

Document
History

Copyright
Notice

Trademarks

Umitatlons

EDITION

First Edition
Second Edition

PART NUMBER

690-22870 .. 001
690-2287(H)()2

Manual Copyright ©1988, 1989 Altos Computer Systems

Programs Copyright ©1988, 1989 Altos Computer Systems

All rights reserved. Printed in U.S.A.

DATE

December 1988
June 1989

Unless you request and receive written permission from Altos Computer Systems, you
may not copy any part of this document or the. software you received, except in the
normal use of the software or to make a backup copyof each diskette you received.

The Altos logo, as it appears in this manual, is a registered trademark of Altos
Computer Systems.

,
Altos System V is a trademark of Altos Computer Systems.

CP/M and MP/M are trademarks of Digital Research.

DOCUMENTER'S WORKBENCH is a trademark of AT&T Technologies.

mM is a registered trademark of International Business Machines Corporation.

LaserJet is a trademark of Hewlett Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

UNIX. is a registered trademark of AT&T.

WorkNet II is a trademark of Altos Computer Systems.

XENIX. is a registered trademark of Microsoft Corporation.

Altos Computer Systems reserves the right to make changes to the product described
in this manual at any time and without notice .. Neither Altos nor its suppliers
make any warranty with respect to the accuracy of the information in this manual.

GUIDE TO YOUR ALTOS SYSTEM VTM
SERIES 386 DOCUMENTATION

RUN-TIME SYSTEM

iJ
Installation

~ Part numbers: 690-21170-nnn
~ 690-21869-nnn

• Installation and upgrade
• Set up Multidrop and UPS

iJ
Using the AOM'" Menu System i ~ Part number: 690-18055-nnn

s • Easy-to-use menus to
access programs

• Menu Manager to add, update,
remove menus

Operations Guide
Part number: 690-21171-nnn

• System administration
• Accounting, file systems
• Backups, port setup
• Communications (UUCP)
• Error messages

Reference (C)
Part number: 690-22869-nnn

• Commands (C)

Reference (M)
Part number: 690-22870-nnn

• Miscellaneous files (M)

r; User's Guide
Part number: 690-21178-nnn

~ (Not shipped with the Run-time system)

• Basic concepts and tasks
• VI, ed, mail, awk, sed
• Shells: sh a~d csh

TEXT PROCESSING SYSTEM

... DOCUMENTER'S WORKBENCH'"

r; Part numbers: 690-15843-nnn
690-15844-nnn

~ • Mm macros, reference
• Nroff, troff, tbl, eqn

DEVELOPMENT SYSTEM
Set part number: 690-21585-000

r; Reference (CP, S, F) 'T

~ • Programming commands (ep)
IAI • System calls, library routines (S)

• File formats (F)

r; Programmer's Guide

~ • Make, SCCS
• Lex, yacc
• Signals, system resources,

device drivers
• Adb, sdb
• Shared libraries

r;-- C Complier Library and User's Guide

~ • I/O functions, pipes
• Curses, terminfo
• Assembly routines
• As, cc, COFF, lint, ld
• Error processing
• Character and string processing

r; C Complier Language Reference

~ • Elements of C
• Program structure
• Declarations, expressions
• Statements, functions
• Preprocessor directives

r;.. Macro Assembler User's Guide
~ and Reference

• How to use masm
• Error messages
• Type declarations
• Operands, expressions
• Directives, file control
• Instruction summary

'0 order the User's Guide or any of the above manuals, call 408/434-6688, ext. 3004
nd give the manual title and part number.

Permuted Index

The Permuted Index on the following pages contains a listing of
programs, utilities, files, etc. in the Altos System V Run-time
and Development Systems. These programs are described in the
Altos System V Reference. Volume 1 of the Reference contains the
Run-time system commands (C) and miscellaneous (M) sections.
Volume 2 contains the Development system programming commands
(CP), system calls and library routines (5), and file formats (F).
Entries in each section are in alphabetical order.

NOTE

These programs, utilities, files, etc. are
subject to change.

The table that follows contains a description of each section and
its location.

PI-l

Permuted Index

Description Section Manual

Run-time commands C Reference (C)

Miscellaneous -- programs M Reference (M)
and system files used for
system maintenance and to
access devices

Programming commands CP Reference (CP, S, F

System calls and library S Reference (CP, S, F
routines for C and assembly
language programming

File formats -- programs F Reference (CP, S, F
and system files not de-
fined in the M section

PI-2

Permuted Index

as(CP) 386 Assembler ___________ as(CP)

13tol(S) Ito13(S) convert between 3-byte integers and long integers 13tol(S)

tk(C) paginator for Tektronix 4014 tk(C)

integer and base-64 ASCII string a641(S) 164a(S) convert between long __ a641(S)

abort(S) generate an IOT fault ____ abort(S)

abs(S) return integer absolute value abs(S)

ceil(S) fabs(S) floor. ceiling. and absolute value functions floor(S) floor(S)

floor(S) fmod(S) floor. ceiling. and absolute value functions floor(S)

abs(S) return integer absolute value abs(S)

requests accept (C) reject (C) allow/prevent print _ accept (e)

settime(C) change the access and modification dates of files settime(C)

touch(C) update access and modification times of a file touch(C)

utime(S) set file access and modification times utime(S)

login(C) give you system login(C)

sputl(S) sgetl(S) access long integer data sputl(S)

dos (C) access MS-DOS files dos (Ci

sadp(M) disk access profiler sadp(M)

Idfcn(F) common object file access routines ldfcn(F)

sdwaitv(S) synchronize shared data

sdenter(S) sdleave(S) synchronize

waitsem(S) nbwaitsem(S) wait and check

clock (M) provide

getutent(S) utmpname(S) endutent(S)

getut(S) setutent(S) getutline(S)

accesseS) determine

file

csplit(C) split files

acct (S) enable or disable process

access sdgetv(S) __________ sdgetv(S)

access to a shared data segment ____ sdenter(S)

access to semaphore resource waitsem(S)

access to the time-of-day chip clock (M)

access utmp file entry getut(S) ____ getut(S)

access utmp file entry _______ getut(S)

accessibility of a file accesseS)

accesseS) determine accessibility of a _ accesseS)

according to context csplit (C)

accounting acct(S)

acct(M) format of per-process accounting file __________ acct(M)

acct (C) accounting system acct (C)

file

accounting

trig(S) sineS) cos(S) tan(S) asin(S)

killall (C) kill all

sar(C) system

sar(M) system

sact (CP) print current SCCS file edit

acct(C) accounting system acct(C)

acct (M) format of per-process accounting acct (M)

acct(S) enable or disable process ___ acct(S)

acos(S) trigonometric functions ____ trig(S)

active processes killall (C)

activity report package sar(C)

activity report package _______ sar(M)

act i vity Bact (CP)

debugger adb(C) invoke x.out general purpose __ adb(C)

add. hd (C) add an additional hard disk add. hd (C)

nl(C) add line numbers to a file ______ nl(C)

map badblock(C) add new bad sectors to the bad sector badblock(C)

Ipinit (M) add new line printers Ipinit (M)

putenv(S) change or sdd value to environment putenv(S)

add. hd(C) add an additional hard disk add. hd(C)

add.hd(C) adq an additional hard disk add.hd(C)

upgrade. hd(C) upgrade an

files

admin(CP) create and

ua(C) user

uadmin(S)

machine')

additional hard diak ________ upgrade.hd(C)

admin(CP) create and administer SCCS admin(CP)

administer SCCS files admin(CP)

administration program ua(C)

administrative control uadmin (S)

aftp(C) transfer files between Altos __ aftp(C)

aliases (M) mail alias file aliases (M)

mail alias file aliashash(M) rebuild data base for aliashash(M)

alarm(S) set a process alarm clock ____________ alarm(S)

alam(S) set a process alam clock __ alam(S)

brk(S) sbrk(S) change data segment space allocation brk(S)

PI-3

Permuted Index

free(S) realloc(S) fast main memory allocator mal10c(S) ma1loc(S)
malloc (S) main memory allocator ____________ malloc (S)

mallopt(S) calloc(S) fast main memory allocator malloc(S) ma1linfo(S) ____ malloc(S)

terminal mesg(C) allow or disallow messages sent to a __ mesg(C)

get and set maximum number of users allowed to log in numusers(S) numusers(S)

accept (C) reject (C)

aftp(C) trsnsfer files between

lex(CP) generate programs for lexical

editor output

dc(C)

al10w/prevent print requests _____ accept (C)

A1tos machines aftp(C)

analysis 1ex(CP)

a. out (F) format of assembler and link a. out (F)

arbitrary precision calculator dc(C)

bc(C) arbitrary-precision arithmetic language _ bc(C)

cpio(F) format of cpio archive cpio(F)

ar(F) archive file format ar(F)

xar(F) archive file format xar(F)

the archive header of a member of an archive file ldahread(S) read ldahread(S)

tar(C) archive files tar(C)

fi1e ldahread(S) raad the archive header of a member of an archive ldahread(S)

streaming tape archive(C) save a file system to a __ archive(C)

ar(CP) maintain archives and libraries ar(CP)

xar(CP) maintain

cpio(C) copy file

ran1ib(CP) convert

varargs (F) handles variable

get opt (S) get option letter from

expr(C) evaluate

echoIC) echo

bc (C) arbitrary-precision

asa(C) interpret

characters

escii(M) map of the

convert between long integer and base-6'

time to string ctime(S) tzset(S)

trig(S) sinISI cos(S) tan(S)

a.out(F) format of

as(CP) 386

archives and libraries _______ xar(CP)

archives in and out cpio(C)

archives to random 1ibraries ranlib(CP)

ar(CP) maintain archives and libraries ar(CP)

ar(F) archive fi1e format ar(F)

argument list varargs(F)

argument vector getopt (S)

arguments as an expression expr(C)

arguments echoIC)

arithmetic language bc(C)

asa carriage control characters ____ asa(C)

asa(C) interpret asa carriage control _ asa(C)

ASCII character set ascii(M)

ASCII string a6'1(S) l6'a(S) a6U(S)

ascii(M) map of the ASCII character set _ ascii(M)

as(CP) 386 Assembler as(CP)

asctime(S) cftime(S) convert date and ctime(S)

asin(S) acos(S) trigonometric functions _ trig(S)

asktime(C) set the system time of day _ ssktime(C)

assembler snd link editor output ___ a.out(F)

Assembler as(CP)

masm(CP) invoke the macro sssembler ____________ maam(CP)

sssert (S) verify program assertion assert (S)

setbuf(S) setvbuf(S)

trig(S) atan(S)

trig(S)

later time

double-precision nuaber strtod(S)

strtol(S) atollS)

integer strtol(S)

sdget (S) sdfree(S)

reboot (C)

reboot the system

language

wait (C) wait completion of

finc(M) fast incremental

ckbupscd(M) check file system

assert(S) verify program sssertion __ assert(S)

assign buffering to a stream setbuf(S)

stan2(S) trigonOllletric functions ___ trig(S)

atan(S) atan2(S) trigonoaetric functions trig(S)

at(C) batch(C) execute coanands at a at(C)

stof(S) convert string to atrtod(S)

atoi(S) convert string to integer ___ strtol.(S)

atollS) atoi(S) convert string to ___ strtol(S)

attach and detach a shared data segment _ sdget (S)

automatical.ly reboot the system ____ reboot(C)

autoreboot (C) automatically autoreboot (C

awk(C) pattern scanning and processing _ awk(C)

background processes wsi t (C)

backup finc (M)

backup schedule __________ ckbupscd(M)

PI-4

Permuted Index

frec(!'!) recover files from a back-up tape frec(!'!)

badblock (C) add new bad sectors to the bad sector map badblock (C)

badblock (C) add new bad sectors to the bad sector map badblock (C)

bad sector map badblock(C) add new bsd sectors to the badblock(C)

banner (C) print large letters banner (C)

164a (S) convert between long integer and base-64 ASCII string a641 (S) a641 (S)

of pathnames basename(C) dirname(C) deliver portions basename(C)

time at(C) batch(C) execute commands at a later at(C)

langusge bc(C) arbitrary-precision arithmetic __ bc(C)

diff bdiff(C) compare files too large for bdiff(C)

cb(CP) beautify C programs ________ cb(CP)

bessel(S) jOtS) yO(S) Bessel functions bessel(S)

bessel(S) jOtS) yO(S) Bessel functions bessel(S)

bfs (C) scsn big fileB bfs (C)

bfs(C) scan big files bfs(C)

fwrite(S) fread(S) binary input/output fwrite(S)

whereis(C) locate source. binary. or manual for program whereis(C)

bsearch(S) binary search of s sorted table bsearch(S)

tfind(S) tdelete(S) twalk(S) manage binary search trees tsearch(S) tsearch(S)

creatsem(S) create a binary semaphore creatsem(S)

reset(C) reset the teletype bit reset (C)

ssp (C) remove consecutive blank lines ssp(C)

sync (S) update super block sync (S)

df(M) report number of tree disk blocks and inodes df(!'!)

sum(C) calculate checksum and count blocks in a file sum (C)

boot (!'!) boot program boot (M)

mkboot (M) convert object file to

table mkunix(M) make

table mkunix(M) make

bootable object file ________ mkboot (M)

boatable system file with driver symbol _ mkunix(M)

boot able system file with kernel symbol mkunix(M)

boot(M) boot program ________ boot(M)

brc (M) system initialization procedure _ brc (M)

shutdown(M) bring system to single-user or shutdown _ shutdown(M)

multiuser(C) singleuser(C) bring system up multi/single-user mode _ multiuaer(C)

allocation brk(S) sbrk(S) change data segment space brk(S)

table baearch(S) binary search of a sorted __ bsearch(S)

stdio(S) standard

setbuf (S) setvbuf (S) assign

mknod(C)

bsh(C) invoke the

digest (C) create menu system(s) for the

menus (M) format of

swsb (S) swap

cc(CP) invoke the

xcc(CP) invoke the XENIX

ctlow(CP) generate

cpp(CP) the

lint (CP) check

cxref(CP) generate

ctrace(CP)

cb(CP) beautify

xref (CP) cross-reference

xstr(CP) extract strings from

list (CP) produce

create an error message file from

create an error message file from

bsh(C) invoke the Business shell bsh(C)

buffered input/output package ____ stdio(S)

buffering to s stream setbuf (S)

build specisl files mknod(C)

Business shell bsh(C)

Business shell digest (C)

Business shell menu system menus(M)

bytes swab(S)

C compiler cc(CP)

C compiler xcc(CP)

C flow graph cflow(CP)

C Language Preprocessor cpp (CP)

C language usage and syntax lint (CP)

C program cross-reference cxref (CP)

C program debugger ctrace(CP)

C programs cb(CP)

C programs xref(CP)

C programs xstr(CP)

C source listing from COFF file ____ list(CP)

C source mkstr(C) mkstr(C)

C source mkstr(CP) mkstr(CP)

cal(C) print a calendar _______ cal(C)

PI-5

Permuted Index

rile aum(C) calculate check.uII! and count blocks 1n a .um(C)

dc(e) arbitrary precision calculator dc(C)

cal(C) print a calendar cal (C)

calendar(C) invoke a rem1nder service calendar(C)

cu(e) call another UNIX ayatem ______ cu(C)

stat(F) return data by stat ayatem call stat(F)

malloc(S) mallinto(S) mallopt(S) calloc(S) faat main memory allocator malloc(S)

intro(S) introduce system

line printer lp(e)

calla. functions. and libraries intro(S)

cancel(e) aend/cancel requests to LP __ lp(C)

termcap (M) terminal capability database termcap (M)

terminto(M) terminal capability databaae terminfo(M)

description captointo(M) conv.,rt termcap to t.,rminto captoinfo(M)

asa (e) interpret aaa carriage control charactera asa (e)

cat (C) concatenate and display riles cat (e)

cb(ep) beautity e programs ______ cb(CP)

gencc (CP) create a front end to the cc command gencc (CP)

sces delta

absolute value functiona floor(S)

floor(S) ceil(S) tabs(S) floor.

floor(S) fmod(S) floor.

cc(CP) invoke the e compiler cc(CP)

cd(e) change working directory cd(C)

cdc(CP) change the delta cOnll1entary of _ cdc(CP)

ceil(S) faba(S) floor. ceiling. and __ floor(S)

ceiling. and abaolute value functions floor (S)

ceiling. and abaolute value funct ions floor (S)

cflow(CP) generate C flow graph ____ cflow(CP)

string ctime(S) tzset(S) aactime(S) cftime(S) convert date and time to ctime(S)

brk (S) abrk (S)

paa.wd(C)

chmod(S)

putenv(S)

chown(S)

chown(C) chgrp(C)

directory chmod(C)

nice(S)

chroot(S)

chroot(C)

awap(C)

ot tilea .ettime(C)

delta cdc(CP)

change data .egment .pace allocation __ brk (S)

change login pa •• word passwd (C)

change mode of file ________ chmod(S)

change or add value to envirolUllent __ putenv(S)

change owner and group ot a tile ___ chown(S)

change owner or group 10 chown (C)

change permi •• ion. ot a file or ____ chmod(C)

change priority ot a proce.. nice(S)

change root directory chroot (S)

change root directory tor command ___ chroot (e)

change awap device contiguration ___ awap(C)

change the acce.a and modification date. lIettime(C)

change the delta commentary ot SCCS cdc (CP)

ch.ize(S) change the tile .ize ________ chaize(S)

delta(CP) make a change to an SCCS tile delta(CP)

cd(C) change working dirac tory cd(C)

chdir(S) changa working diractory chdir(S)

pipetS) create an interproce ••

ungetc(S) pu.h

cu.erid(S) get

getc(S) getw(S) fgatc(S) gatchar(S) gat

putc(S) putchar(S) putw(S) fputc(S) put

a.cii (M) •• p of the ASCII

tgrep(C) .earch a file for a

asa(C) interpret a.a carriage control

toaacii(S) tolover(S) tran.late

i.lower(S) i.cntrl(S) cla •• ify

iapunct(S) i.ascii(S) cla •• ify

tr(C) tran.late

wc(C) count linea. words. and

waitsem(S) nbwaitsem(S) wait and

tack (C) df.ck(C)

channel _____________ pipetS)

char.cter b.ck into input .tra .. ___ ungetc(S)

character login n8llle ot the u.er ___ cu.erid(S)

char.ctar or word trOlll a .tr ____ g.tc(S)

char.cter or word on a atr..... putc(S)

character •• t ___________ aacH(M)

ch.ract.r .tring fgrep(C)

charact.r. asa (C)

charact.r. conv (S) toupp.r (S) conv (S)

character. ctype(S) iaalpha(S) ctyp.(S)

character. ctype(S) iadigit(S) ctype(S)

charact.r. tr(C)

charact.r. wc (C)

chdir(S) chang. working dir.ctory ___ chdir(S)

ch.ck acce.s to phore resource __ waitaem(S)

check and repair fil. systems t.ck(C)

PI-6

Permuted Index

lint (CP) check C language usage and syntax lint (CP)

ckbupscd(M) check file system backup schedule ___ ckbupscd(M)

pwck(M) grpck(M) check password/group file pwck(M)

permissions file uucheck(M) check the uucp directories and ____ uucheck(M)

rdchk (S) check to see if there is data to be read rdchk (S)

labelit (M) copy file system with label checking volcopy(M) volcopy(M)

by fsck checklist (M) list file systems processed checklist (M)

sum(C) calculate checksum and count blocks in a file sum(C)

chown(C)

times(S) get process and

wait (S) wait for

provide access to the time-of-day

libraries

directory

ID

file

command

schedule

isalpha(S) islower(S) iscntrl(S)

chgrp(C) change owner or group ID ___ chown(C)

child process times ________ times(S)

child process to stop or terminate __ wait (S)

chip clock(M) clock(M)

chkshlib(CP) tool for comparing shared _ chkshlib(CP)

chmod(C) change permissions of a file or chmod(C)

chmod(S) change mode of file chmod(S)

chown(C) chgrp(C) change owner or group _ chown(C)

chown(S) change owner and group of a __ chown(S)

chroot (C) change root directory for __ chroot (C)

chroot (S) change root directory chroot (S)

chsize(S) change the file size chsize(S)

ckbupscd(M) check file system backup __ ckbupscd(M)

classify characters ctype(S) ctype(S)

isdigit(S) ispunct(S) isascii(S) clsssify characters ctype(S) ctype(S)

inir(M) clean the file system and executes init inir(M)

strclean(M) STREAMS error logger cleanup program strclean(M)

uucleanup(M) uucp spool directory cleanup uucleanup(M)

clri (M) clear inode clri (M)

clear(C) clear terminal screen clear(C)

clear(C) clear terminal screen ____ clear(C)

inquiries ferror(S) fileno(S) clearerr(S) feof(S) stream status ferror(S)

csh(C) shell command interpreter with C-like syntax csh(C)

alarm(S) set a process alarm clock alarm(S)

time-of-day chip clock(M) provide access to the clock(M)

clock(S) report CPU time used clock(S)

STREAMS driver clone(M) open any minor device on ___ clone(M)

Idclose(S) Idaclose(S) close a COFF file Idclose(S)

closetS) close a file descriptor _______ closetS)

fclose(S) fflush(S)

haltsys(C)

directory operations directory(S)

close or flush a stream fclose(S)

close the file systems and halt the CPU _ haltsys (C)

closedir(S) rewinddir(S) seekdir(S) __ directory(S)

closetS) close a file descriptor ___ closetS)

clri (M) clear inode clri (M)

cmp(C) compare two files cmp(C)

dis(CP) object code disassembler _________ dis(CP)

Idclose(S) Idaclose(S) close a COFF file Idclose(S)

Idfhread(S) read the file header of a COFF file Idfhread(S)

list(CP) produce C source listing from COFF file list(CP)

to line number entries of a section of a COFF file Idlseek(S) seek ldlseek(S)

to relocation entries at a section of a COFF file Idrseek(S) seek Idrseek(S)

an indexed/named section header of a COFF file ldshread(S) read ldshread(S)

the index of a symbol table entry of a COFF file Idtbindex(S) compute ldtbindex(S)

read an indexed symbol table entry of a COFF file Idtbread(S) Idtbread(S)

seek to the symbol table of a COFF file Idtbseek(S) ldtbseek(S)

remove symbols and line numbers from COFF file strip(CP) strip(CP)

convert an object file from OMF to COFF fixobj (CP) fixobj (CP)

manipulate line number entries of a COFF function Idlread(S) Idlitem(S) ldlread(S)

ldgetname (S) retrieve symbol name for COFF symbol table entry ldgetname (S)

PI-7

Permuted Index

comb(CP) combine SCCS deltas _____ comb(CP)

comb(CP) combine SCCS deltas comb(CP)

nice(C) run a connand at a different priority ____ nice(C)

chroot (C) change root directory for connand chroot (C)

env(C) set environment for connand execution _________ env(C)

gencc(CP) create a front end to the cc co_and gencc(CP)

nohup(C) run a

setpgrp(C) execute

sh(C) rsh(C) invoke the shell

csh(C) shell

uux(C) execute

getopt (C) parse

connand immune to hangups and quits __ nohup(C)

command in a new process group aetpgrp(C)

command interpreter sh(C)

cOl1l1\and interpreter with C-like syntax _ csh(C)

command on remote UNIX uux(C)
cOl1l1\and options __________ getopt(C)

uuxqt (M) execute remote connand requests uuxqt (H)

syatem(S) issue a shell connand system(S)

time(C) time a connand time(C)

at (C) batch(C) execute cOlllllands at a later time at (C)'

cron(C) execute commands at specified timell cron(C)

rc2(M) commands for multi-user environment rc2(M)

install (M) install cOlllllands install (M)

intro(C) introduce commands intro(C)

intro(CP) introduce software development commands intro(CP)

rcO(M)

xargs(C) construct and execute

two sorted files

mcs (CP) manipulate the Object tile

cdc(CP) change the delta

Idfcn(F)

cprs(CP) compresse a

ldopen(S) ldaopen(S) open a

commands to stop the operating system _ rcO(M)

commands xargs(C)

comm(C) select/reject lines cOlll1lOn to _ conn(C)

cOlllllent section mcs(CP)

cOlMlentary of SCCS delta cdc (CP)

cOlllllOn object file access routines __ Idfcn(F)

cOlll1lOn object file cprs(CP)

COlllllOn object tile for reading Idopen(S)

linenum(F) line number entries in a cOlllllOn object file _________ linenum(F)

nm(CP) print name list of coanon object file nm(CP)

reloc (F) relocation of information for a coanon object file reloc(F)

scnhdr(F) section header for a CQBlOn object file scnhdr(F)

syms(F) CQBlOn object file symbol table format _ lIyms(F)

conv(CP) convert

filehdr(F) file header for

size(C) print section sizes of

seek to the optional file header of a

co_(C) select/reject lines

glossary(C) define

ipcs (C) report inter-process

stdipc(S) ftok(S) standard interprocess

dircmp(C)

sdUf(C)

bdUf(C)

infocm()(M)

d1ff3(C)

CJl\p(C)

dHf(C)

sccsdiff (CP)

chkshlib(CP) tool for

regCJl\p(S)

regexp(F) regular expression

routines regexp(S)

regcmp(CP)

tic(C)

cQBlOn object files ________ conv(CP)

common object files filehdr(F)

coe.on object files lIize(C)

coanon object Idohseek(S) ldohseek(S)

common to two sorted files conn(C)

ca.lOn UNIX terms and sYmbols glossary(C)

cOlDunication facilities status ____ ipcs(C)

cOftWunication package stdipc(S)

compare directories dirCJl\p(C)

compare filell side-by-side sd1ff(C)

compare files too large for diff ___ bd1ff(C)

compare or print terminfo descriptions _ infocmp(M)

compare three files diff3(C)

compare two files cmp(C)

compare two text files diff (C)

compare two versions of an SCCS file __ sccsdirf (CP)

comparing shared libraries chkshlib(CP)

compile s regular expression _____ regcmp(S)

compile and match routines regeXp(F)

compile regular expressJ.on and match __ regexp(S)

compile regular expressions regcmp(CP)

compile terminfo source tic (C)
cc(CP) invoke tha C compiler _____________ cc(CP)

PI-8

Permuted Index

xcc(CP) invoke the XENIX C compiler ____________ xcc (CP)

yacc(CP) invoke a compiler-compiler yacc(CP)

erf(S) erfc(S) error function and complementary error function erf(S)

wait (C) wait

pack(C) pcat(C) unpack(C)

cprs(CP)

entry of a COFF tile Idtbindex(S)

cat (C)

Idunix(M)

master (1'1) master

printers (1'1) print spooler

sysconf (C) get system

sysconf (S) get system

pconfig(C) set port

swap(C) change swap device

shutype(M) UPS shutdown

completion of background processes __ wait (C)

compress and expand files pack (C)

compress a cO/ll1lOn object file cprs (CP)

compute the index of a symbol table __ ldtbindex(S)

concatenate and display files cat (C)

configurable kernel linker ______ Idunix(M)

configuration database master(M)

configuration file printers (M)

configuration information sysconf (C)

configuration information sysconf (S)

configuration pconfig(C)

configuration swap(C)

configuration utility shutype(M)

lpadmin(M) configure the LP spooling system ___ lpadmin(M)

establish an out-going terminal line connection dial(S) dial(S)

ssp (C) consecutive blank lines _______ ssp(C)

system console display display(M)

system console keyboard keyboard (1'1)

math(F) math functions and constants math(F)

unistd(F) file header for symbolic constants unistd(F)

file header for implementation-specific constants limits(F) limits(F)

mkfs (1'1) construct a file system mkts (M)

xargs(C) construct and execute connands xargs(C)

uutry(M) contact remote system with debugging on _ uutry(M)

errprint (1'1) display error log contents errprint (1'1)

recover(C) restore contents of a file system from tape __ recover(C)

dump.hd(C) dump contenta of a hard disk to tape ____ dump.hd(C)

laIC) liat contenta of directoriea ls(C)

csplit(C) split files according to context _____________ capUt(C)

fcntl(S) file control fcntl(S)

uadmin(S) adminiatrative control uadmin(S)

uustat (C) uucp status inquiry and job control uustat (C)

vc(CP) version control vc(CP)

asa(C) interpret asa carriage control charactera asa(C)

ioctl(S) control device ioctl(S)

