Series 386

™

1

Altos System V

Reference (M)

Document
History

EDITION PART NUMBER : DATE

First Edition 690-22870-001 December 1988
Second Edition '690-22870-002 ~ " June 1989

Copyright
Notice

Manual Copyright ©1988, 1989 Altos Computer Systems’

Programs Copyright ©1988, 1989 Altos Computer Systems

All rights reserved. Printed in U.S.A.

Unless you request and receive written permission from Altos Computer Systems, you
may not copy any part of this document or the software you received, except in the
normal use of the software or to make a backup copy of each diskette you received.

Trademarks

The Altos logo, as it appears in this manual, is a registered trademark of Altos
Computer Systems.

¥
Altos System V is a trad k of Altos Comp S:

J

CP/M and MP/M are trademarks of Digital Research.

DOCUMENTER’S WORKBENCH is a trademark of AT&T Technologies.
IBM is a registered trademark of International Business Machines Corporation.
LaserJet is a trademark of Hewlett Packz_trd Company.

MS-DOS is a registered trademark of Micx;osoft Corporation,

UNIX is a registered trademark of AT&T.

WorkNet I is a trademark of Altos Computer S

"y

XENIX is a registered trademark of Microsoft Corporation.

Limitations

Altos Computer Systems reserves the right to make changes to the product described
in this manual at any time and without notice. Neither Altos nor its suppliers
make any warranty with respect to the accuracy of the information in this manuat.

GUIDE TO YOUR ALTOS SYSTEM V™
SERIES 386 DOCUMENTATION

RUN-TIME SYSTEM

Installation
' Part numbers:

s Installation and upgrade
e Set up Multidrop and UPS

Using the AOM™ Menu System
Part number: 690-18055-nnn
« Easy-to-use menus to

access programs
Menu Manager to add, update,
remove menus

690-21170-nnn
690-21869-nnn

Operations Guide
Part number: 690-21171-nnn

e System administration
e Accounting, file systems
« Backups, port setup
.
.

Communications (UUCP)
Error messages

Reference (C)

Part number: 690-22869-nnn

« Commands (C)
Reference (M)
Part number: 690-22870-nnn
m e Miscellaneous files (M)

User's Guide
Part number: 690-21178-nnn
{Not shipped with the Run-time system)

o Basic concepts and tasks
o Vi, ed, mail, awk, sed
o Shells: sh aad csh

TEXT PROCESSING SYSTEM

DOCUMENTER’S WORKBENCH™

Part numbers: 6$0-15843-nnn
690-15844-nnn

¢ Mm macros, reference
« Nroff, troff, tbl, eqn

DEVELOPMENT SYSTEM

Set part number: 690-21585-000
Reference (CP, S, F) x
« Programming commands (CP)

e System calls, library routines (S)
« File formats (F)

Programmer’s Gulde

« Make, SCCS

e Lex, yacc

o Signals, system resources,
device drivers

e Adb, sdb

o Shared libraries

C Compiller Library and User’s Guide
1/0 functions, pipes
Curses, terminfo
Assembly routines
As, cc, COFF, lint, 1d
Error processing
Character and string processing

e 0o 00 0 0

C Compller Language Reference

Elements of C

Program structure
Declarations, expressions
Statements, functions
Preprocessor directives

Macro Assembler User’'s Gulde
and Reference

How to use masm
Error messages

Type declarations
Operands, expressions
Directives, file control
Instruction summary

‘o order the User's Guide or any of the above manuals, call 408/434-6688, ext. 3004

nd give the manual title and part number.

Permuted Index

The Permuted Index on the following pages contains a listing of
programs, utilities, files, etc. in the Altos System V Run-time

and Development Systems. These programs are described in the
Altos System V Reference. Volume 1 of the Reference contains the
Run-time system commands (C) and miscellaneous (M) sections.
Volume 2 contains the Development system programming commands
(CP), system calls and library routines (S), and file formats (F).
Entries in each section are in alphabetical order.

NOTE
These programs, utilities, files, etc. are

subject to change.

The table that follows contains a description of each section and
its location.

Permuted Index

Description Section Manual
Run-time commands C Reference (C)
Miscellaneous -- programs M Reference (M)

and system files used for
system maintenance and to
access devices

Programming commands CpP Reference (CP, S, F

System calls and library S Reference (CP, S, F
routines for C and assembly
language programming

File formats -- programs F Reference (CP, S, F
and system files not de-
fined in the M section

PI-2

as (CP)
13tol(S) ltol3(S) convert between
tk(C) paginator for Tektronix

integer and base-64 ASCII string

abs(S) return integer
ceil(S) fabs(S) floor, ceiling, and
floor(s) fmod(S) floor, ceiling. and

requests

settime(C) change the

touch(C) update

utime(S) set file

login(C) give you system

sputl(S) sgetl(S)

dos (C)

sadp (M) disk

ldfcn(F) common object file
sdwaitv(S) synchronize shared data
sdenter(S) sdleave(S) synchronize
waitsem(S) nbwaitsem(S) wait and check
clock(M) provide

getutent(S) utmpname(S) endutent(S)
getut(S) setutent(S) getutline(S)
access(S) determine

file

csplit(C) split files

acct(S) enable or disable process
acct (M) format of per-process
acct(C)

file

accounting

trig(S) sin(S) cos(S) tan(S) asin(s)
killall(C) kill all

sar(C) system

sar(M) system

sact (CP) print current SCCS file edit
debugger

add. hd(C)

n1(c)

map badblock(C)

ipinit(M)

putenv(S) change or

add.hd(C) add an
upgrade.hd(C) upgrade an
files

admin(CP) create and
ua(C) user

uadmin(S)

machines

mail alias file
alarm(S) set a process

brk(S) sbrk(S) change data segment space

Permuted Index

386 Assembler

3-byte integers and long integers

4014

a641(S) 164a(S) convert between long __
abort(S) generate an IOT fault

absolute value

abgolute value functions floor(s)
absolute value functions

abs(S) return integer absolute value ___
accept(C) reject(C) allow/prevent print
access and modification dates of files _
access and modification times of a file _
access and modifiéation times

access

access long integer data
MS-DOS files

profiler

access

access

routines
sdgetv(S)
to a shared data segment

access

access

access
access to semaphore resource
to the time-of-day chip

utmp file entry getut(S)

access
access
access utmp file entry

accessibility of a file

access(S) determine accessibility of a __
according to context

accounting

accounting file
accounting system

acct(C) accounting system'
acct(M) format of per-process accounting

acct(S) enable or disable process
acos(S) trigonometric functions
active pr

activity report

activity report

activity
adb(C) invoke x.out general purpose

add an additional hard disk

add line numbers to a file

add new bad sectors to the bad sector ___
add new line printers

add value to environment

add.hd(C) add an additional hard disk __
additional hard disk

additional hard disk

admin(CP) create and administer SCCS ____
administer SCCS files

administration program
administrative control

aftp(C) transfer files between Altos
aliases(M) mail alias file
aliashash(M) rebuild data base for
alarm clock

alarm(S) set a process alarm clock

allocation

PI-3

as(CP)
13tol(S)
tk(C)
a641(s)
abort (S)
abs(s)
floor(S)
floor(S)
abs(S)

_ accept(C)

settime(C)
touch(C)
utime(S)
login(C)
sputl(S)
dos (C)
sadp (M)
1dfcn(F)
sdgetv(S)
sdenter(S)
waitsem(S)
clock (M)
getut (S)
getut (S)
access(S)
access(S)
csplit(C)
acct(s)
acct (M)
acct(C)
acect(C)
acct (M)
acct(S)
trig(s)
killall(C)
sar(C)

sar (M)
sact (CP)
adb(C)
add. hd(C)
nl({C)
badblock(C)
1pinit (M)
putenv(S)
add. hd(C)
add.hd(C)
upgrade. hd(C)
admin (CP)
admin (CP)
ua(C)
uadmin(S)

aftp(C)

aliases (M)
aliashash(M)
alarm(s)
alarm(S)
brk(s)

Permuted Index

free(S) realloc(S) fast main memory

allocator malloc(S) malloc(S)
malloc(S) main memory allocator malloc(S)
mallopt(S) calloc(S) fast main memory allocator malloc(S) mallinfo(S) malloc(S)
terminal mesg(C) allow or disallow messages sent to a _ mesg(C)
get and set maximum number of users allowed to log in numusers(S) numusers(S)
accept(C) reject(C) allow/prevent print requests accept (C)
aftp(C) transfer files between Altos machines aftp(C)
lex(CP) generate programs for lexical analysis lex(CP)
editor output a.out(F) format of assembler and link ___ a.out(F)
dc(C) arbitrary precision calculator dc(C)
be(C) arbitrary-precision arithmetic language _ bc(C)
cpio(F) format of cpio archive cpio(F)
ar(F) archive file format ar(F)
xar (F) archive file format xar (F)
the archive header of a member of an archive file ldahread(S) read ldahread(s)
tar(C) archive files tar(C)
file ldahread(S) read the archive header of a member of an archive 1ldahread(s)
streaming tape archive(C) save a file system to a archive(C)
ar(CP) maintain archives and libraries ar{CP)
xar (CP) maintain archives and libraries xar (CP)
cpio(C) copy file archives in and out cpio(C)
ranlib(CP) convert archives to random libraries ranlib(CP)
ar(CP) maintain archives and libraries __ ar(CP)
ar(F) archive file format ar(F)
varargs(F) handles variable argument list varargs (F)
getopt(S) get option letter from argument vector getopt(S)
expr(C) evaluate arguments as an expression expr (C)
echo(C) echo arguments echo(C)
be(C) arbitrary-precision arithmetic 1 be(C)
asa(C) interpret asa carriage control characters asa(C)
characters asa(C) interpret asa carriage control ____ asa(C)
ascii(M) map of the ASCII character set ascii(M)
convert between long integer and base-64 ASCII string a641(S) 164a(S) a641(s)
agcii(M) map of the ASCII character set _ ascii(M)
as(CP) 386 Assembler as(CP)
time to string ctime(S) tzset(S) asctime(S) cftime(S) convert date and ___ ctime(S)
trig(S) sin(S) cos(S) tan(S) asin(S) acos(S) trigonometric functions _ trig(s)
asktime(C) set the system time of day ___ asktime(C)
a.out(F) format of assembler and link editor output a.out(F)
as(CP) 386 bler as(CP)
masm(CP) invoke the macro bler masm (CP)
assert(S) verify program assertion assert (S)
assert(S) verify program assertion assert(S)
setbuf(S) setvbuf(s) assign buffering to a stream setbuf (S)
trig(s) atan(s) atan2(S) trigonometric functions trig(s)
trig(s) atan(S) atan2(S) trigonometric functions trig(S)
later time at(C) batch(C) execute commands at a _____ at(C)
double-precision number strtod(s) atof(S) convert string to strtod(S)
strtol(S) atol(s) atoi(S) convert string to integer strtol(s)
integer strtol(sS) atol(S) atoi(S) convert string to strtol(s)
adget (S) sdfree(S) attach and detach a shared data segment _ sdget(S)
reboot (C) automatically reboot the system reboot (C)
reboot the system autoreboot(C) automatically ________ autoreboot(C
language awk(C) pattern scanning and processing __ awk(C)
wait(C) wait completion of background wait(C)
finc(M) fast incr al bach finc(M)
ckbupscd(M) check file syst kup dule bup M)

frec(M) recover files from a
badblock(C) add new bad sectors to the
badblock(C) add new

bad sector map

164a(S) convert between long integer and
of pathnames

time at(C)

language

diff

cb(CP)

bessel(S) jO(S) yO(S)

bfs(C) scan

fwrite(S) fread(s)
whereis(C) locate source,
bsearch(S)

tdelete(S) twalk(S) manage
creatsem(S) create a

tfind(S)

reset(C) reset the teletype

ssp(C) remove consecutive

sync(S) update super

df(M) report number of free disk
sum(C) calculate checksum and count
boot (M)

mkboot (M) convert object file to
table mkunix(M) make

table mkunix(M) make

shutdown (M)

multiuser(C) singleuser(C)
allocation

table

stdio(S) standard

setbuf (S) setvbuf(S) assign
mknod(C)

bsh(C) invoke the

digest (C) create menu system(s) for the
menus (M) format of

swab(S) swap

cc(CP) invoke the

xcc(CP) invoke the XENIX
cflow(CP) generate

cpp(CP) the

lint (CP) check

cxref (CP) generate

ctrace(CP)

cb(CP) beautify

xref (CP) cross-reference

xstr(CP) extract strings from
1list (CP) produce

create an error message file from

create an error message file from

Permuted Index

back-up tape

bad sector map

bad sectors to the bad sector map
badblock(C) add new bad sectors to the
banner (C) print large letters

base-64 ASCII string aé41($S)
basename(C) dirname(C) deliver portions
batch(C) execute commands at a later

beautify C programs
Bessel functions

beasel(S) jO(S) yO(S) Bessel functions
bfs(C) scan big files
big files

binary input/output

binary, or manual for program

binary search of a sorted table
binary search trees tsearch(S)
binary hore

bit

blank lines

block

blocks and inodes
blocks in a file

boot program

bootable object file

bootable system file with driver symbol _

bootable system file with kernel symbol
boot (M) boot program

bre(M) system initialization procedure

bring system to single-user or shutdown _

bring system up multi/single-user mode
brk(S) sbrk(S) change data segment space

bsearch(S) binary search of a sorted

bsh(C) invoke the Business shell
buffered input/output package
buffering to a stream

build special files

Business shell

Business shell

Busineas shell menu system
bytes

compiler

compiler

frec(M)
badblock (C)
badblock(C)

__ badblock(C)

banner (C)
a641(s)

_ basename(C)
____at(Q)

bc(C) arbitrary-precision arithmetic ___
bdiff(C) compare files too large for ___

be(C)
bdiff(C)
cb(CP)
bessel(S)

__ beasel(S)

bfs(C)
bfs(C)
fwrite(s)
whereis(C)
bsearch(S)
tsearch(S)
creatsem(S)
reset (C)
88p(C)
sync(S)

at (M)
sum(C)
boot (M)
mkboot (M)
mkunix(M)

_ mkunix(M)

boot (M)

__ bre(M)

shutdown (M)

__ multiuser(C)

brk(s)
bsearch(S)
bsh(C)
stdio(S)
setbuf (S)
mknod (C)
bsh(C)
digest (C)
menus (M)
swab(S)
cc(CP)
xcc(CP)

flow graph
N X

Prep
language usage and syntax
program cross-reference

programs

programs

programs

[o4

c

c

[of

Cc

[~

C program &
o]

c

[o]

C source listing from COFF file
C source mkstr(C)

C source mkstr(CP)

cal(C) print a calendar

PI1-5

cflow(CP)
cpp(CP)
lint(CP)
cxref (CP)
ctrace(CP)
cb(CP)
xref (CP)
xstr(CP)
list(CP)
mkstr(C)
mkstr (CP)
cal(C)

Permuted Index

file sum(C)
dc(C) arbitrary precision
cal(C) print a

cu(C)

stat (F) return data by stat system
malloc(S) mallinfo(S) mallopt(S)
intro(S) introduce system

line printer 1p(C)

termcap{(M) terminal

terminfo(M) terminal

description

asa(C) interpret asa

gencc(CP) create a front end to the

SCCS delta

absolute value functions floor(S)
floor(S) ceil(S) fabs(S) floor.
floor(S) fmod(S) floor.

string ctime(S) tzset(S) asctime(S)
brk(S) sbrk(s)
passwd(C)

chmod(S)

putenv(S)

chown (S)

chown (C) chgrp(C)
directory chmod(C)
nice(s)

chroot (S)

chroot (C)

swap(C)

of files settime(C)
delta cdc(CP)
chsize(S)

delta(CP) make a
cd(C)

chdir(s)

pipe(S) create an interprocess
ungetc(S) push

cuserid(S) get

getc(S) getw(S) fgetc(S) getchar(S) get
putc(S) putchar(S) putw(S) fputc(S) put
ascii(M) map of the ASCII

fgrep(C) search a file for a

asa(C) interpret asa carriage control
toascii(S) tolower(S) translate
islower(S) iscntrl(S) classify
ispunct(S) isascii(S) classify

tr(C) translate

wc(C) count lines, words,

and

waitsem(S) nbwaitsem(S) wait and
tack(C) dfsck(C)

calculate checksum and count blocks in a
calculator

calendar

calendar(C) invoke a reminder service
call another UNIX system
call

calloc(S) fast main memory allocator
calls, functions.
cancel (C) send/cancel requests to LP
capability database
capability database

and libraries

captoinfo(M) convert termcap to terminfo

carriage control characters

cat (C) concatenate and display files
<b(CP) beautify C programs

cc command

cc(CP) invoke the C compiler

cd(C) change working directory

cdc{CP) change the delta commentary of
ceil{S) fabs(S) floor,

ceiling., and

ceiling. and absolute value functions
ceiling. and absolute value functions
cflow(CP) generate C flow graph
cftime(S) convert date and time to
change
change

data segment space allocation
login d

change mode of file

change or add value to environment
change owner and group of a file
change owner or group ID

change permissions of a file or
change priority of a process
change root directory

change root directory for command
change swap device configuration

change the access and modification dates
change the delta commentary of SCCS
change the file size

to an SCCS file

change working directory

change working directory

h 1

change

character back inte input stream
character login name of the user

character or word from a stream
character or word on a stream
character set

character string

characters

characters conv(S) toupper(S)

characters ctype(S) isalpha(s)
characters ctype(S) isdigit(S)

characters

characters

chdir(S) change working directory
check access to semaphore resource
check and repair file systems

sum(C)
dc(C)
cal(C)

calendar(C)

cu(C)
stat(F)

malloc(S)

intro(s)

1p(C)

termcap(M)
terminfo (M)
captoinfo(M)
asa(C)

cat (C)

cb(CP)
gencc (CP)
cc(CP)
cd(C)

__ cdc(CP)

floor(s)

floor(S)
floor(S)

cflow(CP)

ctime(s)

brk(s)

passwd(C)
chmod (S}
putenv(S)
chown (S}
chown (C)
chmod (C)
nice(S)
chroot (S)
chroot (C)
swap(C)
settime(C)

cdc(CP)

chsize(S)
delta(CP)
cd(C)
chdir(s)
pipe(S)
ungetc(S)
cuserid(S)
getc(S)
putc(s)
ascii(M)
tgrep(C)
asa(C)
conv (S)
ctype(S)
ctype(S)
tr(C)
we(C)
chdir(s)
waitsem(S)
tsck(C)

1lint (CP)

ckbupscd (M)

pwck(M) grpck(M)
permissions file uucheck(M)

rdchk (8)

labelit (M) copy file system with label
by fsck

sum(C) calculate

chown (C)

times(S) get process and

wait(s) wait for

provide access to the time-of-day
libraries

directory

IDp
file
command

schedule

isalpha(S) islower(S) iscntrl(S)
isdigit(S) ispunct(S) isascii(s)
inir(M)

strclean(M) STREAMS error logger
uucleanup(M) uucp spool directory
clri(M)

clear(C)

inquiries ferror(S) fileno(S)

csh(C) shell command interpreter with
alarm(S) set a process alarm
time-of-day chip

STREAMS driver

ldclose(S) ldaclose(S)

close(S)

fclose(S) fflush(s)

haltsys(C)

directory operations directory(S)

dis(CP) object

ldclose(S) ldaclose(S) close a
ldfhread(S) read the file header
1ist(CP) produce C source listing
to line number entries of a section

of a
from
of a
to relocation entries of a section
an indexed/named section header
the index of a symbol table entry
read an indexed symbol table entry
seek to the symbol table

remove symbols and line numbers

o
)
- I

from
convert an object file from OMF to
manipulate line number entries of a
ldgetname(S) retrieve symbol name for

Permuted Index

check C language usage and syntax
check file system backup schedule
check password/group file

check the uucp directories and
check to see if there is data to be read
checking volcopy (M)

checklist (M) list file systems processed
checksum and count blocks in a file
chgrp(C) change owner or group ID

child process times

child process to stop or terminate

chip clock (M)

chkshlib(CP) tool for comparing shared _
chmod(C) change permissions of a file or
chmod(S) change mode of file

chown(C) chgrp(C) change owner or group _
chown(S) change owner and group of a

chroot(C} change root directory for
chroot (S) change root directory

chsize(S) change the file size
ckbupscd(M) check file system backup ___
clagsify characters ctype(S)

classify characteras ctype(S)

clean the file system and executes init _
Cleanup program

Cleanup
clear inode

clear terminal screen

clear(C) clear terminal screen
clearerr(S) feof(S) stream status
C-1like syntax

clock

clock (M) provide access to the

clock(S) report CPU time used

clone(M) open any minor device on

close a COFF file

close a file descriptor

close or flush a stream

close the file systems and halt the CPU _
closedir (S) rewinddir(S) seekdir(s)
close(S) close a file descriptor
clri(M) clear inode

cmp(C) compare two files

code disassembler

COFF file
COFF file
COFF file
COFF file
COFF file
COFF file
COFF file
COFF file

ldlseek(S) seek
ldrseek(S) seek
ldshread(S) read
1dtbindex(S) compute
ldtbread(s)

COFF file ldtbseek(S)

COFF file strip(CP)
COFF fixobj(CP)
COFF function ldlread(S) ldlitem(S)
COFF symbol table entry

lint (CP)
ckbupscd (M)
pwck (M)
uucheck (M)
rdchk (S)
volcopy (M)
checklist (M)
sum(C)

chown (C)
times(S)
wait(S)
clock(M)
chkshlib(CP)
chmod(C)
chmod(S)
chown (C)

chown(S)

chroot (C)
chroot (S)
chsize(S)
ckbupscd (M)
ctype(S)
ctype(S)
inir(M)
strclean(M)
uucleanup (M)
clri(M)
clear(C)
clear(C)
ferror(s)
csh(C)
alarm(S)
clock(M)
clock(S)
clone (M)
ldclose(S)
close(S)
fclose(S)
haltsys(C)

directory(S)

close(S)
clri(M)
cmp(C)
dis(CP)
ldclose(S)
ldfhread(s)
1list (CP)
ldlseek(S)
ldrseek(S)
1ldshread(S)
1dtbindex(S)
1ldtbread(S)
ldtbseek(S)
strip(CP)
£ixobj (CP)

ldlread(s)

ldgetname(S)

Permuted Index

comb (CP)

nice(C) run a

chroot (C} change root directory for
env(C) set environment for
gencc(CP) create a front end to the cc
nohup(C) run a

setpgrp(C) execute

sh(C) rsh(C) invoke the shell
csh(C) shell

uux(C) execute

getopt (C) parse

uuxqt (M) execute remote

system(S) issue a shell

time(C) time a

at(C) batch(C) execute

cron(C) execute

re2(M)

install(M) install

intro(C) introduce

intro(CP) introduce software development
rcO(M)

xargs(C) construct and execute

two sorted files

mcs (CP) manipulate the object file
cdc(CP) change the delta

ldfcn(F)

cprs(CP) compresse a

ldopen(S) ldaopen(S) open a
linenum(F) line number entries in a
nm(CP) print name list of

reloc(F) relocation of information for a
scnhdr(F) section header for a

syms (F)

conv(CP) convert

filehdr(F) file header for

size(C) print section sizes of

seek to the optional file header of a
comm(C) select/reject lines
glossary(C) define

ipcs(C) report inter-process
stdipc(S) ftok(S) standard interprocess
diremp(C)

sdiff(C)

bdiff(C)

infocmp (M)

aiff£3(C)

cmp(C)

AiLg(C)

sccadiff (CP)

chkshlib(CP) tool for

regemp(S)

regexp(F) regular expression
routines regexp(S)

regcmp (CP)

tic(C)

ce(CP) invoke the C

comb(CP) combine SCCS deltas comb (CP)
combine SCCS deltas comb{(CP)
command at a different priority nice(C)

d chroot (C)
command execution env(C)

4 gencc(CP)
command immune to hangups and quits nohup(C)
command in a new p group setpgrp(C)
command interpreter sh(C)
command interpreter with C-like syntax __ csh(C)
command on remote UNIX uux(C)
command options getopt (C)
command requests uuxqt (M)

d system(S)

a time(C)
commands at a later time at(C)’
commands at specified times cron(C)
commands for multi-user environment _____ rc2(M)

a; install(M)

ai intro(C)

d: intro(CP)
commands to stop the operating system ___ rcO(M)

4 xargs (C)
comm(C) select/reject lines common to ___ comm(C)
comment section mcs (CP)
commentary of SCCS delta cdc(CP)
common object file access routines ldfen(F)
common object file cprs(CP)
common object file for reading ldopen(S)
common object file linenum(F)
common object file nm(CP)
common object file reloc(F)
common object file scnhdr (F)
common object file symbol table format __ syms(F)
common object files conv(CP)
common object files filehdr(F)
common object files size(C)
common object 1d k(S) 1 {s)
common to two sorted files comn(C)
common UNIX terms and symbols glossary(C)
communication facilities status ipcs(C)
communication package stdipc(S)
compare directories diremp(C)
compare files side-by-side sdiff(C)
compare files too large for diff bdiff(C)
compare or print terminfo descriptions __ infocmp(M)
compare three files diff£3(C)
compare two files cmp (C)
compare two text files diff(C)
compare two versions of an SCCS file ___ sccsdiff(CP)
comparing shared libraries chkshlib(CP)
compile a regular expression regemp(S)
compile and match routines regexp(F)
compile regular expression and match _____ regexp(S)
compile regular expressions regcmp (CP)
compile terminfo source tic(c)
compiler cc(CP)

xcc(CP) invoke the XENIX C

yacc (CP) invoka a

erf(S) erfc(S) error function and
wait(C) wait

pack(C) pcat(C) unpack(C)

cprs(CP)

entry of a COFF file ldtbindex(S)
cat(C)

1dunix (M)

master (M) master

printers(M) print spooler

sysconf (C) get system

sysconf (S) get system

pconfig(C) set port

swap(C) change swap device

shutype (M) UPS shutdown

1padmin (M)

establish an out-going terminal line
ssp(C) remove

system

system

math(F) math functions and

unistd(F) file header for symbolic

file header for implementation-specific
mkfs (M)

xargs(C)

uutry(M)

errprint(M) display error log
recover(C) restore

dump. hd(C) dump

1s(C) list

csplit(C) split files according to
fcntl(S) file

uadmin(S) administrative

uustat(C) uucp status inquiry and job
vc(CP) version

asa(C) interpret asa carriage

ioctl(S)

IEEE environment

IEEE
IEEE
IEEE
1EEE

floating
floating
floating
floating
floating

point
point
point
point
point
init (M) process
msgctl(S) message
semctl(S) semaphore
shmctl(S) shared memory
fentl(F) file

environment
environment
environment

environment

term(M)

tixobj (CP)

ad(c)

ranlib(CP)

integers 13tol(S) 1ltol3(S)
ASCII string a641(S) 164a(s)
conv{(CP)

ctime{(S) gmtime(S) localtime(S)

Permuted Index

compiler xce (CP)
compiler-compiler yacc(CP)
complementary error function erf(S)
completion of background processes wait(C)
compress and expand files pack(C)
compress a common object file cprs(CP)
compute the index of a symbol table ___ 1ldtbindex(S)
concatenate and display files cat(C)
configurable kernel linker ldunix(M)
configuration database master (M)
configuration file printers (M)
configuration information sysconf(C)
configuration information sysconf (S)
configuration pconfig(C)
configuration swap(C)
configuration utility shutype (M)
configure the LP spocling system 1lpadmin(M)
connection dial(S) dial(s)
consecutive blank lines 8sp(C)
console display display(M)
console keyboard keyboard (M)
constants math (F)
constants unistd(F)
constants limits(F) limits(F)
construct a file system mkts (M)
construct and execute commands xargs(C)
contact remote system with debugging on _ uutry(M)
contents errprint (M)
contents of a file system from tape recover(C)
contents of a hard disk to tape dump. hd(C)
contents of directories 1s(C)
csplit(C)
control fcntl(S)
control uadmin(S)
control uustat (C)
control vc(CP)
control characters asa(C)
control device ioctl(S)
control £pg 8) 9! {(s) fpgetround(S)
control fpgetround(8) fpgetsticky(S) ____ fpgetround(S)
control fpgetround($S) fpsetmask(S) fpgetround(S)
control fpgetround(S) fpsetround(S) fpgetround(S)
control fpgetround(S) fpsetsticky(S) ____ fpgetround(s)
control initialization init (M)
control operations msgctl(s)
control operations semctl(S)
control operations shmctl(S)
control options fcntl(F)
conv(CP) convert common object files _ __ conv(CP)
conventional names for terminals term (M)
convert an object file from OMF to COFF _ fixobj(CP)
convert and copy a file ad(cC)
convert archives to random libraries ____ ranlib(CP)
convert between 3-byte integers and long 13toli(S)
convert between long integer and base-64 a64l(S)
convert common object files conv(CP)
convert date and time to string ctime(S)

PI-9

Permuted Index

ctime(S) tzset(S) asctime(S) cftime(S)
ecvt (S)

scanf(S) fscanf(S) sscanf(S)

file mkboot (M)

FORTRAN ratfor(CP)

number strtod(S) atof(S)

strtol(S) atol(S) atoi(S)

captoinfo(M)

units(C)

translate characters

dd(C) convert and

fcopy (C)

cpio(C)

volcopy(M) labelit (M)

cp(C)
uuname (C)
copy (C)
tra(C)
public UNIX-to-UNIX system file

uucp(C) uulog(C)

core(F) format of
sinh(S)
trigonometric functions trig(S) sin(S)
sum(C) calculate checksum and

wc(C)

cpio(F) format of

close the file systems and halt the
clock(S) report
creatsem(S)

gencc{CP)

tmpnam(S) tempnam(S)

one creat(s)

tork(s)

mkshlib(CP)

ctags(C)

tee(C)

tmpfile(S)

source mkstr(C)

source mkstr(CP)

pipe(s)

admin(CP)

Shell digest(C)
makedevs (M)

makettys (M)

umask(S) set and get file
existing one

times
crontab(C) manage user

convert date and time to string

convert floating-point number to string _
formatted input __ 0
object file to bootable object _

rational FORTRAN to standard

convert
convert
convert
convert string to double-precision
convert atring to integer
convert termcap to terminfo description _
convert units
conv(S)
copy
copy
copy
copy
copy
copy
copy
copy out a file as it grows
copy uuto(C) uupick(C)
copy(C) copy groups of files
core image file

toupper(S) toascii(S) tolower(S)
a file

a floppy diskette

file archives in and out

file system with label checking
files

files from UNIX to UNIX

groups of files

core(F) format of core image file
cosh(S) tanh(S) hyperbolic functions
cos(S) tan(S) asin(S) acos(S)

count blocks in a file

count lines. words.
cp(C) copy files
cpio archive
cpio(C) copy file archives in and out
cpio(F) format of cpio archive
cpp(CP) the C Language Preprocessor
cprs(CP) compresse a common object file

and characters

cpset(C) install utilities
CPU haltsys(C)
CPU time used
create binary hore

create front end to the cc command

create a name for a temporary file
new file or rewrite an existing

new process

create
create a shared library

tags file

tee in a pipe

temporary file

an error message file from C

create

Create

a
a
a
a
create a
a
a
a
a

create
Create
create
Create
create
create

an error message file from C
an interprocess channel

and administer SCCS files

menu system(s) for the Business
special device files

tty special files

creation mask

create
Create

creat(S) create a new file or rewrite an
creatsem(S) create a binary semaphore
cref (CP) make a cross-reference listing _
cron(C) execute commands at specified __
crontab files

PI-10

ctime(S)
ecvt (S)
scanf(S)
mikboot (M)

ratfor (CP)

strtod(S)
strtol(s)
captoinfo(M)
units(C)
conv(S)
aa(cy
£copy(C)
cpio(C)

volcopy (M)

cp(C)

uucp(C)
copy (C)
tra(C)
uuto(C)
copy (C)
core(F)

core(F)

sinh(S)

trig(s)
sum(C)
wc(C)
cp(C)
cpio(F)

cpio(C)

cpio(F)

cpp (CP)
_ cprs(CP)

cpset(C)
haltsys(C)
clock(S)

creatsem(S)

gencc(CP)

tmpnam(S)
creat(S)
fork(S)
mkshlib(CP)
ctags(C)
tee(C)
tmpfile(s)
mkstr(C)
mkstr(CP)
pipe(s)
admin (CR)

__ digest(C)

makedevs (M)
makettys (M)
umask(S)
creat(S)

creatsem(S)

cref (CP)
cron(C)
crontab(C)

xref (CP)

cxref (CP) generate C program
cref (CP) make a

functions

C-like syntax

context

terminal
date and time to string
convert date and time to string

iscntrl(S) classify characters
isascii(S) classify characters

tty(C) get the

sact(CP) print

uname(C) print the

uname (S) get name of

whoami (C) print effective

find the slot in the utmp file of the
getcwd(S) get path name of
scr_dump(F) format of

optimization package

spline(C) interpolate smooth

the user

cross-reference

1pd(M) line printer

strerr(M) STREAMS error logger

xpd(M) transparent printer

sdgetv(S) sdwaitv(S) synchronize shared
turn on/off

stat(F) return

plock(S) lock process. text, or

prof (CP) display profile

execseg(S) make a

synchronize access to a shared
sdfree(S) attach and detach a shared
brk(S) sbrk(S) change

sputl(S) sgetl(S) access long integer
rdchk(S) check to see if there is
types(F) primitive system

query terminfo

dbminit (S) fetch(S) nextkey(S) perform
firstkey(S) store(S) fetch(S) perform
master(M) master configuration
termcap (M) terminal capability
terminfo(M) terminal capability
ctime(S) gmtime(S) localtime(S) convert
tzset(S) asctime(S) cftime(S) convert
date(C) print and set the

change the access and modification
database functions dbm(S)

perform database functions
perform database functions

Permuted Index

crontab(C) manage user crontab files
cross-reference C programs
cross-reference

crosg-reference listing

crypt(S) password and file encryption
csh(C) shell command interpreter with __
¢split(C) split files according to

ctags (C) create a tags file

ct(C) spawn getty to a remote terminal _
ctermid(S) generate file name for
ctime(S) gmtime(S) localtime(S) convert

crontab(C}

xref (CP)
cxref (CP)
cref(CP)

___ crypt(s)

csh(C)
csplit(C)
ctags(C)
ct(C)
ctermid(s)

_ ctime(s)

ctime(S) tzset(S) asctime(S) cftime(S) __ ctime(S)
ctrace(CP) C program debugger ctrace(CP)
ctype(S) isalpha(S) islower(S) ctype(S)
ctype(S) isdigit(S) ispunct(S) ctype(S)
cu(C) call another UNIX system cu(C)
current port name tty(C)
current SCCS file edit activity sact (CP)
current UNIX information uname (C)
current UNIX system uname(S)
current user id whoami (C)
current user ttyslot(S) ttyslot(s)
current working directory getcwd(S)

curses screen image file

scr_dump (F)

curses(S) terminal acreen handling and __ curses(S)
curves spline(C)
cuserid(S) get character login name of __ cuserid(S)
cxref (CP) generate C program cxref (CP)
daemon 1lpd(M)
daemon atrerr (M)
d xpd(M)
data access sdgetv(S)
data collector sadcon (M)
data by stat system call stat(F)
data in memory plock(S)
data prof (CP)
data region executable (s)
data segment sdenter(S) sdleave(S) sdenter(S)
data sdget (S) sdget (S)
data segment space allocation brk(S)
data sputl(s)
data to be read rdchk(S)
data types types (F)
database tput (C)
database functions dbm(S) dbm(S)
database functions dbm(S) dbm(S)
database master (M}
database termcap (M)
database terminfo (M)
date and time to string ctime(S)
date and time to string ctime(S) ctime(S)
date date(C)
date(C) print and set the date date(C)
dates of files settime(C) settime(C)
dbminit (S) fetch(S) nextkey(S) perform __ dbm(S)
dbm(S) dbminit(S) fetch(S) nextkey(S) __ dbm(S)
dbm(S) firstkey(S) store(S) fetch(S) ____ dbm(s)

PI-11

Permuted Index

adb(C) invoke x.out general purpose
ctrace(CP) C program

fadb(M) file system

sdb(C) symbolic

uutry(M) contact remote system with
default (M)

timezone(M) set

directory

glossary(C)

sysdef (M) output system

basename(C) dirname(C)

tail(C)

change the delta commentary of SCCS
cdc(CP) change the

rmdel (CP) remove a

comb(CP) combine SCCS

errstop(C) terminate error-logging
captoinfo(M) convert termcap to terminfo
infocmp(M) compare or print terminfo
close(S) clowe a file

dup(S) dup2(S) duplicate an open file
sdget (S) sdfree(S) attach and
access(S)

dtype(C)

file(C)

£styp(M)

drive sizefs(C)

whodo (M)

intro(CP) introduce software

swap(C) change swap

makedevs (M) create special

fold long lines for finite width output
devinfo(C) Qisplay

ioctl(s) control

devnm(C) identify

clone(M) open any minor

files reside

and inodes

fack(C)

line connection

bdiff(C) compare files too large for

nice(C) run a command at a
Business Shell

uucheck(M) check the uucp

dircmp(C) compare

fleece(C) lock for files in home
unlink(M) 1link and unlink files and
18(C) list contents of

mv(C) move (rename) files and
rm(C) rmdir(C) remove files or

dc(C) arbitrary precision calculater ___ dc(C)

dd(C) convert and copy a file da(C)
adb(C)
ctrace(CP)
£sdb(M)

debugg 3db(C)

debugging on uutry(M)
default program information directory ___ default(M)

default system time zone ti M

default (M) default program information __ default(M)

define common UNIX terms and symbols _____ glossary(C)

definition sysdef (M)

deliver portions of pathnames basename (C)

deliver the last part of a file tail(C)

delta cdc(CP) cdc(CP)
delta commentary of SCCS delta cdc(CP)
delta from an SCCS file rmdel (CP)
delta(CP) make a change to an SCCS file _ delta(CP)
deltas comb{CP)
demon errstop(C)
description captoinfo(M)

descriptions infocmp (M)

descriptor close(S)

descriptor dup(S)
detach a shared data segment sdget(S)
determine accessibility of a file access(S)
determine disk type dtype(C)
determine file type £ile(C)

determine the file system identifier

fatyp(M)

determine the size of a logical disk _____ sizefs(C)
determine who is doing what whodo (M)
development a: intro(CP)
device configuration swap (C)
device files ked M)
device fold(C) fo1d(C)
device information devinfo(C)
device ioctl(s)
device name on which files reside devnm(C)
device on STREAMS driver clone(M)
devinfo(C) display device information ___ devinfo(C)
devnm(C) identify device name on which __ devam(C)
df (M) report number of free disk blocks _ df(M)
dfsck(C) check and repair file systems __ fsck(C)
dial(S) establish an out-going terminal _ dial(S)
daire badiff (C)
dift3(C) compare three files difr3(C)
diff£(C) compare two text files diff(C)
different priority nice(C)
digest (C) create menu system(s) for the _ digest(C)
dircmp(C) compare directories dircmp(C)
directories and permissions file uucheck (M)
directories diremp(C)
directories flee ~(C)
directories link(M) link (M)
directories 1s(Cy
directories mvi(C)
directories m(C)

PI-12

cd(C) change working

chdir(S) change working

chmod(C) change permissions of a file or
chroot (S) change root

uucleanup(M) uucp spool

default (M) default program information
dir(M) format of a

getdents(S) read

dirent(F) file system independent
unlink(S) remove

chroot (C) change root

get path name of current working
mkdir(C) make a

mkdir(S) make a

pwd(C) print working

closedir(S) rewinddir(S) seekdir(s)
telldir(S) readdir(S) opendir(S)
mknod(S) make a

rmdir(S) remove a

seekdir(S) directory operations
opendir(S) directory operations
directory entry

basename(C)
disable(C)
acct(S) enable or

mesg(C) allow or
dis (CP) object code
set terminal type. modes., speed. line

add.hd(C) add an additional hard
df (M) report number of free
determine the size of a logical
restore.hd(C) restore a hard
options(M) floppy

layout (M) manage hard

maintain

dump.hd(C) dump contents of a hard
dtype(C) determine

upgrade .hd(C) upgrade an additional hard
du(C)

fcopy(C) copy a floppy

format(C) format a floppy
system console

see(C)

devinfo(C)

vi(C) invoke a screen-oriented
errprint (M)

cat(C) concatenate and

hd(C)

o0d(C)

prof (CP)

set up terminal to print screen
har(C)

who(C)

hypot (S) Euclidean

summarize

Permuted Index

directory

directory

directory

directory

directory cleanup
directory

directory

directory entries and put in a file
directory entry

directory entry

directory for

directory getcwd(S)
directory

directory

directory name

directory operations directory(S)
directory operations directory(S)
directory. or a special or ordinary file
directory

directory(S) closedir(S) rewinddir(S)
directory(S) telldir(S) readdir(s)
dirent(F) file system independent
dir(M) format of a directory

dirname(C) deliver portions of pathnames

disable logins on a port
disable ing

disable(C) disable logins on a port
disallow messages sent to a terminal
disassembler

discipline uugetty(M)
dis(CP) object code disassembler
disk

disk blocks and inodes
disk drive sizefs(C)

disk from tape

disk installation menu
disk partitions

disk partitions

disk to tape

disk type

disk

disk usage

diskette

diskette

display

display a file

display device information
display editor

display error log contents
display files

display files in hexadecimal format
display files in octal format
display profile data

display pscreen(C)

display selected parts of an object file
display who is on the system

distance function

PI-13

cd(C)
chdir(s)
chmod(C)
chroot (S)
uucleanup (M)
default (M)
dir(M)

getdents(S)

dirent (F)
unlink(S)
chroot (C)
getcwd(S)
mkdir (C)
mkdir(S)
pwd(C)
direcfory(S)
directory(S)
mknod(S)
rmdir(S)

directory(s)

directory(S)
dirent (F)
dir (M)
basename (C)
disable(C)
acct(s)

disable(C)
meag(C)

dis(CP)
uugetty (M)
dis(CP)
add.hd(C)
ar (M)
sizefs(C)
restore.hd(C)
options (M)
layout (M)
fdisk(C)
dump. hd(C)
dtype(C)
upgrade. ha(C)
du(c)
fcopy(C)
format (C)
display(M)
see(C)
devinfo(C)
vi(C)
errprint (M)
cat(C)

hd(C)

od(C)

prof (CP)
pscreen(C)
hdr(C)
who(C)
hypot (S)

Permuted Index

whodo{M) determine who is

UNIX

strtod(S) atof(S) convert string to
pseudo-random numbers

1lrand48(S) generate pseudo-random/
jrand48(S) generate pseudo-random/
graph(C)

manufacturing drive(C)

determine the size of a logical disk
utility program for a streaming tape
during manufacturing

open any minor device on STREAMS
mkunix(M) make bootable system file with

dump . hd(C)

dump (CP)

object file

to tape

descriptor dup(S)

dup(S) dup2(s)

descriptor

drive(C) drive information written
echo(C)

string
ed(C) red(C) invoke the
program end(S)

sact(CP) print curremt SCCS file
edit (C) invoke the

ed(C) red(C) invoke the ed text
edit(C) invoke the edit text

ex(C) invoke a text

14(CP} invoke the link

a.out(F) format of assembler and link
sed(C) invoke the stream

vi(C) invoke a screen-oriented display
x1d(CP) invoke the link

whoami (C) print

full regular expression

enable(C)

acct(S)

lpenable(C) lpdisable(C)

crypt(S) password and file
makekey(M) generate an

gencc(CP) create a front

entry getgrent(S) fgetgrent(S)
file entry getpwent(S) fgetpwent(S)
in program

getut(S) getutent(S) utmpname(S)

getdents(S) read directory
x1ist(S) fxlist(S) get name list

doing what

dos(C) access MS-DOS files

dos disk partitions
double-precision number
drand48(S) erand48(S) generate
drand48(S) mrand48(S) nrand48(S)
drand48(S) seed48(S) srand48(S)
draw a graph

drive information written during
drive sizefs(C)

drive tapeutil(C)

drive(C) drive information written
driver clone(M)

driver symbol table

dtype(C) determine disk type

du(C) summarize disk usage

dump contents of a hard disk to tape

dump selected parts of an object file
dump(CP) dump selected parts of an
Qump. hd(C) dump contents of a hard disk
Aup2(S) duplicate an open file
duplicate an open file descriptor
dup(S) dup2(S) duplicate an open file
during manufacturing

echo arguments

echo(C) echo arguments

ecvt(S) convert floating-point number to

ed text editor

edata(S) etext(S) last locations in
ed(C) red(C) invoke the ed text editor _
edit activity
edit text editor

edit (C) invoke the edit text editor

whodo (M)
dos (C)
f£disk(C)
strtod(s)
drand48(s)
drand48(S)
drand48(S)
graph(C)
drive(C)
sizefs(C)
tapeutil(C)
drive(C)
clone(M)
mkunix (M)
dtype(C)
du(C)
dump . hd(C}

__ dump(CP)

dump (CP)

_ dump.hd(C)

dup(S)
dup(s)

__ dup(s)

drive(C)
echo(C)
echo(C)
ecvt (S)
ed(C)

end(S)

ed(C)
sact (CP)
edit(C)

edit (C)

editor ed(C)
editor edit (C)
editor ex(C)
editor 1d(CpP)
editor output a.out(F)
editor sed(C)
editor vi(C)
editor x1d(CP)
effective current user id whoami (C)
egrep(C) search file for pattern using __ egrep(C)
enable logins on a port enable(C)
enable or disable process accounting ____ acct(S)
enable(C) enable logins on a port enable(C)
enable/disable LP line printers lpenable(C)
encryption functions crypt(S)
encryption key y(M)
end to the cc a gencc (CP)
endgrent (S) setgrent(S) get group file __ getgrent(s)
d (8) setp {(S) get p 4 getpwent(S)
end(S) edata(S) etext(S) last locations _ end(S)
endutent (S) access utmp file entry getut(S)
enroll(C) xsend(C) xget(C) secret mail __ enroll(C)
entries and put in a file getdents (S)
entries from files xlist(S)

PI-14

nlist(S) get

linenum(¥) line number

ldlitem(S) manipulate line number
ldlseek(S) seek to line number
ldrseek(S) seek to relocation

utmp (M) wtmp(M) format of utmp and wtmp
file system independent directory
endgrent (S) setgrent(S) get group file
getgrnam(S) getgrgid(S) get group file
setpwent (S) get password file
getpwuid(S) get password file
utmpname (S) endutent(S) access utmp file
getutline(S) access utmp file

symbol name for COFF symbol table
compute the index of a symbol table
ldtbread(S) read an indexed symbol table
putpwent (S) write password file
unlink(S) remove directory

execution

profile(M) set up
IEEE floating point
IEEE floating point
IEEE floating pqint
1EEE floating point
IEEE floating point
environ(M) user
env(C) set
getenv(S) return value for

printenv(C) print out the

putenv(S) change or add value to

rc2(M) commands for multi-user

numbers drand48(S)

error function erf(S)

complementary error function

sys_nerr(S) sys_errlist(S)

function erf(s) erfc(S)

erfc(S) error function and complementary
errprint (M) display

strclean(M) STREAMS

strerr(M) STREAMS

log(M) interface to STREAMS

mkstr(C) create an

mkotr(CP) create an

perror(S) system

sys_errlist(S) errno(S) system

tind spelling

matherr(s)

errstop(C) terminate

fpgetmask(S)
fpgetsticky(S)
fpsetmask(S)
fpsetround(s)
fpsetsticky(S)

connection dial(s)
setmnt (C)

setmnt (C) establish
end(S) edata(s)
hypot(S)

test(C)

Permuted Index

entries from name list

entries in a common object file
COFF function ldlread(S)
section of a COFF file

section of a COFF file

of a
of a
of a

entries
entries
entries
entries
entry dirent (F)

entry getgrent(S) fgetgrent(s)
entry getgrent(S)

entry /fgetpwent(S) endpwent(S)
entry getpwent(S) getpwnam(S)
entry getut(S) getutent(S)
entry getut(S) setutent(S)
entry ldgetname(S) retrieve
entry of a COFF file ldtbindex(S)
entry of a COFF file

entry
entry
env(C) set environment for command

environ(M) user environment

nlist(S)
linenum(F)

___ ldlread(s)

1dlseek(S)
ldrseek(S)
utmp (M)
dirent (F)
getgrent(S)
getgrent (S)
getpwent (S)
getpwent (S)
getut(S)
getut (S)
ldgetname(S)
1dtbindex(S)
ldtbread(s)
putpwent (S)
unlink(S)
env(C)
environ (M)

environment at login time profile(M)
environment control fpgetround($) fpgetround(S)
environment control fpgetround(S) fpgetround(S)
environment control fpgetround(S) fpgetround(S)
environment control fpgetround(S) fpgetround(S)
environment control fpgetround(S) fpgetround(S)
environment environ(M)
environment for command execution env(C)
environment name N getenv(S)
environment printenv(C)
environment putenv(S)
environment rc2(M)
erand48(S) generate pseudo-random drand48(S)
erfc(S) error function and complementary erf(S)

erf(S) erfc(S) error function and erf(S)
errno(S) system error messages sys_nerr(S)
error function and complementary error __ erf(S)

error function erf(S) erf(s)

error log . errprint (M)
error logger cleanup program strclean(M)
error logger d: strerr(M)
error logging log(M)

error message file from C source mkstr(C)
error message file from C source mkstr (CP)
error perror(S)
error messages sys_nerr(S) sys_nerr(S)
errors spell(C)
error-handling function matherr(S)
error-logging demon errstop(C)
errprint (M) display error log contents __ errprint(M)
errstop(C) terminate error-logging demon_ errstop(C)
establish an out-going terminal line ____ dial(s)
establish /etc/mnttab table setmnt (C)
/etc/mnttab table setmnt (C)
etext(S) last locations in program end(S)
Euclidean distance function hypot (S)
evaluate an exp: ion test (C)

PI-15

Permuted Index

expr{C)

file exec(S) execvp({S) execlp(S)
execute a file exec(S) execvp(S)
execvp(S) execlp(S) execle(S) execv(S)
execv(S) execl(S) execute a file

execseg(S) make a data region
execlp(S) execle(S) execv($S) execl(S)
regex(S)

setpgrp(C)

uux(C)

at (C) batch(C)

cron(C)

xargs(C) construct and

uuxqt (M)

inir(M) clean the file system and
env(C) set environment for
nap(s)

sleep(C)

sleep(S) suspend

monitor(S) prepare

profil(s)

execl(S) execute a file exec(S)
exec(S) execvp(S) execlp(S) execle(S)
creat(S) create a new file or rewrite an
false(C) return with a nonzero

command
suspend
suspend

true(C) return with a zero

pack(C) pcat(C) unpack(C) compress and
functions exp(S) pow(S) log(S)
functions exp(S) sqrt(S)

expression

regexp(S) compile regular

regexp(F) regular

file for pattern using full regular
expr(C) evaluate arguments as an
regcmp(S) compile a regular
regex(S) execute a regular

test(C) evaluate an

regemp(CP) compile regular
logarithm, and power functions

and square root functions

xstr(CP)

value functions floor(S) ceil(S)
report inter-process communication
help(C) syastem help

factor(C)

value

££(M)

finc(M)

malloc(S) free(S) realloc(S)
mallinfo(S) mallopt(S) calloc(S)
abort(S) generate an IOT

stream

evaluate arguments as an expression ____ expr(C)
ex(C) invoke a text editor ex(C)
execle(S) execv(S) execl(S) execute a __ exec(S)
execlp(S) execle(S) execv(S) execl(S) ___ exec(Ss)
execl(S) execute a file exec(S) exec(S)
exec(S) execvp(S) execlp(S) execle(S) ___ exec(S)
execseg(S) make a data region executable execseg(S)
executable g(S)
execute a file exec(S) execvp(S) exec(S)
execute a regular expression regex(s)
execute command in a new process group __ setpgrp(C)
execute command on remote UNIX) uux(C)
execute commands at a later time at(C)
execute commands at specified times cron(C)
execute d xargs(C)
execute remote command requests uuxgt (M)
executes init inir(M)
execution env(C)
execution for a short interval nap(s)
execution for an interval sleep(C)
execution for interval sleep(S)
execution profile monitor(Ss)
execution time profile profil(s)
execvp(S) execlp(S) execle(S) execv(S) __ exec(S)
execv(S) execl(S) execute a file exec(S)
existing one creat(S)
exit value false(C)
exit value true(C)
exit(S) terminate process exit(s)
expand files pack(C)
exponential, logarithm. and power exp(S)
exponential, logarithm., and square root _ exp(S)
expr(C) evaluate ar as an expr (C)
expression and match routines regexp(S)
sion compile and match routines ___ regexp(F)
sion egrep(C) search egrep(C)
sion expr(C)
sion regemp (S)
expression regex(S)
expression test (C)
expressions regcmp (CP)
exp(S) pow(S) log(S) exponential. exp(S)
exp(S) sqrt(S) exponential. logarithm, __ exp(S)
extract strings from C programs xstr(CP)
fabs(S) floor. ceiling, and absolute _____ floor(s)
facilities status ipcs(C) ipcs(C)
facility help(C)
factor a number factor(C)
factor(C) factor a number factor(C)
false(C) return with a nonzero exit false(C)
fast find ££(M)
fast incr 1 back finc (M)
fast main memory allocator malloc(S)
fast main memory allocator malloc(S) ____ malloc(S)
fault abort(s)
fclose(S) fflush(S) close or flush a ____ fclose(S)
fcntl(F) file control options fcntl(F)

PI-16

nlist(S) get

linenum(F) line number

ldlitem(S) manipulate line number
ldlseek(S) seek to line number
ldrseek(S) seek to relocation

utmp(M) wtmp(M) format of utmp and wtmp
file system independent directory
endgrent (S) setgrent(S) get group file
getgrnam(S) getgrgid(S) get group file
setpwent (S) get password file
getpwuid(S) get password file
utmpname(S) endutent(S) access utmp file
getutline(S) access utmp file

symbol name for COFF symbol table
compute the index of a symbol table
ldtbread(S) read an indexed symbol table
putpwent (S) write password file
unlink(S) remove directory

execution

profile(M) set up
I1IEEE floating point
IEEE floating point
IEEE floating point
IEEE floating point
IEEE floating point
environ(M) user
env(C) set
getenv(S) return value for
printenv(C) print out the
putenv(S) change or add value to
rc2(M) commands for multi-user
numbers drand48(S)

error function erf(S)

fpgetmask (S)
fpgetsticky(S)
fpsetmask (S)
fpsetround(S)
fpsetsticky(S)

complementary error function
sys_nerr(S) sys_errlist(S)
function erf(S) erfc(S)
erfc(S) érrot function and complementary
errprint (M) display
strclean(M) STREAMS

strerr (M) STREAMS

log(M) interface to STREAMS
mkstr(C) create an

mkstr(CP) create an

perror($) system
sys_errlist(S) errno(S) system
find spelling

matherr(s)

errstop(C) terminate

connection dial(S)
setmnt (C)

setmnt (C) establish
end(S) edata(S)
hypot (S)

test(C)

Permuted Index

entries from name list

entries in a common object file
COFF function ldlread(S)
section of a COFF file

section of a COFF file

entries of a
entries

entries

of a
of a
entries
entry dirent(F)
entry getgrent(S) fgetgrent(S)
entry getgrent(S)

entry /fgetpwent(S) endpwent(S)
entry getpwent (S) getpwnam(S)
entry getut(S) getutent(S)

entry getut(S) setutent(S)

entry ldgetname(S} retrieve
entry of a COFF file ldtbindex(S)
entry of a COFF file

entry
entry
env(C) set envi.

t for

environ(M) user environment
environment at login time

control fpgetround(S)
fpgetround(s)
fpgetround($s)
fpgetround(S)
fpgetround(S)

environment
environment control
environment control
environment control
environment
environment
environment
environment
environment
environment

environment

control

for command execution
name

erand48(S) generate pseudo-random _
erfc(S) error function and complementary
erf(S) erfc(S) error function and
errno(S) system error messages

error function and complementary error __
function erf(S)

log

error
error
error
error
error

logger cleanup program
logger daemon

logging
ge file from C source
ge file from C source

error
error
error

error messages sys_nerr(S)

errors

error-handling function

error-logging demon

errprint (M) display error log contents __
errstop(C) terminate error-logging demon_
establish an out-going terminal line ____
establish /etc/mnttab table

/etc/mnttab table

etext(S) last locations in program
Euclidean distance function

ion

evaluate an exp

PI-15

nlist(s)
linenum(F)

___ ldlread(s)

ldiseek(S)
ldrseek(S)
utmp(M)
dirent (F)
getgrent (S)
getgrent (S)
getpwent (S)
getpwent (S)
getut(S)
getut(s)
ldgetname(S)
1dtbindex(S)
ldtbread(s)
putpwent (S)
unlink(S)
env(C)
environ(M)
profile(M)
fpgetround(S)
fpgetround(s)
fpgetround(S)
fpgetround(s)
fpgetround(S)
environ(M)
env(C)
getenv(S)
printenv(C)
putenv(s)
rc2(M)
drand48(S)
ext(S)
erf(S)
sys_nerr(S)
erf(S)
erf(S)
errprint (M)
strclean(M)
strerr(M)
log(M)
mkstr(C)
mkstr(CP)
perror(S)
sys_nerr(S)
spell(C)
matherr(S)
errstop(C)
errprint (M)
errstop(C)
diai(s)
setmnt (C)
setmnt (C)
end(S)

hypot (S)
test(C)

Permuted Index

expr(C)

file exec(S) execvp(S) execlp(S)
execute a file exec(S) execvp(S)
execvp(S) execlp(S) execle(S) execv(S)

evaluate arguments as an expression
ex(C) invoke a text editor

execle(S) execv(S) execl(S) execute a
execlp(S) execle(S) execv(S) execl(S)

expr(C)

ex(C)

exec(S)
exec(S)

execl(S) execute a file exec(S) exec(S)
execv(S) execl(S) execute a file exec(S) execvp(S) execlp(S) execle(S) ___ exec(S)
execseg(S) make a data region executable execseg(S)
execseg(S) make a data region executable (s)
execlp(S) execle(S) execv(S) execl(S) execute a file exec(S) execvp(S) exec(S)
regex(S) execute a regular expression regex(S)
setpgrp(C) execute command in a new process group __ setpgrp(C)
uwux(C) execute command on remote UNIX) uux(C)
at(C) batch(C) execute commands at a later time at(C)
cron(C) execute commands at specified times cron{C)
xargs(C) construct and execute d xargs(C)
uuxqt (M) execute remote command requests uuxqt (M)
inir(M) clean the file system and executes init inir(M)
env(C) set environment for command execution env(C)
nap(S) suspend execution for a short interval nap(S)
sleep(C) suspend execution for an interval sleep(C)
sleep(S) suspend execution for interval sleep(S)
monitor(S) prepare execution profile monitor(S)
profil(s) execution time profile profil(s)
execl(S) execute a file exec(S) execvp(S) execlp(S) execle(S) execv(S) __ exec(S)
exec(S) execvp(S) execlp(S) execle(S) execv(S) execl(S) execute a file exec(S)
creat(S) create a new file or rewrite an existing one creat(S)
false(C) return with a nonzero exit value false(C)
true(C) return with a zero exit value true(C)
exit(S) terminate process exit (S)
pack(C) pcat(C) unpack(C) compress and d files pack(C)
functions exp(S) pow(S) log(S) exponential. logarithm., and power exp(S)
functions exp(S) sqrt(s) exponential, logarithm, and square root _ exp(S)
expression expr(C) evaluate arguments as an expr(C)
regexp(S) compile regular expression and match routines regexp(S)
regexp(F) regular expression compile and match routines ___ regexp(F)
file for pattern using full regular yo3 ion egrep(C) h egrep(C)
expr(C) evaluate as an ion expr(C)
regcmp(S) compile a regular expression regemp(S)
regex(S) execute a regular expression regex(S)
test(C) evaluate an expression test (C)
regcmp(CP) compile regular expr i gemp (CP)
logarithm, and power functions exp(S) pow(S) log(S) exponential, exp(S)
and square root functions exp(S) sqrt(S) exponential. logarithm. __ exp(S)
xstr(CP) extract strings from C programs xstr(CP)
value functions floor(S) ceil(s) fabs(S) floor, ceiling., and absolute _____ floor(S)
report inter-process comsunication facilities statua ipcs(C) ipcs(C)
help(C) system help facility help(C)
factor(C) factor a number factor(C)
factor(C) factor a number factor(C)
value false(C) return with a nonzero exit false(C)
£L£(M) fast find ££(M)
finc(M) fast incremental backup finc(M)
malloc(S) free(S) realloc(S) fast main memory allocator malloc(S)
mallinfo(S) mallopt(S) calloc(S) fast main memory allocator malloc(S) ____ malloc(S)
abort(S) generate an IOT fault abort (S)

stream

fclose(S) fflush(S) close or flush a
fcntl(F) file control options

PI-16

fclose(S)

fentl(F)

