwin() undoes.

~.z. Moyement Optimizations, ~, Getting ~ Yonder

Now that we have all this useful information, it would
be nice to do something with it[91. The most difficult

[5] If this comes as any surprise to you, there's this
tower in Paris they're thinking of junking that I can let
you have for a song.

[7] These names are identical to those variables used in
the /~termcap database to describe each capability. See
Appendix A for a complete list of those read, and termcap(5)
for a full description.

[8] isatty() is defined in the default C library function
routines. It does a ~(2) on the descriptor and checks
the return value.

[9] Actually, it ~ be emotionally fulfilling just to
get the information. This is usually only true, however, if
you have the social life of a kumquat.

£-235

Screen Package

thing to do properly is motion optimization. When you con­
sider how many different features various terminals have
(tabs, backtabs, non-destructive space, home sequences, ab­
solute tabs, •••••) you can see that deciding how to get
from here to there can be a decidedly non-trivial task. The
editor ~ uses many of these features, and the routines it
uses to do this take up many pages of code. Fortunately, I
was able to liberate them with the author's permission, and
use them here.

After using gettmode() and setterm() to get the termi­
nal descriptions, the function mvcur() deals with this task.
It usage is simple: you simply tell it where you are now and
where you want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the
middle of the screen. If you wish to force absolute ad­
dressing, you can use the function tgoto() from the term­
lih(7) routines, or you can tell mvcur() that you are impos­
sibly far away, like Cleveland. For example, to absolutely
address the lower left hand corner of the screen from any­
where just claim that you are in the upper right hand
corner:

mvcur(O, COLS-I, LINES-I, 0)

~. ~ Functions

In the following definitions, "[*]" means that the
"function" is really a "idefine" macro with arguments. This
means that it will not show up in stack traces in the de­
bugger, or, in the case of such functions as addch(), it
will show up as it's "li" counterpart. The arguments are
given to show the order and type of each. Their names are
not mandatory, just suggestive.

~.~. Output Functions

addch(~) [*]
char ch;

waddch(ldn, ~)
WINDOW *ldn.;
~ ~;

Add the character ~
(y, x) co-ordinates.

on the window. at the current
If the character is a newline

8-236

Screen Package

(18) the line will be cleared to the end, and the
current (y, x) co-ordinates will be changed to the be­
ginning off the next line if newline mapping is on, or
to the next line at the same x co-ordinate if it is
off. A return (II) will move to the beginning of the
line on the window. Tabs (II) will be expanded into
spaces in the normal tabstop positions of every eight
characters. This returns ERR if it would cause the
screen to scroll illegally.

addstr{~) [*]
~ *~;

waddstr(~, ~)
WINDOW *~;
~ *~;

Add the string pOinted to by ~ on the window at the
current (y, x) co-ordinates. This returns ERR if it
would cause the screen to scroll illegally. In this
case, it will put on as much as it can.

hQx (~, n..tl., hQI.)
WINDOW *ld.n.;
~ ~, hQI.;

Draws a box around the window using ~ as the charac­
ter for drawing the vertical sides, and hQI. for drawing
the horizontal lines. If scrolling is not allowed, and
the window encompasses the lower right-hand corner of
the terminal, the corners are left blank to avoid a
scroll.

clear() [*]

wclear(~)

WINnOW *~;

Resets the entire window to blanks. If ld.n. is a
screen, this sets the clear flag, which will cause a
clear-screen sequence to be sent on the next refresh()
call. This also moves the current (y, x) co-ordinates
to (8, 8).

clearok(~, boolf) [*]

B-237

WINDOW
.b..w2.l

*~;
boolf;

Screen Package

Sets the clear flag for the screen~. If boolf is
TRUE, this will force a clear-screen to be printed on
the next refresh(), or stop it from doing so if boolf
is FALSE. This only works on screens, and, unlike
clear(), does not alter the contents of the screen. If
~ is curscr, the next refresh() call will cause a
clear-screen, even if the window passed to refresh() is
not a screen.