IEEE floating point environment

IEEE floating point environment

IEEE floating point environment

IEEE floating point environment

IEEE floating point environment

init(M) procesa

IIUIgctl(S) message

a_ctl (S) aemaphore

aluBctl (S) shared memory

fcntl(F) file

control fpgetround(S) fpgetmask(S) __ fpgetround(S)

control fpgetround(S) fpgetsticky(S) __ fpgetround(S)

control fpgetround(S) fpaetmaak(S) __ fpgetround(S)

control fpgetround(S) fpsetround(S) __ fpgetround(S)

control fpgetround(S) fpsetsticky(S) __ fpgetround(S)

control initialization _______ init (1'1)

control operations msgctl (S)

control operationa semctl(S)

control operationa shmctl(S)

control options fcntl (F)

conv(CP) convert common object files conv(CP)

term (1'1) conventional names for terminals term(M)

fixobj (CP)

dd(C)

ranlib(CP)

integers l3tol(S) lto13(S)

ASCII string a641(S) l64a(S)

conv(CP)

ctime(S) gmtime(S) localtime(S)

convert an object file from OMF to COFF _ fixobj (CP)

convert and copy a file dd(C)

convert archives to random libraries ranllb(CP)

convert between 3-byte integers and long l3tol(S)

convert between long integer and base-64 a641 (S)

convert common object filea _____ conv(CP)

convert date and time to string ____ ctime(S)

PI-9

Permuted Index

ctime(S) tzset(S) aactime(S) cttime(S) convert date and ti •• to string ctimelS)

ecvt(S) convert float lng-point number to strlng _ ecvt(S)

scant (S) fscanf (S) aacanf (S) convert formatted input scan! (S)

file mkboot(H) convert object file to boot able object mkboot(H)

rat tor (CP) FORTRAN ratfor(CP) convert rational FORTRAN to standard

number atrtod(S) atof(S) convert at ring to double-precision __ strtod(S)

strtol(S) atollS) atoi(S) convert string to integer strtol(S)

captoinfo (H) convert termcap to terminto description _ captoln fo 1M)

units(C) convert unit.. unita(C)

translate characters conv(S) toupper(S) toascii(S) tolower(S) conv(S)

dd(C) convert and copy a file dd(C)

fcopy(C) copy a floppy diskette fcopy(C)

cpio(C) copy file archives in and out cpio(C)

volcopy(H) labelit (H)

cp(C)

copy file ayatem with label checking __ volcopy(M)

copy fUes cp(C)

uucp(C) uulog(C) uuname(C) copy fUea trom UNIX to UNIX _____ uucp(C)

copy(C) copy groups of files copy(C)

tra(C) copy out a file a9 it grows tra(C)

public UNIX-to-UNIX system tile copy uuto(C) uupick(C) uuto(C)

copy(C) copy groups ot tiles copy(C)

core(F) format of core image file core(F)

core(F) tormat ot core image file core(F)

ainh(S) cosh(S) tanh(S) hyperbolic tunctions __ sinh(S)

trigonometric functions trig(S) ain(S) coalS) tan(S) aain(S) acos(S) trig(S)

sum (C) calculate checksum and count blocks in a file _______ sum(C)

wc(C) count linea, words, snd chsracters wc(C)

cpio(F) format of

close the file Bystema and halt the

clock(S) report

creataem(S)

gencc(CP)

tmpnam(S) tempnam(S)

one createS)

cp(C) copy filea cp(C)

cpio archive cpio(F)

cpio(C) copy file archives in and out _ cpio(C)

cpio(F) format of cpio archive cpio(F)

cpp(CP) the C Language Preprocessor __ cpp(CP)

cprs(CP) compresse a conmon object file _ cprs(CP)

cpset(C) inatall utilitiea cpaet(C)

CPU haltsya(C) halt.yaIC)

CPU time uaed ___________ clock(S)

create a binary semaphore creatsem (S)

create a tront end to the cc cOlTllland __ gencc(CP)

creata a name for a temporary file __ tmpnam(S)

create a new tile or r_rite en existing creet(S)

tork(S) creata a new proceaa ________ tork(S)

mkahlib(CP) create e ahered library mkahlib(CP)

ctags(C) create a taga tile ctags(C)

tee(C) create a tee in a pipe tee(C)

tmptile(S) create a temporary tile tmpfile(S)

aOurce mIlatr(C) craate an error message file from C __ mkBtr(C)

aource mkatr(CP) create an error measage file from C __ mkBtr(CP)

pipetS) create an interproceaa channel pipetS)

aclmin(CP) create and acllllinister SCCS filea aclmin(CP)

Shell digeat (C) create menu syatem(s) for the Busineas _ digest (C)

makedeva(H) create apecial device files makedevs(M)

makettya(H) create tty special filea makettys(H)

umask(S) Bet and get tile creation mask umask(S)

existing one creat(S) create a n_ tile or r_rite an· creat(S)

creataem(S) create a binary aemaphore _ creatsem(S)

cref(CP) make a croaa-reterence listing _ cref(CP)

times cron(C) execute cOlTlllands at specified _ cron(C·)

crontab(C) manage user crontab filea crontahlC)

PI-IO

Permuted Index

crontab(C) .. anage user crontab files crontab(C)

xref(CP) cross-reterence C programs _____ xret(CP)

cxref(CP) generate C program cross-reference cxref(CP)

cref(CP) make a cross-reference listing cret(CP)

functions crypt (S) password and file encryption crypt (S)

C-like syntax cah(C) shell conunand interpreter with cah(C)

context csplit(C) split tiles according to __ csplit(C)

ctaga(C) create a taga file _____ ctaga(C)

ct (C) spawn getty to a remote terminal ct (C)

terminal ctermid(S) generate file name for ctermid(S)

date and time to string ctime(S) gmtime(S) localtime(S) convert ctime(S)

convert date and time to string ctime(S) tzset(S) 8sctime(S) cftime(S) ctime(S)

ctrace(CP) C program debugger ctrace(CP)

iscntrl(S) classify characters ctype(S) isalpha(S) islower(S) ctype(S)

isascii (S) classify characters ctype (S) isdigi t (S) ispunct (S) ctype (S)

cu(C) call another UNIX system cu(C)

tty (C) get the current port name tty (C)

ssct (CP) print current SCCS file edit activity ____ sact (CP)

uname(C) print the

uname(S) get name of

whoami(C) print effective

find the slot in the utmp file of the

getcwd(S) get path name of

scr_dump(F) format of

optimization package

spline(C) interpolate smooth

the user

croBB-reference

lpd(M) line printer

strerr(M) STREAMS error logger

xpd(M) transparent printer

sdgetv(S) sdwaitv(S) aynchronize shared

turn on/off

stat (F) return

plock(S) lock process. text. or

prof(CP) display profile

execseg(S) make a

synchronize access to a shsred

sdfree(S) attach and detach a shared

brk(S) sbrk(S) change

"putl(S) sgetl(S) access long integer

rdchk(S) check to see if there is

types (F) primitive system

query terminfo

dbminit (S) fetch(S) nextkey(S) perform

firstkey(S) store(S) fetch(S) perform

master(M) master configuration

termcap(M) terminal capability

terminfo(M) terminal capability

ctime(S) gmtime(S) 10caltime(S) convert

tzset(S) asctime(S) cftime(S) convert

date(C) print and set the

current UNIX information ______ uname(C)

current UNIX system uname (S)

current user id whoami (C)

current user ttyslot(S) _______ ttyalot(S)

current working directory getcwd (S)

curses screen image file scr_dump(F)

curses (S) terminal screen handling and curses (S)
_____________ spline(C)

cuserid(S) get character login name of cuserid(S)

cxref(CP) generate C program _____ cxref(CP)

daemon lpd(M)

daemon strerr(M)

daemon xpd(M)

data access sdgetv(S)

data collector sadcon(M)

data by at at system call stat (F)

data in memory plock(S)

data prof(CP)

data region executable execseg(S)

data segment sdenter(S) sdleave(S) sdenter(S)

data segment sdget (S) sdget (S)

data segment space allocation brk(S)

data sputl(S)

data to be read rdchk(S)

data types types (F)

database tput (C)

database functions dbm(S) dbm(S)

database functions dbm(S) dbm(S)

database master(M)

database termcap(M)

database terminfo (M)

date and time to string ctime(S)

date and time to string ctime(S) ctime(S)

date date(C)

date(C) print and set the date date(C)

change the access and modification dates of files settime(C) settime(C)

database functions dbm(S) dbminit (S) fetch(S) nextkey(S) perform _ dbm(S)

perform database functions dbm(S) dbminit(S) tetch(S) nextkey(S) dbm(S)

perform database functions dbm(S) firstkey(S) store(S) fetch(S) __ dbm(S)

PI-II

Permuted Index

adb(C) invoke x.out general purpose

ctrace(CP) C program

fsdb(M) file system

sdb(C) symbolic

uutry(M) contact remote system with

default(M)

dc(C) arbitrary precision calculator dc(C)

dd(C) convert and copy a tile dd(C)
debugger _____________ adb(C)

debugger ctrace(CP)

debugger fsdb(M)

debugger sdb(C)

debugging on uutry(M)

default program information directory _ default (M)

timezone(M) set default system time zone ______ timezone(M)

directory

glossary(C)

sysdef (M) output system

basename(C) dirname(C)

tail(C)

change the delta commentary of SCCS

cdc(CP) change the

default (M) default program information _ default (M)

define common UNIX terms and symbols __ glossary(C)

definition sysdef (M)

deliver portions of pathnames basename(C)

deliver the last part ot a tile ____ tail (C)

delta cdc(CP) ___________ cdc(CP)

delta commentary of SCCS delta ____ cdc(CP)

rmdel(CP) remove a delta from an SCCS tile _______ rmdel(CP)

delta(CP) make a change to an SCCS file delta(CP)

comb(CP) combine SCCS deltas comb(CP)

errstop(C) terminate error-logging demon errstop(C)

captoinfo(M) convert termcap to terminfo description captoinfo(M)

infocmp(M) compare or print terminto descriptions infocmp(M)

close(S) clo_ a file descriptor close(S)

dup(S) dup2(S) duplicate an open file descriptor dup(S)

sdget(S) sdfree(S) attach and detach a shared data segment sdget(S)

access(S) determine accessibility ot a file access(S)

dtype(C) determine disk type dtype(C)

tile(C) determine file type file (C)

tatyp(M) determine the file system identifier __ fstyp(M)

drive sizers(C) determine the size of a logical dillk __ sizefs(C)

whodo(M) determine who is doing what whodo(M)

intro(CP) introduce software

swap(C) change swap

makedevs (M) create special

fold long lines for finite width output

devinfo(C) display

ioctl(S) control

devnm(C) identify

clone (M) open any minor

development commands ________ intro(CP)

device configuration swap(C)

device files makedevs(M)

davice fold(C) fold(C)

device information devinfo(C)

device ioctl (S)

device name on which files reside devnm(C)

device on STREAMS driver clone(M)

devinfo(C) display device information _ devinfo(C)

files reside devnm(C) identify device name on which _ devnm(C)

and inodes df(M) report n1llllber of free disk blocks df(M)

fsck(C) dfsck(C) check and repair file systems _ fsck(C)

line connection dial(S) establish an out-going terminal _ dial(S)

bdHf(C) compare fU.es too large for dirf bdHf(C)

dHf3(C) compare tbree fU.es _____ dHf3(C)

dHf(C) compare two text filell dHf(C)

nice(C) run a coaaand at a different priority nice(C)

Business Sbell digest (C) create lIIenu system(s) for the _ digest(C)

dircmp(C) compare directories ____ dircmp(C)

uucheck(M) check the uucp directories and permissions file ___ uucheck(M)

dircmp(C) compare directories dircmp(C)

fleece(C) look for filea in bome

unlink(M) link and unlink files and

11l(C) list contents of

mv(C) move (rename) files and

rm(C) rmdir(C) remove files or

directories ____________ fle ... ·. ~ (C)

directories link(M) link 1M'

directories Is (C ,

directories mv (C ,

directories rm (C I

PI-12

cd (C) change working

chdir (S) change working

chmod(C) change permi •• ion. ot a file or

chroot (S) change root

uucleanup(M) uucp apool

detault (1'1) default program information

dir(M) format of a

Permuted Index

directory _____________ cd(C)

directory chdir (S)

directory chmod(C)

directory chroot (S)
directory cl .. anup _________ uucleanup(M)

directory d .. fault (1'1)

directory dir(M)

getdents(S) read directory entries and put in a rile __ getdentll(S)

dirent(F) file syatem ind"pendent

unlink(S) remove

chroot (C) change root

get path name of current working

mkdir(C) make a

mkdir(S) make a

pwd(C) print working

closedir (S) rewinddir (S) seekdir (S)

telldir(S) r .. addir(S) opendir(S)

mknod (S) make a

rmdir(S) remove a

seekdir (S) directory operation.

opendir(S) directory operations

directory entry

directory entry __________ dirent(F)

directory .. ntry unli.nk(S)

directory for command chroot (C)

dir .. ctory getcwd(S) getcwd(S)

directory mkdir (C)

directory mkdir(S)

directory name pwd(C,)

directory operations directory(S) ___ directory(S)

directory operation. directory(S) ___ directory(S)

directory. or a special or ordinary file mknod(S)

directory rmdir (S)

directory(S) clo ... dir(S) rewinddir(S) _ directory(S)

directory(S) telldir(S) readdir(S) __ directory(S)

dirent(F) file .y.tem ind"pendent ___ dirent(F)

dir(M) format of a directory dir(M)

baaename(C) dirname(C) deliver portion. of pathname. ba.ename(C)

di.able(C) di.able logina on a port di.able(C)

acct(S) enable or di.able process accounting acct(S)

di.able(C) di.abl .. login. on a port disable(C)

mesg(C) allow or di.allow messages ... nt to a terminal __ mesg(C)

di.(CP) object code di.a •• embler di.(CP)

set terminal type. mod peed. line di.cipline uugetty(M) ________ uugetty(M)

di.(CP) object code di.a •• embler ___ dis(CP)

add. hd (C) add an addi tional hard disk add. hd (C)

df (1'1) report number of free

determine the .ize or a logical

re.tore.hd(C) re.tore a hard

option. (1'1) floppy

layout(M) manage hard

maintain

dump.hd(C) dump content. of a hard

dtype(C) determine

upgrade. hd (C) upgrade an additional hard

du(C) .Wlllllarize

fcopy(C) copy a floppy

forwat (C) format a floppy

.y.t_ con.ole

.ee(C)

devinfo(C)

vi (C) invoke a .creen-oriented

errprint (1'1)

cat (C) concatenate and

hd(C)

odIC)

prof(CP)

set up terminal to print .creen

hdr(C)

who(C)

hypot (S) Euclidean

di.k block. and inode. _______ df (1'1)

di.k drive .izef.(C) .izefa(C)

di.k fro. tape re.tore. hd(C)

di.k in.tallation menu option. (1'1)

di.k partition. layout (1'1)

di.k partition. fdi.k(C)

disk to tape dump. hd(C)

di.k type dtypa(C)

di.k upgrade. hd (C)

di.k u.age du(C)

diskette fcopy(C)

di.kette format (C)

diaplay di.play(M)

display a file .ee(C)

di.play device information devinfo(C)

di.play editor vi(C)

di.play error log content. errprint (1'1)

diaplay file. cat (C)

di.play files in hexadecimal format hd(C)

diaplay files in octal format odIC)

display profile data pror(CP)

display pscreen(C) pscreen(C)

display selected parts of an object tile hdr(C)

display who is on the system who (C)

diatance function hypot (S)

PI-13

Permuted Index

whodo(M) determine who ia doing what whodo(M)

doa(C) acceaa MS-DOS files dos(C)

UNIX dos disk partitions tdhk(C)

strtod (5) atot (S) convert string to double-precision number strtod(S)

pseudo-random numbera drand48(S) erand48(S) generate ____ drand48(S)

lrand48 (S) generste pseudo-random/ drand48 (S) mrand48(S) nrand48 (S) drand48 (5)

jrand48(S) generate pseudo-random/ drand48(S) seed48(S) arand48(S) drand48(S)

graphIC) draw a graph graphIC)

manutacturing drive(C) drive information written during ___ drive(C)

determine the size ot a logical disk drive sizets (C) sizets (C)

utility program tor a streaming tape drive tapeutil(C) _________ tapeutil(C)

during manutacturing drive(C) drive intormation written drive(C)

open any minor device on STREAMS driver clone(M) clone(M)

mkunix(M) make bootable system tile with driver symbol table mkunix(M)

dump. hd(C)

dump (CP)

object file

to tape

descriptor dup (S)

dup(S) dup2(S)

descriptor

drive (C) drive intormation written

echoIC)

string

ed(C) red(C) invoke the

program end(S)

sact (CP) print current SCCS file

edit (C) invoke the

ed(C) red(C) invoke the ed text

edit (C) invoke the edit text

ex(C) invoke a text

ld(CP) invoke the link

a.out(F) format of ass_bler and link

sed(C) invoke the stream

vi (C) invoke a screen-oriented display

xld(CP) invoke the link

who ami (C) print

full regular expression

enable(C)

acct (S)

lpenable(C) Ipdi8able(C)

crypt (S) password and file

makekey(M) generate an

gencc(CP) create a front

entry getgrent(S) fgetgrent(S)

file entry getpwent (S) tgetpwent (S)

in progrlllll

getut(S) getutent(S) utmpnllllle(S)

dtype(C) determine dhk type dtype(C)

du(C) sunwnarize disk usage du(C)

dump contents of a hard disk to tape __ dump.hd(C)

dump selected parts ot an object file _ dump(CP)

dump(CP) dump selected parts ot an __ dump(CP)

dump.hd(C) dump contents ot a hard disk _ dump.hd(C)

dup2(S) duplicate an open tile dup(S)

duplicate an open file descriptor ___ dup(S)

dup(S) dup2(S) duplicate an open file _ dup(S)

during manufacturing drive(C)

echo arguments echoIC)

echoIC) echo arguments echoIC)

ecvt(S) convert tloating-point nwnber to ecvt(S)

ed text editor ed(C)

edsta(S) etext(S) last locations in end(S)

ed(C) red(C) invoke the ed text editor ed(C)

edit activity sact (CP)

edit text editor .dit(C)

edit (C) invoke the edit text editor edit (C)

editor ed(C)

editor edit (C)

editor ex(C)

editor ld(CP)

editor output a.out(F)

editor sed(C)

editor vi (C)

editor xld(CP)

etfective current user id .. hoami (C)

egrep(C) search file for pattern using _ egr .. p(C)

enable logins on a port _______ enabl .. (C)

.. nabl .. or disable process accounting __ acct (S)

enable(C) enable logins on sport ___ enabl .. (C)

.nable/disable LP line printers ____ lpenabl .. (C)

encryption functions crypt (S)

encryption key __________ mak .. key(M)

end to the cc cOllllland gencc(CP)

endgrent(S) setgrent(S) get group tile _ getgrent(S)

.. ndpwent(S) setpwent(S) get password __ g .. tpw .. nt(S)

.. nd(S) edata(S) etext(S) last locations _ .. nd(S)

endutent(S) access ut.p fil .. entry __ g .. tut(S)

.. nroll(C) xs .. nd(C) xget(C) secret mail enroll (C)

getdents(S) r .. ad dir .. ctory entries and put in a til .. ______ getdenta(S)

xlist(S) fxlist(S) g .. t nam .. list entries fra. files xlist(S)

PI-14

nliat(S) get

linenum(F) line number

Idlitem(S) manipulate line number

Idlae.k(S) a •• k to lin. numb.r

Idrs.ek(S) aeek to relocation

utmp(M) wtmp(M) fOnlat of utmp and wtmp

file syatem independent directory

endgrent(S) aetgrent(S) get group tile

getgrnam(S) getgrgid(S) get group file

setpwent (S) get password tile

getpwuid(S) get password file

utmpname(S) endutent(S) access utmp file

getutline(S) sccess utmp file

symbol name for COFF symbol table

compute the index of s symbol table

Idtbread(S) read sn indexed symbol table

putpwent(S) write password file

unlink(S) remove directory

exeeution

profile(M) set up

fpgetmssk(S) IEEE floating point

fpgetsticky(S) IEEE floating point

fpsetmaak(S) IEEE floating p~int

fpsetround(S) IEEE floating point

fpsetsticky(S) IEEE floating point

environ(M) uaer

env(C) set

Permuted Index

entriea from n list _______ nlist(S)

entriea in a cotmlOn object file linenum(F)

entriea of a COFF function Idlread(S) Idlread(S)

.ntriea or s s.ction or a COFF file Idlseek (S)

entri.a or a s.ction of a COFF file Idrseek(S)

entries utmp(M)

entry dirent (F) dirent (F)

entry getgrent(S) fgetgrent(S) getgrent(S)

entry getgrent(S) getgrent(S)

entry /fgetpwent(S) endpwent(S) getpwent(S)

entry getpwent(S) getpwnam(S) getpwent(S)

entry getut(S) getutent(S) getut(S)

entry getut(S) setutent(S) getut(S)

entry Idgetname(S) retrieve Idgetname(S)

entry of a COFF file ldtbindex(S) Idtbindex(S)

entry of a COFF file Idtbread(S)

entry putpwent(S)

entry unlink(S)

env(C) .et environment for conwnand env(C)

environ(M) user environment environ(M)

environment at login time profile(M)

environment control fpgetround(S) ___ fpgetround(S)

.nvironment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

.nvironment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

environment environ(M)

environment for cOllllland execution env(C)

getenv(S) return value for envirolllll.nt name _________ getenv(S)

printenv(C) print out the .nvironment printenv(C)

putenv(S) change or add value to envirolllll.nt putenv(S)

rc2(M) cOlllllanda for multi-ua.r environm.nt rc2(M)

numbera drand48 (S)

.rror function erf(S)

complementary error function

sys_nerr(S) ays_errlist (S)

function erf(S) erfc(S)

erfc(S) error function and complementary

errprint (M) display

strclean(M) STREAMS

erand48(S) generate pseudo-randOlll ___ drand48(S)

erfc(S) .rror function and complem.ntary erf(S)

erf(S) .rfc(S) error function and erf(S)

errno(S) ayatem error measages sys_nerr(S)

error function and complementary error _ erf (S)

error function erf (S) erf (S)
error log contenta _________ errprint (M)

.rror logger cleanup progr... strclean (M)
atrerr(M) STREAMS error logg.r daemon ________ atrerr(M)

10g(M) interface to STREAMS error logging 10g(M)

mkatr(C) cr.ate an

IIkstr(CP) create an

perror(S) aystem

sys_errlist(S) errno(S) ayatem

tind spelling

error message file from C source ___ mkstr(C)

error meaaage file from C source ___ mkstr(CP)

error mesaages perror (S)

error meaaages sya_nerr(S) sys_nerr(S)

errora spell (C)

.atherr(S) error-handling function _______ matherr(S)

erratop(C) terminate error-logging demon erratop(C)

errprint (M) display error log contents _ errprint (M)

errstop(C) terminate error-logging demon_ errstop(C)

connection dial(S) eatabliah ~ out-going terminal line __ dial(S)

setmnt(C) eatabliah /etc/mnttab table _____ setmllllC)

aetmnt (C) establish /etc/mnttab table _________ aetnu. t (C)

end(S) edata(S)

hypot(S)

etext(S) Iaat locationa in program __ end(S)

EuClidean distanc. function hypot (S)

teat(C) evaluate an exprea.1on _______ test(C)

PI-I5

Permuted Index

expr(C) evaluata arguments as an expression __ expr(C)

ex(C) invoke a text editor ex(C)

file exec(S) execvp(S) execlp(S) execle(S) execv(S) execl(S) execute a exec(S)

execute a file exec(S) execvp(S) eXeclp(S) execle(S) execv(S) execl(S) _ exec(S)

execvp(S) eXeclp(S) execle(S) execv(S) eXecl(S) execute a file exec(S) ____ exec(S)

execv(S) execl(S) execute a file exec(S) execvp(S) execlp(S) execle(S) _ exec(S)

execseg(S) make a data region executable execseg(S)

execseg(S) make a data region executable ____________ execseg(S)

execlp(S) execle(S) execv(S) execl(S) execute a file exec(S) execvp(S) exec(S)

regex(S) execute a regular expression regex(S)

setpgrp(C)

uux(C)

at(C) batch(C)

cronIC)

xargs(C) construct and

uuxqt(M)

inir(M) clean the file system and

env(C) set environment for command

nap(S) suspend

sleep(C) suspend

sleep (S) suspend

moni tor (S) prepsre

profil(S)

execl(S) execute a file exec(S)

exec(S) execvp(S) execlp(S) execle(S)

creat (S) create a new file or rewrite an

false(C) return with a nonzero

true(C) return with a zero

pack(C) pcat(C) unpack (C) compress and

functions exp(S) pow(S) 10g(S)

functions exp(S) sqrt (S)

expression

regexp (S) compile regul.ar

regexp (F) regul.ar

file for pattern using full regular

expr(C) eval.uate arguments as an

regcmp(S) cOlllpile a regular

regex(S) execute a regular

test(C) evaluate an

execute command in a new process group _ setpgrp(C)

execute command on remote UNIX uux(C)

execute commands at a later time at (C)

execute commands at specified times __ cron(C)

execute commands xargs(C)

execute remote command requests ____ uuxqt (M)

executes init inir(M)

execution env(C)

execution for a short interval nap(S)

execution for an interval ______ sleep(C)

execution for interval sleep(S)

execution profile monitor(S)

execution time profile profil (S)

eXecvp(S) eXeclp(S) execle(S) execv(S) exec(S)

execv(S) execl(S) execute a file exec(S)

eXisting one creat(S)

exit value false(C)

exit value true(C)

exit(S) terminate process exit(S)

expsnd files pack(C)

exponential. logsrithm. and power ___ exp(S)

exponential.. logarithm. and square root _ exp(S)

expr(C) evsluate arguments ss an ___ expr(C)

apression and match routines regexp(S)

apression compile snd match routines _ regexp(F)

expression _grep(C) search egrep(C)
expression ____________ expr(C)

expression regcmp (S)

expression regex(S)

expression test (C)

regcmp(CP) compile regular expressions regcmp(CP)

logarithm. and power functions exp(S) pow(S) 10g(S) exponential.. ___ exp(S)

and square root functions exp(S) sqrt(S) eXponential.. logarithm. _ exp(S)

xatr(CP) extract strings from C programs ____ xstr(CP)

value functions fl.oor(S) ceil.(S) fsbs(S) fl.oor. ceiling. and absolute __ floor(S)

report inter-process ea.lunicstion

hel.p(C) system help

factor (C)

facilities status ipcs(C) ipcs(C)
fscility _____________ help(C)

factor a number factor(C)

fsctor(C) fsctor s number factor(C)

value false(C) return with s nonzero exit __ false(C)

ff(M) fsst find ff(M)

fincUt)

mal.loc(S) free(S) real.loc(S)

mall.info(S) mall.opt (S) csl.loe(S)

abort (S) generate an lOT

fsst incremental. backup _______ finc(M)

fast main memory all.oeator mall.oc(S)

fast main memory allocator mal.loc(S) malloc(S)

fault abort(S)

stream fclose(S) fflush(S) close or flush a __ fclose(S)

fcntl(F) fHe control options fcntl(F)