UNIX DOS disk partitions
fopen(s)

intro(M) introduce miscellaneous
ferror(S) fileno(S) clearerr(S)
stream status inquiries
functions abm(S) dbminit(S)
dbm(S) firstkey(S) store(S)
head(C) print the first
fclose(s)

word from a stream getc(S) getw(S)
group file entry getgrent(S)
password file entry getpwent(S)
gets(S)

string

utime(S) set

1ldfcn(F) common object

access(S) determine accessibility of a
acct (M) format of per-process accounting
cpio(C) copy

tra(C) copy out a

chmod(S) change mode of

chown(S) change owner and group of a
mcs(CP) manipulate the object
fcnt1(S)

fentl(F)

uupick(C) public UNIX-to-UNIX system
core(F) format of core image
cprs(CP) compresse a common object
umask(S) set and get

ctags(C) create a tags

dd(C) convert and copy a

delta(CP) make a change to an SCCS
close(S) close a

dup(S) dup2(S) duplicate an open
dump selected parts of an object
sact (CP) print current SCCS

crypt (S) password and

endgrent (S) setgrent(S) get group
getgrnam(S) getgrgid(S) get group
endpwent (S) setpwent(S) get password
getpwnam(S) ¢ id(S) get p d
utmpname(S) endutent(S) access utmp
setutent(S) getutline(S) access utmp
putpwent (S) write password

execle(S) execv(S) execl(S) execute a
fgrep(C) search a

grep(C) search a

expression egrep(C) search
ldaopen(S) open a common object
ar(F) archive

xar(F) archive

intro(F) introduction to

mkstr(C) create an error message
mkstr(CP) create an error message

Permuted Index

fcntl(S) file control
fcopy(C) copy a floppy diskette
fdisk(C)

fdopen(S) freopen(S) open a stream
features and files
tfeof(S) stream status inquiries

ferror(S) fileno(S) clearerr(S) feof(S) _

fetch(S) nextkey(S) perform database
fetch(S) perform database functions
few lines of a stream

££lush(S) close or flush a stream
££(M) fast find

fgetc(S) getchar(S) get character or
fgetgrent (S) endgrent(S) setgrent(S) get
fgetpwent (S) endpwent(S) setpwent(S) get
fgets(S) get a string from a stream

fgrep(C) search a file for a character _

file acceas and modification times
file access routines

file

file

file archives in and out

file as it grows

file

file

file section

file control

file control options
file copy uuto(C)
file

tile

file creation mask
tile

file

file

file descriptor

file descriptor

file dump(CP)

file edit activity

file encryption functions

file entry getgrent(S) fgetgrent(S)
file entry getgrent(S)

file entry getpwent(S) fgetpwent(S)
file entry getpwent(S)

file entry getut(S) getutent(S)
file entry getut(S)

file entry _ '

file exec(S) execvp(S) execlp(S)
file for a character string
file for a pattern
file for pattern using full regular
file for reading ldopen(S)

file format

file format

file formats

file from C source
file from C source

PI-17

fentl(s)
£copy(C)
£disk(C)
fopen(S)
intro(M)
terror(s)
ferror(S)

abm(s)

dbm(S)
head(C)
fclose(S)
££(M)

getc(s)

getgrent(S)
getpwent (S)
gets(S)
f£grep(C)
utime(S)
ldfen(F)
access(S)
acct (M)
cpio(C)
tra(C)
chmod(s)
chown(S)
mcs (CP)
fentl(s)
fcntl (F)
uuto(C)
core(F)
cprs(CP)
umask (S)
ctags(C)
daa(c)
delta(CP)
close(S)
dup(S)

Qump (CP)
sact (CP)
crypt(S)
getgrent(s)
getgrent(S)

getpwent (S)

getpwent (S)
getut (S)
getut (S)
putpwent (S)
exec(S)
tgrep(C)
grep(C)

egrep(C)

ldopen(S)
ar(F)
xar(F)
intro(F)
mkstr(C)
mkstr (CP)

Permuted Index

fixobj(CP) convert an object

get (CP) get a version of an SCCS
read directory entries and put in a
group(M) format of the group
display selected parts of an object
filehdr(F)

constants limits(F)
unistd(F)
ldfhread(S) read the
seek to the optional
split(C) split a
archive header of a member of an archive

ldohseek(S)

ldclose(S) ldaclose(S) close a COFF
read the file header of a COFF

number entries of a section of a COFF
entries of a section of a COFF
indexed/named section header of a COFF
index of a symbol table entry of a COFF
an indexed symbol table entry of a COFF
seek to the symbol table of a COFF

line number entries in a common object

1link(S) link to a

produce C source listing from COFF
1n(C) make a link to a

mem(M) kmem(M) memory image

convert object file to bootable object
a directory. or a special or ordinary
ctermid(S) generate

mktemp(S) make a unique

nl(C) add line numbers to a

nm(CP) print name list of common object
null(M) null

ttyslot(S) find the slot in the utmp
more(C) view a

chmod(C) change permissions of a
fuser(M) identify processes using a
creat(S) create a new

passwd(M) password

for CRTs

Eseek(S) ftell(S) rewind(S) reposition a
lseek(S) move read/write

printers(M) print spooler configuration
prs(CP) print an SCCS

pwck (M) grpck(M) check password/group
read(S) read from

locking(S) lock/unlock a

of information for a common object
rev(C) reverse lines

rmdel (CP) remove a delta from an

of a
sces
compare two versions of an SCCS
sccsfile(F) format of an SCCS

section header for a common object
format of curses screen image

see(C) display a

chsize(S) change the

stat(S) fstat(S) get

find the printable strings in an object

file
file
file
tile
file
file
file
file
file
tile
file
file
file
tile
file
file
file
file
file
tile
file
file
file
file
tile
file
file
tile
file
tile
file
tile
file
file
file
tile
file
file
file
tile
file
file
file
tile
file
file
file
file
file
file
file
file
file
file
file
file
file

from OMF to COFF

getdents(S)

hdr (C)
header
header
header
header

header

into pieces

for common object files

for symbolic constants
of a COFF file

of a common object

ldahread(S) read the
ldfhread(s)

ldlseek(S) seek to line
ldrseek(S) seek to relocation
ldshread(S) read an
ldtbindex(S) compute the
ldtbread(s) read
ldtbseek(S)

linenum(F)

1ist (CP)

mkboot (M)

mknod(S) make
name for terminal

name

of the current user

one full screen at a time
or directory

or file structure

or rewrite an existing one

perusal filter
pointer in a stream

peinter

region for read/write
reloc{F) relocation

sccadiff(CP)

scnhdr (F)

scr_dump(F)

size

status

strings(C)

PI-18

fixob)(CP)
get (CP)
getdents(S)
group (M)
hdr(C)

filehdr(F)
for implementation-specific _

limits(F)
unistd(F)
ldfhread(S)
ldohseek(S)
aplit(C)
ldahread(s)
ldclose(S)
ldfhread(S)
ldlseek(S)
ldrseek(S)
ldshread(s)
ldtbindex(S)
ldtbread(sS)
ldtbseek(S)
linenum(F)
link(S)
list (CP)
1n(C)

mem (M)
mkboot (M)
mknod(S)
ctermid(S)
mktemp(S)
nl(C)
nm(CP)

null (M)
ttyslot(S)
more(C)
chmod (C)
fuser (M)
creat(S)
passwd(M)
pg(C)
faeek(S)
1seek(S)
printers(M)
prs(CP)
pwck (M)
read(s)
locking($)
reloc(F)
rev(C)
rmdel (CP)
sccsdiff(CP)
sccsfile(F)
scnhdr (F)
scr umpi(F)
seet
chsize(S)
stat(s)
strings(C)

symbols and line numbers from COFF
identify proce: s using a file or
mount (C) umount(C) mount/unmount a
calculate checksum and count blocks in a
syms(F) common object

inir(M) clean the

ckbupscd(M) check

fsab(M)

recover(C) restore contents of a
fsinfo(M) report information about a
fstyp(M) determine the

dirent (F)

statfs(S) fstatfs(S) get

mkEs(M) construct a

mount{S) mount a

quot (C) summarize

ustat(S) get

fsstat (M) report

fstab (M)

mnttab(M) mounted

archive(C) save a

sysfs(S) get

volcopy (M) labelit(M) copy
haltsys(C) close the

fsck(C) dfsck(C) check and repair
labelit(C) provide labels for
umountall(C) mount/unmount multiple
checklist (M) list

tail(C) deliver the last part of a
tmpfile(S) create a temporary
tempnam{S) create a name for a temporary
mkboot (M) convert object

tsort(C) sort a

access and modification times of a
uucico(M)

uusched(M) scheduler for the uucp
ftw(S) walk a

ttys(M) login terminals

f£ile(C) determine

unget (CP) undo a previous get of an SCCS
uniq(C) report repeated lines in a
the uucp directories and permissions
val(CP) validate an SCCS

mkunix(M) make bootable system
mkunix(M) make bootable system
write(S) write on a

umask(C) set

files

status inquiries ferror(S)

csplit(C) split

admin(CP) create and administer SCCS
1ink (M) unlink(M) link and unlink
mv(C) move (rename)

artp(C) transfer

bfs(C) scan big

cat(C) concatenate and display

Permuted Index

file strip(CP) remove strip(CP)
file structure fuser(M) fuser (M)
file structure mount (C)
file sum(C) sum(C)
file symbol table format syms (F)
file system and executes init inir(M)
file sy back hedule kb d(M)
file system bugg: £sdb(M)
file system from tape recover(C)
file system fainfo (M)
file asystem identifier £atyp(M)
file system independent directory entry _ dirent(F)
file system information statfs(S)
file system mkfs (M)
file system mount (S)
file system ownership quot (C)
file system statistics ustat (S)
file system status fastat (M)
file system table fstab(M)
file system table mnttab (M)
file system to a streaming tape archive (C)
file system type information sysfs(S)
file system with label checking volcopy (M)
file systems and halt the CPU haltsys(C)
file systems fsck(C)
file systems labelit (C)
file systems mountall(C) mountall(C)
file systems p d by fsck checklist (M)
file tail(c)
file tmpfile(S)
file tmpnam(S) tmpnam(S)
file to bootable object file mkboot (M)
file topologically tsort(C)
file touch(C) update touch(C)
file transport program for uucp system __ uucico(M)
file transport program uusched(M)
file tree ftw(s)
file ttys(M)
file type file(C)
file unget (CP)
file unig(C)
file h (M) check heck (M)
tile val (CP)
file with driver symbol table mkunix (M)
file with kernel symbol table mkunix(M)
file write(s)
file(C) determine file type file(C)
file-creation mode mask umask (C)
filehdr(F) file header for common object filehdr(F)
fileno(S) clearerr(S) feof(S) stream ____ ferror(S)
files according to context csplit(C)
files admin(CP}
files and directories 1ink(M)
files and directories mv(C)
files between Altos machines aftp(C)
files bfs(C)
files cat (C)

PI-19

Permuted Index

cmp(C) compare two

select/reject lines common to two sorted
conv(CP) convert common object
copy(C) copy groups of

cp(C) copy

crontab(C) manage user crontab
Aiff3(C) compare three

diff(C) compare two text

dos(C) access MS-DOS

filehdr(F) file header for common object
£ind(C) find

hplp(C) hplpR(C) filter

frec(M) recover

uucp(C) uulog(C) uuname(C) copy
fspec(F) format specification in text
f£8plit (CP) split ratfor

hd(C) display

fleece(C) look for

od(C) display

introduce miscellaneous features and
lockf(S) record locking on
makedevs (M) create special device
makettys(M) create tty special
mknod(C) build special

pr(C) print

m(C) rmdir(C) remove

pcat(C) unpack(C) compress and expand
devnm(C) identify device name on which
the access and modification dates of
8diff(C) compare

print section sizes of common object
sort(C) sort and merge

tar(C) archive

1pr(C) route named

baiff(C) compare

what (C) identify

fxlist(S) get name list entries from

printer hplp(C) hplpR(C)

££(M) fast

£ind(C)

tinger(C)

look(C)

ttyname(S) isatty(s)
library lorder(CP)

file strings(C)

current user ttyslot(S)

fold(C) fold long lines for
database functions dbm(S)

OMF to COFF

directories

fpgetround(S) fpgetmask(S) IEEE
fpgetround(S) fpgetsticky(S) IEEE

files cmp(C)
files comm(C) comm(C)
files conv(CP)
files copy(C)
files cp(C)
files crontab(C)
files dif£3(C)
files dife(c)
files dos(C)
files filehdr(F)
files £ind(C)
files for printing on LaserJet printer __ hplp(C)
files from a back-up tape frec(M)
fileas from UNIX to UNIX uucp(C)
files f£spec(F)
files fsplit (CP)
files in hexadecimal format hd(c)
files in home directories fleece(C)
files in octal format od(C)
files intro(M) intro(M)
files lockf(S)
files Y M)
files makettys (M)
files mknod (C)
files on the standard output pr(c)
files or directories m(C)
files pack(C) pack(C)
files reside devnm(C)
files settime(C) ch settime(C)
tiles side-by-side sdiff(C)
files size(C) size(C)
files sort(C)
files tar(C)
files to printer spooler ipr(C)
files too large for Aiff bdiff(C)
files what (C)
files xlist(S) xlist(S)
filesystem(M) format of a system volume _ fileasystem(M)
filter file for CRT Pg(C)
filter files for printing on LaserJet ___ hplp(C)
finc(M) fast incr al bach finc (M)
find ££(M)

find files find(C)
find information about users finger(C)
tind lines in a sorted list look(C)
find name of a terminal ttyname(S)
find ordering relation for object lorder(CP)
find the printable strings in an object _ strings(C)
find the slot in the utmp file of the ___ ttyslot(S)
£ind(C) find files £ind(C)
tinger(C) find information about users __ finger(C)
finite width output device fold(C)
firstkey(S) store(S) fetch(S) perform ___ dbm(S)
fixobj (CP) convert an object file from __ fixobj(CP)
fleece(C) look for files in home fleece(C)
floating point environment control fpgetround(S
floating point environment control fpgetround(s

PI-20

fpgetround(S) fpsetmask(S) IEEE
fpgetround(S) fpsetround(S) IEEE
fpgetround(S) fpsetsticky(S) IEEE
isnan(S) isnanf(S) isnand(S) test for
ecvt(S) convert

modf(S) ldexp(S) manipulate parts of
functions floor(S) ceil(S) fabs(S)
functions floor(s) fmod(s)

and absolute value functions
absolute value functions

options (M)

fcopy(C) copy a

format(C) format a

cflow(CP) generate C

fclose(S) fflush(S) close or

value functions floor(S)

device fold(C)
output device
stream

format (C)

ar{F) archive file

hd(C) display filea in hexadecimal
od(C) display files in octal
dir(M)

fileaystem(M)

inode (M)

sccsfile(F)

output a.out(F)

menus (M)

core(F)

cpio(F)

scr_dump (F)

acct (M)

group (M)

utmp (M) wtmp (M)

fspec(F)

syms(F) common object file symbol table
xar(F) archive file

intro(F) introduction to file

scanf (S) fscanf(S) sscanf(S) convert
vprintf(S) vfprintf(S) vsprintf(S) print
printf(S) sprintf(S) fprintf(S) print
fmt (C) simple text

convert rational FORTRAN to standard
ratfor(CP) convert rational
environment control fpgetround(S)
point environment control

floating point control
point

floating point

environment
environment control
environment control

floating point environment control
environment control fpgetround(S)
printf(S) sprintf(S)

environment control fpgetround(s)

Permuted Index

floating point environment control
floating point
floating point
floating point
floating-point
floating-point
floor. ceiling,
floor, ceiling. and absolute value
floor(S) ceil(S) fabs(S) floor. ceiling.

floor(S) fmod(S) floor. ceiling. and __
floppy disk installation menu

floppy diskette

environment control
environment control
NaN

number to string

numbers frexp(S)
and absolute value

floppy diskette
flow graph

flush a stream
fmod(S) floor.

ceiling,
fmt (C) simple text formatter

fold long lines for finite width output _
fold(C) fold long lines for finite width
fopen(S) fdopen(S) freopen(S) open a _
fork(S) create a new process

and absolute

format a floppy diskette
format

format

format

format of
format of
format of
format of

a directory

a system volume
an inode

an SCCS file
format of assembler and link editor
format of Business Shell menu system
core image file

cpio archive

format of
format of
format of
format of
format of

curses screen image file

the group file

format of utmp and wtmp entries
format specification in text files
format

per-process accounting file

format

format (C) format a floppy diskette
£,

formatted input

formatted output of varargs list
formatted output

formatter

FORTRAN ratfor(CP)

FORTRAN to standard FORTRAN

fpgetmask(S) IEEE floating point
fpgetmask(S) IEEE floating
fpgetsticky(S) IEEE
fpsetmask(S) IEEE floating
fpgetround(S) fpsetround(S) IEEE
fpgetround(S) fpsetsticky(S) IEEE
fpgetsticky(S) 1EEE floating point
fprintf(S) print formatted output
fpsetmask(S) IEEE floating point

fpgetround(S)
fpgetround(s)
fpgetround(s)

PI-21

fpgetround(s)
fpgetround(S)
fpgetround(s)
isnan(S)
ecvt(S)
frexp(S)
floor(S)
floor(s)
floor(s)
floor(s)
options(M)
fcopy(C)
format (C)
cflow(CP)
fclose(S)
floor(s)

fmt (C)
fold(C)
fold(C)

_ fopen(s)

fork(s)
format (C)
ar(F)

hd(C)

o0d(C)

dir (M)
filesystem(M)
inode (M)
sccsfile(F)
a.out(F)
menus (M)
core(F)
cpio(F)
scr_dump(F)
acct (M)

group (M)

utmp (M)
fapec(F)

ayms (F)

xar (F)

format (C)
intro(F)
scanf (S)
vprintf(S)
printf(S)

fmt (C)
ratfor(CP)
ratfor(CP)
fpgetround(S)
fpgetround(S)
fpgetround(S)
fpgetround(s)
fpgetround(S)
fpgetround(s)
fpgetround(S)
printf(s)
fpgetround(S)

Permuted Index

environment control fpgetround(S)
environment control fpgetround(S)
stream putc(S) putchar(S) putw(S)
puts(S)

twrite(S)

tape

df (M) report number of

allocator malloc(S)

fopen(S) fdopen(S)

parts of floating-point numbers

gencc(CP) create a
input scanf(S)
list file systems processed by

systems

file pointer in a stream
file system
files

statfs(S)

stat(s)

identifier

pointer in a stream fseek(S)

communication package stdipc(S)

egrep(C) search file for pattern using
more(C) view a file one

function erf(S) erfc(S) error

error function and complementary error
gamma(S) log gamma

hypot (S) Euclidean distance

nanipulate line number entries of a COFF
matherr(S) error-handling

prof (F) profile within a

math(F) math

intro(S) introduce system calls.

bessel (S) jO(S) yO(S) Bessel

crypt(S) password and file encryption
fetch(S) nextkey(S) perform database
store(S) fetch($) perform database
log(S) exponential, logarithm. and power
exponential, logarithm. and square root
floor, ceiling. and absolute value
floor, ceiling, and absolute value
8inh(S) cosh(S) tanh(S) hyperbolic
trig(S) atan(S) atan2(S) trigonometric
tan(S) asin(S) acos(S) trigonometric

: or file structure

files xlist(S)
gamma(S) log

command
adb(C) invoke x.out

fpsetround(S) IEEE floating point
fpsetsticky(S) IEEE floating point
fputc(S) put character or word on a
tputs(S) put a string on &8 stream
fread(S) binary input/output
frec(M) recover files from a back-up
free disk blocks and inodes

free(S) realloc(S) fast main memory
freopen(S) open a stream

frexp(S) modf(S) ldexp(S) manipulate __
from(C) list who my mail is from

front end to the cc command

fscanf(S) sscant(S) convert formatted _
fsck checklist (M)

£3ck(C) afsck(C) check and repair file _
fadb(M) file system debugger

fseek(S) ftell(S) rewind(S) reposition a
fsinfo(M) report information about a
tspec(F) format specification in text
fsplit (CP) split ratfor files

fsstat (M) report file system status
fstab(M) file system table

fstatfs(S) get file system information
fatat(S) get file status

fatyp(M) determine the file system
ftell(S) rewind(S) reposition a file
ftok(S) standard interprocess

ftw(S) walk a file tree

full regular expression

full screen at a time

function and complementary error
function erf(S) erfc(s)

function
function
function
function

ldlread(S) ldlitem(S)

function

and constants
and libraries

functions
functions.
functions
functions
functions
functions

dbm(S)
dbm(S)
exp(S) pow(S)

exp(S) sqrt(S)

floor(S) ceil(S) fabs(S)
tloor(S) fmod(S)

dbminit (S)
firstkey(S)
functions
functions
functions
functions
functions
functions

functions trig(s) sin(S) cos(S)

fuser(M) identify processes using a file
fwrite(S) fread(S) binary input/output
txlist(S) get name list entries from
gamma function

gamma(S) log gamma function
gencc(CP) create a front end to the cc

fpgetround(S)
fpgetround(S)

putc(S)

puts(S)
fwrite(S)

frec(M)

df (M)
malloc(S)
fopen(S)
frexp(S)
from(C)
gencc(CP)
scanf (S)
checklist (M)
fack(C)
£3db(M)
fseek(S)

fsinfo(M)
fspec(F)

faplit (CP)
fastat (M)
fstab(M)

__ statfs(s)

stat(S)
fatyp(M)

faeek(S)

stdipc(s)
£tw(S)
egrep(C)
more(C)
erf(S)
erf(s)
gamma(S)
hypot (S)
ldlread(s)
matherr(S)
prof(F)
math(F)
intro(s)
bessel(S)
crypt (S)
dbm(S)
dbm(s)
exp(S)
exp(S)
floor(s)
floor(S)
sinh(S)
trig(s)
trig(s)
fuser (M)

__ twrite(S)
x1list(S)

gamma(S)
gamma($)

__ gencc(CP)

general

P1-22

adb(C)

termio (M)

random(C)

mkvers (CP)

makekey (M)

abort(S)

cflow(CP)

cxref (CP)

ctermid(S)

ncheck (M)

lex(CP)

drand48(S) erand48(S)

/mrand48(S) nrand48(S) lrand48(S)
/seed48(S) srand48(S) jrand48(S)
rand(S) srand(S) simple random-number
stream getc(S) getw(S) fgetc(S)

character or word from a stream
working directory

put in a file

group IDs getuid(s)

name

group IDs getuid(S)

group IDs getuid(S)

setgrent (S) get group file entry
group file entry

getgrent(S) getgrnam(S)

entry getgrent(S)

argument vector

and parent process IDs
setpwent (S) get password file entry
pasaword file entry

Permuted Index

general terminal interface

generate a random number

generate a what string
generate an encryption key
generate an IOT fault
generate C flow graph
generate C program cross-reference
generate file name for terminal
generate
generate
generate

S —

path names from inode numbers
programs for lexical analysis __
pseudo-random numbers

generate pseudo-random numbers
generate

generator

pseudo-random numbers

getchar(S) get character or word from a _
get (CP) get a version of an SCCS file _
getc(S) getw(S) fgetc(S) getchar(S) get
getcwd(S) get path name of current
getdents(S) read directory entries and _
getegid(S) get real/effective user or
getenv(S) return value for environment
geteuid(S) get real/effective user or
getgid(S) get real/effective user or
getgrent (S) fgetgrent(S) endgrent(S)
getgrent (S)
getgrgid(S)
getgrnam(S)
getlogin(S)
getmsg(S)
getopt (C)
getopt (S)

getgrnam(S) getgrgid(S) get
get group file entry
getgrgid(S) get group file
get login name

get next message off a stream _
parse command options

get option letter from
getpas (S) read a password

getpid(S) get process, process group.
getpwent (S) fgetpwent(S) endpwent(S) __
getpwent (S) getpwnam(S) getpwuid(S) get

termio (M)
random(C)
mkvers (CP)
makekey (M)
abort(s)
cflow(CP)
cxref (CP)
ctermid(s)

__ ncheck(M)

lex(CP)
drand48(S)
drand48(S)
drand48(S)
rand(S)
getc(S)
get (CP)

_ getc(S)

getcwd(S)
getdents(S)

___ getuid(s)
__ getenv(S)
— getuid(s)
- getuid(s)
_____ getgrent(S)
_ getgrent(S)

getgrent(S)

__ getgrent(S)

getlogin(S)
getmsg(S)
getopt (C)
getopt (S)
getpas(S)

___ getpid(s)

getpwent (S)

_ getpwent(S)

file entry getpwent(S) getpwnam(S) g id(S) get d ____ g (8)
getpw(S) get name from UID getpw(S)
(s) (s) getp! Ad(S) get password file entry __ getpwent(S)
input gets(C) get a string from the standard __ gets(C)
stream gets(S) fgets(S) get a string from a ____ gets(S)
speed and terminal settings used by getty gettydefs(M) gettydefs (M)
ct(C) spawn getty to a remote terminal ct(C)
used by getty gettydefs(M) speed and terminal settings gettydefs(M)
getty(M) set terminal mode getty(M)
user or group IDs getuid(S) getegid(S) get real/effective _ getuid(s)
user or group IDs getuid(S) geteuid(S) get real/effective _ getuid(s)
user or group IDs getuid(S) getgid(S) get real/effective __ getuid(s)

access utmp file entry getut(S)
getut(S) setutent(S)

endutent(S) access utmp file entry
utmp file entry

character or word from a stream getc(S)
login(C)

symbols

time to string ctime(S)

set jmp(S) longjmp(S) non-local
cflow(CP) generate C flow

getutent (S) utmpname(S) endutent(S)
getutline(S) access utmp file entry
getut (S) getutent(S) utmpname(S)
getut(S) setutent(S) getutline(S) access
getw(S) fgetc(S) getchar(S) get

give you system access __ 0
glossary(C) define common UNIX terms and
gmtime(S) localtime(S) convert date and _
goto
graph

PI-23

getut(s)
getut(S)

getut(S)
getut(S)
getc(S)
login(C)
glossary(C)
ctime(S)
set jmp(S)
cflow(CP)

Permuted Index

graph(C) draw a
plot(S)

getpid(S) get process. process
fgetgrent(S) endgrent(S) setgrent(S) get
getgrent(S) getgrnam(S) getgrgid(S) get
group(M) format of the

id(C) print user and

chown(C) chgrp(C) change owner or
setpgrp(S) set process

getegid(S) get real/effective user or
geteuid(S) get
getgid(S) get

real/effective user or
real/effective user or
setuid(s)
newgrp(C) log user into a new

chown(S) change owner and

set user and

kill(S) send a signal to a process or a
execute command in a new process

copy(C) copy

make(C) maintain, update, and regenerate
tra(C) copy out a file as it

pwck(M)

ssignal(s)

haltsys(C) close the file systems and
halt the CPU

varargs(F)

curses(S) terminal screen

nohup(C) run a command immune to
add.hd(C) add an additional
restore.hd(C) restore a

layout (M) manage

dump. hd{C) dump contents of a
upgrade.hd(C) upgrade an additional
find spelling errors

find spelling errors

hsearch(S) hdestroy(S) hcreate(S) manage
generate

hsearch(S) hdestroy(s)

format

search tables hsearch(s)

object file

stream

scnhdr (F) section

filehdr(F) file

constants limits(F) file

unistd(F) file

ldfhread(S) read the file

read an indexed/named section
ldohgeek(S) seek to the optional file
ldahread(S) read the archive

help(C) system

hd(C) display files in
fleece(C) look for files in
printing on LaserJet printer

graph graph(C)
graph(C) draw a graph graph(C)
graphics interface subroutines plot(S)
grep(C) search a file for a pattern ____ grep(C)
group. and parent process IDs getpid(S)
group file entry getgrent(S) getgrent (S)
group file entry getgrent(S)
group file group (M)
group ID and names id(c)

group ID chown(C)
group id setpgrp(s)
group IDs getuid(S) getuia(s)
group IDs getuid(S) getuid(s)
group IDs getuid(s) getuid(S)
group IDs setuid(s)
group newgrp(C)
group of a file chown(S)
group of processes kili(S)
group setpgrp(C) setpgrp(C)
group(M) format of the group file group (M)
groups of files copy (C)
groups of programs make (C)
grows tra(C)
grpck (M) check password/group file pwck (M)
gsignal(S) software signals ssignal (S)
halt the CPU haltsys(C)
haltsys(C) close the file systems and ___ haltsys(C)
handles variable argument list varargs (F)
handling and optimization package curses(S)
hangups and quits nohup(C)
hard disk add. hd(C)
hard disk from tape restore.hd(C)
hard disk partitions layout (M)
hard disk to tape dump . hd (C)
hard disk upgrade. hd(C)
hashcheck(C) spell(C)

h (C) spell (C)
hash search tables hsearch(s)
hashing encryption crypt(S)
hcreate(S) manage hash search tables _____ hsearch(sS)
hd(C) display files in hexadecimal hd(c)
hdestroy(S) hcreate(S) hash h h(S)
hdr (C) display selected parts of an _____ hdr(C)
head(C) print the first few lines of a __ head(C)
header for a common object file scnhdr (F)
header for common object files filehdr(F)
header for implementation-specific limits(F)
header for symbolic constants unistd(F)
header of a COFF file ldfhread(S)
header of a COFF file ldshread(s) ldshread(S)
header of a common object 1d k(S)
header of a member of an archive file ___ ldahread(s)
help facility help(C)
help(C) system help facility help(C)
hexadecimal format ha(cC)

home directories fleece(C)
hplp(C) hplpR(C) filter files for hplp(C)

PI-24

LaserJet printer hplp{C)
hash search tables
sinh(S) cosh(S) tanh(S)

id(C) print user and group

chown(C) chgrp(C) change owner or group
queue, semphore set, shared memory
setpgrp(S) set process group

whoami(C) print effective current user

fstyp(M) determine the file system
shmget (S) get shared memory segment
reside devnm(C)

what (C)

structure fuser(M)

process group. and parent process
real/effective user or group
real/effective user or group
real/effective user or group
setuid(S) set user and group
fpgetround(S) fpgetmask(S)
fpgetround(S) fpgetsticky(s)
fpgetround(S) fpsetmask(S)
fpgetround(S) fpsetround(S)
fpgetround(S) fpsetsticky(S)
core(F) format of core
mem(M) kmem(M) memory
scr_dump(F) format of curses screen
nohup(C) run a command

limits(F) file header for

finc(M) fast

dirent (F) file system

file ldtbindex(S) compute the

file ldtbread(S) read an

file ldshread(S) read an
descriptions

f£sinfo(M) report

finger(C) find

devinfo(C) display device

default (M) default program

reloc(F) relocation of

lpstat(C) print LP status

statfs(S) fatatfs(S) get file system
sysconf (C) get system configuration
sysconf(S) get system configuration
sysfs(S) get file system type
uname(C) print the current UNIX
drive(C) drive

executes init

clean the file system and executes
inittab(M) script for the

special login program invoked by
init (M) process control

brc(M) system

popen(S) pclose(S)

Permuted Index

hplpR(C) filter files for printing on
hsearch(S) hdestroy(S) hcreate(S) manage
hyperbolic functions

hypot (S) Euclidean distance function
ID and names

Ip

id iperm(C) remove message

id

id

id(C) print user and group ID and names _
identifier

identifier

identify device name on which files
identify files

identify processes using a file or file
IDs getpid(S)
IDs getuid(s)
IDs getuid(S)
IDs getuid(s)
Ins

1EEE floating
IEEE floating
IEEE floating
IEEE floating
IEEE floating
image file

get process,
getegid(S)
geteuid(s)
getgid(s)

point environment control _

point environment controi _

point environment control

point environment control

point environment control

image file
image file

immune to hangups and quits
implementation-specific constants
incremental backup

independent directory entry

index of a symbol table entry of a COFF _
indexed symbol table entry of a COFF ___

indexed/named section header of a COFF __
infocmp(M) compare or print terminfo _
information about a file system
information about users

information

information directory

information for a common object file
information

information

information

information

information

information

information written during manufacturing
inir(M) clean the file system and
init inir(M)

init

init sulogin(M)

initialization

initialization procedure

initiate pipe to/from a process

init(M) process control initialization __
inittab(M) script for the init processes

PI-25

. hplp(C)

hsearch(S)
sinh(S)

hypot (S)

id(c)
chown{C)
ipcrm(C)
setpgrp(S)
whoami. (C)
id(C)
f3typ(M)
shmget (S)
devnm(C)
what (C)

_. fuser(M)

getpid(s)
getuid(s)
getuid(s)
getuid(s)
setuid(s)
fpgetround(s)
fpgetround(S)

_ fpgetround(s)
_ fpgetround(s)
_ fpgetround(s)

core(F)

mem (M)
scr_dump (F)
nohup(C)
limits(F)
finc(M)
dirent (F)
1dtbindex(S)
1dtbread(s)
ldshread(s)
infocmp (M)
fsinfo(M)
finger(C)
devinfo(C)
default (M)

reloc(F)

1pstat(C)
statfs(S)
sysconf (C)
sysconf(S)
sysfs (S)
uname(C)
drive(C)
inir(M)
inir(M)
inittab(M)
sulogin(M)
init(M)
brc(m)
popen (S)
init(M)
inittab(M)

Permuted Index

clri(M) clear
inode (M) format of an
ncheck(M) generate path names from

report number of free disk blocks and.

gets(C) get a string from the standard
1line(C) read one line of
fscanf(S) sscanf(S) convert formatted
ungetc(S) push character back into
fwrite(S) fread(S) binary

poll(S) STREAMS

stdio(S) standard buffered
clearerr(S) feof(S) stream status
uustat (C) uucp status

install(M)

cpset (C)

options(M) floppy disk

abs(S) return

a641(S) l64a(S) convert between long
sputl(S) sgetl(S) access long

atol(S) atoi(S) convert string to
13tol(S) 1ltol3(S) convert between 3-byte
convert between 3-byte integers and long
plot(S) graphics

termio(M) general terminal

log(M)

spline(C)

characters asa(C)

sh(C) rsh{(C) invoke the shell command
csh(C) shell command

pipe(S) create an

status ipcs(C) report

stdipc(S) ftok(S) standard

nap(S) suspend execution for a short
sleep(C) suspend execution for an
sleep(S) suspend execution for

commands

intro(C)

tiles intro(M)
intro(CP)
libraries intro(s)
intro(F)

features and files
and libraries
yacc(CP)

mé (CP)
calendar(C)
vi(C)

ex(C)

bsh(C)

ce(CP)

ed(C) red(C)
edit (C)
ld(cp)

functions.

inode
inode

inode numbers

inode(M) format of an inode
inodes dt(M)
input
input
input scanf(S)
input stream
input/output
input/output multiplexing
input/output K

inquiries ferror(S) fileno(S)
inquiry and job control
install a

install utilities
installation menu
install(M) install commands
integer absolute value
and base-64 ASCII string

data

integer
integer

integer strtol(S)

integers and long integers
integers 13tol(S) 1ltol3(S)
interface subroutines

interface

interface to STREAMS error logging
interpolate smooth curves
interpret asa carriage control
interpreter

interpreter with C-like syntax
interprocess ch 1

inter-process communication facilities
interprocess communication package
interval

interval

interval

intro(C) introduce commands
intro(CP) introduce software development
introduce q

introduce miscellaneous features and
introduce software development commands
introduce system calls. functions, and __
introduction to file formats

intro(F)
intro(M)
intro(S)
invoke a

introduction to file formats __
introduce miscellaneous
introduce system calls.
compiler-compiler

invoke
invoke

a Macro processor

a
invoke a

a

reminder service
invoke a text editor

the Business shell
the C compiler

the ed text editor
the edit text editor
the link editor

invoke
invoke
invoke
invoke
invoke

PI-26

screen-oriented display editor _

clri(M)
inode (M)
ncheck (M)
inode (M)
daf (M)
gets(C)
line(C)
scanf (S)
ungetc(S)
fwrite(S)
poll(s)
stdio(s)
ferror(s)
uustat(C)
ingtall(M)
cpset (C)
options (M)
install(M)
abs(S)
a641(s)
sputl(S)
strtol(S)
13tol(S)
13tol(Ss)
plot(S)
termio(M)
log(M)
spline(C)
asa(C)
sh(C)
csh(C)
pipe(S)

__ ipcs(C)

stdipc(S)
nap(S)
sleep(C)
sleep(S)
intro(C!
intro(CP.
intro(C)

intro(M)
_ intro(CP)

intro(s)
intro(F)
intro(F)
intro(M)
intro(s)
yacc(CP)
m4 (CP)
calendar(C)
vi(C)
ex(C)
bsh(C)
cc(CP)
ed(C)
edit (C)
1a(ce)

x1d(CP)

masm(CP)

sh(C) rsh(C)

sed(C)

adb(C)

sulogin(M) special login program

abort (S) generate an

set, shared memory id
communication facilities status
classify characters ctype(S)
ctype(S) isdigit(S) ispunct(S)
ttyname(S)

ctype(S) isalpha(S) islower(S)
classify characters ctype(S)
characters ctype(S) isalpha(S)
isnan(S) isnanf(s)

point NaN isnan(S)

floating point NaN

characters ctype(S) isdigit(s)
system(S)

bessel(S)

uustat(C) uucp status inquiry and
join(C)

numbers drand48(S) seed48(S) srand48(S)
1dunix(M) configurable

mkunix (M) make bootable system file with
makekey (M) generate an encryption
killall(C)

group of processes

. mem (M)

integers and long integers

base-64 ASCII string a641(S)
labelit (M) copy file system with
systems

checking volcopy (M)

labelit (C) provide

awk (C) pattern scanning and processing
bc(C) arbitrary-precision arithmetic
nawk (C) pattern scanning and pr ing

Permuted Index

link editor

cpp(CP) the C

lint (CP) check C

bdiff(C) compare files too

banner(C) print

hplpR(C) filter files for printing on

at(C) batch(C) execute commands at a
ldclose(S)

member of an archive file
reading ldopen(S)

floating-point numbers frexp(S) modf(S)

invoke the x1d(CP)
invoke the macro assembler masm(CP)
invoke the shell command interpreter _____ sh(C)
invoke the stream editor sed(C)
invoke x.out general purpose debugger _ _ adb(C)
invoked by init sulogin(M)
ioctl(S) control device ioctl(S)
I0T fault abort (S)
ipcrm(C) remove message queue, semphore _ ipcrm(C)
ipes(C) report inter-process ipes(C)
isalpha(S) islower(S) iscntrl(S) ctype(S)
isascii(S) classify characters ctype(S)
isatty(S) find name of a terminal ttyname(S)
iscntrl(S) classify characters ctype(S)
isdigit(S) ispunct(S) isascii(S) ctype(S)
islower(S) iscntrl(S) classify ctype(S)
isnand(S) test for floating point NaN ____ isnan(S)
isnanf(S) isnand(S) test for floating ___ isnan(s)
isnan(S) isnanf(S) isnand(S) test for ___ isnan(S)
ispunct(S) isascii(S) classify ctype(S)
issue a shell command system(S)
jO(S) y0(S) Bessel functions bessel(S)
job control uustat(C)
join two relations jein(C)
join(C) join two relations join(C)
jrand48(S) generate pseudo-random drand48(s)
kernel linker ldunix (M)
kernel symbol table mkunix (M)
key y (M)
kill all active pr killall{C)
killall{C) kill all active processes _____ killall(C)
kill(C) terminate a process kill(C)
kill(S) send a signal to a process or a _ kill(S)
kmem(M) memory image file =~~~ mem(M)
13tol(S) 1tol3(S) convert between 3-byte 13tol(S)
164a(S) convert between long integer and a64l(S)
label checking volcopy(M) volcopy (M)
labelit (C) provide labels for file labelit(C)
labelit (M) copy file system with label __ volcopy(M)
labels for file systems labelit(C)
language awk (C)
language be(C)

1 nawk (C)
Language Preprocessor cpp(CP)
language usage and syntax lint (CP)
large for diff baiff(C)
large letters banner (C)
LaserJet printer hplp(C) hplp(C)
last(C) print last record of user logins last(C)
later time at(C)
layout (M) manage hard disk partitions ___ layout(M)
ldaclose(S) close a COFF file ldclose(S)
ldahread(S) read the archive header of a 1ldahread(S)
ldaopen(S) open a common object file for ldopen(S)
ldclose(S) ldaclose(S) close a COFF file ldclose(S
1d(CP) invoke the link editor 14(CP)
ldexp(S) manipulate parts of frexp(s)

PI-27

Permuted Index

routines

COFF file

COFF symbol table entry

entries of a COFF function ldlread(S)
number entries of a COFF function

of a section of a COFF file

header of a common object

object file

a section of a

for reading
COFF file
COFF file
COFF tile
COFF file
COFF file

section header of a
symbol table entry of a
entry of a

a
leave(C) remind you when you have to
leave

getopt (S) get option

banner(C) print large

analysis

lex(CP) generate programs for
lsearch(s)

ar(CP) maintain archives and
chkshlib(CP) tool for comparing shared
introduce system calls. functions, and
ranlib(CP) convert archives to random
xar (CP) maintain archives and

find ordering relation for object
mkshlib(CP) create a shared
shuttype(S) get and set UPS shutdown

. ulimit(S) get and set user
implementation-specific constants
dial(S) establish an out-going terminal
set terminal type., modes. speed,

file linenum(F)

ldlread(S) ldlitem(S) manipulate

COFF file ldlseek(S) seek to

strip(CP) remove symbols and

nl(C) add

line(C) read one

lpd(M)

cancel(C) send/cancel requests to LP
turn on/off

1pdisable(C) enable/disable LP
lpinit (M) ‘add new

isearch(S) 1find(s)

common object file

comm(C) select/reject
fold(C) fold long

unig(C) report repeated
look(C) find

num(C) number

rev(C) reverse

head(C) print the first few
ssp(C) remove consecutive blank
wc(C) count

1ink (M) unlink(M)

ldfcn(F) common object file access
ldfhread(S) read the file header of a
ldgetname(S) retrieve symbol name for
ldlitem(S) manipulate line number
ldlread(S) ldlitem(S) manipulate line
ldlseek(S) seek to line number entries
ldohseek(S) seek to the optional file
ldopen(S) ldaopen(S) open a common
ldrseek(S) seek to relocation entries of
ldshread(S) read an indexed/named
1dtbindex(S) compute the index of a
1dtbread(S) read an indexed symbol table
ldtbseek(S) seek to the symbol table of _
ldunix(M) configurable kernel linker __
leave

leave(C) remind you when you have to __
letter from argument vector

letters

lex(CP) generate programs for lexical
lexical analysis

1find(S) linear search and update
libraries

libraries

libraries intro(S)

libraries

libraries

library lorder(CP)

library

limits

limits

limits(F) file header for

line connection

line discipline uugetty(M)

line number entries in a common object
line number entries of a COFF function
line
line
line
line
line
line
line

number entries of a section of a
numbers from COFF file

numbers to a file

of input

printer daemon
printer 1p(C)
printer
line printers lpenabie(C)

line printera

linear search and update

line(C) read one line of input
linenum(F) line number entries in a
lines common to two sorted files
lines for finite width output device
lines in a file

lines in a sorted list

lines

lines of a file

lines of a stream

ler

lines
lines, words, and characters
1ink and unlink files and directories

PI-28

ldfcn (F)

ldfhread(S)
ldgetname(S)

ldlread(s)

___ ldlread(s)
. ldlseek(S)
___ ldohseek(s)

ldopen(S)

ldrseek(S)
ldshread(s)
ldtbindex(S)
ldtbread(s)
ldtbseek(S)
ldunix (M)
leave(C)
leave(C)
getopt (S)
banner(C)
lex(CP)
lex(CP)
lsearch(S)
ar (CP)
chkshlib(CP)
intro(S)
ranlib(CP)
xar{CP)
lorder(CP)
mkshlib(CP)
shuttype(S)
ulimit(S)
limits(F)
dial(s)
uugetty(M)

—_ linenum(F)
__ ldiread(s)
— ldlseek(s)

strip(CP)
nl(C)
1ine(C)
1pd(M)
1p(C)

1lpon (M)
lpenable(C)
1pinit (M)
1search(S)
line(C)
linenum(F)
comm(C)
fold(C)
uniq(C)
look(C)
num(C)
rev(C)
head(C)
88p(C)
we(C)
link(M)

1d(CP) invoke the

a.out(F) format of assembler and
x1d(CP) invoke the

link(s)

1n(C) make a

ldunix (M) configurable kernel
and directories

syntax

1s(C)

x1ist(S) fxlist(S) get name
checklist (M)
lines in a sorted
entrieas from name

look(C) find
nlist(S) get
nm(CP) print name

terminals (M)

varargs(F) handles variable argument
print formatted output of varargs
from(C)

xnm(CP) print name
COFF file

cref(CP) make a cross-reference

1list (CP) produce C source

string ctime(S) gmtime(S)
program whereis(C)

end(S) edata(S) etext(S) last
lock(S)

plock(S)

lockf(S) record
read/write

locking(S)
errprint(M) display error
gamma (S)
set maximum number of users allowed to
newgrp(C)
exp(S) pow(S) log(S) exponential,
exp(S) sqrt(S) exponential.
strclean(M) STREAMS error
strerr(M) STREAMS error
log(M) interface to STREAMS error
sizefs(C) determine the size of a
getlogin(S) get
logname(C) get
cuserid(S) get character
logname(S) return

a(C) ch

Permuted Index

sulogin(M) special
ttys (M)
profile(M) set up environment at

last(C) print last record of user
disable(C) disable

enable(C) enable

logging

link editor 1d(CP}

link editor output a.out(F)
link editor x1d(CP)
link to a file link(S)
link to a file 1n(C)
linker 1ldunix (M)
1link(M) unlink(M) link and unlink files _ link(M)
1link(S) link to a file 1ink(S)
lint(CP) check C language usage and lint (CP)
list contents of directories 1s(C)

list entries from files x1ist(S)
list file systems processed by fsck checklist (M)
list look(C)
list nlist(S)
list of common object file nm{CP)

list of supported terminals terminals (M)
list varargs(F)
list vprintf(S) vfprintf(S) vsprintf(S) _ vprintf(S)
list who my mail is from from(C)
list xnm(CP)
1ist (CP) produce C source listing from ___ list{(CP)
listing cref (CP)
listing from COFF file 1ist (CP)
1n(C) make a link to a file 1n(C)
localtime(S) convert date and time to ____ ctime(S)
locate source, binary. or manual for ____ whereis(C)
locations in program end(S)
lock a process in primary memory lock(S)
lock process, text, or data in memory ___ plock(S)
lockf(S) record locking on files lockf(S)
locking on files lockf(S)
locking(S) lock/unlock a file region for locking(S)
lock(S) lock a process in primary memory lock(S)
lock/unlock a file region for read/write locking(S)
log contents errprint (M)
log gamma function gamma (S)
log in numusers(S) get and numusers (S)
log user into a new group newgrp{C)
logarithm, and power functions exp(S)
logarithm, and square root functions ____ exp(S)
logger cleanup program strclean(M)
logger daemon strerr(M)
logging log(M)
logical disk drive sizefs(C)
login name getlogin(S)
login name 1)
login name of the user cuserid(s)
login name of user 1 (8)
login p d ©)
login program i d by init sulogin(M)
login terminals file ttys (M)
login time profile(M)
login(C) give you system access login(C)
logins last(C)
logins on a port disable(C)
logins on a port enable(C)
log(M) interface to STREAMS error log(M)

PI-29

Permuted Index

functions exp(S) pow(S)
set jmp(S)
fleece(C)

object library

1p(C) cancel(C) send/cancel requests to
lpenable(C) lpdisable(C) enable/disable
lpsched(M) lpshut(M) start/stop the
lpsched(M) lpmove(M) move

lpadmin(M) configure the

lpstat(C) print

system

LP line printer

printers lpenable(C)

LP line printers

1psched(M)
turn on/off
spooler

request scheduler
scheduler lpsched(M)

drand48(S) mrand48(S) nrand48(S)
update
and long integers 13tol(S)

values(F)

aftp(C) transfer files between Altos
masm(CP) invoke the

m4 (CP) invoke a

enroll(C) xsend(C) xget{C) secret
mail (C) system

aliases (M)

aliashash(M) rebuild data base for

from(C) list who my

malloc(S)

malloc(S) free(S) realloc(S) fast
mallinfo(S) mallopt(S) calloc(S) fast
ar(CP)

xar (CP)

of programs make(C)

groups of programs

main memory allocator malloc(S)
memory allocator

calloc(S) fast main memory allocator
allocator malloc(S) mallinfo(S)

iogname(C) get login name
logname(S) return login name of user __
log(S) exponential, logarithm. and power

longjmp(S) non-local goto

look for files in home directories
look(C) find lines in a sorted list
lorder (CP) find ordering relation for
LP
LP
Lp
LP
LP
LP
lpadmin(M) configure the LP spooling __
1p(C) cancel(C) send/cancel requests to _
lpdisable(C) enable/disable LP line __
1pd(M) line printer daemon

lpenable{(C) lpdisable(C) enable/disable _
lpinit(M) add new line printers
lpmove (M) move LP requests

lpon(M) line printer scheduler

lpr(C) route named files to printer
lpsched(M) lpmove(M) move LP requests
lpsched(M) lpshut(M) start/stop the LP __
1pshut(M) start/stop the LP request
lpstat(C) print LP status information
1rand48(S) generate pseudo-random/
18(C) 1list contents of directories
lsearch(S) 1£ind(S) linear search and ___
lseek(S) move read/write file pointer _
1tol3(S) convert between 3-byte integers
m4 (CP) invoke a macro procesasor

machi d.
machines
macro

line printer

line printers

request heduler
requests

spooling system

status information

values

bler

macro p:
mail
mail
mail alias file
mail alias file
mail (C) system mail

mail is from

main memory allocator

main memory allocator

main memory allocator malloc(S)
maintain archives and libraries
maintain archives and libraries
maintain. update., and regenerate groups _
make(C) maintain, update, and regenerate
makedevs (M) create special device files

makekey(M) generate an encryption key ___
makettys (M) create tty special files
mallinfo(S) mallopt(S) calloc(S) fast ___
malloc(S) free(S) realloc(S) fast main
malloc(S) main memory allocator

malloc(S) mallinfo(S) mallopt(S)

mallopt (S) calloc(S) fast main memory _

PI-30

logname(C)
logname(S)
exp($)
setjmp(S)
fleece(C)
look (C)

lorder (CP)

1p(C)
lpenable(C)
lpsched(M)
lpsched(M)
lpadmin (M)
lpstat(C)
lpadmin (M)
1p(C)
lpenable(C)
lpd(M)
lpenable{C)
1pinit(M)
1psched(M)
1pon (M)
1pr(C)

1psched(M)

lpsched(M)
1psched(M)
lpstat (C)
drand48(s)
1s(C)
isearch(s)
lseek(S)
13tol(S)
m4 (CP)
values (F)
aftp(C)
masm(CP}
m4 (CP)
enroll(C)
mail(C)
aliases(M)
aliashash(M)
mail(C)
from(C)
malloc(S)
malloc(S)
malloc(S)
ar (CP)
xar (CP)
make(C)
make (C)

_ makedevs (M)

makekey (M)

makettys(M)

malloc(S)

__ malloc(s)

malloc(S)
malloc(S)
malloc(S)

tsearch(S) tfind(S) tdelete(S) twalk(S)
layout (M)

hsearch(S) hdestroy(S) hcreate(S)
crontab(C)

sigrelse(S) sigignore(S) signal
sigset (S) sigpause(S) signal

function ldlread(S) ldlitem(S)
numbers frexp(S) modf(S) ldexp(S)
section mcs(CP)

whereis(C) locate source. binary, or
sysaltos(S)

drive information written during

add new bad sectors to the bad sector
ascii(M)

umask(C) set file-creation mode
umask(S) set and get file creation

master (M)
regexp(F) regular expression compile and

regexp(S) compile regular expression and
math (F)

in numusers(S) get and set

comment section

ldahread(S) read the archive header of a
memory (S)

memory(S) memset(S) memcpy(S) memcmp(S)

memory(S) memset (S)

operations memory(S)

memcpy (S)
memset (S)

malloc(S) free(S) realloc(S) fast main
malloc(S) main

mallopt(S) calloc(S) fast main
shmct1(S) shared

message queue, semphore set, shared
mem(M) kmem (M)

lock(S) lock a process in primary
memory (S} memccpy(S)

(s) (s)
shmop(S) shared
text. or data in
shmget (S) get shared

memset (S) pY (S)

plock(S) lock process,

memchr(S) memory operations
memory operations memory(S)
options(M) floppy disk installation
menus (M) format of Business Shell
digest (C) create

system

sort(C) sort and

to a terminal

msgctl(s)

mkstr(C) create an error
mkstr(CP) create an error
getmsg(S) get next

Permuted Index

manage
manage
manage

binary search trees
hard disk partitions
hash search tables

user crontab files
management sigset(S) sighold(S)

manage

manipulate line number entries of a COFF
manipulate
manipulate

manual for

parts of floating-point

the object file comment
program

manufacturer specific system requests __
manufacturing drive(C)

map badblock(C)

map of the ASCII character set

mask

mask

masm(CP) invoke the macro assembler
master configuration database

master (M) master configuration database _
match routines

match routines

math functions and constants
matherr(S) error-handling function
math(F) math functions and constants
maximum number of users allowed to log __
mcs (CP) manipulate the object file
member of an archive file

memccpy(S) memory operations
memchr(S) memory operations

memcmp(S) memchr(S) memory operations
memcpy(S) memcmp(S) memchr(S) memory
mem(M) kmem(M) memory image file
allocator

allocator

allocator malloc(S) mallinfo(S) __

memory
memory
memory

memory control operations
id ipcrm(C) remove

image file

memory
memory
memory
memory

operations
memory operations memory(S)
memory operations

memory

memory segment identifier
memory(S) memccpy(S) memory operations __
memory(S) memset(S) memcpy(S) memcmp(S)

s pY(S) (S) memchr(S)

menu

menu system

menu system(s) for the Business Shell __
menus (M) format of Business Shell menu ___
merge files
mesg(C)

allow or disallow messages sent _
message control operations
message file from C source
message file from C source

message off a stream

PI-31

tsearch(S)
layout (M)
hsearch(S)
crontab(C)
sigset(S)
sigset(S)
ldlread(s)
frexp(S)
mcs (CP)
whereis(C)
sysaltos(S)
drive(C)
badblock(C)
ascii(M)
umask (C)
umask(S)
masm(CP)
master (M)
master (M)
regexp (F)
regexp(S)
math(F)
matherr(S)

math(F)

numusers (S)
mcs (CP)
ldahread(s)
memory (S)
memory(S)

___ memory(S)

memory (S)
mem (M)
malloc(S)
malloc(S)
malloc(S)
shmctl(S)
iperm(C)
mem (M)
lock(S)
memory(S)
memory(S)
shmop(S)
plock(S)
shmget (S)
memory (S)

. Mmemory(S)
_ memory(S)

options (M)
menus (M)
digest (C)
menus (M)
sort (C)
mesg(C)
msgctl(S)
mkstr(C)
mkstr (CP)
getmsg(S)

mountall(C)

Permuted Index

putmsg(S) send a
msgop(S)

msgget (S) get

memory id ipcrm(C) remove
perror(S) system error
mesg(C) allow or disallow
strace(M) print STREAMS trace
sys_errlist(S) errno(S) system error
clone(M) open any

intro(M) introduce

bootable object file

or ordinary file

from C source
from C source
driver symbol table
kernel symbol table

getty(M) set terminal

umask (C) set file-creation

bring system up multi/single-user
chmod($) change

setmodem(C) set up tty port for a
uugetty(M) set terminal type.
tset(C) set terminal

setmode(C) printer

floating-point numbers frexp(S)
settime(C) change the acceas and
touch(C) update access and
utime(S) set file access and

time

mount (S)

multiple file systems
structure

mnttab (M)

mount (C) umount (C)

mountall(C) umountall(C)
1psched(M) lpmove (M)

laeek(S)

mv (C)

generate pseudo-random/ drandd8(S)
dos(C) access

11(C) mount/
poll(S) STREAMS input/output

singleuser(C) bring system up

rc2(M) commands for

message Oon a stream

message operations

message queue

message queue. semphore set, shared

messages

messages sent to a terminal
messages

messages sys_nerr(S)

minor device on STREAMS driver
miscellaneous features and files
mkboot (M) convert object file to
mkdir(C) make a directory
mkdir(S) make a directory

mkfs (M) construct a file system
mknod(C) build special files

mknod(S) make a directory. or a special _

mkshlib(CP) create a shared library

mkstr(C) create an error message file

mkstr(CP)
mktemp(S) make a unique file name
mkunix (M) make bootable system file
mkunix (M) make bootable system file
mkvers (CP) generate a what string
mnttab(M) mounted file system table
mode

create an error message file

putmsg(s)
msgop(S)
msgget (S)
ipcrm(C)
perror(S)
mesg(C)
strace(M)
sys_nerr(S)
clone(M)
intro(M)
mkboot (M)
mkdir (C)
mkdir(S)
mkfs (M)
mknod(C)
mknod(S)

mkshlib(CP)

with
with

mkstr (C)
__ mkstr(CP)

mktemp(S)
mkunix (M)
mkunix (M)
mkvers (CP)

mnttab (M)

mode mask

mode
mode

multiuser(C) singleuser(C)
of file

modem

modes, speed, line discipline
modes

modes utility

modf (S) ldexp(S) manipulate parts of

modification dates of files
modification times of a file
modification times

getty(M)
umask (C)
multiuser(C)
chmod(S)
setmodem (C)
uugetty(M)
taet (C)
aetmode(C)

frexp(S)

monitor(S) prepare execution profile
more(C) view a file one full screen at a

mount a file system

mountall(C) umountall(C) mount/unmount
mount (C) umount (C) mount/unmount a file

mounted file system table

mount (S) mount a file system
mount/unmount a file structure
mount /unmount multiple file systems
move LP requests

move read/write file pointer
move (rename) files and directories
mrand48(S) nrand48(S) lrand48(S)

MS-DOS files

magctl(S) message control operations

msgget (S) get queue

settime(C)
touch(C)
utime(S)
monitor(S)
more (C)
mount (S)

__ mountail(C)

_ mount(C)

mnttab (M)
mount (S)
mount (C)
mountall(C)
lpached(M)
laeek(S)
mv(C)
drandd8(S)
dos (C)

magctl(S)

msgop(S) message operations
multiple file systems
multiplexing

multi/single-user mode multiuser(C)
multi-user environment

PI-32

magget (S)
msgop(S)
mountall(C)
poll(S)
multiuser(C)
rc2(M)

Permuted Index

up multi/single-user mode multiuser (C) singleuser(C) bring system _ multiuser(C)
directories mv(C) move (rename) files and mv{(C)
tmpnam(S)} tempnam(S) create a name for a temporary file tmpnam(S)
ldgetname(S) retrieve symbol name for COFF symbol table entry ldgetname(S)
ctermid(S) generate file name for terminal ctermid(s)
getpw(S) get name from UID getpw(S)
getenv(S) return value for envi name getenv(S)
getlogin(S) get login name getlogin(s)
x1list(S) fxlist(S) get name list entries from files xlist(S)
nlist(S) get entries from name list nlist(S)
nm(CP} print name list of common object file nm(CP)
xnm(CP) print name list xnm(CP)
logname(C) get login name 1 (©)
mktemp(S) make a unique file name mktemp(S)
ttyname(S) isatty(S) find name of a terminal ttyname(S)
uname($) get name of current UNIX system uname(S)
getcwd(S) get path name of current working directory getcwd(S)
cuserid(S) get character login name of the user cuserid(s)
logname(S) return login name of user 1 (s)
deynm(C) identify device name on which files reside devnm(C)
pwd(C) print working directory name pwda(C)
tty(C) get the current port name tty(C)
1pr(C) route named files to printer spooler 1pr(C)
term(M) conventional names for terminals term(M)
ncheck (M) generate path names from inode numbers ncheck (M)
id(C) print user and group ID and names ia(c)
isnand(S) test for floating point NaN isnan(S) isnanf(S) isnan(S)
interval nap(S) suspend execution for a short ____ nap(S)
language nawk(C) pattern scanning and processing _ nawk(C)
semaphore resource waitsem(S) nbwaitsem(S) wait and check access to ___ waitsem(S)
numbers ncheck(M) generate path names from inode ncheck(M)
newgrp(C) log user into a new group newgrp(C)
getmag(S) get next message off a stream getmsg(S)
dbm(S) dbminit(S) fetch(S) nextkey(S) perform database functions ___ dbm(S)

priority

file

and guits

set jmp(S) longjmp(S)

false(C) return with a
pseudo-random/ drand48(S) mrand48(s)
null(M)

linenum(F) line

ldlread(S) ldlitem(S) manipulate line
file ldlseek(S) seek to line
factor(C) factor a

num(C)

df (M) report

numusers(S) get and set maximum
random(C) generate a random
convert string to double-precision
ecvt (S) convert floating-point
erand48(S) generate pseudo-random
1rand48(S) generate pseudo-random

nice(C) run a command at a different
nice(S) change priority of a process

nl(C) add line numbers to a file
nlist(S) get entries from name list

nohup(C) run a command immune to hangups
non-local goto

nonzero exit value
nrand48(S) lrand48(S) generate
null file

null(M) null file
number entries in a common object file
number entries of a COFF function

number entries of a section of a COFF __

number

number lines

number of free disk blocks and inodes

number of users allowed to log in
number

number strtod(S) atof(s)
number to string

numbers drand48(S)
numbers /mrand48(S) nrand48(s)

PI-33

nice(C)
nice(S)
n1(c)

nlist(S)
nm{(CP) print name list of common object _

nm(CP)
nohup(C)
set jmp(S)
false(C)
drand48(s)
null (M)
null(M)

__ linenum(F)

ldiread(s)
ldlseek(S)
factor(C)
num(C)

ag (M)
numusers(S)
random(C)
strtod(S)
ecvt(S)
drand48(s)
drand48(S)