clrtobot () [*]

wclrtobot(ldn)
WINDOW *~;

Wipes the window clear from the current (y, x) co­
ordinates to the bottom. This does not force a clear­
screen sequence on the next refresh under any cir­
cumstances. This has no associated "mv" command.

clrtoeolO [*]

wclrtoeol(ldn)
WINnOW *~;

Wipes the window clear from the current (y, x) co­
ordinates to the end of the line. This has no associ­
ated "mv n command.

delch()

wdelch(ldn)
WINnOW *~;

Delete the character at the current (y, x) co­
ordinates. Each character after it on the line shifts
to the left, and the last character becomes blank.

deleteln ()

wdeleteln(ldn)
WINnOW *~;

£-238

Screen Package

Delete the current line. Every line below the current
one will move up, and the bottom line will become
blank. The current (y, x) co-ordinates will remain un­
changed.

erase() [*]

werase(!d.in)
WINDOW *!d.ini

Erases the window to blanks without setting the clear
flag. This is analagous to clear(), except that it
never causes a clear-screen sequence to be generated on
a refresh(). This has no associated Rmv R command.

insch<'~)
~ s:.i

winsch(!d.in, s:.)
WINDOW *nni
s:.hll s:.1·

Insert s:. at the current (y, x) co-ordinates Each char­
acter after it shifts to the right, and the last char­
acter disappears. This returns ERR if it would cause
the screen to scroll illegally.

insertln ()

winsertln(!d.in)
WINnow *!d.ini

Insert a line above the current one. Every line below
the current line will be shifted down, and the bottom
line will disappear. The current line will become
blank, and the current (y, x) co-ordinates will remain
unchanged. This returns ERR if it would cause the
screen to scroll illegally.

~(:lo, x) [*]
:int. :lo, X;

wmoye (!d.in, :lo, x)
WINnow *!d.ini
:int. :lo, X;

B-239

Screen Package

Change the current (y, x) co-ordinates of the window to
(~, X). This returns ERR if it would cause the screen
to scroll illegally.

overlay(~, ~)
WINDOW *~, *~;

Overlay ~ on~. The contents of ~, insofar as
they fit, are placed on ~ at their starting (y, x)
co-ordinates. This is done non-destructively, ~.e.,
blanks on ~ leave the contents of the space on ~
untouched.

oyerwrite(~, ~)

WINDOW *~, *~;

Overwrite ~ on~. The contents of~, insofar
as they fit, are placed on ~ at their starting
(y, x) co-ordinates. This is done destructively, i.e.,
blanks on ~ become blank on ~.

printw(fmt, ~, ~, •••)
~ *.fm.t;

wprintw(~, fmt, ~, ~, •••)
WINDOW *liin;
~ *.fm.t;

Performs a printf() on the window starting at the
current (y, x) co-ordinates. It uses addstr() to add
the string on the window. It is often advisable to use
the field width options of printf() to avoid leaving
things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refresh() [*]

wrefresh(l'Lin)
WINDOW *liin;

Synchronize the terminal screen with the desired win­
dow. If the window is not a screen, only that part
covered by it is updated. This returns ERR if it would
cause the screen to scroll illegally. In this case, it
will update whatever it can without causing the scroll.

£-241

Screen Package .

standout () [*]

wstandout(ldn)
WINDOW *ldn;

standend () [*]

wstandend(ldn)
WINPOW *ld.n;

Start and stop putting characters onto xin in standout
mode. standout{) causes any characters added to the
window to be put in standout mode on the terminal (if
it has that capability). standend() stops this. The
sequences ao and S£ (or US and ll£ if they are not de­
fined) are used (see Appendix A).

~.~. Input Functions

crmode () [*]

noc rmode () [*]

Set or unset the terminal to/from cbreak mode.