PI-16

nlist (S) get

linenum(P) line number

Idlitem(S) manipulate line number

Idlseek(S) seek to line number

ldrseek(S) seek to relocation

utmp(M) wtmp(M) fOrlllat of utmp and wtmp

file system independent directory

endgrent (S) setgrent (S) get group file

getgrnam(S) getgrgid(S) get group file

setpwent (S) get password file

getpwuid(S) get password file

utmpname(S) endutent(S) access utmp file

getutline(S) access utmp file

symbol name for COFF symbol table

compute the index of a symbol table

Idtbread(S) read an indexed symbol table

putpwent (S) write password file

unlink(S) remove directory

exe-cution

profile(M) set up

fpgetmask(S) IEEE floating point

fpgetsticky(S) IEEE floating point

fpsetmask(S) IEEE floating point

fpsetround(S) IEEE floating point

fpsetsticky(S) IEEE floating point

environ(M) user

env(C) set

Permuted Index

entries from nUle list _______ nlist(S)

entries in a connon object tile linenum(F)

entries of a COPF function Idlread(S) Idlread(S)

entries of a section of a COFF tile ldlseek(S)

entries of a aection of a COFP file ldrseek(S)

entries utmp(M)

entry dirent (P) dirent (F)

entry getgrent(S) fgetgrent(S) getgrent(S)

entry getgrent(S) getgrent(S)

entry /fgetpwent(S) endpwent(S) getpwent(S)

entry getpwent(S) getpwnam(S) getpwent(S)

entry getut(S) getutent(S) getut(S)

entry getut(S) setutent(S) getut(S)

entry ldgetname (S) retrieve ldgetname (S)

entry of a COPP file ldtbindex(S) ldtbindex(S)

entry of a COFF file ldtbread(S)

entry putpwent(S)

entry unlink(S)

env(C) .at environment for conwnand env(C)

environ(M) user environment environ (M)

environment at login time profile(M)

environment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

environment control fpgetround(S) ___ fpgetround(S)

environment environ(M)

environment for cOllllland execution env(C)

getenv(S) return value for environment name _________ getenv(S)

printenv(C) print out the environment printenv(C)

putenv(S) change or add value to environment putenv(S)

rc2(M) cOlMlande for multi-user environment rc2(M)

numbers drand48(S)

error function erf(S)

complementary error function

sys_nerr(S) sys_errlist (S)

function erf(S) erfc(S)

erfc(S) error function and complementary

errprint (M) display

strclean(M) STREAMS

erand48(S) generate pseudo-random ___ drsnd48(S)

erfc(S) error function and complementary erf(S)

erf(S) erfc(S) error function and erf(S)

errno(S) system error messages sya_nerr(S)

error function and complementary error _ erf(S)

error function ert(S) erf(S)

error log contents _________ errprint (M)

errOr logger cleanup program strclean(M)
strerr(M) STREAMS error logger daemon ________ strerr(M)

10g(M) interface to STREAMS error logging 10g(M)

mkstr(C) create an

IIkstr(CP) create an

perror(S) system

sYB_errlist(S) errno(S) system

find spelling

error message file from C source ___ mkstr(C)

error message file from C source ___ mkstr(CP)

error messages perror (S)

error messages sys_nerr(S) ______ sys_nerr(S)
errors _____________ spell(C)

.atherr(S) error-handling function _______ matherr(S)

errstop(C) terminate

connection dial (S)

setmnt(C)

setmnt (C) establish

end(S) edata(S)

hypot(S)

error-logging demon errstop(C)

errprint (M) display error log contents _ errprint (M)

errstop(C) terminate error-logging demon_ errstop(C)

establish lin out-going terminal line __ dial(S)

establish /etc/mnttab table _____ setmlll {e)

/etc/mnttab tsble setmllt (C)

etext(S) last locations in program __ end(S)

Euclidean distance function hypo t (S)

test(C) evaluate an expression _______ test(C)

PI-I5

Permuted Index

expr(C) evaluate arguments as an expresaion __ expr(C)

ex(C) invoke a text editor ex(C)

file exec(S) execvp(S) execlp(S) execle(S) execv(S) execl(S) execute a exec(S)

execute a file exec(S) execvp(S)

execvp(S) execlp(S) execle(S) execv(S)

execv(S) execl(S) execute a file

execseg(S) make a data region

execlp(S) execle(S) execv(S) execl(S)

regex(S)

setpgrp(C)

uux(C)

at (C) batch(C)

cronIC)

xargs(C) construct and

uuxqt(M)

inir(M) clean the file system and

env(C) set environment for conmand

nap(S) suspend

sleep(C) suspend

sleep(S) suspend

monitor(S) prepare

profil(S)

execl(S) execute a file exec(S)

exec (S) execvp (S) execlp (S) execle (S)

creat(S) create a new file or rewrite an

false(C) return with a nonzero

true(C) return with a zero

pack(C) pcat(C) unpack(C) compress and

functiona exp(S) pow(S) 10g(S)

functions exp(S) sqrt (S)

expression

regexp(S) compile regular

regexp (F) regular

file for pattern using full regular

expr(C) evaluate arguments as an

regcmp(S) compile a regular

regex(S) execute a regular

test(C) evaluate an

regcmp(CP) compile regular

logarithm. and power functions

and square root functions

xstr(CP)

value functions floor(S) ceil(S)

report inter-process c.-unication

help(C) syst_ help

execlp(S) execle(S) execv(S) execl(S) _ exec(S)

execl(S) execute a file exec(S) exec(S)

exac(S) execvp(S) execlp(S) execle(S) _ exec(S)

execseg(S) make a data region executable execseg(S)
executable ____________ execseg(S)

execute a file exec(S) execvp(S) exec(S)

execute a regular expression regex(S)

execute command in a new process group _ setpgrp(C)

execute command on remote UNIX uux(C)

execute commands at a later time at (C)

execute commands at specified times cronIC)
execute commands _________ xargs(C)

execute remote conmand requests ____ uuxqt (M)

executes init inir(M)
execution ____________ env(C)

execution for a short interval nap(S)

execution for an interval sleep(C)

execution for interval sleep(S)

execution profile monitor (S)

execution time profile profil (S)

execvp(S) execlp(S) execle(S) execv(S) exec(S)

execv(S) execl(S) execute a file exec(S)

existing one creat(S)

exit value false(C)

exit value true(C)

exi t (S) terminate process exit (S)

expand files pack(C)

exponential. logarithm. and power ___ exp(S)

exponential. logarithm. and square root _ exp(S)

.-pr(C) eveluate arguments as an ___ expr(C)

apression and match routines regexp(S)

.-pression compile and match routines _ regexp(F)

expression egrep (C) sesrch egrep (C)
expression ____________ expr(C)

expression regcmp (S)

expression regex(S)

expression test(C)

expressions regcmp(CP)

exp(S) pow(S) 10g(S) exponential. ___ exp(S)

exp(S) sqrt(S) exponential. logarithm. _ exp(S)

extract atrings from C programs ____ xstr(CP)

fabs(S) floor. ceiling. and absolute __ floor(S)

facilities status ipcs(C) ipcs (C)

facility help(C)
factor(C) factor a number __________ factor(C)

factor(C) factor a nWllber factor(C)

value false(C) return with a nonzero exit __ false(C)

ff(M) fast find ff(M)

finc(M)

malloc(S) free(S) realloc(S)

mallinfo(S) mallopt (S) calloc(S)

abort (S) generate an lOT

fast incremental backup _______ finc(M)

fast main memory allocator malloc (S)

fast main memory allocator malloc(S) malloc(S)

fault abort (S)

stream fclose(S) fflush(S) close or flush a __ fclose(S)

fcntl(F) file control options fcntl(F)

PI-16

UNIX DOS dhk partition.

topen(S)

intro(M) introduce miscellaneous

ferror (S) tileno (S) clearerr (S)

stream status inquiries

function. dbm(S) dbminit(S)

dbm(S) tirstkey(S) store(S)

head(C) print the tirst

tclose(S)

word from a stream getc(S) getw(S)

group file entry getgrent (S)

password file entry getpwent(S)

gets(S)

string

utime(S) set

ldfcn(F) common object

Permuted Index

fcntl(S) file control _______ fcntl(S)

fcopy(C) copy a floppy diskette ____ tcopy(C)

fdhk(C) fd1sk(C)

fdopen(S) freopen(S) open a stream __ topen(S)

feature. and files _________ intro(M)

feof(S) stream status inquiries ____ terror(S)

ferror(S) tileno(S) clearerr(S) hof(S) ferror(S)

fetch(S) nextkey(S) perform databa.e __ dbm(S)

fetcheS) perform database functions __ dbm(S)

tew lines ot a stresm head(C)

tflush(S) close or flush s stream tclose(S)
ff(M) fast find __________ tf(M)

fgetc(S) getchar(S) get character or __ getc(S)

fgetgrent(S) endgrent(S) setgrent(S) get getgrent(S)

tgetpwent(S) endpwent(S) setpwent(S) get getpwent(S)

fgets(S) get a string from a stream __ gets(S)

fgrep(C) search a file for a character _ tgrep(C)

tile access and moditication times utime(S)

file access routines ldfcn(F)

accesseS) determine accessibility of a file ______________ accesseS)

aect (M) format of per-process accounting tile aect (M)

cpio(C) copy tile archive. in and out cpio(C)

tra(C) copy out a file as it grows tra(C)

chmod(S) change mode of file chmod(S)

chown(S) change owner and group of a file chown(S)

mcs(CP) manipulate the object file comment section mcs(CP)

fcntl(S) file control tcntl(S)

fcntl(F) tile control option. fcntl(F)

uupick(C) public UNIX-to-UNIX system tile copy uuto(C) uuto(C)

core(F) tormst of core image file core(F)

cprs(CP) compresse a cOlllllOn object file cprs(CP)

umask(S) set and get file creation mask uma.k(S)

ctags(C) create a tag. tile ctaga(C)

dd(C) convert and copy. tile dd(C)

delta(CP) make a change to an SCCS tile delta(CP)

close (S) close a

dupeS) dup2(S) duplicate an open

dump selected part. of sn object

sact (CP) print current SCCS

crypt (S) paaaword and

endgrent (S) aetgrent (S) get group

getgrnam(S) getgrgid(S) get group

endpwent(S) setpwent(S) get pa •• word

getpwnam(S) getpwuid(S) get pas.word

utmpname(S) endutent(S) acce •• utmp

setutent(S) getutline(S) access utmp

file descriptor __________ closetS)

file de.criptor dup(S)

file dump(CP) dump (CP)

file edit activity sact (CP)

file encryption function. crypt (S)

rile entry getgrent(S) fgetgrent(S) __ getgrent(S)

file entry getgrent(S) getgrent(S)

rile entry getpwent(S) fgetpwent(S) __ getpwent(S)

file entry getpwent (S) getpwent (S)

file entry getut(S) getutent(S) ____ getut(S)

file entry getut(S) ________ getut(S)

putpwent(S) write pa •• word file entry putpwent(S)

execle(S) exeev(S) execl(S) execute a file exec(S) ex .. cvp(S) execlp(S) e"ee(S)

fgrep(C) .earch a file for a character .tring fgrep(C)

grep(C) ... arch a

expr ion egrep(C) .earch

Idaopen(S) open a COlllllOn object

ar(F) archive

tile for a pattern grep(C)

file for pattern u.ing full regular __ "grep(C)

file for reading ldopen(S) Idopen(S)
tile format ___________ ar(F)

xar(F) archive file format xar(F)

intro(F) introduction to file format. intro(F)

mkatr(C) create an error mes.age file from C aource mkstr(C)

mkstr(CP) create an error meaaage file from C source mkatr(CP)

PI-17

Permuted Index

fixobj(CP) convert an object rile trom OMF to COFF fixobJICPI

get (CP) get a version ot .n SCCS tile get! CP I

read directory entries and put in a tile getdents(S) getdentslSI

group(M) fOr1ll.t of the group file grouplMI

displ.y selected p.rts of an object tile hdr(C) hdr(C)

tilehdr(F) tile header for convnon object files filehdrlF)

constants limits(F) file header for implementation-specific limitslF)

unistd(F) fUe header for symbolic constants unistdl F I

Idthread(S) read the fUe header of a COFF fUe Idthread(SI

Idohseek(S) seek to the optional tile header ot a convnon object IdohseeklS)

split (C) split a tile into pieces split (C)

archive header of a member of an archive file Idahread(S) read the IdahreadlS)

Idclose(S) Idaclose(S) close a COFF tile IdcloselS)

read the file header ot a COFF tile Idfhread (S) Idfhread IS)

number entries of a section ot a COFF tile Idlseek(S) seek to line ldlseeklS)

entries of a .ection of a COFF tile Idrseek(S) .eek to relocation Idrseek(SI

indexed/named section header of a COFF file Idshread(S) read an IdshreadlSI

index of a symbol table entry of a COFF tile Idtbindex(S) compute the IdtbindexlSI

an indexed symbol t.ble entry of a COFF tile Idtbread(S) read IdtbreadlS)

seek to the symbol table ot a COFF file Idtbseek (S) Idt bseek I S I

line number entries in a convnon object file linenum(F) linenum(F)

link(S) link to. tUe link(S)

produce C source li.ting trom COFF file list(CP) list(CP)

In(C) make a link to a file In(CI

mem(M) klllem(M) memory image file mem(MI

convert object file to bootable object file mkboot (M) mkboot (M)

a directory, or • special or ordinary file mknod(S) make mknod (S I

ctenaid(S) generate tile name tor ter1llinal ctermid (S)

mktemp(S) make a unique fUe name mktemp(S)

nl (C) add line numbers to a file nl (C)

nm(CP) print name list of common object tile nm(CP)

null(M) null tile null(M)

ttyslot(S) tind the slot in the utmp file of the current tty.lot(S)

more(C) vie... tile one full screen at a time more(C)

chmod(C) ch.nge permiseions of s fUe or directory chmod(C)

fuser(M) identity processes using. tile or file structure fuser(M)

cre.t(S) cre.te • ne ..

p d(M) pa •• word

tor CRTs

fseek(S) ftell(S) r_ind(S) reposition a

lseek(S) move read/write

printers (M) print spooler configuration

prs(CP) print an sees
pwck (M) grpck (M) check password/ group

re.d(S) re.d trom

10cking(S) lock/unlock a

of intormation tor • cOlllMOn object

rev(C) reverse lines of a

r1IIdel(CP) remove a delta trOM an SCCS

compare two versions ot an SCCS

.ccstUe(F) tOr1llat of an SCCS

section header tor a ca.mon object

format ot curses screen image

.ee(C) display a

chsize(S) change the

stat(S) tstat(S) get

find the printable strings in an object

file or re .. rite an exi.ting one ___ creat (S)

file passwd(M)

tile perusal filter ________ pg(C)

tile pointer in a stream fseek (S)

file pointer lsaek IS)

tile printers 1M)

file prslCP)

file pwck 1M)

tile read (S)

file region for read/ .. rite locking IS)

file reloc(F) relocation reloc(F)

file revIC)

tile r1IIdel(CP)

tile sccsdift(CP) sccsdiff(CP)

tile sccsfile(F)

tile scnhdr(F) scnhdr(F)

tUe scr_dump(F) _________ scr '''''''I'' F)
file _____________ _

tile size chs H ~, S)

tUe .tatus ___________ stat (S)

tUe strings(C) strings(C)

PI-18

symbols and lin. numb.r. from COFF

identify proc ••••• u.ing a fil. or

mount (C) umount (C) mount/unmount a

calculate check.um and count block. in a

sym.(F) cOllfton object

inir(M) clean the

ckbup.cd(M) check

tsdb(M)

recover (C) restore contents of a

fsinfo(M) report information about a

fstyp(M) determine the

dirent(F)

statfs(S) htatfs(S) get

mkfs(M) construct a

mount(S) mount a

quot (C) sUJ1l1larize

ustat(S) get

fsstat (M) report

fstab(M)

mnttab(M) mounted

srchive(C) save a

systs(S) get

volcopy(M) labelit(M) copy

haltsys (C) close the

fsck (C) dfsck(C) check and repair

labelit (C) provide labels for

umountall(C) mount/unmount multiple

checklist (M) list

tail(C) deliver the last part of a

tmpfile(S) create a temporary

tempnam(S) create a name tor a temporary

mkboot(M) convert object

tsort(C) sort a

access and modification time. of a

uucico(M)

uusched(M) scheduler tor the uucp

ttw(S) walk a

tty.(M) login terminal.

tile(C) determine

unget(CP) undo a previous get ot an SCCS

uniq(C) report repeated line. in a

the uucp directories and permi •• ion.

val(CP) validate sn SCCS

mkuniJt(M) lIBke boot able .y.tem

mkuniJt(M) .ak. boot able .y.tem

write(S) write on s

uma.k(C) set

tile.

statu. inquiries terror(S)

c.plit (C) split

admin(CP) create and admini.ter SCCS

link(M) unlink(M) link and unlink

mv(e) move (rename)

attp(C) transter

bf.(e) .can big

cat (e) concatenate and display

Permuted Index

file .trip(CP) re\llOve ________ strip(CP)

tile structure tu.er(M) tu.er(M)

tile structure mount (C)

tile .um(e) sum(C)

tile .ymbol table tormat syms(F)

file sy.tem and execute. init inir(H)

tile .y.tem backup .chedule ckbup.cd(H)

tile system debugger tsdb(H)

tile system trom tape recover (C)

tile system fsinto(H)

file system identifier fstyp(M)

file .ystem independent directory entry _ dirent(F)

tile system information stathIS)

tile system mkfs(H)
file .ystem ___________ mount (S)

file system ownership quot (C)

file system statistics ustat (S)

tile system status fsstat (M)

file system table fstab(M)

file system table mnttab(H)

file system to a streaming tape ____ archive(e)

file system type intormation sysfa(S)

file system with label checking ____ volcopy(M)

file systems and halt the CPU haltsys (C)

file systems fsck(C)
file aystema ____________ labelit(C)

file systems mountall(C) mountall(C)

tile systems processed by fsck checklist (H)

file tail(C)

file tmpfile(S)

tile tmpnam(S) tmpnam(S)

tile to boot able object tile mkboot(H)

tile topologically tsort (C)

file touch(e) update touch (C)

tile transport program tor uucp system _ uucico(M)

file tran.port progr8111 uusched(H)

tile tree ftw(S)

tile ttys(M)
tile type ____________ file(C)

tile un get (CP)

tile uniq(C)

tile uucheck(H) check uucheck (M)

tile val (CP)

tile with driver aymbol table mkunix(M)

tile with kernel symbol table mkunix(M)

file write(S)

tile (C) determine tile type tile(e)

tile-creation mode msak umeak(C)

tilehdr(F) tila header tor coawnon object filehdr(F)

tileno(S) clearerr(S) teof(S) .tream terror(S)

tile. according to context csplit (e)

file. admin(CP)

tile. and directories link(M)

file. and directories mv(C)

tile. between Altos .. chin.. attp(C)

til.. bfa(C)

tile. cat (C)

PI-19

Permuted Index

cmp(C) compare two

select/reject lines common to two sorted

COnll(CP) convert cOImIOn object

copy(C) copy groups of

cp(C) copy

crontab(C) manage user crontab

dHrJ(C) compare three

difr(C) compare two text

dos(C) access MS-DOS

filehdr(F) file header for common object

find(C) rind

hplp(C) hplpR(C) filter

frec (M) recover

uucp(C) uulog(C) uuname(C) copy

fspec (F) format specification in text

fsplit (CP) split ratfor

hd(C) display

fleece(C) look for

odIC) display

introduce miscellaneous features and

lockf (S) record locking on

makedevs (M) create special device

makettys(M) create tty special

mknod(C) build special

pr(C) print

rm(C) rmdir(C) remove

pcat(C) unpack(C) compress and expand

devnm(C) identify device name on which

the acceBS and modification dates of

sdiff (C) compare

print section sizes of cOlllllOn object

sort(C) sort and merge

tar(C) archive

Ipr(C) route named

bdHf(C) compare

what (C) identify

fxlist (S) get n8llle list entries from

filas cmp(C)

files COIM\(C) COft'll1(C)

files conv(CP)

files copy(C)

files cp(C)

files crontab(C)

files dHrJ(C)

files dHf (C)

files dos(C)

filea tilehdr(F)

files find(C)

files for printing on LaserJet printer _ hplp(C)

files from a back-up tape free (M)

files from UNIX to UNIX uucp(C)

files tspec(F)
files ______________ fsplit (CP)

files in hexadecimal format hd(C)

files in home directories fleece(C)

riles in octal format odIC)

files intro(M) intro(M)

files lockf (S)

files makedevs (M)

files makettys (M)

fUes mknod(C)

files on the standard output pr(C)

files or directories rm(C)

files pack(C) pack(C)

files reside devnm(C)

rUes settime(C) change settime(C)

fUes side-by-side sdirf (C)

files size(C) size(C)

fUes sort (C)

files tar (C)

files to printer spooler Ipr(C)

files too large for dirf bdiff(C)

files what (C)

fUes xlist(S) xlist(S)

filesystem(M) format of a system volume _ filesystem(M)

filter file tor CRT pg(C)

printer hplp(C) hplpR(C) filter files for printing on LaBerJet _ hplp(C)

finc(M) fast incremental backup ____ finc(M)

ff(M) fast find tf(M)
find (C) find files ____________ find(C)

tinger(C) find information about users finger(C)

look (C) find lines in a sorted list 100k(C)

ttynaae(S) isatty(S) find name of a terminal ttyname(S)

library 10rder(CP)

tUe strings(C)

current user ttyslot(S)

fold(C) fold long lines for

database functions dbm(S)

OMF to COFF

directories

fpgetround(S) fpgetmask(S) IEEE

fpgetround(S) tpgetsticky(S) IEEE

find ordering relation for object ___ 10rder(CP)

find the printable strings in an object _ .trings(C)

find the slot in the utmp file of the _ tty.lot (S)

find(C) find files find(C)

ringer(CI find information about users _ finger(C)

rinite width output device fold(C)

rirstkey(S) store(S) fetch(S) perform _ dbm(S)

fixobj (CP) convert an object file from _ tixobj (CP)

tleece(C) look tor tiles in hOllle ___ fl"ece(C)

floating point environment control __ fpgetround(S

floating point environment control __ tpgetround(S

PI-20

fpgetround(S) fpsetmask(S) IEEE

fpgetround(S) fpsetround(S) IEEE

fpgetround(S) fpsetsticky(S) IEEE

isnan(S) isnanf(S) isnand(S) test for

ecvt (S) convert

modf(S) Idexp(S) manipulata parts of

functions floor(S) ceil(S) fabs(S)

functions floor(S) fmod(S)

and absolute value functions

absolute value functions

options(M)

fcopy(e) copy a

format (e) format a

cflow(ep) generate e

fclose(S) fflush(S) close or

value functions floor(S)

Permuted Index

floating point enviroruaent control __ fpgetround(S)

floating point environment control __ fpgetround(S)

floating point environment control __ fpgetround(S)

floating point NaN isnan(S)

floating-point number to string ___ ecvt (S)

floating-point numbers frexp(S) ___ frexp(S)

floor. ceiling. and absolute value floor(S)

floor. ceiling. and absolute value floor(S)

floor(S) ceil(S) fabs(S) floor. ceiling. floor(S)

floor(S) fmod(S) floor. ceiling. and floor(S)

floppy disk installation menu ____ options(M)

floppy diskette fcopy(e)

floppy diskette format (e)

flow graph cflow(ep)

flush a stream fclose (S)

fmod(S) floor. ceiling. and absolute floor(S)

fmt (e) simple text formatter fmt (e)

device fold(e) fold long lines for finite width output _ fold(C)

output device fold(e) fold long lines for finite width fold(e)

stream fopen(S) fdopen(S) freopen(S) open a fopen(S)

fork(S) create a new process fork(S)

format (e) format a floppy diskette format (e)

ar(F) archive file format _____________ ar(F)

hd(e) display filea in hexadecimal format hd(e)

od(C) display files in octal format od(C)

dir(M) format of a directory dir(M)

filesystem(M) format of a system volume filesystem(M)

inode(M) format of an inode inode(M)

Bccsfile(F) format of an sees file sccsfile(F)

output a.out(F) format of assembler and link editor a.out(F)

menus(M)

core(F)

cpio(F)

scr_dump(F)

acct(M)

group(M)

utmp(M) wtmp(M)

fspec (F)

syms(F) conunon object file symbol table

xar(F) archive file

intro(F) introduction to file

scanf(S) fscanf(S) sacanf(S) convert

vprintf(S) vfprintf(S) vaprintf(S) print

printf(S) sprintt(S) fprintf(S) print

format of Busineas Shell menu syatem __ menus (M)

format of core image file core(F)

format of cpia archive _______ cpio(F)

format of curses screen image file __ scr_dump(F)

format of per-process accounting file _ acct (1'1)

format of the group file group(M)

format of utmp and wtmp entries ____ utmp(M)

format specification in text files __ fspec(F)

format syms(F)

format xar(F)

format (e) format a floppy diskette __ format (e)
formats _____________ intro(F)

formatted input scanf(S)

formatted output of varargs list ___ vprintf(S)

formatted output printf(S)

t .. t(C) simple text formatter __________ fmt(C)

convert rational FORTRAN to standard FORTRAN ratfor(CP) ratror(CP)

rattor(CP) convert rational FORTRAN to standard FORTRAN _____ ratfor(CP)

environment control fpgetround(S)

point environment control

floating point environment control

point environment control

floating point environment control

floating point environment control

environment control fpgetround (S)

printf(S) sprintf(S)

environment control fpgetround(S)

fpgetmask(S) IEEE floating point ___ fpgetround(S)

fpgetround(S) fpgetmask(S) IEEE floating fpgetround(S)

fpgetround(S) fpgetaticky(S) IEEE ___ fpgetround(S)

fpgetround(S) fpsetmask(S) IEEE floating fpgetround(S)

fpget round (S) fpset round (S) IEEE ___ fpget round (S)

fpgetround(S) fpsetsticky(S) IEEE ___ fpgetround(S)

fpgetsticky(S) IEEE floating point __ fpyetround(S)

fprintf(S) print formatted output ___ printf(S)

fpsetmask(S) IEEE floating point ___ fpgetround(S)

PI-21

Permuted Index

environment control tpget round(S) tpsetround(S) IEEE float ing point ___ fpget round I S I

environment control fpgetround(S) tpsetsticky(S) IEEE tloating point __ tpgetroundlSI

stream putc(S) putchar(S) putw(S) tputc(S) put character or word on a __ putc(SI

puts(S) tputs(S) put a string on a .tre ___ puts(SI

fwrite(S) fread(S) binary input/output fwritelS)

tape frec(M) recover files from a back-up freclM)

df(M) report number of free disk blocks and inodes _____ df(M)

allocator malloc (S)

fopen (S) fdopen (S)

parts of floating-point numbers

free(S) realloc(S) fast main memory __ malloc(S)

freopen(S) open a stream topenlS)

frexp(S) modf(S) Idexp(S) manipulate __ frexplS)

trom(C) list who my mail ia from fromlC)

gencc(CP) create a front end to the cc command _____ gencclCP)

input scant(S) fscanf(S) s.cant(S) convert tormatted scanflS)

list file systems proce.sed by fsck checklist (1'1) checklist IMI

systems tsck(C) dfsck(C) check and repair file _ fsckle)

fadb(M) file ayatem debugger fsdb(M)

file pointer in a .tre.... fseek(S) rtell(S) rewind(S) reposition a fseek(S)

file system t.info(M) report information about a __ f.infoIM)

files tspec(F) format specification in text _ fspeclF)

atath(S)

atat(S)

identifier

pointer in a stream faeek(S)

convnunication package stdipc (S)

tsplit (CP) split ratfor files faplit ICP)

fast at (1'1) report file system status __ fsstat (1'1)

fstab(M) tile system table fstab(l'I)

tstatts(S) get tile system intormation _ statfslS)

tstat(S) get tile statua statlS)

fstyp(l'I) determine the tile syatem __ fstypll'l)

tte11(S) rewind(S) reposition a fi1e __ fseeklS)

rtok(S) standard interprocess stdipc(S)

ttw(S) wslk a file tree _______ ttwlS)

egrep(C) search file for pattern using fu11 regular axpression egrep(C)

more(C) view a file one full screen at a tille more (C)

function ert(S) ertc(S) error function and compl_entary error ___ ert(S)

error function and complementary error function ert(S) erfc(S) ert(S)

ga"""aIS) log gamma function _____________ gamma(S)

hypot(S) Euclidean distance function hypot(S)