Permuted Index

jrand48(S) generate pseudo-random
manipulate parts of floating-point
strip(CP) remove symbols and line

ncheck (M) generate path names from inode
nl(C) add line

of users allowed to log in

dis(CP)

ldfcn(F) common

mcs (CP) manipulate the

cprs(CP) compresse a common

dump(CP) dump selected parts of an
ldopen(S) ldaopen(S) open a common
fixobj (CP) convert an

hdr(C) display selected parts of an
line number entries in a common
convert object file to bootable
nm(CP) print name list of common
relocation of information for a common
scnhdr(F) section header for a common
find the printable strings in an

syms (F) common

mkboot (M) convert

conv(CP) convert common

filehdr(F) file header for common
size(C) print section sizes of common
to the optional file header of a common
lorder(CP) find ordering relation for
od(C) display files in

fixobj(CP) convert an object file from
ldopen(S) ldaopen(S)

opensem(S)

fopen(S) fdopen(S) freopen(S)
clone(M)

dup(S) dup2(S) duplicate an
open{(S)

directory($S) telldir(S) readdir(S)

rcO(M) commands to stop the
rewinddir(S) seekdir(S) directory
readdir(S) opendir(S) directory
memory(S) memccpy(S) memory

PY(S) (s) (S) memory
msgctl(S) message control
msgop(S) message

semctl(S) semaphore control
semop(S) semaphore

shmctl(S) shared memory control

shmop(S$) shared memory

strdup(S) strpbrk(S) strcmp(S) string
strcpy(S) strlen(S) strchr(S) string
string(S) strspn(S) strtok(S) string
curses(S) terminal screen handling and
getopt (S) get

ldohseek(S) seek to the

numbers drand48(S) seed48(S) srand48(S)
numbers frexp(S) modf(S) ldexp(S)
numbers from COFF file

numbers

numbers to a file

num(C) number lines

numusers(S) get and set maximum number __

drand48(S)
frexp(S)
strip(CP)
ncheck (M)
nl(C)
num(C)

numusers (S)

object code disassembler dis(CP)
object file access routines 1dfen(F)
object file comment section mcsa (CP)
object file cprs(CP)
object file dump (CP)
object file for reading ldopen(S)
object file from OMF to COFF fixobj (CP)
object file hdr(C)
object file linenum(F) linenum(F)
object file mkboot (M) mkboot (M)
object file nm(CP)
object file reloc(F) reloc(F)
object file scnhdr(F)
object file strings(C) strings(C)
object file symbol table format syms (F)
object file to bootable object file ____ mkboot(M)
object files conv(CP)
object files filehdr(F)
object files size(C)
object ldohseek(S) seek ldoh k(S)
object library lorder (CP)
octal format 0d(C)
od{(C) display files in octal format __ 0d(C)
OMF to COFF £ixobj(CP)
open a common object file for reading ___ ldopen(S)
open a hore P (s)
open a stream fopen(S)
open any minor device on STREAMS driver _ clone(M)
open file descriptor dup(S)
open for reading or writing open(S)
opendir(S) directory operations directory(s)
open(S) open for reading or writing open(S)

D! S) open a hore P (s)
operating system rco (M)

operations directory(S) closedir(S)

directory(S)

operations directory(S) telldir(S) directory(S)
operations memory(S)
operations memory(S) memset(S) memory (S)
operations msgctl(S)
operations magop (S)
operations semctl(S)
operations semop(S)
operations shmct1(S)
operations shmop (S)
operations string(S) strcat(s) string(S)
operations string(S) strncmp(S) string(s)
operations string(S)
optimization (s)
option letter from argument vector getopt(S)

optional file header of a

1 k (S)

PI-34

object _

fcntl(F) file control

Permuted Index

options fentl(F)
stty(C) set the options for a port stty(C)
xtty(C) set the options for a port xtty(C)
getopt (C) parse d options getopt(C)
getopts (C) parse d options getopts(C)
options (M) floppy disk installation menu options(M)
lorder(CP) find ordering relation for object library __ lorder(CP)
make a directory. or a special or ordinary file mknod(S) mknod(S)
dial(S) establish an out-going terminal line connection dial(s)
format of assembler and link editor output a.out(F) a.out(F)
fold(C) fold long lines for finite width output device fold(C)
viprintf(S) vsprintf(S) print formatted output of varargs list vprintf(s) vprintf(s)
pr(C) print files on the standard output pr(C)
sprintf(S) fprintf(S) print formatted output printf(S) printf(s)
sysdef (M) output system definition sysdef (M)
chown(S) change owner and group of a file chown(S)
chown(C) chgrp(C) change owner or group ID chown(C)
quot(C) summarize file system ownership quot (C)
screen handling and optimization package curses(S) terminal curses(S)
sar (M) system activity report) sar (M)
stdio(S) standard buffered input/output k stdio(S)
standard interp: ication package stdipc(S) ftok(S) stdipc(S)
expand files pack(C) pcat(C) unpack(C) compress and __ pack(C)
tk(C) paginator for Tektronix 4014 tk(C)
get process, process group. and parent process IDs getpid(S) getpid(S)
getopt(C) parse command options getopt (C)
getopts(C) parse d options getopts(C)
tail(C) deliver the last part of a file tail(C)
layout (M) manage hard disk partitions layout (M)
dump (CP) dump selected parts of an object file dump (CP)
hdr (C) display selected parts of an object file hdr(C)
frexp(S) modf(S) ldexp(S) manipulate parts of floating-point numbers frexp(s)
d(C) ch login Ll ()
P M) p tile P {M)
crypt(S) password and file encryption functions __ crypt(S$)
fgetpwent(S) dpt t(s) P (S) get P d file entry getpwent(S) getpwent (S)
getpwent (S) getpwnam(S) getpwuid(S) get password file entry getpwent (S)
putpwent (S) write password file entry putpwent (S)
(M) d tile p M)
getpas(S) read a d getpas(s)
d(C) change login P (C)
pwck (M) grpck(M) check password/group file pwck (M)
getcwd(S) get path name of current working directory __ getcwd(S)
ncheck(M) generate path names from inode numbers ncheck (M)
dirname(C) deliver portions of h (C) b ()
grep(C) search a file for a pattern grep(C)
awk(C) pattern scanning and processing language awk(C)
nawk(C) pattern scanning and processing language nawk(C)
egrep(C) search file for pattern using full regular expression ___ egrep(C)
pause(S) suspend process until signal ___ pause(S)
files p:ck(C)‘ pcat (C) unpack(C) compress and expand ___ pack(C)
process popen(S) pclose(S) initiate pipe to/from a popen(S)
pconfig(C) set port configuration pecontfig(C)
dbm(S) dbminit(S) fetch(S) nextkey(S) perform database functions dabm(S)
dbm(S) firstkey(S) store(S) fetch(S) perform database functions dbm(S)
check the uucp directories and permissions file heck (M) heck (M)
chmod(C) change permissions of a file or directory chmod(C)

PI-35

Permuted Index

acct (M) format of

split(C) split a file into
tee(C) create a
popen(S) pclose(S)

tee in a
initiate

memory

fpgetround(S) fpgetmask(S) IEEE
IEEE

1EEE

floating
floating
floating
floating

fpgetsticky(S)
fpgetround(S) fpsetmask(S)
fpsetround(S) IEEE
fpsetsticky(S) IEEE floating
isnanf(S) isnand(S) test for floating
ftell(S) rewind(S) reposition a file
lseek(S) move read/write file
multiplexing

a process

pconfig(C) set

disable(C) disable logins on a
enable(C) enable logins on a
setmodem(C) set up tty

tty(C) get the current

stty(C) set the options for a

Xtty(C) set the options for a
basename(C) dirname(C) deliver

log(S) exponential. logarithm, and
and power functions exp(S)

dc(C) arbitrary
monitor(S)
cpp(CP) the C L

per-process accounting file

perror(S) system error messages
pg(C) file perusal filter
pieces

pipe

pipe to/from a process

pipe(S) create an interprocess channel _
plock(S) lock process, text. or data in _
plot(S) graphics interface subroutines
environment

point control

point environment control fpgetround(S) _
point
point
point environment
point NaN isnan(S)
pointer in a stream faeek(S)

pointer

poll(S) STREAMS input/output

popen(S) pclose(S) initiate pipe to/from
port configuration

port

port

environment control
fpgetround(S) _

fpgetround(S)

environment control

control

port for a modem

port name

port

port

portions of pathnames

power functions exp(S) pow(S)

pow(S) log(S) exponential. logarithm,
pr(C) print files on the standard output
precision calculator

prepare execution profile

Prepr

unget (CP) undo a

lock(S) lock a process in
types(F)

cal(C)

yes(C)

prs(CP)

date(C)

sact (CP)

whoami (C)

pri(c)

vprintf (S) vfprintf(S) vsprintf(s)
printf(S) sprintf(S) fprintf(S)
banner (C)

last (C)

1pstat(C)

nm{(CP)

xnm(CP)

printenv(C)

accept (C) reject(C) allow/prevent
pscreen(C) set up terminal to
tiles size(C)

printers(M)

strace(M)

infocmp(M) compare or

previous get of an SCCS file
primary memory
primitive system data types
print
print
print

a calendar

a string repeatedly
an SCCS file

and set the date
current SCCS file edit activity __
effective current user id
files on the standard output

print
print
print
print
print formatted output of varargs list
print formatted output
print large letters
print
print
print
print
print
print
print
print
print
print
print

last record of user logins
LP status information

name list of common object file _
name list

out the environment

requests
screen display

section sizes of common object __
spooler configuration file

STREAMS trace messages

terminfo descriptions

PI-36

acct (M)
perror(S)
pg(C)
split(C)
tee(C)
popen(S)
pipe(s)
plock(s)

__ blot(s)

fpgetround(S)
fpgetround(S)
fpgetround(S)
fpgetround(s)

_ fpgetround(s)

isnan(S)
fseek(S)
lseek(S)
poll(s)
popen(S)
pconfig(C)
disable(C)
enable(C)
setmodem(C)
tty(C)
stty(C)
xtty(C)
basename (C)
exp(S)

___ exp(S)

pr(C)
dc(C)
monitor(S)
cpp(CP)
unget (CP)
lock(S)
types(F)
cal(C)
yes (C)
prs(CP)
date(C)
sact (CP)
whoami (C)

pr(C)
__ vprintf(s)

printf(S)
banner (C)
last(C)
lpstat(C)
nm{CP)
xnm(CP)
printenv(C)
accept (C)
pscreen(C)
size(C)
printers(M)
strace(M)
infocmp (M)

uname (C)

head(C)

id(c)

pwd(C)

strings(C) find the

1pd(M) line

xpd{M) transparent

filter files for printing on LaserJet
send/cancel requests to LP line
setmode (C)

turn on/off line

1pr(C) route named files to
lpdisable(C) enable/disable LP line
lpinit(M) add new line

file

formatted output

hplp(C) hplpR(C) filter files for
nice(C) run a command at a different
nice(S) change

brc(M) system initialization

acct(S) enable or disable

alarm(S) set a

times(S) get

init (M)

exit(S) terminate

fork(S) create a new

getpid(S) get process.

setpgrp(S) set

setpgrp(C) execute command in a new
get process, process group. and parent
lock(S) lock a

kill(C) terminate a

nice(S) change priority of a

kill(S) send a signal to a

pclose(S) initiate pipe to/from a
process IDs getpid(S) get

ps(C) report

plock(S) lock

times (S) get process and child
wait(S) wait for child

ptrace(S)

pause(S) suspend

checklist (M) list file systems
inittab(M) script for the init
killall(C) kill all active

send a signal to a process or a group of
tuser(M) identify

wait(C) wait completion of b ('} d

Permuted Index

print the current UNIX information
print the first few lines of a stream
print user and group ID and names
print working directory name
printable strings in an object file

printenv(C) print out the environment _

printer daemon

printer daemon

printer hplp(C) hplpR(C)
printer lp(C) cancel(C)
printer modes utility

printer
printer

scheduler
spooler

printers lpenable(C)
printers

printers(M) print spooler configuration

printing on LaserJet printer
priority

priority of a process
procedure

process accounting
process alarm clock
process and child process times
process control initialization
process

process

process group. and parent process IDs
process group id

process group

process IDs getpid(S)
process in primary memory
process

process

procesa or a group of processes
process popen(S)

process, process group. and parent
process status

process. text, or data in memory
process times

process to stop or terminate
process trace

process until signal
processed by fsck

pr

pr

processes kill(S)
processes using a file or file structure

awk (C) pattern scanning and
nawk (C) pattern scanning and
m4(CP) invoke a macro

1list (CP)

prof (CP) display
monitor(S) prepare execution

pre ing 1
processing 1

processor

produce C source listing from COFF file _

prof (CP) display profile data
prof (F) profile within a function
profile data

profile

PI-37

uname (C)

__ head(C)

id(c)
pwd(C)
strings(C)
printenv(C)
1pd(M)
xpd(M)
hplp(C)
1p(C)
setmode (C)
1pon (M)
1pr(C)
lpenable(C)
lpinit (M)

_ printers(M)
printf(S) sprintf(S) fprintf(S) print

printf£(S)
hplp(C)
nice(C)
nice(S)
brc(M)
acct(S)
alarm(S)
times(S)
init (M)
exit(s)
fork(s)

__ getpid(s)

setpgrp(s)
setpgrp(C)
getpid(s)
lock(S)
kill(cC)
nice(S)
kill(s)
popen(S)
getpid(s)
pa(C)
plock(S)
times(S)
wait(s)
ptrace(s)
pause(S)
checklist (M}
inittab(M)
killall(C)
kill(s)
fuser (M)
wait(C)
awk(C)
nawk(C)

md (CP)
list(CP)
prof (CP)
prof (F)
prof (CP)
monitor (S)

Permuted Index

profil(S) execution time
prof (F)
time

assert(S) verify

boot (M) boot

cxref (CP) generate C

ctrace(CP) C

edata(S) etext(S) last locations in
tapeutil (C) utility

uucico(M) file transport

default (M) default

sulogin(M) special login

strclean(M) STREAMS error logger cleanup
ua(C) user administration

scheduler for the uucp file transport
locate source, binary. or manual for
cb(CP) beautify C

lex(CP) generate

update. and regenerate groups of

xref (CP) cross-reference C

xstr(CP) extract strings from C
clock(M)

labelit(C)

screen display

drand48(S) erand48(S) generate
nrand48(S) lrand48(S) generate

seedd48(S) srand48(S) jrand48(S) generate

uuto(C) uupick{C)

adb(C) invoke x.out general

ungetc(S)

puts(S) fputs(s)

putc(S) putchar(S) putw(S) fputc(S)
getdentsa(S) read directory entries and
character or word on a stream putc(S)
character or word on a stream
environment

stream
on a stream putc(S) putchar($S)
file

megget (S) get message

ipcrm(C) remove message

qsort(8)

run a command immune to hangups and

ranlib(CP) convert archives to
random(C) generate a

rand(S) srand(S) simple

profile profil(s)
profile within a function prof (F)
profile(M) set up environment at login __ profile(M)
profil(S) execution time profile profil(s)
program assertion assert(S)
program boot (M)
program cross-reference cxref (CP)
program gg ctrace(CP)
program end(S) end(S)
program for a streaming tape drive tapeutil (C)
program for uucp system uucico(M)
program information directory default (M)
program invoked by init sulogin (M)
program strclean(M)
program ua(C)
program uusched(M) uuschéd(n)
program whereis(C) whereis (C)
programs <b(CP)
programs for lexical analysis 1ex(CP)
programs make(C) maintain, make(C)
programs xref (CP)
programs xstr(CP)
provide access to the time-of-day chip __ clock(M)
provide labels for file systems labelit (C)
pra(CP) print an SCCS file prs(CP)
ps(C) report process status ps(C)
pscreen(C) set up terminal to print pscreen(C)
pseudo- a (s)
pseudo-random numbers /mrand48(S) drandd8(s)
pseudo-random numbers drand48(S) drand48(S)
ptrace(S) process trace ptrace(s)
public UNIX-to-UNIX system file copy ____ uuto(C)
purpose oo adb(C)
push character back into input stream ____ ungetc(S)
put a string on a stream puts(s)
put character or word on a stream putc(s)
put in a file getdents(S)
putchar(S) putw(S) fputc(S) put putc(s)
putc(S) putchar(S) putw(S) fputc(S) put _ putc(S)
putenv(S) change or add value to putenv(S)
putmsg(S) send s message on a stream ____ putmsg(S)
P! (8) write file entry ____ putpwent(S)
puts(S) fputs(S) put a string on a puts(s)
putw(S) fputc(S) put character or word __ putc(S)
pwck(M) grpck(M) check password/group ___ pwck(M)
pwd(C). print working directory name pwd(C)
gsort(S) quicker sort gsort(S)
query terminfo d tput(C)
queue msgget (S)
queue, semphore set, shared memory id ___ ipcrm(C)
quicker sort gsort(S)
quits nohup(C) nohup(C)
quot (C) ze file sy hip _ quot(C)
random libraries ranlib(CP)
random number random(C)
random(C) generate a random number random(C)
d rand(S)

PI-38

generator

libraries

£8plit (CP) split

standard FORTRAN

ratfor(CP) convert

system

environment

to be read

getpas(S)

COFF file ldtbread(S)

a COFF file ldshread(S)

getdents(S)

read(s)

line(C)

check to see if there is data to be
an archive file ldahread(S)
ldfhread(s)

operations directory(S) telldir(S)
ldaopen(S) open a common object file for
open(S) open for

1lseek(S) move

locking(S) lock/unlock a file region for
getuid(S) getegid(S) get
getuid(S) geteuid(S) get
getuid(S) getgid(S) get
malloc(S) free(S)

autoreboot (C) automatically
reboot (C) automatically
shutdn(S) reboot(S) shutdown or
system

shutdn(S)

signal(S) specify what to do on
lockf(S)

last(C) print last

script (C) make a

frec(M)

system from tape

ed(C)

make(C) maintain. update, and
match routines

match routines

execseg(S) make a data
locking(S) lock/unlock a file
regexp(S) compile

routines regexp(F)

search file for pattern using full
regcmp(S) compile a

regex(S) execute a

regcmp(CP) compile

accept (C)

lorder(CP) find ordering
join(C) join two

COFF file ldrseek(S) seek to

Permuted Index

rand(S) srand(S) simple random-number
ranlib(CP) convert archives to random __
ratfor files

ratfor(CP) convert rational FORTRAN to
rational FORTRAN to standard FORTRAN ___
rcO(M) commands to stop the operating _

rc2(M) commands for multi-user
rdchk(S) check to see if there is data

read a password

read an indexed symbol table entry of a
read an indexed/named section header of
read directory entries and put in a file
read from file

read one line of input

read rdchk(s)

read the archive header of a member of _
read the file header of a COFF file

readdir(S) opendir(S) directory
reading ldopen(S)

reading or writing

read(S) read from file
read/write file pointer
read/write

real/effective user or group IDs
real/effective user or group IDs
real/effective user or group IDs

realloc(S) fast main memory allocator

rand(S)
ranlib(CP)
faplit (CP)

__ ratfor(CP)

ratfor(CP)
rcO (M)
rc2(M)

__ rdchk(s)

getpas(S)

_ latbread(s)
_ ldshread(s)

getdents(S)
read(s)
line(C)
rdchk(S}
ldahread(s)

ldfhread(s)

directory(S)
ldopen(S)
open(S)
read(s)
lgeek(S)
locking(S)
getuid(s)
getuid(s)
getuid(s)

malloc(S)

reboot the system autoreboot (C)
reboot the system reboot (C)
reboot the system shutdn(S)
reboot (C) automatically reboot the reboot (C)
reboot (S) shutdown or reboot the system _ shutdn(S)
receipt of signal signal(S)
record locking on files lockf(S)
record of user logins last (C)
record of your terminal session script(C)
recover files from a back-up tape frec(M)
recover(C) restore contents of a file __ recover(C)
red(C) invoke the ed text editor ed(C)
regcmp (CP) compile regular expressions __ regcmp(CP)
regcmp(S) compile a regular expression __ regcmp(S)
regenerate groups of programs make (C)
regexp(F) regular expression compile and regexp(F)
regexp(S) compile regular expression and regexp(S)
regex(S) execute a regular expression __ regex(S)
region executable (s)
region for read/write locking(s)
regular expression and match routines ___ regexp(S)
regular expression compile and match _____ regexp(F)
regular expression egrep(C) egrep(C)
regular expression regcemp (S)
regular expression regex(S)
regular expressions ___ = regcmp(CP)
reject(C) allow/prevent print requests __ accept(C)
relation for object library lorder (CP)
reiations join(C)
relocation entries of a section of a ldrseek(S)

PI-39

Permuted Index

object file reloc(F)

common object file

leave(C)

calendar(C) invcke a

uuxqt (M) execute

uutry(M) contact

ct(C) spawn getty to a
uux(C) execute command on
rmdel (CP)

rmdir(S)

28p(C)

unlink(S)

m(C) rmdir(C)

shared memory id ipcrm(C)
COFF file strip(CP)

mv(C) move

£8ck(C) dfsck(C) check and
uniq(C) report

yes(C) print a string
clock(S)

fsstat (M)

fsinfo(M)

facilities status ipcs(C)
inodes df(M)

sar(C) system activity

sar (M) system activity

ps(C)

unig(C)

faeek(S) ftell(S) rewind(s)
lpsched(M) lpshut(M) start/stop the LP
accept (C) reject(C) allow/prevent print
lpsched(M) lpmove(M) move LP
sysaltos(S) manufacturer specific system
1p(C) cancel(C) send/cancel

uuxqt (M) remote d

relocation of information for a common
reloc{F) relocation of information for a
remind you when you have to leave
reminder service

remote command requests

remote system with debugging on
remote terminal

remote UNIX

a delta from an SCCS file
a directory

consecutive blank lines
directory entry

files or directories

remove

remove

remove
remove
remove
remove semphore set.
remove symbols and line numbers from
(rename) files and directories
repair file systems

repeated lines in a file

repeatedly
CPU time used

message queue,

Teport

report file system status

report information about a file system __
report inter-process communication

report number of free disk blocks and ___
report)

report packag

report process status

report repeated lines in a file
reposition a file pointer in a stream __
request scheduler

requests

requests

requests

requests to LP line printer

reset (C)

identify device name on which files
wait and check access to semaphore
restore.hd(C)

tape («©)

reql

reset the teletype bit

reset (C) reset the teletype bit
reside devnm(C)

resource waitsem(S) nbwaitsem(s)
restore a hard disk from tape

tape

table entry ldgetname(S)
stat(F)

abs(S)

logname(S)

getenv(S)

false(C)

true(C)

rev(C)

operations directory(S) closedir(S)
stream fseek(S) ftell(S)

creat(S) create a new file or
directories

uucp link

file

r of a file system from _
restore.hd(C) restore a hard disk from __
retrieve symbol name for COFF symbol ___
data by stat system call

integer absolute value

return
return
return login name of user
return value for environment name

with a nonzero exit value

return with a zero exit value

rev(C) reverse lines of a file

reverse lines of a file

rewinddir(S) seekdir(S) directory
rewind(S) reposition a file pointer in a
rewrite an existing one

rm(C) rmdir(C) remove files or

rmail (C) receives mail from

rmdel (CP) remove a delta from an SCCS __

return

PI-40

__ reloc(F)

reloc(F)
leave(C)
calendar(C)
uuxgt (M)
uutry (M)
ct(C)
uux(C)
rmdel (CP)
rmdir(s)
ssp(C)
unlink(S)
m(C)

ipcrm(C}
3trip(CP)

mv(C)
£ack(C)
uniq(C)

yes (C)
clock(S)
fastat (M)
fsinfo(M)
ipes(C)

af (M)
sar(C)
sar(M)
ps(C)
unig(C)
fseek(S)
1psched(M)
accept (C)
lpsched (M)
sysaltos(S)
1p(C)

wuxqt (M)
reset (C)
reset (C)
devam(C)
waitsem(S)
restore.hd(C)
recover(C)
restore. hd(C)
1dgetname(S)
stat (F)

abs (S)
logname(S)
getenv(S)
false(C)
true(C)
rev(C)
rev(C)
directory(S)
fseek(S)
creat(Ss)
m(C)

rmail (C)
rmdel (CP)

Permuted Index

m(C) mmdir(C) remove files or directories ____ rm(C)
rmdir(S) remove a directory rmdir(S)
chroot (S) change root directory chroot (S)
chroot (C) change root directory for command chroot (C)
exponential. logarithm. and square root functions exp(S) sgrt(S) exp(S)
1pr(C) route named files to printer spooler —lpr(®
1dfcn(F) common object file access routines 1dfen(F)
regular expression compile and match routines regexp(F) regexp (F)
compile regular expression and match routines regexp(S) regexp(S)
interpreter sh(C) rsh(C) invoke the shell command sh(C)
nice(C) run a command at a different priority _ nice(C)
quits nohup(C) run a command immune to hangups and nohup (C)
activity sact(CP) print current SCCS file edit ___ sact{(CP)
system activity sadcon(M) data collector sadcon (M)
sar(C) system activity report package ___ sar(C)
sar(M) system activity report package ___ sar(M)
archive(C) save a file system to a streaming tape __ archive(C)
allocation brk(S) 8brk(S) change data segment space brk(S)
bfs(C) scan big files bfs(C)
formatted input scanf(S) fscanf(S) sscanf(S) convert ___ scanf(S)
awk(C) pattern scanning and pr: ing 1 awk (C)
nawk (C) pattern scanning and processing language nawk (C)
cdc(CP) change the delta commentary of SCCS delta cdc (CP)
comb(CP) combine SCCS deltas comb (CP)
delta(CP) make a change to an SCCS file delta(CP)
sact (CP) print current SCCS file edit activity sact (CP)
get (CP) get a version of an SCCS file get (CP)
prs(CP) print an SCCS file prs(CP)
rmdel (CP) remove a delta from an SCCS file rmdel (CP)
sccsdiff (CP) compare two versions of an SCCs file sccadiff (CP)
sccsfile(F) format of an SCCS file sccsfile(F)
unget (CP) undo a previous get of an SCCs file unget (CP)
val(CP) validate an SCCS file val(CP)
admin(CP) create and administer SCCS files admin(CP)
SCCS file sccsdiff(CP) compare two versions of an _ sccsdiff (CP)
sccafile(F) format of an SCCS file sccsfile(F)
turn on/off scheduler for line printer lpon(M)
ckbupscd(M) check file system bach le kb a(M)
turn on/off scheduler for line printer 1lpon(M)
program uusched(M) scheduler for the uucp file transport ___ uusched(M)
lpshut (M) start/stop the LP request scheduler lpsched(M) 1p: (M)
object file scnhdr(F) section header for a common ___ scnhdr(F)
image file scr_dump(F) format of curses screen scr_dump (F)
more(C) view a file one full screen at a time more(C)
clear(C) clear terminal screen clear(C)
pscreen(C) set up terminal to print screen display pscreen(C)
curses(S) terminal acreen handling and optimization package curses(S)
scr_dump(F) format of curses screen image file scr_dump (F)
vi(C) invoke a screen-oriented display editor vi(C)
inittab(M) script for the init processes inittab(M)
session script(C) make a record of your terminal script(C)
8db(C) symbolic 8db(C)
to a shared data segment sdenter(S) sdleave(S) synch ize d (s)
data segment sdget(S) sdfree(S) attach and detach a shared ____ sdget(S)
shared data segment sdget(S) sdfree(S) attach and detach a __ sdget(S)
data access sdgetv(S) sdwaitv(S) synchronize shared _ sdgetv(S)
s8diff(C) compare files side-by-side sdiff(C)

PI-41

Permuted Index

shared data segment sdenter(S)
access sdgetv(S)

fgrep(C)

grep(C)

1search(S) 1£ind(S) linear

regular expression egrep(C)
bsearch(S) binary

hdestroy(S) hcreate(S) manage hash
tdelete(S) twalk(S) manage binary
enroll(C) xsend(C) xget(C)

scnhdr (F)

ldshread(S) read an indexed/named
manipulate the object file comment
seek to line number entries of a
seek to relocation entries of a
size(C) print

add new bad sectors to the bad
badblock(C) add new bad

pseudo-random numbers drand48(S)

of a COFF file ldlseek(S)

of a COFF file ldrseek(S)

common object ldohseek(S)

ldtbseek(S)

directory(S) closedir(S) rewinddir(S)
shmget (S) get shared memory
synchronize access to a shared data
attach and detach a shared data
brk(S) sbrk(S) change data

dump(CP) dump

hdr(C) display

files comm(C)

semctl(S)

creatsem(S) create a binary
opensem(S) open a

semop (S)

nbwaitsem(S) wait and check access to
semget (S) get smet of

ipcrm(C) remove message queue.
putmsg(S)

processes kill(S)

1p(C) cancel(C)

mesg(C) allow or disallow messages
calendar(C) invoke a reminder
script (C) make a record of your terminal
alarm(S)

umask (S)

ascii(M) map of the ASCII character
timezone (M)

env(C)

utime(S)

umask (C)

log in numusers(S) get and

sdleave(S) synchronize access to a sdenter(S)
sdwaitv(S) synchronize shared data sdgetv(S)
search a file for a character string ___ fgrep(C)
search a file for a pattern grep(C)
search and update lsearch(s)
search file for pattern using full egrep(C)
search of a sorted table bsearch(S)
search tables hsearch(S) hsearch(s)
search trees tsearch(S) tfind(s) tsearch(s)
secret mail enroll(C)
section header for a common object file _ scnhdr(F)
section header of a COFF file ldshread(s)
section mcs(CP) mcs (CP)
section of a COFF file ldlseek(S) ldlseek(S)
section of a COFF file ldrseek(S) ldrseek(S)
section sizes of common object files ____ size(C)
sector map badblock(C) badblock(C)
sectors to the bad sector map badblock(C)
sed{C) invoke the stream editor sed(C)
see(C) display a file see(C)
seed48(S) srand48(S) jrand48(S) generate drand48(S)
seek to line number entries of a section ldlseek(S)
seek to relocation entries of a section _ ldrseek(S)
seek to the optional file header of a __ ldohseek(S)
seek to the symbol table of a COFF file _ ldtbseek(S)
seekdir($) directory operations directory(S)
segment identifier shmget (S)
segment sdenter(S) sdleave(S) sdenter(S)
segment sdget(S) sdfree(S) sdget(Ss)
segment space allocation brk(s)
selected parts of an object file dump (CP)
selected parts of an object file hdar(C)
select/reject lines common to two sorted comm(C)
semaphore control operations semctl(S)
creatsem(S)
P (s)
semaphore operations semop(S)
semaphore resource waitsem(S) waitsem(S)
hores semget (S)
semctl(S) semaphore control operations __ semctl(S)
semget(S) get set of semaphores semget (S)
semop(S) semaphore operations semop(S)
semphore set, shared memory id ipcrm(C)
send a message on a stream putmsg(s)
send a signal to a process or a group of kill(S)
send/cancel requests to LP line printer _ 1p(C)
sent to a terminal mesg(C)
service calendar(C)
session script(C)
set a process alarm clock alarm(s)
set and get file creation mask umask (S)
set ascii(M)
set default system time zone timezone (M)
set environment for command execution ___ env(C)
set file access and modification times __ utime(S)
set file-creation mode mask umask (C)
set maximum number of users allowed to __ numusers(S)

PI-42

m(C)

chroot(S)
chroot (C)
logarithm, and

change
change
square
1pr(C)
1dfcn(F) common object file access
regular expression compile and match
compile regular expression and match
interpreter sh(C)

nice(C)

quits nohup(C)

activity

system activity

expenential,

archive(C)

allocation brk(s)

bfs(C)

formatted input

awk(C) pattern

nawk (C) pattern

cdc(CP) change the delta commentary of
comb (CP) combine

delta(CP) make a change to an

sact (CP) print current

get (CP) get a version of an

prs(CP) print an

rmdel(CP) remove a delta from an
sccsdiff (CP) compare two versions of an
sccsfile(F) format of an

unget (CP) undo a previous get of an
val(CP) validate an

admin(CP) create and administer

SCCS file

turn on/off

ckbupscd (M) check file system backup
turn on/off

program uusched(M)

1pshut (M) start/stop the LP request
object file

image file

more(C) view a file one full
clear(C) clear terminal

pscreen(C) set up terminal to print
curses(S) terminal

scr_dump(F) format of curses

vi(C) invoke a

inittab(M)

session

to a shared data segment
data segment sdget(S)
shared data segment

data access

Permuted Index

mmdir(C) remove files or directories _ rm(C)
rmdir(S) remove a directory rmdir(S)
root directory chroot(S)
root directory for command chroot (C)
root functions exp(S) sqrt(S) exp(S)
route named files to printer spooler ____ lpr(C)
routines ldfcn(F)
routines regexp(F) regexp (F)
routines regexp(S) regexp(S)
rsh(C) invoke the shell command sh(C)

run a command at a different priority ___ nice(C)

run a command immune to hangups and nohup (C)
sact (CP) print current SCCS file edit ____ sact(CP)
sadcon(M) data collector sadcon (M)
sar(C) system activity report package __ sar(C)

sar (M) system activity report package ___ sar(M)

save a file system to a streaming tape __ archive(C)
sbrk(S) change data g t apace brk(s)

scan big files bfs(C)
scanf(S) fscanf(S) sscanf(S) convert _____ scanf(S)
scanning and processing language awk (C)
scanning and pr ing 1 g nawk(C)
SCCS delta cdc (CP)
SCCS deltas comb (CP)
SCCs file delta(CP)
SCCS file edit activity sact (CP)
SCCS file get (CP)
SCCS file prs(CP)
SCCS file rmdel (CP)
SCCS file sccsdiff (CP)
SCCS file sccsfile(F)
SCCS file unget (CP)
SCCs file val(CP)
SCCS files admin(CP)
sccsdiff (CP) compare two versions of an _ sccsdiff(CP)
sccsfile(F) format of an SCCS file sccsfile(F)
scheduler for line printer 1lpon(M)
schedule ckbupscd(M)
scheduler for line printer lpon (M)
scheduler for the uucp file transport ___ uusched(M)
scheduler lpsched(M) 1lpsched(M)
scnhdr (F) section header for a common ___ scnhdr(F)
scr_dump(F) format of curses screen scr_dump(F)
screen at a time more(C)
screen clear(C)
screen display pscreen(C)
screen handling and optimization package curses(S)
screen image file scr_dump(F)
screen-oriented display editor vi(C)
script for the init processes inittab(M)
script(C) make a record of your terminal script(C)
sdb(C) symbolic 8db(C)
sdenter(S) sdleave(S) synchronize access sdenter(S)
sdfree(S) attach and detach a shared ____ sdget(S)
sdget (S) sdfree(S) attach and detach a __ sdget(S)
sdgetv(S) sdwaitv(S) synchronize shared _ sdgetv(S)
8diff(C) compare files side-by-side __ sdiff(C)

PI-41

Permuted Index

shared data segment sdenter(S)
access sdgetv(s)

fgrep(C)

grep(C)

1search(S) 1find(S) linear
regular expression egrep(C)
bsearch(S) binary

hdestroy(S) hcreate(S) manage hash
tdelete(S) twalk(S) manage binary
enroll(C) xsend(C) xget(C)

scnhdr (F)

ldshread(S) read an indexed/named
manipulate the object file comment
seek to line number entries of a
seek to relocation entries of a
size(C) print

add new bad sectors to the bad
badblock(C) add new bad

pseudo-random numbers drand48(S)

of a COFF file ldlseek(S)

of a COFF file ldrseek(S)

common object ldohseek(S)

ldtbseek(S)

directory(S) closedir(S) rewinddir(s)
shmget (S) get shared memory
synchronize access to a shared data
attach and detach a shared data
brk(S) sbrk(S) change data

dump (CP) dump

hdr(C) display

files comm(C)

semctl(S)

creatsem(S) create a binary
opensem(S) open a

semop (S)

nbwaitsem(S) wait and check access to
semget (S) get set of

sdleave(S) synchronize access to a sdenter(S)
sdwaitv(S) synchronize shared data sdgetv(S)
search a file for a character string _____ fgrep(C)
search a file for a pattern grep(C)
search and update lsearch(sS)
search file for pattern using full egrep(C)
search of a sorted table bsearch(s)
search tables hsearch(S) hsearch(S)
search trees tsearch(S) tfind(s) tsearch(s)
secret mail enroll(C)
section header for a common object file _ scnhdr(F)
section header of a COFF file ldshread(S)
section mcs(CP) mcs(CP)
section of a COFF file idlseek(S) ldlseek(S)
section of a COFF file ldrseek(S) ldrseek(S)
section sizes of common object files __ size(C)
sector map badblock(C) badblock(C)
sectors to the bad sector map badblock(C)
3ed(C) invoke the stream editor sed(C)
see(C) display a file see(C)
seed48(S) srand48(S) jrand48(S) generate drand48(S)
seek to line number entries of a section ldlseek(s)
seek to relocation entries of a section _ ldrseek(S)
seek to the optional file header of a ___ 1ldohseek(S)
seek to the symbol table of a COFF file _ ldtbseek(S)
seekdir(S) directory operations directory(S)
segment identifier shmget (S)
segment sdenter(S) sdleave(S) sdenter(S)
segment sdget(S) sdfree(S) sdget(S)
segment space allocation brk(s)
selected parts of an object file dump (CP)
selected parts of an object file hdr(C)
select/reject lines common to two sorted comm(C)
semaphore control operations semctl(S)
cr (s)
hore P (s)
semaphore operations semop (S)
semaphore resource waitsem(S) waitsem(S)
h semget (S)

semctl(S) semaphore control operations

_. semctl(S)

semget (S) get set of semaphores semget(S)
semop(S) semaphore operations semop(S)
ipcrm(C) remove message queue, semphore set, shared memory id ipcrm(C)
putmsg(S) send a message on a stream putmsg(S)
proce: s kill(S) send a signal to a process or a group of kill(S)
1p(C) cancel(C) send/cancel requests to LP line printer _ 1p(C)
mesg(C) allow or disallow messages sent to a terminal mesg(C)
calendar(C) invoke a reminder service calendar(C)
script(C) make a record of your terminal session script(C)
alarm(S) set a process alarm clock alarm(S)
umask(S) set and get file creation mask ________ umask(S)
ascii(M) map of the ASCII ch set ascii(M)
timezone (M) set default system time zone timezone (M)
env(C) set envi for ion ___ env(C)
utime(S) set file access and modification times __ utime(S)
umask (C) set file-creation mode mask umask (C)

log in numusers(S) get and

sot maximum number of users allowed to

PI-42

_ numusers(S)

semget (S) get
pconfig(C)

setpgrp(S)

ipcrm(C) remove message queue, semphore
tabs(C)

getty (M)

tset (C)

discipline uugetty(M)
date(C) print and
stty(C)

xtty(C)

asktime(C)

stime(S)

protile(M)

pscreen(C)
setmodem(C)
shuttype(S) get and
setuid(S)

ulimit(S) get and

a stream

getgrent (S) fgetgrent(S) endgrent(S)

process group

getpwent (S) fgetpwent(S) dp ()

Permuted Index

of semaphores

port configuration
process group id

. shared memory id

tabs on a terminal
terminal mode

terminal modes
terminal type. modes, speed., line
the date

the options for a port
the options for a port
the system time of day
time

up environment at login time

up terminal to print screen display _
up tty port for a modem

UPS shutdown limits

user and group IDas

user limits

setbuf(S) setvbuf(S) assign buffering to
setgrent(S) get group file entry

get jmp(S) longjmp(S) non-local goto
setmnt (C) establish /etc/mnttab table
setmode(C) printer modes utility

setmodem(C) set up tty port for a modem
setpgrp(C) execute command in a new
setpgrp(S) set process group id

modification dates of files
gettydefs(M) speed and terminal

file entry getut(s)

P (S) get
settime(C) change the access and
settings used by getty
setuid(S) set user and group IDs
setutent(S) getutline(S) access utmp

file entry

setbuf(s) setvbuf(S) assign buffering to a stream
sputl(S) sgetl(S) access long integer data
sdgetv(S) sdwaitv(S) sy ize d data
sdleave(S) synchronize access to a h d data segn denter(S)
:dget (S) sdfree(S) attach and detach a shared data gm
chkshlib(CP) tool for comparing shared libraries
mkshlib(CP) create a shared library
shmctl(S) shared memory control operations
remove message gqueue, semphore set, shared memory id ipcrm(C)
shmop(S) shared memory operations
shmget (S) get shared memory segment identifier
interpreter sh(C) rsh(C) invoke the shell command
bsh(C) invoke the Business shell
sh(C) rsh(C) invoke the shell command interpreter
syntax csh(C) shell command interpreter with C-like __
system(S) issue a shell a
create menu system(s) for the Busineas Shell digest(C)
menus (M) format of Business Shell menu system

operations
identifier

nap(S) suspend execution for a
the system
shutype(M) UPS

shl(C) shell layers

shmctl(S) shared memory control
shmget (S) get shared memory segment
shmop(S) shared memory operations
short interval

shutdn(S) reboot(S) shutdown or reboot __
shutdown configuration utility

PI1-43

semget (S)
pcontig(C)
setpgrp(s)
iperm(C)
tabs(C)
getty(M)
tset(C)

uugetty (M)

date(C)
stty(C)
xtty(C)
asktime(C)
atime(S)
profile(M)
pscreen(C)
setmodem(C)
shuttype(S)
setuid(s)
ulimit(s)
setbuf (S)
getgrent (S)
set jmp(S)

setmnt (C)

setmode (C)

_ setmodem(C)

- setpgrp(C)

setpgrp(S)

getpwent (S)

settime(C)
gettydefs (M)
setuid(s)

getut(S)
_ setbuf(S)

sputl(s)
sdgetv(s)
sdenter(S)
sdget(S)
chkshlib(CP)
mkshlib(CP)
shmctl(S)
ipcrm(C)
shmop (S)
shmget (S)

___sh(C)

bsh(C)
8h(C)
csh(C)
system(S)
digest (C)
menus (M)
sh1(C)
shmctl(S)

shmget (S)

shmop(S)
nap(Ss)
shutan(s)
shutype (M)

Permuted Index

shuttype(S) get and set UPS
shutdn (S} reboot (S)

bring system to single-user or
or ghutdown

limits

utility

8diff(C) compare files

signal management sigset(S)
sigset(S) sighold(S) sigrelse(S)
sighold(S) sigrelse(S) sigignore(S)
sigset (S) sigpause(S)

pause(S) suspend process until
specify what to do on receipt of
processes kill(S) send a

of signal

ssignal(S) gsignal(S) software
sigset(S)

management sigset(S) sighold(S)
sigignore(S) signal management

rand(S) srand(S)

tmt (C)

shutdown (M) bring system to
multi/single-user mode multiuser(C)
functions

trigonometric functions trig(S)
chsize(S) change the file
sizefs(C) determine the

object files

logical disk drive

size(C) print section

interval

user ttyslot(S) find the
spline(C) interpolate
intro(CP) introduce
ssignal (S) gsignal(S)
tsort (C)

sort (C)

gsort (S) quicker

select/reject lines common to two
look(C) find linea in a

bsearch(S) binary search of a
whereis(C) locate

list (CP) produce C

create an error message file from C
create an error message file from C
tic(C) compile terminfo

brk(S) sbrk(S) change data segment
ct(C)

makedevs (M) create

makettys(M) create tty

mknod (C) build

sulogin(M)

mknod(S) make a directory. or a
sysaltos(S) manufacturer

shutdown limits

shutdown or reboot the system
shutdown shutdown (M)

shutdown(M) bring system tc single-user _
shuttype(S) get and set UPS shutdown
shutype(M) UPS shutdown configuration _

side-by-side

sighold(S) sigrelse(S) sigignore(S)
sigignore(S) signal management
signal management sigset(S)

signal

signal

signal signal(S)

signal to a process or a group of
signal (S) specify what to do on receipt
signals

sigpause(S) signal management
sigrelse(S) sigignore(S) signal
sigset(S) sighold(S) sigrelse(S)

sigset (S) sigpause(S) signa)l management
simple random-number generator
simple text formatter

single-user or shutdown
singleuser(C) bring system up
sinh(S) cosh(S) tanh(S) hyperbolic
sin(S) cos(S) tan(S) asin(S) acos(S)
size

size of a logical disk drive

size(C) print section sizes of common

sizefs (C) determine the size of a

sizes of common object files

sleep(C) suspend execution for an
sleep(S) suspend execution for interval

smooth curves

software development commands
software signals

sort a file topologically
sort and merge files
sort

sort(C) sort and merge files
sorted files comm(C)
sorted list

sorted table

source., binary. or manual for program
source listing from COFF file
source mkstr(C)

source mkstr(CP)

source

space allocation

spawn getty to a remote terminal
special device files

shuttype(S)
shutdn(S)
shutdown (M)
ahutdown (M)
shuttype(S)
shutype (M)
saife(c)

sigset(S)

sigset(S)
sigset(S)
sigset(S)
pause(S)
signal(S)
kill(s)

_ signel(s)

ssignal(S)
sigset(S)
sigset(S)
sigset(S)

_ sigset(S)

rand(S)
tmt (C)
shutdown (M)
multiuser(C)
sinh(S)

trig(s)

chsize(S)
sizets(C)
size(C)
sizefs(C)
size(C)
sleep(C)

_ sleep(s)
slot in the utmp file of the current

ttyslot(S)
spline(C)
intro(CP)
ssignal(S)
tsort(C)
sort (C)
qeort(S)
sort(C)
comm(C)
look(C)
bsearch(S)
whereis(C)
list(CP)
mkstr(C)
mkstr(CP)
tic(C)
brk(S)
ct{C)

{M)

special files

special files

special login program invoked by init
special or ordinary file
specific system requests

PI-44

makettys (M)
mknod(C}
sulogin(M)
mknod(S)
sysaltos(S)

Permuted Index

fspec(F) format specification in text files fapec(F)
cron(C) execute commands at specified times cron(C)
signal(s) specify what to do on receipt of signal _ signal(S)

getty gettydefs(M)

speed and terminal settings used by

gettydefs (M)

uugetty(M) set terminal type, modes, speed, line discipline uugetty (M)
find spelling errors spell(C) spell(C)
spline(C) interpolate smooth curves spline(C)
split(C) split a file into pieces split(C)
csplit (C) split files according to context csplit(C)
fsplit(CP) split ratfor files £split(CP)
8plit(C) split a file into pieces split(C)
uucleanup(M) uucp spool directory cleanup uucleanup(M)
printers(M) print spooler configuration file printers (M)
1pr(C) route named files to printer spooler 1pr(C)
lpadmin(M) configure the LP spooling system 1lpadmin (M)
output printf(S) sprintf(S) fprintf(S) print formatted __ printf(S)
data sputl(S) sgetl(S) access long integer ___ sputl(S)
square root functions exp(S) 8qrt(S) exponential, logarithm, and ____ exp(S)
.8qrt(S) exponential. logarithm, and square root functions exp(S) exp(S)
pseudo-random/ drand48(S) seed48(S) srand48(S) jrand48(S) generate drand48(s)
rand(S) srand(S) simple random-number generator _ rand(S)
scanf(S) fscanf(S) sscanf (S) convert formatted input scanf (S)
ssignal(S) gsignal(S) software signals __ ssignal(S)
8sp(C) remove consecutive blank lines __ ssp(C)
stdio(S) standard buffered input/output package __ stdio(S)
ratfor(CP) convert rational FORTRAN to standard FORTRAN ratfor(CP)
gets(C) get a string from the standard input gets(C)
package stdipc(S) ftok(S) standard interprocess communication ____ stdipc(s)
pr(C) print files on the standard output pr(c)

1psched(M) lpshut (M)

start/stop the LP request scheduler

lpsched (M)

stat (F) return data by stat system call stat (F)
stat(F) return data by stat system call _ stat(F)
information atatfs(S) fstatfs(S) get file system ___ statfs(S)
ustat(S) get file system statistics ustat(S)
stat(S) fstat(S) get file status stat(Ss)
fsstat (M) report file system status fastat (M)
lpstat(C) print LP status information 1lpstat(C)
fileno(S) clearerr(S) feof(S) stream status inquiries ferror(S) ferror(s)
uustat(C) uucp status inquiry and job control uustat (C)
inter-process communication facilities status ipcs(C) report ipcs(C)
pe(C) report process status ps(C)
stat(S) fstat(S) get file status stat(s)
package stdio(S) standard buffered input/output _ stdio(S)
communication package stdipc(S) ftok(S) standard interprocess _ stdipc(S)
stime(S) set time stime(S)
wait(S) wait for child process to stop or terminate wait(S)
rcO(M) commands to stop the operating system rco(M)
functions dbm(S) firatkey(S) store(S) fetch(S) perform database dbm(S)
strace(M) print STREAMS trace messages __ strace(M)
string operations string(S) strcat(S) strdup(S) strpbrk(S) stremp(S) string(s)
string(S) strncmp(S) strcpy(S) strlen(S) strchr(S) string operations string(S)
program strclean(M) STREAMS error logger cleanup strclean(M)
string(S) strcat(S) strdup(S) strpbrk(s) strcmp(S) string operations string(S)

strcpy(S) strlen(S) strchr(S) string ___ string(s)
strdup(S) strpbrk(S) strcmp(S) string ___ string(s)
stream editor sed(C)

stream fclose(S)

operations string(S) strncmp(S)
operations string(S) strcat(s)
sed(C) invoke the

fclose(S) fflush(S) close or flush a

PI-45

Permuted Index

fopen(S) fdopen(S) freopen(S) open a
rewind(S) reposition a file pointer in a
getchar(S) get character or word from a
getmsg(S) get next message off a

gets(S) fgets(S) get a string from a
head(C) print the first few lines of a
fputc(S) put character or word on a
putmsg(S) send a message a

puts(S) fputs(S) put a string a
setvbuf(S) assign buffering to a
ferror(S) fileno(S) clearerr(S) feof(S)
ungetc(S) push character back into input
archive(C) save a file system to a
tapeutil(C) utility program for a

on

on

clone(M) open any minor device on
strclean(M)

strerr (M)

log(M) interface to

poll(s)

strace(M) print

between long integer and base-64 ASCII
localtime(S) convert date and time to
cftime(S) convert date and time to
ecvt(S) convert floating-point number to
fgrep(C) search a file for a character
geta(S) fgets(S) get a

gets(C) get a

mkvers(CP) generate a what

puts(S) fputs(S) put a

strcat(S) strdup($S) strpbrk(S) strcmp(S)
strncmp(S) strcpy(S) strlen(S) strchr(S)
string(S) strspn(S) strtok(S)

yes(C) print a

strtod(S) atof(S) convert

strtol(S) atol(S) atoi(S) convert
xstr(CP) extract

strings(C) find the printable

strcmp($) string operations

strchr(S) string operations

operations

an object file

numbers from COFF file

string(S) strncmp(S) strepy(S)

string operations string($)

string(S) strcat(S) strdup(S)

string(s)

double-precision number

string(S) strspn(s)

to integer

identify processes using a file or file
mount(C) umount(C) mount/unmount a file

plot(S) graphics interface
another user

by init

blocks in a file

stream
stream
stream
stream
stream
stream
stream

fseek(S) ftell(s)
getc(S) getw(S) fgetc(S)

putc(S) putchar($) putw(S)
stream

stream

stream setbuf(S)

stream status inquiries

stream

streaming tape
streaming tape drive
STREAMS driver
STREAMS
STREAMS
STREAMS
STREAMS
STREAMS trace messages

strerr(M) STREAMS error logger daemon
string a641(S) 164a(S) convert
string ctime(S) gmtime(S)

ctime(S) tzset(S) asctime(S)

error logger cleanup program
error logger daemon

error logging

input/output multiplexing

string
string
string
string

from a stream
from the standard input

string
string

string on a stream
string

string

operations string(S)
operations string(s)
string
string
string
string

operations

repeatedly

to double-precision number

to integer

strings from C programs

strings in an object file

string(S) strcat(S) strdup(S) strpbrk(S)
string(S) strncmp(S) strcpy(S) strlen(s)
string(S) strspn(S) strtok(S) string _
strings(C) find the printable strings in
strip(CP) remove symbols and line
strlen(S) strchr(S) string operations
strncmp (S) strcpy(S) strlen(S) strchr(S)
strpbrk(S) strcmp(S) string operations
strapn(8)
strtod(s)
strtok(s)
strtol(s)
structure
structure
stty(C) set the options for a port

ines

strtok(S) string operations ____
atof(S) convert string to
string operations

atol(S) atoi(S) convert string
fuser (M)

su(C) make the user a super-user or
sulogin(M) special login program invoked
sum(C) calculate checksum and count

PI-46

fopen(S)
fseek(S)
gete(s)
getmag(S)
gets(S)
head(C)
putc(s)
putmsg(S)
puts(s)
setbuf (S)
ferror(s)
ungetc(S)
archive(C)
tapeutil(C)
clone (M)

strclean(M)

strerr(M)
log(M)
poll(S)
strace(M)

strerr(M)

a641(S)
ctime(S)

ctime(S)

ecvt(S)
fgrep(C)
gets(S)
gets(C)
mkvers{CP)
puts(Ss)
string(S)
string(s)
string(S)
yes(C)
strtod(S)
strtol(s)
xstr(CP)
strings(C)
string(s)
string(s)
string(s)
strings(C)
strip(Cp)

____ string(s)

string(s)

__ string(s)

string(s)
strtod(s)
string(s)
strtol(s)
fuser (M)
mount (C)
stty(C)
plot(S)
su(C)
sulogin (M)

sum(C)

~—

du(C)

quot (C)

sync(S) update
sync(C) update the
su(C) make the user a
terminals(M) list of
nap(S)

sleep(C)

sleep(S)

pause(S)

awab(S)
swap(C) change

ldgetname(S) retrieve

retrieve symbol name for COFF
1dtbindex(S) compute the index of a
ldtbread(S) read an indexed

syms (F) common object file

make bootable system file with driver
make bootable system file with kernel
ldtbseek(S) seek to the

unistd(F) file header for

8db(C)

strip(CP) remove

glossary(C) define common UNIX terms and

format

segment sdenter(S) sdleave(S)
sdgetv(S) sdwaitv(S)

shell command interpreter with C-like
1lint(CP) check C language usage and
requests

information

information

messages sys_nerr({S)

Permuted Index

summarize disk usage du(C)
summarize file system ownership quot (C)
super block sync($)
super-block sync(C)
super-user or another user su(C)
supported terminals terminals (M)
suspend execution for a short interval __ nap(S)
suspend execution for an interval sleep(C)
suspend execution for interval sleep(S)
suspend process until signal pause(S)
swab(S) swap bytes swab(S)
swap bytes swab(S)
swap device configuration swap(C)
swap(C) change swap device configuration swap(C)
symbol name for COFF symbol table entry _ ldgetname(S)
symbol table entry ldgetname(S) ldgetname(S)
symbol table entry of a COFF file ldtbindex(S)
symbol table entry of a COFF file ldtbread(s)
symbol table format syms (F)
symbol table mkunix(M) mkunix (M)
symbol table mkunix(Mm) mkunix (M)
symbol table of a COFF file ldtbseek(S)
symbolic constants unistd(F)
symbolic debugg 8db(C)
symbols and line numbers from COFF file _ strip(CP)
symbols glossary(C)
syms (F) common object file gymbol table _ syms(F)
sync(C) update the super-block sync(C)
synchronize access to a shared data sdenter(S)
synchronize shared data access sdgetv(S)
sync(S) update super block sync(S)
syntax c¢sh(C) csh(C)
syntax lint (CP)
sysaltos(S) manufacturer specific system sysaltos(S)
sysconf{(C) get system configuration sysconf (C)
sysconf(S) get system configuration sysconf (S)
sysdef (M) output system definition sysdef (M)

sys_errlist(S) errno(S) system error

sys_nerr(S)

information sysfs(S) get file system type sysfs(S)
system error messages sys_nerr(S) sys_errlist(S) errno(S) sys_nerr(S)
login(C) give you system access login(C)
acct(C) ing system acct(C)
system activity data collection sadcon (M)
sar(C) system activity report package sar(C)
sar (M) system activity report package sar (M)
inir(M) clean the file system and executes init inir(M)
ckbupacd(M) check file system backup hedule kb a(m)
stat(F) return data by stat system call stat(F)
intro(S) introduce system calls. functions. and libraries __ intro(S)
sysconf (C) get configuration information sysconf (C)
sysconf(S) get configuration information sysconf(S)
cu(C) call another UNIX cu(C)
types(F) primitive system data types types(F)
fsdb(M) file system deb £3db (M)
sysdef (M) output system definition sysdef (M)
perror($) yst error perror(S)

sys_nerr(S) sys_errlist(S) errno(S)

system error

PI-47

sys_nerr(S)

Permuted Index

uuto(C) uupick(C) public UNIX-to-UNIX
mkunix(M) make bootable

mkunix(M) make bootable

recover(C) restore contents of a file
report information about a file
help(C)

fstyp(M) determine the file

dirent (F) file

statfs(S) fstatfs(S) get file

brc (M)

lpadmin(M) configure the LP spocling
mail(C)

menus (M) format of Business Shell menu
mkfs (M) construct a file

mount(S) mount a file

quot (C) summarize file

rcO(M) commands to stop the operating
reboot (C) automatically reboot the
sysaltos(S) manufacturer specific
reboot(S) shutdown or reboot the
ustat(S) get file

fsstat (M) report file

fstab(M) file

mnttab(M) mounted file

asktime(C) set the

timezone (M) set default

archive(C) save a file

shutdown (M) bring

sysfs(S) get file

uname(S) get name of current UNIX
multiuser(C) singleuser(C) bring

file transport program for uucp
fileasystem(M) format of a

who(C) display who is on the

uutry(M) contact remote

volcopy(M) labelit(M) copy file
haltsys(C) close the file

digest (C) create menu

£sck(C) dfsck(C) check and repair file

labelit(C) provide labels for file
umountall(C) mount/unmount multiple file
checklist (M) list file

bsearch(S) binary search of a sorted
retrieve symbol name for COFF symbol
compute the index of a symbol
ldtbread(S) read an indexed symbol
syms(F) common object file symbol
fstab(M) file system

bootable system file with driver symbol
bootable system file with kernel symbol
mnttab(M) mounted file system
ldtbseek(S) seek to the symbol

setmnt (C) establish /etc/mnttab
hcreate(S) manage hash search

tabe(C) set

system file copy

system file with driver symbol table
system file with kernel symbol table
system from tape

system fsinfo(M)

system help facility

system identifier

system independent directory entry
system information

system initjalization procedure
system

system mail

system

system

system

system ownership

system

system

system requests

system shutdn(S)

system statistics
system status

system table

system table

system time of day
system time zone

system to a streaming tape
system to single-user or shutdown
system type information

system

system up multi/single-user mode
uucico(M)

volume

with debugging on

system with label checking
systems and halt the CPU
system(s) for the Business Shell
systems

system(S) issue a shell command
systems

systems mountall(C)
systems pr d by fsck

table

table entry ldgetname(S)

table entry of a COFF file ldtbindex(S)
table entry of a COFF file

table format

table

table mkunix(M) make
table mkunix(M) make
table

table of a COFF file
table

tables hsearch(S) hdestroy(s)
tabs on a terminal
tabs(C) set tabs on a terminal

PI1-48

uuto(C)

mkunix (M)

mkunix (M)

recover(C)
fsinfo(M)
help(C)
fatyp (M)
dirent (F)
statfs(S)
brc (M)
lpadmin(M)
mail(C)
menus (M)
mk 3 (M)
mount (§)
quot(C)
rcO(M)
reboot (C)
sysaltos(S)
shutdn(S)
ustat (S)
fsstat (M)
fstab (M)
mnttab(M)
asktime(C)
timezone (M)
archive(C}
shutdown (M)
sysfs(S)
uname (S)
multiuser(C)
uucico(M)
filesystem(M)
who (C)
uutry (M)
volcopy (M)
haltsys(C)
digest(C)
fack(C)
system(S)
labelit(C)
mountalli(C)
checklist (M)
bsearch(S)
ldgetname(S)

_ ldtbindex(S$)

ldtbread(s)
syms (F)
fatab(M)
mkunix (M)
mkunix (M)
mattab(M)
ldtbseek(S)
setmnt (C)
hsearch(S)
tabs(C)
tabs(C)

ctags(C) create a

sinh(S) cosh(S)

functions trig(s) sin(S) cos(S)

save a file system to a streaming
utility program for a streaming

dump contents of s hard disk to
frec(M) recover files from a back-up
restore contents of a file system from
restore.hd(C) restore a hard disk from
streaming tape drive

trees tsearch(S) tfind(s)
tee(C) create a

tk(C) paginator for

reset (C) reset the

directory operations directory(S)

file tmpnam(S)

tmpfile(S) create a

tmpnam(S) tempnam(S) create a name for a
captoinfo(M) convert

termcap(M)

terminfo(M)

ct(C) spawn getty to a remote
ctermid(S) generate file name for
termio(M) general

dial(S) establish an out-going
virtual

allow or disallow messages sent to a
getty(M) set

tset(C) set

clear(C) clear

optimization package curses(S)
script(C) make a record of your
gettydefs(M) speed and

tabs(C) set tabs on a

pscreen(C) set up

ttyname(S) isatty(S) find name of a
discipline uugetty(M) set

ttys(M) login

terminals(M) list of supported
term(M) conventional names for

" kiLL(C)

errstop(C)

exit(S)

wait for child process to stop or
query

captoinfo(M) convert termcap to
infocmp(M) compare or print
tic(C) compile

glossary(C) define common UNIX

Permuted Index

tags file
tail(C) deliver the last part of a file _
tanh(S) hyperbolic functions

tan(S) asin(S) acos(S) trigonometric
tape archive(C)

tape drive tapeutil(C)
tape dump.hd(C)

tape
tape
tape
tapeutil(C) utility program for a

tar(C) archive files

tdelete(S) twalk(S) manage binary search
tee in a pipe
tee(C) create a tee in a pipe
Tektronix 4014

teletype bit
telldir(S) readdir(S) opendir(s)
tempnam(S) create a name for a temporary
temporary file
temporary file
termcap to terminfo description
termcap(M) terminal capability database _
terminal capability database

terminal capability database

terminal

recover(C)

terminal

interface
line connection

terminal
terminal
terminal

terminal mesg(C)

terminal mode

terminal modes

terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal type, modes. speed, line
terminals file

terminals
terminals
terminals{M) list of supported terminals
terminate a process
terminate error-logging demon
terminate p:
terminate wait(S)
terminfo database
terminfo description
terminfo descriptions
terminfo source
terminfo(M) terminal capability database
termio(M) general terminal interface __
term(M) conventional names for terminals
terma and symbols

screen
screen handiing and
session

settings used by getty

to print screen display

PI-49

ctags(C)
tail(C)
sinh(S)

trig(s)

archive(C)
tapeutil(C)