~() [*]

noecho () [*]

Sets the terminal to echo or not echo characters.

getch() [*]

wgetch(ldn)
WINDOW *ld.n;

Gets a character from the terminal and (if necessary)
echos it on the window. This returns ERR if it would
cause the screen to scroll illegally. Otherwise, the
character gotten is returned. If noecho has been set,
then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of
noecho, cbreak, or rawmode set. If you do not set one,
whatever routine you call to read characters will set
cbreak for you, and then reset to the original mode
when finished.

E-241

Screen Package

getstr (.a.tI.) [*]
~ *.a.tI.;

wgetstr(~, .a.tI.)
WINDOW *ld.n;
~ *.a.tI.;

Get a string through the window and put it in the loca­
tion pOinted to by.a.tI., which is assumed to be large
enough to handle it. It sets tty modes if necessary,
and then calls getch() (or wgetch(ld,n» to get the
characters needed to fill in the string until a newline
or EOF is encountered. The newline stripped off the
string. This returns ERR if it would cause the screen
to scroll illegally.

u.w() [*]

noraw () [*]

Set or unset the terminal to/from raw mode. On version
7 DElX[li] this also turns of newline mapping tsee
n.lO).

scanw (.fmt., AI.Sll" AIS.2" •••)
~ *.fmt.;

wscanw(ld,n, .fmt., AI.Sll" AL92, •••)
WINDOW *ld.n;
~ *.fmt.~

Perform a scanf() through the window using.fmt.. It
does this using consecutive getch() 's (or
wgetch(ld,n) IS). This returns ERR if it would cause the
screen to scroll illegally.

5.1. Miscellaneous Functions

delwin(ld,n)
WINDOW *ld.n;

Deletes the window from existence. All resources are
freed for future use bycalloc(3). If a window has a

[10] mux. is a trademark of Bell Laboratories.

£-242

Screen Package

subwin() allocated window inside of it, deleting the
outer window the subwindow is not affected, even though
this does invalidate it. Therefore, subwindows should
be deleted before their outer windows are.

endwin ()

Finish up window routines before exit. This restores
the terminal to the state it was before initscr() (or
gettmode() and setterm(» was called. It should always
be called before exiting. It does not exit. This is
especially useful for resetting tty stats when trapping
rubouts via signal(2).

getyx(xin, ~, X} [*]
WINDOW *ldn;
.in.t ~, X;

Puts the current (y, x) co-ordinates of xin in the
variables ~ and X. Since it is a macro, not a func­
tion, you do not pass the address of ~ and X •

.iD&h(} [*]

winch(xin) [*]
WINDOW *ldni

Returns the character at the current (y, x) co­
ordinates on the given window. This does not make any
changes to the window. This has no associated Rmv R
command.

initscr ()

Initialize the screen routines. This must be called
before any of the screen routines are used. It ini­
tializes the terminal-type data and such, and without
it, none of the routines can operate. If standard in­
put is not a tty, it sets the specifications to the
terminal whose name is pOinted to by Def term (initialy
Rdumb R). If the boolean My term is true, Det term is
always used.

B-243

Screen Package

leayeok(~, boolf) [*]
WINDOW *~;
hQQl boolf;

Sets the boolean flag for leaving the cursor after the
last change. If boolf is TRUE, the cursor will be left

'after the last update on the terminal, and the current
(y, x) co-ordinates for ~ will be changed according­
ly. If it is FALSE, it will be moved to the current
(y, x) co-ordinates. This flag (initialy FALSE) re­
tains its value until changed by the user.

longname(termbuf, ~)
~ *termbuf, *~;

Fills in ~ with the long (full) name of the terminal
described by the termcap entry in termbuf. It is gen­
erally of little use, but is nice for telling the user
in a readable format what terminal we think he has.
This is available in the global variable ttytype.
Tetmbuf is usually set via the termlib routine
tgetent() •

mvwin (lfin, :/., x)
WI NPOW *lfin;
.int :/., X;

Move the home position of the window lfin from its
current starting coordinates to (:/., X). If that would
put part or all of the window off the edge of the ter­
minal screen, mywin() returns ERR and does not change
anything.