11anipulate line number entries of a COFF tunction Idlread(S) Idlit_(S) Idlread(S)

matherr(S) error-handling tunction matherr(S)

prot(F) profile within a function prof(F)

math(F) math tunctions and constants math(F)

intro(S) introduce system calls. functions. and libraries intro(S)

beasel(S) jO(S) yO(S) Bessel functions bessel IS)

crypt(S) password and tile encryption functions crypt IS)

fetcheS) nextkey(S) perform database tunctions dbm(S) dbminit(S) dbm(S)

store(S) fetch(S) pertorm database

logeS) exponential. logarithm. and power

exponential. 10garitMl. and square root

floor. ceiling. and absolute value

floor. ceiling. and absolute value

ainh(S) cosh(S) tanb(S) hyperbolic

trig(S) atan(S) atan2(S) trigonometric

tan(S) aain(S) acos(S) trigonometric

or file structure

files xlist(S)

gamma(S) log

c~and

adb(C) invoke x. out

functions dbm(S) firstkey(S) _____ dbm(S)

tunctions exp(S) pow(S) _______ exp(S)

tunctions exp (S) sqrt (S) exp (S)

functions floor(S) ceil(S) tabs(S) floor(S)

tunctions floor(S) tmod(S) floor(S)

tunct ions sinh IS)

tunctions trig(S)

functions trig(S) sinISI cos(S) ____ trig(S)

fuser(M) identify processes using a file fuser(M)

fwrite(S) fread(S) binary input/output _ fwrite(S)

fxlist(S) get name list entries trom __ xlist(S)

g_a function gamma(S)

g_a(S) log g_a function gamma(S)

gencc(CP) create a front end to the cc _ gencc(CP)

general purpose debugger adb(C)

PI-22

Permuted Index

termio(M) general terminal interface _____ termio(M)

random(C) generate a random number ______ random(C)

mkvers(CP) generate a what string mkvers(CP)

makekey(M) generate an encryption key makekey(M)

abort(S) generate an lOT huH abort(S)

cflow(CP) generate C flow graph cflow(CP)

cxref(CP)

ctermid(S)

ncheck(M)

lex(CP)

drand46(S) erand46(S)

/mrand46(S) nrand46(S) lrand46(S)

/seed46(S) srand46(S) jrand46(S)

rand(S) srand(S) simple random-number

stream getc(S) getw(S) fgetc(S)

character or word from a stream

working directory

put in a file

group IDs getuid(S)

group IDs getuid(S)

group IDs getuid(S)

setgrent(S) get group file entry

group file entry

getgrent(S) getgrnam(S)

entry getgrent (S)

argument vector

and parent proceas IDs

setpwent(S) get password file entry

password file entry

file entry getpwent (S)

getpwent (S) getpwnam(S)

input

stream

speed and terminal settings used by

ct(C) spawn

used by getty

user or group IDs

user or group" IDs

user or group IDs

access utaap tile entry getut (S)

getut (S) setutent (S)

endutent (S) access utmp file entry

utmp file entry

character or word from a stream getc(S)

login(C)

symbols

time to string ctime(S)

setjmp(S) longjmp(S) non-local

generate C program cross-reference __ cxref(CP)

generate file name for terminal

generate path names from inode numbers

ctermid(S)

ncheck(M)

generate programs for lexical analysis _ lex(CP)

generate pseudo-random numbers drand48(S)

generate pseudo-random numbers ____ drand46 (S)

generate pseudo-random numbers drand46 (S)

generator rand(S)

getchar(S) get character or word from a _ getc(S)

get (CP) get a version of an SCCS tile _ get (C·P)

getc(S) getw(S) fgetc(S) getchar(S) get _ getc(S)

getcwd(S) get path name of current __ getcwd(S)

getdents(S) read directory entries and _ getdents(S)

getegid(S) get real/effective user or _ getuid(S)

getenv(S) return value for environment _ getenv(S)

geteuid(S) get real/effective user or _ getuid(S)

getgid(S) get real/effective user or _" _ getuid(S)

getgrent(S) fgetgrent(S) endgrent(S) __ getgrent(S)

getgrent(S) getgrnam(S) getgrgid(S) get _ getgrent(S)

getgrgid(S) get group tile entry ___ getgrent(S)

getgrnam(S) getgrgid(S) get group file _ getgrent(S)

getlogin(S) get login name getlogin(S)

getmsg(S) get next message off a stream _ getmsg(S)

getopt(C) parse c~and options ____ getopt(C)

getopt(S) get option letter from ___ getopt(S)

getpas(S) read a pa.sword getpas(S)

getpid(S) get proce.s. process group. _ getpid(S)

getpwent(S) fgetpwent(S) endpwent(S) __ getpwent(S)

getpwent(S) getpwnam(S) getpwuid(S) get _ getpwent(S)

getpwnam(S) getpwuid(S) get password __ getpwent(S)

getpw(S) get name from UID getpw(S)

getpwuid(S) get password file entry __ getpwent(S)

gets(C) get a string from the standard _ gets(C)

gets(S) fgets(S) get a string from a __ gets(S)

getty gettydefs (1'1) gettydefs (1'1)

getty to a remote terminal ct (C)

gettydefs(M) speed and terminal settings gettydefs(M)

getty(M) set terminal mode getty(M)

getuid(S) getegid(S) get real/effective _ getuid(S)

getuid(S) geteuid(S) get real/effective _ getuid(S)

getuid(S) getgid(S) get real/effective _ getuid(S)

getutent(S) utmpn8llle(S) endutent(S) __ getut(S)

getutline(S) access utmp file entry __ getut(S)

getut(S) getutent(S) utmpname(S) ___ getut(S)

getut (S) setutent (S) getutline(S) access getut (S)

getw(S) fgetc(S) getchar(S) get ____ getc(S)

give you system access login(C)

glossary (C) define c~n UNIX terms and gloBsary(C)

gmtime(S) localtime(S) convert date and ctime(S)

goto setjmp(S)

cflow(CP) generate C flow graph ______________ ctlow(CP)

PI-23

Permuted Index

graphIC) draw a graph ______________ graphIC)

plot(S)

getpid(S) get proce ••. process

fgetgrent (S) endgrent (S) .etgrent (S) get

getgrent (S) getgrnam(S) getgrgid(S) get

group(M) format of the

id(C) print user and

chown(C) chgrp(C) chsnge owner or

setpgrp(S) set process

graphIC) draw a graph graphIC)

graphic. interface subroutine. ____ plot (S)

grep(C) search a file for a pattern __ grep(C)

group. and parent process IDs getpid(S)

group file entry getgrent(S) getgrent(S)
group file entry _________ getgrent(S)

group tile group(M)

group 10 and names id (C)

group 10 chown(C)

group id setpgrp(S)

getegid(S) get real/effective user or group 10. getuid(S) ________ getuid(S)

geteuid(S) get real/effective user or group IDs getuid(S) getuid(S)

getgid(S) get real/effective user or group 10. getuid(S) getuid(S)

setuid(S) set u.er and group IDs setuid(S)

newgrp(C) log User into a new group newgrp(C)

chown(S) change owner and group of a file chown(S)

kill(S) send a Signal to a process or a group of procesaes kill(S)

execute command in a new process group setpgrp(C) .etpgrp(C)

copy (C) copy

make(C) maintain. update. and regenerate

tra(C) copy out a file a. it

pwck(M)

group(M) format of the group rile ___ group(M)

groups of tile. copy(C)

groups of programs make(C)

grows tra(C)

grpck(M) check pa •• word/group file __ pwck(M)

ssignal(S) gsignal(S) software signals _____ ssignal(S)

haltsys(C) close the file system. and halt the CPU haltsys(C)

halt the CPU

varargs(F)

curses(S) terminal screen

nohup(C) run a command immune to

add.hd(C) add an additional

restore. hd(C) re.tore a

layout(M) manage

dump. hd(C) dump content. of a

upgrade. hd (C) upgrade an additional

find .pelling errors

find .pelling error.

hsearch(S) hdeatroy(S) hcreate(S) manage

generate

haearch(S) hdestroy(S)

format

aearch table. hsearch(S)

object file

stream

.cnbdr(F) section

tilehdr(F) file

constants laits(F) file

unistd(F) file

Idfhread(S) read the file

halt.y.(C) clo.e the file .y.t and _ haltIlYII(C)

handles variable argument liat vararga (F)

handling and optimization package ___ curae.(S)

hangup. and quits nohup(C)

hard di.k add. hd(C)
hard di.k from tape ________ re.tore.hd(C)

hard diak partition. layout(M)

hard disk to tape dump. hd(C)

hard di.k upgrade. hd (C)

ha.hcheck (C) spell (C)

ha •• ake(C) .pell (C)

hash search tables hsearch(S)

hashing encryption crypt (S)

hcreate(S) manage ha.h search tables __ hsearch(S)

hd(C) display files in hexadecimal __ hd(C)

hde.troy(S) hcreate(S) manage hash __ h.esrch(S)

hdr(C) display selected part. of an __ hdr(C)

head(C) print the tirst few lines of a _ head(C)

header for a common object file ____ scnhdr(F)

header for common object fil.. filehdr(F)

header for implementation-specific __ limits(F)

header for symbolic constants unistd(F)

header of a COFF file Idfhread(S)

read an indexed/named section header of a COFF file Idshread(S) Idshread(S)

ldohseek(S) seek to the optional file header of a common object ______ ldohseek(S)

Idahread(S) read the archive header of a member of an archive file Idahread(S)

help(C) system help facility help(C)

help(C) .y.tem help facility help (C)

hd(C) display file. in hexadeci .. al format hd(C)

fleece(C) look for files in home directories fleece(C)

printing on LaserJet printer hplp(C) hplpR(C) filter file. for ___ hplp(C)

PI-24

Permuted Index

LaserJet printer hplp(e) hplpR(e) filter files for printing on _ hplp(e)

hash search tables hsearch(S) hdestroy(S) hcreate(S) manage hsearch(S)

sinh(S) cosh(S) tanh(S) hyperbolic functions sinh(S)

hypot (S) Euclidean distance function __ hypot (S)

idle) print user and group ID and names idle)

chown(e) chgrp(e) change owner or group ID _______________ chown(e)

queue. semphore set. shared memory id ipcrm(e) remove message ipcrm(e)

setpgrp(S) set process group id setpgrp(S)

who ami (e) print effective current user id whoami (e)

fstyp(M) determine the file system

ahmget(S) get shared memory segment

reside devnm(e)

what (e)

idle) print user and group ID and names _ idle)

identifier fstyp(M)

identifier ____________ shmget(S)

identify device name on which files __ devnm(e)

identify files what (e)

structure fuser(M) identify processes using a file or file fuser(M)

process group. and parent process IDs getpid(S) get process. getpid(S)

get real/effective user or group IDs getuid(S) getegid(S) getuid(S)

get real/effective user or group IDs getuid(S) geteuid(S) getuid(S)

get real/effective user or group IDs getuid(S) getgid(S) getuid(S)

setuid(S) set user and group

fpgetround(S) fpgetmask(S)

fpgetround (S) fpgetsticky (S)

fpgetround(S) fpsetmask(S)

fpgetround(S) fpsetround(S)

fpgetround(S) fpsetsticky(S)

IDs ______________ setuid(S)

IEEE floating point environment control _ fpgetround(S)

IEEE floating point environment control _ fpgetround(S)

IEEE floating point environment control _ fpgetround(S)

IEEE floating point environment control _ fpgetround(S)

IEEE floating point environment control _ fpgetround (S)

core(F) format of core image file ____________ core(F)

mem(M) kmem(M) memory image file mem(M)

scr_dump(F) format of curses screen image file scr_dump(F)

nohup(e) run a co and inwnune to hangups and quits nohup(e)

limits(F) file header for

finc (M) fast

dirent (F) file system

file ldtbindex(S) compute the

file ldtbread(S) read an

file ldshread(S) read an

descriptions

fsinfo(M) report

finger(e) find

implementation-specific constants ___ limits(F)

incremental backup finc (M)

independent directory entry dirent (F)

index of a symbol table entry of a eOFF Idtbindex (S)

indexed symbol table entry of a eOFF __ ldtbread(S)

indexed/named section header of s eOFF ldshread(S)

infocmp(M) compare or print terminfo __ infocmp(M)

information sbout a file system ____ fainfo(M)

information about users finger(e)

devinfo(e) display device information ___________ devinfo(e)

default (M) default program information directory default (M)

reloc(F) relocation of information for a common object file reloc(F)

lpstat(C) print LP status information lpstat (e)

statfs(S) fstatfs(S) get file system information stathIS)

sysconf (e) get system configuration information syscon! (e)

sysconf (S) get system configuration information sysconf (S)

sysfs (S) get file system type information sys fs (S)

uname(e) print the current UNIX

drive (C) drive

executes init

clean the tile system and executes

inittab(M) script for the

special login program invoked by

init (M) process control

brc (M) system

popen(S) pclose(S)

information uname(e)

information written during manufacturing drive(e)

inir(M) clean the tile system and ___ inir(M)

init inir(M) inir(M)

init processes __________ inittab(M)

init sUlogin(M) sulogin(M)

initialization init (M)

initialization procedure bre (M I

initiate pipe to/from a process ____ popen (S)

init(M) process control initialization _ init(M)

inittab(M) script tor the init processes inittab(M)

PI-25

Permuted Index

clri(M) clear inode ______________ clrl(M)

inode(M) format of an inode lnode(M)

ncheck(M) generate path names from inode numbers ncheck(M)

report number of free dillk blocks and

gets (C) get a string from the IItandard

line(C) read one line of

fscanf(S) sscanf(S) convert formatted

ungetc IS) push character back into

fwrite(S) fread(S) binary

polllS) STREAMS

stdio(S) atandard buffered

clearerr(S) feof(S) .tream atatu.

uustat (C) uucp status

install(M)

cpset(C)

optiona(M) floppy diak

abs (S) return

a641(S) 164a(S) convert between long

sputl (S) sgetl (S) access long

atollS) atoi(S) convert atring to

inode(M) format of an inode inode(M)

inodes df(M) ___________ df(M)

input ______________ gets(C)

input line(C)

input scanf (S) scanf (S)

input stream ungetc (S)

input/output fwrite(S)

input/output multiplexing poll(S)

input/output package stdio (S)

inquiries ferror(S) fileno(S) ferror(S)

inquiry and job control uustat(C)

install commands install (M)

install utilities cpset (C)

inlltallation menu options (M)

install (M) install commands install (M)

integer absolute value abs (S)

integer and base-64 ASCII string ___ a641(S)

integer data sput1(S)

integer atrtol(S) strto1(S)

13tol(S) Ito13(S) convert between 3-byte integers and long integers _____ 13t01(S)

convert between 3-byte integers and long integers l3tol (S) lto13 IS) 13t01 (S)

plot (S) graphics interface subroutines plot (S)

termio(M) general terminal interface termio(M)

10g(M) interface to STREAMS error logging __ 1og(M)

apline(C) interpolate smooth curves ______ spline(C)

characters aaa(C)

sh(C) rsh(C) invoke the shell command

csh(C) shell command

pipe(S) create an

atatus ipca(C) report

stdipc(S) ftok(S) atandard

napeS) suspend execution for a short

interpret asa carriage control ____ asa(C)

interpreter IIh(C)

interpreter with C-like syntax ____ csh(C)

interprocess channel pipe(S)

inter-process communication facilities _ ipcs(C)

interprocess corronunication package __ stdipc (S)

interval napeS)

sleep(C) suspend execution for an interval sleep(C)

sleep (S) suspend execution for interval sleep (S)

intro(C) introduce commands intro(C!

commands intro(CP) introduce software development intro(CP

intro(C) introduce cOlll'lands intro(C)

files intro(M) introduce miscellaneous featurell and intro(M)

intro(CP) introduce software development commands _ intro(CP)

librariell intro(S) introduce sYlltem call1l. functionll. and _ intro(S)

intro(F) introduction to file formats intro(F)

intro(F) introduction to file formats intro(F)

featurell and files intro(M) introduce miscellaneoull intro(M)

functions. and libraries intro(S) introduca IIYlltem call1l. intro(S)

yacc(CP) invoke a compiler-compiler ______ yacc(CP)

014 (CP) invoke a macro processor m4(CP)

calendar(C) invoke a reminder service calendar(C)

vi (C) invoke a acreen-oriented diaplay editor _ vi (C)

ex(C) invoke a text editor exeC)

bsh(C) invoke the Busineaa ahell bah(C)

cc(CP) invoke the C compiler _______ cc(CP)

ed(C) red(C) invoke the ed text editor ed(C)

edit (C) invoke the edit text editor edit (C)

Id(CP) invoke the link editor Id(CP)

PI-26

Permuted Index

xld(CP) invoke the link editor _______ xld(CP)

masm(CP) invoke the macro assembler masm(CP)

sh(C) rsh(C) invoke the shell cOllllland interpreter __ sh(C)

sed(C) invoke the stream editor sed(C)

adb(C) invoke x.out general purpose debugger _ adb(C)

sulogin(M) special login program invoked by init sulogin(M)

ioctl(S) control device _______ ioctl(S)

abort (S) generate an lOT faul t abort (S)

set. shared memory id

communication facilities status

classify characters ctype (S)

ctype(S) isdigit(S) ispunct(S)

ttyname(S)

ctype(S) i8alpha(S) islower(S)

classify characters ctype(S)

characters ctype (S) isalpha (S)

isnan (S) isnanf (S)

point NaN isnan(S)

floating point NaN

characters ctype(S) isdigit(S)

system(S)

bessel(S)

uustat (C) uucp status inquiry and

join(C)

numbers drand48(S) seed48(S) srand48(S)

ldunix(M) configurable

mkunix(M) make boot able system file with

makekey(M) generate an encryption

killall(C)

group of processes

mem(M)

integers snd long integers

base-64 ASCII string a64l (S)

labelit (M) copy file system with

systems

checking vo1copy (M)

labelit (C) provide

awk(C) pattern scanning and proceSSing

bc(C) arbitrary-precision arithmetic

nawk (C) pattern scanning and processing

cpp(CP) the C

lint (CP) check C

bdiff(C) compare files too

banner(C) print

hplpR(C) filter files for printing on

ipcrm(C) remove message queue. semphore _ ipcrm(C)

ipcs(C) report inter-process ipcs(C)

isa1pha(S) islower(S) iscntrl(S) ___ ctype(S)

isascii (S) classi fy characters ctype (S)

isatty(S) find name of a terminal ___ ttyname(S)

iscntrl(S) classify characters ctype(S)

isdigit(S) ispunct(S) isascii(S) ___ ctype(S)

islower(S) iscntrl(S) classify ____ ctype(S)

isnand(S) test for floating point NaN _ isnan(S)

isnanf(S) isnand(S) test tor floating _ isnan(S)

isnan(S) isnanf(S) isnand(S) test for isnan(S)

ispunct(S) isascii(S) classify ctype(S)

issue a shell command _____:.... __ system(S)

j 0 (S) yO (S) Bessel functions bessel (S)

job control uustat (C)

join two relations join(C)

jOin(C) join two relations join(C)

j rand48 (S) generate pseudo-random drand48 (S)

kernel linker ldunix(M)

kernel symbol table mkunix(M)

key makekey(M)

kill all active processes killall(C)

killa11(C) kill all active processes __ killall(C)

kill(C) terminate a process kil1(C)

kill (S) send a signal to a process or a _ kill (S)

kmem(M) memory image file mem(M)

13to1(S) 1to13(S) convert between 3-byte 13tol(S)

l64a(S) convert between long integer and a641(S)

label checking vo1copy(M) volcopy(M)

labelit (C) provide labels for file __ labeli t (C)

labelit (M) copy file system with label _ vo1copy(M)

labels for file systems _______ labelit(C)

language awk(C)

language bc(C)

language nawk(C)

Language Preprocessor cpp (CP)

language usage and syntax lint (CP)

large tor diff bdiff(C)

large letters banner(C)

LaserJet printer hp1p(C) hp1p(C)

last (C) print last record of user logins last (C)

at(C) batch(C) execute commands at a latar time at(C)

layout (M) manage hard disk partitions _ layout (M)

ldcloae(S) 1daclose(S) close a COFF file ldc1ose(S)

member of an archive file ldahread(S) read the archive header of a ldahread(S)

reading ldopen(S) ldaopen(S) open a cQllWllOn object file for ldopen(S)

ldclose(S) ldac1ose(S) c10ae a COFF file ldc1ose(S)

ld(CP) invoke the link editor ____ ld(CP)

floating-point numbers frexp(S) modf(S) ldexp(S) manipulate parts of frexp(S)

PI-27

Permuted Index

routinea Idtcn(F) cOllllllOn object file acceaa __ Idfcn(F)

COFF file Idthread(S) read the file header ot a Idfhread (S)

COFF symbol table entry Idgetname(S) retrieve symbol name for _ Idgetname(S)

entries of a COFF function Idlread(S) Idlitem(S) manipulate line number ___ Idlread(S)

number entries of a COFF function Idlread(S) Idlitem(S) manipulate line _ Idlread(S)

of a section ot a COFF tile Idlaeek(S) aeek to line number entries Idlseek(S)

header of a conmon object Idohaeek(S) seek to the optional file _ Idohseek(S)

object tile tor reading Idopen(S) Idaopen(S) open a connon __ Idopen(S)

a section of a COFF tile Idrseek(S) seek to relocation entries of Idrseek(S)

section header of a COFF file Idshread(S) read an indexed/named Idshread(S)

symbol table entry of a COFF file Idtbindex(S) compute the index of a __ Idtbindex(S)

entry of a COFF file Idtbread(S) read an indexed symbol table Idtbread(S)

a COFF tile Idtbseek(S) seek to the symbol table of _ Idtbseek(S)

Idunix(M) configurable kernel linker __ Idunix(M)

leave(C) remind you when you have to leave leave(C)

leave leave(C) remind you when you have to __ leave(.C)

getopt (S) get option let ter from argument vector getopt (S)

banner(C) print large letters _____________ banner(C)

analysis lex(CP) generate programs for lexical _ lex(CP)

lex(CP) generate programs for lexical analysis lex(CP)

lsearch(S) Hind(S) linear sesrch and update ___ Isearch(S)

ar(CP) maintain archivea and librariea ____________ sr(CP)

chkshlib(CP) tool for comparing shared librariea chkshlib(CP)

introduce system calla. functions. and librariea intro(S) intro(S)

ranlib(CP) convert archives to random libraries ranlib(CP)

xar(eP) maintain archives and libraries xar(CP)

find ordering relation for object library lorder(CP) lorder(CP)

mkshlib(CP) create a shared library mkshlib(CP)

shuttype(S) get and set UPS shutdown limits shuttype(S)

ulimit (S) get and aet user limits ulimit (S)

implementation-specitic constanta limits(F) tile header tor limits(F)

dial(S) establish an out-going terminal line connection dial(S)

set terminal type. modes. speed.

file linenum(F)

Idlread(S) Idlitem(S) manipulate

COFF tile Idleeek(S) seek to

strip(CP) remove aymbols and

nl(C) add

1ine(C) read one

Ipd(M)

cancel (C) send/cancel requests to LP

turn on/oft

1pdiaable(C) enable/disable LP

lpinit (M)add new

lsearch(S) lUnd(S)

c_n object f'ile

caa.(C) select/reject

told(C) told long

uniq(C) report repeated

look (C) Und

line discipline uugetty(M) _____ uugetty(M)

line number entriea in a common object _ linenum(F)

line number entries ot a COFF tunction Idlread(S)

line number entries of a section of a ldlseek(S)

line numbers trom COFF file _____ atrip(CP)

line numbers to a file nl (C)

line of input line (C)

line printer daemon Ipd(M)

line printer Ip(C) lp(C)

line printer acheduler lpon(M)

line printers lpenable(C) Ipenable(C)

line printers lpinit (1'1)

linear search and update lsearch(S)

line(C) read one line of input line (C)

linenum(F) line nwaber entriea in a linenum(F)

lines cOlllllOn to two sorted tiles conm(C)

lines tor Unite width output device __ fold(C)

linea in a tile uniq(C)

lines in a sorted list look (C)
num(C) number lines ______________ num(C)

rev (C) reverse lines ot a file rev (C)

head(C) print the firat few lines ot a stream head(C)

ssp(C) remove consecutive blank lines ssp(C)

wc(C) count

link(M) unlink(M)

lines. words. and characters wc(C)

link and unlink files and directories _ link(M)

PI-28

Permuted Index

Id(CP) invoke the link editor Id(CP)

a.out(F) format of assembler and link editor output a.out(F)

xld(CP) invoke the link editor xld(CP)

link(S) link to a file link(S)

In(C) make a link to a rile In(C)

Idunix(H) configurable kernel linker ldunix(H)

and directories link (H) unlink(H) link and unlink files link (H)

syntax

Is(C)

xlist(S) fxlist(S) get name

checklist (M)

100k(C) find lines in a sorted

nlist(S) get entries from name

nm(CP) print name

link(S) link to a rile link(S)

lint (CP) check C language usage and __ lint (CP)

list contents of directories Is(C)

list entries from files _______ xlist(S)

list tile systems processed by tsck __ checklist (M)

list 10ok(C)
list ______________ nlist(S)

list of convnon object file nm(CP)

terminals (H) list of supported terminals _____ terminals (M)

varargs(F) handles variable argument list varargs(F)

print formatted output of varargs list vprintf(S) vfprintf(S) vsprintf(S) vprintf(S)

from(C) list who my mail is from from(C)

xnm(CP) print name list xnm(CP)

COFF file list (CP) produce C source listing from _ list (CP)

cref(CP) make a cross-reference listing cref(CP)

list (CP) produce C source listing from COFF file list (CP)

In(C) make a link to a file _____ In(C)

string ctime(S) gmtime(S) 10caltime(S) convert date and time to ctime(S)

program whereis(C)

end(S) edata(S) etext(S) last

lock(S)

plock(S)

lockf (S) record

locate source. binary. or manual for __ whereis(C)

locations in program end(S)

lock a process in primary memory ___ lock (S)

lock process. text. or data in memory _ plock(S)

10ckf(S) record locking on files ___ 10ckf(S)

locking on files 10ckf(S)

read/write 10cking(S) lock/unlock a file region for 10cking(S)

lock (S) lock a process in primary memory lock (S)

10cking(S)

errprint (H) display error

gamma(S)

set maximum number of users allowed to

newgrp(C)

exp(S) pow(S) logeS) exponential.

lock/unlock a file region for read/write 10cking(S)

log contents ___________ errprint (M)

log gamma function gamma(S)

log in numusers(S) get and numusers(S)

log user into a new group newgrp(C)

logarithm. and power functions exp(S)

exp(S) sqrt(S) exponential. logarithm. and square root functions __ exp(S)

strclean(H) STREAMS error

strerr(H) STREAMS error

10g(M) interface to STREAMS error

sizefs(C) determine the size of a

getlogin (S) get

logname(C) get

cuserid(S) get character

logname(S) return

passwd (C) change

sulogin (M) special

ttys(M)

profile(M) set up environment at

last (C) print last record of user

disable(C) disable

enable(C) enable

logging

logger cleanup program _______ strclean(M)

logger daemon strerr(M)

logging log (H)

logical disk drive sizefs(C)

login name getlogin(S)

login name 10gname(C)

login name of the user cuserid(S)

login name of user logname (S)

login password passwd(C)

login program invoked by init sulogin(M)

login terminals file ttys(M)

login time profile(M)