" dump. hd(C)

frec(M)
recover(C)
restore.hd(C)
tapeutil(C)
tar(C)
tsearch(S)
tee(C)
tee(C)

tk(C)

reset (C)
directory(S)
tmpnam(S)
tmpfile(S)
tmpnam(S)
captoinfo (M)
termcap (M)
termcap (M)
terminfo(M)
ct(C)
ctermid(S)
termio (M)
dial(s)

vt (M)
mesg(C)
getty(M)
tset. (C)
clear{C)
curses(S)
script (C)
gettydefs (M)
tahs(C)
pecreen(C)
ttyname(S)
uugetty(M)
ttys (M)
terminals (M)
term(M)
terminals (M)
kill(c)
errstop(C)
exit(S)
wait(s)

tput (C)
captoinfo(M)
infocmp (M)
tie(C)
terminfo(M)
termio(M)
term(M)
glossary(C)

Permuted Index

isnan(S) isnanf(S) isnand(S)

ed(C) red(C) invoke the ed
edit(C) invoke the edit

ex(C) invoke a

aiff(C) compare two

fspec(F) format specification in
fmt(C) simple

plock(S) lock process.

binary search trees tsearch(S)

clock(M) provide access to the
cron(C) execute commands at specified

touch(C) update access and modification
times(S) get process and child process
set file access and modification

times

temporary file

characters conv(S) toupper(S)
popen(S) pclose(S) initiate pipe
conv(S) toupper(S) toascii(S)
chkshlib(CP)

tsort(C) sort a file

times of a file

translate characters conv(S)
query terminfo database

strace(M) print STREAMS

ptrace(S) process

aftp(C)

conv(S) toupper(S) toascii(S) tolower(S)
tr(C)

xpd(M)

uucico(M) file

uusched(M) scheduler for the uucp file

£tw(S) walk a file

tdelete(S) twalk(S) manage binary search
trig(s) atan(S) atan2(S)

8in(S) cos(S) tan(S) asin(S) acos(S)
functions

acos(S) trigonometric functions

manage binary search trees
setmodem(C) set up
makettys (M) create

terminal
file of the current user

test for floating point NaN
test (C) evaluate an expression
editor

editor

editor

files

files

formatter

text
text
text
text
text
text
text. or data in memory

tfind(S) tdelete(S) twalk(S) manage
tic(C) compile terminfo source

time(C) time a a

time-of-day chip

times

time(S) get time

times of a file

times

times utime(S)

times($) get process and child process
timezone(M) set default system time zone

isnan(S)
test(C)
ed(C)
edit(C)
ex(C)
diff(C)
fapec(F)
fmt (C)
plock(S)
tsearch(S)
tic(C)
time(C)
clock (M)
cron(C)
time(S)
touch(C)
times(S)
utime(S)

. times(S)

timezone (M)

tk(C) paginator for Tektronix 4014 tk(C)
tmpfile(S) create a temporary file tmpfile(S)
tmpnam(S) tempnam(S) create a name for a tmpnam(S)
toascii(S) tolower(S) translate conv(S)
to/from a process popen(S)
tolower(S) translate characters conv(S)
tool for comparing shared libraries _____ chkshlib(CP)
topologically tsort(C)
touch(C) update access and modification _ touch(C)
toupper(S) toascii(S) tolower(S) conv(S)
tput (C) tput(C)
tra(C) copy out a file as it grows tra(C)
trace strace(M)
trace ptrace(S)
transfer files between Altos machines __ aftp(C)
translate characters conv(S)
translate characters tr{(c)
transparent printer daemon xpd (M)
transport program for uucp system uucico(M)
transport program da(M)
tr(C) translate characters tr(C)

tree £tw(s)
trees taearch(S) tfind(S) tsearch(S)
trigonometric functions trig(s)
trigonometric functions trig(s) trig(s)
trig(S) atan(S) atan2(S) trigonometric __ trig(S)
trig(S) sin(S) cos(S) tan(S) asin(S) ____ trig(s)
true(C) return with a zero exit value ___ true(C)
tsearch(S) tfind(S) tdelete(S) twalk(S) _ tsearch(S)
taset (C) set terminal modes tset (C)
tsort(C) sort a file topologically tsort (C)
tty port for a modem setmodem(C)
tty special files makettys (M)
tty(C) get the current port name tty(C)
ttyname(S) isatty(S) find name of a ____ ttyname(S)
ttyslot(S) find the slot in the utmp ____ ttyslot(S)
ttys(M) login terminals file ttys (M)

PI-50

tsearch(S) tf£ind(S) tdelete(S)
dtype(C) determine disk
file(C) determine file
sysfs(S) get file system
uugetty(M) set terminal
types(F) primitive system data

date and time to string ctime(S)

getpw(S) get name from

systems mountall (C)
mount {(C)
information

unget (CP)
file
stream

mktemp(S) make a
constants
units(C) convert

uname (C) print the current

cu(C) call another

gloasary(C) define common

uulog(C) uuname(C) copy files from
uuname(C) copy files from UNIX to
uux(C) execute command on remote
uuto(C) uupick{C) public

link(M) unlink(M) link and
directories link(M)

pack(C) pcat(C)

pause(S) suspend process

a file touch(C)

programs make(C) maintain,
lsearch(S) 1find(S) linear search and
sync(S)

sync(C)

upgrade.hd(C)

disk

shutype (M)

shuttype(S) get and set

1int (CP) check C language

du(C) summarize disk

su(C) make the

ua(C)

14(C) print

setuid(s) set

crontab(C) manage

get character login name of the
environ(M)

whoami (C) print effective current

Permuted Index

twalk(S) manage binary search trees
type

type

type information

type. modes., speed. line discipline
types

types(F) primitive system data types
tzset(S) asctime(S) cftime(S) convert
ua(C) user administration program
uadmin(S) administrative control

UID

ulimit(S) get and set user limits

umask(C) set file-creation mode mask

umask(S) set and get file creation mask
umountall{C) mount/unmount multiple file
umount (C) mount/unmount a file structure
uname(C) print the current UNIX

uname(S) get name of current UNIX system
undo a previous get of an SCCS file
unget (CP) undo a previous get of an SCCS
ungetc(S) push character back into input
uniq(C) report repeated lines in a file
unique file name

unistd(F) file header for symbolic
units

units(C) convert units
UNIX information

UNIX system

UNIX terms and symbols
UNIX to UNIX uucp(C)
UNIX uucp(C) uulog(C)
UNIX

UNIX-to-UNIX system file copy
unlink files and directories
unlink(M) link and unlink files and
unlink(S) remove directory entry
unpack(C) compress and expand files
until signal

update access and modification times of _

update. and regenerate groups of
update

update super block

update the super-block

upgrade an additional hard disk
upgrade.hd(C) upgrade an additional hard
UPS shutdown configuration utility

UPS shutdown limits

usage and syntax

usage

user a super-user or another user
user administration program

user and group ID and names

user and group IDs

user crontab files

user cuserid(s)

user envi.

user ia

PI-51

tsearch(s)
dtype(C)
file(C)
sysfs(S)

uugetty(M)

types(F)

types (F)
____ ctime(S)

ua(C)

uadmin(S)
getpw(S)
ulimit(S)
umask (C)

_ umask(S)

mountall(C)
mount (C)
uname (C)
uname(S)

unget (CP)

unget (CP)
ungetc(S)

_ unig(C)

mktemp(S)
unistd(F)
units(C)
units(C)
uname (C)
cu(C)
glossary(C)
uucp(C)
uucp(C)
uux(C)
uuto(C)
1link (M)
link(M)
unlink(S)

pack(C)

pause(S)
touch(C)

make (C)
1search(S)
sync(s)
sync(C)
upgrade. hd(C)
upgrade. hd(C)
shutype(M)
shuttype(s)
lint (CP)
du(c)

su(C)

ua(C)

id()
setuid(s)
crontab(C)
cuserid(s)
environ (M)
whoami (C)

Permuted Index

newgrp(C)
ulimit(S) get and set
last(C) print last record of

log

logname(S) return login name of
getuid(S) getegid(S) get real/effective
getuid(S) geteuid(S) get real/effective
getuid(S) getgid(S) get real/effective
make the user a super-user or another
the slot in the utmp file of the current
write(C) write to another

get and set maximum number of

finger(C) find information about
wall(C) write to all

fuser (M) identify processes

egrep(C) search file for pattern

cpset (C) install

drive tapeutil(C)

setmode(C) printer modes

shutype(M) UPS shutdown configuration
modification times

utmp (M)} wtmp(M) format of

utmpname(S) endutent(S) access

getut(S) setutent(S) getutline(S) access
ttyslot(S) find the slot in the
entries

entry getut(S) getutent(S)

and permissions file

uucp system

cleanup

uucheck (M) check the

uusched(M) scheduler for the
mail from

uucleanup(M)

uustat (C)

file transport program for
from UNIX to UNIX

speed. line discipline

to UNIX uucp(C)

uucp(C) uulog(C)

file copy uuto(C)

uucico(M)

transport program
control

system file copy
debugging on

val(CP)

abs(S) return integer absolute
false(C) return with a nonzero exit
getenv(S) return

fabs(S) floor, ceiling., and absolute
fmod(S) floor, ceiling. and absolute
putenv(S) change or add

true(C) return with a zero exit
values (F) machine-dependent

user into a new group
limits

logins

user

user

user

user or group IDs

user or group 1Ds
user or group IDs
su(C)

ttyslot(S) find

user

user

user

users allowed to log in numusers(S)

users

users

using a file or file structure

using full regular expression
ustat(S) get file system statistics

utilities

utility program for a streaming tape
utility
utility

utime(S) set file access and

utmp and wtmp entries

utmp file entry getut(S) getutent(S)
utmp file entry

utmp file of the current user

utmp(M) wtmp(M) format of utmp and wtmp _
utmpname(S) endutent(S) access utmp file
uucheck(M) check the uucp directories __
uucico(M) file transport program for
uucleanup(M) uucp spool directory

uucp
uucp

directories and permissions file
file transport program

uucp link rmail(C) receives
uucp

uucp

spool directory cleanup
status inquiry and job control

uucp system

uucp(C) uulog(C) uuname(C) copy files
uugetty(M) set terminal type, modes.
uulog(C) uuname(C) copy files from UNIX
uuname(C) copy files from UNIX to UNIX __
uupick(C) public UNIX-to-UNIX system
uusched(M) scheduler for the uucp file __
uustat(C) uucp status inquiry and job __
uuto(C) uupick(C) public UNIX-to-UNIX __
uutry(M) contact remote system with
uux(C) execute command on remote UNIX
uuxqt (M) execute remote command requests
val(CP) validate an SCCS file

validate an SCCS file

value

value

value for environment name
value functions floor(S) ceil(S)
value functions floor(S)

value to environment

value

values

PI-52

newgrp(C)
ulimit($)
last(C)

logname(S)

_ getuid($)

getuid(s)
getuid(S)
su(C)
ttyslot(S)
write(C)
numusers(S)
finger(C)
wall(C)
fuser (M)
egrep(C)
uatat(S)
cpset (C)
tapeutil(C)
setmode(C)
shutype (M)
utime(S)
utmp (M)

getut (S)

getut(S)
ttyslot(S)
utmp(M)
getut(S)
uucheck (M)
uucico(M)

uucleanup (M)

uucheck (M)

uusched (M)
rmail (C)
uucleanup(M)
uustat (C)

uucico(M)

___ uucp(C)
uugetty (M)
_ uucp(C)

uucp(C)

uuto(C)

uusched (M)
uustat (C)
uuto(C)
uutry(M)

uux(C)

uuxqgt (M)
val(CP)
val(CP)
abs(S)
false(C)
getenv(S)
floor (S)
floor(S)
putenv(S)
true(C)
values (F)

Permuted Index

values(F) machine-dependent values values(F)
vsprintf(S) print formatted output of varargs list vprintf(S) vfprintf(s) vprintf(S)
list varargs(F) handles variable argument varargs(F)
varargs(F) handles variable argument list varargs(F)
vc(CP) version control vec(CP)
get option letter from argument vector getopt(S) getopt (S)
assert(S) verify program assertion aasert(S)
ve(CP) version control vc(CP)
get (CP) get a version of an SCCS file get (CP)
sccsdiff (CP) compare two versions of an SCCS file scecsdiff (Cp)

output of varargs list vprintf(S) vEprintf(S) vsprintf(S) print formatted _ vprintf(s)

editor vi(C) invoke a screen-oriented display __ vi(C)
more(C) view a file one full screen at a time ___ more(C)
virtual terminal vt (M)
with label checking volcopy(M) labelit(M) copy file system __ volcopy(M)
filesystem(M) format of a system volume filesystem(M)
formatted output of varargs list vprintf£(S) vfprintf(S) veprintf(S) print vprintf(S)

varargs list vprintf(S) vfprintf(S) vsprintf(S) print formatted output of vprintf(S)

virtual terminal management vt (M) vt (M)
resource waitsem(S) nbwaitsem(S) wait and check access to semaphore waitsem(S)
wait (C) wait completion of background processes _ wait (C)
terminate wait(S) wait for child process to stop or wait(S)
processes wait(C) wait completion of background ___ wait(C)
or terminate wait(S) wait for child process to stop __ wait(S)
access to semaphore resource waitsem(S) nbwaitgsem(S) wait and check __ waitsem(S)
ftw(s) walk a file tree ftw(s)
wall(C) write to all users wall(C)
wc(C) count lines, words. and characters wc(C)
what (C) identify files what (C)
manual for program whereis(C) locate source. binary. or _____ whereis(C)
id whoami(C) print effective current user __ whoami(C)
who(C) display who is on the system who(C)
whodo(M) determine who is doing what ____ whodo(M)
users whom(C) display in columns logged in ____ whom(C)
fold(C) fold long lines for finite width output device £01d(C)
prof (F) profile within a function prof (F)
fgetc(S) getchar(S) get character or word from a stream getc(S) getw(S) getc(S)
putw(S) fputc(S) put character or word on a stream putc(S) putchar(s) putc(s)
wc(C) count lines, words, and characters wc(C)
=d(C) change working directory cd(C)
chdir(S) change working directory chdir(s)
getcwd(S) get path name of current working directory getcwd(S)
pwd(C) print working directory name pwa(C)
write(S) write on a file write(S)
putpwent (S) write password file entry putpwent (S)
wall(C) write to all users wall(C)
write(C) write to another user write(C)
write(C) write to another user write(C)
write(S) write on a file write(S)
open(S) open for reading or writing open(S)
drive(C) drive information written during manufacturing drive(C)
utmp(M) wtmp(M) format of utmp and wtmp entries utmp (M)
utmp (M) wtmp(M) format of utmp and wtmp entries _ utmp(M)
xar (CP) maintain archives and libraries _ xar(CP)
xar(F) archive file format xar(F)
xargs(C) construct and execute commands _ xargs(C)
xcc(CP) invoke the XENIX compiler xcc(CP)

PI-53

Permuted Index

enroll(C) xsend(C)
from files

adb(C) invoke

enroll(C)

bessel(S) jO(S)

true(C) return with a
timezone(M) set default system time

xget (C) secret mail
x1d(CP) invoke the link editor

xlist(S) fxlist(S) get name list entries

xnm{(CP) print name list

x.out general purpose debugger

xpd (M) transparent printer daemon
xref (CP) cross-reference C programs
xsend(C) xget(C) secret mail

xstr(CP) extract strings from C programs

xtty(C) set the options for a port
y0(S) Bessel functions

yacc(CP) invoke a compiler-compiler
yes(C) print a string repeatedly
zero exit value

zone

enroll(C)
x1d(CP}
x1ist(S)
xnm(CP)
adb(C)
xpd (M)
xref (CP)
enroll(C)
xstr (CP)
xtty(C)
bessel (S)
yacc(CP)
yes (C)
true(C)
ti M)

PI-54

About This Manual

USING THIS MANUAL

This reference alphabetically describes the commands and
programs that are on the Altos System V™ Run-time System.
Altos System V is based on UNIX® System V Release 3 with
enhancements from Altos and Microsoft.

ORGANIZATION
This manual contains the miscellaneous utilities and files
(M) of the Run-time system.
For commands, programs, and utilities (C), see the Refer-
ence (C).
NOTE
The last section of the manual, "Change
Information,” summarizes the changes that have

been made to the manual since the previous
version,

MANUAL CONVENTIONS

The documentation conventions used in this manual are ex-
plained on the following page.

iii

About This Manual

Symbol

Description

boldface type

boldface type

italic type

Esc K4

[1

299

"wn

What you type. For example:
Type tar tv

Used for command or parameter names
that must be typed as shown.

malil user

Variables (a value that can change),
such as user. See the previous exam-
ple. Also for manual titles, such as
Reference (C) and Reference (M).

Keys you press simultaneously (sepa-
ated by a hyphen and shown in re-
verse type). For example:

[0jad¢l means you press and
hold the key and the
press the d key. :

Keys you press sequentially.

Optional items in a syntax statement.
If you do not use the optional item,
the program selects a default action
to carry out.

Use only one of the separated items.

Repeat preceding argument one or
more times.

Repeat the preceding argument one or
more times and separate arguments
with a comma.

Terms defined in the text. Quotation
marks also indicate text from a
source code example.

iv

About This Manual

ADDITIONAL REFERENCE MATERIALS

For more information on your operating system, see the
following list of manuals. To order a manual, call (408)
434-6688, ext. 3004 and give the manual title and part

number,

Owner's Guide (part number 690-21264-nnn or 690-20351-
nnn) describes how to connect computer components and
peripherals, turn on power, and use the diagnostic
programs.

Using the AOM Menu System (part number 690-18055-nnn)
describes how to use the Altos Office Manager (AOM) to
install software and manage the operating system.

Altos System V User's Guide (part number 690-21178-nnn)
(not shipped with the Run-time system) explains basic op-
erating system concepts and programs (e.g., vi, ed, sh,
csh, mail, sed, and awk).

Altos System V Series 386 Operations Guide (part number
690-21171-nnn) tells how to set up the system for users
and peripherals, maintain and back up the system, optimize
system performance, and use uucp communications programs.
This manual also contains system and LP spooler error mes-
sages.

Altos System V Series 386 Reference (C) (part number
690-22869-nnn) describes the Altos Run-time system
commands, programs, and utilities.

Altos System V Series 386 Development System Set (part
number 690-21585-000) contains reference and tutorial
material.

Manuals in this set include:

Altos System V Series 386 C Compiler Library and
User's Guide

Altos System V Series 386 C Compiler Language
Reference

Altos System V Series 386 Programmer's Guide

Altos System V Series 386 Macro Assembler User's
Guide and Reference

Altos System V Series 386 Reference (CP, S, F)

About This Manual

DOCUMENTER'S WORKBENCH (part numbers 690-15843-nnn
and 690-15844-nnn) describes mm, nroff, troff, and type-
setting functions and commands.

vi

Contents
Miscellaneous (M)

intro Introduction to miscellaneous features and
files.

acct Format of per-process accounting file.

aliases Alias file for mail.

aliashash Rebuild data base for mail alias file.

ascii Map of the ASCII character set.

boot Secondary bootstrap program.

brec System initialization procedure.

captoinfo Converts a termcap description into a terminfo
description. :

checklist Lists file systems processed by fsck.

ckbupsed Checks file system backup schedule.

clock Provides access to the time-of-day chip.

clone Opens any minor device on a STREAMS driver.

clri Clears inode.

crash Examines system images.

default Default program information directory.

df Reports number of free disk blocks and inodes.

dir Format of a directory.

display Series 500 system console display.

environ The user environment.

errprint Displays error log contents.

ff Fast find.

filesystem Format of a system volume.

finc Fast incremental backup.

frec Recovers files from a back-up tape.

fsdb File system debugger.

fsinfo Reports information about a file system.

fsstat Reports file system status.

fstab File system table.

fstyp Determines the file system identifier.

fuser Identifies processes using a file or file
structure.

Contents(M)

getty
gettydefs

group

infocmp
inir

init
inittab
inode
install

keyboard

layout
1dunix

link, unlink
log

lpadmin

Ipd

Ipinit

lpon, Ipoff
Ipsched, lpshut,
Ipmove

makedevs
makekey
makettys
master
mem, kmem
menus
mkboot

mkfs
mkunix

mnttab

ncheck
null

options

passwd
printers
profile
pwck, grpck

Sets terminal mode.
Speed and terminal settings used by getty.
Format of the group file,

Compares or prints terminfo descriptions.
Cleans the file system and executes init.
Process control initialization.

Script for the init processes.

Format of an inode.

Installs commands.

Series 500 system console keyboard.

Manages hard disk partitions.
Configurable kernel linker.

Links and unlinks files and directories.
Interface to STREAMS error logging and event
tracing.

Configures the LP spooling system.

Line printer daemon.

Adds new line printers to the system.
Turns on/off lp printer schedulers.
Starts/stops the LP request scheduler and
moves requests.

Creates special device files.

Generates an encryption key.

Creates tty special files.

Master configuration database.

Memory image file.

Format of a Business Shell menu system.
Converts an object file to a bootable object
file.

Constructs a file system.

Makes a bootable system file with kernel and
driver symbol tables.

Mounted file system table.

Generates path names from inode numbers.
The null file.

Floppy disk installation menu.

The password file.

Print spooler configuration file.

Sets up an environment at login time.
Checks password/group file,

rcd
rc2

sadcon, sadcoff

sar
shutdown
shutype
strace
strclean
strerr
sulogin
sysdef

term
termcap
terminals
terminfo
termio
timezone
ttys

utmp, wtmp
uucheck

uucico
uucleanup
uugetty

uusched
uutry

uuxqt

volcopy, labelit

vt
whodo

xpd

Contents(M)

Commands to stop the operating system.
Commands for multi-user environment.

Turns on/off system activity data collector.
System activity report package.

Brings a system to single-user or shutdown.
UPS shutdown configuration utility.

Prints STREAMS trace messages.

STREAMS error logger cleanup program.
STREAMS error logger daemon.

Special login program invoked by init.
Outputs system definition.

Conventional names for terminals.
Terminal capability database.
List of supported terminals.
Terminal capability database.
General terminal interface.

Sets default system time zone.
Login terminals file.

Formats of utmp and wtmp entries.

Checks the uucp directories and permissions
file.

File transport program for the uucp system.
Uucp spool directory cleanup.

Sets terminal type, modes, speed, and line
discipline.

Scheduler for the uucp file transport program.
Tries to contact remote system with debugging
on.

Executes remote command requests.

Copies file system with label checking.
Virtual terminal management.

Determines who is doing what.

Transparent printer daemon.

Contents(M)

(BLANK)

INTRO(M) INTRO(M)

Name

intro - Introduction to miscellaneous features and files.

Description

This section contains miscellaneous information for main-
taining the entire system, including descriptions of
files, devices, tables, and programs.

ACCT(M) ACCT(M)

Name

acet - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records
in the form defined by <sys/acct.h).

In ac_flag, the AFORK flag is turned on by each fork(S)
and turned off by an exec(S). The ac_comm field is in-
herited from the parent process and is reset by any exec.
Each time the system charges the process with a clock
tick, it also adds the current process size to ac_mem com-
puted as follows:

(data size) + (text size) / (number of in-core
processes using text)

The value of ac_mem/ac_stime can be viewed as an ap-
proximation to the mean process size, as modified by
text-sharing.

See Also

acct(C), acct(S)

Notes

The ac_mem value for a short-lived command gives little
information about the actual size of the command, because
ac_mem may be incremented while a different command
(e.g., the shell) is being executed by the process.

ALIASES(M) ALIASES(M)

Name

aliases - Alias file for mail.

Syntax

/usr/lib/mail/aliases

Description

This file describes user ID aliases that are used by the
/usr/lib/sendmail command. It is fomatted as a series of
lines of the form:

name: name_1l, name_2, ... name_n

Name is the name to alias, and name_n are the aliases for
that name. For example,

terry: pubs!terry

Lines beginning with white space are continuation lines.
Lines beginning with # are comments.

Aliasing occurs only on local names. Loops cannot occur,
since no message will be sent to any person more than
once.

Aliases is only the raw data file; the actual aliasing
information is placed in binary format in the file
/usr/lib/mail/aliases.hash by executing the program
aliashash(M). Each time you change the aliases file, run
aliashash for the changes to take effect.

See Also

aliashash(M), mail(C)

ALIASHASH(M) ALIASHASH(M)

Name

aliashash - Rebuild the data base for the mail alias file.

Syntax

aliashash

Description
Aliashash rebuilds the random access data base for the
mail alias file /usr/lib/mail/aliases. For the change to
take effect, run aliashash each time /usr/lib/mail/aliases
is changed.

See Also

aliases(M)

ASCII(M)

Name

.

ascii - Map of the ASCII character set.

Description

Ascii is a map of the ASCII character set.

contains:
000 nul 001
010 bs 011
020 dle 021
030 can 031
040 sp 041
050 (051
060 0O 061
070 8 071
100 @ 101
110 H 111
120 P 121
130 X 131
140 ° 141
150 h 151
160 p 161
170 x 171
00 nul o1
08 bs 09
10 dle 11
18 can 19
20 sp 21
28 (29
30 0 31
38 8 39
40 @ 41
48 H 49
50 P 51
58 X 59
60 61
68 h 69
70 p 71
78 x 79

soh
ht
dcl

em

Ko KFoeoKO H P O

soh
ht
dcl

em

Mg P KO H P YR -

002
012
022
032
042
052
062

102
112

132
142
152
162
172

stx

dc2

sub

N # « O N X G W

nl
dc2

sub

N

N B @ U N G w

003
013
023
033
043

063
073
103
113
123
133
143
153
163
173

03
Ob
13
1b
23
2b
33
3b
43
4b
53
5b
63
6éb
73
7b

etx
vt
dc3

esc

£

w o+

~n ® a0 —un X Q-

etx
vt
dc3

esc

A

w o+

~ R O = ! RO

004
014
024
034
044
054
064
074
104
114
124
134
144
154
164
174

04
Oc
14
1lc
24
2c
34
3c
44
4c
54
Sc
64
6c
74
7c

—_— = s H U AR

eot
np
dc4

n

— c + Qo s 1O A B

005
015
025
035
045

065
075
105
115
125
135
145
155
165
175

05
od
15
1d
25
24
35
3d
45
44
55
54
65
6d
75
74

ASCIl(M)

It lists both
octal and hexadecimal equivalents of each character.

[l

-~ e 83 0 = 2 m

eng
cr
nak

gs

ol

- e B 0o —-C 32 A

006
016
026
036
046

066
076
106
116
126
136
146
156
166
176

06
Oe
16
le
26
2e
36
3e
46

56
5e
66
6e
76
Te

ack
so
syn
rs

< 2 Mmoo

T4 8o

ack
so
syn

rs

- T SRR VARE. SR 4

g B

It

007
017
027

047
057
067
077
107
117
127
137
147

bel
si
etb

£ 0 0 v N~

Q |

157 o
167 w
177 de.

07
of
17
1f
27
2f
37
3f
47
4f
57
5f
67
6f
77
7€

bel
si
etb

us

£ 0 Q@ v NN

£ 0 @ |

del

BOOT(M) BOOT(M)

Name

boot - Secondary bootstrap program.

Syntax

/boot

Description

The boot program brings up the operating system from a
cold start. In addition to bringing an operating system
file into memory from disk, boot also initializes all 1/0
subsystems and loads them with their operating software.
The boot program keeps track of which I/0O boards are
present in a particular configuration and passes this
information to the operating system.

The boot program is interactive and will prompt for the
name of an operating system file you want to use. This
permits the selection of one of several kernel files.
Additionally, if the CPU Monitor sets the appropriate
flag, boot will attempt to automatically boot the kernel
file. If it cannot find this file, boot will go into in-
teractive mode, and will display:

BOOT(M) ' BOOT(M)

For example, if you type ? 5l you will see the follow-
ing display:

Enter the bootable program in the form:
root_device(disk,partition)kernel_file
where root_device is:

fd - floppy disk
hd - main hard disk

The disk field selects a disk number which contains a file
system in which to find I/0 subsystem download code and
kernel files. On the floppy, this is always 0. On the
hard disk, the disk is usually the root file system, 0 for
the root disk. The partition field specifies which parti-
tion contains the root file system, and is always 0 for
the floppy, and normally 2 for hard disk.

The kernel file field is the path name of a kernel file
(relative to /).

Typical invocations are:

£d(0,0)unix.fd
hd(0,2)unix

BOOT(M)

Files

BOOT(M)

The boot program searches the file system in which it
found the kernel for code files to load into the I/O sub-
system boards. Those files are always kept in the /etc

directory and are named:

/ete/dlcode/ioc

/etc/dlcode/fp. type

/etc/dlcode/sio

/etc/dlcode/sio[0123]

/etc/dlcode/mde

/ete/dlcode/mdc[0123]

generic I0C code (Series 1000
only)

file processor specific
(Series 2000 only)

generic SIO code (Series
2000 only)

board-specific SIO code
(Series 2000 only)

generic MDC code (Series
2000 only)

board-specific MDC code
(Series 2000 only)

If boot can find a file that corresponds to a particular
SIO or MDC board, it will load that file; otherwise, it

loads the generic code file.

/boot
/unix*
/etc/dlcode/fp.esdi

/ete/ldlcode/fp

/etc/dlcode/sio
/etc/dlcode/sio?
/etc/dlcode/mde
/etc/dlcode/mdc?

See Also

layout(M)

Secondary boot

Operating system kernel file
File processor download code
for ESDI drive

File processor download code
for ST506 drive

SIO generic code

SIO specific code

SIO generic code

SIO specific code

BOOT(M) BOOT(M,

Diagnostics

For an error, boot displays an error message, then returns
to its prompt. The following is a list of the most common
messages.

bad drive specifier x
An invalid drive number was given, only 0-2 are
valid.

bad superblock: s magic x
The partition given doesn't appear to have a
filesystem on it.

device error, status [0123]
An error occurred while trying to read the program.
The boot system retries up to 10 times on each error.
If all 10 attempts fail, the following message ap-
pears: "Fatal disk error (10) retries."”

pathname not found
The supplied pathname does not correspond to an
existing file.

Notes

Boot cannot be used to load programs that have not been
linked for stand-alone execution.

BRC(M) BRC(M)

Name

bre - System initialization procedures.

Syntax

/ete/bre

Description

These shell procedures are executed via entries in
/ete/inittab by init(M) whenever the system is booted (or
rebooted).

The brc procedure clears the mounted file system table,
/etc/mnttab, and puts the entry for the root file system
into the mount table.

After these two procedures have executed, init checks for
the initdefault value in /etc/inittab. This tells init in
which run level to place the system. Since initdefault is
initially set to 2, the system will be placed in the
multi-user state via the /etc/rc2 procedure.

See Also

fsck(C), init(M), rc2(M), shutdown(C)

CAPTOINFO(M) : CAPTOINFO(M)

Name

captoinfo - Converts a termcap description into a terminfo
description.

Syntax

captoinfo [-v...] [-V] [-1] [-w width] file ..

Description

Captoinfo looks in file for termcap(M) descriptions. For
each one found, an equivalent terminfo(M) description is
written to standard output, along with any comments found.
A description that is expressed as relative to another
description (as specified in the termcap tc= field) will

be reduced to the minimum superset before being output.

If no file is given, then the environment variable
TERMCAP is used for the filename or entry. If

TERMCAP is a full pathname to a file, only the terminal
whose name is specified in the environment variable

TERM is extracted from that file. If the environment var-
iable TERMCAP is not set, then the file /etc/termcap

is read.

Options
-v Print tracing information on standard error as the
program runs. Specifying additional -v options will

cause more detailed information to be printed.

-V Print the version of the program in use on standard
error and exit.

-1 Cause the fields to print one to a line. Otherwise,
the fields will be printed several to a line to a
maximum width of 60 characters.

-w Change the output to width characters.

CAPTOINFO(M) CAPTOINFO(M)

Files

/usr/lib/terminfo/? /* Compiled terminal description
database

Caveats

Certain termcap defaults are assumed to be true. For ex-
ample, the bell character (terminfo bel) is assumed to be
“G. The linefeed capability (termcap nl) is assumed to be
the same for both cursor_down and scroll forward (terminfo
cudl and ind, respectively). Padding information is as-
sumed to belong at the end of the string.

The algorithm used to expand parameterized information
for termcap fields such as cursor position (termcap cm,
terminfo cup) will sometimes produce a string which,
though technically correct, may not be optimal. In par-
ticular, the rarely used termcap operation %n will produce
strings that are especially long. Most occurrences of
these non-optimal strings will be flagged with a warning
message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of
names in a termcap entry, a hold-over from an earlier ver-
sion of the UNIX system, has been removed.

Diagnostics

tgetent failed with return code n (reason).
The termcap entry is not valid. In particular, check
for an invalid 'tc=' entry.

unknown type given for the termcap code cec.
The termcap description had an entry for cc whose
type was not boolean, numeric, or string.

wrong type given for the boolean (numeric, string) termcap
code ce. The boolean termcap entry cc was entered
as a numeric or string capability.

the boolean (numeric, string) termcap code cc¢ is not a
valid name. An unknown termcap code was specified.

CAPTOINFO(M) CAPTOINFO(M)

tgetent failed on TERM=term.
The terminal type specified could not be found in the
termcap file.

TERM=term: cap ce (info ii) is NULL: REMOVED
The termcap code was specified as a null string. The
correct way to cancel an entry is with an '@', as in
':bs@:'. Giving a null string could cause incorrect
assumptions to be made by the software which uses
termcap or terminfo.

a function key for cc was specified, but it already has
the value vv.
When parsing the ko :capability, the key ecc was
specified as having the same value as the capability
ce, but the key ce already had a value assigned to
it.

the unknown termcap name cc was specified in the ko
termcap capability.
A key was specified in the ko capability which could
not be handled.

the vi character v (info ii) has the value xx, but ma
gives n.
The ma capability specified a function key with a
value different from that specified in another set-
ting of the same key.

the unknown vi key v was specified in the ma termcap
capability.
A vi(C) key unknown to captoinfo was specified in the
ma capability.

Warning: termcap sg (nn) and termcap ug (nn) had different
values.
terminfo assumes that the sg (now xme) and ug values
were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be
rewritten by hand.

Null termname given.
The terminal type was null. This is given if the
environment variable TERM is not set or is null.

CAPTOINFO(M) CAPTOINFO(M)

cannot open file for reading.
The specified file could not be opened.

See Also
tic(C), terminfo(M) and curses(S), in the Reference
(CP, S, F)

Notes
Captoinfo should be used to convert termcap entries to
terminfo(M) entries because the termcap database (from

earlier versions of UNIX System V) may not be supplied
in future releases.

CHECKLIST(M) CHECKLIST(M)

Name

checklist - Lists file systems processed by fsck.

Description

The /etc/checklist file contains a list of the file sys-

tems to be checked when fsck(C) is invoked without argu-
ments. The list contains at most 15 special file names.
Each special file name must be on a separate line and must
correspond to a file system.

See Also

fsck(C)

CKBUPSCD(M) CKBUPSCD(M)

Name

ckbupscd - Checks file system backup schedule.

Syntax

/ete/ckbupsed [-m]

Description

Ckbupsced consults the file /etc/bupsched and psints the
file system lists from lines with date and time specifica-
tions matching the current time. If the -m flag is pre-
sent an introductory message in the output is suppressed
so that only the file system lists are printed. Entries

in the /etc/bupsched file are printed under the control of
cron(C).

The file /etc/bupsched should contain lines of 4 or more
fields, separated by spaces or tabs. The first 3 fields
(the schedule fields) specify a range of dates and times.
The rest of the fields constitute a list of names of file
systems to be printed if ckbupscd is run at some time
within the range given by the schedule fields. The gen-
eral. format is:

timel,time] dayl,day] month[,month] fsyslist

where:

time Specifies an hour of the day (0 through 23),
matching any time within that hour, or an exact
time of day (0:00 through 23:59).

day Specifies a day of the week (sun through sat) or
day of the month (I through 31).

month Specifies the month in which the time and day

fields are valid. Legal values are the month
numbers (I through 12).

fsyslist The rest of the line is taken to be a file sys-
tem list to print.

CKBUPSCD(M) CKBUPSCD(M)

Multiple time, day, and month specifications may be sep-
arated by commas, in which case they are evaluated left to
right.

An asterisk (*) always matches the current value for that
field.

A line beginning with a sharp sign (#) is interpreted as a
comment and ignored.

The longest line allowed (including continuations) is 1024
characters.
Examples

The following are examples of lines which could appear in
the /etc/bupsched file.

06:00-09:00 fri 1,2,3,4,5,6,7,8,9,10,11 /applic
Prints the file system name /applic if ckbupscd is run
between 6:00am and 9:00am any Friday during any month ex
cept December.

00:00-06:00,16:00-23:59 1,2,3,4,5,6,7 1,8 /
Prints a reminder to backup the root (/) file system if
ckbupscd is run between the times of 4:00pm and 6:00am
during the first week of August or January.

Files
/etc/bupsched Specification file containing times
and file system to back up

See Also

cron(C), echo(C), sh(C), sysadm(C)

Notes

Ckbupscd will report file systems due for backup if in-
voked any time in the window. It does not know that bac
ups may have just been made. ’

CLOCK(M) , CLOCK(M)

Name

clock - Provides access to the time-of-day chip.

staticram - Provides 16 bytes of battery-backed-up memory.
Description

The file /dev/clock provides access to the time-of-day
chip. The current time, date, and year can be read or
written as ASCII data. (See for example, the -s option of
date.) The date is stored in the form:

MMDDhhmmYY

Where MM is the month, DD is the day of the month, hh is
the hour, mm is the minute, and YY is the last 2 digits of
the year.

The clock is maintained by a battery, even when the power
is off. The clock is normally used to set the system's
idea of the date on every power-up.

The file /dev/staticram provides 16 bytes of
battery-backed-up memory, which is actually part of the
time-of-day chip. It may be used for anything the system
administrator wishes, such as a system ID code, etc. This
memory remains valid until the battery wears out, or until
it is rewritten.

CLONE(M) CLONE(M)

Name

clone - Opens any minor device on a STREAMS driver.

Description

Clone is a STREAMS software driver that finds and opens
an unused minor device on another STREAMS driver. The
minor device passed to clone during the open is inter-
preted as the major device number of another STREAMS
driver for which an unused minor device is to be obtained.
Each such open results in a separate stream to a previous-
ly unused minor device.

The clone driver consists solely of an open function.
This open function performs all of the necessary work so
that subsequent system calls (including close(S)) require
no further involvement of clone.

Notes

Multiple opens of the same minor device cannot be done
through the clone interface. Executing stat(S) on the
file system node for a cloned device yields a different
result from executing fstat(S) using a file descriptor
obtained from opening the node.

See Also

log(M), and the STREAMS Programmer's Guide

CLRI(M) CLRI(M)

Name

clri - Clears an inode.

Syntax

/ete/clri special i-number...

Description

Clri writes nulls on the 64 bytes at offset i-number from
the start of the inode list. This effectively eliminates
the inode at that address. Special is the device name on
which a file system has been defined. After clri is exe-
cuted, any blocks in the affected file will show up as
"not accounted for" when fsck(C) is run against the
file-system. The inode may be allocated to a new file.

Read and write permission is required on the specified
special device.

This command is used to remove a file which appears in no
directory; that is, to get rid of a file which cannot be
removed with the rm(C) command.

See Also

fsck(C), fsdb(M), ncheck(M), rm(C), and fs(F) in the
Reference (CP, S, F)

Notes

If the file is open for writing, clri will not work. The
file system containing the file should NOT be mounted.

If clri is used on the inode number of a file that does
appear in a directory, it is imperative to remove the en-
try in the directory at once, since the inode may be allo-
cated to a new file. The old directory entry, if not re-
moved, continues to point to the same file. This sounds
like a link, but does not work like one. Removing the old
entry destroys the new file.

CRASH(M) CRASH(M)

Name

crash - Examines system images.

Syntax

/ete/crash [-d dumpfile 1 [-n namelist 1 [-0 offset]
[-w outputfile]

Description

The crash command is used to examine the system memory
image of a live or a crashed system by formatting and
printing control structures, tables, and other informa-
tion. Command line arguments to crash are dumpfile,
namelist, offset, and outputfile.

The dumpfile is the file containing the system memory
image. The default dumpfile is /dev/kmem., The system
image can also be /dev/hd0.restart if the system is in a
panic state.

The text file namelist contains the symbol table informa-
tion needed for symbolic access to the system memory imag:
to be examined. The default namelist is /unix. If a sys-
tem image from another machine is to be examined, the cor:
responding text file must be copied from that machine.

The offset option offsets from the beginning of dumpfile
at which data starts. This is useful with
/dev/hd0.restart where offset is 1024.

When the crash command is invoked, a session is initiated.
The output from a crash session is directed to outputfile.
The default outputfile is the standard output.

Input during a crash session is of the form:

function [argument ...]
where function is one of the crash functions described in
the Functions section of this command description, and

arguments are qualifying data that indicate which items of
the system image are to be printed.

CRASH(M) CRASH(M)

The default for process-related items is the current pro-
cess for a running system and the process that was running
at the time of the crash for a crashed system. If the
contents of a table are being dumped, the default is all
active table entries.

The following function options are available to crash
functions wherever they are semantically valid.

-e Display every entry in a table.
~f Display the full structure.
-p Interpret all address arguments in the com-

mand line as physical addresses.

-S process Specify a process slot other than the
default.
-w file Redirect the output of a function to file.

Note that if the -p option is used, all address and symbol
arguments explicitly entered on the command line will be
interpreted as physical addresses. If they are not phys-

ical addresses, results will be inconsistent.

The functions mode, defproc, and redirect correspond to
the function options -p, -s, and -w. The mode function
may be used to set the address translation mode to phys-
ical or virtual for all subsequently entered functions;
defproc sets the value of the process slot argument for
subsequent functions; and redirect redirects all subse-
quent output.

Output from crash functions may be piped to another pro-
gram in the following way:

function [argument ...]ishell_command
For example,
mount ! grep rw
will write all mount table entries with an rw flag to the

standard output. The redirection option (-w) cannot be
used with this feature.

CRASH(M) CRASH(M)

Depending on the context of the function, numeric argu-
ments will be assumed to be in a specific radix. Counts
are assumed to be decimal. Addresses are always hexa-
decimal. Table slot arguments are always decimal. Table
slot arguments larger than the size of the function table
will not be interpreted correctly. Use the findslot func-
tion to translate from an address to a table slot number.
Default bases on all arguments may be overridden. The C
conventions for designating the bases of numbers are re-
cognized. A number that is usually interpreted as decimal
will be interpreted as hexadecimal if it is preceded by 0x
and as octal if it is preceded by 0. Decimal override is
designated by 0d, and binary by 0b.

Aliases for functions may be any uniquely identifiable
initial substring of the function name. Traditional
aliases of one letter, such as p for proc, remain valid.

Many functions accept different forms of entry for the
same argument. Requests for table information will accept
a table entry number or a range. A range of slot numbers
may be specified in the form:

a-b

where a and b are decimal numbers. An expression consists
of two operands and an operator. An operand may be an
address, a symbol, or a number; the operator may be +, -,
* /, & or |. An operand that is a number should be pre-
ceded by a radix prefix if it is not a decimal number (0
for octal, 0x for hexadecimal, Ob for binary). The ex-
pression must be enclosed in parentheses (). Other func-
tions will accept any of these argument forms that are
meaningful.

Two abbreviated arguments to crash functions are used
throughout. Both accept data entered in several forms.
They may be expanded into the following:

table entry = table entry|range

start_addr = address|symbol | expression

CRASH(M) CRASH(M)

Functions

2[-w filel
List available functions.

temd
Escape to the shell to execute a command.

< filename
Take input from filename until end-of-file (EOF).
Lines starting with a "#" are comments and are
ignored.

adv [-e] [-w file] [[-p] table entry...]
Print the advertise table.

base [-w file] number ...
Print number in binary, octal, decimal, and hexa-
decimal. A number in a radix other than decimal
should be preceded by a prefix that indicates its
radix as follows: 0x, hexadecimal; 0, octal; and Ob,
binary.

buffer [-w file] [-format] bufferslot
or

buffer [-w file] [-format] [-plstart addr
Alias: b.

Print the contents of a buffer in the designated for-
mat, where format can be:

-b byte

-C character
-d decimal

-X hexadecimal

-0 octal
-r directory
-i inode

If no format is given, the previous format is used.
The default format at the beginning of a crash ses-
sion is hexadecimal.

CRASH(M) CRASH(M)

bufhdr (-f] [-w file] [[-pltable_entry ...]
Alias: buf.
Print system buffer headers.

callout [-w file]
Alias: c.
Print the callout table.

dballoc [-w file] [class...]
Print the dballoc table. If a class is entered, only
data block allocation information for that class will
be printed.

dbfree [-w file] [class...]
Print free streams data block headers. If a class is
entered, only data: block headers for the class speci-
fied will be printed.

dblock [-e] [-w file] [class...]
or

dblock [-e] [-w file] [[-p] table_entry...]
Print allocated streams data block headers. If the
class option (-c¢) is used, only data block headers
for the class specified will be printed.

defproc [-w file] [-c]
or

defproc [-w file] [slot]
Set the value of the process slot argument. The pro-
cess slot argument may be set to the current slot
number (-c¢) or the slot number may be specified. If
no argument is entered, the value of the previously
set slot number is printed. At the start of a crash
session, the process slot is set to the current pro-
cess.

dis [-w file] [-a] start_addressicount]
Disassemble from the start address for count instruc-
tions. The default count is 1. The absolute option
(-a) specifies a nonsymbolic disassembly.

CRASH(M) CRASH(M)

ds [-w file] virtual address ...
Print the data symbol whose address is closest to,
but not greater than, the address entered.

file [-e] [-w file] [[-pltable_entry ...]
Alias: f.
Print the file table.

findaddr [-w file] table slot
Print the address of slot in table. Only tables

available to the size function are available to
findaddr.

findslot [-w file] virtual_address ...
Print the table, entry slot number, and offset for
the address entered. Only tables available to the
size function are available to findslot.

fs [-w file] [[-p] table_entry...]
Print the file system information table.

gdp [-e]l [-f] [-w file] [[-p] table_entry...]
Print the gift descriptor protocol table.

gdt [-e] [-w file] [[-p] table_entry...]
Print the global descriptor table.

belp [-w file] -a function ...
Print a description of the named function, including

syntax and aliases. The -a option lists all func-
tions.

idt [-e] [-w file] [[-p] table entry ...]
Print the interrupt descriptor table.

inode [-el [-f] [-w file] [[-pltable_entry ...]
Alias: i.
Print the inode table, including file system switch
information. ‘

kfp [-w file] [valuel]
Print the frame pointer for the start of a kernel
stack trace. If the value argument is entered, the
kfp is set to that value.

CRASH(M) CRASH(M)

Ick [-e] [-w file] [[-p] table entry ...
Alias: 1.
Print record-locking information. If the -e option
is used or table address arguments are given, the
record lock list is printed. If no argument is en-
tered, information on locks relative to inodes is
printed.

ldt [-e] [-w file] [-s process] [[-p] table entry ...]
Print the local descriptor table for the given pro-
cess, or for the current process if none is given.

linkblk [-e] [-w file] [[-p] table_entry ...]
Print the linkblk table.

map [-w file]l mapname ...
Print the map structure of the given mapname.

mbfree [-w file]
Print free streams message block headers.

mblock [-e] [-w filename] [[-pltable entry ...]
Print allocated streams message block headers.

mode [-w file] [mode]
Set address translation of arguments to virtual (v)
or physical (p) mode. If no mode argument is given,
the current mode is printed. At the start of a crash
session, the mode is virtual.

mount [-e] [-w file] [[-pltable_entry ...]
Alias: m.
Print the mount table.

nm [-w file] symbol ...
Print value and type for the given symbol.

od [-p]} [-w file] [-format) [-mode] [-s process]
start_addr[count]

Alias: rd.
Print count values starting at the start address in
one of the following formats: character (-c), deci-
mal (-d), hexadecimal (-x), octal (-o), ascii (-a),
or hexadecimal/character (-h), and one of the follow-
ing modes: long (-1), short (-t), or byte (-b). The
default mode for character and ascii formats is byte;
the default mode for decimal, hexadecimal, and octal

CRASH(M) CRASH(M)

formats is long. The format -h prints both hexa-
decimal and character representations of the ad-
dresses dumped; no mode needs to be specified. When
format or mode is omitted, the previous value is

used. At the start of a crash session, the format is
hexadecimal and the mode is long. If no count is
entered, 1 is assumed.

pagemode [-1 lines] [-on|-off]
Toggle pagemode. If on, pause after every lines (24
by default). Similar to more(C).

panic
Print the latest system notices, warnings and panic
messages from the limited circular buffer kept in
memory.

pcb [-w file process]
Print the process control block (TSS) for the given
process. If no arguments are given, the active TSS
for the current process is printed.

pdt [-e] [~w file] [-s process] section segment
or

pdt [-e] [-w file]l [-s process] [-p] start addr[count]
The page descriptor table starting at the start ad-
dress for count entries is printed. If no count is
entered, 1 is assumed.

pfdat [-e] [-w file] [[-pltable_entry ...]
Print the pfdata table.

proc [-f] [-w file] [[-pltable entry ... #procid ...]
or

proc [-f] [-w file] [-r]
Print the process table. Process table information
may be specified in two ways. First, any mixture of
table entries and process ids may be entered. Each
process id must be preceded by a #. Alternatively,
process table information for runnable processes may
be specified with the runnable option (-r). The full
option (-f) details most of the information in the
process table as well as the pregion table for that
process.

CRASH(M) CRASH(M)

qrun [-w filel
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-pltable entry... 1]
Print streams queues.

quit
Alias: q.
Terminate the crash session.

revd [-e] [-f] [-w file] {[-p]table_entry...]
Print the receive descriptor table.

redirect [-w file] [-c]
or

redirect [-w file] [filel
Used with a file name, redirect output of a crash
session to the named file. If no argument is given,
the file name to which output is being redirected is
printed. Alternatively, the close option (-¢) closes
the previously set file and redirects output to the
standard output.

region [-e] [-f] [-w file] [[-pltable entry ...]
Print the region table.

search [-p] [-w file] [-m mask] [-s process] pattern
start_addr count
Print the long words in memory that match pattern,
beginning at the start address for count long words.
The mask is anded (&) with each memory word and the
result compared against the pattern. The mask de-
faults to Oxffffffff.

size [-w file] [-x] [structure_name ...]
Print the size of the designated structure. The -x
option prints the size in hexadecimal. If no argu-
ment is given, a list of the structure names for
which sizes are available is printed.

sndd [-e] [-w file] [[-pltable entry... 1]
Print the send descriptor table.

srmount [-e] [-w file] [[-pltable_entry...]
Print the server mount table.

CRASH(M) CRASH(M)

stack [-w file] [process]

Alias: s.
Dump stack. If no arguments are entered, the kernel
stack for the current process is printed. Otherwise,
the kernel stack for the given process is printed.

stream [-e] [-f] [-w file] [[-plentry_table... 1]
Print the streams table.

strstat [-w file]
Print streams statistics.

trace [-w file] [-r] [process]
Alias: t.
Print stack trace. The kfp value is used with the -r
option.

ts [-w file] virtual address ..
Print closest text symbol to the designated address.

tty [-e] [-f] [-w file] [-ttype[[-pltable_entry ...1]
Valid types: mdc, sc, kd
Print the tty table. If no arguments are given, the
‘tty table for mdc is printed. If the -t option is
used, the table for the single tty type specified is
printed. If no argument follows the type option, all
entries in the table are printed. A single tty entry
may be specified from the start address.

user [-f] [-w file] [process slot]
Alias: u.

Print the ublock for the designated process.

var [-w file]
Alias: v.
Print the tunable system parameters.

vtop [-w file] [-s process] start_addr ...

Print the physical address translation of the virtual
start address.

10

CRASH(M)

Files
/dev/kmem

/dev/hd0.restart

See Also

sh(C), test(C)

CRASH(M)

System image of currently running
system

Used to access the saved system image
on hard disk.

11

DEFAULT (M) DEFAULT(M)

Name

default - Default program information directory.

Description

Files

The files in the /etc/default directory contain the de-
fault information used by system commands such as lpd(M)
and remote(C). Default information is any information
required by the command that is not explicitly given when
the command is invoked.

The directory may contain zero or more files. Each file
corresponds to one or more commands. A command searches
for a file whenever it has been invoked without sufficient
information. Each file contains zero or more entries

which define the default information. Each entry has one
of the following forms:

keyword or keyword=value

where keyword identifies the type of information available
and value defines its value. Both keyword and value con-
sist of letters, digits, and punctuation. The exact
spelling of keyword and the appropriate value depends on
the command and are described with the individual com-
mands.

Any line in a file beginning with a number sign (#) is
considered a comment and is ignored.

/etc/default/lpd
/ete/default/passwd
/etc/default/quot
/etc/default/su

See Also

Ipr(C), quot(C), su(C)

DF(M) DF(M)

Name

df - Reports number of free disk blocks and inodes.

Syntax

df [-1t] [-f] [file-system | directory | mounted-resourcel

Description

The df command prints out the number of free blocks and
free inodes in mounted file systems, directories, or
mounted resources by examining the counts kept in the
super-blocks.

File-system may be specified either by device name (e.g.,
/dev/hdlb) or by mount point directory name (e.g., /usr).

Directory can be a directory name. The report presents
information for the device that contains the directory.

Mounted-resource can be a remote resource name. The re-
port presents information for the remote device that con-
tains the resource.

If no arguments are used, the free space on all locally
and remotely mounted file systems is printed.

The df command uses the following options:
-1 Reports on local file systems only.

-t Causes the figures for total allocated blocks and
inodes to be reported as well as the free blocks and
inodes.

-f An actual count of the blocks in the free list is
made, rather than taking the figure from the
super-block (free inodes are not reported). This
option will not print any information about mounted
remote resources.

DF(M) DF(M)~

Note
If multiple remote resources are listed that reside on the

same file system on a remote machine, each listing after
the first one will be marked with an asterisk.

Files

/dev/*
/etc/mnttab

See Also

mount(M) mnttab(M), and fs(F) in the Reference (CP, S, F)

DIR(M) DIR(M)

Name

dir - Format of a directory.

Syntax

#include <(sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word
of its inode entry (see filesystem(M)). The structure of
a directory is given in the include file
/usr/include/sys/dir.h.

By convention, the first two entries in each directory are
"dot" (.) and "dot dot" (..). The first is an entry for
the directory itself. The second is for the parent direc-
tory. The meaning of "dot dot" is modified for the root
directory of the master file system; there is no parent,
so "dot dot" has the same meaning as "dot."

The first 2 bytes of each entry are the inode numbers,
which will be zero if the entry has been removed. The
next 14 bytes are the filename. If the name is exactly 14
bytes, there will be no terminating null byte.

See Also

dir(S), filesystem(M)

DISPLAY(M) DISPLAY (M)

Name

display - Series 500 system console display.

Description

The system console (and user's terminal) is composed of
two separate pieces: the keyboard (see keyboard(M)) and
the display. Because of their complexity and because
there are two possible display interfaces (the monochrome
and color/graphics adapters), they are discussed in sepa-
rate manual entries.

The display normally consists of 25 lines of 80 columns
each; 40-column lines are also supported by the color/
graphics adapter. Writing characters to the console
(/dev/console) has an effect that depends on the charac-
ters. All characters written to /dev/console are first
processed by the terminal interface (see termio(M)). For
example, mapping new-line characters to carriage return
plus new-line and expanding tabs to spaces will be done
before the following processing:

x Where x is not one of the following, displays x.

BEL Generates a bell (audible tone, no modulation).

CR Places the cursor at column 1 of the current
line.

LF,VT Places the cursor at the same column of the next

line (scrolls if the current line is line 25).

FF Clears the screen and places the cursor at line
1, column 1.

BS Depends on the previous character: if a _
(underscore), see below; otherwise, if the cur-
sor is not at column 1, it is moved to the left
one position on the same line. If the cursor is
at column 1 but not line 1, it is moved to
column 79 of the previous line. Finally, if the
cursor is at column 1, line 1, it is not moved.

DISPLAY(M)

_BSx

ESCx

DISPLAY(M)

Sets the underscore attribute for the character
x to be displayed. The underscore attribute for
the color/graphics adapter is a red background

with a white foreground.

Where x is any of the 256 possible codes (except
for ¢ and [), displays that value interpreted.
This is useful for using the full set of graph-
ics available on the display. Note again that
the characters are processed through the termi-
nal interface prior.to this escape sequence.
Therefore, to get some of the possible 256 char-
acters, it is necessary that the character not

be post processed. The easiest way to accom-
plish this is to turn off OPOST in the c_oflag
field (see termio(M)); however, this may have
other side effects.

This display can be controlled by means of ANSI X3.64
escape sequences, which are specified sequences of charac-
ters, preceded by the ASCII character ESC. The escape
sequences, which work on either the monochrome or
color/graphics adapter, are the following:

ESCc

ESCI

ESCI

ESCI

ESCI

ESCL

ESCI

Clears the screen and places the cursor at
“line 1, column 1,

Insert character - inserts n blank places
for n characters at the current cursor po-
sition.

Cursor up - moves the cursor up n lines
(default: n=1).

Cursor down - moves the cursor down n lines
(default: n=1).

Cursor right - moves the cursor right n
columns (default: n=1).

Cursor left - moves the cursor left n
columns (default: n=1).

Cursor next line - moves the cursor to
column 1 of the next line, then down n-1
lines (default: n=1).

DISPLAY(M)

ESCI

ESC[

ESCI

ESC[

ESCI

ESCI

ESCI

ESC[

ESC{

ESC[

ESCI[

nF

n G

DISPLAY(M)

Cursor previous line - moves the cursor to
column 1 of the current line, then up n
lines (default: n=1).

Cursor horizontal position - moves the
cursor to column n of the current line
(default: n=1).

Position cursor - moves the cursor to
column m of line n (default: n=1).

Erase window - erases from the current
cursor position to the end of the window if
n=0, from the beginning of the window to
the current cursor position if n=1, and the
entire window if n=2 (default: n=1).

Erase line - erases from the current cursor
position to the end of the line if n=0,
from the beginning of the line to the cur-
rent cursor position if n=1, and the entire
line if n=2 (default: n=1).

Inserts n lines at the current cursor
position (default: n=1).

Deletes n lines at the current cursor
position (default: n=1).

Deletes n characters from a line starting
at the current cursor position (default:
n=1).

Scroll up - scrolls the characters in the
current window up n lines. The bottom n
lines are cleared to blanks (default:

n=1).

Scroll down - scrolls the characters in the
current window down n lines. The top n
lines are cleared to blanks (default: n=1).

Erase character - erases n character
positions starting at the current cursor
position (default: n=1).

DISPLAY(M)

ESC [Ps ;

DISPLAY/(M)

Ps; ... m

Character attributes - each Ps is one of

the following characters; multiple charac-
ters are separated by semicolons. These
parameters apply to successive characters
being displayed, in an additive manner

(e.g., both bold and underscoring can be
selected). Only the parameters through 7
apply to the monochrome adapter; all param-
eters apply to the color/graphics adapter.
(Default: Ps=0.)

Ps

Meaning

12

30
31
32
33
34
35
36
37
40
41

43
44
45
46
47

all attributes off (normal display)
(white foreground with black background)
bold intensity
underscore on
(white foreground with red background on color)

blink on

reverse video

selects the primary font

selects the first alternate font; lets ASCII
characters less than 32 be displayed as ROM char-

acters

selects a second alternate font; toggles high bit
of extended ASCII code before displaying as ROM

characters
black (gray) foreground
red (light red) foreground
green (light green) foreground
brown (yellow) foreground
‘blue (light blue) foreground
magenta (light magenta) foreground
cyan (light cyan) foreground
white (bright white) foreground
black (gray) background
red (light red) background
green (light green) background
brown (yellow) background
blue (light blue) background
magenta (light magenta) background
cyan (light cyan) background
white (bright white) background

DISPLAY(M) DISPLAY(M)

Toctl

Note that for character attributes 30 through 37, the
color selected for foreground will depend on whether the
bold intensity attribute (1) is currently on. If not, the
first color listed will result; otherwise the second color
listed will result.

Similarly, for character attributes 40-47, the color se-
lected for background will depend on whether the blink
attribute (5) is currently on. The color selected for
background also depends on whether blinking is enabled in
color mode byte or no blinking is selected (see the
MODE_BLINK and MODE_BG16 bits in the color mode byte
defined below). If the blink attribute is not on, then the
first color listed will result. If the blink attribute is

not on, and blinking is enabled, then the first color

listed will result and it will blink. If the blink attri-
bute is on, and no blinking is enabled, then the second
color listed will result.

calls
The display driver supports ioctl(S) calls of the form:

ioctl(filedes, command, arg)

filedes is a valid open file descriptor.
command is one of the commands listed below.
arg is the argument of command. The type of arg is

specific to the command in use.