WINPOW *
newwin(lines, ~, begin y, begin x)
int lines, ~, begin y, begin x;

Create a new window with lines lines and ~ columns
starting at position (begin y, begin x). If either
lines or ~ is 9 (zero), that dimension will be set
to (LINES - begin y) or (~ - begin x) respectively.
Thus, to get a new window of dimensions LINES x ~,
use newwin(~, ~, ~, ~) •

.nlO [*]

Screen Package

.ruml. () [*]

Set or unset the terminal to/from nl mode, i.e.,
start/stop the system from mapping <RETURN> to <~­
~>. If the mapping is not done, refresh() can do
more optimization, so it is recommended, but not re­
quired, to turn it off.

scrollok (ldn, boolf) [*]
WINDOW *ldn;
~ boolf;

Set the scroll flag for the given window. If boolf is
FALSE, scrolling is not allowed. This is its default
setting.

touchwin(ldn)
WINDOW *n,n;

Make it appear that the every location on the window
has been changed. This is usually only needed for re­
freshes with overlapping windows.

WINDOW *
subwin(ldn, lines, ~, begin y, begin x)
WINDOW *nn.;
int lines, ~, begin y, begin x;

Create a new window with lines lines and ~ columns
starting at position (begin y, begin x) in the middle
of the window~. This means that any change made to
either window in the area covered by the subwindow will
be made on both windows. begin y, begin x are speci­
fied relative to the overall screen, not the relative
(0, 0) of~. If either lines or ~ is 0 (zero),
that dimension will be set to (LINES - begin y) or
(~ - begin x) respectively.

uDctrl (.c..h) [*]
~ .c..h;

This is actually a debug function for the library, but
it is of general usefulness. It returns a string which
is a representation of.c..h. Control characters become
their upper-case equivalents preceded by a nAn Other

E-245

Screen Package

letters stay just as they are. To use unctrl(), you
must have iinclude <unctrl.~> in your file •

.5. • .i. Details

gettmode ()

Get the tty stats. This is normally called by in=
itscr () •

mycur(lasty, lastx, ~, ~)
int lasty, lastx, ~, ~;

Moves the terminal's cursor from (lasty, lastx) to
(~,~) in an approximation of optimal fashion.
This routine uses the functions borrowed from ~ ver­
sion 2.6. It is possible to use this optimization
without the benefit of the screen routines. with the
screen routines, this should not be called by the user.
lIUlY.e. () and refresb () should be used to move the cursor
position, so that the routines know what's going on.

scroll(ldn)
WINPOW *ldn;

Scroll the window upward one line.
not used by the user.

This is normally

sayetty() [*]

resetty () [*]

sayetty() saves the current tty characteristic
resetty() restores them to what sayetty()
These functions are performed automatically
itscr() and endwin().

setterm(~)
~ *~;

flags.
stored.
by in=

Set the terminal characteristics to be those of the
terminal named~. This is normally called by in=
itscr () •

£-246

Screen Package

If the new ~(4) driver is in use, this function will
save the current tty state and then put the process to
sleep. When the process gets restarted, it restores
the tty state and then calls wrefresh(curscr) to redraw
the screen. initscr() sets the signal SIGTSTP to trap
to this routine.

£-247

Appendix A

1. Capabilities ~ termcap

1.1. Disclaimer

The description of terminals is a difficult business,
and we only attempt to summarize the capabilities here: for
a full description see the paper describing termcap.

Overview

Capabilities from termcap are of three kinds: string
valued options, numeric valued options, and boolean options.
The string valued options are the most complicated, since
they may include padding information, which we describe now.