10gin(C) give you system access ____ 10gin(C)

logins last(C)

logins on a port disable(C)

logins on sport enable(C)

10g(M) interface to STREAMS error ___ 10g(M)

PI-29

Permuted Index

10gname(C) get login n8J\le ______ 10gname(C)

10gname(S) return login name of user __ 10gname(5)

functions exp(S) pow(S) logeS) exponential. logarithm. and power exp(S)

setjmp(S) longjmp(S) non-local goto ______ setjmp(S)

fleece(C) look for files in home directories fleece(C)

look (C) find line. in a sorted list look (C)

object library 10rder(CP) find ordering relation for lorder(CP)

Ip(C) cancel(C) send/cancel requests to LP line printer Ip(C)

Ipenable(C) Ipdisable(C) enable/disable LP line printers Ipenable(C)

Ipsched(M) Ipshut(M) start/stop the LP request scheduler Ipsched(M)

Ipsched(M) Ipmove(M) move LP requests Ipsched(M)

Ipadmin (M) configure the LP spooling system Ipadmin (M)

Ipstat (C) print LP status information Ipstat (C)

system

LP line printer

printers Ipenable(C)

LP line printers

Ipsched(M)

turn on/off

spooler

Ipadmin(M) configure the LP spooling __ Ipadmin (M)

Ip(C) cancel(C) send/cancel requests to _ Ip(C)

Ipdisable(C) enable/disable LP line __ Ipenable(C)

Ipd(M) line printer daemon Ipd(M)

Ipenable(C) Ipdisable(C) enable/disable _ Ipenable(C)

Ipinit(M) add new line printers ____ Ipinit(M)

Ipmove(M) move LP requests Ipsched(M)

Ipon(M) line printer scheduler Ipon(M)

Ipr(C) route named files to printer __ Ipr(C)

Ipsched(M) Ipmove(M) move LP requests _ Ipsched(M)

request scheduler Ipsched(M) Ipshut (M) start/stop the LP _ Ipsched(M)

scheduler Ipsched(lIl) Ipshut(M) start/stop the LP request __ Ipsched(M)

Ipstat(C) print LP status information _ lpstat (C)

drand48(S) mrand48 (5) nrand48(S) lrand48(S) generate pseudo-random/ __ drand48(S)

ls(C) list contents of directories Is(C)

update lsearch(S) Ifind(S) linear search and lsearch(S)

Iseek(S) move read/write file pointer _ lseek(S)

and long integers 13tol(S) Ito13(S) convert between 3-byte integers 13tol(S)

values(F)

aftp(C) transfer files between Altos

masm(CP) invoke the

m4 (CP) invoke a

enroll(C) xsend(C) xget (C) secret

mail (C) system

aliases(M)

aliashash(M) rebuild data base for

from(C) list who my

malloc(S)

malloc(S) free(S) realloc(S) fast

mallinfo(S) mallopt(S) calloc(S) fast

ar(CP)

xar(CP)

m4(CP) invoke a macro processor ____ m4(CP)

machine-dependent values ______ values(F)

machines aftp(C)

macro assembler masm(CP)
macro processor __________ m4 (CP)

mail enroll(C)

mail mail (C)

mail alias file aliases(M)

mail alias file aliashash(M)

mail(C) system mail mail(C)

mail is from from(C)

main memory allocator malloc(S)

main memory allocator malloc (S)

main memory allocator malloc(S) malloc(S)

maintain archives and libraries ar(CP)

maintain archives and libraries xar(CP)

of programs make(C) maintain. update. and regenerate groups _ make(C)

groups of programs make(C) maintain. update. and regenerate make(C)

makedevs (M) create special device files _ makedevs (M)

makekey(M) generate an encryption key _ makekey(M)

makettys(M) create tty special files __ makettys(M)

main memory allocator malloc(S) mallinfo(S) mallopt(S) calloc(S) fast _ malloc(S)

memory allocator malloc(S) free(S) realloc(S) fast main malloc(S)

calloc(5) fast main memory allocator

allocator malloc(S) mallinfo(S)

malloc(S) main memory allocator ____ malloc(5)

maUoc(S) mallinfo(S) mallopt(S) ___ malloc(S)

maUopt(S) calloc(S) fast main memory _ malloc(S)

PI-3D

Permuted Index

tsearch(S) tfind(S) tdelete(S) twalk(S) manage binary aearch treea _____ tsearch(S)

layout(M) manage hard diak partitiona _____ layout(M)

hsearch(S) hdeBtroy(S) hcreate(S) manage h.ah a •• rch tablea ______ haearch(S)

crontab(C)

sigrelae(S) sigignore(S) Bignal

8igs.t(S) aigpause(S) signal

function ldlread(S) ldlitem(S)

numbers frexp (S) modf (S) ldexp (S)

section mcs(CP)

manage uaer crontab tilea crontab(C)

management BigBet(S) Bighold(S) ____ Bigset(S)

management aig.et (S)

manipulate line number entrieB of a COFF ldlread(S)

manipulate parts of floating-point __ frexp(S)

manipulate the object file comment __ mcs(CP)

whereis(C) locate source. binary. or manual for program _________ whereis(C)

sysaltos(S) manufacturer specific system requests _ sysaltos(S)

drive information written during manufacturing drive(C) drive(C)

add new bad sectors to the bad sector map badblock(C) badblock(C)

ascii(M) map of the ASCII character set ____ ascii(M)

umask(C) set file-creation mode mask umask(C)

umask(S) set and get file creation mask umask(S)

masm(CP) invoke the macro assembler masm(CP)

master(M) master configuration database master(M)

regexp(F) regular expresBion compile and

regexp(S) compile regular expression and

math(F)

master(M) master configuration database _ master(M)

metch routines regexp(F)
match routines __________ regexp(S)

math tunctionB and constants math(F)

matherr(S) error-handling function __ matherr(S)

math(F) math functions and constants math(F)

in numusers (S) get snd set maximum number of UBers allowed to log numusers (S)

conunent section mcs(CP) manipulate the object file mcs(CP)

ldahread(S) read the archive header of a member of an archive file ______ ldahread(S)

memory(S)

memory (S) memset (S) memcpy (S) memcmp (S)

memory(S) memset (S) memcpy(S)

operations memory(S) memset(S)

malloc(S) free(S) realloc(S) fast main

malloc (S) main

mallopt(S) calloc(S) fast main

shmctl(S) shared

message queue. semphore set. shared

mem(M) kmem(M)

lock (S) lock a process in primary

memory (S) memccpy (S)

memset (S) memcpy (S) memcmp (S) memchr (S)

shmop(Sr shared

plock(S) lock process. text. or data in

allaget (S) get aha red

memchr(S) lIletllOry operations

memccpy(S) memory operations _____ memory(S)

memchr(S) memory operations memory(S)

memcmp(S) memchr(S) memory operations _ memory(S)

memcpy(S) memcmp(S) memchr(S) memory __ memory(S)

mem(M) kmem(M) memory image file ___ mem(M)

memory allocator _________ malloc (S)

memory allocator malloc(S)

memory allocator malloc(S) mallinfo(S) malloc(S)

memory control operations shmctl(S)

memory id ipcrm(C) ipcrm(C)

memory image file mem(M)

memory lock (S)

memory operations memory(S)

memory operations memory(S) memory(S)

memory operationB shmop(S)

memory plock (S)

memory segment identifier shmget(S)

memory(S) memccpy(S) memory operations _ memory(S)

memory(S) memaet(S) memcpy(S) memcmp(S) memory(S)

memory operations memory(S) memset(S) memcpy(S) memcmp(S) memchr(S) memory(S)

options (M) floppy disk installation

menus (M) format of Business Shell

digest(C) creste

system

aort(C) sort and

to s terminal

msgctl(S)

mkBtr(C) create an error

______________ optionB(M)

menu Bystem ___________ menus (M)

menu Bystem(B) for the BUBinesa Shell _ digest(C)

menua(M) format of Businesa Shell menu _ menus(M)

merge files sort (C)

meag(C) allow or disallow messages sent _ mesg(C)

measage control operationa msgctl(S)

message file from C source mkstr(C)

mkstr(CP) create an error message file from C source ______ mkstr(CP)

getmsg(S) get next mesBage off a stream getmsg(S)

PI-31

Permuted Index

putmsg(S) send a message on a streuo ________ putmsg(S)

magop(S) mesaage operations msgop(S)

msgget (S) get message queue msgget (S)

memory id ipcrm(e) remove message queue. aemphore aet. shared __ ipcrm(e)

perror(S) syatem error mea.agea ____________ perror(S)

mesg(e) allow or disallow messages sent to a terminal mesg(e)

strace(M) print STREAMS trace mesaages strace(M)

,ys_errlist(S) errno(S) system error messages sYB_nerr(S) sYB_nerr(S)

clone(M) open any minor device on STREAMS driver clone(M)

intro(M) introduce miscellaneous features and files intro(M)

boot able object file mkboot (M) convert object file to ___ mkboot (M)

mkdir(C) make a directory ______ mkdir(C)

mkdir(S) make a directory mkdir(S)

mkfs(M) construct a file system ___ mkfs(M)

mknod(e) build special files _____ mknod(C)

or ordinary file mknod(S) make a directory. or a special _ mknod(S)

mkshlib(ep) create a shared library __ mkshlib(CP)

trom C source

from C source

driver symbol table

kernel symbol table

getty(M) Bet terminal

mkstr(e) create an error message file _ mkstr(C)

mkstr(CP) create an error message file _ mkatr(CP)

mktemp(S) make a unique file name ___ mktemp(S)

mkunix(M) make boot able Bystem file with mkunix(M)

mkunix(M) make bootable system file with mkunix(M)

mkvers(CP) generste a what string ___ mkvers(CP)

mnttab(M) mounted file system table __ mnttab(M)

mode getty(M)

umask(C) set file-creation mode mask ____________ umask(C)

bring system up multi/single-user mode multiuser(C) singleuser(C) multiuser(C)

chmod(S) change mode of file chmod(S)

setmodem(C) set up tty port for a modem setmodem(C)

uugetty(M) set terminal type. modes. speed. line diacipline uugetty(M)

tset (C) set terminal modes tset (C)

setmode(C) printer modes utility setmode(C)

floating-point numbera frexp(S) modf(S) Idexp(S) manipulate parts of __ frexp(S)

settime(C) change the access and modification dates of files settime(C)

touch(e) update accea. and modification timea of II file _____ touch(C)

utime(S) set file access and modification times utime(S)

monitor(S) prepare execution profile __ monitor(S)

time more(e) view a file one full screen at a more (C)

mount(S) mount a file system mount(S)

multiple file ayatems mountall(C) umountall (C) mount/unmount mountall (e)

structure mount (C) umount (C) lIIOunt/unmount a file mount (C)

mnttab(M) mounted tile .yatem table mnttab(M)

mount(S) mount a file system mount(S)

mount (e) umount (C) mount/unmount a file atructure mount (C)

mountall (C) UIIIOuntall (C)

Ip.ched(M) Ipmove (M)

lseek(S)

mv(C)

generate plleudo-random/ drand48(S)

doa(e) acce ••

mount all (e) umountall (C) mount/unmount

poll(S) STREAMS input/output

singleuser(C) bring system up

rc2(M) cOlMlands for

mount/unmount multiple file syatem. __ mountall(e)

move LP requellts lpsched(M)

move read/write file pointer lseek(S)

move (rename) tilea and directories mv(C)

mrand48(S) nrand48(S) lrand48(S) ___ drand48(S)

MS-DOS tile. dos (C)

msgctl(S) me.ssge control operations __ msgctl(S)

msgget (S) get message queue msgget (S)

msgop(S) me.sage operation. _____ msgop(S)

multiple tile system. mount all (e)

multiplexing poll(S)

multi/single-user mode multiuser(C) multiuser(e)

mUlti-user environment rc2 (M)

PI-32

Permuted Index

up multi/.ingle-u.er mode .ultiu.er(C) .ingleu.er(C) bring .y.tem multiu.er(C)

directories 1IIV(C) move (ren_e) file •• nd mv(C)

tmpnlllll(S) telllpnam(S) cre.te. nUle for. tempor.ry file tmpnam(S)

ldgetn .. e(S) retrieve symbol nllllle for COFF .ymbol t.ble entry ___ ldgetnllllle(S)

ctermid(S) gener.te file nllllle for termin.l _________ ctermid(S)

getpw(S) get name from UIO getpw(S)

getenv(S) return v.lue for environment getenv(S)

getlogin (S) get login getlogin (S)

xli.t (S) fxli.t (S) get nllllle li.t entries from files xlist (S)

nlist(S) get entries from nllllle list nlist(S)

nm(CP) print nllllle li.t of common object file nm(CP)

xnm(CP) print nllllle list xnm(CP)

10goame(C) get login 10goame(C)

mktemp(S) make a unique file mktemp(S)

ttyname(S) isatty(S) find nllllle of a terminal ttyname(S)

uname (S) get

getcwd(S) get path

name of current UNIX .y.tem _____ uname'S)

name of current working directory ___ getcwd(S)

cuserid(S) get character login name of the user _________ cuserid(S)

10gname(S) return login name of u.er 10goame(S)

devnm(C) identify device name on which files reside devnm(C)

pwd(C) print working directory name pwd(C)

tty (C) get the current port tty(C)

lpr(C) route nllllled files to printer spooler lpr(C)

term(M) conventional

ncheck(M) generate path

idle) print uaer and group 10 and

isnand(S) test for floating point

interval

language

semaphore resource waitsem(S)

number.

get_g(S) get

dbm(S) dbminit (S) fetch(S)

priority

nllllles for terminals ________ term(M)

name. from inode numbers ncheck (M)
______________ id(C)

NaN illnan(S) isnanf(S) isnan(S)

nap(S) suspend execution for a short __ nap(S)

nawk(C) pattern IIcanning and proce.sing _ nawk(C)

nbwait.em(S) wait and check acce •• to waitsem(S)

ncheck(M) generate path n .. es frOlB inode ncheck(M)

newgrp(C) log user into a n_ group __ newgrp(C)

next age off a .tream getmsg(S)

nextkey(S) perform database function. _ dbm(S)

nice(C) run a command at a different nice(C)

nice (S) chsnge priority of s process __ nice (S)

nl(C) add line nUlllber. to a file nl(C)

nlist(S) get entries frOlll nlUlle list __ nlist(S)

file nm(CP) print name li8t of cOlllllOn object _ nm(CP)

and quits

setj_p(S) 10ngjmp(S)

fal.e(C) return with a

pseudo-random/ drand48(S) mrand48(S)

null(M)

nohup(C) run a comm.nd i_une to hangups nohup(C)
non-local goto __________ setjmp(S)

nonzero exit value false(C)

nrand48 (S) lrand48 (S) generate drand48 (S)

null file null (M)

null(M) null file null(M)

linenUIII(P) line number entries in a cOtIllIOn object file linenum(F)

ldlread(S) ldlit_(S) ipul.te H.ne number entries of a COFF function ldlread(S)

file ldl.eek(S) .eek to line number entries of a .ection of a COFF ldlseek(S)
factor(C) factor a nWllber _____________ factor(C)

nwa(C) number linea num(C)

df (M) report nWllber of free di.k block. and inode. df (M)

numuser.(S) get and .et maximwa

randOlB(C) generate a randOlB

convert .tring to double-preci.ion

ecvt (S) convert floating-point

erand48(S) generate plleudo-random

lrand48 (S) generate p.eudo-randOlB

number of users allowed to log in ___ numusers (S)

number random(C)

nUlllber strtod(S) atof(S) strtod(S)
nu.ber to string __________ ecvt(S)

numbers drand48(S) drand48 (S)

nu.bers /mrand48(S) nrand48(S) drand48(S)

PI-33

Permuted Index

jrand48(S) generate pseudo-random numbers drand48(S) seed48(S) srand48(S) drand48(S)

manipulate parts of floating-point

strip(CP) remove symbols and line

ncheck(M) generate path names from inode

nl(C) add line

of users allowed to log in

dis (CP)

ldfcn(F) common

mcs (CP) manipulate the

cprs (CP) compresse a common

dump(CP) dump selected parts of an

Idopen(S) Idaopen(S) open a common

fixobj (CP) convert an

hdr(C) display selected parts of an

line number entries in a common

convert object file to boot able

nm(CP) print name list of common

relocation of information for a common

scnhdr(F) section header for a common

find the printable strings in an

numbers frexp(S) modf(S) Idexp(S) ___ frexp(S)

numbers from COFF file _______ strip(CP)

numbers ncheck (M)

numbers to a file nl (C)

num(C) number lines num(C)

numusers (S) get and set maximum number numusers (S)

object code disassembler dis (CP)

object file access routines ldfcn (F)

object file comment section mcs (CP)

object file cprs(CP)

object file dump(CP)

object file for reading Idopen(S)

object file from OMF to COFF fixobj (CP)

object file hdr(C)

object file linenum(F) linenum(F)

object file mkboot (M) mkboot (M)

object file nm(CP)

object file reloc(F) reloc(F)

object file scnhdr(F)

object file strings(C) strings(C)

syms(F) common object file symbol table format ____ syms(F)

mkboot (M) convert object file to boot able object file mkboot (M)

conv(CP) convert common object files ___________ conv(CP)

filehdr(F) file header for common object files tilehdr(F)

size(C) print section sizes of common

to the optional file hesder of a common

lorder(CP) find ordering relation for

od(C) display filea in

fixobj (CP) convert an object file from

ldopen(S) ldaopen(S)

opensem(S)

fopen(S) fdopen(S) freopen(S)

clone(M)

dupeS) dup2(S) duplicate an

open(S)

directory(S) telldir(S) readdir(S)

rcO (M) cOlllllands to stop the

rewinddir(S) seekdir(S) directory

readdir(S) opendir(S) directory

memory(S) _ccpy(S) memory

memcpy (S) memcmp (S) IlemChr (S) memory

magctl(S) lIleasage control

_gop(S) measage

semctl(S) aemaphore control

aemop (S) semaphore

shmctl(S) shared memory control

shmop(S) shared memory

strdup(S) strpbrk(S) strcmp(S) string

strcpy(S) strlen(S) strchr(S) string

string(S) strspn(S) strtok(S) string

curses (S) terminal screen handling and

getopt (S) get

ldohaeek (S) seek to the

object files ___________ size(C)

object Idohseek(S) seek ldohseek(S)

object library lorder(CP)

octal format od(C)

od(C) display files in octal format od(C)

OMF to COFF fixobj (CP)

open a common object file for reading _ ldopen(S)

open a semaphore opensem (S)

open a stream fopen(S)

open any minor device on STREAMS driver _ clone(M)

open tile descriptor dup(S)

open for reading or writing open(S)

opendir(S) directory operations ____ directory(S)

open(S) open for reading or writing __ open(S)

opensem(S) open a semaphore opensem(S)

operating systelll rcO (M)

operationa directory(S) closedir(S) __ directory(S)

operations directory(S) telldir(S) __ directory(S)

operationa ____________ memory(S)

operations memory(S) memset (S) memory(S)

operations msgctl(S)

operations msgop (S)

operations semctl(S)

operations semop(S)

operations shmctl (S)

operations shmop(S)

operations string(S) strcat (S) string(S)

operations string(S) strncmp(S) ____ string(S)
operations ____________ string(S)

optimization package curses(S)

option letter from argument vector __ getopt(S)

optional file header of a cOlllllOn object _ ldohseek(S)

PI-34

fcntl(F) tile control

atty(C) set the

xtty(C) aet the

getopt (C) parae connand

getopts(C) parse command

10rder(CP) tind

make a directory. or a apecial or

dial(S) establish an

format of assembler and link editor

fold(C) fold long lines for finite width

vfprintf(S) vsprintf(S) print formatted

pr(C) print files on the atandard

sprintf(S) fprintf(S) print formatted

BYBdef(M)

chown (S) change

chown(C) chgrp(C) change

quot (C) BWNnarize file system

screen handling and optimization

sar(M) systeta activity report

stdio(S) standard buffered input/output

standard interprocesB communication

expand filea

tk(C)

get process. process group. and

getopt(C)

getopts(C)

tail (C) deliver the last

Permuted Index

options fcnt! (F)

options for sport stty(C)

options for a port xtty(C)

options getopt (C)

options getopts(C)

optiona (1'1) floppy disk inatallation menu options (1'1)

ordering relation for object library __ 10rder(CP)

ordinary file mknod(S) mknod(S)

out-going terminal line connection dial(S)

output a.out(F) a.out(F)
output device ___________ fold(C)

output of varargs list vprintf(S) ___ vprintf(S)

output pr(C)

output printf(S) printf(S)

output aystem definition ______ sysdef (1'1)

owner and group of a file chown(S)

owner or group 10 chown(C)

ownership quot (C)

package curBes (S) t enainal curs.s (S)

package sar(M)

package stdio(S)

package stdipc(S) rtok(S) stdipc(S)

pack(C) pcat(C) unpack(C) compress and _ pack(C)

paginator for Tektronix 4014 tk(C)

parent process IDs gatpid(S) getpid(S)

parae command optiona ________ getopt (C)

parae connand options getopts(C)

part of a fUe tail (C)

layout(M) manage hard disk partitiona ____________ layout(!'!)

dump (CP) dump selected parts of an object file dump (CP)

hdr(C) diaplay aelected parta ot an object file hdr(C)

frexp(S) modt(S) Idexp(S) manipulate parts at floating-point numbers ____ frexp(S)

crypt(S)

fgetpwent (S) endpwent (S) aetpwent (S) get

getpwent (S) getpwnam(S) getpwuid(S) get

putpwent(S) write

pasawd(M)

getpaa(S) read a

paaawd(C) change login

pwck(M) grpck(M) check

paaawd(C) change login paaBword ____ paaawd(C)

paaswd(M) pasaword file _______ paaawd(M)

paasword and tile encryption tunctiona _ crypt (S)

pasaword tile entry getpwent (S) ____ getpwent (S)

paaaword file entry ________ getpwent(S)

pasaword file entry putpwent (S)

paaaword tile paaawd(M)

password getpaa(S)

pasaword pasawd (C)

password/group tile pwck(M)

getcwd(S) get path name of current working directory _ getcwd(S)

ncheck(M) generate path names from inode numbers ncheck(M)

dirn_e(C) deliver portions of pathnames baaename(C) basename(C)

grep(C) search a file tor a pattern grep(C)

awk(C) pattern scanning and processing language awk(C)

nawk(C) pattern scanning and processing language nawk(C)

egrep(C) aearch tile tor

files pack(C)

process popen (S)

dbm(S) dbminit(S) fetch(S) nextkey(S)

dbm(S) firstkey(S) store(S) fetch(S)

check the uucp directories and

chmod (C) change

pattern using tull regular expression _ egrep(C)

pauae(S) auspend procesa until aignal _ pause(S)

pcat(C) unpack(C) compress and expand _ pack(C)

pcloae(S) initiate pipe to/trom a ___ popen(S)

pcontig(C) set port configuration ___ pcontig(C)

perform database functions dbm(S)

perform databaae functions dbm(S)

permissions file uucheck(M) uucheck(M)

permissions ot a file or directory __ chmod(C)

PI-35

Permuted Index

BCCt (M) format of per-process accounting file _____ acct (M)

perror(S) .yatem error ",ellsage. ___ perror{S)

pg(C) file perusal filter pg(C)

split(C) aplit B file into pieces _____________ spl1t(CI

tee(C) create a tee in a pipe tee (C)

popen(S) pcloaa(S) initiate pipe to/from a process popen(S)

pipetS) create an interproce.s channel _ pipetS)

memory plock (S) lock procellB. text. or data in plock (S I

plot (S) graphics interface subroutines plot (S)

fpgetround(S) fpgetmask(S) IEEE floating point environment control ______ fpgetround(SI

fpgetsticky(S) IEEE floating point environment control fpgetround(S) fpgetroundlSJ

fpgetround(S) fpsetmaBk(S) IEEE floating point environment control fpgetround(S)

fpsetround(S) IEEE floating point environment control fpgetround(S) _ fpgetroundlS)

fpsetsticky(S) IEEE floating point environment control fpgetround(S) fpgetround(S)

isnanf(S) isnand(S) test for floating point NaN isnan(S) isnan(S)

ftell(S) rewind(S) repoaition a file pointer in a stream faeek(S) fseek(S)

lseek (S) move read/write file pointer lseek (S)

multiplexing poll(S) STREAMS input/output poll(S)

a process popen(S) pclose(S) initiate pipe to/from popen(S)

pconfig(C) set port configuration pconfig(C)

disable(C) disable logina on a port disable(C)

enable(C) enable logina on sport enable(C)

setmodem(C) aet up tty port for a modem setmodem(C)

tty(C) get the current port name tty(C)

stty(C) set the options for a port stty(C)

xtty(C) set the options for a port xtty(C)

basename(C) dirname(C) deliver

10g(S) exponential. logarithm. and

and power functions exp(S)

dc(C) srbitrary

monitor(S)

cpp(CP) the C Language

unget (CP) undo a

lock (S) lock a procesa in

type a (F)

cal(C)

yea(C)

pra(CP)

date(C)

aact (CP)

whoami(C)

pr(C)

vprintf(S) vfprintr(S) vaprintr(S)

printf(S) sprintr(S) fprintr(S)

banner(C)

leat(C)

lpstat (C)

run(CP)

portiona of pathnameB _______ basename(C)

power functions exp(S) pow(S) ____ exp(S)

pow(S) 10g(S) exponential. logarithm. _ exp(S)

pr(C) print filea on the stsndard output pr(C)

precision calculator ________ dc(C)

prepare execution profile monitor(S)

PreprocesBor cpp(CP)

previous get of an SCCS file unget(CP)

primary memory 10ck(S)

primitive Bystem data types types(F)

print a calendar cal (C)

print a string repestedly yes (C)

print an SCCS file prs(CP)

print and set the dste date(C)

print current SCCS file edit activity sact(CP)

print effective current UBer id whoami(C)

print files on the standard output __ pr(C)

print formatted output of varargs list _ vprintf(S)

print formatted output printf(S)

print large letters banner(C)

print laBt record of UBer 10ginB ___ laBt (C)

print LP Btatus infor1l'ation lpBtat (C)

print name list of cOlllllOn object file nm(CP)

xnm(CP) print name list __________ xnm(CP)

printenv(C) print out the environment printenv(C)

accept (C) reject (C) allow/prevent print requests accept (C)

pscreen(C) Bet up terminal to

filea size (C)

printerB (M)

print Bcreen display pscreen (C)

print section sizea or COlllllOn object __ size (C)

print spooler configuration file ___ printers(M)

strsce(M) print STREAMS trace messages _____ strace(M)

infocmp(M) compare or print terminfo descriptions infocmp(M)

PI-36

uname(C)

head(C)

id(C)

pwd(C)

Permuted Index

print the current UNIX infol"lllation uname(C)

print the first few lines of a stream head(C)

print u.er and group ID and nBDIe. id(C)

print working directory name _____ pwd(C)

.trings(C) find the printable .tring. in an object file __ 8trings(C)

printenv(C) print out the environment _ printenv(C)