The following is a list of valid ioctl commands for dis-
play adapters. These commands and structures are defined
in sys/kd.h.

KDDISPTYPE
Returns information about the current display adap-
ter. The argument is the address of a structure
(defined in sys/kd.h) of the following type:

struct kd disparam {
long type:
char *addr:

ushort ioaddr(]:

DISPLAY(M) DISPLAY(M)

type describes the type of adapter installed,
and is one of: KD _MONO, KD HERCULES,
KD_CGA, or KD_EGA.

addr is the physical address of the display mem-
ory for this adapter.
ioaddr is a list of I/O addresses valid for this
adapter.
KDGETMODE

Returns the current display mode. Arg is an integer,
whose values are one of the following:

KD TEXT Text mode
KD GRAPHICS Graphics Mode

KDSETMODE
Sets the current display mode. Arg is an integer,
whose values are one of those defined above for
KDGETMODE. Note, the user is responsible for pro-
gramming the color/graphics adapter registers for the
appropriate graphical state.

KDADDIO
Adds 1/0 port address to list of valid video adapter
addresses. Argument is an unsigned short type which
should contain a valid port address for the installed
video adaptor.

KDDELIO
Deletes 1/0 port address from list video adaptor ad-
dresses. Argument is an unsigned short type which
should contain a valid port address for the installed
video adaptor.

KDENABIO
Enables ins and outs to video adaptor ports. No
argument.

KDDISABIO
Disables ins and outs to video adaptor ports. No
argument.

DISPLAY(M) DISPLAY(M)

KDMAPDISP
Maps the display memory for the current adapter in
the user's data space. Argument is a pointer to
structure type "kd_memloc." Structure definition is:

struct kd_memloc {
char *vaddr: /% virtual address to map to */
char *physaddr:/* physical address to map from */
long length; /* size in bytes to map */
long ioflg: /* enable i/o addresses if set */

}

vaddr contains a paged-aligned virtual address in the
user's data space. To map the display memory for a
monographic adapter requires 4 Kbytes. In order to
map the display memory, the user must first use
KDSETMODE to place the adapter into graphics mode
and also use the VT_SETMODE option (see vt(M)) to
set the virtual terminal mode to VT _PROCESS. In-
cluded in this section is a sample code fragment
showing how to correctly map the screen memory into
user data space.

KDUNMAPDISP
Unmaps the display adapter memory from user data
space.

The following code fragment details how to map the
display adapter memory into user data so the screen
can be accessed via memory references in user code.

#include <sys/types.h>
#include <sys/immu.h>
#include <sys/at_ansi.h>
#include <sys/kd.h>
#include <sys/vt.h>

unsigned char d[0x2000]; /* allocate 2 pages of data */
unsigned char *c;
int fd:

DISPLAY(M) DISPLAY(M)

struct vt_mode vt:
struct kd_memloc mp:
struct screen (
char ch;
char attr:

} *scr:

/* assign a page-aligned address.

* Starting in the middle of a 2*pagesize array assures
* it will contain 1 page-aligned address with 1 page of

* data following.

*/
¢ = (unsigned char *)((long) (&d[sizeof(d)/2]) & (NBPP-1))
if (ioctl(fd.VT_GETMODE,&vt) == -1)

exit(1l):

vt.mode = VT_PROCESS:

/* set virtual terminal process control mode */
if (ioctl(fd,VT_SETMODE,&vt) == -1)
exit(1l):

/* set adapter in graphics mode */
if (ioctl(fd,KDSETMODE,KD_GRAPHICS) == -1)
exit(1):

/* virtual address to map to */

mp.vaddr = (char unsigned *)c:

/* start of monographic display memory */
mp.physaddr = (char *)MONO_BASE;

/* length of monograph display memory */
mp.length = (long)MONO_SIZE:

mp.ioflg = (long)O0:

/* map the display memory into user data space */
if (ioctl(fd,KDMAPDISP, &mp))
exit(1l):

/* start of screen memory */

scr = (struct screen ¥*)c:

DISPLAY(M)

/* The layout of screen memory is:

* For each character:

* 1 data byte

* 1 attribute byte
*/
scr->ch = ...

scr->attr =

/* Unmap display and reset modes */
ioctl(fd,KDUNMAPDISP) ;
ioctl(fd,KD_TEXT):

vt.mode = VT_AUTO:
ioctl(£d,VT_SETMODE, &vt) :

VT_OPENQRY
VT _GETMODE
VT _SETMODE
VT RELDISP
VT _ACTIVATE
These ioctl(S) options are used for controlling vir-

tual terminals.

tions.

Files

/dev/console

See Also

stty(C), ioctl(S), keyboard(M), termio(M), vt(M)

DISPLAY (M)

Refer to vt(M) for their defini-

ENVIRON(M) ENVIRON(M)

Name

environ - The user environment.

Description

The user environment (environ) is a collection of informa-
tion about a user, such as his login directory, mailbox,

and terminal type. The environment is stored in special
"environment variables,”" which can be assigned character
values, such as names of files, directories, and termi-

nals. These variables are automatically made available to
programs and commands that you can invoke. The commands
can then use the values to access your files and terminal.

Options

HOME Names the user's login directory. Initially,
HOME is set to the login directory given in the
user's passwd file entry.

PATH Defines the search path for the directories con-
taining commands. The system searches these
directories whenever a user types a command
without giving a full pathname. The search path
is one or more directory names separated by
colons (:). Initially, PATH is set to
:/bin:/usr/bin.

TERM Defines the type of terminal being used. This
information is used by commands such as more
which rely on information about the capabilities
of the user's terminal. The variable may be set
to any valid terminal name (see terminals(M))
directly or by using the tset(C) command.

TZ Defines time zone information. This information
used by date(C) to display the appropriate time.
The variable may have any value of the form
xxxnzzz where xxx is standard local time zone
abbreviation, n is the difference in hours from
GMT, and zzz is the daylight-saving local time
zone abbreviation (if any). For example,
ESTS5EDT. The difference for a location east of
England can be given as a negative number.

ENVIRON(M) ENVIRON(M)

The environment can be changed by assigning a new value
to a variable. An assignment has the form

name=value
For example, the assignment:
TERM=altos3

sets the TERM variable to an Altos III. When using the
standard shell (sh(C)), the new value can be "exported" to
each subsequent invocation of a shell by exporting the
variable with the export command (see sh(C)) or by using
the env(C) command. Users of the C-shell (csh(C)) can
set and export a variable with the setenv command (see
csh(C)).

A user may also add variables to the environment, but must
be sure that the new names do not conflict with exported
shell variables such as MAIL, PS1, PS2, and IFS. Placing
assignments in the .profile file is a useful way to change
the environment automatically before a session begins.

Note that the environment is made available to all pro-
grams as a string of arrays. Each string has the form:

name=value

where the name is the name of an exported variable and
the value is the variable's current value. For programs
started with a exec(S) call, the environment is available
through the external pointer environ. For other programs,
individual variables in environment are available through
getenv(S) calls.

See Also

login(C), sh(C), profile(M), and getenv(S) in the
Reference (CP, S, F)

ERRPRINT(M) ERRPRINT (M)

Name

errprint - Displays error log contents.

Syntax

/ete/errprint [date]

Description

Errprint displays the error messages logged by the
strerr(M) daemon for a particular date. The optional date
argument may be specified on the command line in any of
the following formats:

mm dd
mm-~dd
mm/dd
monthname dd

If no date is specified, the current date is used.
For ease of viewing, the only fields displayed for each
error message are the time of day and the text of the mes-
sage. The remaining fields found in the log file are not
displayed. The output is automatically piped through
more(C).

Files
/usr/adm/streams/error.mm-dd
/usr/lib/errstrip.awk

See Also

strerr(M)

FF(M) FF(M)

Name

ff - Fast find: lists file names and statistics for a
file system.

Syntax

/ete/ff [options] special

Description

Ff reads the i-list and directories of the special file,
assuming it is a file system. Inode data is saved for
files which match the selection criteria. Output consists
of the path name for each saved inode, plus other file
information requested using the print options below. Out-
put fields are positional. The output is produced in
inode order; fields are separated by tabs. The default
line produced by ff is:

path-name i-number
With all options enabled, output fields would be:
path-name i-number size uid
The argument n in the option descriptions that follow is
used as a decimal integer (optionally signed), where +n

means more than n, -n means less than n, and n means
exactly n. A day is defined as a 24 hour period.

-I Do not print the inode number after each
path name.
-1 Generate a supplementary list of all path

names for multiply-linked files.

-p prefix The specified prefix will be added to each
generated path name. The default is .
(dot).

-S Print the file size, in bytes, after each
path name.

FF(M) FF(M)

-u Print the owner's login name after each
path name.

-an Select if the inode has been accessed in n
days.

-m n Select if the inode has been modified in n
days.

-cn Select if the inode has been changed in n
days.

-n file Select if the inode has been modified more

recently than the argument file.

-i inode-list Generate names for only those inodes speci-
fied in inode-list.

See Also

find(C), ncheck(M)

Notes

If the -1 option is not specified, only a single path name
out of all possible ones is generated for a multiply-

linked inode. 1If -1 is specified, all possible names for
every linked file on the file system are included in the
output. However, no selection criteria apply to the names
generated.

FILESYSTEM(M) FILESYSTEM(N

Name

filesystem - Format of a system volume.

Syntax

#include <sys/filsys.h)>
#include <sys/types.h)>
#include <sys/param.h>
#finclude <sys/inode.h)
#include <sys/ino.h>

Description

Every file system storage volume (e.g., a hard disk) has a
common format for certain vital information. Every such
volume is divided into a certain number of 512 byte sec-
tors. Sector 0 is unused and is available to contain a
bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block
is described in /usr/include/sys/filsys.h. In that in-
clude file, s _isize is the address of the first data block
after the i-list. The i-list starts in logical block 2;

thus the i-list is s_isize-2 blocks long. S_fsize is the
first block not potentially available for allocation to a
file. These numbers are used by the system to check for
bad block numbers. If an "impossible" block number is
allocated from the free list or is freed, a diagnostic is
written on the console. Moreover, the free array is
cleared so as to prevent further allocation from a presum-
ably corrupted free list.

The free list for each volume is maintained as follows.
The s_free array contains, in s_free[ll, ...,
s_freels_nfree-1], up to NICFREE-1 numbers of free blocks
S free[0] is the block number of the head of a chain of
blocks constituting the free list. The first long in each
free-chain block is the number (up to NICFREE) of
free-block numbers listed in the next NICFREE longs of
this chain member. The first of these NICFREE blocks is
the link to the next member of the chain. To allocate a
block: decrement s nfree, and the new block is
s_freels_nfree]. If the new block number is 0, there are
no blocks left, so give an error. If s_nfree becomes 0,

FILESYSTEM(M) FILESYSTEM(M)

read in the block named by the new block number, replace
s_nfree by its first word, and copy the block numbers in
the next NICFREE longs into the s free array. To free a
block, check if s nfree is 50; if so, copy s_nfree and the
s _free array into it, write it out, and set s_nfree to 0.

In any event set s_freels nfree] to the freed block's num-
ber and increment s nfree.

S_tfree is the total free blocks available in the file
system.,

S ninode is the number of free i-numbers in the s inode
array. To allocate an inode: if s ninode is greater than
0, decrement it and return s_inode[s_ninodel. 1If it was
0, read the i-list and place the numbers of all free
inodes (up to NICINOD) into the s inode array, then try
again., To free an inode, provided s ninode is less than
NICINOD, place its number into s_inode[s_ninode] and in-
crement s ninode. If s ninode is already NICINOD, do not
bother to enter the freed inode into any table. This list
of inodes only speeds up the allocation process. The in-
formation about whether the inode is really free is main-
tained in the inode itself.

S _tinode is the total number of free inodes available in
the file system.

S_flock and s ilock are flags maintained in the core copy
of the file system while it is mounted and their values on
disk are immaterial. The value of s fmod on disk is also
immaterial, and is used as a flag to indicate that the
superblock has changed and should be copied to the disk
during the next periodic update of file system informa-
tion.

S _ronly is a read-only flag used to indicate write-
protection.

S _time is the last time the super-block of the file system
was changed, and is a doubleprecision representation of
the number of seconds that have elapsed since 00:00 Jan.
1, 1970 (GMT). During a reboot, the s time of the
super-block for the root file system is used to set the
system's idea of the time.

FILESYSTEM(M) FILESYSTEM(M

I-numbers begin at 1, and the storage for inodes begins in
logical block 2. Inodes are 64 bytes long. Inode 1 is
reserved for future use. Inode 2 is reserved for the root
directory of the file system, but no other i-number has a
built-in meaning. Each inode represents one file. For
the format of an inode and its flags, see ino.h.

Files

/usr/include/sys/filsys.h
/usr/include/sys/stat.h
/usr/include/sys/types.h
/usr/include/sys/param.h
/usr/include/sys/inode.h
/usr/include/sys/ino.h

See Also

fsck(C), mkfs(M)

FINC(M) ' FINC(M)

Name

finc - Fast incremental backup.

Syntax

/ete/fine [selection-criterial file-system raw-tape

Description

Finc selectively copies the input file-system to the out-
put raw-tape. The cautious will want to mount the input
file-system read-only to insure an accurate backup, al-
though acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelit(C).
The selection is controlled by the selection-criteria,
accepting only those inodes/files for whom the conditions
are true.

It is recommended that production of a finec tape be pre-
ceded by the ff(M) command, and the output of ff be saved
as an index of the tape's contents. Files on a finc tape
may be recovered with the frec(M) command.

The argument n, in the selection-criteria that follow, is
used as a decimal integer (optionally signed), where +n
means more than n, -n means less than n, and n means ex-
actly n. A day is defined as 24 hours.

-an True if the file has been accessed in n days.
-m n True if the file has been modified in n days.
-c n True if the inode has been changed in n days.
-n file True for any file which has been modified more

recently than the argument file.

Examples

To write a tape consisting of all files from file-system /
modified in the last 48 hours:

finc -m -2 /dev/root /dev/rct

FINC(M) FINC(M)

See Also

ff(M), frec(M), labelit(C) and cpio(C)

FREC(M) FREC(M)

Name

frec - Recovers files from a backup tape.

Syntax

/ete/frec [-p path] [-f reqfile] raw_tape
inode_number:name...

Description

Frec recovers files from the specified raw_tape backup
tape written by volcopy(M) or finc(M), given their
inode_numbers. The data for each recovery request will be
written into the file given by name.

Options

-p path Specifies a prefixing path (different from
your current working directory). This will
be prefixed to any names that are not fully
qualified, i.e., that do not begin with /
or ./. If any directories are missing in
the paths of recovery names, they will be
created.

-f reqfile Specifies a file that contains recovery
requests. The format is inode number:name,
one per line.

Examples

To recover a file, inode number 1216 when backed-up, into
a file named junk in your current working directory, type:

frec /dev/rct 1216:junk

To recover files with inode numbers 14156, 1232, and 3141
into files /usr/src/cmd/a, /usr/src/cmd/b and
/usr/joe/a.c, enter:

frec -p /usr/src/cmd /dev/rct 14156:a 1232:b
3141:/usr/joe/a.c

FREC(M) FREC(M)

See Also

f(M), finc(M), labelit(M), and cpio(C)

Notes

While paving a path (i.e., creating the intermediate di-
rectories contained in a pathname), frec can only recover
inode fields for those directories contained on the tape
and requested for recovery.

FSDB(M) FSDB(M)

Name

fsdb - File system debugger.

Syntax

/ete/fsdb special [-]

Description

Fsdb is used to patch up a damaged file system after a
crash. It has conversions to translate block and inode
numbers into their corresponding disk addresses. Also
included are mnemonic offsets to access different parts of
an inode. These greatly simplify the process of correct-
ing control block entries or descending the file system
tree.

Fsdb contains severa! error-checking routines to verify
inode and block addresses. These can be disabled if ne-
cessary by invoking fsdb with the optional - argument or
by the use of the O symbol. (Fsdb reads the i-size and
f-size entries from the superblock of the file system as
the basis for these checks.)

Numbers are considered decimal by default. Octal numbers
must be prefixed with a zero. During any assignment oper-
ation, numbers are checked for a possible truncation error
due to a size mismatch between source and destination.

Fsdb reads a block at a time and will therefore work with
raw as well as block I/0. A buffer management routine is
used to retain commonly used blocks of data in order to
reduce the number of read system calls. All assignment
operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:

absolute address
convert from inode number to inode address
convert to block address
directory slot offset
- . address arithmetic
quit

o & AT R

FSDB(M) FSDB(M)

> < save, restore an address
= numerical assignment
=+ incremental assignment

== decremental assignment
character string assignment .

double word mode
escape to shell

O error checking toggle
p general print facilities
f file print facility

B byte mode

W word mode

D

!

The print facilities generate a formatted output in var-
ious styles. The current address is normalized to an ap-
propriate boundary before printing begins. It advances
with the printing and is left at the address of the last
item printed. The output can be terminated at any time by
typing the delete character. If a number follows the p
symbol, that many entries are printed. A check is made to
detect block boundary overflows since logically sequential
blocks are generally not physically sequential. If a

count of zero is used, all entries to the end of the cur-
rent block are printed. The print options available are:

print as inodes

print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

To0O 00

The f symbol is used to print data blocks associated with
the current inode. If followed by a number, that block of
the file is printed. (Blocks are numbered from zero.)

The desired print option letter follows the block number,
if present, or the f symbhol. This print facility works

for small as well as large files. It checks for special
devices and that the block pointers used to find the data
are not zero.

Dots, tabs, and spaces may be used as function delimiters
but are not necessary. A line with just a new-line char-
acter will increment the current address by the size of
the data type last printed. That is, the address is set
to the next byte, word, double word, directory entry or
inode, allowing the user to step through a region of a

FSDB(M) FSDB(M)

file system. Information is printed in a format appropri-
ate to the data type. Bytes, words and double words are
displayed with the octal address followed by the value in
octal and decimal. A .B or .D is appended to the address
for byte and double word values, respectively. Direc-
tories are printed as a directory slot offset followed by
the decimal inode number and the character representation
of the entry name. Inodes are printed with labeled fields
describing each element.

The following mnemonics are used for inode examination and
refer to the current working inode:

md mode
In link count
uid user ID number
gid group ID number
sz file size
aff data block numbers (0 - 12)
at access time
ct creation time
mt modification time
maj major device number
min minor device number
Examples
3861 Prints inode number 386 in an inode format.
This now becomes the current working inode.
In=4 Changes the link count for the working
inode to 4.
In=+1 Increments the link count by 1.
fc Prints, in ASCII, block zero of the file
associated with the working inode.
2i.fd Prints the first 32 directory entries for
the root inode of this file system.
dsi.fe Changes the current inode to that associ-

ated with the 5th directory entry (numbered
from zero) found from the above command.
The first logical block of the file is then
printed in ASCII.

FSDB(M)

512B.p0o

2i.a0b.d7=3

d7.nm="name"

a2b.p0d

See Also

FSDB(M)

Prints the superblock of this file system
in octal.

Changes the inode number for the seventh
directory slot in the root directory to 3.
This example also shows how several opera-
tions can be combined on one command line.

Changes the name field in the directory
slot to the given string. Quotes are op-
tional when used with nm if the first char-
acter is alphabetic.

Prints the third block of the current inode
as directory entries.

fsck(C), and dir(S), fs(S) in the Reference (CP, S, F)

FSINFO(M) FSINFO(M)

Name

fsinfo - Reports information about a file system.

Syntax

fsinfo options file-system

Description
The fsinfo command displays information about the given
filesystem. All the values returned by fsinfo are ex-
pressed in 512 byte blocks.

Options
-f Returns the free block count of the file-system.

-i Returns the total number of blocks of inodes in a
file-system.

-1 Returns the total number of free blocks in the
file-system.

-S Performs a sanity check on the file-system. The re-
turn code will be 0 if the sanity check completes
successfully. A positive number is returned on fail-
ure.

See Also

daf(M)

FSSTAT(M) FSSTAT(M)

Name

fsstat - Reports file system status.

Syntax

/etc/fsstat special file

Description

Fsstat reports on the status of the file system on
speeial_file. During startup, this eommand is used to
determine if the file system needs checking before it is
mounted. Fsstat succeeds if the file system is unmounted
and appears okay. For the root file system, it succeeds
if the file system is active and not marked bad.

Diagnostics
The command has the following exit codes:

0 - the file system is not mounted and appears okay,
(except for root where 0 means mounted and okay).

the file system is not mounted and needs to be
checked.

the file system is mounted.

the command failed.

[y
1

w N
|

FSTAB(M)

Name

FSTAB(M)

fstab - File system table.

Description

The ete/fstab file contains information about file systems
for use by mount(C) and mountall(C). Each entry in
/etc/fstab has the following format:

column 1
column 2
column 3
column 4

column 5+

block special file name of file system
mount-point directory

"-r" if to be mounted read-only
(optional) file system type string

ignored

White-space separates columns. Lines beginning with "#"

are comments.

Empty lines are ignored.

A file system table might read:

/dev/hdlb /usr2

Files

/etc/fstab

See Also

mount(C), mountall(C)

FSTYP(M) FSTYP(M)

Name

fstyp - Determines file system identifier.

Syntax

/ete/fstyp special

Description

Fstyp allows the user to determine the file system identi-
fier of mounted or unmounted file systems using heuristic
programs. The file system type is required by mount(S)
and sometimes by mount(M) to mount file systems of differ-
ent types.

The directory /etc/fstyp.d contains a program for each
file system type to be checked; each of these programs
applies some appropriate heuristic to determine whether
the supplied special file is of the type for which it
checks. If it is, the program prints on standard output
the usual file-system identifier for that type and exits
with a return code of 0; otherwise it prints error mes-
sages on standard error and exits with a non-zero return
code. Fstyp runs the programs in /etc/fstyp.d in alpha-
betical order, passing special as an argument; if any pro-
gram succeeds, its file-system type identifier is printed
and fstyp exits immediately. If no program succeeds,
fstyp prints "Unknown_fstyp" to indicate failure.

Notes

The use of heuristics implies that the result of fstyp is
not guaranteed to be accurate.

See Also

mount(M), and mount(S), sysfs(S) in the Reference (CP,
S, F)

FUSER(M) FUSER(M)

Name

fuser - Identifies processes using a file or file struc-

ture.
Syntax
/ete/tuser [-ku] file... | resource... [-] [[-ku]
file... | resource...]
Description

Fuser outputs the process IDs of the processes that are
using the files or remote resources specified as argu-
ments. Each process ID is followed by a letter code, in-
terpreted as follows if the process is using the file as:

c Current directory

p Parent of its current directory (only when the file
is being used by the system)

r Root directory

For block special devices with mounted file systems, all
processes using any file on that device are listed. For
remote resource names, all processes using any file asso-
ciated with that remote resource (Remote File Sharing) are
reported. (Fuser cannot use the mount point of the remote
resource; it must use the resource name.) For all other
types of files (text files, executables, directories, de-
vices, etc.) only the processes using that file are re-
ported.

The following options may be used with fuser:

-u The user login name, in parentheses, also follows the
process ID.

-k The SIGKILL signal is sent to each process. Since
this option spawns kills for each process, the kill
messages may not show up immediately (see kill(S)).

FUSER(M) FUSER(M

If more than one group of files are specified, the options
may be respecified for each additional group of files. A
lone dash cancels the options currently in force; then,

the new set of options applies to the next group of files.

The process IDs are printed as a single line on the stan-
dard output, separated by spaces and terminated with a
single new line. All other output is written on standard
error.

You cannot list processes using a particular file from a
remote resource mounted on your machine. You can only
use the resource name as an argument.

Any user with permission to read /dev/kmem and /dev/mem
can use fuser. Only the super-user can terminate another
user's process.

Files
/unix For system namelist
/dev/kmem For system image
/dev/mem Also for system image
See Also

mount(C), ps(C)
kill(S), signal(S) in the Reference (CP, S, F)

GETTY(M) GETTY(M)

Name

getty - Sets terminal type, modes, speed, and line disci-
pline.

Syntax

/ete/getty [-h 1 [-t timeout] line [speed [type
[linedisc 11 1]
/etc/getty -c file

Description

Getty is a program that is invoked by init(M). It is the
second process in the series, (init-getty-login-shell)

that ultimately connects a user with the operating system.
It can only be executed by the super-user; that is, a pro-
cess with the user-ID of root. Initially getty prints the
login message field for the entry it is using from
/etc/gettydefs. Getty reads the user's login name and
invokes the login(C) command with the user's name as argu-
ment. While reading the name, getty attempts to adapt the
system to the speed and type of terminal being used. It
does this by using the options and arguments specified.

Line is the name of a tty line in /dev to which getty is
to attach itself. Getty uses this string as the name of a
file in the /dev directory to open for reading and writ-
ing. Unless getty is invoked with the -h flag, getty will
force a hangup on the line by setting the speed to zero
before setting the speed to the default or specified
speed. The -t flag plus timeout (in seconds), specifies
that getty should exit if the open on the line succeeds
and no one types anything in the specified number of sec-
onds.

Speed, the optional second argument, is a label to a speed
and tty definition in the file /etc/gettydefs. This defi-
nition tells getty at what speed to initially run, what

the login message should look like, what the initial tty
settings are, and what speed to try next should the user
indicate that the speed is inappropriate (by pressing
IE=ZXIEW). The default speed is 300 baud.

GETTY(M) GETTY(M,

Type, the optional third argument, is a character string
describing to getty what type of terminal is connected to
the line in question. Getty recognizes the following

types:
none default
ds40-1 Dataspeed40/1
tektronix,tek Tektronix
vt6l DEC vt6l
vt100 DEC vt100
hp45 Hewlett-Packard 45
100 Concept 100

The default terminal is none; i.e., any crt or normal ter-
minal unknown to the system. Also, for terminal type to
have any meaning, the virtual terminal handlers must be

compiled into the operating system. They are available,

but not compiled in the default condition.

Linedisc, the optional fourth argument, is a character
string describing which line discipline to use in communi-
cating with the terminal. Again the hooks for line disci-
plines are available in the operating system but there is
only one presently available, the default line discipline,
LDISCO.

When given no optional arguments, getty sets the speed of
the interface to 300 baud, specifies that raw mode is to
be used (awaken on every character), that echo is to be
suppressed, either parity allowed, new-line characters

will be converted to carriage return-line feed, and tab
expansion performed on the standard output. It types the
login message before reading the user's name a character
at a time. If a null character (or framing error) is re-
ceived, it is assumed to be the result of the user pres-
sing [ECEARN. This will cause getty to attempt the
next speed in the series. The series that getty tries is
determined by what it finds in /etc/gettydefs.

After the user's name has been typed in, it is terminated
by a new-line or carriage-return character. The latter
results in the system being set to treat carriage returns
appropriately (see ioctl(S)).

GETTY(M) GETTY(M)

Files

The user's name is scanned to see if it contains any
lower-case alphabetic characters; if not, and if the name
is non-empty, the system is told to map any future
upper-case characters into the corresponding lower-case
characters.

Finally, login is executed with the user's name as an ar-
gument. Additional arguments may be typed after the login
name. These are passed to login, which will place them in
the environment (see login(C)).

A check option is provided. When getty is invoked with
the -c option and file, it scans the file as if it were
scanning /etc/gettydefs and prints out the results to the
standard output. 'If there are any unrecognized modes or
improperly constructed entries, it reports these. If the
entries are correct, it prints out the values of the var-
ious flags. See ioctl(S) to interpret the values. Note
that some values are added to the flags automatically.

/ete/gettydefs
/etc/issue

See Also

ct(C), gettydefs(M), init(M), inittab(M), login(C),
tty(M), and ioctl(S) in the Reference (CP, S, F)

Notes

While getty understands simple single character quoting
conventions, it is not possible to quote certain special
control characters used by getty. Thus, you cannot login
via getty and type a #, @, /, !, _, backspace, U, "D, or
& as part of your login name or arguments., Getty uses
them to determine when the end of the line has been
reached, which protocol is being used, and what the erase
character is. They will always be interpreted as having
their special meaning.

- GETTYDEFS(M) ’ GETTYDEFS(M)

Name

gettydefs - Speed and terminal settings used by getty.

Description

The /etc/gettydefs file contains information used by
getty(M) to set up the speed and terminal settings for a
line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next

if the user types a character, which indicates the
current speed is not correct.

Each entry in /etc/gettydefs has the following format:
labeltinitial-flags#final-flags#login-prompt#next-label

Each entry is followed by a blank line. The various
fields can contain quoted characters of the form \b, \n,
\c, etc., as well as \nnn, where nnn is the octal value of
the desired character. The various fields are:

label This is the string against which
getty(M) tries to match its second
argument. It is often the speed, such
as 1200, at which the terminal is sup-
posed to run, but it need not be (see
below).

initial-flags These flags are the initial ioctl(S)
settings to which the terminal is to
be set if a terminal type is not spe-
cified to getty. The flags that getty
understands are the same as the ones
listed in /usr/include/sys/termio.h
(see termio(M)). Normally only the
speed flag is required in the
inital-flags. Getty automatically
sets the terminal to raw input mode
and takes care of most of the other
flags. The initial-flag settings re-
main in effect until getty executes
login(C).

GETTYDEFS(M)

final-flags

login-prompt

next-label

GETTYDEFS(M)

These flags take the same values as
the initial-flags and are set just

prior to getty executes login. The
speed flag is again required. The
composite flag SANE takes care of
most of the other flags that need to
be set so that the processor and ter-
minal are communicating in a rational
fashion. The other two commonly spe-
cified final-flags are TAB3, so that
tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung
up on the final close.

This entire field is printed as the
login-prompt. Unlike the above fields
where white space is ignored (a space,
tab, or newline), they are included in
the login-prompt field.

If this entry does not specify the
desired speed, indicated by the user
typing a break character, then getty
will search for the entry with
next-label as its label field and set
up the terminal for those settings.
Usually, a series of speeds are linked
together in this fashion, into a
closed set. For instance, 2400 linked
to 1200, which in turn is linked to
300, which finally is linked to 2400.

If getty is called without a second argument, then the
first entry of /ete/gettydefs is used, and is the default
entry. It is also used if getty cannot find the specified
label. If /etc/gettydefs itself is missing, there is one
entry built into the command which will bring up a ter-

minal at 300 baud.

After making or modifying /etc/gettydefs, run it through
getty with the check option to be sure there are no

errors.

GETTYDEFS(M) GETTYDEFS(M)

Files

/etc/gettydefs

See Also

getty(M), termio(M), login(C), uugetty(M)

GROUP(M) GROUP(M)

Name

group - Format of the group file.

Description

The /etc/group file contains the following information:

. Group name

. Encrypted password (optional)

. Numerical group ID

. Comma-separated list of all users allowed in the
group

This is an ASCII file. The fields are separated by
colons; each group is separated from the next by a new-
line. If the password field is empty, then you are not
prompted for a password, when using the newgrp(C) com-
mand.

This file resides in directory /etc. Because of the en-
crypted passwords, it can and does have general read per-
missions and can be used, for example, to map numerical
group IDs to names.

See Also

passwd(M)

HALTSYS(C) HALTSYS(C)

Name

haltsys - Closes out the file systems and halts the CPU.

Syntax

/etec/haltsys

Description

You must be the super-user to access this command.

The haltsys command immediately terminates the operating
system and should only be used if a system problem pre-
vents the running of shutdown. Do not run haltsys in mul-
tiuser mode and when other users are on the system. Since
haltsys takes effect immediately, user processes should be
killed beforehand (see kill(C)).

Related Commands

kill(C), ps(C), shutdown(M)

INFOCMP(M) INFOCMP(M)

Name

infocmp - Compares or prints out terminfo descriptions.

Syntax

infocmp [-d] [-c] [-n] [-I] [-L1 [-C] [-r] [-u]
[-s d|ij1]e] [-v] [-V] [-1] [-w width]
[-A directory]l [-B directory] [termname ...]

Description

Infocmp can be used to compare a binary terminfo(M) entry
with other terminfo entries, rewrite a terminfo(M) de-
scription to take advantage of the use= terminfo field, or
print out a terminfo(M) description from the binary file
(term(M)) in a variety of formats. In all cases, the

" boolean fields will be printed first, followed by the nu-
meric fields, followed by the string fields.

Default Options

If no options are specified and zero or one termnames are
specified, the -I option will be assumed. If more than
one termname is specified, the -d option will be assumed.

Comparison Options [-d] [-c] [-n]

Infocmp compares the terminfo(M) description of the first
terminal termname with each of the descriptions given by
the entries for the other terminal's termnames. If a cap-
ability is defined for only one of the terminals, the

value returned will depend on the type of the capability:
F for boolean variables, -1 for integer variables, and
NULL for string variables.

-d Produce a list of each capability that is different.
In this manner, if one has two entries for the same
terminal or similar terminals, using infocmp will
show what is different between the two entries. This
is sometimes necessary when more than one person pro-
duces an entry for the same terminal and one wants to
see what is different between the two.

INFOCMP(M) INFOCMP(M)

-¢ Produce a list of each capability that is common be-
tween the two entries. Capabilities that are not set
are ignored. This option can be used as a quick
check to see if the -u option is worth using.

-n Produce a list of each capability that is in neither
entry. If no termnames are given, the environment
variable TERM will be used for both of the termnames.
This can be used as a quick check to see if anything
was left out of the description.

Source Listing Options [-I] [-L] [-C] [-r]

The -I, -L, and -C options will produce a source listing
for each terminal named.

-1 Use the terminfo(M) names
-L Use the long C variable name listed in <term.h>
-C Use the termcap names

-r When using -C, put out all capabilities in termcap
form

If no termnames are given, the environment variable TERM
will be used for the terminal name.

The source produced by the -C option may be used directly
as a termcap entry, but not all of the parameterized
strings may be changed to the termcap format. Infocmp
will attempt to convert most of the parameterized informa-
tion, but that which it doesn't will be plainly marked in
the output and commented out. These should be edited by
hand.

All padding information for strings will be collected to-
gether and placed at the beginning of the string where
termcap expects it. Mandatory padding (padding informa-
tion with a trailing '/') will become optional.

All termcap variables no longer supported by terminfo(M),
but which are derivable from other terminfo(M) variables,
will be output. Not all terminfo(M) capabilities will be
translated; only those variables which were part of
termcap will normally be output.

INFOCMP(M)

Use=

INFOCMP(M)

Specifying the -r option will take off this restriction,
allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of
the capability, not all capabilities are output, mandatory
padding is not supported, and termcap strings were not as
flexible, it is not always possible to convert a
terminfo(M) string capability into an equivalent termcap
format. Not all of these strings will be able to be con-
verted. A subsequent conversion of the termcap file back
into terminfo(M) format will not necessarily reproduce the
original terminfo(M) source. ‘

Some common terminfo parameter sequences, their termcap
equivalents, and some terminal types which commonly have
such sequences, are:

Terminfo Termcap Representative Terminals
%pl%c %. adm

%pl%d %4a hp. ANSI standard, vt100
%pl%'X'%+%c %+X concept

%1 %i ANSI standard, vt100
%pl%?2%'x"%>%t%pls'y ' %+%: %>xy concept

%p2 is printed before %pl %r hp

Option [-u]

-u Produce a terminfo(M) source description of the first
terminal termname which is relative to the sum of the
descriptions given by the entries for the other ter-
minals termnames. It does this by analyzing the dif-
ferences between the first termname and the other
termnames and producing a description with use=
fields for the other terminals. In this manner, it
is possible to retrofit generic terminfo entries into
a terminal's description. Or, if two similar ter-
minals exist, but were coded at different times or by
different people so that each description is a full
description, using infocmp will show what can be done
to change one description to be relative to the other.

INFOCMP(M) INFOCMP(M)

A capability will get printed with an at-sign (@) if it no
longer exists in the first termname, but one of the other
termname entries contains a value for it. A capability's
value gets printed if the value in the first termname is
not found in any of the other termname entries, or if the
first of the other termname entries that has this capabil-
ity gives a different value for the capability than that

in the first termname.

The order of the other termname entries is significant.
Since the terminfo compiler tic(C) does a left-to-right
scan of the capabilities, specifying two use= entries that
contain differing entries for the same capabilities will
produce different results depending on the order in which
the entries are given. Infocmp will flag any such incon-
sistencies between the other termname entries as they are
found.

Alternatively, specifying a capability after a use= entry
that contains that capability will cause the second speci-
fication to be ignored. Using infocmp to recreate a de-
scription can be a useful check to make sure that every-
thing was specified correctly in the original source de-
scription.

Another error that does not cause incorrect compiled
files, but will slow down the compilation time, is speci-
fying extra use= fields that are superfluous. Infocmp
will flag any other termname use= fields that were not
needed.

Other Options [-s d|i|l|e] [-v] [-V] [-1] [-w width]

-s Sort the fields within each type according to the
argument below:

d Leave fields in the order that they are stored
in the terminfo database.

i Sort by terminfo name.
1 Sort by the long C variable name.

c Sort by the termcap name.

INFOCMP(M) INFOCMP(M)

If no -s option is given, the fields printed out will be
sorted alphabetically by the terminfo name within each
type, except in the case of the -C or the -L options,

which cause the sorting to be done by the termcap name or
the long C variable name, respectively.

-v Print out tracing information on standard error as
the program runs.

-V Print out the version of the program in use on stan-
dard error and exit.

-1 Cause the fields to printed out one to a line.
Otherwise, the fields will be printed several to a
line to a maximum width of 60 characters.

-w Change the output to width characters.

Changing Databases [-A directory] [-B directory]

Files

The location of the compiled terminfo(M) database is taken
from the environment variable TERMINFO. If the variable
is not defined, or the terminal is not found in that loca-
tion, the system terminfo(M) database, usually in
/usr/lib/terminfo, will be used. The options -A and -B
may be used to override this location. The -A option will
set TERMINFO for the first termname and the -B option
will set TERMINFO for the other termnames. With this,
it is possible to compare descriptions for a terminal with
the same name located in two different databases. This is
useful for comparing descriptions for the same terminal
created by different people. Otherwise the terminals
would have to be named differently in the terminfo(M)
database for a comparison to be made.

Jusr/lib/terminfo/?/* Compiled terminal description
database

INFOCMP(M) INFOCMP(M)

Diagnostics

malloc is out of space!
There was not enough memory available to process all
the terminal descriptions requested. Run infocmp
several times, each time including a subset of the
desired termnames.

use= order dependency found:
A value specified in one relative terminal specifica-
tion was different from that in another relative ter-
minal specification.

'use=term' did not add anything to the description.
A relative terminal name did not contribute anything
to the final description.
must have at least two terminal names for a comparison to
be done.
The -u, -d and -¢ options require at least two
terminal names.

See Also

tic(C), curses(S), term(M), terminfo(M), captoinfo(M)

Note

The termcap database (from earlier releases of UNIX Sys-
tem V) may not be supplied in future releases.

INIR(M) INIR(M)

Name

inir - Cleans the file system and executes init.

Syntax

/ete/inir

Description

Inir first checks that the console devices (/dev/console,
/dev/syscon, /dev/systty) are correct, and if not removes
and creates them. Inir will then fork a child process
that reports the number of users licensed for this system
and that cleans the file system by running fsck(C).

Inir is called as "c" or "d" to indicate whether the file
system is clean or dirty. If inir is invoked as anything
other than "c," it assumes the file system is dirty.

When the child process returns, inir will execute init(M).

Files
/dev/console
/dev/syscon
/dev/systty
See Also

init(M), fsck(C)

INIT(M) INIT(M)

Name

init, telinit - Process control initialization.

Syntax

/ete/init [0123456SsQq]
/etc/telinit [0123456sSQqabc]

Description

Init is a general process spawner. Its primary role is to
create processes from a script stored in the file
/etc/inittab (see inittab(M)). This file usually has init
spawn getty(M) processes on each line that a user may log
in on. It also controls autonomous processes required by
any particular system.

Init considers the system to be in a run-level at any
given time. A run-level can be viewed as a software con-
figuration of the system where each configuration allows
only a selected group of processes to exist. The pro-
cesses spawned by init for each of these run-levels are
defined in the inittab file.

Init can be in one of eight run-levels, 0-6, and S or s.
The run-level is changed by having a privileged user run
/etc/telinit (which is linked to /etc/init). This
user-spawned init sends appropriate signals to the orig-
inal init spawned by the operating system when the system
was booted, telling it which run-level to change to.

Init is invoked as the last step in the boot(M) procedure.
The first thing it does is to look for /etc/inittab and
see if there is an entry of the type initdefault (see
inittab(M)). If there is, init uses the run-level speci-
fied in that entry as the initial run-level to enter. If
this entry is not in inittab or inittab is not found, init
requests that the user enter a run-level from the virtual
system console, /dev/syscon. If an S (s) is entered, init
goes into the SINGLE USER level. This is the only
run-level that doesn't require the existence of a properly
formatted inittab file.

INIT(M) INIT(M)

If /etc/inittab doesn't exist, then by default the only
legal run-level that init can enter is the SINGLE USER
level. In the SINGLE USER level, the virtual console ter-
minal /dev/syscon is opened for reading and writing and
the command /bin/su is invoked immediately. To exit from
the SINGLE USER run-level one of two options can be
elected. First, if the shell is terminated (via an end-
of-file), init will reprompt for a new run-level. Second,
the init or telinit command can signal init and force it

to change the run-level of the system.

When attempting to boot the system, init may fail to
prompt for a new run-level because the device /dev/syscon
is linked to a device other than the physical system ter-
minal (/dev/systty). If this occurs, init can be forced

to relink /dev/syscon by typing a delete on the system
console that is located with the processor.

When init prompts for the new run-level, you may enter
only one of the digits 0 through 6 or the letters S or s.
If S is entered, init operates as previously described in
SINGLE USER mode with the additional result that
/dev/syscon is linked to your terminal line, thus making
it the virtual system console. A message is generated on
the physical console, /dev/systty, saying where the vir-
tual terminal has been relocated.

When init comes up initially and whenever it switches out
of SINGLE USER state to normal run states, it sets the
ioctl(S) states of the virtual console, /dev/syscon, to
those modes saved in the file /etc/ioctl.syscon. This
file is written by init whenever SINGLE USER mode is
entered. If this file does not exist when init wants to
read it, a warning is printed and default settings are
assumed.

If a 0 through 6 is entered, init enters the corresponding
run-level. Any other input will be rejected and the user
will be reprompted. If this is the first time init has
entered a run-level other than SINGLE USER, init first
scans inittab for special entries of the type boot and
bootwait. These entries are performed, providing the
run-level entered matches that of the entry before any
normal processing of inittab. In this way, any special
initialization of the operating system, such as mounting
file systems, can take place before users are allowed onto
the system. The inittab file is scanned to find all en-
tries that are to be processed for that run-level.

INIT(M) INIT(M)

Run-level 2 is usually defined by the system administrator
to contain all of the terminal processes and daemons that
are spawned in the multiuser environment. Run-level 3 is
defined to start up remote file sharing processes and
daemons as well as mount and advertise remote resources.
So, run-level 3 extends multiuser mode and is known as the
Remote File Sharing state.

In a multiuser environment, the inittab file is usually
set up so that init will create a process for each ter-
minal on the system.

For terminal processes, the shell will ultimately termi-
nate because of an end-of-file either typed explicitly or
generated as the result of hanging up. When init receives
a child death signal, telling it that a process it spawned
has died, it records the fact and the reason it died in
/etc/utmp and /etc/wtmp if it exists (see who(C)). A his-
tory of the processes spawned is kept in /etc/wtmp if such
a file exists.

To spawn each process in the inittab file, init reads each
entry and for each entry which should be respawned, it
forks a child process. After it has spawned all of the
processes specified by the inittab file, init waits for

one of its descendant processes to die, a powerfail sig-
nal, or until it is signaled by init or telinit to change
the system's run-level. When one of the above three con-
ditions occurs, init re-examines the inittab file. New
entries can be added to the inittab file at any time. To
provide for an instantaneous response the telinit Q or
telinit q command can wake init to reexamine the inittab
file.

If init receives a powerfail signal (SIGWPR) and is not
in SINGLE USER mode, it scans inittab for special
powerfail entries. These entries are invoked (if the
run-levels permit) before any further processing takes
place. In this way init can perform various cleanup and
recording functions whenever the operating system experi-
ences a power failure. Note that in the single-user
state, only powerfail and powerwait entries are executed.

When init is requested to change run-levels (via telinit),
it sends the warning signal (SIGTERM) to all processes
that are undefined in the target run-level. Init waits 20
seconds before forcibly terminating these processes via
the kill signal (SIGKILL).

INIT(M) INIT(M)

Telinit

Telinit, which is linked to /etc/init, is used to direct

the actions of init(S). It takes a one-character argument
and signals init via the kill system call to perform the
appropriate action. You must be the super-user to run
telinit.

The following arguments serve as directives to init.

0-6 Tells init to place the system in one of the
run-levels 0-6. Run level 0 is used for shut-
down; 1 is single user mode; and 2 is multiuser
mode. To switch between single and multiuser
modes, use the scripts /etc/singleuser and
/etc/multiuser.

a,b,c Tells init to process only those /etc/inittab
file entries having the a, b, or ¢ run-level set
(see inittab(M)).

q,Q Tells init to re-examine the /etc/inittab file.

s,S Tells init to enter the single user environment.
The virtual system teletype, /dev/syscon, is
changed to the terminal from which the command
was executed.

Init.d

The /etc/init.d directory contains initialization and ter-
mination scripts for changing init states. These scripts
are linked with appropriate files in the rc?.d direc-
tories.

File names in rc?.d directories are of the form
[S|Klnn<init.d filename> where S means start this job, K
means kill this job, and nn is the relative sequence num-
ber for killing or starting the job. When entering a
state (init 0, 2, 3, etc.), the rc[0-6] script executes
those scripts in /etc/rc[0-6].d that are prefixed with K
followed by those scripts prefixed with S.

For example, when changing to init state 2 (default
multi-user mode), /etc/rc2 is initiated by the init pro-
cess. The following steps are performed by /etc/rc2:

INIT(M)

Files

INIT(M)

In the directory /etc/rc2.d are files used to stop
processes that should not be running in state 2. The
file names are prefixed with K. Each K file in the
directory is executed (by /etc/rc2) in alpha-numeric
order when the system enters init state 2 (see the
following example).

The rc2.d directory also contains files used to start
processes that should be running in state 2. As in
the step above, each S file is executed.

Example: .

The file /etc/netdaemon contains a script that ini-

tiates networking daemons when given the argument
start and terminates the daemons if given the argu-
ment stop. It is linked to /etc/rc2.d/S68netdaemon,
and to /etc/rc0.d/K67netdaemon.

This script is executed by /etc/rc2.d/S68netdaemon
start when init state 2 is entered and by
/ete/rc0.d/S67netdaemon stop when shutting the sys-
tem down.)

/etc/inittab
/ete/init.d
/etc/rcO
/etc/rc0.d
/etc/rc2
/ete/re2.d
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon

See Also

bre(M), getty(M), inittab(M), login(C), rcO(M), rc2(M),
sh(C), utmp(M), who(C)

INIT(M) INIT(M)

Diagnostics

If init finds that it is continuously respawning an entry
from /etc/inittab more than 10 times in 2 minutes, it as-
sumes there is an error in the command string, generates
an error message on the system console, and refuses to
respawn this entry until either 1 minute has elapsed or it
receives a signal from a user init (telinit). This pre-
vents init from eating up system resources when someone
makes a typographical error in the inittab file or a pro-
gram is removed that is referenced in the inittab.

Notes

Telinit can be run only by someone who is the super-user
or a member of group sys. Attempting to relink
/dev/console with /dev/contty by typing on the sys-
tem console does not work.

INITTAB(M) INITTAB(M)

Name

inittab - Script for the init process.

Description

The /etc/inittab file supplies the script to init(M)'s
role as a general process dispatcher. The process that
constitutes the majority of init's process dispatching
activities is the line process getty(M) that initiates
individual terminal lines. Other processes typically dis-
patched by init are daemons and the shell.

The inittab file is composed of entries that are position
dependent and have the following format:

id:rstate:action:process

Each entry is delimited by a newline; however, a backslash
(\) preceding a newline indicates a continuation of the
entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the
sh(C) convention for comments. Comments for lines that
spawn getty(M) are displayed by the who(C) command.
They typically contain some information about the line
such as the location. There are no limits (other than
maximum entry size) imposed on the number of entries
within the inittab file. The entry fields are:

id This is one or two characters used to uniquely
identify an entry.

rstate This defines the run-level in which this entry
is to be processed. Run-levels effectively cor-
respond to a configuration of processes in the
system. That is, each process spawned by init
is assigned a run-level (or run-levels) in which
it is allowed to exist. The run-levels are rep-
resented by a number ranging from 0 through 6.
As an example, if the system is in run-level 1,
only those entries having a 1 in the rstate
field will be processed. When init is requested
to change run-levels, all processes that do not
have an entry in the rstate field for the target
run-level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace perioc

INITTAB(M)

action

INITTAB(M)

before being forcibly terminated by a kill sig-
nal (SIGKILL). The rstate field can define mul-
tiple run-levels for a process by selecting more
than one run-level in any combination from 0-6.
If no run-level is specified, then the process

is assumed to be valid at all run-levels 0-6.

.There are are three other values, a, b, or ¢,

which can appear in the rstate field, even
though they are not true run-levels. Entries
that have these characters in the rstate field
are processed only when the telinit (see
init(M)) process requests them to be run
(regardless of the current run-level of the
system). They differ from run-levels in that
init can never enter run-level a, b, or c.

Also, a request for the execution of any of
these processes does not change the current
run-level. Furthermore, a process started by a,
b, or ¢ command is not killed when init changes
levels. They are only killed if their line in
/etce/inittab is marked off in the action field,
their line is deleted entirely from

/etc/inittab, or init goes into the SINGLE USER
state.

Key words in this field tell init how to treat
the process specified in the process field. The
actions recognized by init are as follows:

respawn If the process does not exist then
start the process, do not wait for its
termination (continue scanning the
inittab file), and when it dies re-
start the process. If the process
currently exists then do nothing and
continue scanning the inittab file.

walit Upon init's entering the run-level
that matches the entry's rstate, start
the process and wait for its termina-
tion. All subsequent reads of the
inittab file while init is in the same
run-level will cause init to ignore
this entry.

INITTAB(M)

once

boot

bootwait

powerfail

powerwait

off

INITTAB(M)

Upon init's entering a run-level that
matches the entry's rstate, start the
process, do not wait for its termina-
tion. When it dies, do not restart
the process. If upon entering a new
run-level, where the process is still
running from a previous run-level
change, the program will not be re-
started.

The entry is to be processed only at
init's boot-time read of the inittab
file. Init is to start the process,
not wait for its termination; and when
it dies, not restart the process. In
order for this instruction to be mean-
ingful, the rstate should be the de-
fault or it must match init's
run-level at boot time. This action
is useful for an initialization func-
tion following a hardware reboot of
the system.

The entry is to be processed only at
init's boot-time read of the inittab
file. Init is to start the process,
wait for its termination, and, when it
dies, not restart the process.

Execute the process associated with
this entry only when init receives the
power fail signal (SIGPWR, see
signal(S)), which normally occurs wher
a UPS detects a power failure.

Execute the process associated with
this entry only when init receives the
power fail signal (SIGPWR) and wait
until it terminates before continuing
any processing of inittab.

If the process associated with this
entry is currently running, send the
warning signal (SIGTERM) and wait 2
seconds before forcibly terminating
the process via the kill signal
(SIGKILL). If the process is nonexis-
tent, ignore the entry.

INITTAB(M)

process

INITTAB(M)

ondemand This instruction is really a synonym

initdefault

restart

sysinit

for the respawn action. It is func-
tionally identical to respawn but is
given a different keyword in order to
divorce its association with run-
levels. This is used only with the a,
b, or ¢ values described in the rstate
field.

An entry with this action is only
scanned when init initially invoked.
Init uses this entry, if it exists, to
determine which run-level to enter
initially. It does this by taking the
highest run-level specified in the
rstate field and using that as its
initial state. If the rstate field is
empty, this is interpreted as 0123456
and so init will enter run-level 6.
Also, the initdefault entry cannot
specify that init start in the SINGLE
USER state. Additionally, if init
does not find an initdefault entry in
/etc/inittab, then it will request an
initial run-level from the user at
reboot time.

Entries of this type are executed on a
warm restart of the system after a
power failure.

Entries of this type are executed be-
fore init tries to access the console.
It is expected that this entry will be
only used to initialize devices on
which init might try to ask the
run-level question. These entries are
executed and waited for before con-
tinuing.

This is a sh(C) command to be executed. The
entire process field is prefixed with exec and
passed to a forked sh as sh -c exec command.
For this reason, any legal sh syntax can appear
in the process field. Comments can be inserted
with the ; #comment syntax.

INITTAB(M) INITTAB(M)

Files

/etc/inittab

See Also

getty(M), init(M), sh(C), who(C)

INODE(M) INODE(M)

Name

inode - Format of an inode.

Syntax

flinclude <sys/types.h>
#include <sys/ino.h>

Description
An inode for a plain file or directory in a file system

has the structure defined by <sys/ino.h)>. For the meaning
of the defined types off t and time_t, see types(F).

Files

/usr/include/sys/ino.h

See Also

filesystem(M) and stat(S), types(F) in the Reference (CP,
S, F)

INSTALL(M) INSTALL(M)

Name

install - Installs commands.

Syntax

/etc/install [-¢ dira] [-f dirb] [-i] [-n dirc] [-m mode]
[-u user] [-g group] [-o] [-s] file [dirx...]

Description

The install command is most commonly used in "makefiles"
(see make(C)) to install a file (updated target file) in a
specific place within a file system). Each file is in-
stalled by copying it into the appropriate directory,
thereby retaining the mode and owner of the original com-
mand. The program prints messages telling the user exact-
ly what files it is replacing or creating and where they
are going.

If no options or directories (dirx ...) are given, install
will search a set of default directories (/bin, /usr/bin,
/etc, /lib, and /usr/ lib, in that order) for a file with
the same name as file. When the first occurrence is
found, install issues a message saying that it is over-
writing that file with file, and proceeds to do so. If
the file is not found, the program states this and exits
without further action.

If one or more directories (dirx ...) are specified after
file, those directories will be searched before the direc-
tories specified in the default list.

The meanings of the options are:

-¢ dira Installs a new command (file) in the directory
specified by dira, only if it is not found. If
it is found, install issues a message saying
that the file already exists, and exits without
overwriting it. May be used alone or with the
-s option.

INSTALL(M)

-t dirb

-n dire

-m mode

-u user

-g group

-0

-S

See Also

make(C)

INSTALL(M)

Forces file to be installed in given directory,
whether or not one already exists. If the file
being installed does not already exist, the mode
and owner of the new file will be set to 755 and
bin, respectively. If the file already exists,

the mode and owner will be that of the already
existing file. May be used alone or with the -o
or -s options.

Ignores default directory list, searching only
through the given directories (dirx ...). May
be used alone or with any other options except
-¢ and -f.

If file is not found in any of the searched
directories, it is put in the directory speci-

fied in dirc. The mode and owner of the new
file will be set to 755 and bin, respectively.
May be used alone or with any other options ex-
cept -c¢ and -f.

The mode of the new file is set to mode. Only
available to the super-user.

The owner of the new file is set to user. Only
available to the super-user.

The group id of the new file is set to group.
Only available to the super-user.

If file is found, this option saves the "found"
file by copying it to OLDfile in the directory
in which it was found. This option is useful
when installing a frequently used file such as
/bin/sh or /etc/getty, where the existing file
cannot be removed. May be used alone or with
any other options except -c.

Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

KEYBOARD(M) KEYBOARD(M)

Name

keyboard - Series 500 system console keyboard.

Description

The system console (and user's terminal) is composed of
two separate pieces: the keyboard and the display (see -
display(M)). Because of their complexity they are dis-
cussed in separate manual entries.

The actual code sequence delivered to the terminal input
routine (see termio(M)) is defined by a set of internal
tables in the driver. These tables can be modified by
software (see ioctl calls below). In addition, the

driver can be instructed not to do translations, deliver-
ing the keyboard up/down scan codes directly.

There are four translation tables: normal keys, shifted
keys, alt keys, and shifted alt keys. Each table contains
128 16-bit entries, with an entry being made up of flags
in the high-order 8 bits and the character code in the
low-order 8 bits. The values that can be set in the flag
byte, as defined in <sys/kd.h>, are as follows:

/* Flag bits */

#define NUMLCK 0x8000 /* key is affected by num lock */
#define CAPLCK 0x4000 /* key is affected by caps lock */
#define CTLKEY 0x2000 /* key is affected by control key */

/* Key types */

#define NORMKEY 0x0000 /* key is a normal key */
#define SHIFTKEY 0x0100 /* key is a shift key */
#define BREAKKEY 0x0200 /* key is a break key */

#define SS2PFX 0x0300 /* prefix key with <ESC> N */
#define SS3PFX 0x0400 /* prefix key with <ESC> 0O */
#define CSIPFX 0x0500 /* prefix key with <ESC> [*/
#define NOKEY 0x0£00 /* key sends nothing */

The tables are indexed by the keyboard scan code received.
The table that is used is determined by the state of the
following special keys:

KEYBOARD(M)

ALT

SHIFT

KEYBOARD(M)

This key essentially chooses an alternate key-
board. If it is not depressed, the normal and
shifted tables are used; if it is depressed, the
alt and shifted alt tables are used.

Depending on the ALT key, this key shifts into
either the shifted table or the shifted alt
table. The default shifted table is set up such
that SHIFT will generate the ASCII uppercase
characters.

The character code found in the table may be further modi-
fied by the following keys:

CTRL

Produces the appropriate ASCII control character
if the CTLKEY bit is set in the flag byte. The
contro! character is produced by masking off all
but the low-order 5 bits of the character code
in the table. If the CTLKEY bit is not set, the
normal character (the code in the table) is gen-
erated. In the default tables, the CTRL key
only modifies keys in the normal and shifted
tables; it has no effect in the alt or shifted

alt tables.

CAPS LOCK

This is a toggle; it controls whether keys that
have the CAPLCK bit set in their flag byte go to
the normal or shifted table. If the CAPLCK bit
is not set, the normal character is generated
regardless of the state of the CAPS LOCK. The
SHIFT key inverts whatever state is indicated by
the CAPS LOCK. Thus, if CAPS LOCK is off,
SHIFT produces uppercase characters; if CAPS
LOCK is on, SHIFT produces lowercase characters.
In the default tables, the only keys affected by
CAPS LOCK are the alphabetic keys.

NUM LOCK

This is a toggle; it controls whether keys that
have the NUMLCK bit set in their flag byte go
to the normal or shifted table. If the NUMLCK
bit is not set, the normal character is gener-
ated regardless of the state of the NUM LOCK.
The SHIFT key inverts whatever state is indi-
cated by the NUM LOCK. In the default tables,
the only keys affected by NUM LOCK are the

KEYBOARD(M) KEYBOARD(M)

keypad keys. Note that CAPS LOCK and NUM
LOCK do exactly the same thing; the only dif-
ference is the set of keys affected.

SCROLL LOCK
This key is marked as a BREAKKEY in its flag
byte in both the shifted and shifted alt tables.
This causes it to send BREAK to the terminal
handler.

The remaining values for the key type are discussed below:

SHIFTKEY
This is used to mark the left and right SHIFT
keys, the CTRL key, the ALT key, the CAPS
LOCK, and the NUM LOCK in the translation
tables. User programs will normally not be con-
cerned with this flag.

SS2PFX, SS3PFX, CSIPFX
These are used to generate codes for the func-
tion keys and for the ALT keys. If one of these
flags is specified in the translation table, the
driver will prefix the character code in the
table with <ESC)N, <ESC)>O, or <ESC>[respec-
tively, where <ESC) represents the ASCII escape
character (1b hex).

NOKEY This is used to mark entries that should not
generate any character code. Keystroke combina-
tions that index table entries marked with this
flag generate nothing.

The following tables describe the codes generated by the
default tables for all the keys. Keycodes are the values
delivered at the keyboard interface when the corresponding
key is struck (the down scan code). Note that when the
key is released, the same code is delivered, but with the
high-order bit set. Thus, codes 01-7f are down codes, and
81-ff are up codes. The generated codes are the codes
delivered to the terminal driver after translation. All
numbers are in hexadecimal.