Intelligent terminals often require padding on intelli­
gent operations at high (and sometimes even low) speed.
This is specified by a number before the string in the capa­
bility, and has meaning for the capabilities which have a ~
at the front of their comment. This normally is a number of
milliseconds to pad the operation. In the current system
which has no true programmable delays, we do this by sending
a sequence of pad characters (normally nulls, but can be
changed (specified by ~». In some cases, the pad is
better computed as some number of milliseconds times the
number of affected lines (to the bottom of the screen usual­
ly, except when terminals have insert modes which will shift
several lines.) This is specified as, e.g., ll*. before the
capability, to say 12 milliseconds per affected whatever
(currently always line). Capabilities where this makes
sense say .f*.

l.~. Variables ~ ~ setterm()

Type Name

char * AL
bool AM
char * BC
bool BS
char * BT
bool CA
char * CD
char * CE
char * CL
char * CM
char * DC
char * DL
char * DM

variables set by setterm()

Pad Description

p* Add new blank Line
Automatic Margins
Back Cursor movement
BackSpace works

P Back Tab
Cursor Addressable

p* Clear to end of Display
P Clear to End of line
p* CLear screen
P Cursor Motion
p* Delete Character
p* Delete Line sequence

Delete Mode (enter)

B-248

Type Name

char * DO
char * ED
bool EO
char * EI
char * HO
bool HZ
char * IC
bool IN
char * IM
char * IP
char * LL
char * MA
bool MI
bool NC
char * NO
bool OS
char PC
char * SE
char * SF
char * SO
char * SR
char * TA
char * TE
char * TI
char * UC
char * UE
bool UL
char * UP
char * US
char * VB
char * VE
char * VS
bool XN

Appendix A

variables set by setterm()

Pad Description

DOwn line sequence
End Delete mode
can Erase Overstrikes with ' ,
End Insert mode
HOme cursor
HaZeltine - braindamage

P Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)

p* Pad after char Inserted using IM+IE
quick to Last Line, column 0
ctrl character MAp for cmd mode
can Move in Insert mode
No Cr: sends then eats
Non-Destructive space
OverStrike works
Pad Character
Standout End (may leave space)

P Scroll Forwards
Stand Out begin (may leave space)

P Scroll in Reverse
P TAb (not AI or with padding)

Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
UnderLining works even though lOS
UPline
Underline Starting sequence[ll]
Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous
glitches

~.~. variables ~ ~ gettmode()

variables set by gettmode()

type name description

bool NONL Term can't hack linefeeds doing a CR

[11] US and UE, if they do not exist in the termcap en­
try, are copied from SO and SE in setterm()

B-249

type

bool
bool

name

GT
UPPERCASE

Agpendix A

variables set by gettIDode()

description

Gtty indicates Tabs
Terminal generates only uppercase letters

£-258

Appendix :a

~.
~ WINDOW structure

The WINDOW structure is defined as follows:

define

struct _win_st {
short
short
short
short
bool
bool
bool
~
short
short

} ;

define
i define
define
define
define

WINDOW

_cury, _curx;
_maxy, ~axx;
_begy, _begx;
_flags;
_clear;
_leave;
_scroll;
**-y;
*_firstch;
*_lastch;

_SUBWIN
_ENDLINE
_FULLWIN
_SCROLLWIN
_STANDOUT

91
92
94
919
9299

cury and curx are the current (y, x) co-ordinates for
the window. New characters added to the screen are added at
this point. maxy and maxx are the maximum values allowed
for (cury, curx). begy and begx are the starting (y, x)
co-ordinates on the terminal for the window, i.e., the
window's home. cury, curx, maxy, and maxx are measured
relative to (begy, begx), not the terminal's home.

clear tells if a clear-screen sequence is to be gen­
erated on the next refresh() call. This is only meaningful
for screens. The initial clear-screen for the first ~
fresh() call is generated by initially setting clear to be
TRUE for curscr, which always generates a clear-screen if
set, irrelevant of the dimensions of the window involved.

leave is TRUE if the current (y, x) co-ordinates and the
cursor are to be left after the last character changed on
the terminal, or not moved if there is no change. scroll
is TRUE if scrolling is allowed.

-y is a pointer to an array of lines which describe the
terminal. Thus:

is a pointer to the ~th line, and

_y[i] [j]

is the ith character on the ~th line.