Ipd(M) line printer daemon Ipd(M)

xpd (M) transparent

filter files for printing on LaserJet

send/csncel requests to LP line

setmode(C)

turn on/off line

lpr(C) route named files to

lpdisable(C) enable/disable LP line

printer daemon __________ xpd(M)

printer hplp(C) hplpR(C) hplp(C)

printer lp(C) cancel(C) lp(C)

printer modes utility setmode(C)

printer scheduler lpon(M)

printer spooler lpr(C)

printer8 lpenable(C) lpenable(C)

lpinit (M) add new line printers lpinit (M)

file printers(M) print spooler configuration _ printers(M)

formatted output printf(S) sprintf(S) fprintf(S) print _ printf(S)

hplp(C) hplpR(C) filter file. for printing on LaserJet printer hplp(C)

nice(C) run s command at a different priority nice(C)

nice(S) change priority of a proceS8 _______ nice(S)

brc(M) system initialization procedure brc(M)

acct(S) enable or disable proce •• accounting acct(S)

alarm(S) set a proce.s alarm clock alarm(S)

times(S) get process and child process time. times(S)

init (M) proce.s control initialization init (M)

exit(S) terminate

fork(S) create a new

getpid(S) get proces ••

setpgrp(S) .et

process _____________ exit (S)

proce.s fork (S)

proce.s group. and parent process IDs _ getpid(S)

proce •• group id .etpgrp(S)

setpgrp(C) execute command in a n .. w proc group ___________ .etpgrp(C)

get process. process group. and parent process ID. getpid(S) getpid(S)

10ck(S) lock a process in primary memory 10ck(S)

kill (C) terminate a proce.. kill (C)

nice(S) change priority of a

kill(S) ... nd a .ignal to a

pclose(S) initiate pip .. to/from a

proce.s IDs getpid(S) g .. t

ps(C) report

plock(S) lock

time. (S) g .. t process and child

wait(S) wait for child

ptrac .. (S)

paus .. (S) suspend

ch .. ckli.t (M) li.t file .ystems

inittab(M) .cript for th .. init

killall(C) kill all active

send a signal to a proce.a or a group of

fus .. r(M) id .. ntity

wait (C) wait completion of background

awk(C) pattern .canning and

proce.. nice (S)

proc or a group of proc ... 8e. ____ kill(S)

proce88 popen(S) popen(S)

proce ••• proc .. 88 group. and parent __ getpid(S)

proce.s .tatus ps (C)

proc text. or data in memory ___ plock(S)

process time. time.(S)

proc to stop or terminate wait (S)

proc trace ptrace(S)

proc until signal pause(S)

proc .. ss .. d by fsck checklist (M)

proce •• es inittab(M)

proce.ses killall (C)

proce •• es kill (S) kill (S)

processes using a file or tile structure fuser(M)

proc....... wait(C)

proce •• ing languag.. awk(C)

nawk(C) pattern scanning and proce •• ing language nawk(C)

m4(CP) invoke a macro proce •• or m4(CP)

list (CP) produce C source li.ting from COFF file _ list (CP)

prof(CP) display profile data prof(CP)

prof (F) profil .. within a function ___ prof(F)

prof(CP) display profil .. data prof (CP)

monitor(S) prepar .. execution profile _____________ monitor(S)

PI-37

Permuted Index

proril(S) execution time prorile _____________ profileS)

prof(F) profile within a function prof(F)

time profile(M) .et up environment at login _ profile(M)

proril(S) execution time profile ___ profileS)

a •• ert(S) verify program a •• ertion _________ a •• ert(S)

boot (H) boot program boot (M)

cxref (CP) generate C

ctrace(CP) C

edata(S) etext(S) last locations in

tapeutil (C) utility

uucico(H) rile tran.port

program cro •• -reference _______ cxref(CP)

program debugger ctrace(CP)

program end(S) end(S)

program for a streaming tape drive __ tapeutil(C)

program for uucp .ystem uucico(M)

default (H) default program information directory ____ default (M)

sulogin(M) specia~ ~ogin program invoked by init su~ogin(M)

strc~ean(H) STREAMS error logger cleanup program strclean(M)

ua(C) u.er administration program ua(C)

schedu~er for the uucp file tran.port program uu.ched(H) uusched(H)

~ocate source. binary. or manual for program wherei.(C) whereis(C)

cb(CP) beautify C programs cb(CP)

lex(CP) generate programs for lexical analysis lex(CP)

update. and regenerate groups of programs make(C) maintain. make(C)

xref(CP) cross-reference C programs xref(CP)

xstr(CP) extract string. from C

clock(M)

labelit(C)

.creen di.play

drand48(S) erand48(S) generate

nrand48 (S) lrand48(S) generate

seed48(S) srand48(S) jrand48(S) generate

uuto(C) uupick(C)

adb(C) invoke x. out general

ungetc(S)

put.(S) fput.(S)

putc(S) putchar(S) putw(S) rputc(S)

getdents(S) read directory entries and

character or word on a streaa putc(S)

character or word on a .treaa

environment

program. _____________ xstr(CP)

provide access to the time-of-day chip _ clock(H)

provide labela for file systems ____ label it (C)

prs(CP) print an SCCS file prs(CP)

ps(C) report process .tatus ps(C)

p.creen(C) .et up I.erminal to print __ pscreen(C)

p.eudo-random number. drand48 (S)

p.eudo-random number. /mrand48(S) ___ drand4,8(S)

p.eudo-random nwaber. drand48(S) ___ drand48(S)

ptrace(S) proce •• trace _______ ptrace(S)

public UNIX-to-UNIX .y.t_ file copy __ uuto(C)

purpo.e debugger adb (C)

pu.h character back into input stream _ ungetc(S)

put a .tring on a .tre.. put.(S)

put character or word on a .tream ___ putc(S)

put in a file getdent.(S)

putchar(S) putw(S) fputc(S) put ____ putc(S)

putc(S) putchar(S) putw(S) fputc(S) put _ putc(S)

putenv(S) change or add value to ___ putenv(S)

put_g(S) .end a •••• age on a .tream __ putmag(S}

putpwent(S) writ,. pa •• word file entry _ putpwent(S)

.tream put.(S) fput.(S) put a .tring on a __ put.(S)

on a .tr ... putc(S) putchar(S) putw(S) rputc(S) put character or word _ putc(S)

rile pwck(M) grpck(H) check pa •• word/group _ pwck(H)

pwd(C) print working directory name __ pwd(C)

q.ort(S) quicker .ort ________ q.ort(S)

query terminro database tput (C)

magget(S) get age queue magget(S)

ipcrm(C) remove .e •• age

qsort(S)

run a conmand t-une to hangup. and

ranlib(CP) convert archive. to

random (C) generate a

rand(S) .rand(S) simple

queue. samphore .et •• hared memory id _ ipcrm(C)

quicker .ort q.ort (S)

quit. nohup(C) nohup(C)

quot(C) .UIII!Iarize rile .y.tem ownership _ quot(C)

random libraries ranlib(CP)

random number random (C)

randOlll(C) generate a random number __ random(C)

random-nwaber generator rand(S)

PI-38

Permuted Index

generator rand (S) arand(S) simple ranr:Jo.-nWftber rand (S)

libraries ranlib (CP) convert archives to random ranlib (ep)

fsplit(ep) split rattor filea ___________ tsplit(ep)

standard FORTRAN ratfor(ep) convert rational FORTRAN to ratfor(ep)

ratfor(ep) convert rational FORTRAN to standard FORTRAN ratfor(ep)

system reO (1'1) convnands to atop the operating _ rcO (1'1)

environment rc2(M) convnands for mUlti-user rc2(M)

to be read rdchk(S) check to see if there ia data rdchk(S)

getpas (S) read a password getpas (S)

eOFF file Idtbread(S) read an indexed symbol table entry of a ldtbread(S)

a eOFF file Idshread(S) read an indexed/named section header of ldahread(S)

getdents(S) read directory entries and put in a file getdents(S)

read(S) read from file resd(S)

line(e) read one line of input line(e)

check to see if there is data to be read rdchk(S) rdchk(S)

an archive file ldahread(S) read the archive header of a member of ldahread(S)

Idfhread(S) read the file header of a eOFF file ldfhread(S)

operations directory(S) telldir(S)

Idaopen(S) open a convnon object file for

readdir(S) opendir(S) directory ____ directory(S)

reading Idopen (S) Idopen (S)

open(S) open for reading or writing _________ open(S)

read(S) read from f1le read(S)

Iseek(S) move read/write file pointer Iseek(S)

locking(S) lock/unlock a file region for read/write 10cking(S)

getuid(S) getegid(S) get

getuid(S) geteuid(S) get

getuid(S) getgid(S) get

malloc(S) free(S)

autoreboot (e) automatically

reboot (e) automatically

shutdn(S) reboot(S) shutdown or

real/effective user or group IDs ___ getuid(S)

real/effective user or group IDs ___ getuid(S)

real/effective user or group IDs ___ getuid(S)

realloc(S) fast main memory allocator _ malloc(S)

reboot the system autoreboot (e)

reboot the system reboot (e)

reboot the system _________ shutdn(S)

system reboot (e) automstically reboot the reboot (e)

shutdn(S) reboot(S) shutdown or reboot the system shutdn(S)

signal(S) specify what to do on receipt of signal signal(S)

10ckf(S) record locking on files 10ckf(S)

lsst (e) print last

script (C) make a

frec(M)

record of user logins last (C)

record of your tenninal sesaion ____ script (C)

recover files frOlll a back-up tape ___ frec (M)

system from tape recover(C) restore contents of a file recover (e)

ed(C) ed(C) red (C) invoke the ed text editor

make(C) maintain. update. and

match routines

match routines

execseg(S) make a data

10cking(S) lock/unlock a file

regexp(S) compile

routines regexp(F)

search file for pattern using full

regcmp(S) compile a

regex(S) execute a

regcmp(CP) compile

accept (C)

regcmp(CP) compile regular expressiona _ regcmp(CP)

regcmp(S) compile a regular expression _ regcmp(S)

regenerate groupa of programs make(C)

regexp(F) regular expression compile and regexp(F)

regexp(S) compile regular expreaaion and regexp(S)

regex(S) execute a regular expression _ regex(S)

region executable execseg(S)

region for read/write 10cking(S)

regular expression and match routines _ regexp(S)

regular expression compile and match __ regexp(F)

regular expression egrep(C) egrep(C)

regular expression _________ regcmp(S)

regular expression regex (S)

regular expressions regcmp (ep)

reject (C) allow/prevent print requests _ accept (C)

10rder(CP) find ordering relation for object library _____ 10rder(CP)

join(C) join two relations join(C)

COFF tile Idrseek(S) seek to relocation entries of a section of a Idrseek(S)

PJ-39

Permuted Index

object file reloc(F) relocation ot intorlllation tor a cOllnOn reloc(F)

colNIIOn object tile reloc(F) relocation ot intormation tor a reloc(F)

leave(C) reftlind you when you have to leave ___ leave(C)

calendar(C) invoke a reMinder aervice _________ calendar(C)

uuxqt(M) execute remote command requeata uuxqt(H)

uutry(M) contact remote syatem with debugging on ___ uutry(H)

ct(C) apawn getty to a remote terminal ct(C)

uux(C) execute command on remote UNIX ___________ uux(C)

rmdel(CP) remove a delta from an SCCS file rmdel(CP)

rmdir(S) remove a directory rmdir(S)

sap(C) remove consecutive blank lines ____ sap(C)

unlink(S) remove directory entry unlink(S)

rm(C) rmdir(C) remove tilea or directoriea _____ rm(C)

shared memory id ipcrm(C)

COFF tUe atrip(CP)

mv(C) move

fack(C) dtack(C) check and

remove meaaage queue. aemphore aet. ipcrm(C)

remove aymbola and line numbera trom __ strip(CP)

(rename) tilea and directoriea ____ mv(C)

repair file ayatema tack(C)

uniq(C) report repeated linea in a tile ______ uniq(C)

yes(C) print a at ring repeatedly yea(C)

clock(S) report CPU time uaed clock(S)

tsstat (M) report tile ayatem atatua fast at (H)

tainto(M) report intormation about a tile aystem _ tsinfo(H)

facilities statua ipca(C) report inter-proceaa communication __ ipcs(C)

inodea dt(M) report number of tree disk block a and dt(H)

aar(C) ayatem activity report package __________ sar(C)

sar(M) .yatem activity

pa(C)

uniq(C)

fseek(S) rtell(S) rewind(S)

lpached(H) Ip.hut (M) .tart/atop the LP

accept (C) reject (C) allow/prevent print

Ipached(M) IpCDOve(M) move LP

sysaltoa(S) manufacturer apecific ayatem

Ip(C) cancel(C) aend/cancel

uuxqt (H) execute remote cOlllllland

report package __________ sar(H)

report proceaa atatu. pa (C)

report repe.ted linea in a file ____ uniq(C)

repoaition a tile pointer in a .tre _ t.eek(S)

requeat .cheduler Ipsched(H)
requeata _____________ accept (C)

reque.t. Ipached(H)

requeata syaal toa (S)

requeata to LP line printer Ip(C)

requeata uuxqt (M)

reaet (C) reaet the teletype bit reaet (C)

reaet(C) reaet the teletype bit ____ reset(C)

identify device name on which tilea rea ide devnm(C) devnm(C)

wait and check acceaa to aemaphore reaource .,aitaem(S) nbwaita_(S) .,aitaem(S)

reatore.hd(C) reatore a hard diak trOll tape ____ reatore.hd(C)

tape recover (C)

tape

table entry Idgetnaae(S)

atat(F)

abs(S)

restore contents ot a tile syatem trom _ recover(C)

reatore.hd(C) restore a hard disk trom reatore.hd(C)

retrieve symbol naas tor COFF aymbol __ Idgetname(S)

return data by stat ayatem call ____ atat(F)

return integer abaolute value abs (S)

10gnaae(S) return login naas ot user ______ 10gname(S)

getenv(S) return value for environment name ___ getenv(S)

talae(C) return .,ith a nonzero exit value talae(C)

true(C)

rav(C)

operations directory(S) closedir(S)

stream faeek(S) ftell(S)

return .,ith a zero exit value true(C)

rev(C) reverae linea of a file ____ rev(C)

reverae lines of a file rev (C)

rewinddir(S) seekdir(S) directory ___ directory(S)

rewind(S) reposition a tile pointer in a fseek(S)

createS) create a new tile or rewrite an existing one _______ createS)

directories rm(C) rmdir(C) remove files or rm(C)

uucp link rmail(C) receive. mail fro. rmail(C)

file rmdel(CP) remove a delta trom an SCCS rmdel(CP)

PI-40

Permuted Index

rm(C) rmdir(C) rel'lOve files or directories rm(C)

rmdir(S) rel'lOve a directory _____ rmdir(S)

chroot (S) change root directory chroot (s)

chroot (C) change root directory for cOllllland chroot (C)

exponential. logarithm. and square root functions exp(S) aqrt(S) exp(S)

Ipr(C) route named files to printer spooler __ Ipr(C)

Idfcn(F) cOlllllOn object file access routines Idfcn(F)

regular expression compile and match routinea regexp(F) _________ regexp(F)

compile regular expreasion and match

interpreter ah(C)

nice(C)

quita nohup(C)

activity

routines regexp(S) _________ regexp(S)

rsh(C) invoke the shell command ah(C)

run a cOtmland at a different priority _ nice(C)

run a cOtmland inmune to hangups and __ nohup(C)

sact(CP) print current SCCS file edit _ sact(CP)

system activity sadcon(M) data collector ______ sadcon(M)

archive(C)

allocation brk(S)

bra(C)

formatted input

awk(C) pattern

nawk(C) pattern

cdc(CP) change the delta conmentary of

comb (CP) combine

delta(CP) make a change to an

Bact (CP) print current

get (CP) get a version of an

pra(CP) print an

rmdel(CP) retllOve a delta from an

sccsdiff (CP) compare two versions of an

sccsfile(F) format of an

unget(CP) undo a previous get of an

val(CP) validate an

admin(CP) create and administer

aar(C) ayatem activity report package _ aar(C)

aar(M) syatem activity report package _ aar(M)

aave a file system to a streaming tape _ archive(C)

abrk(S) change data segment space ___ brk(S)

scan big files bra(C)

scanf(S) fscanf(S) sacanf(S) convert scanf(S)

scanning and procesaing language ___ awk(C)

acanning and proceasing language ___ nawk(C)

SCCS delta cdc (CP)

SCCS deltaa comb (CP)

SCCS file delta (CP)

SCCS file edit activity sact (CP)

SCCS file get (CP)

SCCS file prs(CP)

SCCS file rmdel(CP)

SCCS file accadift (CP)

SCCS tile sccafile(F)

SCCS file unget(CP)

SCCS file val(CP)

SCCS files admin(CP)

SCCS tile accsdiff(CP) compare two versions of an _ sccadiff(CP)

accstile(F) format of an SCCS file sccatile(F)

turn on/off scheduler for line printer ______ Ipon(M)

ckbupacd(M) check file system backup schedUle _____________ ckbupscd(M)

turn on/off scheduler for line printer ______ lpon(M)

program uusched(M)

lpshut (M) atart/stop the LP request

object fHe

image file

more(C) vi_ a file one full

clear(C) clear terminal

pscreen(C) set up terainal to print

curs.s(S) terminal

scr_dUlllp(FI foraat at curses

vi(C) invoke a

inittab(M)

aession

to a ahared data segment

data segment sdget(S)

shared data segment

data access

scheduler for the uucp file tranaport _ uuached(M)

scheduler Ipsched(M) Ipsched(M)

scnhdr(P) aection header tor a common acnhdr(F)

scr_dump(F) format of cur.es screen __ scr_dump(F)

screen at a time more (C)
screen _____________ clear(C)

acreen diaplay pacreen(C)

screen handling and optimization package curaea(S)

screen image file acr_dump(F)

screen-oriented displ.ay editor vi(C)

script for the init proce.ses inittab(M)

script (C) make a record of your terminal acript (C)

sdb(C) symbol.1c debugger sdb(C)

sdenter(S) sdleave(S) synchronize access sdenter(S)

sdfree(S) attach and detach a shared __ sdget(S)

sdget(S) adfree(S) attach and detach a _ sdget(S)

adgetv(S) sdwa!tv(S) synchronize shared _ adgetv(S)

adUf(C) compare tilea aide-by-aide __ sdUt(C)

PI-41

Permuted Index

shared data segillant sdenter(S)

access sdgetv(S)

fgrep(C)

grep(C)

sdleave(S) synchronize access to a sdenter(S)

sdwaitv(S) synchronize shared data __ sdgetv(S)

searcb a file for a character string __ fgrep(C)

s.arcb a file for a pattern grep(C)

lsearch(S) ltind(S) linear search and update _________ lsearch(S)

regular expreaaion egrep(C) aearch file for pattern using full __ egrep(C)

b.earch(S) binary search of a .orted table bsearch(S)

hdestroy(S) hcreate(S) manage ha.h aearcb tables bsearch(S) bsearcb(S)

tdelete(S) t .. alk(S) manage binary searcb trees tsearcb(S) ttind(S) tsearcb(S)

enroll(C) x.end(C) xget (C) secret mail enroll (C)

acnbdr(F) aection beader for a cOlllllOn object file scnbdr(F)

Idsbread(S) read an indexed/named aection beader of a COFF tile ldahread(S)

manipulate tbe object file cOlNftent aection mca(CP) mca(CP)

seek to line number entries of a .ection of a COFF file ldl.eek(S) ldlseek(S)

seek to relocation entries of a aection of a COFF file Idrseek(S) ldrseek(S)

size(C) print aection aize. of cOllllllOn object file. __ size(C)

add new bad sector. to tbe bad sector map badblock(C) badblock(C)

badblock(C) add new bad aector. to tbe bad sector map ____ badblock(C)

paeudo-random number. drand48 (S)

of a COFF file ldlaeek(S)

of a COFF tile ldraeek(S)

cOlllllOn object ldobaeek(S)

ldtb.eek(S)

directory(S) closedir(S) rewinddir(S)

shmget (S) get shared memory

syncbronize accesa to a sbared data

attach and detacb a abared d.ta

brk(S) sbrk(S) cbange d.ta

dump (CP) dump

bdr(C) display

filea COl'llll(C)

.emctl(S)

creataem(S) create a bin.ry

opensem (S) open a

semop(S)

nbwaitsem(S) wait and cbeck access to

.emget (S) get .et of

ipcrlll(C) reMOve .. e •• ag. queue.

put .. g(S)

proc ••• e. kill(S)

Ip(C) cancel (C)

mesg(C) allow or di.allow ••••• ge.

calend.r(C) invoke a r..tnder

script (C) make. record of your terainal

alarm(S)

uma.k(S)

ascii (M) m.p of tbe ASCII cbar.cter

timezon.(M)

env(C)

ut1me(S)

uma.k(C)

aed(C) invoke tbe .tream editor aed(C)

aee(C) display a tile aee(C)

.eed48(S) .rand48(S) jrand48(S) generate drand48(S)

.eek to line number entries of a .ection ldl.eek (S)

.eek to relocation entries of a .ection Idrseek(S)

s.ek to tbe optional file beader of s _ ldob.eek (5)

.eek to the .ymbol table of a COFF file _ ldtbseek(S)

seekdir(S) directory operations ____ directory(S)

.egment identifier ahmget (S)

.egment .denter(S) .dleave(S) ____ adenter(S)

.egment adget (S) .dfree (S) adget(S)

.egment space allocation brk(S)

.elected part. of an object tile ___ dump(CP)

selected part. of an object tile bdr(C)

.elect/reject line. cOlllllOn to two .orted c..-(C)

.emapbore control op.ration. .emctl (S)

.emapbor. creat.em(S)

aemapbore open.em (S)

s_apbore operation. semop(S)

.emapbore resource wait.em(S) waitaem(S)

.emapbore. semget (S)

.Blllctl(S) semapbore control operationa _ .emctl(S)

.Blllget(S) get set of aBlllapbore. ____ semget(S)

.emop(S) .emapbore operation. aemop(S)

aempbor. aet. abar.d IIIfIIIIOry id ipcrm(C)

aend a roea.ag. on a .tr... putmag(S)

•• nd a .ignal to a proc •• a or a group of kill (S)

.end/cancel requeat. to LP line printer _ lp(C)

.ent to a terminal me.g(C)
aervice _____________ calendar(C)

.eaaion acript (C)

aet a procea. alarm clock alarm(S)

•• t and get file creation maak umaak(S)

.et a.cii (M)

set d.fault .y.tem time zone timezone(M)

.et environment for cOlmland execution env(C)

.et fila acce •• and modification tim.a utime(S)

.et file-creation mode roaak umaak(C)

log in numu •• r.(S) get and .et roaximum number of u.er. allowed to _ numuaer.(S)

PI-42

Permuted Index

rm(C) rmdir(C) rel1lOve tiles or directories rm(C)

rmdir(S) remove a directory _____ rmdir(S)

chroot (S) change root directory chroot (S)

chroot(C) change root directory tor cOl1lllend chroot(C)

exponential. logarithm. and square root functions exp(S) sqrt(S) exp(S)

lpr(C) route named tilea to printer spooler __ lpr(C)

ldfcn(F) cOlftlllC)n object tile access routines ldfcn(F)

regular expression compile and match routines regexp(F) _________ regexp(F)

compile regular expression and match

interpreter sh(C)

nice(C)

quits nohup(C)

activity

routines regexp(S) _________ regexp(S)

rsh(C) invoke the shell connand sh(C)

run a connand at a difterent priority _ nice(C)

run a connand i une to hangups and __ nohup(C)

sact (CP) print current SCCS file edit _ sact (CP)

system activity sadcon(M) data collector ______ sadcon(H)

archive(C)

allocation brk(S)

bfa(C)

formatted input

awk(C) pattern

nawk (C) pattern

cdc (CP) change the delta corrmentary of

comb(CP) combine

sar(C) system activity report package _ sar(C)

sar(H) system activity report package _ sar(M)

save a file system to a streaming tape _ archive(C)

sbrk(S) change data segment space ___ brk(S)

scan big tiles bfs(C)

scanf (S) fscanf (S) sscanf (S) convert scanf (S)

scanning and processing language ___ awk(C)

Bcanning and processing language ___ nawk(C)

SCCS delta cdc (CP)
SCCS deltas ___________ comb(CP)

delta(CP) make a change to an SCCS file delta(CP)

sact(CP) print current SCCS tile edit activity sact(CP)

get(CP) get a vera ion of an SCCS file get (CP)

pra(CP) print an SCCS file pra(CP)

rmdel(CP) remove a delta from an SCCS file rmdel(CP)

sccsdiff(CP) compare two versions of an SCCS file sccsdiff(CP)

sccsfile(F) format of an SCCS tile sccsfile(F)

unget(CP) undo a previous get of an SCCS file unget(CP)

val (CP) validate an SCCS file val (CP)

admin(CP) create and administer SCCS files admin(CP)

SCCS file sccsdiff(CP) compare two versions of an sccsdiff(CP)

sccstile(F) format of an SCCS file sccsfile(F)

turn on/off schedular for line printer lpon(M)

ckbupscd(M) check file system backup

turn on/off

program uusched(M)

schedule ckbupscd(H)

scheduler for line printer lpon(M)

scheduler for the uucp file transport _ uusched(H)

lpshut (H) start/stop the LP request scheduler lpsched(H) ________ lpsched(H)

object tile scnhdr(P) section header for a cOlllllOn scnhdr(F)

image file scr_dump(F) format of curs.s screen __ scr_dump(F)

mor.(C) vi_ a fil. on. full screen at a time more(C)

clear(C) clear terminal

pscreen(C) s.t up t.ndnal to print

cur ••• (S) t.rminal

scr_dWDp(P) fOnlat of curse.

vi(C) invoke a

inittab(M)

•••• ion

to a .hared data .elJlll.nt

data •• lJIIIent sdget(S)

shared data .egment

data acce ••

screen _____________ clear(C)

.cre.n display pscreen (C)

scre.n handling and optimization package curses(S)

scre.n image file scr_dump(F)

acreen-oriented di.play editor vi (C)

script for the init processes inittab(H)

script(C) make a r.cord of your terminal script (C)

sdb(C) symbolic debugger sdb(C)

sdenter(S) sdleave(S) synchronize access sdenter(S)

sdfree(S) attach and detach a shared __ sdget (S)

adget (S) adfree(S) attach and detach a _ sdget (S)

adgetv(S) sdvaitv(S) .ynchronize shared _ adgetv(S)

adtrf(C) compare filea aide-by-aide __ adtrf(C)

PI-41

Permuted Index

shared data seglllant sdenter(5)

access sdgetv (5)

fgrep(C)

grep(C)

sdleave(5) synchronize access to a sdenter(S)

sdvaitv(5) synchronize shared data __ sdgetv(5)

search a file for a character string __ fgrep(C)

saarch a file for a pattern grep(C)
lsearch(5) ltind(5) linear search and update _________ lsearch(S)

regular expr.saion egrep(C)

bsearch (5) binary

aearch file for pattern uaing full __ egrep(C)

aearch of a sorted table baearch(5)

hdestroy(5) hcreate(5) manage hash search tables haearch(5) haearch(S)

tdelete(S) t.alk(5) manage binary search trees taearch(5) tUnd(5) tsearch(S)

enroll(C) xaend(C) xget(C) secret mail enroll (C)

acnhdr(F) aection header for a common object file acnhdr(F)

Idshread(S) read an indexed/named aection header of a COFF tile Idahread(5)

manipulate the object file comment aection mca(CP) mca(CP)

seek to line number entries of a aection of a COFF tile Idlaeek(5) ldlseek(5)

seek to relocation entries of a aection of a COFF file Idraeek(5) Idraeek(5)

aize(C) print aection .ize. of coanon object file. __ size (C)

add new bad sectors to the bad sector map badblock(C) badblock(C)

badblock(C) add new bad sector. to the bad .ector map ____ badblock(C)

pseudo- random numbers drand48 (5)

of a COFF file ldlseek(5)

of a COFF tile Idrseek(5)

common object Idoh.eek(S)

ldtb.eek(S)

directory(S) clo.edir(S) rewinddir(S)

shmget (5) get .hared memory

synchronize acce.. to a .hared data

attach and detach a .hared data

brk(S) .brk(S) change data

dump (CP) dump

hdr(C) display

file. comm(C)

.emctl(S)

creat.em(S) create a binary

open.em (5) open a

.emop(5)

nbwaitsem(S) wait and check acce •• to

sed (C) invoke the stream editor sed(C)

see (C) display a file see(C)

aeed48(S) .rand48(S) jrand48(S) generate drand48(S)

seek to line number entriea of a .ection Idlaeek(S)

seek to relocation entries of a .ection Idrseek (S)