KEYBOARD(M) KEYBOARD(M)
Shifting Keys
Key Code Function
Ctrl 14 CTRL
Left Shift 2a SHIFT
Right Shift 36 SHIFT
Alt 38 ALT
Caps Lock 3a CAPS LOCK
Num Lock 45 NUM LOCK
Special Keys
Keyboard Generated Codes i SHIFT
Key Code Normal SHIFT CTRL ALT ALT
BACKSPACE Oe 08 bs 08 bs 08 bs 08 bs 08 bs
TAB of 09 ht 14 gs 09 ht 09 ht 1d gs
RETURN lc 0d cr 0d cr 0d cr 0d cr 0d cr
SPACE 39 20 sp 20 sp 00 nul 20 sp 20 sp
ESC 01 1b esc 1b esc 1b esc 1b esc 1b esc

KEYBOARD(M) KEYBOARD(M)
Alphabetic Keys
Keyboard Generated Codes SHIFT
Key Code Normal SHIFT CTRL ALT ALT
a le 61 a 41 A 01 soh 1b4debl 1bde4l
b 30 62 b 42 B 02 stx 1b4e62 1lbded2
c 2e 63 c 43 C 03 etx 1b4e63 1b4e43
d 20 64 d 44 D 04 eot 1b4eb4 1b4ed4
e 12 65 e 45 E 05 enq 1b4e65 1b4e4d5
f 21 66 f 46 F 06 ack 1b4e66 1b4ed6
g 22 67 g 47 G 07 bel 1bdeb67 1lb4ed?7
h 23 68 h 48 H 08 bs 1b4e68 1b4e48
i 17 69 i 49 I 09 ht - 1b4e69 1lb4ed9
J 24 6a j 4a J Oa 1f lb4eba 1lbdeda
k 25 6b k 4b K Ob vt 1b4deb6b lb4deddb
1 26 6c 1 4c L Oc ff 1b4eébc 1bdedc
m 32 6d m 44d M 0d cr 1b4eé6d 1lb4edd
n 31 6e n 4e N Oe so 1b4ebe lbdede
[¢] 18 6f o 4f O Of si lbdebf lbde4df
p 19 70 p 50 P 10 dle 1b4e70 1bde50
q 10 71 q 51 Q 11 dc1 1b4e71 lbde51
r 13 72 r 52 R 12 dc2 1b4e72 1b4e52
s 1f 73 s 53 8§ 13 dc3 1b4e73 1b4e53
t 14 74 ¢t 54 T 14 dc4 1lb4e74 1b4eb54
u 16 75 u 55 U 15 nak = 1b4e75 1b4e55
v 2f 76 v 56 V 16 syn 1bde76 1b4e56
1 11 77 w 57 W 17 etb 1b4e77 1b4e57
x 2d 78 x 58 X 18 can 1b4e78 1lb4e58
y 15 79 y 59 Y 19 em - 1b4e79 1b4e59
z 2c 7a z 5a Z la sub 1bde7a 1bdeba

KEYBOARD(M) KEYBOARD(M)
Numeric and Punctuation Keys
Keyboard Generated Coaes SHIFT
Key Code Normal SHIFT CTRL ALT ALT
1 02 311 21 ! 31 1 1b4e3l 1bde2l
2 03 32 2 40 @ 00 nul 1b4e32 1b4e40
3 04 33 3 23 # 33 3 1b4e33 1b4e23
4 05 34 4 24 $ 34 4 1bde34 1b4e24
5 06 35 5 25 % 35 5 1b4e35 1b4e25
6 07 36 6 5e ~ le rs 1b4e36 1b4deSe
7 08 37 7 26 & 37 7 1b4e3?7 1b4e26
8 09 38 8 2a ¥ 38 8 1b4e38 1b4e2a
9 Oa 39 9 28 (39 9 1b4e39 1bde28
0 0Ob 30 0 29) 30 0 1b4e30 1b4e29
- Oc 24 - 5f _ 1f us 1lbde2d lbde5f
= od 3a = 2b + 34 = 1b4e3d 1b4e2b
[la 5b [7b { 1b esc 1b4e5b 1b4e7b
] 1b 54 1] 74 } 1d gs 1bde5d 1b4e7d
H 27 3b 3a : 3b : 1b4e3b 1b4e3a
! 28 27 22 " 27 1b4e27 1b4e22
N 29 60 ° 7e le rs 1b4e60 1bde7e
\ 2b . 5c¢c \ 7c | 1c fs lb4e5c 1b4e7c
B 33 2¢c . 3c < 2c , 1lb4e2c 1bde3c
34 2e 3e > 2e . 1bde2e 1b4de3e
/ 35 2f / 3f ? 1f us 1b4e2f 1b4de3f

KEYBOARD(M) KEYBOARD(M)

Keypad Keys

Keyboard Generated Codes SHIFT
Key Code Normal SHIFT CTRL ALT ALT

* 37 2a * 2a * 2a * lb4e2a lbde2a
scroll lock 46 1b5b4d 00 break 1b5b4d 1b5b4d 00 break
home 47 1b5b48 37 7 1b5b48 1b5b48 1lb4e37
up arrow 48 1b5b41 38 8 1b5b41l 1b5b41 1b4e38
page up 49 1b5b49 39 9 1b5b49 1b5b49 1b4e39
minus . 4a 24 - 24 - 24 - 1b4e2d 1bde2d
left arrow 4b 1b5b44 34 4 1b5b44 1b5b44 1b4e34
5 4c 1b5b45 35 5 1b5b45 1b5b45 1b4de35
right arrow 44 1b5b43 36 6 1b5b43 1b5b43 1b4e36
plus 4e 2b + 2b + 2b + 1b4de2b 1lb4e2b
end 4f 1b5b46 311 1b5b46 1b5b46 1lb4e3l
down arrow 50 1b5b42 32 2 1b5b42 1b5b42 ibde32
page down 51 1b5b47 33 3 1b5b47 1b5b47 1b4e33
insert 52 1b5b4c 30 0 1b5b4c 1b5b4c 1b4e30
del 53 7€ 2e . 7f 7f lb4de2e
sys req 54 00 00 00 00 1b5b35
Function Keys

Keyboard Generated Codes SHIFT
Key Code Normal SHIFT CTRL ALT ALT
F1 3b 1b5b4ad 1b5b59 1bS5béb 1bdedd 1b4e59
F2 3c 1b5Sb4e 1b5b5a 1b5Sbéc 1bdede lb4e5a
F3 3d 1b5b4f 1b5b61l 1b5béd 1bdedf 1bdeb6l
F4 3e 1b5b50 1b5b62 1bSbée 1b4e50 1b4e62
F5 3f 1b5b51 1b5b63 1bSbéf 1b4e51 1b4e63
Fé6 40 1b5b52 1b5b64 1b5b70 1b4e52 1b4eb4
F7 41 1b5b53 1b5b65 1b5b71 1b4e53 1b4e65
F8 42 1b5b54 1b5b66 1b5b72 1b4e54 1b4e66
F9 43 1b5b55 1b5b67 1b5b73 1b4e55 1b4e67
F10 44 1b5b56 1b5b68 1b5b74 1b4e56 1b4e68
F11 57 1b5b57 1b5b69 1b5b75 1b4e57 1b4e69
F12 58 1b5b58 1b5b6a 1b5b76 1b4e58 lb4eba

KEYBOARD(M) KEYBOARD(M)

Foreign Character Set Support

The keyboard driver supports input and output mapping for
9 different foreign language keyboards and character sets.
The foreign keyboards supported are:

Language Type

Language defined in <sys/kd.h> Function key
English US_ENGLISH F1
U.K. /British UK_ENGLISH F2
French FRENCH F3
German GERMAN F4
Spanish SPANISH F5
Swedish SWEDISH Fé
Norwegian NORWEGIAN F7
Danish DANISH F8
Italian ITALIAN F9
7/8 Bit Mode F10
Toggle

The Series 500 Owner's Guide describes the keyboard lay-
outs and ASCII character sets for each keyboard.

There are 3 ways to change from one language mapping to
another. They are:

1. (01 EANEES /i =efll key combination

2. /etc/language file
3. KDSETLANG and KDGETLANG ioctl commands

At any time when the operating system is running, the user
can simultaneously type the keys [&isl, and
followed by a Function key, to change keyboard mapping.
The function keys for each language are listed in the

table above. To change to U.K. English, for example, the
user would simultaneously press then type
the key. The current language will stay in effect un-
til it is changed via a key sequence, an ioctl call, or

until the system is rebooted. Note, on some keyboards,

the SYSREQ key is labeled as PRINT SCREEN.

KEYBOARD(M) KEYBOARD(M)

The key is used to toggle between 7-bit and 8-bit
versions of the language type currently in use. When the
system is first booted, 7-bit character sets are used by
default. The key does not change the language type.

The system can.be configured to boot with a particular
language other than English as the default. This is done
via the /etc/language file. If this file is present and
contains a string matching one of the valid language types
from the table above, then that language is mapped in im-
mediately. If the file is not present or does not contain
a valid language type, then the default language
(US_ENGLISH) is used.

For an explanation of KDSETLANG and KDGETLANG, see
the ioctl section that follows.

Ioctl Calls

KDGKBTYPE
This call is used to get the current keyboard type.
It places one of the following numbers, as defined in
<sys/kd.h>, at the unsigned char pointed to by the
ioctl argument:

#define KB_84 1 /* 84-key keyboard */

#define KB 101 2 /* 101/102-key keyboard */

#define KB_OTHER 3 /* other type of keyboard */
KDGKBMODE

This call is used to get the current keyboard mode.
It returns one of the following numbers, as defined
in <{sys/kd.h>:

#define K_RAW 0x00 /* send up/down scan codes */
#define K_XLATE Ox01 /* translate to ascii */
KDSKBMODE

This call is used to set the keyboard mode. The
argument to the ioctl is either K RAW or K XLATE.
By using raw mode, the program can see the raw
up/down can codes from the keyboard. In translate
mode, the translation tables are used to generate the
appropriate character code.

KEYBOARD(M) KEYBOARD(M)

KDGKBENT
This call is used to read one of entries in the
translation tables. The argument to the ioctl is the
address of one of the following structures, defined
in <sys/kd.h>, with the first two fields filled in:

struct kbentry (

unchar kb_table: /* which table to use */
unchar kb_index: /* which entry in table */
ushort kb_value: /* value to get/set */

}

/* Table selectors */

#define K_NORMTAB 0x00 /* normal table */
#define K_SHIFTTAB 0x01 /* shifted table */
#define K_ALTTAB 0x02 /* alt table */

#define K_ALTSHIFTTAB 0x03 /* shifted alt table */

The ioctl will get the indicated entry from the indi-
cated table and return it in the third field.

KDSKBENT
This call is used to set an entry in one of the
translation tables. It uses the same structure as
the KDGKBENT ioctl, but with the third field filled
in with the value that should be placed in the trans-
lation table. This can be used to partially or com-
pletely remap the keyboard.

KDGETLED
Used to return an unsigned character which may have
any or none of the following flags (defined in
<sys/kd.h>) set:

LED_CAP The CAP LOCK key is set

LED_SCR The SCROLL LOCK key is set

LED_NUM The NUM LOCK key is set
KDSETLED

Used to set the CAP LOCK, SCROLL LOCK, or NUM
LOCK keys. The argument should contain one or all
of the valid flags shown under KDGETLED.

10

KEYBOARD(M) KEYBOARD(M)

KDMKTONE

Used to ring the bell at given frequency and for a
given duration. The argument is a long integer hav-
ing the following format:

lower 16 bits Contains desired frequency
upper 16 bits Time to ring in milliseconds

The frequency used for the normal system bell charac-
ter is 1331 (decimal).

KDGETLANG
Used to return the current language in use on the
console terminal, The argument returned is an inte-
ger which contains one of the valid language types
(defined in <sys/kd.h>) listed previously under For-
eign Character Set Support.

KDSETLANG
Used to change the language in use on the console
terminal. Uses an integer argument which should be
set to one of the valid language types (defined in
<sys/kd.h>). The change takes effect immediately.
If the argument is 7-bit or 8-bit (defined in

<sys/kd.h>), the terminal switches to a 7 or 8-bit
version of the language currently in use.

Files

/dev/console

See Also

ioctl(S), display(M), termio(M), vt(M)

11

KILLALL(C) KILLALL(C)

Name

killall - Kills all active processes.
Syntax

/ete/killall [signall
Description

Killall terminates all active processes not directly re-
lated to the shutdown procedure. Killall is used by
/etc/shutdown, and can only be run by the super-user.
Killall terminates all processes with open files so that
the mounted file systems will be unbusied and can be un-
mounted.
Killall sends signal (see kill(C)). The default signal
is 9.

Files

/ete/shutdown

See Also

kill(C), ps(C), shutdown(M)

LAYOUT(M) LAYOUT(M)

Name

layout - Manages hard disk partitions.

Syntax

/ete/layout -c | -p driveid

/etc/layout -la|b|c|d|e|f|g|h]|.spares|.restart driveid

/ete/layout [-f] [-r m|c] [-d] | [-e] | [-m] driveid
Idevice

Description

The layout command is used to create, alter, and inspect
the partition map on a hard disk unit. The hard disk par-
tition map is a fixed-size table of 16 entries, each of
which describes the position and size of a logical device
on a hard disk. This information, along with the bad-
sector map (/dev/hd?.secmap), is used by the file pro-
cessor subsystem.

CAUTION

Only an experienced system administrator
should use this command. Running layout
could make all of your files inaccessible.

Several of these devices are informational and have fixed
locations (track 0, cylinder 0). Other logical devices
are made available for definition by the user.

LAYOUT (M)

The logical devices are:

LAYOUT (M

Offset Device Use

0 hdo unmapped drive

1 hdOa user defined - default swap area
on drive 0

2 hdob user defined - root file system o
drive 0

3 hdo0c user defined

4 hdod user defined

5 hdOe user defined

6 hdof user defined

7 hdog user defined

8 hdoOh user defined

9 hd0.spares alternates for unmapped bad
sectors

10 hd0.drinfo drive configuration information
(recorded during manufacturing)

11 hd0.badlist list of bad sectors (recorded
during manufacturing)

12 hd0.boot boot program

13 hdO.restart restart partition

14 hdo0.layout layout information

15 hd0.secmap sector sparing map

The second hard disk (hdl) starts at 16 and the third hard

disk (hd2) starts at 48.

Layout for the Series 500

UNIX - hd0

For the Series 500, if you partition the disk with more
than one partition, the driveid is a two-digit number.
The first digit is the physical disk number (0 or 1). The
second digit is the partition number (0, 1, 2, or 3).

For example, if you partition your hard disk for both
UNIX and DOS, the partitions are hd0 and hd0l,
respectively,

LAYOUT(M) LAYOUT(M)

The following lists show the minor device number for the
partitions and logical devices on the Series 500 hard
disks. The major device number for all of these logical
devices is 0. When UNIX is installed, minor devices 0 -
15 are automatically made. If a second hard disk is in-
stalled, only minor devices 16 - 31 are made for it.

If you want more than one UNIX partition, run fdisk(C)

to split up the hard disk. Then run mknod(C) to create
the logical devices for it. For example, run the follow-
ing 16 commands to make the devices for the second parti-
tion (i.e., partition 1) on drive 0:

Minor device numbers (offset) for the partitions and log-
ical devices are listed in the following pages.

LAYOUT(M)

LAYOUT(M

Drive 0, Partition 0

Offset

CONOOUBRWN-=O

b b b et i et
U WO

Device

hd0 (or hdo00)

hd0a (or hd0Oa)

hdOb (or hdOOb)

hd0c (or hd0Oc)

hdod (or hd00d)

hd0e (or hd0Oe)

hd0f (or hdoof)

hdo0.fsck (or hd00.fsck)
hdoh (or hd0Oh)

hd0.spares (or hd00.spares)
hd0.drinfo (or hd00.drinfo)
hd0.badlist (or hd00.badlist)
hd0.boot (or hd00.boot)
hd0.restart (or hd00.restart)
hd0.layout (or hd00.layout)
hd0.secmap (or hd00.secmap)

Drive 1, Partition 0

Offset

16
17
18
19
20
21
22
23
24
25

Device

hdl (or hdl0)

hdla (or hdl0a)

hdib (or hdlOb)

hdlc (or hdlOc)

hdld (or hd10d)

hdle (or hdiOe)

hdlf (or hd10f)

hdl.fsck (or hd10.fsck)
hdilh (or hd10h)

hdl.spares (or hdl0.spares)

LAYOUT(M)

LAYOUT(M)

Drive 1, Partition 0 (Cont.)

Offset

26
27
28
29
30
31

Device

hdl.drinfo (or hdi10.drinfo)
hdl.badlist (or hdl0.badlist)
hdl.boot (or hdl0Q.boot)
hdl.restart (or hdlO.restart)
hdl.layout (or hdl0.layout)
hdl.secmap (or hdl0.secmap)

Drive 0, Partition 1

Offset

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Device

hdo1

hdOla

hd01b

hdolc

hdoid

hd0le

hdoif
hdo01.fsck
hd01lh
hdO1l.spares
hdo01.drinfo
hd01.badlist
hdo1.boot
hdOl.restart
hdo1l.layout
hd01.secmap

LAYOUT(M) LAYOUT(M)

Drive 1, Partition 1

Offset Device

48 hdl1l

49 hdlla

50 hdllb

51 hdllc

52 hd1l1ld

53 hdlle

54 hd1iif

55 hdll.fsck

56 hdllh

57 hdll.spares
58 hdll.drinfo
59 hdl1.badlist
60 hdl1.boot

61 hdll.restart
62 hdll.layout
63 hdl1l.secmap

Drive 0, Partition 2

Offset Device

64 hdo2

79 hdo02.secmap

LAYOUT(M) LAYOUT(M)

Drive 1, Partition 2

Offset Device

80 hd12

95 hdl2.secmap

Drive 0, Partition 3

Offset Device

96 hdo3

111 hd03.secmap

Drive 1, Partition 3

Offset Device

112 hd13

.

127 hd13.secmap

LAYOUT(M) LAYOUT(M)

There are two additional devices that allow access to the
entire hard disk:

128 hdo0.entire All of Drive 0
144 hdl.entire All of Drive 1

Partition Map Creation

The layout command determines the size and positions of
userdefinable areas from an ASCII format layout descrip-
tion file. Default layout descriptions are supplied, and
may be altered by a knowledgeable user during the hard
disk creation process. The install script and the
add.hd(C) script are used to configure the main hard
drive, and an additional drive, respectively.

On some machines, the optional Uninterruptible Power
Supply (UPS) is available (for example, the Altos Series
2000). In this case, the install script asks you if a
restart partition is desired, and if it is, whether it is

to be made the current size of main memory, or the maxi-
mum possible memory size. This partition is used by the
autorestart mechanism and may only be installed on the
main drive. See shutype(M) for further details.

Next you are asked whether the default layout is accept-
able for this disk. Select the default layout by deter-
mining the formatted size of the drive and consulting the
/etc/layouts/driveclass file, which contains the names of
default layout configuration files for different drive
sizes. These files are found in the directory,
/etc/layouts/defaults.

If the default layout is not acceptable, as in the case of
a system that requires a larger-than-normal swap area, a
dialogue is entered with the user (see the "Example" sec-
tion that follows). As a result of this dialogue, a new
layout file is created in the directory, /etc/layouts.

The format of a layout description file is a collection of
newline-terminated lines of the form:

name_of partition size_of_partition
The first field is the name of the partition, the second

field is the size of the partition in 512-byte blocks.
The partition name must be a lowercase character in the

LAYOUT(M) LAYOUT(M)

range a through h, or the reserved words .restart and
.spares. The size field is a decimal number. The parti-
tion description lines are not required to be in any spe-
cific order. The /etc/layouts/config file contains a map-
ping between the names of various user-configurable parti-
tions and the minor device to which they apply. A sample
layout file follows.

Any lines in the layout file with # in column 1 are con-
sidered comments and are ignored.

The layout command uses the following rules for map crea-
tion.

Each partition is allocated in the order it is specified

in the layout description file. Space is allocated start-
ing from track 2 of cylinder 0. Unlike previous versions
of layout, partitions are made exactly the size cited in
the description file. Likewise, the size of the last par-
tition will not be automatically adjusted to make room for
the space required for the maximum number of bad sectors
on a drive. This number is calculated at a track per
megabyte of unformatted disk. An advisory message will
NOT be produced if the last partition spills over in the
bad sector reserved area. The command line options for
the partition creation invocation of layout are:

/etc/layout [-f] [-r m | ¢] [-d] | [-e] | [-m]
driveid ldevice

The value for driveid is a single character that selects
the drive in question. The main drive's driveid is 0.

The value for ldevice is usually the raw layout device for
the specified drive. In the case of the main drive, this
value is /dev/rhd0.layout.

LAYOUT(M)

-f

-e

-m

LAYOUT(M,

This flag indicates that you want to alter a layout.
A dialogue will begin and a new layout description
file will be created with the values you specify.

This flag indicates that a restart partition is

needed. You may choose between a restart partition
sized the same as the maximum size of memory (m),
or the current size of memory (c).

This flag indicates that the default layout descrip-
tion file for this size of disk should be used for
all further operations.

This flag indicates thét an altered layout descrip-
tion file for this size of disk should be used for
all further operations.

This flag indicates that the partition map already
installed on the disk should be used for all further
operations.

Layout Viewing

The -p option prints (on standard output) a representation
of the layout information for a particular drive. This
representation consists of the name of the logical device,
starting block number, and starting block size in 1/2K
blocks. The numbers are in decimal. The following is an
example taken from an 80 Mbyte hard disk:

/etc/layout -p 0

10

LAYOUT(M) LAYOUT(M)

produces:

The -1 option with partition selector is used to supply
mkfs(C) with the size to make the corresponding file sys-
tem. For example,

/ete/layout -1d 0

produces:

and is best used in the following context:

DSIZE = "/etc/layout -1d 0°
/ete/mkfs /dev/hd0d “expr $DSIZE /2° 4 128

Besides a through h, the -1 option also takes .restart and
.spares as acceptable arguments.

The -c option reads the /dev/hd?.drinfo file and prints
the decimal values for size of drive in megabytes, number
of cylinders, number of heads, number of sectors per
track, numbers of sectors per cylinder, type of drive, and
recommended interleave if the drive is a SCSI. The fol-
lowing is the result from an 80 Mbyte ST506-type hard
disk:

11

LAYOUT(M) LAYOUT(M)

Other types of drives are SCSI -and ESDI.. The -c¢ option
is intended primarily for the benefit of shell scripts used
to configure hard disk drives.

Example
For example, to add swap space to an additional drive,

type layout -f 2 /dev/rhd2.layout. The following menu
will be displayed:

12

LAYOUT(M) LAYOUT(M)

To increase the swap area size (move blocks to the main
swap area), type m (for move) and press KT8l A mes-
sage on the screen prompts:

Type 14 (the partition number of currently unassigned
blocks). You are asked:

Type 1 (for the main swap area). When prompted for the
number of blocks, type the number you want to move from
partition 14 to 1. Then type d to display the new block
assignments. Finally, type q to quit.

Files
/etc/layouts/config Device map for configurable
partitions
/etc/layouts/defaults/* Default layout descriptions
/etc/layouts/driveclass Drive classes file
/dev/hd?.secmap Bad-sector map
See Also

mknod(C), mkfs(M), shutype(M)

13

LDUNIX(M) LDUNIX(M)

Name

ldunix - Altos configurable kernel linker.

Syntax

Idunix [-d boot _directory 1 -k kernel file]
[-s system_file]

Description

Ldunix will link special object file modules produced by
mkboot(M) creating kernel and symbol table image files.
These image files can then be processed by mkunix(M) to
yield a bootable kernel file.

Ldunix is a utility based on the auto-configuration boot
procedure. It allows users to reconfigure a unix kernel
file to reflect changes in tuneable parameters, or the
addition of special purpose kernel drivers.

To create the image files, ldunix uses the KERNEL and sys-
tem files from the current directory and the special ob-
ject files from the boot.d directory. The -d, -k, and -s
options can be used to explicitly specify the pathnames

for ldunix to use for boot.d, KERNEL, and system, respec-
tively.

When ldunix links in the modules specified by the master
files and by the system file, it checks for functions with
specific names in modules that are drivers. The names
checked for are formed by concatenating the prefix speci-
fied in the master file and the desired suffix. For ex-
ample, in a driver with the prefix "hd,"” if ldunix is
checking for the suffix "intr," it will look for the func-
tion "hdintr." In most cases, if the routine is not found,
the appropriate table entry gets the entry for the "nodev"
routine. In the case of the "rstrt,"” "shut," and "init"
suffixes, if there is no matching routine, no entry is
made in the table.

LDUNIX(M) ’ LDUNIX(M)

The following suffixes are checked by ldunix for each load
module of the given type:

block device drivers:

intr interrupt handler

open open routine

close close routine

strategy strategy routine

print routine to call to report device
errors

character device drivers (including streams drivers):

intr interrupt handler
open open routine
close close routine
read read routine
write write routine

all drivers:
rstrt restart routine to be called when
power is restored after a power
failure (if UPS is installed)

shut shutdown routine to be called when
power fails (if UPS is installed)
init routine to be called to initialize the

driver (called after all other kernel
initialization is completed)

Files
kimage Kernel image file
ksymbols Kernel symbol table file
See Also

mkboot(M), mkunix(M)

LINK(M) LINK(M)

Name

link, unlink - Links and unlinks files and directories.

Syntax
/ete/link filel file2
/ete/unlink file

Description
The link command is used to create a file name that points
to another file. Linked files and directories can be re-
moved by the unlink command; however, it is strongly
recommended that the rm(C) and rmdir(C) commands be used
instead of the unlink command.
The only difference between In(C) and link/unlink is that
the latter do exactly what they are told to do, abandoning
all error checking. This is because they directly invoke
the link(S) and unlink(S) system calls.

See Also

rm(C) and link(S), unlink(S) in the Reference (CP, S, F)

Notes

These commands can be run only by the super-user.

LOG(M) LOG(M)

Name

log - Interface to STREAMS error logging and event trac-
-ing.

Description

Log is a STREAMS software device driver that provides an
interface for the STREAMS error logging and event tracing
processes (strerr(M), strace(M)). Log presents two sepa-
rate interfaces: a function call interface in the kernel
through which STREAMS drivers and modules submit log mes-
sages; and a subset of ioctl(S) system calls and STREAMS
messages for interaction with a user level error logger, a
trace logger, or processes that need to submit their own

log messages.

Kernel Interface

Log messages are generated within the kernel by calls to
the function strlog:

strlog(mid, sid., level, flags. fmt, argl, ...)
short mid, sid:

char level:

ushort flags:

char *fmt:;

Required definitions are contained in <sys/strlog.h> and
<sys/log.h>. Mid is the STREAMS module id number for the
module or driver submitting the log message. Sid is an
internal sub-id number usually used to identify a particu-
lar minor device of a driver. Level is a tracing level

that allows for selective screening out of low priority
messages from the tracer. Flags are any combination of
SL_ERROR (the message is for the error logger), SL_TRACE
(the message is for the tracer), SL _FATAL (advisory noti-
fication of a fatal error), and SL_ NOTIFY (request that a
copy of the message be mailed to the system
administrator). Fmt is a printf(S) style format string,
except that %s, %e, %E, %g, and %G conversion specifica-
tions are not handled. Up to NLOGARGS (currently 3) nu-
meric or character arguments can be provided.

LOG(M) LOG(M)

User Interface

Log is opened via the clone interface, /dev/log. Each
open of /dev/log obtains a separate stream to log. In
order to receive log messages, a process must first notify
log whether it is an error logger or trace logger via a
STREAMS 1_STR ioctl call (see below). For the error log-
ger, the I_STR ioctl has an ic_cmd field of I_ERRLOG, with
no accompanying data. For the trace logger, the ioctl has
an ic_cmd field of I_TRCLOG, and must be accompanied by
a data buffer containing an array of one or more struct
trace_ids elements. Each trace_ids structure specifies an
mid, sid, and level from which messages will be accepted.
Strlog will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is
less than or equal to the level given in the trace_ids
structure. A value of -1 in any of the fields of the
trace_ids structure indicates that any value is accepted

for that field.

At most one trace logger and one error logger can be ac-
tive at a time. Once the logger process has identified
itself via the ioctl call, log will begin sending up mes-
sages subject to the restrictions noted above. These mes-
sages are obtained via the getmsg(S) system call. The
control part of this message contains a log_ctl structure
which specifies the mid, sid, level, flags, time in ticks
since boot that the message was submitted, the correspond-
ing time in seconds since Jan. 1, 1970, and a sequence
number. The time in seconds since 1970 is provided so
that the date and time of the message can be easily co-
mputed, and the time in ticks since boot is provided so
that the relative timing of log messages can be deter-
mined.

Different sequence numbers are maintained for the error
and trace logging streams, and are provided so that gaps

in the sequence of messages can be determined (during
times of high message traffic some messages may not be
delivered by the logger to avoid hogging system

resources). The data part of the message contains the
unexpanded text of the format string (null terminated),
followed by NLOGARGS words for the arguments to the for-
mat string, aligned on the first word boundary following

the format string.

LOG(M) LOG(M)

A process may also send a message of the same structure to
log, even if it is not an error or trace logger. The only
fields of the log ctl structure in the control part of the
message that are accepted are the level and flags fields;

all other fields are filled in by log before being for-

warded to the appropriate logger. The data portion must

be packed one word each, on the next word boundary follow-
ing the end of the format string.

Attempting to issue an I_TRCLOG or I_ERRLOG when a log-
ging process of the given type already exists will result in
the error ENXIO being returned. Similarly, ENXIO is re-
turned for I_TRCLOG ioctls without any trace_ids struc-
tures, or for any unrecognized I_STR ioctl calls. Incor-
rectly formatted log messages sent to the driver by a user
process are silently ignored (no error results).

Examples

Example of 1_ERRLOG notification.

struct strioctl ioc:

ioc.ic_cmd = I_ERRLOG:

ioc.ic_timeout = 0: /* default timeout (15 secs.) */
ioc.ic_len = O;

ioc.ic_dp = NULL;

ioctl(log., I_STR, &ioc):
Example of I-TRCLOG notification.
struct trace_ids tid[2]:
tid[0].ti_mid = 2
tid[0].ti_sid = O;
tid[0].ti_level =
tid[1].ti _mid = 1002;

tid{1].ti_sid = -1; /% any sub-id will be allowed */
tid[1].ti_level = -1: /* any level will be allowed */

LOG(M) LOG(M)

ioc.ic_cmd = I_TRCLOG:

ioc.ic_timout = 0:

ioc.ic_len = 2 * gizeof(struc trace_ids);
ioc.ic_dp = char *)tid:

ioctl(log, I_STR, &ioc):
Example of submitting a log message (no arguments).
struct strbuf ctl., dat:
struct log_ctl 1c;
char *message = "Don't forget to pick up some milk \

on the way home":

ctl.len = ctl.maxlen = sizeof(lc):
ctl.buf = (char *)&lc:

dat.len = dat.maxlen = strlen(message):
dat.buf = message:

lc.level = O:
lc.flags = SL_ERRORSL_NOTIFY;

putmsg(log. &ctl, &dat. 0):

Files

/dev/log
<sys/log.h>
<sys/strlog.h>

See Also
strace(M), strerr(M), clone(M), and intro(S), getmsg(S),

putmsg(S) in Reference (CP, S, F) STREAMS Programmer's
Guide

LPADMIN(M) LPADMIN(M)

Name

Ipadmin - Configures the LP spooling system.

Syntax

/usr/lib/lpadmin -pprinter [options]
/usr/lib/lpadmin -xdest
/usr/lib/lpadmin -d[dest]

Description

Lpadmin configures LP spooling systems to describe print-
ers, classes, and devices. It is used to add and remove
destinations, change membership in classes, change devices
for printers, change printer interface programs and change
the system default destination. Lpdamin may not be used
when the LP scheduler, Ipsched(M), is running, except
where noted below.

Exactly one of the -d, -p, or -x options must be present
for every legal invocation of lpadmin.

-d[dest] Makes dest, an existing destination, the
new system default destination. If dest is
not supplied, then there is no system de-
fault destination. This option may be used
when Ipsched(M) is running. No other op-
tions are allowed with -d.

-pprinter Names a printer to which all of the options
below refer. If printer does not exist
then it will be created.

-xdest Removes destination dest from the LP sys-
tem. If dest is a printer and is the only
member of a class, then the class will be
deleted, too. No other options are allowed
with -x.

The following options are only useful with -p and may ap-
pear in any order. For ease of discussion, the printer
will be called P.

LPADMIN(M)

-cclass

-eprinter

-iinterface

-mimodel

-relass

-vdevice

Restrictions

LPADMIN(M)

Inserts printer P into the specified class.
Class will be created if it does not al-
ready exist.

Names a printer to which all of the options
below refer. If printer does not exist
then it will be created.

Indicates that the device associated with P
is hardwired. This option is assumed when
creating a new printer unless the -1 option
is supplied.

Establishes a new interface program for P.
Interface is the path name of the new pro-
gram,

Selects a model interface program for P.
Model is one of the model interface names
supplied with the LP software (see Models
below).

Removes printer P from the specified class.
If P is the last member of the class, then
the class will be removed.

Associates a new device with printer P.
Device is the path name of a file that is
writable by the LP administrator, Ip. Note
that there is nothing to stop an adminis-
trator from associating the same device
with more than one printer. If only the -p
and -v options are supplied, then lpadmin
may be used while the scheduler is running.

When creating a new printer, the -v option and one of the
-e, -1, or -m options must be supplied. Only one of the
-e, -i, or -m options may be supplied. The -h and -l key-
letters are mutually exclusive. Printer and class names
may be no longer than 14 characters and must consist en-
tirely of the characters A-Z, a-z, 0-9, and _ (underscore).

LPADMIN{M) LPADMIN(M)

Models

Model printer interface programs are supplied with the LP
software. They are shell procedures that interface be-
tween Ipsched(M) and devices. All models reside in the
directory /usr/spool/lp/model and may be used as is with
Ipadmin -m. Models should have 644 permission if owned by
Ip and bin, or 664 permission if owned by bin and bin.
Alternatively, LP administrators may modify copies of
models and then use lpadmin -i to associate them with
printers. The following list describes the models and
lists the options which they may be given on the lp com-
mand line using the -o keyletter:

dumb Interface for a line printer without special
functions and protocol. Form feeds are assumed.

Use this model to copy and modify (for printers
that do not have models).

Examples

1. To create a printer named hp2 on port 02, use the
commands:

cd /usr/lib
Ipshut
xtty disable tty02
lpadmin -php2 -v/dev/tty02 -mdumb
accept hp2
Ipenable hp2
Ipsched
2. To print on hp2, use the command:

Ip -dhp2 files

Files

/usr/spool/lp/*

See Also

accept(C), lpenable(C), Ip(C), lpsched(M), Ipstat(C)

LPD(M) LPD(M)

Name

Ipd - Line printer daemon.

Syntax

Ipd n

Description

The Ipd command is the line printer daemon which supports
multiple printer spooling. The lpd command is executed
automatically by the lpr(C) command. A single daemon is
used per printer device, and daemons are invoked only if
there is currently no daemon active. The lpd command does
not engage in any filtering of the data to the printer,
hence printer control codes, escape sequences and other
binaries will be reproduced. For serial printers, lpr(C)
supplies Ipd with a tty modes setting which is
non-destructively used to print individual requests. The
Ipd command restores tty modes between each request, and
at exit time.

The Ipr command decides whether to invoke the lpd daemon
based on the presence (or absence) of a "lock" file in

each spool directory. A daemon will run until there is no
more output for its printer. It also removes its lock

file so that a new daemon may be started up. If the
daemon were to terminate before removing its lock file,

the lock file must be removed from its spool directory
before printing can be resumed. The Ipd command prints an
optional header (specified in lpr), followed by a sequence
of files (each followed by a formfeed).

Options

n N is a number that selects a spool directory and
printer device. If n were specified as "2",
/usr/spool/lpd2 and /dev/1p2 would be selected. If
no number is supplied, then lpd assumes /dev/Ip and
/usr/spool/lpd. The lpr command invokes lpd with an
appropriate printer selector digit.

LPD(M)

Related Commands

Ipr(C), printers(M)

Files

/usr/spool/1pd?
/dev/Ip*
/usr/spool/lpd?/lock

spool directories
printer devices
lock file

LPD(M)

LPINIT(M) LPINIT(M)

Name

lpinit - Adds new lineprinters to the system.

Syntax

/usr/lib/lpinit

Description

Lpinit is a shell script for configuring and adding new
lineprinters to a system. It should only be executed by
-the super user.

Lpinit asks a series of questions for which the default
answers are displayed. You can type a response Or press
for the default answer. If you type a response to
the first question, a Help message is displayed. Lpinit
prompts for the following information:

. The print device pathname (default is /dev/Ip).
. The name of the printer (default is linepr).

. The pathname of the printer interface program
(default is /usr/spool/lp/model/dumb).

The printer name can be any combination of up to 14 alpha
numeric characters or underscores. A printer interface
program can be a shell script, C program, or any execut-
able program; or the model interface program,
/usr/spool/lp/model/dumb, can be copied and modified.

After you have responded to these questions, lpinit stops
the print scheduler, Ipsched, changes the acceptance
status of the new lineprinter to accept, and enables it to
print files. Lpinit then asks if the new printer will be
the default printing destination (default is Yes). All
nonspecific print requests are routed to the default des-
tinations (see Ip(C)).

The steps to configure a new printer can be taken sepa-
rately (see lpadmin(M), accept(C), Ipenable(C), Ipsched(M)
for details).

LPINIT(M) LPINIT(M)

Files

/usr/lib/lpinit

See Also

accept(C), Ipenable(C), Ip(C), lpadmin(M), lpsched(M)

LPON(M) . LPON(M)

Name
Ipon, Ipoff - Turns on/off line printer scheduling.

Syntax
lpon
Ipoff

Description
By default, line printer scheduling is activated in Altos
System V, version 5.3d. If there is no line printer at-
tached to the system, this scheduling is superfluous;
printer scheduling may be stopped, and boot-time startup
of scheduling permanently disabled by using the lpoff com-
mand. If a printer is added to a system that has printer
scheduling disabled, the lpon command will start schedul-
ing and enable boot-time scheduling startup.

Files
/ete/init.d/lpsched
/etc/rc0.d/K36lpsched
/etc/rc2.d/S38Ipsched
/etc/rc2.d/S02.printers
/ete/rc2.d/s02.printers

See Also

Ip(C), Ipenable(C), Ipdisable(C)

LPSCHED(M) LPSCHED(M)

Name

Ipsched, Ipshut, lpmove - Starts/stops the LP request
scheduler and moves requests.

Syntax

/usr/lib/Ipsched
/usr/lib/Ipshut
/usr/lib/lpmove request... dest
/usr/lib/Ipmove destl dest2

Description

Files

Lpsched schedules requests taken by Ip(C) for printing on
line printers.

Lpshut shuts down the line printer scheduler. All print-
ers that are printing at the time Ilpshut is invoked will
stop printing. Requests that were printing at the time a
printer was shut down will be reprinted in their entirety
after Ipsched is started again. All LP commands perform
their functions even when lpsched is not running.

Lpmove moves requests that were queued by Ip(C) between
LP destinations. You can use this command only when
Ipsched is not running.

The first form of the command moves the named requests to
the LP destination, dest. Requests are request ids as
returned by 1p(C). The second form moves all requests for
destination destl to destination dest2. As a side effect,
Ip(C) will reject requests for destl.

Note that lpmove never checks the acceptance status (see
accept(C)) for the new destination when moving requests.

/usr/spool/Ip/*

See Also

accept(C), Ip(C), Ipstat(C)

MAKEDEVS(M) MAKEDEVS(M)

Name

makedevs - Creates special device files.

Syntax

/ete/makedevs directory

Description

Makedevs creates all the special device files in the spe-
cified directory supported by the operating system.

- Makedevs is normally run to create the device files for
the hard disk at installation time, and to repair the de-
vice directory (/dev).

See Also

mknod(C)

MAKEKEY(M) MAKEKEY(M)

Name

makekey - Generates an encryption key. .

Syntax

/usr/lib/makekey

Description

Makekey improves the usefulness of encryption schemes by
increasing the amount of time required to search the key-
space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output de-
pends on the input in a way that is intended to be diffi-
cult to compute (i.e., requires a substantial fraction of

a second).

The first eight input bytes (the input key) can be arbi-
trary ASCII characters. The last two input bytes (the
salt) are best chosen from the set of digits, dot (.),

slash (/), and uppercase and lowercase letters. The salt
characters are repeated as the first two characters of the
output. The remaining 11 output characters are chosen
from the same set as the salt and constitute the output
key.

The transformation performed is essentially the following:
the salt is used to select one of 4,096 cryptographic
machines based on the National Bureau of Standards DES
algorithm, but broken in 4,096 different ways. Using the
input key as the key, a constant string is fed into the
machine and recirculated. The 64 bits that come out are
distributed into the 66 output key bits in the result.

Makekey is intended for use with programs that perform
encryption (e.g., passwd(M)). Usually its input and out-
put will be pipes.

See Also

ed(C), vi(C), passwd(M)

MAKETTYS(M) MAKETTYS(M)

Name

makettys - Creates tty special files.

Syntax

/etc/makettys [directoryl

Description

Tiles

The makettys command creates all the special files in the
specified directory (/dev by default) for all the serial
ports (tty special files) supported by the operating sys-
tem and installed hardware.

Execute this command in single-user mode.

This is done by executing the IOCHOWMANY ioctl to deter-
mine how many ports are supported for each type of com-
munications board that is installed. If necessary, it will
first remove incorrect entries. It will NOT remove spe-
cial files that are not supported by the current hardware.
(This could happen after a board has been removed.)

All files created have the prefix "tty," and up to three
decimal digits appended. (For compatiblity, ports 1-9
become tty0l - tty09.)

Currently, makettys supports only the SIO and Multidrop
boards; other devices may be supported in the future.

Makettys is normally run from /etc/brc on every system
boot to ensure that all tty devices are correct.

/dev default directory

see Also

mknod(C)

MAKETTYS(M) MAKETTYS(M)

Diagnostics
Messages appear if makettys can't change to the correct
directory, if it is unable to execute the IOCHOWMANY
ioctl, or can't create the special files.

Makettys will not make the pseudo file /dev/tty.

MASTER(M) MASTER(M)

Name

master - Master configuration database.

Description

The master configuration database is a collection of
files. Each file contains configuration information for a
device or module that may be included in the system. A
file is named with the module name to which it applies.
This collection of files is maintained in a directory
called /usr/sys/master.d. Each individual file has an
identical format. For convenience, this collection of
files will be referred to as the master file, as though it
was a single file. This will allow a reference to the
master file to be understood to mean the individual file
in the master.d directory that corresponds to the name of
a device or module.

The file is used by the mkboot(M) program to obtain device
information to generate the device driver and configurable
module files. It is also used by the sysdef(M) program to
obtain the names of supported devices. Master consists of
two parts; they are separated by a line with a dollar sign
($) in column 1.

. Part 1 contains device information for both hardware
and software devices, and loadable modules.

. Part 2 contains parameter declarations used in part
1. Any line with an asterisk (*) in column 1 is
treated as a comment.

Part 1, Description

Hardware devices, software drivers, and loadable modules
are defined with a line containing the following informa-
tion. Field 1 must begin in the left-most position on the
line. Fields are separated by white space (tab or blank).

MASTER(M) MASTER(M)

Field 1: Element characteristics:

o Specify only once

r Required device

b Block device

c Character device

a Generate segment descriptor array

t Initialize cdevswil.d_ttys

S Software driver

f STREAMS driver

m STREAMS module

b.4 Not a driver; a loadable module

number The first interrupt vector for a
device

Field 22 Number of interrupt vectors required by a
hardware device; "-" if none

Field 3: Handler prefix (4 chars. maximum)

Field 4: Software driver external major number; "-" if
not a software driver, or to be assigned during
execution of ldunix(M)

Field 5: Number of sub-devices per device; "-" if none

Field 6: Mask of which CPU's driver can run on; "-" if
driver doesn't have multiprocessor knowledge

Field 7: Dependency list (optional); this is a comma
separated list of other driver or modules that
must be present in the configuration if this
module is to be included.

For each module, two classes of information are required
by mkboot(M):

e External routine references
. Variable definitions

Routine and variable definition lines begin with white
space and immediately follow the initial module specifica-
tion line. These lines are free form; thus they may be
continued arbitrarily between non-blank tokens as long as
the first character of a line is white space.

MASTER(M) MASTER(M)

Part 1, Routine Reference Lines

Part

If the system kernel or other dependent module contains
external references to a module, but the module is not
configured, then these external references would be unde-
fined. Therefore, the routine reference lines are used to
provide the information necessary to generate appropriate
dummy functions at boot time when the driver is not
loaded. Routine references are defined as follows:

Field 1: Routine name ()
Field 2: The routine type: one of
{} routine name(){}

{nosys} routine name(){return nosys();}
{nodev} routine_name(){return nodev();}

{false} routine name(){return 0;}
{true} routine_name(){return 1;}
{pass} routine_name(){return

first argument;}
1, Variable Definition Lines

Variable definition lines are used to generate all vari-
ables required by the module. The variable generated may
be an arbitrary size, initialized or not, or arrays con-
taining an arbitrary number of elements. These variables
are defined as follows:

Field 1: Variable name

Field 2: [expr] - optional field used to indicate
array size

Field 3: (length) - required field indicating the size
of the variable (see below)

Field 4: ={ expr,...} - optional field used to
initialize individual elements of a variable

MASTER(M) MASTER(M)

The length field is mandatory. It is an arbitrary se-
quence of length specifiers, each of which may be one of
the following:

%i Integer

%1 Long integer

0s Short integer
%c Single character

%number Field which is number bytes long

%number c Character string which is number
bytes long

%oname Length is the value that variable
name was initialized with in the cor-
responding boot.d module

For example, the length field
(%$8c%1%0x58%1%c%c)

could be used to identify a variable consisting of a char-
acter string 8-bytes long, a long integer, a 0x58 byte
structure of any type, another long integer, and two char-
acters. Appropriate alignment of each % specification is
performed (%number is word aligned) and the variable
length is rounded up to the next word boundary during pro-
cessing.

The expressions for the optional array size and initiali-
zation are infix expressions consisting of the usual oper-
ators for addition, subtraction, multiplication, and divi-
sion: +, -, *, and /. Multiplication and division have
the higher precedence, but parentheses may be used to
override the default order. The built-in functions min
and max accept a pair of expressions, and return the ap-
propriate value. The operands of the expression may be
any mixture of the following:

&name Address of name where name is any symbol de-
fined by the kernel, any module loaded or any
variable definition line of any module loaded

#name Size of name where name is any variable name
defined by a variable definition for any module
loaded; the size is that of the individual vari-
able, not of an entire array

MASTER(M)

#C

#C(name)

#D

#D(name)

#M

#M(name)

name

number

string

MASTER(M)

Number of controllers present; this number is
determined by the EDT for hardware devices, or
by the number provided in the system file for
non-hardware driver or modules

Number of controllers present for the module
name; this number is determined by the EDT for
hardware devices, or by the number provided in
the system file for nonhardware driver or mod-
ules

Number of devices per controllers taken directly
from the current master file entry

Number of devices per controller taken directly
from the master file entry for the module name

Internal major number assigned to the current
module if it is a device driver; zero if this
module is not a device driver

Internal major number assigned to the module
name if it is a device driver: zero if that
module is not a device driver

Value of a parameter as defined in the second
part of master

Arbitrary number (octal, decimal, or hex
allowed)

Character string enclosed within double quotes
(all of the character string conventions sup-
ported by the C language are allowed); this op-
erand has a value which is the address of a
character array containing the specified string

When initializing a variable, provide one initialization
expression for each %i, %1, %s, or %c of the length field.
The only initializers allowed for a '%number c' are either

a character string (the string may not be longer than
number), or an explicit zero. Initialization expressions
must be separated by commas, and variable initialization
will proceed element by element. Note that %number speci-
fications cannot be initialized -- they are set to zero.

MASTER(M) : MASTER(M)

Only the first element of an array can be initialized, the
other elements are set to zero. If there are more ini-
tializers than size specifications, it is an error and
execution of the mkboot(M) program will be aborted. If
there are fewer initializations than size specifications,
zeros will be used to pad the variable. For example:

={ "V2.L1", #C*#D, max(10,#D), #C(OTHER), #M(OTHER)}

would be a possible initialization of the variable whose
length field was given in the preceding example.

Part 2, Description

Parameter declarations may be used to define a value sym-
bolically. Values can be associated with identifiers and
these identifiers may be used in the variable definition
lines.

Parameters are defined as follows:
Field 1: Identifier (8 characters maximum)

Field 2: =

Field 3: Value - the value may be a number (decimal,
octal, or hex allowed), or a string

Example

A sample master file for a tty device driver would be
named atty if the device appeared in the EDT as ATTY.
The driver is a character device, the driver prefix is at,
two interrupt vectors are used, and the interrupt priority
is 6. In addition, another driver named ATLOG is neces-
sary for the correct operation of the software associated
with this device.

MASTER(M) MASTER(M)

* FLAG #VEC PREFIX SOFT #DEV CPU DEPENDENCIES/ VARIABLES

tca 2 at - 2 ATLOG
atpoint() (false)
at_tty[#C*#D] (%0x58)
at_cnt(%i) ={ #C*#D)
at_logmaj (%i) ={#M(ATLOG))
at_id(%8c) ={ ATID)
at_table(%i%1%31%s)
={ max(#C ATMAX),

sat_tty.
#C)

$

ATID="fred"

ATMAX=6

This master file will cause a routine named atpoint to be
generated by the mkboot(M) program if the ATTY driver is
not loaded, and there is a reference to this routine from
any other module loaded. When the driver is loaded, the
variables at_tty, at_cnt, at_logmaj, at_id, and at_table
will be allocated and initialized as specified. Due to

the t flag, the d_ttys field in the character device
switch table will be initialized to point to at_tty (the
first variable definition line contains the variable whose
address will be stored in d_ttys). The ATTY driver would
reference these variables by coding:

extern struct tty at_ttyll:
extern int at_cnt:

extern int at_logmaj:
extern char at_id[8]:
extern struct

int memberl:
struct tty *member2;
char junk[31]:
short member3:
} at_table:

MASTER(M) MASTER(M)

Files

/usr/sys/master.d/*

See Also

1dunix(M), mkboot(M), sysdef(M)

MEM, KMEM(M) MEM, KMEM(M)

Name

mem, kmem - Memory image file.

Description

The mem file provides access to the computer's physical
memory. All byte addresses in the file are interpreted as
memory addresses. Thus, memory locations can be examined
in the same way as individual bytes in a file. Note that
accessing a nonexistent location causes an error.

The kmem file is the same as mem, except that it corres-
ponds to kernel virtual memory rather than physical mem-
ory.

In rare cases, the mem and kmem files may be used to write
to memory and memory-mapped devices. Such patching is
not intended for the naive user and may lead to a system
crash if not conducted properly. Patching device regis-

ters is likely to lead to unexpected results if the device

has read-only or write-only bits.

Files

/dev/mem
/dev/kmem

Notes

Some of /dev/kmem cannot be read because of write-only
addresses or unequipped memory addresses.

MENUS(M) MENUS(M)

Name .

menus - Format of a Business Shell menu system.

Description

A menu system is defined as a collection of menus, each of
which is an ASCII text file. It is relatively easy to
create a new customized Business Shell (bsh(C)) menu sys-
tem or to modify the default menu system. The procedure
to create a menu system follows.

To create a text file containing the source menu, use the
following format:

&Menuidentifier
. « . the substance of the menu . .
. . . not over 24 lines length
&Actions
. . . zero or more sequences.of .

~ prompt size

. .« . Sequences of actions . .
for this prompt . . .

This sequence may be repeated as often as desired. The
ampersand (&) and tilde (°) must appear in the first
column, &Actions must appear, even if there are no ac-
tions.

The substances of each menu is composed of text which will

be reproduced exactly as it appears in the location where

it appears. There are five exceptions where characters

have special meanings:

"“string" denotes a valid "prompt" string (the text
of the actual prompt).

"ldate" inserts the current date and time.
"luser" inserts the current user id.

"pwd" inserts the current directory.

"e" indicates where to leave the cursor.

MENUS(M) MENUS(M)

The "!" may appear as a suffix, in which case the string
will be right-justified instead of left-justified.

The prompts must be reproduced as they are expected to be
typed in the Actions chapter. The actions may be composed
of bsh commands or commands which are executed by the
standard shell (/bin/sh). The actions should all be in-
dented one tab stop.

Size rows will be reserved at the bottom of the screen for
output. If size is omitted, a value of 5 will be used.

If size is 0, the entire screen will be used. After exe-
cuting the actions, the message

will appear at the bottom of the screen. If size is -1
the entire screen is used, but no message is issued; and
bsh resumes without pause after all the actions have been
executed.

Transfer to another menu is specified by writing the name
of the destination menu in the semantics field.

Commands to be executed by the bsh interpreter must be
typed one-per-line.

Commands to be executed by the operating system follow
the usual conventions.

For example, the menu for Electronic Mail can be created
as follows:

MENUS(M) MENUS(M)

&Mail
tdate \ELECTRONIC MAIL"SERVICES
“a - Receive mail
“"b - Send"mail
“c - Return”to”starting menu
&Actions
“a 0
mail
“b -1
echo -n "To whom do you wish to send mail?"
read x
echo "Now type the message."
echo "Terminate it by typing a control -d."
mail $x
“c
Start

See Also

bsh(C), termcap(M)

MKBOOT (M) MKBOOT (M)

Name

mkboot - Converts an object file to a bootable object
file.

Syntax

/ete/mkboot [-m master] [-d directory 1 [-k kernel.o]
driver.o ...

Description

The mkboot command is used to create a bootable object
file in a format compatible with the self-configuration
program. It can only be used by the super-user. The ob-
ject file specified as an argument must have a correspond-
ing master(M) file in the /usr/sys/etc/master.d directory.
The master file name for the UNIX system kernel object
file is always kernel. The other master file names derive
from their associated object file names in lowercase let-
ters minus any optional path prefix or ".o" suffix.

To create the new bootable object file, the applicable
master file is read and the configuration information is
extracted. Then, the new bootable file is created con-
taining this configuration information and written to the
/usr/sys/boot.d directory. It is given the same name, in
uppercase letters and without the ".o" suffix, as the ob-
ject file. Note that if the current working directory is
/usr/sys/boot.d when mkboot is executed, then the object
file used is the previous bootable object file residing in
this directory. This means that you do not have to keep
separate ".o" files.

The options are:

-m master This option specifies the directory con-
taining the master files to be used for the
object file. The default master directory
is /usr/sys/master.d.

-d directory This option specifies the directory to be
used for storing the new bootable object
file. The default output directory is .
/usr/sys/boot.d.

MKBOOT(M) MKBOOT(M)

-k kernel.o This option specifies the name of the ob-
ject file for the operating system. The
master file name used for this object file
is always named kernel.

The name of the object file for a module or driver is spe-

cified by the driver.o argument.

Example

mkboot -m newmaster gentty.o

This will read the file name gentty from the direc-
tory newmaster for the gentty device configuration
data, take the file gentty.o from the current direc-
tory and create the formatted file
/usr/sys/boot.d/GENTTY containing the configuration
information for the gentty.

See Also

mkunix(M), master(M)

Diagnostics
Most messages are self-explanatory.
name.o: not processed; cannot open /etc/master.d/name
The file name.o was specified on the command line buf
there was no master file in the master.d directory
for name.o.

name.o: not processed

An error has aborted processing for the named object
file.

MKFS(M) MKFS(M)

Name

mkfs - Constructs a file system.

Syntax

/ete/mkfs special blocks[:inodes] [gap blocks/cyl]
/ete/mkfs special proto [gap blocks/cyl]

Description

Mkfs constructs a file system by writing on the special
file using the values found in the remaining arguments of
the command line. The command waits 10 seconds before
starting to construct the file system. During this
10-second pause the command can be aborted by entering a

delete (JERIIAEND.

If the second argument is a string of digits, the size of
the file system is the value of blocks interpreted as a
decimal number. This is the number of physical (512 byte)
disk blocks the file system will occupy. If the number of
inodes is not given, the default is the number of logical
(1024 byte) blocks divided by 4. Mkfs builds a file sys-
tem with a single empty directory on it. The boot program
block (block zero) is left uninitialized. :

If the second argument is the name of a file that can be
opened, mkfs assumes it to be a prototype file proto, and
will take its directions from that file. The prototype
file contains tokens separated by spaces or new-lines. A
sample prototype specification follows (line numbers have
been added to aid in the explanation):

1. /stand/diskboot

2. 4872 110

3. d--777 3 1

4. usr d--777 3 1

5. sh ---755 3 1 /bin/sh
6. ken d--755 6 1

7. $

8. b0 b--644 3100
9. c0 c-—-644 3100
10. $

11. $

MKFS(M) MKFS(M,

Line 1 in the example is the name of a file to be copied
onto block zero as the bootstrap program.

Line 2 specifies the number of physical (512 byte) blocks
the file system is to occupy and the number of inodes in
the file system. Lines 3-9 tell mkfs about files and di-
rectories to be included in this file system.

Line 3 specifies the root directory.
Lines 4-6 and 8-9 specifies other directories and files.

The $ on line 7 tells mkfs to end the branch of the file

system it is on, and continue from the next higher direc-
tory. The $ on lines 10 and 11 end the process, since no
additional specifications follow.

File specifications give the mode, the user 1D, the group
ID, and the initial contents of the file. Valid syntax
for the contents field depends on the first character of
the mode.

The mode for a file is specified by a 6-character string.
The first character specifies the type of the file, The
character range is -bed to specify regular, block special,
character special and directory files respectively. The
second character of the mode is either u or - to specify
set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a 3 digit oc-
tal number giving the owner, group, and other read, write,
execute permissions (see chmod(C)).

Two decimal number tokens come after the mode; they spec
fy the user and group IDs of the owner of the file,

If the file is a regular file, the next token of the spe-
cification may be a path name whence the contents and siz
are copied. If the file is a block or character special
file, two decimal numbers follow which give the major and
minor device numbers. If the file is a directory, mkfs
makes the entries . and .. and then reads a list of

names and (recursively) file specifications for the en-
tries in the directory. As noted above, the scan is ter-
minated with the token $.

MKFS(M) _ MKFS(M)

The final argument in both forms of the command specifies
the rotational gap and the number of blocks/cyl. The fol-
lowing values are recommended:

Device Gap Size Blks/Cyl

30M Hard Disk
72M Hard Disk
72aM Hard Disk
72bM Hard Disk
72cM Hard Disk
Floppy Disk

90

162 (CDC Wren II)
144 (Micropolis)
198 (Priam)

198 (Fujitsu)

18

> 00 00 00 X

Mkfs uses a gap size in multiples of 4. If the gap and
blocks/cyl are not specified or are considered illegal
values a default value of gap size 4 and 400 blocks/cy!l is
used.

See Also

chmod(C), dir(F), and fs(F) in the Reference (CP, S, F)

Notes

With a prototype file, it is not possible to copy in a
file larger than 64K bytes, nor is there a way to specify
links. The maximum number of inodes configurable is
65500.

MKUNIX(M) MKUNIX(M)

Name

mkunix - Makes a bootable system file with kernel and
driver symbol tables.

Syntax

/etc/mKunix [-i kernel file 1 [-0 unix file]

Description

The mkunix command will create an- absolute, bootable sys-
tem file (new_namelist) from the UNIX system kernel file
and the object files created by mkboot(M). This procedure
completes the generation of a new /unix. It can only be
used by the super-user.

The resulting unix_file can be used as the kernel file for
ps(C), etc. In addition, this file may be booted di-
rectly, bypassing the self-configuration phase of the boot
‘process. This will save on the order of 30 to 60 seconds
at boot time.

Kernel file (defaults to the path name specified as the
BOOT program in the /usr/sys/system file) is read to ob-
tain the object, data, and symbol table for the basic ker-
nel. This name, if specified, must be the same as that
used in /usr/sys/system for the boot line; if not, a warn-
ing diagnostic is issued since the resulting namelist file
will not be accurate.

The argument -o unix_file (defaults to a.out) is the new
file - a bootable image of the current operating system
with the composite symbol table.

See Also

mkboot(M), ps(C), and nm(CP) in the Reference (CP, S, F)

MNTTAB(M) MNTTAB(M)

Name

mnttab - Mounted file system table.

Syntax

#include <mnttab.h>

Description

The /etc/mnttab file contains a table of devices mounted
by the mount(C) command.

Each table entry contains the pathname of the directory on
which the device is mounted, the name of the device spe-
cial file, the read/write permissions of the special file,
and the date on which the device was mounted.

The maximum number of entries in mnttab is based on the
system parameter NMOUNT located in /usr/include/mnttab.n,
which defines the number of allowable mounted special

files. ~

See Also

mount(C)

MULTIUSER(C) MULTIUSER(C)

Name

multiuser, singleuser - Causes the system to enter
multi-user or single-user mode.

Syntax

/etc/multiuser
/etc/singleuser

Description
This command can only be used by the super-user.

Multiuser changes the system mode of operation from
single-user to multi-user. Multiuser performs system
startup functions such as mounting file systems and start-
ing various daemons and spoolers. The /etc/telinit 2 com-
mand is executed to tell init(M) to enter multi-user mode
(run level 2).

Singleuser causes the system to kill all currently running
processes and enter system maintenance mode (run level 1).
See Also

init(M), shutdown(M), who(C)

NCHECK(M) NCHECK(M)

Name

ncheck - Generates path names from inode numbers.

Syntax

/ete/ncheck [-i inode... 1 [-a]l[-s 11 file-system]

Description

Ncheck with no arguments generates a path-name vs. inode
list of all files on a set of default file systems (see
/etc/checklist). Names of directory files are followed by
/..

The options are as follows:

-i Limits the report to only those files whose inode
numbers follow.

-a Allows printing of the names . and .., which are
ordinarily suppressed.

-s Limits the report to special files and files with
set-user-ID mode. This option may be used to detect
violations of security policy.

File-system must be specified by the file system's special

file. The report should be sorted so that it is more

useful.

See Also

fsck(C), sort(C)

Diagnostics

If the file system structure is not consistent, ?? de-
notes the "parent" of a parentless file and a path-name
beginning with ... denotes a loop.

NULL(M) NULL(M)

Name

null - The null file.

Description

Data written on a null special file is discarded. Reads
from a null special file always return 0 bytes.

Files

/dev/null

OPTIONS(M) OPTIONS(M)

Name

options - Floppy disk installation menu.