£-251

Appendix B

flags can have one or more values or'd into it.
SUBWIN means that the window is a subwindow, which indi­

cates to delwin() that the space for the lines is not to be
freed. ENDLINE says that the end of the line for this win­
dow is also the end of a screen. FULLWIN says that this
window is a screen. SCROLLWIN indicates that the last
character of this screen is at the lower right-hand corner
of the terminal 1 .i.~., if a character was put there, the
terminal would scroll. STANPOUT says that all characters
added to the screen are in standout mode.

£-252

Appendix C

~. Examples

Here we present a few examples of how to use the pack-
age. They attempt to be representative, though not
comprehensive.

~. Screen Updating

The following examples are intended to demonstrate the
basic structure of a program using the screen updating sec­
tions of the package. Several of the programs require cal-
.culational sections which are irrelevant of to the example,
and are therefore usually not included. It is hoped that
the data structure definitions give enough of an idea to al­
low understanding of what the relevant portions do. The
rest is left as an exercise to the reader, and will not be
on the final •

.2..~. Twinkle

This is a moderately simple program which prints pretty
patterns on the screen that might even hold your interest
for 3~ seconds or more. It switches between patterns of as­
teriSKS, putting them on one by one in random order, and
then taking them off in the same fashion. It is more effi­
cient to write this using only the motion optimization, as
is demonstrated below.

include
include

/*

<curses.h>
<signal.h>

* ~ ~ ~ ~ program ~ ~ product ~ ~ imagination Qf
* ~ Schoens. ~ responsible ~ minds lQat ~ stolen.
*/

define
define
define

struct locs {
~

} ;

typedef struct locs

NCOLS 8~
NLINES 24
MAX PATTERNS 4

y, Xi

LaCS;

£-253

Appendix e

Loes Layout[NeOLS * NLINES]; 1* current board laYQut *1

Pattern,
Numstars;

1* current pattern number *1
1* number Qf stars in pattern */

mainmain () {

}

*getenv() ;
die () ;

srand (getpid ()) ; 1* initialize random seguence *1

initscr () ;
signal (SIGINT, die);
noecho() ;
nonl () ;
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

.f.Q.t. (;;) {

}

makeboard () ;
puton (I * I) ;
puton (I I);

1* ~ .the. board u.tJJ
1* ml.t .QIl 1*1,a *1
1* cover .lm lti.th I l,a

1*
* Qn program ~, ~ .the. cursor tQ .the. lower ~ corner ~
* direct addreseing, eince current location ia nQt guaranteed.
* ~ .l..i..e .Qn.d ~ ~ ~ tQ ~ .at. .the. upper right corner .t.o. guarantee
* abeolute addreeeing.
*1

diedie () {

}

signal (SIGINT, SIG_IGN);
mvcur(0, eOLS-l, LINES-I, 0);
endwin() ;
exit(0);

1*
* ~ .the. current board eetUp. ~ picke ~ random pattern And
* calle ,.U,Qn() tQ determine .if .the. character II .Q.n ;that.. pattern
* .Q..t. nQt.
*1

makeboardmakeboard() {

reg .in..t
reg LOeS

y, x;
*lp;

E-254

Appendix C

Pattern = rand() % MAXPATTERNS;
1p = Layout;
~ (y = 9; y < NLINES; y++)

~ (x = 9; x < NCOLS; x++)
.if. (ison (y, x» {

1p->y = y;
1p++->x = x;

}
Numstars = 1p - Layout;

}

/*
* Return IRllS.i.f. (~, X) ~ ~ ~ current pattern.
*/

isonison(y, x)
reg int y, x; {

alrlit~ll (Pattern) {
~ 9: /* altet:nating linea

t:etIJt:n ! (y & 91) ;
~ 1: /* h.Qx. */

.i.f. (x >= LINES && Y >= NCOLS)
t:etIJt:n FALSE;

.i.f. (y < 3 II y >= NLINES - 3)
t:etIJt:n TRUE;

t:etIJt:n (x < 3 II x >= NCOLS -

~ 2: /* ~ Pattet:n! */
t:etIJt:n «x + y) & 91);

*/

3) ;

~ 3: /* ~ act:osa centet: */
t:etIJt:n (y >= 9 && Y <= 15);

}

/* NOTREACHED */
}

putonputon(ch)
reg &b.a.I.