.eek to the optional file header of a

seek to the symbol table of a COFF tile

Idoh.eek (S)

ldt bseek (5)

seekdir(S) directory operations ____ directory(5)

segment identifier shmget(5)

segment sdenter(S) sdleave(S) ____ sdenter(S)

segment .dget (5) .dfree(S) sdget(S)

segment space allocation brk(S)

selected part. of an object file ___ dump(CP)

aelected part. of an object tile hdr(C)

aelect/reject line. connon to two .orted c~(C)

.emaphore control operation. • ... ctl (5)

a ... aphora creat.em(S)

semaphore open.em (S)

.emaphore operationa semop (S)

.emaphore reaource wai t.em (S) wai taem (S)

a_get (S) get .et of .emaphore. .emget (5)

.emctl(S) .emaphore control operation. _ .emctl(5)

.emget(S) get .et of .emaphore. ____ aemget(S)

aemop (S) .emaphore operation. aemop (S)

ipcr1ll(C) r..ove lIIe •• age queue. .emphore .et •• hared mfllllOry id ____ ipcrm(C)

put_g(S)

proce •• e. kill(S)

lp(C) cancel (C)

me.g (C) allow or di.allow •••• age.

calendar(C) invoke a remind.r

script (C) make a r.cord of your terminal

alarm(S)

uma.k(S)

aacii (M) map of the ASCII character

timezone(M)

env(C)

utim.(S)

uma.k(C)

.end a lIIe •• age on a .tream putm.g(S)

.end a .ignal to a procea. or a group of kill (S)

send/cancel reque.t. to LP line printer _ lp(C)

.ent to a terminal me.g(C)

.ervice _____________ calendar(C)

.e •• ion .cript (C)

aet • proce •• alarm clock alarm(S)

.et and get file creation ma.k umaak(S)

.et eacii(M)

aet default system tillle zone timezone(M)

set environment for command execution env(C)

aet file acce.s and modification time. utime(S)

aet rile-creation mode lIIe.k umask(C)

log in numusers (S) get and .et maximum number of users allowed to _ numusers (S)

PI-42

semget(S) get

pconrig(C)

setpgrp(S)

ipcrm(C) remove message queue. semphore

taba(C)

getty(M)

taet (C)

discipline uugetty(M)

date(C) print and

atty(C)

xtty(C)

Permuted Index

aet of a_aphorea _________ aamget (S)

aet port contiguration pconfig(C)

aet procesa group id aetpgrp(S)

aet. shared memory id ipcrm(C)

set taba on a terminal tabs(C)

set terminal mode getty(M)

set terminal modes tset (C)

set terminal type. modes. apeed. line _ uugetty(M)

set the date date(C)

set the options tor a port ______ stty(C)

aet the options for a port xtty(C)

asktime(C) aet the ayatem time of day ______ aaktime(C)

stime(S) set time stime(S)

profile(M) aet up environment at login time ___ profile(M)

pacreen(C) aet up terminal to print acreen display _ pacreen(C)

aetmodem(C) set up tty port for a modam setmodem(C)

shuttype(S) get and set UPS shutdown limits shuttype(S)

setuid(S) set uaer and group IDa setuid(S)

ulimit (S) get and set user limits ulimit (S)

a atream aetbuf(S) setvbuf(S) aaaign buftering to setbuf(S)

getgrent(S) fgetgrent(S) endgrent(S) setgrent(S) get group file entry ___ getgrent(S)

setjmp(S) 10ngjmp(S) non-local goto __ setjmp(S)

proceaa group

getpwent(S) fgetpwent(S) endpwent(S)

modification datea of rilea

gettydefs(M) apeed and terminal

file entry getut (S)

setbuf(S)

aputl(S)

setmnt (C) eatabliah /etc/mnttab table aetmnt(C)

aetmode(C) printer modea utility ___ aetmode(C)

8etmodem(C) aet up tty port for a modem _ aetmodem(C)

aetpgrp(C) execute cOllllland in a new __ setpgrp(C)

aetpgrp(S) aet proceas group id ____ setpgrp(S)

aetpwent(S) get paaaword file entry __ getpwent(S)

aettime(C) change the acceaa and ___ aettime(C)

aettinga uaed by getty gettydeh (M)

aetuid(S) aet uaer and group IDa ___ aetuid(S)

aetutent(S) getutline(S) accesa utmp __ getut(S)

setvbuf(S) assign buffering to a stream _ aetbuf(S)

sgetl(S) acceaa long integer data ___ aputl(S)

sdgetv(S) sdwaitv(S) aynchronize ahared data acceaa _________ .dgetv(S)

adleave(S) aynchronize acceaa to a ahared data aegment adenter(S) adenter(S)

,dget(S) sdfree(S) attach and detach a ahared data aegment sdget(S)

chkshlib(CP) tool for comparing

mkshlib(CP) create a

shmctl(S)

remove message queue. aamphore set.

ahmop(S)

ahmget (S) get

interpreter

bah (C) invoke the Business

sh(C) rsh(C) invoke the

ayntax csh(C)

syst_(S) issue a

create menu system(s) for the Busineaa

menua(M) format of BUsiness

operations

identifier

nap(S) suapend execution for a

the aystam

.ahutype(M) UPS

ahared librariea __________ chkahlib(CP)

ahared library mkahlib(CP)

aha red memory control operations ___ ahmctl (S)

aha red IHIIIOry id ipcrm(C) ipcrm(C)

ahared memory operation. ahmop (S)

ahared memory aegment identifier ___ ahmget(S)

ah(C) rsh(C) invoke the ahell cOll'llland _ ah(C)

ahell bah(C)

ahell command interpreter ______ ah(C)

ahell command interpreter with C-like _ cah(C)

ahell command system(S)

Shell digest(C) __________ digeat(C)

Shell menu syatam menua(M)

shl(C) ahell layers ahl(C)

ahmctl(S) aha red _ry control ____ ahmctl(S)

ahmget(S) get aha red memory segment __ shmget(S)

shmop(S) ahared memory operations ___ shmop(S)

ahort interval nap(S)

shutdn(S) reboot(S) ahutdown or reboot _ ahutdn(S)

ahutdown configuration utility ____ ahutype(M)

PI-43

Permuted Index

ahuttype(S) get and aet UPS .hutdown li.ita .huttype(S)

.hutdn(S) reboot(S) .hutdown or reboot the .y.t.... .hutdn(S)

bring .y.tem to .ingle-u.er or .hutdown .hutdown(M) .hutdown(M)

or ahutdown shutdown(M) bring .y.t_ to .ingle-u.er shutdown(M)

limit.

utility

.dUt(C) compare tile.

aignsl manag ent .ig •• t (S)

Bigset (S) sighold (S) eigr.l.e (S)

sighold(S) eigrel.e(S) .igignore(S)

.huttype(S) get and .et UPS .hutdown __ .huttype(S)

.hutype(M) UPS .hutdown contiguration _ shutype(M)

e1de-by-eide .ditt (C)

eighold(S) .igr.lee(S) .igignore(S) __ .ig.et(S)

aigignore(S) .ignal management

.ignal management .ig.et (S)

____ sig.et(S)

_____ sig.et(S)

sigset(S) sigpaua.(S) .ignal management _________ sig.et(S)

pause(S) .u.pend proce •• until .ignal paua.(S)

specify what to do on rec.ipt ot
proce •••• kill (S) .end a

ot signal

ssignal (S) gsignal (S) sottware

sig.et (S)

management .ig.et(S) eighold(S)

sigignore(S) signal management

signal .ignal (S) aignal (S)

.ignal to a proce •• or a group ot ___ kHl(S)

.ignal (S) .pecity what to do on receipt _ .ignal (S)

eignal. .eignal (S)

sigpause(S) .ignal management aig.et(S)

e1grelse(S) eigignore(S) eignal ____ II1g.et(S)

.ig.et(S) .ighold(S) eigrelee(S) ___ Big.et(S)

.ig.et(S) .igpau.e(S) .ignal management _ 8ig •• t(S)

rand(S) srand(S) simple random-number generator ____ rand(S)

tmt(C) simple text tormatter tmt(C)

.hutdown(M) bring .ystem to single-u •• r or shutdown .hutdown(M)

multi/aingle-u.er mode multiuser(C) .ingleuser(C) bring .y.tem up multiuser(C)

tunctions sinh(S) cosh(S) tanh(S) hyperbolic __ sinh(S)

trigonometric tunctions trig(S) sin(S) cos(S) tan(S) .. in(S) acos(S) __ trig(S)

chsize(S) chang. the til. .ize ______________ ch.iz.(S)

siz.ta(C) d.t.noin. the siz. ot a logical disk drive siz.ta(C)

objact tiles siz.(C) print .ection siz.s ot c.,...,n _ size(C)

logical disk drive siz.ts(C) det.noine the .1ze ot a .iz.t.(C)

siz.(C) print section .iz.s ot c~n object tiles _____ siz.(C)

interval sl.ep(C) suspend execution tor .n ___ .1eep(C)

sl •• p(S) susp.nd ex.cution tor int.rval _ sleep(S)

user tty.lot(S) rind the .lot in the utmp tile ot the current __ ttyslot(S)

spline(C) interpolate

intro(CP) introduce

ssignal(S) gsignal(S)

tsort (C)

sort(C)

qsort (S) quick.r

BIOOOth curv •• ___________ .pline(C)

sottwar. dev.lopal.nt c~ands intro(CP)

sottwar. signals •• ign.l (S)

sort a til. topologic.lly t.ort (C)

sort and m.rge til.s .ort (C)

sort qsort (S)

sort (C) sort and .erge til.s sort (C)

select/reject lin.s co.-on to two sorted tiles cOl1llll(C) cOllllll(C)

look (C) tind lines in a sorted list look (C)

bs •• rch(S) binary search ot •
whereis(C) locate

list (CP) produce C

sort.d t.ble ___________ bs •• rch(S)

source. binsry. or •• nual tor progrUl _ wher.is(C)

sourc. listing tro. con tile list (CP)

create an error _asage til. tro. C source !llkstr(C) mkstr(C)

create an error _ssage tile tro. C source IIkstr(CP) _________ mkstr(CP)

tic (C) c.,.pile tenointo

brk(S) sbrk(S) change data seglllent

ct(C)

.akedevs(M) create

.. akettys(M) create tty

mknod(C) build

sulogin(M)

mknod(S) make a directory. or a

sysal tos (S) manut act ur.r

_____________ tic(C)

space allocation brk (S)

spawn getty to a ra.ote terminal ___ ct(C)

special device tU.s ________ lIakedevs(M)

special tilea makettys(M)

special tilea mknod(C)

special login progrUl invoked by init _ Bulogin(M)

special or ordinary tile mknod(S)

specitic syat_ requests ______ Bysaltos(S)

PI-44

Permuted Index

fspec(F) format specification in text files fspec (F)

cron(C) execute commands at specified times cron(C)

signal(S) specify what to do on receipt of signal signal(S)

getty gettydefs (M) speed and terminal settings used by __ gettydefs (M)

uugetty(M) set terminal type. modes. speed. line discipline uugetty(M)

find spelling errors spell (C) spell(C)

spline(C) interpolate smooth curves spline(C)

split (C) split a file into pieces ______ split(C)

csplit (C)

fsplit (CP)

uucleanup (M) uucp

printers (M) print

Ipr(C) route named files to printer

Ipadmin(M) configure the LP

output printf(S)

data

square root functions exp(S)

.sqrt (S) exponential. logarithm. and

pseudo-random/ drand48(S) seed48(S)

rand(S)

scanf(S) fscanf(S)

split files according to context ___ csplit(C)

split rat for files fsplit (CP)

split(C) split a file into pieces ___ split(C)

spool directory cleanup _______ uucleanup(M)

spooler configuration file printers (M)

spooler Ipr(C)

spooling system Ipadmin(M)

sprintf(S) fprintf(S) print formatted _ printf(S)

aputl(S) sgetl(S) access long integer sputl(S)

sqrt(S) exponential. logarithm. and __ exp(S)

square root functions exp(S) exp(S)

srand48(S) jrand48(S) generate ____ drand48(S)

srand(S) simple random-number generator rand(S)

sscanf(S) convert formatted input ___ scanf(S)

ssignal (S) gsignal (S) software signals _ ssignal (S)

ssp(C) remove consecutive blank lines ssp (C)

stdio(S) standard buffered input/output package stdio(S)

ratfor(CP) convert rational FORTRAN to

gets (C) get a string from the

package stdipc(S) ftok(S)

pr(C) print files on the

Ipsched(M) Ipshut (M)

standard FORTRAN __________ ratfor(CP)

standard input gets(C)

standard interprocess communication __ stdipc(S)

standard output pr(C)

start/stop the LP request scheduler __ Ipsched(M)

stat (F) return data by stat system call stat (F)

stat (F) return data by stat system call stat (F)

information stathIS) fstatfs(S) get file system statfs(S)

ustat(S) get file system statistics ustst(S)

stateS) fstat(S) get file status stateS)

fsstat (M) report file system status _____________ fsstat (M)

Ipstat (C) print LP status information lpstat(C)

fileno(S) clearerr(S) feof(S) stream status inquiries ferror(S) ferror(S)

uustat (e) uucp ststus inquiry and job control uustat (C)

inter-process communication facilities status ipcs(e) report ipcs(e)

ps(C) report process ststus ps(C)

stateS) rstat(S) get file status stateS)

package stdio(S) standard buffered input/output stdio(S)

cOll1lllunication package stdipc(S) ftok(S) standard interprocess _ stdipc(S)

waiteS) wait for child process to

rcO(M) commands to

functions dblll(S) firatkey(S)

string operations string(S)

string(S) strncmp(S) strcpy(S) strlen(S)

program

string(S) strcat (S) strdup(S) strpbrk(S)

operations string(S) strncmp(S)

operations string(S) strcat (S)

sed (C) invoke the

stime(S) set time _________ stime(S)

stop or terminate wait (S)

stop the operating system rcO(M)

store(S) fetcheS) perform database dbm(S)

strace(M) print STREAMS trace messages _ strace(M)

strcat (S) strdup(S) strpbrk(S) strcmp(S) string(S)

strchr(S) string operations string(S)

strclean(M) STREAMS error logger cleanup strclean(M)

strcmp(S) string operations string(S)

strcpy(S) strlen(S) strchr(S) string __ string(S)

strdup(S) strpbrk(S) strcmp(S) string _ string(S)

stream editor sed(C)

fclose(S) fflush(S) close or flush a stream _____________ fclose(S)

PI-45

Permuted Index

fopen(S) fdopen(S) freopen(S) open a stream ____________ _ fopen (S)

rewind(S) reposition a file pointer 1n a

getchar(S) get chsracter or word from a

getmsg(S) get next message off a

gets(S) fgets(S) get a string from a

stream fseek(S) rtell(S) fseek(S)

atream getc(S) getw(S) fgetc(S) ___ getc(S)
stream _____________ getmsg(S)

stream gets (S)
head(C) print the first few lines of a stream _____________ head(C)

fputc(S) put character or word on a at ream putc(S) putchar(S) putw(S) _. __ putc(S)

putmsg(S) send a message on a stream _____________ putmsg(S)

puts(S) fputs(S) put a string on a stream puts(S)

setvbuf(S) assign buffering to a stream setbuf(S) setbuf(S)

ferror(S) fileno(S) clearerr(S) feof(S) stream status inquiries ferror(S)

ungetc(S) push chsracter back into input stream ungetc(S)

archive(C) save a file system to a streaming tape archive(C)

tapeutil (C) utility program for a streaming tape drive tapeutil(C)

clone(M) open any minor device on STREAMS driver clone(M)

strclean(M) STREAMS error logger cleanup program __ strclean(M)

strerr(M) STREAMS error logger daemon strerr(M)

10g(M) interface to STREAMS error logging _______ 10g(M)

poll(S) STREAMS input/output multiplexing ___ poll(S)

strace(M) print STREAMS trace messages _______ strace(M)

strerr(M) STREAMS error logger daemon _ strerr(M)

between long integer and base-64 ASCII string a64l(S) l64a(S) convert ____ a64l(S)

10caltime(S) convert date and time to string ctime(S) gmtime(S) ctime(S)

cftime(S) convert date and time to string ctime(S) tzset(S) asctime(S) ctime(S)

ecvt(S) convert floating-point number to string _____________ ecvt(S)

fgrep(C) search a file for a character string fgrep(C)

geta(S) fgets(S) get a

geh(C) get a

mkvers(CP) generate a what

puts(S) fputs(S) put a

strcat (S) strdup(S) strpbrk(S) strcmp(S)

strncmp(S) strcpy(S) strlen(S) strchr(S)

string(S) strspn(S) strtok(S)

yeB(C) print a

Btrtod(S) atof (5) convert

strtol(S) atollS) atoi(S) convert

xstr(CP) extract

strings(C) find the printable

strcmp(S) string operations

string from a stream ________ gets(S)

string from the standard input gets(C)

string mkvers(CP)

string on a stream puts(S)

string operations string (S) string (S)

string operations string(S) string(S)

string operations string (S)

string repeatedly yes (C)

string to double-precision number ___ strtod(S)

string to integer strtol(S)

strings from C progr..... xstr(CP)

strings in an object file ______ strings(C)

string(S) strcat(S) strdup(S) strpbrk(S) string(S)

strchr(S) string operations string(S) strncmp(S) strcpy(S) strlen(S) string(S)

operations

sn object file

nWllbers from COFF file

string(S) atrnClllp(S) strcpy(S)

string operationa string(S)

string(S) atrcat(S) atrdup(S)

atring(S)

double-preciaion number

string(S) strapn(S)

to integer

string(S) strspn(S) atrtok(S) string __ string(S)

strings (C) find the printable strings in strings (C)

strip(CP) remove symbols and line ___ strip(CP)

strlen(S) strchr(S) string operations _ string(S)

strncmp(S) strcpy(S) strlen(S) strchr(S) string(S)

strpbrk(S) strcmp(S) string operations _ string(S)

strapn(S) atrtok(S) string operations _ string(S)

strtod(S) atof(S) convert string to __ strtod(S)

strtok(S) string operations string(S)

strtol(S) atollS) atoi(S) convert string strtol(S)

identify processea using a file or file structure fuser(M) _________ fuser(M)

mount(C) wnount(C) mount/unmount a file structure mount (C)

stty(C) set the options for a port __ stty(C)

plottS) graphics interface subroutines plot(S)

another user su(C) make the uaer a auper-user or __ su(C)

by in it aulogin(M) special login program invoked sulogin(M)

blocks in a file sum(C) calculate checksum and count sum(C)

PI-46

du(C)

quot(C)

sync(S) update

Permuted Index

8UJ1111arize disk usage du(C)

sUJllllarize tile systetll ownership ____ quot(C)

super block sync (S)

aync(C) update the super-block ___________ sync(C)

su(C) make the user a super-user or another user su(C)

terminal.(M) list of supported terminals terminals(M)

nap(S) suspend execution for a short interval _ nap(S)

sleep(C) suspend execution for an interval ___ sleeplC)

sleep(S) suspend execution for interval ____ sleep(S)

pause(S) suspend process until signal pause(S)

swab(S) awap byte. swab(S)

awab(S) swap bytes swab(S)

swsp(C) change swap device configuration swap(C)

ldgetname (S) retrieve

retrieve symbol name for COFF

ldtbindex(S) compute the index of a

swap(C) change swap device configuration swap(C)

symbol name for COFF symbol table entry _ ldgetname (S)

symbol table entry ldgetname(S) ____ ldgetname(S)

symbol table entry of a COFF file ___ ldtbindex(S)

ldtbread(S) read an indexed symbol table entry of a COFF file ldtbread(S)

syms(F) common object file symbol table format ________ syms(F)

make boot able system file with driver symbol table mkunix(M) mkunix(M)

make bootable system file with kernel symbol table mkunix(M) mkunix(M)

ldtbseek (S) seek to the symbol table of a COFF file ldtbseek (S)

unistd(F) file header for symbolic constants unistd(F)

sdb(C) symbolic debugger sdb(C)

atrip(CP) remove symbols and line numbers from COFF file _ strip(CP)

glossary(C) define common UNIX terms and symbols glossary(e)

format syms(F) common object file symbol table _ syms(F)

segment sdenter(S) sdleave(S)

sdgetv(S) sdwaitv(S)

shell command interpreter with C-like

lint(CP) check C language usage and

sync(C) updste the super-block ____ sync (C)

synchronize acce •• to a .hared data __ sdenter(S)

synchronize .hared data acce.s sdgetv (S)

sync(S) update .uper block sync(S)

syntax cah(C) csh(C)
.yntax _____________ lint(CP)

requests sy.alto.(S) manufacturer .pecific sy.tem sysaltos(S)

information

information

message. .y. _nerr (S)

information

sy.tem error me.sage.

login(C) give you

acct (C) accounting

.ar(C)

.ar(M)

inir(M) clean the tile

ckbup.cd(M) check file

.tat (F) return d.ta by .tat

intro(S) introduce

.y.conf (C) get

sysconf(S) get

cu(C) csll another UNIX

type. (F) primitive

fsdb(M) rile

.y.conf(C) get .y.tem configuration __ By.conf(C)

sysconf(S) get .y.tetll configuration __ sysconf(S)

sysder(M) output sy.t definition __ sysdef(M)

.y._errli.t(S) errno(S) .y.tem error __ sy._nerr(S)

.y.f.(S) get tile .y.tem type sy.fs (S)

ay._nerr(S) sy._errli.t(S) errno(S) __ aya_nerr(S)

.y.tem acce.. login(C)

sy.tem scct (C)

sy.tem activity data collection ____ aadcon(M)

system activity report package sar(C)

sy.tem activity report package ____ sar(H)

.ystem and execute. init inir(H)

sy.tem backup· schedule ckbupscd(M)

.y.tem call stat(F)

.ystem call •. functions. snd libraries intro(S)

.y.t_ configuration information ___ sy.conf (C)

.y.t_ configuration information ___ sysconf(S)

.y.tem cu(C)

.y.tem data type. _________ type.(F)

sy.tem debugger fsdb(M)

.ysdef(M) output .y.tem detinition _________ sysdef(M)

perror(S) system error message. perror(S)

sys_nerr(S) sys_errlist (5) errno(S) syst_ error message. sys_nerr(S)

PI-47

Permuted Index

uuto(e) uupick(e) public UNIX-to-UNIX ayatem file copy _________ uutole)

mkunix(M) make bootable system file with driver symbol table mkunlx(M)

mkunlx(M) mkunix(M) make bootable system file with kernel symbol table

reCQver(C) restore contents of a file

report information about a file

help(e)

fstyp(M) determine the file

dirent (F) rile

statfs(S) fatatfB(S) get file

brc(M)

Ipadmin (M) configure the LP spooling

mail (e)

menus(M) format of Business Shell menu

mkfs (M) construct a file

mount(S) mount a file

quot (e) sununarize file

rcO (M) commands to stop the operating

reboot (e) automatically reboot the

sysaltos(S) manufacturer specific

reboot (S) shutdown or reboot the

ustat (S) get file

fsstat (M) report file

fstab(M) file

mnttab(M) mounted file

asktime (e) set the

timezone(M) set default

archive(e) save a file

shutdown (M) bring

Byafa(S) get file

uname(S) get name of current UNIX

multiuBer(e) Bingleuaer(e) bring

file tranBport program for uucp

fileaYBtem(M) format of a

whole) diaplay who ia on the

uutry(M) contact remote

volcopy(M) labelit (M) copy tile

haltays(e) close the file

digest (e) create menu

fsck(e) dfsck(C) check and repair file

labelit (C) provide labeb for file

umountall(C) mount/uMlOunt multiple file

checklist (M) liBt file

sYBtem from tape _________ recoverle)

ayatem tsinto(M) fsinfo(M)

system help facility helplC)

system identifier fstyp (M)

system independent directory entry __ dirent (F)

system information statfslS)

system initialization procedure ___ brc (M)

system lpadmin(M)

system mail ___________ maillC)

system menus (M)

system mkfslM)

aystem mountlS)

system ownership quot (e)

syatem rcO(M)

system rebootlC)

syatem requests sysaltos(S)

system shutdn(S) shutdn(S)

system statistics ustat (S)

system status rsatat (M)

system table fstab (M)

system table mnttab(M)

system time of day asktime(C)

system time zone timezone(M)

system to a streaming tape archive(e)

system to single-user or shutdown ___ shutdown(M)

system type information sysfs(S)

BYBtem _____________ uname(S)

system up multi/single-uaer mode ___ multiuser(e)

BYBtem uucico(M) uucico(M)

Bystem volume ___________ filesYBtemlM)

Byatem who (C)

BYBtem with debugging on uutry(M)

sYBtem with label checking volcopy(M)

syatemB and halt the CPU haltsya(e)

syatem(s) for the BusineaB Shell ___ digest(C)

syatemB fack(C)

sYBtem(S) iBsue a ahell conwnand ___ system(S)

BYBtema labelit (C)

syatemB mountall(C) mountall(C)

systems processed by fsck ______ checklist(M)

bsearch(S) binary s.arch of a Borted table bsearch(S)

retrieve symbol name for COFF symbol table entry Idgetname (S) Idgetname (S)

compute the index of a syrpbol table entry of a COFF file Idtbindex(S) IdtbindexlS)

Idtbread(S) read an indexed symbol table entry of a COFF tile Idtbread(S)

syms(F) c~n object tile syrpbol table format syms(F)

rstab(M) file system table rstab(M)

bootable system file with driver symbol table mkunix(M) make mkunix(M)

boot able lIystem file with kernel symbol table mkunix(M) make mkunix(M)

mnttab(M) mounted file lIystem table mnttab(M)

Idtbseek(S) seek to the syrpbol table of a COFF file Idtbse.ek(S)

setmnt(C) establish /etc/mnttab table setmnt(C)

hcreate(S) manage hash search tables hsearch(S) hdestroy(S) hsearch(S)

taba(C) Bet tabs on a terminal taba(C)

taba (C) set tab. on a terminal tabs (C)