Syntax

options

Description

The options command displays the installation menu on the
operating system Root diskette.

To display this menu, first go to system maintenance mode.
Then boot the system from the Root File System floppy
disk. Type options to display the menu.

Use this menu to initially install or upgrade the operat-
ing system, restore data from a cartridge tape, shut down
the system, or exit to the shell.

PASSWD(M) PASSWD(M)

Name

passwd - The password file.

Description

The /etc/passwd file contains the following information
for each user: '

. Login name
. Encrypted password
. Numerical user ID

. Numerical group ID

. Comment
. Initial working directory
. Program to use as shell

This is an ASCII file. Each field within each user's en-
try is separated from the next by a colon (:). The com-
ment can contain any desired information; it typically
contains the user's real name. Each user is separated
from the next by a newline. If the password field is
null, no password is demanded; if the shell field is null,
the sh(C) command is used.

This file resides in the directory /etc. Because the
passwords are encrypted, the file has general read permis-
sion and can be used, for example, to map numerical user
IDs to names.

The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., /, 0-9, A-Z, a-z), except
when the password is null, in which case the encrypted
password is also null. Password aging is in effect for a
particular user if his encrypted password in the password
file is followed by a comma and a nonnull string of char-
acters from the above alphabet. (Such a string must be
introduced by the super-user.) The first character of the
age denotes the maximum number of weeks for which a pa
word is valid.

PASSWD(M) PASSWD(M)

Files

A user who attempts to log in after his password has ex-
pired will be forced to supply a new one. The next char-
acter denotes the minimum period in weeks which must ex-
pire before the password may be changed. The remaining
characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string
is equivalent to zero.) The first and second characters
must have numerical value in the range 0-63, where the dot
(.) is equal to 0 and lowercase z is equal to 63. If the
numerical value of both characters is 0, the user will be
forced to change his password the next time he logs in.

If the second character is greater than the first, only

the super-user will be able to change the password.

/etc/passwd

See Also

group(M), login(C), passwd{C)

PRINTERS(M) PRINTERS(M)

Name

printers - Printer spooler configuration file.

"Description

Using the printer spooler facility lpr(C), you can print a
specified list of files on one or several line printers.
Additionally, a printer on a machine connected to WorkNet
can be shared by other machines on the same net. Such
printers may need to have an arbitrary set of terminal
modes set for tab expansion, baud rate, etc.

The system printer configuration file (/etc/printers) con-
sists of lines of printer configuration information.

These include WorkNet machine names, tty types, device
names, and tty modes. Each line in the /etc/printers file
is of the form:

Iplpl:name:ttytype:[netnamel:[ttymodes]

Fields are separated by colons (:) and may not contain
spaces between the colon separators and field values. The
length of each line may not exceed 128 characters. Com-
ments are permitted in the configuration file. A comment
line begins with "#" in the first column. Any fields sur-
rounded by "[]" are optional, although their colon sepa-
rators are not. That is, if a field position is to be
empty, its place must be marked by two colons (::).

The fields are:

Ipip] The printer device selected. Allowable values
for p are null or 0 - 255. This value is used
to specify one of several printers.

name A tag by which a particular configuration line
can be selected. Allowable values are alpha-
numeric strings, which do not contain the ":"
character.

ttytype Exists for the convenience of word processing
programs that derive printer control sequences
from /etc/termcap (or similar database). (Not
used by the printer spooler.)

PRINTERS(M) PRINTERS(M)

netname May be null, which indicates that spooling is to
take place on the requestor's machine. Other
values are network machine names. The print
spooler uses this name to do remote printing.

ttymodes A list of whitespace-delimited tty mode specifi-
cations, such as would be supplied to stty.

Example

The following example shows the contents of a printer con-
figuration file (the contents of /etc/printers):

a printer configuration file
lp:calcite:NEC3510:gateway:
lp:galena:0ki93::-tabs 1200 nl
1p0:obsidian:I9:Marketing:tabs 9600 nl
lpl:feldspar:epson::nl tabs 9600
1p2:mica:TI810:Finance:9600 -tabs

In this example:

The first line uses the /dev/lp printer on the machine
named "gateway." The printer type is "NEC3510" and no tty
modes are set on that printer. This line may be selected
by specifying "calcite" to lpr.

The next line specifies the /dev/Ip printer on the user's
local machine (note the null netname field), is type Oki93
and sets tab expansion (-tabs), 1200 baud operation, and
no linefeed to cr-1f expansion. This line is selected

with the name "galena."

The third line requests /dev/Ip0, is on the Marketing
machine, runs the printer at 9600 baud, etc., is type 19,
and is selected by the name "obsidian."

The last two lines use /dev/lpl on the local machine, and
/dev/Ip2 on the Finance machine.

PRINTERS(M) PRINTERS(M)

Files

/ete/printers Printer mode control file

Related Commands

Ipr(C), lpd(M), tty(M), Ip(C)

PROFILE(M) PROFILE(M)

Name

profile - Sets up an environment at login time.

’ Description

The optional file .profile permits automatic execution of
commands when a user logs into /bin/sh and other shells
(except /bin/csh). Use this file to personalize a user's
work environment by setting exported environment variables
and terminal mode (see environ(M)).

When a user logs in, the user's login shell looks for

.profile in the login directory. If found, the shell exe-
cutes the commands in the file before beginning the ses-
sion. The commands in the file must match the command as
if typed at the keyboard. Any line beginning with the
number sign (#) is considered a comment and is ignored.
The following is an example of a typical file:

Tell me when new mail comes in
MAIL=/usr/mail/myname

Add my /bin directory to the shell search sequence
PATH=$PATH : $SHOME /bin

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 22

The file /etc/profile is a system-wide profile that, if it

exists, is executed for every user before the user's
.profile is executed.

Files
$HOME/ .profile
/etc/profile
See Also

env(C), mail(C), sh(C), stty(C), su(C), login(M),
environ(M)

PWCK(M) PWCK(M)

Name

pwek, grpck - Checks password/group file.

Syntax
/ete/pwek [file]
/etc/grpek [file]
Description
Pwck scans the password file and notes any inconsisten-
cies. The checks include validation of the number of
fields, login name, user ID, group ID, and whether the
login directory and the program-to-use-as-shell exist.
The default password file is /etc/passwd.
Grpck verifies all entries in the group file. This veri-
fication includes a check of the number of fields, group
name, group ID, and whether all login names appear in the
password file. The default group file is /etc/group.
Files
/etc/group
/etc/passwd
See Also

group(M), passwd(M)

Diagnostics

Group entries in /etc/group with no login names are
flagged.

RCO(M) RCO(M)

Name

rc0 - Runs commands performed to stop the operating
system.

Syntax

/ete/rcl

Description

This file is executed at each system state change that
needs to have the system in an inactive state. It is re-
sponsible for those actions that bring the system to a
quiescent state, traditionally called "shutdown." This
command can be used only by the superuser.

The system state that requires this procedure is:
state 0 - system halt state

Whenever a change to one of these states occurs, the
/etc/rc0 procedure is run. The entry in /etc/inittab
might read:

hlt0:0:once:/etc/rc0 </dev/console >/dev/console 2>&1

Some of the actions performed by /etc/rc0 are carried out
by files beginning with K in /etc/rc0.d. These files are
executed in ASCII order (see files below for more infor-
mation), terminating some system service. The combination
of commands in /etc/rc0 and files in /etc/rc0.d determines
how the system is shut down.

The recommended sequence for /etc/rc0 is:
1. Stop System Services and Daemons.

Various system services (such as a local area network
or LP spooler) are gracefully terminated.

When new services are added that should be terminated
when the system is shut down, the appropriate files
are installed in /ete/rc0.d.

RCO(M)

2.

Files

RCO(M)

Terminate Processes

SIGTERM signals are sent to all running processes
by killali(C). Processes stop themselves cleanly if
sent SIGTERM.

Kill Processes

SIGKILL signals are sent to all remaining processes;
no process can resist SIGKILL.

At this point the only processes left are those asso-
ciated with /ete/rc0 and processes 5 and 1, which are
special to the operating system.

Unmount All File Systems
Only the root file system (/) remains mounted.

Depending on which system state the system ends up
in (0 or 6), the entries in /etc/inittab will direct
what happens next. If the /etc/inittab has not de-
fined any other actions to be performed as in the
case of system state 0, then the operating system
will have nothing to do. It should not be possible
to get the system's attention. The only thing that
can be done is to turn off the power or possibly get
the attention of a firmware monitor.

The execution by /bin/sh of any files in /etc/re0.d occurs
in ASCII sort-sequence order. See rc2(M) for more infor-
mation. :

See Also

killall(C), rc2(M), shutdown(M)

RC2(M) RC2(M)

Name

rc2 - Runs commands performed for multi-user environment.

Syntax

/ete/re2

Description

This file is executed via an entry in /etc/inittab and is
responsible for those initializations that bring the sys-
tem to a ready-to-use state, traditionally state 2, called
the "multi-user" state. This command can be used only by
the super-user.

The actions performed by /ete/rc2 are found in files in
the directory /etc/rc.d and files beginning with S in
/etc/rc2.d. These files are executed by /bin/sh in ASCII
sort-sequence order (see "Files" for more information).
When functions are added that need to be initialized when
the system goes multi-user, an appropriate file should be
added in /etc/rc2.d.

The functions done by /etc/re2 command and associated
/ete/re2.d files include:

. Setting and exporting the TZ variable.
. Setting-up and mounting the user (/usr) file system.

. Cleaning up (remaking) the /tmp and /usr/tmp direc-
tories.

° Loading the network interface and ports cards with
program data and starting the associated processes.

. Starting the cron daemon by executing /etc/cron.

. Cleaning up (deleting) uucp lock, status, and tempo-
rary files in the /usr/spool/uucp directory.

Other functions can be added, as required, to support the
addition of hardware and software features.

RC2(M) RC2(M)

Examples

Files

The following are prototypical files found in /etc/rc2.d.
These files are prefixed by an S and a number indicating
the execution order of the files.

MOUNTFILESYS

Set up and mount file systems

cd /

/etc/mountall /etc/fstab
RMTMPFILES

clean up /tmp

rm -rf /tmp

mkdir /tmp

chmod 777 /tmp

chgrp sys /tmp

chown sys /tmp
uucp

clean-up uucp locks, status, and temporary files
rm -rf /usr/spool/locks/*

The file /etc/TIMEZONE is included early in /etc/rc2,
thus establishing the default time zone for all commands
that follow.

Here are some hints about files in /etc/rec.d:

The order in which files are executed is important. Since
they are executed in ASCII sort-sequence order, using the
first character of the file name as a sequence indicator
will help keep the proper order. Thus, files starting

with the following characters would be:

[0-9] very early
[A-Z]early
[a-n] later

[0-2] last

Files in /etc/rc.d that begin with a dot (.) will not be
executed. This feature can be used to hide files that are
not to be executed for the time being without removing
them.

RC2(M) RC2(M)

Files in /etc/rc2.d must begin with an S or a K followed
by a number and the rest of the file name. Upon entering
run level 2, files beginning with S are executed with the
start option; files beginning with K, are executed with

the stop option. Files beginning with other characters

are ignored.

See Also

rc0(M), shutdown(M)

SADCON(M) SADCON(M)

Name
sadcon, sadcoff - Turns on/off system activity data col-
lector.
Syntax
sadcon
sadcoff
Description
By default, the system activity data collector is deacti-
vated in Altos System V, version 5.3d. The data collector
may be started, and boot-time startup of the collector
enabled by using the sadcon command. A subsequent sadcof
command will disable boot-time data collector startup.
Files
/etc/init.d/sadc
/etc/rc2.d/S34sade
/usr/spool/cron/crontabs/sys
/usr/spool/cron/crontabs/adm

See Also

sar(C), cron(C)

SAR(M) SAR(M)

Name

sar: sal, sa2, sadc - System activity report package.

Syntax

/usr/lib/sa/sade [t n] [ofile]

/usr/lib/sa/sal [t n]

/usr/lib/sa/sa2 [-ubdycwaqvmprSDA] [-s time] [-e time]
[-i sec]

Description

System activity data can be accessed at the special re-
quest of a user (see sar(C)) and automatically on a rou-
tine basis as described here. The operating system con-
tains a number of counters that are incremented as various
system actions occur. These include counters for CPU
utilization, buffer usage, disk and tape 1/O activity, TTY
device activity, switching and system-call activity,
file-access, queue activity, inter-process communications,
paging, and Remote File Sharing.

Sadc and shell procedures, sal and sa2, are used to
sample, save, and process this data.

Sade, the data collector, samples system data n times
every t seconds and writes in binary format to ofile or to
standard output. If t and n are omitted, a special record
is written. This facility is used at system boot time,
when booting to a multiuser state, to mark the time at
which the counters restart from zero. For example, the
/etc/init.d/perf file writes the restart mark to the daily
data by the command entry:

su sys -¢ "/usr/lib/sa/sadc /usr/adm/sa/sa‘date +%d""
The shell script sal, a variant of sade, is used to col-

lect and store data in binary file /usr/adm/sa/sardd where
dd is the current day. The arguments t and n cause

SAR(M) SAR(M)

records to be written n times at an interval of t seconds,
or once if omitted. The /usr/spool/cron/crontabs/sys
(see cron(C)) entries:

0 * * * 0.6 /usr/lib/sa/sal
20,40 8-17 * * 1-5 /usr/lib/sa/sal

will produce records every 20 minutes during working hours
and hourly otherwise.

The shell script sa2 writes a daily report in file
/usr/adm/sa/sardd. The /usr/spool/cron/crontabs/sys en-
try:

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

will report important activities hourly during the working
day. The structure of the binary daily data file is:

struct sa

{
struct sysinfo si: /* see/usr/include/sys/sysinfo.h */
struct minfo mi; /* defined in sys/sysinfo.h */
struck dinfo di: /* RFS info defined in sys/sysinfo.h */
int minserve, maxserve; /* RFS server low and high water

* marks */

int szinode; /* current size of inode table */
int szfile: /* current size of file table */
int szproc: /* current size of proc table */
int szlckf: /* current size of file record header table */
int szlckr: /* current size of file record lock table */
int mszinode: /* size of inode table */
int mszfile: /* size of file table */
int mszproc; /* size of proc table */
int mszlckf; /* maximum size of file record header table */
int mszlckr: /* maximum size of file record lock table */
long inodeovf:; /* cumulative overflows of inode table */
long fileovf: /* cumulative overflows of file table */
long procovf: /* cumulative overflows of proc table */
time_t ts; /* time stamp, seconds ¥/
long devio[NDEVS][4]: /* device unit information */
#define I0_OPS 0 /* cumulative 1/0 requests */
#define IO _BCNT 1 /* cumulative blocks transferred */
#define I0_ACT 2 /* cumulative drive busy time in ticks ¥,
#define IO _RESP 3 /* cumulative I/0 resp time in ticks */

SAR(M)

Files
/usr/adm/sa/sadd
/usr/adm/sa/sardd1
/tmp/sa.adrfl

See Also

cron(C), sar(C)

Daily data file
Daily report file
Address file

SAR(M)

SHUTDOWN(M) SHUTDOWN(N

Name

shutdown - Brings a system to single-user mode or to shut-
down.

Syntax

/etc/shutdown [-y] [-ggrace period] [-iinit_state]

Description

This command is executed by the super-user to change the
state of the machine. By default, it brings the system

to a state where only the console has access to the
system. This state is traditionally called "single-user."

The command sends a warning message (via wall(C)) and a
final message before it starts actual shutdown activities.
By default, the command asks for confirmation before it
starts shutting down daemons and killing processes. The
options are as follows:

-y Pre-answers the confirmation question so
the command can be run without user
intervention. A default of 60 seconds is
allowed between the warning message and
the final message. Another 60 seconds is
allowed between the final message and the
confirmation.

-ggrace_period Allows the super-user to change the numbe
of seconds from the 60-second default. Yc
can specify a number from 0 to 999 to de-
lay shutdown for that amount of time fol-
lowing notification to the users. If 0 is
entered, shutdown will be immediate, and i
no parameter is given, 60 seconds is as-
sumed.

-iinit_state Specifies the state that init(M) is to be
put in following the warnings, if any. By
default, system state "s" is used (the
same as states "1" and "S").

SHUTDOWN(M) SHUTDOWN(M)

Other recommended system state definitions are:

state 0 Shut the machine down so it is safe to remove
the power. Have the machine remove power if
it can. The /ete/rc0 procedure is called to so
this work.

state 1, s, S
Bring the machine to the state traditionally
called single-user. The /ete/rc0 procedure is
called to do this work. (Though s and 1 are
both used to go to single-user state, s only
kills processes spawned by init and does not
unmount file systems. State 1 unmounts
everything except root and kills all user
processes, except those that relate to the
console.

stateb Stop the system and go to the firmware monitor.

state 6 Stop the system and reboot to the state defined
by the initdefault entry in /etc/inittab.

See Also

wall(C), init(M), rcO(M), rc2(M)

SHUTYPE(M)

Name

SHUTYPE(M)

shutype - UPS shutdown configuration utility.

Syntax

shutype [-p] [-ttype] [-ffailtime] [-cpwrent] [-uupstime]
[wpwrtime] [-etermtime]

Description

The shutype command allows the alteration of the current
configurable settings for a UPS power failure condition.
The six configuration settings that can be changed are:

-ttype

~ffailtime

-cpwrent

-uupstime

-wpwrtime

The type of shutdown that is to be initi-
ated for a power failure condition. This
option causes the following to occur: the
shutkill command issues a SIGPWR signal t«
all processes, and then posts SIGTERM and
SIGKILL signals to the processes; a sync(S.
command is then executed to maintain the
integrity of the file system; a shutsave
command delivers the SIGPWR signal to all
processes, but saves memory to disk so a
later restart can be attempted.

The time in ticks to wait to check for a
power failure condition after the first
power failure condition was detected. This
is used to check if a power glitch only has
occurred.

The maximum number of power failure intei
rupts that can occur within the above
FAILTIME time interval before the power
source is considered to be unreliable.

The time in seconds that the UPS battery
backup unit can operate reliably after
power has been turned off.

The time in seconds for the system to wait
after posting the SIGPWR signal to all pro
cesses before initiating shutdown proce-

. dures.

SHUTYPE(M) SHUTYPE(M)

-etermtime The time in seconds for the system to wait
after posting the SIGTERM signal to all
processes before posting the SIGKILL signal
to all processes. This is only used when
the shutkill option is in effect.

If no options are given, shutype will prompt you for each
of the above parameters. A null response followed by a
carriage return will leave the current configuration value
the same.

The -p option will print out the current settings of the
above mentioned configurable parameters. No other options
are allowed to be given with the -p option.

A sanity check will be done on any and all of the values
entered. If the shutdown type is shutkill, the total

times of termtime, pwrtime, and failtime cannot exceed the
value of upstime.

If the shutdown type is shutsave, the total times of
pwrtime and failtime plus the estimated disk output time
cannot exceed upstime. The estimated disk output time
will be printed if no options are given, or the -p option
is given. If there are any inconsistencies, appropriate
error message will be output.

Only the super-user is allowed to change any of the above
mentioned configurable parameters.
See Also

shuttype(S)

STRACE(M) STRACE(M

Name

strace - Prints STREAMS trace messages.

Syntax

strace [mid sid level 1...

Description

Strace without arguments writes all STREAMS event trace
messages from all drivers and modules to its standard out-
put. These messages are obtained from the STREAMS log
driver (log(M)). If arguments are provided they must be
in triplets of the form mid, sid, level, where mid is a
STREAMS module id number, sid is a sub-id number, and
level is a tracing priority level. Each triplet indicates
that tracing messages are to be received from the given
module/ driver, sub-id (usually indicating minor device),
and priority level equal to or less than the given level.
The token all may be used for any member to indicate no
restriction for that attribute.

The format of each trace message output is:

<seq> <time> <(ticks)> <level> <flags> <mid)> <sid> <text)

where:
<seq> trace sequence number
{time) time of message in hh:mm:ss

<ticks> time of message in machine ticks since boot
<level> tracing priority level
{flags> E: message is also in the error log

F: indicates a fatal error

N: mail was sent to the system administrator

<mid> module id number of source
<sidy sub-id number of source
{text> formatted text of the trace message

Once initiated, strace will continue to execute until ter-
minated by the user.

STRACE(M) STRACE(M)

Examples

Output all trace messages from the module or driver whose
module id is 41:

strace 41 all all

Output those trace messages from driver/module id 41 with
sub-ids 0, 1, or 2:

strace 41 0 1 41114120

Messages from sub-ids 0 and 1 must have a tracing level
less than or equal to 1. Those from sub-id 2 must have a
tracing level of 0. :

Notes

Due to performance considerations, only one strace process
is permitted to open the STREAMS log driver at a time.
The log driver has a list of the triplets specified in the
command invocation, and compares each potential trace mes-
sage against this list to decide if it should be formatted
and sent up to the strace process. Hence, long lists of
triplets will have a greater impact on overall STREAMS
performance. Running strace will have the most impact on
the timing of the modules and drivers generating the trace
messages that are sent to the strace process. If trace
messages are generated faster than the strace process can
handle them, then some of the messages will be lost. This
last case can be determined by examining the sequence num-
bers on the trace messages output.

See Also

log(M), and STREAMS Programmer's Guide

STRCLEAN(M) STRCLEAN(M)

Name

strclean - STREAMS error logger cleanup program.

Syntax

strclean [-d logdir] [-a age]

Description
Strclean is used to clean up the STREAMS error logger di-
rectory on a regular basis (for example, by using
cron(M)). By default, all files with names matching
error.* in /usr/adm/streams that have not been modified in
the last 3 days are removed. A directory other than
/usr/adm/streams can be specified using the -d option.
The maximum age in days for a log file can be changed us-
ing the -a option.

Example

strclean -d/usr/adm/streams -a 3

has the same result as running strclean with no arguments.

Notes

strclean is typically run from cron(M) on a daily or
weekly basis.

Files

/usr/adm/streams/error. *

See Also

cron(C), strerr(M), and STREAMS Programmer's Guide

STRERR(M) STRERR(M)

Name

strerr - STREAMS error logger daemon.

Syntax

strerr

Description

Strerr receives error log messages from the STREAMS log
driver (log(M)) and appends them to a log file. The error
log files produced reside in the directory

/usr/adm/streams, and are named error.mm-dd, where mm is
the month and dd is the day of the messages contained in

each log file.

The format of an error log message is:

(seq> <time> <ticks> <flags> <mid> <sid)> <text)>

where:
<seq> error sequence number
(time> time of message in hh:mm:ss

(ticks> time of message in machine ticks since boot
<flags> T: message was also sent to a tracing process
F: indicates a fatal error
N: send mail to the system administrator

<mid) module id number of source
<sid> sub-id number of source
{text> formatted text of the error message

Messages that appear in the error log are intended to re-
port exceptional conditions that require the attention of
the system administrator. Those messages which indicate
the total failure of a STREAMS driver or module should
have the F flag set. Those messages requiring the immedi-
ate attention of the administrator will have the N flag
set, which causes the error logger to send the message to
the system administrator via mail(C). Messages with a
module id of 0 are generated by the kernel.

STRERR(M) STRERR(M

Notes

Only one strerr process at a time is permitted to open the
STREAMS log driver. If a module or driver is generating ¢
large number of error messages, running the error logger
will cause a degradation in STREAMS performance. If a
large burst of messages are generated in a short time, the
log driver may not be able to deliver some of the mes-
sages. This situation is indicated by gaps in the se-
quence numbering of the messages in the log files.

Files

-/usr/adm/streams/error.mm-dd

See Also

log(M), and STREAMS Programmer's Guide

SULOGIN(M) SULOGIN(M)

Name

sulogin - Special login program invoked by init (via
/etc/inittab) to bring the machine up in single-user or
multi-user mode.

Syntax

sulogin

Description

Sulogin prompts you for system maintenance (single-user)
mode or multi-user mode.

If you select single-user mode by typing a valid root
password, the system is brought up in system maintenance
(single-user) mode by executing the shell script:
/etc/singleuser. If you select multiuser mode by typing
IZ3Rsl, or there is no reponse for 5 seconds, sulogin will
execute the shell script file /etc/multiuser, which will
bring the system up in multi-user mode.

Files
/etc/multiuser
/etc/singleuser
/etc/inittab
See Also

init(M)

SYSDEF(M) SYSDEF(M,

Name

sysdef - Outputs system definition.

Syntax

/ete/sysdef [system namelist [master.d]]

Description

Sysdef outputs the current system definition in tabular
form. It lists all hardware devices, their local bus ad-
dresses, and unit count, as well as pseudo devices, system
devices, loadable modules and the values of all tunable
parameters. It generates the output by analyzing the
named operating system file (system_namelist) and extract-
ing the configuration information from the name list it-
self. The operating system file must be an "absolute"
boot file (see mkunix(M)).

Files
/unix Default operating system file
(where the system namelist is)
/usr/sys/master.d/* Default directory containing
master files
See Also
mkunix(M), master(M), and nlist(S) in the Reference
(CP, S, F)
Diagnostics

internal name list overflow
if the master table contains more than an internally
specified number of entries for use by nlist(S).

TERM(M) TERM(M)

Name

term - Compiled term file.

Description

Compiled terminfo descriptions are placed under the direc-
tory /usr/lib/terminfo. To avoid a linear search of a

huge system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the
terminal, and ¢ is the first character of name. Thus,

act4 can be found in the file /usr/lib/terminfo/a/act4.
Synonyms for the same terminal are implemented by multiple
links to the same compiled file.

The format has been chosen so that it will be the same on
all hardware. An eight (or more) bit byte is assumed, but
no assumptions about byte ordering or sign extension are
made.

The compiled file is created with the terminfo compiler
(tic(C)) program, and read by the routine setupterm(S).
Both of these pieces of software are part of curses(S).
The file is divided into six parts: the header, terminal
names, boolean flags, numbers, strings, and string table.

The headers section begins the file. This section con-
tains six short integers in the following format.

. The magic number (octal 0432).

. The size, in bytes, of the names section.
. The number of bytes in the boolean section.
. The number of short integers in the numbers section.

. The number of offsets (short integers) in strings
section.

. The size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first
byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits.
(Thus, the value represented is 256*second+first.) The

TERM(M) TERM(M)

value -1 is represented by 0377,0377; other negative
values are illegal. - The -1 generally means that a capa-
bility is missing from this terminal. Machines where this
does not correspond to the hardware read the integers as
two bytes and compute the result.

The terminal names section comes next. It contains the
first line of the terminfo description, listing the var-

ious names for the terminal, separated by the '|' charac-
ter. The section is terminated with an ASCII NUL charac-
ter.

The boolean flags have one byte for each flag. This byte
is either 0 or 1 as the flag is present or absent. The
capabilities are in the same order as the file <term.h).

Between the boolean section and the number section, a null
byte will be inserted, if necessary, to ensure that the
number section begins on an even byte. All short integers
are aligned on a short word boundary.

The numbers section is similar to the flags section. Each
capability takes up two bytes, and is stored as a short
integer. If the value represented is -1, the capability

is taken to be missing.

The strings section is also similar. Each capability is
stored as short integer, in the format above. A value of
-1 means the capability is missing, Otherwise, the value
is taken as an offset from the beginning of the string
table. Special characters in “X or /c notation are stored
in their interpreted form, not the printing representa-

tion. Padding information $<nn> and parameter information
=%x are stored intact in uninterpreted form.

The final section is the string table. It contains all
the values of string capabilities referenced in the string
section. Each string is null terminated.

Note that it is possible for setupterm to expect a differ-
ent set of capabilities than are actually present in the
file. Either the database may have been updated since
setupterm has been recompiled (resulting in extra unrecog-
nized entries in the file) or the program may have been
recompiled more recently than the database was updated
(resulting in missing entries). The routine setupterm
must be prepared for both possibilities -- this is why the

TERM(M) TERM(M)

numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean,
number, and string capabilities.

Some limitations: total compiled entries cannot exceed
4096 bytes. The name field cannot exceed 128 bytes.

Files
/usr/lib/terminfo/* /* Compiled terminal capability data
base
See Also
terminfo(M)

TERMCAP(M) TERMCAP(M)

Name

termcap - Terminal capability database.

Description

The file /etc/termcap is a data base describing terminals.
Terminals are described in termcap by a set of capabili-
ties and how operations are performed. Padding require-
ments and initialization sequences are included in
termcap. Note that the use of term(M) is preferred.

Entries in termcap consist of a number of ':' separated
fields. The first entry for each terminal gives the names
known for the terminal, separated by vertical bar (|)
characters. The first name is always 2 characters long
for compatibility with older systems. The second name
given is the most common abbreviation for the terminal,
and the last name given should be a long name fully iden-
tifying the terminal. The second name should contain no
blanks; the last name may well contain blanks for read-
ability.

Capabilities

The following is a list of the capabilities that can be
defined for a given terminal. In this list (P) indicates
padding may be specified, and (P*) indicates that padding
may be based on the number of lines affected.

Name Type Pad? Description

ae str (P) End alternate character set

al str (P*) Add new blank line

am bool Terminal has automatic margins

as str (P) Start alternate character set

be str Backspace if not “H

BE str Bell character

bs bool Terminal can backspace with “H

BS str Sent by BACKSPACE key (if not bc)
bt str (P) Back tab

bw bool Backspace wraps from column 0 to

last column

TERMCAP(M)

TERMCAP(M)

Name Type Pad? Description

CC str Command character in prototype if
terminal settable

cd str (P*) Clear to end of display

ce str (P) Clear to end of line

CF str Cursor off

ch str (P) Like cm but horizontal motion only,
line stays same

CL str Sent by CHAR LEFT key

cl str (P*) Clear screen

cm str (P) Cursor motion

CN str Sent by CANCEL key

co num Number of columnsin a line

CO str Sent by CHAR RIGHT key

cr str (P*) Carriage return, (default “M)

cs str (P) Change scrolling region (vt100), like
cm

cv str (P) Like ch but vertical only

CwW str Sent by CHANGE WINDOW key

da bool Display may be retained above

db bool Display may be retained below

dB num Number of millisec of bs delay

dc num Number of millisec of cr delay

dc str (P*) Delete character

dF num Number of millisec of ff delay

DK str Sent by down arrow key (if not kd)

DL str Sent by DELETE key

DL str Sent by destructive character delete
key

di str (P*) Delete line

dm str Delete mode (enter)

dN number Number of millisec of nl delay needed

do str Down one line

ed str End delete mode

EE str Edit mode end

EG num Number of chars taken by ES and EE

ei str End insert mode; give ':ei=:'

EN str Sent by END key

eo str Erase overstrikes with a blank

ES str Edit mode start

ff str (P*) Hardcopy terminal page eject (default
“L)

Gl str Upper-right (1st quadrant) corner

character

TERMCAP(M)

TERMCAP(M)

Name Type Pad? Description

G2 str Upper-left (2nd quadrant) corner
character

G3 str Lower-left (3rd quadrant) corner
character

G4 str Lower-right (4th quadrant) corner
character

GD str Down-tick character

GE str Graphics mode end

GG num Number of chars taken by GS and G

GH str Horizontal bar character

GS str Graphics mode start

GU str Up-tick character

GV str Vertical bar character

he bool Hardcopy terminal

hd str Half-line down (forward 1/2 linefeed

hz str Hazeltine; can't print 's

ic str (P) Insert character

if str Name of file containing is

im bool Insert mode (enter); give ':im=:q' if
ic

in bool Insert mode distinguishes nulls on
display

ip str (P*) Insert pad after character inserted

is str Terminal initialization string

k0-k9 str Sent by 'other' function keys 0-9

kb str Sent by backspace key

kd str Sent by terminal down arrow key

ke str Out of 'keypad transmit' mode

KF str Key-clock off

kh str Sent by home key

kl str Sent by terminal left arrow key

kn num Number of 'other' keys

KO str Key-clock on

ko str Termcap entries for other
non-function keys

kr str Sent by terminal right arrow key

ks str Put terminal in 'keypad transmit'
mode

dT num Number of millisec of tab delay
needed

ku str Sent by terminal up arrow key

10-19 str Labels on 'other' function keys

LD str Sent by line delete key

TERMCAP(M)

TERMCAP(M)

Name Type Pad? Description

LF str Sent by line feed key

li num Number of lines on screen or page

LK str Sent by left arrow key (if not kl)

11 str Last line, first column (if no cm)

ma str Arrow key map, used by vi version 2
only

mi bool Safe to move while in insert mode

ml str Memory lock on above cursor

MN str Sent by minus sign key

MP str Multiplan initialization string

MR str Multiplan reset string

mu str Memory unlock (turn off memory lock)

nc bool No correctly working carriage return
(DM25000,H2000)

nd str Non-destructive space (cursor right)

nl str (P*) Newline character (default /n)

ns bool Terminal is a CRT but doesn't scroll

NU str Sent by NEXT UNLOCKED CELL key

oS bool Terminal overstrikes

pc str Pad character (rather than null

PD str Sent by PAGE DOWN key

PL str Sent by PAGE LEFT key

PR str Sent by PAGE RIGHT key

PS str Sent by plus sign key

pt bool Has hardware tabs (may need to be
set with is)

PU str Sent by PAGE UP key

RC str Sent by RECALC key

RF str Sent by TOGGLE REFERENCE key

RK str Sent by right arrow key (if not kr)

RT str Sent by RETURN key

RT str Sent by return key

se str End stand out mode

sf str (P) Scroll forward

sg num Number of blank chars left by so or
se

SO str Begin stand out mode

sr str (P) Scroll reverse (backwards)

ta str (P) Tab (other than "I or with padding)

TB str Sent by TAB key

tc str Entry of similar terminal - must be
last

te str String to end programs that use cm

TERMCAP(M) TERMCAP(M)

Name Type Pad? Description

ti str String to begin programs that use cm

uc str Underscore one char and move past it

ue str End underscore mode

ug num Number of blank chars left by use or
ue

UK str Sent by up arrow key (if not ku)

ul bool Terminal underlines even though it
doesn't overstrike

up str Upline (cursor up)

us str Start underscore mode

vb str Visible bell (may not move cursor)

ve str Sequence to end open/visual mode

Vs str Sequence to start open/visual mode

WR str Sent by WORD RIGHT key

xb bool Beehive (fl=escape, f2=ctrl C)

Xn bool A newline is ignored after a wrap
(Concept)

Xr bool Return acts like ce /r /n (Delta
Data)

XS bool Standard out not erased by writing
over it (HP 264?)

xt bool Tabs are destructive, magic so char

(Teleray 1061)

A Sample Entry

Entries may continue onto multiple lines by giving a \ as
the last character of a line, and empty fields may be in-
cluded for readability (here between the last field on a
line and the first field on the next). Capabilities in
termcap are of three types:

. Boolean capabilities which indicate that the terminal
has some particular feature.

. Numeric capabilities giving the size of the terminal
or the size of particular delays

. String capabilities, which give a sequence which can
be used to perform particular terminal operations.

TERMCAP(M) TERMCAP(M)

The following entry describes the Altos II terminal.

a2]altos2|alt2|altos 2]|Altos IX:\
:cd=\E[J:ce=\E[K:cl=\E:cl=\E[;H\E[2J:\
:up=\E[1A:do=\E[1B:nd=\E[1C:bc=\E[1D:cm=\E[%i%d: %$dH:ho=\E[H:\
tal=\E[L:d1=\E[M:ic=\E{@:dc=\E[P:im=:ei=:\

:co#80:1i#24 :ugh0:sg#0:bs:pt:sr:\
:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:\
:is=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8H:if=/usr/lib/tabset/vt100:\
:ku=\E[A:kd=\E[B:kr=\E[C:kl=\E[D:kh=\E{f:kb="H:cr="M:\
:XU="Ag\r:XD="Ar\r:XR="As\r:XL="At\r:\
:YU="AQ\r:¥D="AR\r:YR="AS\r:YL="AT\r:\

:HL="AP\r:\

:IS=\E{@:DE=\E[P:IL=\E[L:DL=\E[M:NS=\E[S:PS=\E[T:\
:LO=\E[O0q:LC=\E[5q:LL=\E[6q:\
:kO="A@\r:kl="AA\r:k2="AB\r:k3="AC\r:
:K4="AD\r:k5="AE\r:k6="AF\r:k7="AG\r:
:k8="AH\r:k9="AI\r:kA="AJ\r:kB="AK\r:
:KkC="AL\r:kD="AM\r:kE="AN\r:kF="AO\r:
:c0="A"\r:cl="RAa\r:c2="Ab\r:c3="Ac\r:
:c4="Ad\r:c5="Ae\r:c6="Af\r:c7="Ag\r:
:c8="Ah\r:c9="Ai\r:cA="Aj\r:cB="AkK\r:
:cC="Al\r:cD="Am\r:cE="An\r:cF="Ao\r:

PO A A S

Type of Capabilities

All capabilities have two letter codes. For instance, the
fact that the Concept has 'automatic margins' (i.e., an
automatic return and linefeed when the end of a line is
reached) is indicated by the capability am. Hence the
description of the Concept includes am. Numeric capabili-
ties are followed by the character '#' and then value.
Thus co, which indicates the number of columns the termi-
nal has, gives the value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to
end of line sequence) are given by the two character code,
an '=', and then a string ending at the next following
':'. A delay in milliseconds may appear after the '=' in
such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to
provide this delay. The delay can be either an integer,
e.g., '20', or an integer followed by an '*', i.e., "3*'.

A '*' indicates that the padding required is proportional
to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required.

TERMCAP(M) TERMCAP(M)

When a '*' is specified, it is sometimes useful to give a
delay of the form '3.5' to specify a delay per unit to
tenths of milliseconds.

A number of escape sequences are provided in the
string-valued capabilities for easy encoding of characters
there. A \E maps to an ESCAPE character, “x maps to a
control-x for any appropriate x, and the sequence \n \r \t
\b \f give a newline, return, tab, backspace and formfeed.
Finally, characters may be given as three octal digits
after a \, and the characters “ and \ may be given as \~
and \\. If it is necessary to place a : in a capability
it must be escaped in octal as \072. If it is necessary
to place a null character in a string capability it must

be encoded as \200. The routines that deal with termcap
use C strings, and strip the high bits of the output very
late so that a \200 comes out as \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
termcap and to build up a description gradually, using
partial descriptions. Be aware that a very unusual termi-
nal may expose deficiencies in the ability of the termcap
file to describe it.

Basic Capabilities

The number of columns on each line for the terminal is
given by the co numeric capability. If the terminal is a
CRT, then the number of lines on the screen is given by
the 1li capability. If the terminal wraps around to the
beginning of the next line when it reaches the right mar-
gin, then it should have an am capability. If the termi-
nal can clear its screen, then this is given by the cl
string capability. If the terminal can backspace, then it
should have the bs capability, unless a backspace is ac-
complished by a character other than “H in which case you
should give this character as the bc string capability.

If it overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capa-
bility.

TERMCAP(M) TERMCAP(M)

A very important point here is that the local cursor mo-
tions encoded in termcap are undefined at the left and top
edges of a CRT terminal. The editor will never attempt to
backspace around the left edge, nor will it attempt to go
up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to
scroll up, and the am capability tells whether the cursor
sticks at the right edge of the screen. If the terminal
has switch selectable automatic margins, the termcap file
usually assumes that this is on, i.e., am.

These capabilities suffice to describe hardcopy and
'glass-tty' terminals. Thus the model 33 teletype is de-
scribed as:

t3]33|tty33:co#72:0s
while the Lear Siegler ADM-3 is described as:

cl|adm3|3|1si adm3:am:bs:cl=":1i#24:co#80

Cursor Addressing

Cursor addressing in the terminal is described by a cm
string capability, with printf(S)-like escapes (%x) in it.
These substitute to encodings of the current line or
column position, while other characters are passed through
unchanged. If the cm string is thought of as being a
function, then its arguments are the line and then the
column to which motion is desired, and the % encodings
have the following meanings:

%d as in printf, 0 origin

%2 like %2d

%3 like %3d

% like %c

%+x adds x to value, then %

BOXY if value > x adds y, no output

%r reverses order of line and column, no output

%i increments lines/column (for 1 orlgm)

% gives a single %

%n exclusive-or (xor) row and column w1th 0140
(DM2500)

%B BCD (16*(x/10)) + (x mod 10), no output

%d Reverse coding (x-2*(x mod 16)), no output

(Delta Data)

TERMCAP(M) TERMCAP(M)

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E&al2c03Y padded for 6 milliseconds.
Note that the order of the rows and columns is inverted
here, and that the row and column are printed as two
digits. Thus its cm capability is 'cm=6\E&%r%2c%2Y'. The
Microterm ACT-IV needs the current row and column sent
preceded by a “T, with the row and column simply encoded
in binary, 'cm="T%%'. Terminals which use '%' need to be
able to backspace the cursor (bs or be), and to move the
cursor up one line on the screen (up introduced below).
This is necessary because it is not always safe to trans-
mit \t, \n "D and \r, as the system may change or discard
them.

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus 'cm=\E=%+ %+ '.

Cursor Moetions

If the terminal can move the cursor one position to the
right, leaving the character at the current position un-
changed, then this sequence should be given as nd
(non-destructive space). If it can move the cursor up a
line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left
corner of screen) then this can be given as ho; similarly,
a fast way of getting to the lower left hand corner can be
given as ll; this may involve going up with up from the
home position, but the editor will never do this itself
(unless 1l does) because it makes no assumption about the
effect of moving up from the home position.

Area Clears

If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this

should be given as ce. If the terminal can clear from the
current position to the end of the display, then this
should be given as e¢d. The editor only uses ¢d from the
first column of a line.

TERMCAP(M) TERMCAP(M)

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as al; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first
position on the line to be deleted. If the terminal can
scroll the screen backwards, then this can be given as sb,
but just al suffices. If the terminal can retain display
memory above, then the da capability should be given; if
display memory can be retained below then db should be
given. These let the editor understand that deleting a
line on the screen may bring non-blank lines up from be-
low, or that scrolling back with sb may bring down
non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using termcap. The most common insert/delete character
options affect only the characters on the current line and
shift characters off the end of the line. Other termi-

nals, such as the Concept 100 and the Perkin Elmer Owl,
make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an un-
typed blank on the screen which is either eliminated, or
expanded to two untyped blanks.

You can find out which kind of terminal you have by clear-
ing the screen and then typing text separated by cursor
motions. Type abce def using local cursor motions (not
spaces) between the abc and the def. Then position the
cursor before the 'abc' and put the terminal in insert
mode. If typing characters causes the rest of the line to
shift rigidly and characters to fall off the end, then

your terminal does not distinguish between blanks and un-
typed positions. If the 'abc' shifts over to the 'def,’
which then move together around the end of the current
line and onto the next as you insert, you have the second
type of terminal, and should give the capability in, which
stands for 'insert null'. If your terminal does something
different and unusual then you may have to modify the edi-

10

TERMCAP(M) TERMCAP(M)

tor to get it to use the insert mode your terminal de-
fines. No known terminals have an insert mode not falling
into one of these two classes.

The editor can handie both terminals that have an insert
mode and terminals which send a simple sequence to open a
blank position on the current line. Give as im the se-
quence to get into insert mode, or give it an empty value
if your terminal uses a sequence to insert a blank posi- -
tion. Give as ei the sequence to leave insert mode (give
an empty value also if you gave im an empty value). Now
give as ic any sequence needed to be sent just before
sending the character to be inserted. Most terminals with
a true insert mode will not give ic; terminals that send a
sequence to open a screen position should give it here.
(Insert mode is preferable if a terminal has both.) If

post insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in in-
sert mode to delete characters on the same line (e.g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mi because of the way its insert mode
works.

Finally, you can specify delete mode by entering dm and ed
to enter and exit delete mode, and dc to delete a single
character while in delete mode.

N

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout
mode, these can be given as so and se respectively. If
there are several types of standout mode, (such as inverse
video, blinking, or underlining), the preferred mode is
inverse video by itself. If the code to change into or

out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, this is
acceptable, and although it may confuse some programs
slightly, it can't be helped.

11

TERMCAP(M) TERMCAP(M)

Codes to begin underlining and end underlining can be
given as us and ue respectively. If the terminal has a
code to underline the current character and move the cur-
sor one space to the right, such as the Microterm Mime,
this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a
nondestructive space.)

If the terminal has a way of flashing the screen to indi-
cate an error quietly (a bell replacement) then this can

be given as vb; it must not move the cursor. If the ter-
minal should be placed in a different mode during open and
visual modes of ex, this can be given as vs and ve, sent
at the start and end of visual mode respectively. These
can be used to change from a underline to a block cursor
and back.

If the terminal needs to be in a special mode when running
a program that addresses the cursor, the codes to enter
and exit this mode can be given as ti and te. This

arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only
memory-relative cursor addressing and not screen relative
cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters
(with no special codes needed), even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note
that it is not possible to handle terminals where the key-
pad only works in local mode (this applies for example, to
the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke.
Otherwise the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kl, kr, ku, kd, and
kh respectively. If there are function keys such as f0,
f1, ..., f9, the codes they send can be given as kO, ki,
..., k9. If these keys have labels other than the default

12

TERMCAP(M) TERMCAP(M)

f0 through f9, the labels can be given as 10, 11, ..., 19.

If there are other keys that transmit the same code as the
terminal expects for the corresponding function, such as
clear screen, the termcap 2 letter codes can be given in
the ko capability, for example, ':ko=cl,ll,sf,sb:', which

says that the terminal has clear, home down, scroll down,
and scroll up keys that transmit the same thing as the cl,
11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on termi-
nals which have single character arrow keys. It is obso-
lete but still in use in version 2.0 of vi, which must be

run on some minicomputers due to memory limitations. This
field is redundant with kl, kr, ku, kd, and kh. It con-
sists of groups of two characters. In each group, the

first character is what an arrow key sends, the second
character is the corresponding vi command. These command.
are h for kl, j for kd, k for ku, 1 for kr, and H for kh.
For example, the mime would be :ma="Kj"k"Xl: indicating
arrow keys left ("H), down (“K), up (°), and right ("“X).
(There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) charac-
ter as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the termi-
nal uses a character other than “I to tab, then this can
be given as ta.

Hazeltine terminals, which don't allow '~~' characters to
be printed should indicate hz. Datamedia terminals, which
echo carriage-return linefeed for carriage return and then
ignore a following linefeed should indicate ne. Early
Concept terminals, which ignore a linefeed immediately
after an am wrap, should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing
on top of it), xs should be given. Teleray terminals,
where tabs turn all characters moved over to blanks,
should indicate xt. Other specific terminal problems may
be corrected by adding more capabilities of the form xz.
Other capabilities include is, an initialization string

for the terminal, and if, the name of a file containing
long initialization strings. These strings are expected

to properly clear and then set the tabs on the terminal,

13

TERMCAP(M) TERMCAP(M)

if the terminal has settable tabs. If both are given, is
will be printed before if. This is useful where if is
/usr/lib/tabset/atd, but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be de-
fined as being just like the other with certain excep-
tions. The string capability tc can be given with the
name of the similar terminal. This capability must be
last and the combined length of the two entries must not
exceed 1024, Since termlib routines search the entry from
left to right, and since the tc capability is replaced by
the corresponding entry, the capabilities given at the

left override the ones in the similar terminal. A capa-
bility can be cancelled with xx@, where xx is the capabil-
ity. For example:

hh|2621nl:ks@:ke@:tc=2621:
This defines a 2621nl that does not have the ks or ke cap-
abilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

Files

/etc/termeap File containing terminal descriptions.

Related Commands

ex(C), tset(C), more(C)
Credit

This utility was developed at the University of California
at Berkeley and is used with permission.

14

TERMCAP(M) TERMCAP(M)

Notes
Use of term(M) is preferred.
Ex(C) allows only 256 characters for string capabilities,
and the routines in termcap do not check for overflow of
this buffer. The total length of a single entry
(excluding only escaped newlines) may not exceed 1024.

The ma, vs, and ve entries are specific to the vi(C) pro-
gram,

Not all programs support all entries. There are entries
that are not supported by any program.

15

TERMINALS(M) TERMINALS(M)

Name

terminals - Supported terminals.

Description

The /etc/termcap file and the /usr/lib/terminfo directory
contain two types of descriptions: terminals that have
been tested and are supported by Altos, and terminals that
are supplied for information only. The corresponding
names can be used to assign the terminal type to TERM
(see environ(M)).

If you wish to add a terminal from the "information only"
section of one of the terminfo files, choose a description
that closely resembles the terminal you are adding. Put
the terminal description in a file, and edit it to suit
your needs. Use tic(C) to compile the file by typing the
following:

tic filename

Files

/etc/termcap
/usr/lib/terminfo/* /*

TERMINFO(M) ‘ TERMINFO(M,

Name

terminfo - Terminal capability database.

Syntax

/usr/lib/terminfo/* /¥

Description

Terminfo is a database describing terminals, used, for
example, by curses(S). Terminals are described in
terminfo by giving a set of capabilities that they have,
and by describing how operations are performed. Padding
requirements and initialization sequences are included.

Entries in terminfo consist of a number of comma-separated
fields. White space after each comma (,) is ignored. The
first entry for each terminal gives the names which are
known for the terminal, separated by vertical bar (|)
characters. The first name given is the most common ab-
breviation for the terminal, the last name given should be
a long name fully identifying the terminal, and all others
are understood as synonyms for the terminal name. All
names but the last should be in lower case and contain no
blanks, the last name may well contain upper case and
blanks for readability.

Terminal names (except for the last, verbose entry) should
be chosen using the following conventions. The particular
piece of hardware making up the terminal should have a
root name chosen, thus alt3 for the Altos III terminal.
This name should not contain hyphens, except that synonyms
may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator
of the mode. Thus, a vt100 in 132 column mode would be
vt100-w. The following suffixes should be used where pos-
sible:

TERMINFO(M) TERMINFO(M)

Suffix Meaning Example
-W Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) ¢100-na
-np Number of pages of memory c100-4p
-rv Reverse video cl100-rv
Capabilities

The variable is the name by which the programmer (at the
terminfo level) accesses the capability. The capname is
the short name used in the text of the database, and is
used by a person updating the database. The i.code is the
two letter internal code used in the compiled database,
and always corresponds to the old termcap(M) capability
name.

Capability names have no hard length limit, but an in-
formal limit of five characters has been adopted to keep
them short and to allow the tabs in the source file caps

to line up nicely. Whenever possible, names are chosen to
be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specifi-
" cation.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm
with parms as given (#i)

(*) indicates that padding may be based on the number of
lines affected

(#{) indicates the ith parameter

TERMINFO(M)

TERMINFO(M)

Variable Cap- Termcap
name Code Description

Booleans:
auto_left_margin, bw bw cubl wraps from column 0 to last column
auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (fl=escape. f2=ctrl C)
ceol_standout_glitch, xhp Xs Standout (not erased by overwriting (hp)
eat_newline_glitch, xenl xn newline ignored after 80 cols {(Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type. gn gn Generic line type (e.g., dialup. switch)
hard_copy. hc he Hardcopy terminal
has_meta_key, km km Has a meta key (shift, sets parity bit)
has_status_line, hs hs Has extra "status line”
insert_null glitch. in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the screen
memory_below, db db Display may be retained below the screen
move_insert_mode, mir mi Safe to move while in insert modes
move_standout_mode. msgr ms Safe to move in standout modes
over_strike, os os Terminal overstrikes
status_line_esc_ok. eslok es Escape can be used on the status line
teleray_glitch. xt xt Tabs ruin. magic so char (Teleray 1061)
tilde_glitch, hz hz Hazeltine: cannot print "'s
transparent_underline, ul ul Underline character overstrikes
xon_xoff, xon xo Terminal uses xon/xoff handshaking
Numbers:
column, cols co Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines 1i Number of lines on screen or page
lines_of_memory, 1im lm Lines of memory if > lines. O means varies
magic_cookie_glitch, xmc sg Number of blank chars left by smso or rmso
padding_baud_rate, pb pb Lowest baud where cr/nl padding is needed
virtual_terminal, vt vt = Virtual terminal number (UNIX system)
width_status_line, wsl ws No. columns in status line

TERMINFO(M) TERMINFO(M)

Variable Cap~ Termcap

name Code Description
Strings:
acs_chars acsc ac Graphic char set pairs aAbBcC - def = vt1l00+
back_tab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P¥*)
change_scroll_region, csr cs Change to lines #1 through #2 (vt100) (PG)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear_screen, clear cl Clear screen and home cursor (P¥)
clr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P¥)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term.settable cmd char in prototype
curéor_address, cup cm Screen rel. cursor motion row #1 col #2 (PG)
cursor_down, cudl do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible. civis vi Make cursor invisible
cursor_left, cubl le Move cursor left one space
cursor_mem_address, mrcup CM Memory relative cursor addressing
cursor_normal. cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right, cufl nd Non-destructive space (cursor right)
cursor_to_11, 11 11 Last line, first column (if no cup)
cursor_up. cuul up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P¥)
delete_line, dil dl Delete line (P¥*)
dis_status_line, dsl ds Disable status line
down_half_line, hd hd Half-line down (forward 1/2 linefeed)
enter_alt_charset_mode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Turn on blinking
enter _bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs that use cup
enter delete_mode, smdc dm Delete mode (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter)
enter_protected_mode. prot mp Turn on protected mode
enter_reverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars invisible)
enter_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode

TERMINFO(M)

TERMINFO(M)

Variable Cap- Termcap

name Code Description
erase_chars ech ‘ec Erase #1 characters (PG)
exit_alt_charset_mode, rmacs ae End alternate character set (P)
exit_attribute_mode. sgr0 me Turn off all attributes
exit_ca_mode, rmcup te String to end programs that use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir ei End insert mode
exit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, fr 134 Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_lstring, isl i1 Terminal initialization string
init_2string. is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init_file, if if Name of file containing is
insert_character. ichl ic Insert character (P)
insert_line, ill al Add new blank line (P*)
insert_padding. ip ip Insert pad after character inserted (P*)
key_backspace. kbs kb Sent by backspace key
key catab, ktbc ka Sent by clear-all-tabs key
key clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_di, kdll kL Sent by delete line key
key_down. kcudl kd Sent by terminal down arrow key
key_eic. krmir kM Sent by rmir or smir in insert mode
key_eol. kel kE Sent by clear-to-end-of-line key
key_eos. ked ks Sent by clear-to-end-of-screen key
key_f0 kf0 kO Sent by function key fO
key f1. kfl k1l Sent by function key f1
key_£10, k£10 ka Sent by function key f10
key_f2. kt2 k2 Sent by function key f2
key_ f£3. k3 k3 Sent by function key f3
key_ f4. kf4 k4 Sent by function key f4
key_f£5, 1343 k5 Sent by function key £5
key_f£6. kfé k6 Sent by function key fé
key_f£7. kE?7 k7 Sent by function key f7
key_£8, k8 k8 Sent by function key f8
key_ £9. kf9 k9 Sent by function key f9

TERMINFO(M)

TERMINFO(M)

Variable Cap- Termcap
name Code Description

key_home, khome kh Sent by home key
key_ic., kichl kI Sent by ins char/enter ins mode key
key il, kill kA Sent by insert line
key_left, kcubl k1l Sent by terminal left arrow key
key 11, kl1 kH Sent by home-down key
key npage, knp kN Sent by next-page key
key_ppage. kpp kP Sent by previous-page key
key_right, kcufl kr Sent by terminal right arrow key
key_sf. kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key
key_stab. khts kT Sent by set-tab key
key_up. kcuul ku Sent by terminal up arrow key
keypad_local. rmkx ke Out of "keypad transmit"” mode
keypad_xmit., smkx ks Put terminal in "keypad transmit" mode
lab_fo0, 1f0 10 Labels on function key f0 if not f0
lab_f1, 1f1 11 Labels on function key f1l if not f1
lab_f10. 1£10 la Labels on function key f10 if not f10
lab_f2, 1£2 12 Labels on function key f2 if not f2
lab_f3, 1£f3 13 Labels on function key f3 if not £3
lab_f4, 1£4 14 Labels on function key f4 if not f4
lab_f£5, 1£5 15 Labels on function key f5 if not f£5
lab_f6, 1f6 16 Labels on function key £6 if not f6
lab_£7, 1£7 17 Labels on function key £f7 if not f7
lab_f8, 1£8 18 Labels on function key f8 if not £8
lab_f£9. 1£9 19 Labels on function key £f9 if not £9
meta_on, smm mm Turn on "meta mode" (8th bit)
meta_off., rmm mo Turn off "meta mode”
newline, nel nw Newline (behaves like cr followed by 1f)
pad_char. pad pc Pad character (rather than null)
parm_dch, dch DC Delete #1 chars (PG*)
parm_delete_line, da1 DL Delete #1 lines (PG¥)
parm_down_cursor. cud DO Move cursor down #1 lines (PG*)
parm_ich, ich IC Insert #1 blank chars (PG*)
parm_index, indn SF Scroll forward #1 lines (PG)
parm_insert_line il AL Add #1 new blank lines (PG¥*)
parm_left_cursor, cub LE Move cursor left #l1 spaces (PG)
parm_right_cursor. cuf RI Move cursor right #1 spaces (PG¥*)
parm_rindex, rin SR Scroll backward #1 lines (PG)
parm_up_cursor. cuu)4 Move cursor up #1 lines (PG¥)

TERMINFO(M)

TERMINFO(M)

Variable Cap~ Termcap
name Code Description

pkey_key. pfkey pk Prog funct key #1 to type string #2
pkey_local, pfloc pl Prog funct key #1 to execute string #2
pkey_xmit, pfx px Prog funct key #1 to xmit string #2
print_screen, mcO ps Print contents of the screen
prtr_off. mc4 pf Turn off the printer
prtr_on, mcS po turn on the printer
repeat_char, rep rp Repeat char #1 #2 times (PG¥)
reset_lstring, rsl rl Reset terminal completely to sane modes
reset_2string, rs2 r2 Reset terminal completely to sane modes
reset_3string. rs3 r3 Reset terminal completely to sane modes
reset_file, rf rf Name of file containing reset string
restor_cursor, re rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute (set row) (PG)
save_cursor. sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab. hts st Set a tab in all rows. current column
set_window. wind wi Current window is lines #1-#2 cols #3-#4
tab. ht ta Tab to next 8 space hardware tab stop
to_status_line. tsl ts Go to status line., column #1
underline_char, uc uc Underscore one char and move past it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al. kal K1l Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key cl, kel Ké Lower left of keypad
key_c3. kc3 K5 Lower right of keypad
prtr_non mecSp pO Turn on the printer for #1 bytes

TERMINFO(M) TERMINFO(M)

A Sample Entry

The following is a complex example that describes a
Concept-100.

concept100|c100|c104|c100-4p|concept 100,
am, bel="G, blank=\EH, blink=\EC, clear="L$<2*>, cnorm=\Ew,
cols#80, cr="M$<9>, cubl="H, cudl="J, cufl=\E=,
cup=\Ea%pl%' '%+%c%p2%’' '%+%c,
cuul=\E;, cvvis=\EW, db, dchl=\E"A$<16*>, dim=\EE:, dll=E"B$<3%),
ed=\E C$<16*>, el=\E"U$<16>, eo, flash=\EK$<20>\EK, ht=\t$<8>,
ill=\E"R$<3*>, in, ind="J., .ind="J$<9>. ip=$<16*>,
is2=\EU\Ef\E7\E5\E8\E1\ENH\EK\E\200\Eo&\ 200\Eo\47\E,
kbs="h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E:,
kfl=\E5, kf2=\E6, kf3=\E7, khome=\E?,
lines#24. mir, pb#9600, prot=\EI, rep=\Er%pl%c%p2%' '%+%c$<.2%>,
rev=\ED, rmcup=\EV $<6>\Ep\r\n., rmir=\E\200., rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg. rmul=\Eg, sgr0=\EN\200,
smcup=\EU\Ev 8p\Ep\r, smir=\E“P, smkx=\EX, smso=\EE\ED.
smul=\EG., tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white
space at the beginning of each line except the first.
Comments may be included on lines beginning with a #.

Capabilities in terminfo are of three types: Boolean cap-
abilities which indicate that the terminal has some par-
ticular feature, numeric capabilities giving the size of
the terminal or the size of particular delays, and string
capabilities, which give a sequence that can be used to
perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the Concept-
100 has automatic margins (i.e., an automatic return and
linefeed when the end of a line is reached) which is in-
dicated by the capability am. Numeric capabilities are

followed by the character # and then the value. Thus,

cols, which indicates the number of columns the terminal
has, gives the value 80 for the Concept.

Finally, string valued capabilities, such as el (clear to

end of line sequence) are given by the two-character code,
an =, and then a string ending at the next following ,. A
delay in milliseconds may appear anywhere in such a capa-

TERMINFO(M) TERMINFO(M)

bility, enclosed in $<..> brackets, as in el=\EK$<3>, and
padding characters are supplied by tputs to provide this
delay. The delay can be either a number, e.g., 20, or a
number followed by an *, i.e., 3*. A * indicates that the
padding required is proportional to the number of lines
affected by the operation, and the amount given is the
peraffected-unit padding required. (In the case of insert
character, the factor is still the number of lines af-
fected. This is always one unless the terminal has xenl
and the software uses it.) When a * is specified, it is
sometimes useful to give a delay of the form 3.5 to speci-
fy a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

A number of escape sequences are provided in the string
valued capabilities for each encoding of characters there.
Both \E and \e map to an ESCAPE character, “x maps to a
control-x for any appropriate x, and the sequences \n \l

\r \t \b \f \s give a newline, linefeed, return, tab,
backspace, formfeed, and space. Other escapes include \~
for °, \\ for \, \, for comma, \: for :, and \0 for null.
(\0 will produce \200, which does not terminate a string
but behaves as a null character on most terminals.)