}

reg LOCS
regint
reg LOCS
LOCS

*lp;
r;
*end;
temp;

end = &Layout[Numstars];
~ (lp = Layout; lp < end; Ip++) {

r = rand() % Numstars;
temp = *lp;

}

*lp = Layout[r];
Layout[r] = temp;

~ (lp = Layout; 1p < end; 1p++) {
mvaddch(lp->y, Ip->x, ch);
refresh () ;

}

£-255

Appendix C

This program plays the famous computer pattern game of
life (Scientific American, May, 1974). The calculational
routines create a linked list of structures defining where
each piece is. Nothing here claims to be optimal, merely
demonstrative. This program, however, is a very good place
to use the screen updating routines, as it allows them to
worry about what the last position looked like, so you don't
have to. It also demonstrates some of the input routines.

include
include

/*

<curses.h>
<signal.h>

* RYn 4 ~~. ~ ~ A demonstration program ~
* ~ Screen Updating section ~ ~ -lcurses cursor package.
*/

struct lst_st {
int y, x:
struct lst_st

b

typedef struct lst_st

""LIST *Head:

mainmain(ac, av)
int ac:
~ *av[]; {

}

int die () :

evalargs(ac,"av) ;

initscr () ;
signal(SIGINT, die);

crmode() ;
noecho() ;
nonl () :

getstart () ;
.f.Q.I. (;;) {

}

prboard () ;
update () ;

/* linked l..i...a..t. element */
" /* (~, X) position ~ ~

.next, *last;/* doubly linked */

LIST;

E-256

/* ~ ~ linked .l.i.at. */

/* evaluate arguments */

/* initialize screen packag
" /* .a.e.t .tQ resto re ~ stats

/* .a.e.t ~ ~-hY-~ */
/*
/* .f.Q.I. optimization */

/* ~ starting position */

/* print ~ current board
/* update board position */

Appendix e

/*
* lhiA ~ ~ routine which ~ called ~ rubout ~ ~.
* ~ resets ~ ~ stats ~ their original values. ~
* ia ~ normal ~ ~ leaving ~ program~
*/

diedie () {

}

signal(SIGINT, SIG_IGN);
mvcur(0, eOLS-l, LINES-I,
endwin () ;
exit(0);

/* ignore rubouts */
0) ; /* SQ ~ bottom ~ screen */

/* ~ terminal ~ initial state

/*
* ~ ~ starting position ~ ~~. ~ ~ ~, ~, ~, i, ~,
* m, " And • ~ ~ ~ moving their relative directions ~ ~
* k~. ~, ~ ~ diagonally YR ~ ~~, , moves directly ~,
*~. X places A piece At ~ current position, " " takes ~ ~.
* ~ input ~ ~ he .f..r.wn .a~. ~.l.at. ~ built after ~
* board setup ~ ready.
*/

getstartgetstart() {

reg ~
reg ..i..n.t

c;
x, y;

box(stdscr, 'I', '_');
move(l,I);

/* ~ in ~ screen */
/* ~ ~ upper ~ corner */

.dQ{
refresh() ; /* print current position */

I q') if «c=getch(» ==

switch
~

~
~
~

~
~
~
~

break;
(c) {
, u' :
, i' :
'0' :
• j , :
I I' :
'm I :

, '. , .
, I. . .

adjustyx(c);
break;

~ If':
mvaddstr(0, 0, "File name: ");
getstr(buf);
readfile(buf);
break;

~ 'x':
addch('X') ;
break;

B-257

}

/*

Appendix C .