Sometimes individual capabilities must be commented out.
To do this, put a period before the capability name.

Preparing Terminal Descriptions

The most effective way to prepare a terminal description

is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using
partial descriptions with vi(C) to check that they are
correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the terminfo file to de-

scribe it or bugs in vi. To easily test a new terminal
description you can set the environment variable TERMINFO
to a pathname of a directory containing the compiled de-
scription you are working on and programs will look there
rather than in /usr/lib/terminfo. To get the padding for
insert line right (if the terminal manufacturer did not
document it) a severe test is to edit a test file at 9600
baud, delete 16 or so lines (i.e., d16d) from the middle

of the screen, then press the u key several times quickly.
If the terminal messes up, more padding is usually needed.
A similar test can be used for insert character.

TERMINFO(M) TERMINFO(M)

Basic Capabilities

The number of columns on each line for the terminal is
given by the cols numeric capability. If the terminal is

a CRT, then the number of lines on the screen is given by
the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right mar-
gin, then it should have the am capability. If the ter-
minal can clear its screen, leaving the cursor in the home
position, then this is given by the clear string capabili-

ty. If the terminal overstrikes (rather than clearing a
position when a character is struck over) then it should
have the os capability. If the terminal is a printing
terminal, with no soft copy unit, give it both he and os.
(os applies to storage scope terminals, such as TEKTRONIX
4010 series, as well as hardcopy and APL terminals.) If
there is a code to move the cursor to the left edge of the
current row, give this as er. (Normally this will be car-
riage return, control M.) If there is a code to produce an
audible signal (bell, beep, etc.) give this as bel.

If there is a code to move the cursor one position to the
left (such as backspace) that capability should be given

as cubl. Similarly, codes to move to the right, up, and
down should be given as cufl, cuul, and cudl. These local
cursor motions should not alter the text they pass over,
for example, you would not normally use 'cufl=' because
the space would erase the character moved over.

A very important point here is that the local cursor mo-
tions encoded in terminfo are undefined at the left and
top edges of a CRT terminal. Programs should never at-
tempt to backspace around the left edge, unless bw is
given, and never attempt to go up locally off the top. In
order to scroll text up, a program will go to the bottom
left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner
of the screen and sends the ri (reverse index) string.

The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indn
and ri except that they take one parameter, and scroll
that many lines. They are also undefined except at the
appropriate edge of the screen.

10

TERMINFO(M) TERMINFO(M)

The am capability tells whether the cursor sticks at the
right edge of the screen when text is output, but this
does not necessarily apply to a cufl from the last column.
The only local motion which is defined from the left edge
is if bw is given, then a cubl from the left edge will
move to the right edge of the previous row, If bw is not
given, the effect is undefined. This is useful for draw-
ing a box around the edge of the screen, for example.

If the terminal has switch selectable automatic margins,
the terminfo file usually assumes that this is on; i.e.,
am. If the terminal has a command which moves to the
first column of the next line, that command can be given
as nel (newline). It does not matter if the command
clears the remainder of the current line, so if the ter-
minal has no cr and If it may still be possible to craft a
working nel out of one or both of them.

These capabilities suffice to describe hardcopy and
glass-tty terminals. Thus the model 33 teletype is de-
scribed as:

33| tty33|model 33 teletype.
bel="G, cols#72, cr="M, cudl="J, hc, ind="J, os,

while the Lear Siegler ADM-3 is described as:

adm3|3|1si adm3,
am, bel="G. clear=", cols#80. cr="M. cubl="H, cudl="J,
ind="J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters

in the terminal are described by a parameterized string
capability, with prinf(S) like escapes %x in it. For ex-
ample, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor ad-
dressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes
to manipulate it. Typically a sequence will push one of
the parameters onto the stack and then print it in some
format. Often more complex operations are necessary.

11

TERMINFO(M) TERMINFO(M)

The % encodings have the following meanings:

%% outputs '%'

%d print pop() as in printf

%2d print pop() like %2d

%3d print pop() like %3d

%02d

%03d as in printf

%c print pop() as %c

%s print pop() as %s

%p[1-9] push ith parm

$Pla-z] set variable [a-z] to pop()

%gla-z] get variable [a-z] and push it

%'c' char constant ¢

%{nn} integer constant nn

%+%-%*%/%m

arithmetic (%m is mod): push(pop() op pop())

$&%|%" bit operations: push(pop() op pop())

$=%>%< logical operations: push(pop() op
pop())

%1% unary operations push(op pop())

%i add 1 to first two parms (for ANSI
terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? cl %tbl %ec2 %tb2 %ec3 %tb3 %ec4
%tbd %e%;
ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in
the usual order. That is, to get x-5 one would use
%gx%{5}%-.

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E%&al2c03Y padded for six milliseconds.
Note that the order of the rows and columns is inverted
here, and that the row and column are printed as two
digits. Thus its cup capability is cup=6\E&%p2%2dc%pl%2dY.

The Microterm ACT-IV needs the current row and column
sent preceded by a “T, with the row and column simply en-
coded in binary, cup="T%pl%c%p2%c. Terminals which use %c
need to be able to backspace the cursor (cubl), and to

12

TERMINFO(M) TERMINFO(M)

move the cursor up one line on the screen (cuul). This is
necessary because it is not always safe to transmit \n "D
and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so
that tabs are never expanded, so \t is safe to send. This
turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus cup=\E=%pl%’
'%+%c%p2%' '%+%c. After sending '\E=', this pushes the
first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the
two previous values) and outputs that value as a charac-
ter. Then the same is done for the second parameter.
More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addres-
sing, these can be given as single parameter capabilities
.hpa (horizontal position absolute) and vpa (vertical posi-
tion absolute). Sometimes these are shorter than the more
general two parameter sequence (as with the hp2645) and
can be used in preference to cup. If there are parameter-
ized local motions (e.g., move n spaces to the right)

these can be given as cud, cub, cuf, and cuu with a single
parameter indicating how many spaces to move. These are
primarily useful if the terminal does not have cup, such

as the TEKTRONIX 4025,

Cursor Motions

If the terminal has a fast way to home the cursor (to the
very upper left corner of screen) then this can be given

as home; similarly a fast way of getting to the lower
left-hand corner can be given as ll; this may involve go-
ing up with cuul from the home position, but a program
should never do this itself (unless 1l does) because it

can make no assumption about the effect of moving up from
the home position. Note that the home position is the
same as addressing to (0,0): to the top left corner of

the screen, not of memory. (Thus, the \EH sequence on HF
terminals cannot be used for home.)

13

TERMINFO(M) TERMINFO(M)

Area Clears

If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this
should be given as el. If the terminal can clear from the
current position to the end of the display, then this
should be given as ed. Ed is only defined from the first
column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed(C) is not
available.)

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as ill; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this
should be given as dll; this is done only from the first
position on the line to be deleted. Versions of ill and

dll which take a single parameter and insert or delete
that many lines can be given as il and dl. If the termi-
nal has a settable scrolling region (like the vt100) the
command to set this can be described with the csr capabil-
ity, which takes two parameters: the top and bottom lines
of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get
the effect of insert or delete line using this command --
the sc and rc (save and restore cursor) commands are also
useful. Inserting lines at the top or bottom of the

screen can also be done using ri or ind on many terminals
without a true insert/delete line, and is often faster

even on terminals with those features.

If the terminal has the ability to define a window as part
of memory, which all commands affect, it should be given
as the parameterized string wind. The four parameters are
the starting and ending lines in memory and the starting
and ending columns in memory, in that order.

If the terminal can retain display memory above, then the
da capability should be given; if display memory can be
retained below, then db should be given. These indicate
that deleting a line or scrolling may bring non-blank

lines up from below or that scrolling back with ri may
bring down non-blank lines.

14

TERMINFO(M) TERMINFO(M.,

Insert/Delete Character

There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using terminfo. The most common insert/delete character
operations affect only the characters on the current line
and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either
eliminated, or expanded to two untyped blanks.

You can determine the kind of terminal you have by clear-
ing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the
cursor before the abe and put the terminal in insert mode.
If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your ter-
minal does not distinguish between blanks and untyped po-
sitions. If the abc shifts over to the def which then
move together around the end of the current line and onto
the next as you insert, you have the second type of ter-
minal, and should give the capability in, which stands for
insert null. While these are two logically separate at-
tributes (one line vs. multiline insert mode, and special
treatment of untyped spaces), no known terminals have an
insert mode that cannot be described with the single at-
tribute.

Terminfo can describe both terminals which have an insert
mode, and terminals which send a simple sequence to open
blank position on the current line. Give as smir the se-
quence to get into insert mode. Give as rmir the sequence
to leave insert mode. Now give as ichl any sequence
needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not
give ichl; terminals which send a sequence to open a
screen position should give it here. (If your terminal

has both, insert mode is usually preferable to ichl. Do
not give both unless the terminal actually requires both
to be used in combination.) If post insert padding is
needed, give this as a number of milliseconds in ip (a
string option).

15

TERMINFO(M) TERMINFO(M)

Any other sequence which may need to be sent after an in-
sert of a single character may also be given in ip. If
your terminal needs both to be placed into an insert mode
and a special code to precede each inserted character,
then both smir/rmir and ichl can be given, and both will
be used. The ich capability, with one parameter, n, will
repeat the effects of ichl n times.

It is occasionally necessary to move around while in in-

sert mode to delete characters on the same line (e.g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the way
their insert mode works. .

Finally, you can specify dchl to delete a single charac-
ter, dch with one parameter, n, to delete n characters,

and delete mode by giving smde and rmdc to enter and exit
delete mode (any mode the terminal needs to be placed in
for dchl to work).

A command to erase n characters (equivalent to outputting
n blanks without moving the cursor) can be given as ech
with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attri-
butes, these can be represented in a number of different
ways. You should choose one display form as standout
mode, representing a good, high contrast, easy-on-the-
eyes, format for highlighting error messages and other
attention getters. (If you have a choice, reverse video
plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as
smso and rmso, respectively. If the code to change into
or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do,
then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be
given as smul and armul respectively. If the terminal has
a code to underline the current character and move the
cursor one space to the right, such as the Microterm Mime,
this can be given as uec.

16

TERMINFO(M) TERMINFO(M)

Other capabilities to enter various highlighting modes

include:
blink blinking
bold bold or extra bright
dim dim or half-bright
invis blanking or invisible text
prot protected
rev reverse video
sgr0 turn off all attribute modes
smacs enter alternate character set mode
rmacs exit alternate character set mode

Turning on any of these modes singly may or may not turn
off other modes.

If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes), tak-
ing 9 parameters. Each parameter is either 0 or 1, as the
corresponding attribute is on or off. The 9 parameters
are, in order: standout, underline, reverse, blink, dim,
bold, blank, protect, alternate character set. Not all
modes need be supported by sgr, only those for which cor-
responding separate attribute commands exist.

Terminals with the "magic cookie" glitch (xme) deposit
special "cookies" when they receive mode-setting se-
quences, which affect the display algorithm rather than
having extra bits for each character. Some terminals,

such as the HP2621, automatically leave standout mode whei
they move to a new line or the cursor is addressed. Pro-
grams using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout
mode, is present.

If the terminal has a way of flashing the screen to indi-

cate an error quietly (a bell replacement) then this can
be given as flash; it must not move the cursor.

17

TERMINFO(M) TERMINFO(M)

If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example, a
non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis. If there
is a way to make the cursor completely invisible, give

that as cvis. The capability ecnorm should be given, which
undoes the effects of both of these models.

If the terminal needs to be in a special mode when running
a program that uses these capabilities, the codes to enter
and exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative
cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.
This is also used for the TEKTRONIX 4025, where smcup
sets the command character to the one used by terminfo.

If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then indicate this
by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note

that it is not possible to handle terminals where the key-
pad only works in local (this applies, for example, to the
unshifed HP2621 keys). If the keypad can be set to trans-
mit or not to transmit, give these codes as smkx and rmkx.
Otherwise, the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kcubl, kcufl, kcuul,
kcudl, and khome respectively. If there are function keys
such as f0, f1, ..., f10, the codes they send can be given
as kfo, kfl, ..., kf10. If these keys have labels other
than the default f0 through f10, the labels can be given
as 1fo0, Ifl1, ..., If10. The codes transmitted by certain
other special keys can be given: kll (home down), kbs
(backspace), ktbe (clear all tabs), kctab (clear the tab
stop in this column), kclr (clear screen or erase key),
kdchl (delete character), kdll (delete line), krmir (exit
insert mode), kel (clear to end of line), kill (insert

18

TERMINFO(M) TERMINFO(M)

Tabs

line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab
stop in this column). In addition, if the keypad has a 3
by 3 array of keys including the four arrow keys, the
other five keys can be given as kal, ka3, kb2, kel, and
ke3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

and Initialization

If the terminal has hardware tabs, the command to advance
to the next tab stop can be given as ht (usually

control-I). A "backtab" command (move left to the next
tab stop) can be given as c¢bt. By convention, if the
teletype modes indicate that tabs are being expanded by
the computer rather than being sent to the terminal, pro-
grams should not use ht or cbt even if they are present,
since the user may not have the tab stops properly set.

If the terminal has hardware tabs which are initially set
every n spaces when the terminal is powered up, the nu-
meric parameter it is given, showing the number as spaces
the tabs are set to. This is normally used by the tset(C)
command to determine whether to set the mode for hardwar
tab expansion, and whether to set the tab stops. If the
terminal has tab stops that can be saved in nonvolatile
memory, the terminfo description can assume that they are
properly set.

Other capabilities include isl, is2, and is3, initializa-

tion strings for the terminal, iprog, the path name of a
program to be run to initialize the terminal, and if, the
name of a file containing long initialization strings.

These strings are expected to set the terminal into modes
consistent with the rest of the terminfo description.

They are normally sent to the terminal by the tset(C) pro-
gram each time the user logs in. They will be printed in
the following order: 1isl; is2; setting tabs using tbc and
hts; if; running the program iprog; and finally is3. Most
initialization is done with is2,

Special terminal modes can be set up without duplicating
strings by putting the common sequences in is2 and special
cases in isl and is3. A pair of sequences that does a
harder reset from a totally unknown state can be analog-
ously given as rsl, rs2, and rs3, analogous to is2 and if.
These strings are output by the reset program, which is

19

TERMINFO(M) TERMINFO(M)

used when the terminal gets into a wedged state. Com-
mands are normally placed in rs2 and rf only if they pro-
duced annoying effects on the screen and are not necessary
when logging in. For example, the command to set the
vt100 into 80-column mode would normally be part of is2,
but it causes an annoying glitch of the screen and is not
normally needed since the terminal is usually already in

80 column mode.

If there are commands to set and clear tab stops, they can
be given as tbe (clear all tab stops) and hts (set a tab
stop in the current column of every row). If a more com-
plex sequence is needed to set the tabs than can be de-
scribed by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driv-
er. These are primarily needed by hardcopy terminals, and
are used by the tset program to set teletype modes appro-
priately. Delays embedded in the capabilities cr, ind,
cubl, ff, and tab will cause the appropriate delay bits to
be set in the teletype driver. If pb (padding baud rate)
is given, these values can be ignored at baud rates below
the value of pb.

Line Graphics

If the terminal has a line drawing alternate character

set, the mapping of glyph to character would be given in
acsc. The definition of this string is based on the al-
ternate character set used in the DEC VT100 terminal,
extended slightly with some modifications from the AT&T
4410vl terminal. These characters and their corresponding
glyphs are shown in the following table:

20

TERMINFO(M) TERMINFO(M)

Glyph Name VT100+ Character

arrow pointing right +
arrow pointing left ,
arrow pointing down
solid square block
lantern symbol

arrow pointing up
diamond

checker board (stipple)
degree symbol
plus/minus

board of squares
lower right corner
upper right corner
upper left corner
lower left corner

plus

scan line 1

horizontal line

scan line 9

left tee

right tee

bottom tee

top tee

vertical line

bullet

-l -

IKEgAE TN Q0B "R TR A

The best way to describe a terminal's line graphics set is
to add a third column to the above table with the charac-
ters for the new terminal that produce the appropriate
glyph when the terminal is in the alternate character set
mode. An example is on the following page:

21

TERMINFO(M) TERMINFO(M)

Glyph Name VT100+ New tty
Char. Char.

upper left corner
lower left corner
upper right corner
lower right corner
horizontal line
vertical line

Moy
QST

Specify the characters defining the new tty character set
in a left-to-right order, as shown in the following ex-
ample (taken from the example above):

acsc=1RmFKkT jGq\.x.

Miscellaneous

If the terminal requires other than a null (zero) charac-
ter as a pad, then this can be given as pad. Only the
first character of the pad string is used.

If the terminal has an extra "status line" that is not
normally used by software, this fact can be indicated. If
the status line is viewed as an extra line below the bot-
tom line, into which one can cursor address normally (such
as the Heathkit h19's 25th line, or the 24th line of a
vt100 which is set to a 23-line scrolling region), the
capability hs should be given. Special strings to go to
the beginning of the status line and to return from the
status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl.
If necessary, the sc and rc strings can be included in tsl
and fsl to get this effect.) The capability tsl takes one
parameter, which is the column number of the status line
the cursor is to be moved to.

If escape sequences and other special commands, such as
tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If
the terminal has commands to save and restore the position

22

TERMINFO(M) TERMINFO(M)

of the cursor, give them as sc and rc. The status line is
normally assumed to be the same width as the rest of the
screen, e.g., cols. If the status line is a different

width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be
indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can
be indicated with hu (half-line up) and hd (half-line
down). This is primarily useful for superscripts and sub-
scripts on hardcopy terminals. If a hardcopy terminal can
eject to the next page (form feed), give this as ff
(usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number
of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the
character to be repeated and the second is the number of
times to repeat it. Thus, tparm(repeat_char, 'x', 10) is
the same as 'XXXXXXXXXX'.

If the terminal has a settable command character, such as
the TEKTRONIX 4025, this can be indicated with emdch. A
prototype command character is chosen which is used in all
capabilities. This character is given in the cmdch capa-
bility to identify it. The following convention is sup-
ported on some UNIX systems: The environment is to be
searched for a CC variable, and if found, all occurrences
of the prototype character are replaced with the character
in the environment variable.

Terminal descriptions that do not represent a specific
kind of known terminal, such as switch, dialup, patch, and
network, should include the gn (generic) capability so
that programs can complain that they do not know how to
talk to the terminal. (This capability does not apply to
virtual terminal descriptions for which the escape se-
quences are known.)

If the terminal uses xon/xoff handshaking for flow con-
trol, give xon. Padding information should still be in-

cluded so that routines can make better decisions about
costs, but actual pad characters will not be transmitted.

23

TERMINFO(M) TERMINFO(M)

If the terminal has a "meta key" that acts as a shift
key, setting the eighth bit of any character transmitted,
this fact can be indicated with km. Otherwise, software
will assume that the eighth bit is parity and it will
usually be cleared. If strings exist to turn this "meta
mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on
the screen at once, the number of lines of memory can be
indicated with Im. A value of Im#0 indicates that the
number of lines is not fixed, but that there is still more
memory than fits on the screen.

If the terminal is one of those supported by the UNIX
virtual terminal protocol, the terminal number can be
given as vt. Media copy strings which control an auxil-
iary printer connected to the terminal can be given as
mc0: print the contents of the screen, mc4: turn off the
printer, and mec5: turn on the printer. When the printer
is on, all text sent to the terminal will be sent to the
printer. It is undefined whether the text is also dis-
played on the terminal screen when the printer is on. A
variation mebp takes one parameter, and leaves the printer
on for as many characters as the value of the parameter,
then turns the printer off.

The parameter should not exceed 255. All text, including
mc4, is transparently passed to the printer while an mc5p
is in effect.

Strings to program function keys can be given as pfkey,
pfloc, and pfx. Each of these strings takes two param-
eters: the function key number to program (from 0 to 10)
and the string to program it with. Function key numbers
out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities
is that pfkey causes pressing the given key to be the same
as the user typing the given string; floc causes the

string to be executed by the terminal in local; and pfx
causes the string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow
be displayed should indicate hz.

characters to

24

TERMINFO(M) TERMINFO(M)

Terminals that ignore a linefeed immediately after an am
wrap, such as the Concept and vt100, should indicate xenl.

If el is required to get rid of standout (instead of mere-
ly writing normal text on top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved
over to blanks, should indicate xt (destructive tabs).

This glitch is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie", that to
erase standout mode it is instead necessary to use delete
and insert line.

The Beehive Superbee, which is unable to correctly trans-
mit the escape or Control-C characters, has xsb, indicat-
ing that the fl key is used for escape and f2 for
control-C. (Only certain Superbees have this problem,
depending on the ROM.) Other specific terminal problems
may be corrected by adding more capabilities of the form
XX.

Similar Terminals

If there are two very similar terminals, one can be de-
fined as being just like the other with certain excep-
tions. The string capability use can be given with the
name of the similar terminal. The capabilities given be-
fore use override those in the terminal type invoked by
use. A capability can be cancelled by placing xx@ to the
left of the capability definition, where xx is the capa-
bility. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,
defines a 2621-nl that does not have the smkx or rmkx cap-
abilities, and hence does not turn on the function key

labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

25

TERMINFO(M) TERMINFO(M)

Files
/usr/lib/terminfo/? /* Files containing terminal
descriptions
/usr/lib/terminfo/altos.src File containing descriptions
of terminals supported by
Altos

/usr/lib/terminfo/terminfo.src¢ File. containing descriptions
of other terminals not sup-
ported by Altos

See Also

term(M)

26

TERMIO(M) TERMIO(M)

Name

termio - General terminal interface.

Description

All of the asynchronous communications ports use the same
general interface, no matter what hardware is involved.
The remainder of this section discusses the common fea-
tures of this interface.

When a terminal file is opened, it normally causes the
process to wait until a connection is established. In
practice, users' programs seldom open these files; they
are opened by getty(M) and become a user's standard input,
output, and error files. The very first terminal file
opened by the process group leader of a terminal file not
already associated with a process group becomes the con-
trol terminal for that process group. The control termi-
nal plays a special role in handling quit and interrupt
signals, as discussed below. The control terminal is in-
herited by a child process during a fork(S). A process
can break this association by changing its process group
using setpgrp(S). :

A terminal associated with one of these files ordinarily
operates in full duplex mode. You can type characters at
any time, even while output is occurring, and are only

lost when the system's character input buffers become com-
pletely full, which is rare, or when the user has accumu-
lated the maximum allowed number of input characters that
have not yet been read by some program. Currently, this
limit is 256 characters. When the input limit is reached,
all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines.

A line is delimited by a newline (ASCII LF) character, an
end-of-file (ASCII EOT) character, or an end-of-line char-
acter. This means that a program attempting to read will
be suspended until an entire line has been typed. Also,
no matter how many characters are requested in the read
call, at most one line will be returned. It is not, how-
ever, necessary to read a whole line at once; any number
of characters may be requested in a read, even one, with-
out losing information.

TERMIO(M) TERMIO(M)

During input, erase and kill processing is normally done.
By default, the character # erases the last character
typed, except that it will not erase beyond the beginning
of the line. By default, the character @ kills (deletes)
the entire input line, and optionally outputs a new-line
character. Both these characters operate on a keystroke
basis, independently of any backspacing or tabbing that
may have been done. Both the erase and kill characters
may be entered literally by preceding them with the escape
character (\). In this case, the escape character is not
read. The erase and kill characters may be changed.

Certain characters have special functions on input. These
functions and their default character values are summar-
ized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt
signal which is sent to all processes with the
associated control terminal. Normally, each
such process is forced to terminate, but ar-
rangements may be made either to ignore the sig-
nal or to receive a trap to an agreed-upon loca-
tion; see signal(S).

QUIT (Control-\ or ASCII FS) generates a quit signal.
Its treatment is identical to the interrupt sig-
nal except that, unless a receiving process has
made other arrangements, it will not only be
terminated but a core image file (called core)
will be created in the current working direc-
tory.

ERASE (#) erases the preceding character. It will not
erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a
NL, EOF, or EOL character.

EOF (Control-d or ASCII EOT) may be used to gener-
ate an end-of-file from a terminal. When re-
ceived, all the characters waiting to be read
are immediately passed to the program, without
waiting for a newline, and the EOF is discarded.
Thus, if there are no characters waiting, which
is to say the EOF occurred at the beginning of a
line, zero characters will be passed back, which

TERMIO(M) TERMIO(M)

is the standard end-of-file indication. NL
(ASCII LF) is the normal line delimiter. It
cannot be changed or escaped.

EOL (ASCII NUL) is an additional line delimiter,
like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to tempo-
rarily suspend output. It is useful with CRT
terminals to prevent output from disappearing
before it can be read. While output is sus-
pended, STOP characters are ignored and not
read.

START (Control-q or ASCII DC1) is used to resume out-
put which has been suspended by a STOP charac-
ter. While output is not suspended, START char-
acters are ignored and not read. The start/stop
characters cannot be changed or escaped.

The character values for INTR, QUIT, SWITCH, ERASE,
KILL, EOF, and EOL may be changed to suit individual
tastes. The ERASE, KILL, and EOF characters may be
escaped by a preceding \ character, in which case no
special function is done.

When the carrier signal from the data-set drops, a hang-up
signal is sent to all processes that have this terminal as
the control terminal. Unless other arrangements have been
made, this signal causes the processes to terminate. If
the hang-up signal is ignored, any subsequent read returns
with an end-of-file indication. Thus, programs that read

a terminal and test for end-of-file can terminate appro-
priately when hung up on.

When one or more characters are written, they are trans-
mitted to the terminal as soon as previously-written char-
acters have finished typing. Input characters are echoed
by putting them in the output queue as they arrive. If a
process produces characters more rapidly than they can be
typed, it will be suspended when its output queue exceeds
some limit. When the queue has drained down to some
threshold, the program is resumed.

TERMIO(M)

TERMIO(M)

Several ioctl(S) system calls apply to terminal files.
The primary calls use the following structure, defined in

<termio.h>:

#define NCC 8

struct termio {(
unsigned short c¢_iflag: /*input modes*/
unsigned short c_oflag: /*output modes*/
unsigned short c_cflag: /*control modes*/
unsigned short c¢_lflag:; /*local modes*/
char c_line:; /*line discipline*/
unsigned char c_cc[NCCl: /*control chars¥*/

}

The special control characters are defined by the array

c_cc.
function are as follows:

0 VINTR DEL
1 VQUIT FS

2 VERASE #

3 VKILL @

4 VEOF EOT
5 VEOL NUL
6 reserved

7 SWTCH

The c_iflag field describes the
trol:

IGNBRK 0000001
BRKINT 0000002
IGNPAR 0000004
PARMRK 0000010
INPCK 0000020
ISTRIP 0000040
INLCR 0000100
IGNCR 0000200
ICRNL 0000400
IUCLC 0001000
IXON 0002000
IXANY 0004000
IXOFF 0010000

The relative positions and initial values for each

basic terminal input con-

Ignore break condition
Signal interrupt on break
Ignore characters with parity
errors

Mark parity errors

Enable input parity check
Strip character

Map NL to CR on input
Ignore CR

Map CR to NL on input
Map uppercase to lowercase
on input

Enable start/stop output
control

Enable any character to
restart output

Enable start/stop input
control

TERMIO(M) TERMIO(M)

If IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored, that is, not put on
the input queue and therefore not read by any process.
Otherwise, if BRKINT is set, the break condition will gen-
erate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other
framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity
error which is not ignored is read as the three-character
sequence: 0377, 0, X, where X is the data of the charac-
ter received in error. To avoid ambiguity in this case,

if ISTRIP is not set, a valid character of 0377 is read as
0377,0377. If PARMRK is not set, a framing or parity
error which is not ignored is read as the character
NUL(0).

If INPCK is set, input parity checking is enabled. If
INPCK is not set, input parity checking is disable. This
allows output parity generation without input parity
errors.

IF ISTRIP is set, valid input characters are first
stripped to 7-bits, otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated

into a CR character. If IGNCR is set, a received CR char-
acter is ignored (not read). Otherwise, if ICRNL is set,

a received CR character is translated into a NL character.

If IUCLC is set, a received uppercase alphabetic character
is translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a receive«
START character will restart output. All start/stop char-
acters are ignored and not read. If IXANY is set, any
input character will restart output which has been sus-
pended.

If IXOFF is set, the system will transmit START/STOP cha
acters when the input queue is nearly empty/full.

The initial input control value is all-bits-clear.

TERMIO(M)

TERMIO(M)

The c_oflag field specifies the system treatment of out-

put:

OPOST
OLCUC

ONLCR
OCRNL
ONOCR
ONLRET
OFILL

OFDEL
NLDLY
NLO
NL1
CRDLY

CRO
CR1
CR2
CR3
TABDLY

TABO
TAB1
TAB2
TAB3
BSDLY
BSO
BS1
VTDLY
VTO
VT1
FFDLY
FFO
FF1

0000001
0000002

0000004
0000010
0000020
0000040
0000100

0000200
0000400
0

0000400
0003000

0

0001000
0002000
0003000
0014000

0
0004000
0010000
0014000
0020000
0
0020000
0040000
0
0040000
0100000
0
0100000

Postprocess output

Map lowercase to upper on
output

Map NL to CR-NL on output
Map CR to NL on output
No CR output at column 0
NL performs CR function
Use fill characters for
delay

Fill is DEL, else NUL
Select new-line delays:

Selector carriage-return

delays:

Select horizontal-tab
delays:

Expand tabs to spaces
Select backspace delays:

Select verical-tab delays:

Select form-feed delays:

If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters are

transmitted without change.

If OLCUC is set, a lowercase alphabetic character is
transmitted as the corresponding uppercase character.
This function is often used in conjunction with IUCLC.

TERMIO(M) ' TERMIO(M)

IF ONLCR is set, the NL character is transmitted as the
CR-NL character pair. If OCRNL is set, the CR character
is transmitted as the NL character. If ONOCR is set, no
CR character is transmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed
to do the carriage-return function; the column pointer
will be set to 0 and the delays specified for CR will be
used. Otherwise the NL character is assumed to do just
the line-feed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR
character is actually transmitted.

The delay bits specify how long transmission stops to al-
low for mechanical or other movement when certain charac-
ters are sent to the terminal. In all cases a value of O
indicates no delay. If OFILL is set, fill characters will

be transmitted for delay instead of a timed delay. This

is useful for high baud rate terminals which need only a
minimal dealy. If OFDEL is set, the fill character is

DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it
lasts for about two seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is
set, the carriage-return delays are used instead of the
new-line delays. If OFILL is set, two fill characters
will be transmitted.

Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3
is about 0.15 seconds. If OFILL is set, delay type 1
transmits two fill characters, and type 2, four fill char-
acters.

Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3
specifies that tabs are to be expanded into spaces. If

OFILL is set, two fill characters will be transmitted for
any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is
set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

TERMIO(M) TERMIO(M)

The c_cflag field describes the hardware control of the

terminal:
CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
B38400 0000017 38400 baud (not supported)
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
Cs8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one
CREAD 0000200 Enable receiver
PARENB 0000400 Parity enable
PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hang up on last close

CLOCAL 0004000 Local line, else dial-up
RCV1EN 0010000

XMT1EN 0020000

LOBLK Block layer output 0040000

The CBAUD bits specify the baud rate. The zero baud rate,
B0, is used to hang up the connection. If B0 is speci-

fied, the dataterminal-ready signal will not be asserted.
Normally, this will disconnect the line. For any particu-
lar hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include
the parity bit, if any. If CSTOPB is set, two stop bits
are used, otherwise one stop bit. For example, at 110
baud, two stop bits are required.

TERMIO(M) TERMIO(M)

If PARENB is set, parity generation and detection is en-
abled and a parity bit is added to each character. If
parity is enabled, the PARODD flag specifies odd parity if
set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no
characters will be received.

If HUPCL is set, the operating system disconnects ("hangs
up") the line when the last process (or file) for that
port closes. That is, the dataterminal-ready signal be-
comes false (is not asserted). If HUPCL is false, the
data-terminal-ready signal remains true even after the
last close on the port.

If CLOCAL is set when a port is opened, the operating sys-
tem assumes the line is a local, directly connected port
(i.e., there is no modem control) and the open completes
without waiting for carrier. The dataterminal-ready and
request-to-send signals are asserted, and incoming modem
signals are ignored. If CLOCAL is false for a port when
opening it, the operating system assumes there is modem
control, and the open waits for the carrier-detect to be
true (if the O_NDELAY flag is not set on the file (see
fentl.h)). The data-terminal-ready and request-to-send
signals are asserted.

The operating system also checks CLOCAL when a modem in
terrupt occurs, usually when the data-terminal-ready sig-
nal changes. The operating system assumes that the data-
terminal-ready signal reflects the carrier sense of the
modem and will kill the process group for the port if
data-terminal-ready goes from true to false. If data-
terminal-ready goes from false to true, the operating sys-
tem wakes up any open requests waiting for carrier-detect
to go true. If CLOCAL is true, the operating system dis-
ables modem interrupts.

Finally, CLOCAL also affects hardware flow control. If
CLOCAL is false, the operating system does not enable any
hardware flow control, regardless of the setting of hard-
ware flow control (see SETFLOW below) flags.

The initial hardware control value after open is B9600,
CS8, CREAD, HUPCL for modem ports, and B9600, CS8,
CREAD, CLOCAL for local ports.

TERMIO(M) TERMIO(M)

If LOBIK is set, the output of a job control layer will be
blocked when it is not the current layer. Otherwise the
output generated by that layer will be multiplexed onto
the current layer.

The initial hardware control value after open is B300,
CS8, CREAD, HUPCL.

The c_lflag field of the argument structure is used by the
line discipline to control terminal functions. The basic
line discipline (0) provides the following:

ISIG 0000001 Enable signals

ICANON 0000002 Canonical input (erase and
kill processing

XCASE 0000004 Canonical upper/ower
presentation

ECHO 0000010 Enable echo

ECHOE 0000020 Echo erase character as
BS-SP-BS

ECHOK 0000040 Echo NL after kill character

ECHONL 0000100 Echo NL

NOFLSH 0000200 Disable flush after interrupt
or quit

If ISIG is set, each input character is checked against

the special control characters INTR, SWTCH, and QUIT. If
an input character matches one of these control charac-
ters, the function associated with that character is per-
formed. If ISIG is not set, no checking is done. Thus
these special input functions are possible only if ISIG is
set. These functions may be disabled individually by
changing the value of the control character to an unlikely
or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the as-
sembly of input characters into lines delimited by NL,
EOF, and EOL. If ICANON is not set, read requests are
satisfied directly from the input queue. A read will not
be satisfied until at least MIN characters have been re-
ceived or the timeout value TIME has expired between char-
acters. This allows fast bursts of input to be read effi-
ciently while still allowing single character input. The
MIN and TIME values are stored in the position for the
EOF and EOL characters, respectively. The time value
represents tenths of seconds.

10

TERMIO(M) TERMIO(M)

If XCASE is set, and if ICANON is set, an uppercase letter
is accepted on input by preceding it with a \ character,
and is output preceded by a \ character. In this mode,
the following escape sequences are generated on output and
accepted on input:

for: use:

1] \'
\!

1 \-

\(

\)

A\

P

For example, A is input as \a, \n as \\n, and \N as \\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are pos-
sible. If ECHO and ECHOE are set, the erase character is
echoed as ASCII BS SP BS, which will clear the last char-
acter from a CRT screen. If ECHOE is set, the NL char-
acter will be echoed after the kill character to emphasize
that the line will be deleted.

Note that an escape character preceding the erase or kill
character removes any special function. If ECHONL is set,
the NL character will be echoed even if ECHO is not set.
This is useful for terminals set to local echo (so-called
half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from from hanging
up.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit, switch, and interrupt
characters will not be done.

The initial line-discipline control value is all bits
clear.

The primary ioctl(S) system calls have the form:

ioctl (filedes, command, arg)
struct termio *arg;

11

TERMIO(M) TERMIO(M)

The commands using this form are:

TCGETA
Get the parameters associated with the terminal and
store in the termio structure referenced by arg.

TCSETA
Set the parameters associated with the terminal from
the structure referenced by arg. The change is im-
mediate.

TCSETAW
Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF
Wait for the output to drain, then flush the input
queue and set the new parameters.

Another group of ioctl system calls have the form:

ioctl (filedes, command, arg)
char *arg;

The commands using this form are:

SETFLOW
Sets the hardware flow control bits, defined as
TXHARD and RXHARD for the terminal. If the
TXHARD bit is set, hardware output flow control
is enabled. If the RXHARD bit is set, hardware input
flow control is enabled. The argument is a pointer
to a byte with these bits set (or not). The software
flow control bits (TXSOFT and RXSOFT) are ignored.

GETFLOW
Returns the hardware flow control bits. The argument
is a pointer to a byte with these bits set (or not).
Additional ioct calls have the form:

ioctl (filedes, command, arg)
int arg;

12

TERMIO(M) TERMIO(M)

The commands using this form are:

TCSBRK
Wait for the output to drain. If arg is 0, then send
a break (zero bits for 0.25 seconds).

TCXONC
Start/stop control. If arg is 0, suspend output; if
1, restart suspended output.

TCFLSH
If arg is 0, flush the input queue; if 1, flush the
output queue; if 2, flush both the input and output
queues.

SETMODEM
Sets the modem mode to USER, ON, or OFF for the
terminal. Arg should be either MDM_ON, MDM_OFF,
or MDM_USER.

GETMODEM
Returns the current modem setting, either MDM_ON,
MDM_OFF, MDM_USER. Arg is ignored.

See ioctl(S) for details on how to use this system call.

Files
/dev/tty
/dev/tty*
/dev/console

See Also

ioctl(S), stty(C), xtty(C)

13

TIMEZONE(M) TIMEZONE(M)

Name

timezone - Sets default system time zone.

Syntax

/ete/TIMEZONE

Description

This file sets and exports the time zone environmental
variable TZ. This file is included into other files that
must know the time zone.

Examples

/ete/TIMEZONE for the East coast:
Time Zone

TZ=ESTS5EDT
export TZ

See Also

rc2(M), profile(M), and ctime(S) in the Reference (CP,
S, F)

TTYS(M) ‘ TTYS(M)

Name

ttys - Login terminals file.

Syntax

/ete/ttys

Description

Files

The /etc/ttys file contains a list of the device special
files associated with possible login terminals.

The file contains one or more entries of the form:
state mode name

The name must be the filename of a device special file.
Only the filename may be supplied, the path is assumed to
be /dev. If state is "1", the device is enabled for

logins; if "0", the device is disabled. The mode is used
as an argument to the getty program. It defines the line
speed and type of device associated with the terminal. A
list of arguments is provided in getty.

For example, the entry "16tty02" means the serial line
tty02 is to be enabled for logging in at 9600 baud.

/etc/ttys

See Also

getty(M), pconfig(C)

Notes

Edit the /etc/ttys file only when in system maintenance
mode. This file is obsolete, and is maintained only for
the convenience of old programs. Init(M) no longer ex-
amines this file.

UTMP(M)

Name

UTMP(M)

utmp, wtmp - Utmp and wtmp entry formats.

Syntax

ffinclude <sys/types.h>

#include <utmp.h>

Description

These files, which hold user and accounting information
for such commands as who(C), write(C), and login(M), have
the following structure as defined by <utmp.h)>:

#define
#define
#define

UTMP_FILE
WIMP_FILE

ut_name

struct utmp {

char ut_user([8]:
char ut_id[4];
char ut_line[12]:
short ut_pid:
short ut_type:
struct exit_status (
short
short e_exit:
} ut_exit:
time_t ut_time:

}:

" /etc/utmp”
"/etc/wtmp"”

ut_user

/* User login name */

/* /etc/inittab id (usually line #) */
/* device name (console, 1lnxx) */

/* process id ¥/

/* type of entry */

e_termination: /* Process termination status */

/* Process exit status */

/* The exit status of a process
* marked as DEAD_PROCESS. */
/* time entry was made */

/* Definitioins for ut_type */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EMPTY
RUN/LVL
BOOT_TIME
OLD_TIME
NEW_TIME

INIT PROCESS
LOGIN_PROCESS
USER_PROCESS
DEAD_PROCESS
ACCOUNTING
UTMAXTYPE

0

O 0 N0 U W N R

/* Process spawned by "init" */
/* A "getty" process waiting for login */

/* A user process ¥/

ACCOUNTING /* Largest legal value of */

/* ut_type */

UTMP(M)

UTMP(M)

/* Special strings or formats used in the "ut_line" field accounting *,

/* accounting for something other than a process */

/* No string for the ut_line field can be more than 11 chars + */
/* a NULL in length */

#define RUNLVL_MSG
#define BOOT_MSG
#define OTIME_MSG
#define NTIME_MSG
Files
/etc/utmp
/ete/wtmp
See Also

“run-level %c"
"gsystem boot"
"old time"

"new time"

getut(S), login(C), who(C), write(C)

UUCHECK(M) UUCHECK(M)

Name

uucheck - Checks the uucp directories and permissions
file.

Syntax

/usr/lib/uucp/uucheck [-v] [-x debug level]

Description

Uucheck checks for the presence of the uucp system re-
quired files and directories. Within the uucp makefile,

it is executed before the installation takes place. It
also checks for some obvious errors in the permissions
file (/usr/lib/uucp/Permissions). When executed with the
-v option, it gives a detailed explanation of how the uucp
programs will interpret the permissions file. The -x op-
tion is used for debugging. Debug level is a single digit
in the range 1-9; the higher the value, the greater the
detail. Note that uucheck can only be used by the
super-user or uucp.

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuscheds
/usr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*

See Also

uucico{M), uusched(M), uucp(C), uustat(C), uux(C)

Notes

The program does not check file/directory modes or some
errors in the permissions file such as duplicate login or
machine names.

UUCICO(M) UUCICO(M)

Name

uucico - File transport program for the uucp system.

Syntax

/usr/lib/uucp/uucico [-r role number] [—x debug_level]
[-i interface 1 [-d spool directory 1 -s system name

Description

Uucico is the file transport program for uucp work file
transfers. Role numbers for the -r option are the digit 1
for master mode or 0 for slave mode (default). The -r
option should be specified as the digit 1 for master mode
when uucico is started by a program or cron(C). Uux and
uucp both queue jobs that will be transferred by uucico.
It is normally started by the scheduler, uusched, but can
be started manually for debugging. For example, the
script uutry starts uucico with debugging turned on. A
single digit must be used for the -x option with higher
numbers for more debugging. The -i option defines the
interface used with uucico. This interface only affects
slave mode. Known interfaces are UNIX (default), TLI
(basic Transport Layer Interface), and TLIS (Transport
Layer Interface with Streams modules, read/write).

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Devconfig
/usr/lib/uucp/Sysfiles
/usr/lib/uucp/Maxuuxqts
/usr/lib/uucp/Maxuuscheds
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*

See Also

cron(C), uusched(M), uutry(M), uucp(C), uustat(C), uux(C)

UUCLEANUP(M) UUCLEANUP(M)

Name

uucleanup - Uucp spool directory cleanup.

Syntax

/usr/lib/uucp/uucleanup [-Ctime] [-Wtime 1 [-Dtime]
[-Xtime 1 [-mstring 1 [-otime] [-ssystem]
[-xdebug level 1]

Description
Uucleanup will scan the spool directories for old files
and take appropriate action to remove them in a useful
way:

. Inform the requestor of send/receive requests for
systems that cannot be reached.

. Return mail, which cannot be delivered, to the
sender.

. Delete or execute rnews for rnews type files
(depending on where the news originated--locally or
remotely).

. Remove all other files.

In addition, there is provision to warn users of requests
that have been waiting for a given number of days (default
1). Note that uucleanup will process as if all option

times were specified to the default values, unless time is
specifically set.

The following options are available.

~-Ctime Any C. files greater or equal to time days
old will be removed with appropriate infor-
mation to the requestor (default 7 days).

-Dtime Any D. files greater or equal to time days
old will be removed. An attempt will be
made to deliver mail messages and execute
rnews when appropriate (default 7 days).

UUCLEANUP(M)

-Wtime

-Xtime

-mstring

-otime

-ssystem

-xdebug level

Files

/usr/lib/uucp

/usr/spool/uucp

See Also

UUCLEANUP(M)

Any C. files equal to time days old will
cause a mail message to be sent to the re-
questor warning about the delay in contact-
ing the remote (default 1 day). The mes-
sage includes the JOBID, and in the case of
mail, telling whom to call to check the
problem (-m option).

Any X. files greater or equal to time days
old will be removed (default 2 days). The
D. files are probably not present (if they
were, the X. could get executed). But if
there are D. files, they will be taken
care of by D. processing.

This line will be included in the warning
message generated by the -W option.

Other files whose age is more than time
days will be deleted (default 2 days). The
default line is "See your local administra-
tor to locate the problem."

Execute for system spool directory only.

The -x debug level is a single digit be-
tween 0 and 9; higher numbers give more
detailed debugging information. (If
uucleanup was compiled with -DSMALL, no
debugging output will be available.)

This program is typically started by the
shell uudemon.cleanup, which should be
started by cron(C).

Directory with commands used by
uucleanup internally
Spool directory

cron(C), uucp(C), uux(C)

UUGETTY(M) UUGETTY(M)

Name

uugetty - Sets terminal type, modes, speed, and line dis-
cipline.

Syntax

/usr/lib/uucp/uugetty [-h] [-t timeout] [-r] line [speed
[type {linediscl]]
/usr/lib/uucp/uugetty -c file

Description

Uugetty is identical to getty(M) but changes have been
made to support using the line for uucico, cu, and ct;
that is, the line can be used in both directions. Uugetty
will allow users to log in, but if the line is free,

uucico, cu, or ct can use it for dialing out. The imple-
mentation depends on the fact that uucico, cu, and ct
create lock files when devices are used. When the open(S)
returns (or the first character is read when -r option is
used), the status of the lock file indicates whether the
line is being used by uucico, cu, ct, or someone trying to
log in. Note that in the -r case, several carriage-return
characters may be required before the login message is
output. The users will be able to handle this slight in-
convenience. Uucico trying to log in will have to be told
by using the following login script:

" Ar\d\r\d\r\d\r in:--in:...

where the ... is whatever would normally be used for the
login sequence.

An entry for an intelligent modem or direct line that has
a uugetty on each end must use the -r option. (This
causes uugetty to wait to read a character before it puts
out the login message, thus preventing two uugettys from
looping.) If there is a uugetty on one end of a direct
line, there must be a uugetty on the other end as well.
Here is an /etc/inittab entry using uugetty on an intelli-
gent modem or direct line:

UUGETTY(M) UUGETTY(M)
tt12:2:respawn:env - TERM=altos5
/usr/lib/uucp/uugetty -r -t 60 ttyl2 1200

For an explanation of uugetty options, see getty(M).

Files

/etc/gettydefs
/etc/issue

See Also
uucico(M), getty(M), init(M), tty(M), cu(C), login(M)

gettydefs(M), inittab(M), and ioctl(S) in the Reference
(Cp, S, F)

Notes

Uugetty does not support linking of device files.

UUSCHED(M) UUSCHED(M)

Name

uusched - Scheduler for the uucp file transport program.

Syntax

/usr/lib/uucp/uusched [-x debug level 1 [-u debug level]

Description

Uusched is the uucp file transport scheduler. It is
usually started by the daemon uudemon.hour that is started
by cron(C) from an entry in /usr/spool/cron/crontab:

39 * * * ¥*/pin/su uucp -¢ "/usr/lib/uucp/uudemon.hour > /dev/null"

The two options are for debugging purposes only; -x
debug level will output debugging messages from uusched
and -u debug level will be passed as -x debug level to
uucico. The debug level is a number between 0 and 9;
higher numbers give more detailed information.

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*

See Also

cron(C), uucico(M), uucp(C), uustat(C), uux(C)

UUTRY (M) UUTRY(M)

Name

Uutry - Tries to contact remote system with debugging on.

Syntax

/usr/lib/uucp/Uutry [-x debug level] [-r] system_name

Description

Uutry is a shell that is used to invoke uucico to call a
remote site. Debugging is turned on (default is level 5);
-x will override that value. The -r overrides the retry
time in /usr/spool/uucp/.status. The debugging output is
put in file /tmp/system name. A tail -f of the output is
executed. A <DELETE) or <BREAK)> will give control back
to the terminal while the uucico continues to run, putting
its output in /tmp/system_name.

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuxqts
/usr/lib/uucp/Maxuuscheds
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*
/tmp/system_name

See Also

uucico(M), uucp(C), uux(C)

uuxQr(m) uuxQT(M)

Name

uuxqt - Executes remote command requests.

Syntax

/usr/lib/uucp/uuxqt [-s system 1 [-x debug level]

Description

Uuxqt is the program that executes remote job requests
from remote systems generated by the use of the uux com-
mand. (Mail uses uux for remote mail requests.) Uuxqt
searches the spool directories looking for X. files. For
each X. file, uuxqt checks to see if all the required

data files are available and accessible, and file commands
are permitted for the requesting system. The Permissions
file is used to validate file accessibility and command
execution permission.

There are two environment variables that are set before
the uuxqt command is executed:

UU_MACHINE is the machine that sent the job (the
previous one).

UU_USER is the user that sent the job.

These can be used in writing commands that remote systems
can execute to provide information, auditing, or restric-
tions. The -x debug level is a single digit between 0 and
9. Higher numbers give more detailed debugging informa-
tion.

Files
/usr/lib/uucp/Permissions
/usr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/locks/LCK*
See Also

uucico(M), uuep(C), uustat(C), uux(C), mail(C)

VOLCOPY(M) VOLCOPY(M)

Name

volcopy, labelit - Copies file systems with label check-
ing.

Syntax

/etc/volcopy [options] fsname speciall volnamel special2
volname?2
/ete/labelit special [fsname volume [-n]]

Description

The volcopy command makes a literal copy of the file sys-
tem using a blocksize matched to the device.

The labelit command creates a label for an unmounted disk
file system or a volcopy archive device. The -n option
provides for initial labeling on tapes only (this destroys
previous contents). Otherwise, a label must already exist
and only the fsname and volume arguments are modified. If
all optional arguments are omitted, labelit prints the
current label values of the special device.

Options

-a Invokes a verification sequence requiring a pos-
itive operator response instead of the standard
10-second delay before the copy is made.

-S Prompts the user before the copy is made. The
copy Is aborted if the user presses
within 10 seconds (default).

-y Assumes a "yes" response to all questions.

The following additional options are used only with tapes:

-reelnum Specifies the beginning reel number for a
restarted copy.

-buf Uses double-buffered 1/0.

VOLCOPY(M) VOLCOPY (M)

-feetnum Specifies the tape length, only valid when
using reel tape.

-bpinum Specifies the tape density (bits/inch),
only valid when using reel tape.

-tr Specifies reel tape.

-tc Specifies cartridge tape.

-sesi Assumes tape drive is of scsi type, only

valid when using cartridge tape.

-nonscsi Assumes tape drive is not scsi type, only
valid when using cartridge tape.

-typeLABEL Specifies the type of cartridge tape being
used, only valid when using cartridge tape.

The program requests length and density information if it
is not given on the command line or is not recorded on an
input tape label. Reel or cartridge tapes may be used.

If the file system is too large to fit on one reel,

volcopy will prompt for additional reels. Labels of all
reels are checked.

If volcopy is interrupted, it will ask if the user wants
to quit or wants a shell. In the latter case, the user
can perform other operations, such as labelit, and return
to volcopy by exiting the new shell.

The fsname argument represents the mounted name (for ex-
ample, root or usr) of the file system being copied. The
special argument should be the physical disk section or
tape, for example, /dev/rhd0b or /dev/rct.

The volname argument is the physical volume name (for ex-
ample, rhd0b), and should match the external label stick-
er. Such label names are limited to six or fewer charac-
ters. To use the existing volume name, specify -- for the
volname argument,

The arguments speciall and volnamel are the device and
volume from which the copy of the file system is being
extracted. The arguments special?2 and volname2 are the
target device and volume.

VOLCOPY(M) VOLCOPY(M)

Neither the source or target device should have a file
system mounted while running volcopy, or while creating a
label with labelit. The exception is for the / file sys-
tem, where you should be in single-user mode. (You can
read the label of a mounted file system with labelit.)

The values for fsname and volname are recorded in the last
12 characters of the superblock (char fsname[61,
volname[6];).

Examples

To label a tape for the / file system, with volume label
v001, go to single-user mode and enter:

/etce/labelit /dev/ret / v001

To archive the / file system on a tape, labeled as in the
above example, enter:

/ete/volcopy / /dev/rhd0b hdob /dev/ret v001

To restore a tape (archived as above) of the / file system
to disk, enter:

/etc/volcopy / /dev/rct v001 /dev/rhd0b hdOb

Note that when using volcopy for the / file system, go to
single-user mode.

Files
/ete/log/filesave.log Record of file systems/volume
copied
See Also
sh(C)
Notes

Only device names beginning with /dev/ret are treated as
tapes. "

VT (M)

Name

VT(M)

vt - Virtual terminal management (Series 500 only).

Description

The virtual terminal (VT) device driver is a layer of man-
agement functions that provides the facilities to support
and switch between up to eight screen faces on each phys-
ical device. Terminal or display device drivers that have
been written to take advantage of this facility can there-
fore present multiple VTs on a single physical device.

The correspondence between physical and virtual terminals
is determined using the minor device number of the phys-
ical device, with the bottom five bits selecting the phys-
ical device and the top three bits selecting the virtual
terminal.

Virtual terminals are accessed in exactly the same way as
any other device. The open(S) system call is used to open
the virtual terminal, and read(S), write(S), and ioctl(S)
are used in the normal way and support all the functional-
ity of the underlying device. In addition, some
VT-specific ioctl calls are provided as described below.

Virtual terminals provide the link between different
screen faces and the device. The virtual terminal that
corresponds to the currently visible screen face is called
the active virtual terminal. The active VT is the one
that input from the device will be directed to, and any
device-specific modes that can change on a per-VT basis
will be set to the characteristics associated with the
active VT.

Open virtual terminals on a device are placed on a "ring,"

with the active VT always being the VT on the top of the
ring. The ring can be cycled through via a "hot key" that
is specific to the underlying device driver. The first

open of a VT causes it to be placed at the top of the ring
and become the active VT. The last close on a VT causes
it to be removed from the ring, and if this was the active

VT, the previous VT on the ring becomes the active one.

Virtual terminal switching can be done in two different
modes: automatically on receipt of a hot key, or under
control of the process owning the VT. In the first case,

VT(M) VT(M)

the process associated with the VT knows nothing about the
switch and it is handled entirely by the underlying device
driver and the virtual terminal manager. In
process-controlled switch mode, when a switch hot key is
sent, the process owning the VT is sent a signal (see
sigset(S)) that it has specified to the VT manager. This
signal requests the process to release the physical de-
vice. The VT manager then awaits an ioctl from the pro-
cess indicating that the VT either has released the phys-
ical device (in which case a switch occurs), or refuses to
release the device (in which case the switch does not
occur). If a predefined time limit expires before the

ioctl is received from the process owning the VT, the VT
manager behaves as if an ioctl indicating refusal was re-
ceived. The ring of active VTs can contain intermixed
auto mode and process control mode VTs. Process control
mode VTs will be sent a signal that they have specified
when they become the active VT. Some device drivers may
support a forced switch mode, in which case an alternate
hotkey sequence will cause the driver to force a switch to
the next VT even if a normal switch is refused. The driv-
er does the forced switch and the VT manager signals the
VT that it has been forced out.

Ioctl Calls

The following iloctl calls apply to any device that sup-
ports VTs.

VT_OPENQRY
This call is used to find an available VI. The argu-
ment to the ioctl is a pointer to a long. The long
will be filled in with the number of the first avail-
able VT that no other process has open (this may be
the one currently opened). If there are no available
VTs then -1 will be filled in.

VT _GETMODE
This call is used to determine what mode the VT is
currently in, either VT_AUTO or VT_PROCESS. The
argument to the ioctl is the address of the following
structure, as defined in <{sys/vt.h>.

VT(M) VT(M)

struct vt_mode {
char mode; /* VT mode */
char waitv; /* if non-zero, hang on writes when

not active */

short relsig:; /* signal to use for release request */
short acqgsig: /* signal to use for display acquired */
short frsig: /* signal to use for forced release */

}

/* Virtual Terminal Modes */

#define VT_AUTO 0/* automatic VT switching */
#define VT_PROCESS 1/* process controls switching */

The structure will be filled in with the current
value for each field.

VT_SETMODE
This call is used to set the VT mode. The argument
to the ioctl is a pointer to a vt_mode structure, as
defined above. The structure should be filled in
with the desired VT mode and whether or not to block
on writes when not active. If process-control mode
is specified then the signals that should be used to
communicate with the process should be specified. If
any of the signals are not specified (value is zero),
then the default for that signal will be used
(SIGUSRI1 for relsig and acqsig and SIGUSR2 for

frsig).

VT_RELDISP
This call is used to tell the VT manager if the dis-
play has been released or if the process has refused
to release the display. A non-zero argument signals
release and zero indicates refusal to release.

VT_ACTIVATE
This call has the effect of making the VT specified
in the argument the active VI. The VT manager will
cause a switch to occur in the same. manner as if a
hotkey had initiated the switch. If the specified VT
is not open or does not exist, the call will fail and
errno will be set to ENXIO.

Files

/dev/vtxxn

VT(M) VT(M)

See Also

ioctl(S), sighold(S), signal(S), sigrelse(S), sigset(S)

Warnings

There is a potential for a race condition on a heavily
loaded system. When a process-control mode VT is sent the
release requested signal, it is possible that it may not

reply with a release ioctl before the internal timer ex-
pires and refusal to switch is assumed. The switch re-
quest will then be canceled and the VT will not switch
screen faces. This can be detected by the process at-
tempting to release the display. If the release ioctl

fails and errno is EINVAL, then the releasing process can
assume that the switch request was canceled.

WHODO(M) WHODO(M)

Name

whodo - Shows who is doing what.

Syntax

/etc/whodo

Description

Whodo produces formatted and dated output from information
in the /etc/utmp and /etc/ps_data files.

The display is headed by the date, time, and machine name.
For each user logged in, device name, user-id and login
time is shown, followed by a list of active processes as-
sociated with the user-id. The list includes the device
name, process-id, cpu minutes and seconds used, and pro-
cess name.

Example
The command:
whodo
produces a display like this:

Tue Mar 12 15:48:03 1985
bailey

tty09 mcn 8:51
tty09 28158 0:29 sh

tty52 bdr 15:23
tty52 21688 0:05 sh
tty52 22788 0:01 whodo
tty52 22017 0:03 vi
tty52 22549 0:01 sh

xt162 lee 10:20
tty08 6748 0:01 layers
xt162 6751 0:01 sh
xt163 6761 0:05 sh
tty08 6536 0:05 sh

WHODO(M)

Files
‘/etc/passwd
/etc/ps_data
/etc/utmp
See Also

ps(C), who(C)

WHODO(M)

XPD(M) XPD(M)

Name

xpd - Transparent printer daemon.

Syntax

xpd tty Ip type

Description

The xpd daemon directs any output sent to the Ip device to
the printer attached to the tty device printer port.

tty is the name of the terminal device to which the
printer is attached. It must be invoked as
/dev/tty.

Ip is the name of a FIFO special device to be used

by the printer. It must be invoked as /dev/Ip.
type is the name of the terminal type. The altos2,
: altos3, altos4, altos5, and Wyse 30 terminals
are supported.
Files
/dev/tty??
/dev/Ip?
Also See

mknod(C)

hange Information

This is a summary of the changes that have been made to

the previous version of this manual. The chapters, page

numbers, and/or paragraphs mentioned in this summary ref-
) erence the previous manual.

tle: Altos System V Series 386 Reference (M)
wised Part Number: 690-22870-002

evious Part Number: 690-22870-001

ite: June 1989

anges:
Updated the Permuted Index and Table of Contents.
Added aliases(M) and aliashash(M).
Changed re5(M) to rcO(M).

Changed the following pages:

Page Command Description

8 crash(M) Corrected pagemode on/off toggle
option to read -on or -off.

4 init(M) Run level 0 is now used for shut-
downs (formerly run level 5).

7 keyboard(M) Modified Keyboard Keys table and
added Other Keys table.

4, 20 terminfo(M) Added information about line
graphics character set mapping
with acsc.

Change Information

Page Command Description

26 terminfo(M) Added two more files containing
terminal descriptions: altos.src
and terminfo.src.

3 volcopy(M) Removed references to backing
' up root file system with
volcopy(M).

CH-2

READER’S COMMENTS

Manual Title: Altos System V Series 386 Reference (M)
Part Number: 690-22870-002

Altos Computer Systems' Publications Department wants to
provide documents that meet the needs of all our customers.
Your comments help us produce better manuals.

Please Rate
This Manual: Excellent Good Average Fair Poor

Completeness of information
Organization of manual
Adequate illustrations
Overall manual

Do you find any of the chapters confusing or difficult to use?
If so, which ones and why?

What could we do to improve the manual for you?

If you find errors or other problems when using this manual,
please write them below. Do include page numbers or section
titles.

Name: Title:

Company:) Type of system:

Phone: () - ext.

|| NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7399 SAN JOSE. CA 95134

POSTAGE WILL BE PAID BY ADDRESSEE

Altos Computer Systems

ATTN: PUBLICATIONS DEPARTMENT
2641 Orchard Parkway

San Jose, CA 95134-9987

USA

a1oH PIod

P/N 690-22870-002
Prinfed in US.A.
9/89

'os Computer Systems
2641 Orchard Parkway, San Jose, CA 95134
408/946-6700, FAX 408/433-9335