}
}

, ' . .
addch (' ');
break;

it (Head 1= NULL)
dellist(Head);

Head = malloc(sizeof (LIST»;

/*

/* start lUll'l .JJJ

* ~ through ~ screen looking ~ 'X'~, ~ ~ ~ ~
* element ~ ~ ~
*/
~ (y = 1; y < LINES - 1; y++)

~ (x = 1; x < COLS - 1; x++) {
move(y, x);

}

it (inc h () == 'x')
addlist(y, x);

* Print QUt ~ current board position !LQm ~ linked ~
*/

prboardprboard() {

reg LIST

erase () ;
box(stdscr,

/*

, I I ,

*hp;

I '). - ,
/* clear ~ ~ positiol
/* ~ in ~ screen */

* gQ through ~ ~ adding ~ piece ~ ~ newly
* blank board
*/
~ (hp = Head; hp; hp = hp->next)

mvaddch(hp->y, hp->x, 'X');

refresh () ;
}

l. Motion optimization

The following example shows how motion optimization is
written on its own. Programs which flit from one place to
another without regard for what is already there usually do
not need the overhead of both space and time associated with
screen updating. They should instead use motion optimiza­
tion.

l . .l. Twinkle

The twinkle program is
tion optimization. Here
the routines that have been

a good candidate for simple mo­
is how it could be written (only
changed are shown):

R-:25R

Appendix C

mainmain() {

}

*sp; reg ~
~
.in.t.

*getenv() ;
_putchar (), die () ;

srand(getpid(» ; /* initialize random seguence */

.if (isatty(0» {
gettmode () ;

}
~{

.if. (sp=getenv("TERM"»
setterm(sp) ;

signal (SIGINT, die);

printf(nNeed a terminal on %d0, _tty_ch);
exit(l) ;

}
_puts(TI);
_puts(VS);

noecho() ;
nonl () ;
tputs(CL, NLINES, _putchar);
.f.Q.t. (;;) {

}

makeboard() ;
puton('*');
puton (' ');

/* ~ ~ board setup */
/* lW.t .QIl '*'.a. */
/* coyer ~ ~ , '.a. */

/*
* putchar defined .f.Q.t. tputs() (And puts(»
*/

_putchar_putchar(c)
reg ~ c; {

putchar(c);
}

putonputon(ch)
~ ch; {

static .in.t.
reg LOCS
reg .in.t.
reg LOCS
LOCS

lasty, lastx;
*lp;
r;
*end;
temp;

end = &Layout[Numitars];
.f.Q.t. (lp = Layout; Ip < end; Ip++) {

r = rand() % Numstars;
temp = *lp;

}

*lp = Layout[r];
Layout[r] = temp;

£-259

}

Appendix C

~ (lp = Layout; Ip < end; Ip++)
/* prevent scrolling */

~ (lAM I I (lp->y < NLINES - 1 I I Ip->x < NCOLS - 1» {
rnvcur(lasty, lastx, Ip->y, Ip->x);
putchar(ch) ;

}

lasty = Ip->y;
~ «lastx = Ip->x + 1) >= NCOLS)

~ (AM) {
lastx = 9;
lasty++;

lastx = NCOLS - 1;

£-268

ALms 586 AlII) ACS 8611 COBP~R SYS'rEII XEBIX DEVELOPllElftI SYSTBII
PROGRAIUIER· S REFERERCE GUIDE

READER COMMENT FORM

Altos Computer Systems
2641 Orchard Park Way

San Jose, CA 95134

This document has been prepared for use with your Altos Computer
System. Should you find any errors or problems in the manual, or
have any suggestions for improvement, please return this form to
the ALTOS PUBLICATIONS DEPARTMENT. Do include page numbers or
section numbers, where applicable.

System Model Number ____________________ _

Serial Number ______________ __

Document Title __ __

Revision Number _________________________ Date ______________________ _

Name __ __

Company Name __ __

Address __ __