PI-48

Permuted Index

ctags(C) create a tags tile ctags(C)

tail (C) deliver the last part of a file tail(C)

sinh(S) cosh(S) tanh(S) hyperbolic functions sinh(S)

functions trig(S) sinISI cos(S) tan(S) asin(S) acos(S) trigonOllletric __ trig(S)

save a fil. syst_ to a streaming

utility prograa tor a streaming

dump cont.nts ot s hard disk to

frec(M) recover til.s trOlll a back-up

restore contents ot a fila system from

restore.hd(C) restore a hard disk from

streaming tape drive

tape archive(C) archive(C)

tape drive tapeutU(C) tapeutil(C)
tape dump.hd(C) __________ dump.hd(C)

tape frec(M)

tape recover(C) recover (C)

tape restore.hd(C)

tapeutil(C) utility program for a ___ tapeutil(C)

tar(C) archive files. tar(C)

treea tsearch(S) trind(S) tdelete(S) tvalk(S) manage binary aearch taeareh(S)

tee(C) create a tee in a pipe tee(C)

tee (C) create a tee in a pipe tee(C)

tk(C) paginator for Tektronix 4014 tk(C)

reset (C) reset the

directory operationa directory(S)

file tmpnam(S)

teletype bit reset (C)

telldir(S) readdir(S) opendir(S) ___ directory(5)

tempnam(S) create a name for a temporary tmpnam(S)

tmpfile(S) create a temporary file ________ tmpfile(S)

tmpnam(S) tempnam(S) create a name for a temporary file ____ . ______ tmpnam(S)

captoinfo(M) convert termcap to terminfo description ____ captoinfo(M)

termcap(M) terminsl capability database _ termcap(M)

termcap(M)

terminfo(M)

ct(C) spawn getty to a remote

ctermid(S) generate file name for

termio(M) general

dial(S) establish an out-going

virtual

allow or disallow messages sent to a

getty(M) set

taet(C) set

clear(C) clear

optimization package curses (S)

script (C) make a record of your

gettydefa(M) speed and

tabs(C) set tabs on a

pscreen(C) set up

ttyname(S) isatty(S) find name of a

discipline uugetty(M) set

ttys (1'1) login

terminal capability database _____ termcap(M)

terminal capability databaae terminfo(M)

terminal ct (C)

terminal ctermid(S)

terminal interface termio(M)

terminal line connection dial(S)

terminal management vt (1'1)

terminal mesg(C) mesg(C)

terminal mode _ getty(M)

terminal modea tset (C)

terminal screen c;l"ar(C)

terminal screen handling and cursea(S)

terminal session script (C)

terminal aettings used by getty ____ g",ttydefa(M)

terminal talls (e)

terminal to print screen display ___ pscreen(C)
terminal _. ________ ttyname (S)

terminal type. modes. ""eed. line ___ uugetty(M)
terminals file ___________ ttys(M)

terminals (1'1) list of supported terminals terminals (M)

term(M) conventional names for terminals term(M)

kill(C)

errstop(C)

exit(S)

wait for child process to stop or

query

captoinfo(M) convert termcap to

infocmp(M) compare or print

tic(C) compile

terminals (1'1) list of supported terminals terminals(M)
terminate a process ________ kill(C)

terminate error-logging demon errstop(C)

terminate process exit (S)

terminate wait(S) wait(S)

terminfo database tput (C)

terminto description captoinfo(M)

terminfo descriptions infocmp(M)

terainfo source tic (C)

terminfo(M) terminal capability database terminfo(M)

termio(M) general terminal interface __ termio(M)

term(M) conventional nues for terminals term(M)

glossary (C) define cOlllllOn UNIX terms and symbols glossary (C)

PI-49

Permuted Index

isnan(S) iananf(S) isnand(S) test for floating point Nalil _____ ianan(S)

teat(C) evaluate an expression ____ test (C)

ed(C) red(C) invoke the ed text editor ed(C)

edit(C) invoke the edit text editor ___________ edit(C)

exeC) invoke a text editor exeC)

diff(C) compare two text files diff(C)

fspec(F) format specification in text files fspec(F)

fmt (C) simple text formatter fmt (C)

plock(S) lock process. text. or data in memory plock(S)

binary search trees tsearch(S) tfind(S) tdelete(S) twalk(S) manage __ tsearch(S)

tic (C) compile terminfo source ____ tic(C)

Ume(C) time a command Ume(C)

clock(M) provide access to the time-of-day chip _________ clock(M)

cron(C) execute conunands at specified times cron(C)

time(S) get time time(S)

touch(C) update access and modification times of a file touch(C)

times(S) get process and child process times times(S)

set file access and modification times utime(S) utime(S)

times times(S) get process and child process _ times(S)

timezone(M) set default .ystem time zone timezone(M)

tk(C) paginator for Tektronix 4014 __ tk(C)

tmpfile(S) create a temporary file __ tmpfile(S)

temporary file tmpnam(S) tempnam(S) create a name for a tmpnam(S)

characters conv(S) toupper(S) toascii(S) tolower(S) translate conv(S)

popen(S) pclose(S) initiate pipe to/from a proceas _________ popen(S)

conv(S) toupper(S) toascii(S) tolower(S) translate characters conv(S)

chkshHb(CP)

tsort(C) sort a file

times of a file

translate charactera conv(S)

query terminfo database

strace (M) print STREAMS

ptrace(S) proceaa

aftp(C)

conv(S) toupper(S) toascii(S) tolower(S)

tr(C)

xpd(M)

uucico (M) file

uusched(M) scheduler for the uucp file

tool for comparing shared libraries __ chkshlib(CP)

topologically tsort (C)

touch (C) update access and modification _ touch(C)

toupper(S) toascii(S) tolower(S) ___ conv(S)

tput(C) tput(C)

tra(C) copy out a file as it grows __ tra(C)

trace messages strace(M)
trace ______________ ptrace(S)

transfer files between Altos machines _ aftp(C)

translate characters conv(S)

translate characters tr(C)

transparent printer daemon xpd(M)

transport program for uucp system ___ uucico(M)

transport program uusched(M)

tr(C) translate characters tr(C)
ftw(S) walk a file tree ______________ ftw(S)

tdelete(S) twalk(S) manage binary search

trig(S) atan(S) atanAl(S)

sin(S) cos(S) tan(S) .. in(S) acos(S)

functions

acos (S) trigonOllletric functions

trees tsearch(S) tfind(S) tsearch(S)

trigonometric functions trig(S)

trigonometric functions trig(S) ____ trig(S)

trig(S) atan(S) atanAl(S) trigonometric _ trig(S)

trig(S) sineS) cos(S) tan(S) asin(S) __ trig(S)

true(C) return with a zero exit value true(C)

manage binary search trees tsearch(S) tfind(S) tdelete(S) twalk(S) tsearch(S)

taet (C) set terminal modes ______ tset (C)

taort(C) sort a file topologically __ tsort(C)

setmodem(C) set up tty port for a modem ________ setmodem(C)

makettys(M) create tty special files makettys(M)

tty(C) get the current port name ___ tty(C)

terminal ttyname(S) !satty(S) find name of a __ ttyname(S)

file of the current user ttyalot(S) find the slot in the utmp __ ttyslot(S)

ttya(M) login terminals file ttys (M)

PI-50

Permuted Index

tsearch(S) tfind(S) tdelete(S) twalk(S) m.n.ge binary .earch tree. t.earch(S)

dtype(C) deterlftine di.k type ______________ dtype(C)

tile(C) dete ine fUe type tile (C)

aysf.(S) get file .y.tem

uugetty(M) set termin.l

types(F) primitive .ystem d.t.

type information .y. f. (S)

type. modes .• peed. line di.cipline __ uugetty(M)

type. type.(F)

types(F) primitive system data type. __ type.(F)

date and time to .tring ctime(S) tzset(S) a.ctime(S) cftime(S) convert ctime(S)

ua(C) u.er .dmini.tr.tion program ___ ua(C)

uadmin(S) .dministrative control u.dmin(S)

getpw(S) get name from UIO getpw(S)

ulimit(S) get .nd aet user limits ___ ulimit(S)

um •• k(C) aet file-cre.tion mode mesk umask(C)

um.ak(S) aet end get file creation m.ak _ um.ak(S)

systema mountall (C) umount.ll (C) mount/unmount multiple file mountall (C)

mount (C) umount (C) mount/unmount • file atructure mount (C)

informetion uname(C) print the current UNIX ____ uname(C)

unllllle(S) get name of current UNIX syatem uname(S)

unget (CP) undo. previous get of .n SCCS file __ unget (CP)

file unget (CP) undo • previous get of an SCCS unget (CP)

stream ungetc(S) puah ch.r.cter b.ck into input ungetc(S)

uniq(C) report repe.ted line. in • file _ uniq(C)

mktemp(S) m.ke a unique fUe name mktemp(S)

conatant.

unit .. (C) convert

uname(C) print the current

cu(C) call .nother

glo ry(C) define cOlNIIOn

uulog(C) uuname(C) copy tile. from

uuname(C) copy file. from UNIX to

uux(C) execute c"""".nd on retllOte

uuto(C) uupick(C) public

link(M) unlink(M) link .nd

directories link (M)

pack(C) pcet (C)

peu.e (S) auapend proce ••

• file touch(C)

progr lIake(C) maintain.

Isearch(S) Ifind(S) linear aearch and

.ync(S)

.ync(C)

upgrade. hd (C)

disk

ahutype(M)

.huttypa(S) get and .et

lint (CP) check C l.nguage

du(C) a.-arize di.k

au(C) make the

ua(C)

id(C) print

uni.td(F) file header for .ymbolic uniatd(F)
unita ______________ unit.(C)

units(C) convert units unit.(C)

UNIX information un.me(C)

UNIX lIyatem cuCCI

UNIX te and aymbola gloa •• ry(C)

UNIX to UNIX uucp(C) uUcp(C)

UNIX uucp(C) uulog(C) uucp(C)

UNIX uux(C)

UNIX-to-UNIX .yatam file copy uuto(C)

unlink files and directoriea link(M)

unlink(M) link and unlink file. and link(M)

unlink(S) remove directory entry ___ unlink(S)

unpack(C) comprea. and expand file. __ pack(C)

until sign.l paulle(S)

updete accea. and lIIOdification timea of _ touch(C)

update. and regenerate grouplI of ___ make(C)
update _____________ l.earch(S)

update auper block sync(S)

update the .uper-block sync (C)

upgrade an additional h.rd di.k ____ upgrade. hd(C)

upgr.de.hd(C) upgrade an additional h.rd upgrade.hd(C)

UPS .hutdown. configuration utility __ shutype(M)

UPS .hutdown limit. ________ .huttype(S)

ua.ge .nd ayntax lint (CP)

u •• ge du(C)

uaer • auper-uaer or .nother uaer ___ au(C)

uaer adminiatration progrlllll ua(C)

uaer and group 10 and nlllllea id(C)

aetuid(S) aet uaer and group IDa _________ setuid(S)

crontab(C) manage uaer cront.b filea crontab(C)

get char.cter login name of the uaer cUllerid(S) cUllerid(S)

environ(M) user environment environ(M)

who ami (C) print etrective current uller id whoami(C)

PI-51

Permuted Index

newgrp(C) log into a new group ______ newgrp(e)

ulimit(S) get and set limits ___________ ulimH(S)

last(C) print last record of logina ___________ lasue)

logname(S) return login name of logne.me (S)

getuid(S) getegid(S) get real/effective user or group lOs getuid(S)

getuid(S) geteuid(S) get real/effective UBer or group 10. getuid(S)

getuid(S) getgid(S) get real/effective user or group IDs getuid(S)

make the user a super-user or another user su(C) su (e)

the slot in the utmp tile ot the current u.er t tyelot (S) find t tyslot (5)

write(C) write to another write(e)

get and set maximum number of users allowed to log in numusers (S) numusers (S)

finger(C) find information about

wall (C) write to all

______________ finger(C)

______________ wall(C)

fuser(M) identity proc....... using a tile or file structure tuser(M)

egrep (C) aearch file for pat tern using full regular expression egrep (C)

ustat(S) get file Bystem stati.tics __ ustat(S)

cpset (C) install utilities cpset (C)

drive tapeutil (C) utility program for a streaming tape tapeutil(C)

setmode(C) printer modes utility _____________ setmode(C)

shutype(M) UPS shutdown configuration utility shutype(M)

modif'ication times utime(S) set file access and utime(S)

utmp(M) wtmp(M) format of utmp and wtmp entries utmp(M)

utmpname(S) endutent(S) access utmp file entry getut(S) getutent(S) getut(S)

getut(S) setutent(S) getutline(S) acceae

ttyslot (S) find the slot in the

entries

entry getut (S) getutent (5)

and permissions file

utmp file entry getut(S)

utmp file of the current t tyslot (5)

utmp(M) wtmp(M) format ot utmp and wtmp _ utmp(M)

utmpname(S) endutent (5) access utmp file getut (5)

uucheck (M) check the uucp directories _ uucheck (M)

uucp system uucico(M) tile tran.port program tor uucico(M)

cleanup

uucheck(M) check the

uucleanup(M) uucp .pool directory ___ uucleanup(M)

uucp directoriea and permi •• iona tile

uustat(C) uucp statue inquiry and job control __ uustat(C)

uucico(M) file tran.port program for IJUCp syatem ___________ uucico(M)

from UNIX to UNIX uucp(C) uulog(C) uuname(C) copy files _ uucp(C)

speed. line discipline uugetty(M) set terminal type. modes. __ uugetty(M)

to UNIX uucp(C) uulog(C) uuname(C) copy tiles trom UNIX _ uucp(C)

uucp(C) uulog(C) uuname(C) copy tiles from UNIX to UNIX _ uucp(C)

file copy uuto(C) uupick(C) public UNIX-to-UNIX .ystem __ uuto(C)

transport program uusched(M) scheduler for the uucp file _ uusched(M)

control uu.tat (C) uucp status inquiry and job _ uustat (C)

system file copy uuto(C) uupick(C) public UNIX-to-UNIX _ uuto(C)

debugging on uutry(M) contact remote system with __ uutry(M)

uux(C) execute comnoand on remote UNIX uux(C)

uuxqt (M) execute remote command requests uuxqt (M)

val(CP) validate an SCCS tile val(CP)

val(CP) validate an SCCS file ______ val(CP)

abs(S) return integer absolute value ______________ abe(S)

false(C) return with a nonzero exit value false(C)

getenv(S) return value for environment getenv(S)

fabs(S) floor. ceiling. and absolute value functions floor(S) ceil(S) floor(S)

fmod (S) floor. ceiling. and absolute value functions floor (S) floor (S)

putenv(S) change or add value to environment putenv(S)

true(C) return with a zero exit value true(C)

values(F) machine-dependent values values(F)

PI-52

Permuted Index

valuea(F) machine-dependent valuea valuea(F)

vsprintf(S) print formatted output of vararga lillt vprintf(S) vtprintf(S) __ vprintf(S)

lillt varargll(F) handlell variable argument __ varargll(F)

varargs(F) handles variable argument lillt _______ varargs(F)

vc(CP) version control vc(CP)

get option letter from argument vector getopt(S) getopt(S)

assert(S) verify program assertion assert(S)

vc(CP) verllion control vc(CP)

get (CP) get a version of an SCCS file get (CP)

sccsdiff(CP) compare two versions of an SCCS file sccsdiff(CP)

output of varargs list vprintf(S) vfprintf(S) vsprintf(S) print formatted _ vprintf(S)

editor vi (C) invoke a screen-oriented display _ vi (C)

more (C) view a tile one full screen at a time more(e)

virtual terminal management vt (M)

with label checking volcopy(M) label it (M) copy file system _ volcopy(M)

filesystem(M) format of a system volume _____________ filesYlltem(M)

formatted output of varargll list vprintf(S) vfprintt(S) vsprintf(S) print vprintf(S)

varargs list vprintf(S) vfprintf(S) vsprintf(S) print formatted output of _ vprintf(S)

virtual terminal management vt (M) vt (M)

resource waitsern(S) nbwaitsem(S) wait and check acce •• to semaphore waitsem(S)

wait (C) wait completion ot background procellsell wait (C)

terminate wait(S) wait for child procesa to stop or ___ wait(S)

processea wait (C) wait completion of background wait (C)

or terminate wait(S) wait tor child proceas to stop wait(S)

acceas to semaphore resource waitsem(S) nbwaitsem(S) wait and check waitsem(S)
ftw(S) walk a tile tree __________ ftw(S)

manual for program

id

fold(C) fold long lines for tinite

prof (F) profile

fgetc(S) getchar(S) get char~cter or

putw(S) fputc(S) put charecter or

wc(C) count lines,

"d(C) change

wall(C) write to all uaers wall(C)

wc(C) count linea, worda, and characters wc(C)

what (C) identify filea what (C)

whereia(C) locate aource, binary, or __ whereia(C)

whoami(C) print effective current uaer _ whoami(C)

who(C) display who ia on the ayatem __ who(C)

whodo(M) determine who ia doing what whodo(M)

whom(C) display in columna logged in __ whom(C)

width output device fold(C)
within a function _________ prof(F)

word from a strelllll getc(S) getw(S) __ getc(S)

word on a atrelllll putc(S) putchar(S) __ putc(S)

words, and characters wc(C)

working directory cd(C)

chdir(S) change working directory _________ chdir(S)

getcwd(S) get path name of current working directory getcwd(S)

pwd(C) print working directory name pwd(C)

write(S) wdte on a file write(S)

putpwent(S) write paaaword file entry putpwent(S)

wall(C) write to all uaers wall(C)

write(C) write to another user write(C)

write(C) write to another user write(C)

write(S) write on a file write(S)

open(S) open for reading or writing open(S)

drive(C) drive information

utmp(M) wtmp(M) format of utmp and

utmp(M)

written during manufacturing drive(C)

wtmp entries u~mp(M)

wtmp(M) format of utmp and wtmp entries _ utmp(M)

xar(CP) maintain archives and libraries xar(CP)

xar(F) archive file format ______ xar(F)

xargs(C) construct and execute cCXMIands xargs(C)

xcc(CP) invoke the XENIX compiler ___ - xcc(CP}

PI-53

Permuted Index

enroll (e) xsend(e) xget (e) secret mail enroll (e)

xld(ep) invoke the link editor xld(ep)

trom tiles xlist(S) txlist(S) get name list entries xlist(S)

xnm(ep) print name list xnm(ep)

adb(e) invoke x.out general purpose debugger adb(e)

xpd(M) transparent printer daemon ___ xpd(M)

xref(ep) cross-reference e programs __ xret(CP)

enroll(C) xsend(C) xget(C) secret mail enroll (e)

xstr(ep) extract strings from C programs xstr(CP)

xtty(e) set the options for a port __ xtty(C)

bessel(S) jOtS) yO(S) Bessel functions _______ bessel(S)

yacc(CP) invoke a compiler-compiler __ yacc(CP)

yes (C) print a string repeatedly ___ yes(C)

true(C) return with a zero exit value __________ true(C)

timezone(M) set default system time timezone(M)

PI-54

About This Manual

USING THIS MANUAL

This reference alphabetically describes the commands and
programs that are on the Altos System V ™ Run-time System.
Altos System V is based on UNIX® System V Release 3 with
enhancements from Altos and Microsoft.

ORGANIZATION

This manual contains the miscellaneous utilities and files
(M) of the Run-time system.

For commands, programs, and utilities (C), see the Refer­
ence (e).

NOTE

The last section of the manual, "Change
Information," summarizes the changes that have
been made to the manual since the previous
version.

MANUAL CONVENTIONS

The documentation conventions used in this manual are ex­
plained on the following page.

iii

About This Manual

Symbol

boldface type

boldface type

italic type

un• 1

_c
[]

'"

" "

Description

What you type. For example:

Type tar tv

Used for command or parameter names
that must be typed as shown.

mall user

Variables (a value that can change),
such as user. See the previous exam­
ple. Also for manual titles, such as
Reference (C) and Reference (M).

Keys you press simultaneously (sepa­
ated by a hyphen and shown in re­
verse type). For example:

un• 1 means you press and
hold the IDIIDI key and then
press the d key.

Keys you press sequentially.

Optional items in a syntax statement.
If you do not use the optional item,
the program selects a default action
to carry out.

Use only one of the separated items.

Repeat preceding argument one or
more times.

Repeat the preceding argument one or
more times and separate arguments
with a comma.

Terms defined in the text. Quotation
marks also indicate text from a
source code example.

iv

About This Manual

ADDITIONAL REFERENCE MATERIALS

For more information on your operating system, see the
following list of manuals. To order a manual, call (408)
434-6688, ext. 3004 and give the manual title and part
number.

Owner's Guide (part number 690-21264-nnn or 690-20351-
nnn) describes how to connect computer components and
peripherals, turn on power, and use the diagnostic
programs.

Using the ADM Menu System (part number 690-18055-nnn)
describes how to use the Altos Office Manager (AOM) to
install software and manage the operating system.

Altos System V User's Guide (part number 690-21178-nnn)
(not shipped with the Run-time system) explains basic op­
erating system concepts and programs (e.g., vi, ed, sh,
csh, mail, sed, and awk).

Altos System V Series 386 Operations Guide (part number
690-21171-nnn) tells how to set up the system for users
and peripherals, maintain and back up the system, optimize
system performance, and use uucp communications programs.
This manual also contains system and LP spooler error mes­
sages.

Altos System V Series 386 Reference (C) (part number
690-22869-nnn) describes the Altos Run-time system
commands, programs, and utilities.

Altos System V Series 386 Development System Set (part
number 690-21585-000) contains reference and tutorial
material.

Manuals in this set include:

Altos System V Series 386 C Compiler Library and
User's Guide

Altos System V Series 386 C Compiler Language
Reference

Altos System V Series 386 Programmer's Guide
Altos System V Series 386 Macro Assembler User's

Guide and Reference
Altos System V Series 386 Reference (CP, S, F)

v

About This Manual

DOCUMENTER'S WORKBENCH (part numbers 690-15843-nnn
and 690-15844-nnn) describes mm, nroff, troff, and type­
setting functions and commands.

vi

Contents
Miscellaneous (M)

intro

acct
aliases
aliashash
ascii

boot
brc

captoinfo

checklist
ckbupscd
clock
clone
clri
crash

default
df
dir
display

environ
errprint

ff
filesystem
finc
frec
fsdb
fsinfo
fsstat
fstab
fstyp
fuser

Introduction to miscellaneous features and
files.

Format of per-process accounting file.
Alias file for mail.
Rebuild data base for mail alias file.
Map of the ASCII character set.

Secondary bootstrap program.
System initialization procedure.

Converts a termcap description into a terminfo
description.

Lists file systems processed by fsck.
Checks file system backup schedule.
Provides access to the time-of-day chip.
Opens any minor device on a STREAMS driver.
Clears inode.
Examines system images.

Default program information directory.
Reports number of free disk blocks and inodes.
Format of a directory.
Series 500 system console display.

The user environment.
Displays error log contents.

Fast find.
Format of a system volume.
Fast incremental backup.
Recovers files from a back-up tape.
File system debugger.
Reports information about a file system.
Reports file system status.
File system table.
Determines the file system identifier.
Identifies processes using a file or file
structure.

1

Contents(M)

getty
gettydefs
group

infocmp
inir
in it
inittab
inode
install

keyboard

layout
ldunix
link, unlink
log

Ipadmin
lpd
lpinit
lpon, lpoff
lpsched, lpshut,
lpmove

makedevs
makekey
makettys
master
mem, kmem
menus
mkboot

mkfs
mkunix

mnttab

ncheck
null

options

passwd
printers
profile
pwck, grpck

Sets terminal mode.
Speed and terminal settings used by getty.
Format of the group file.

Compares or prints terminfo descriptions.
Cleans the file system and executes init.
Process control initialization.
Script for the init processes.
Format of an inode.
Installs commands.

Series 500 system console keyboard.

Manages hard disk partitions.
Configurable kernel linker.
Links and unlinks files and directories.
Interface to STREAMS error logging and event
tracing.

Configures the LP spooling system.
Line printer daemon.
Adds new line printers to the system.
Turns on/off lp printer schedulers.
Starts/stops the LP request scheduler and
moves requests.

Creates special device files.
Generates an encryption key.
Creates tty special files.
Master configuration database.
Memory image file.
Format of a Business Shell menu system.
Converts an object file to a bootable object
file.

Constructs a file system.
Makes a bootable system file with kernel and

driver symbol tables.
Mounted file system table.

Generates path names from inode numbers.
The null file.

Floppy disk installation menu.

The password file.
Print spooler configuration file.
Sets up an environment at login time.
Checks password/group file.

2

rcO
rc2

sadcon, sadcoff
sar
shutdown
shu type
strace
strclean
strerr
sulogin
sysdef

term
termcap
terminals
terminfo
termio
timezone
ttys

utmp, wtmp
uucheck

uucico
uucleanup
uugetty

uusched
uutry

uuxqt

volcopy, labelit
vt

whodo

xpd

Content s(M)

Commands to stop the operating system.
Commands for multi-user environment.

Turns on/off system activity data collector.
System activity report package.
Brings a system to single-user or shutdown.
UPS shutdown configuration utility.
Prints STREAMS trace messages.
STREAMS error logger cleanup program.
STREAMS error logger daemon.
Special login program invoked by init.
Outputs system definition.

Conventional names for terminals.
Terminal capability database.
List of supported terminals.
Terminal capability database.
General terminal interface.
Sets default system time zone.
Login terminals file.

Formats of utmp and wtmp entries.
Checks the uucp directories and permissions
file.

File transport program for the uucp system.
Uucp spool directory cleanup.
Sets terminal type, modes, speed, and line
discipline.

Scheduler for the uucp file transport program.
Tries to contact remote system with debugging
on.

Executes remote command requests.

Copies file system with label checking.
Virtual terminal management.

Determines who is doing what.

Transparent printer daemon.

3

Content s(M)

(BLANK)

4

INTRO(M) INTRO(M)

Name

intro - Introduction to miscellaneous features and files.

Description

This section contains miscellaneous information for main­
taining the entire system, including descriptions of
files, devices, tables, and programs.

1

ACCT(M) ACCT(M)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records
in the form defined by (sys/acct.h).

In acJlag, the AFORK flag is turned on by each fork(S)
and turned off by an exec(S). The ac comm field is in­
herited from the parent process and is reset by any exec.
Each time the system charges the process with a clock
tick, it also adds the current process size to ac mem com­
puted as follows:

(data size) + (text size) / (number of in-core
processes using text)

The value of ac mem/ac stime can be viewed as an ap­
proximation to the mean -process size, as modified by
text -sharing.

See Also

acct(C), acct(S)

Notes

The ac mem value for a short-lived command gives little
information about the actual size of the command, because
ac mem may be incremented while a different command
(e:g., the shell) is being executed by the process.

1

ALIASES(M) ALIASES(M)

Name

aliases - Alias file for mail.

Syntax

/usr /lib/mail/ aliases

Description

This file describes user ID aliases that are used by the
/usr /lib/sendmail command. It is fomatted as a series of
lines of the form:

Name is the name to alias, and name n are the aliases for
that name. For example,

terry: pubs!terry

Lines beginning with white space are continuation lines.
Lines beginning with # are comments.

Aliasing occurs only on local names. Loops cannot occur,
since no message will be sent to any person more than
once.

Aliases is only the raw data file; the actual aliasing
information is placed in binary format in the file
/usr/lib/mail/aliases.hash by executing the program
aliashash(M). Each time you change the aliases file, run
aliashash for the changes to take effect.

See Also

aliashash (M), mail (C)

1

ALiASHASH(M) ALiASHASH(M)

Name

aliashash - Rebuild the data base for the mail alias file.

Syntax

aliashash

Description

Aliashash rebuilds the random access data base for the
mail alias file /usr/lib/mail/aliases. For the change to
take effect, run aliashash each time /usr/lib/mail/aliases
is changed.

See Also

aliases(M)

1

ASCII(M) ASCII(M)

Name

ascii - Map of the ASCI I character set.

Description

Ascii is a map of the ASCII character set. It lists both
octal and hexadecimal equivalents of each character. It
contains:

000 nul

010 bs

020 dIe

030 can

040 sp

050

060 0

070 8

100 @

110H

120 P

130 X

140

150 h

160 P

170 x

00 nul

08 bs

10 dIe

18 can

20 sp

28

30 0

38 8

40 @

48 H

50 P

58 X

60

68 h

70 P

78 x

001 soh

011 ht

021 del

031 em

041

051

061 1

071 9

101 A

1111

121 Q

131 Y

141 a

151 i

161 q

171 Y

01 soh

09 ht

11 del

19 em

21

29

31 1

39 9

41 A

49 1

51 Q
59 Y

61 a

69 i

71q

79 Y

002 stx

012 nl

022 de2

032 sub

042 "

052 *
062 2

072

102 B

112J

122 R

132Z

142 b

152

162 r

172 z

02 stx

Oa nl

12 de2

1a sub

22 "

2a *
32 2

3a

42 B

4a J

52 R

5a Z

62 b

6a

72 r

7a z

003 etx

013 vt

023 de3

033 esc

043 #

053 +

063 3

073

103 C

113K

123 S

133 [

143 e

153 k

163 s

173

03 etx

Ob vt

13 de3

1b esc

23 #

2b +

33 3

3b "

43 C

4b K

53 S

5b [

63 e

6b k

73 s

7b

1

004 eot

014 np

024 de4

034 fs

044 $

054

064 4

074 <
104 D

114 L

124 T

134 \

144 d

154 1

164 t

174

04 eot

Oe np

14 de4

1e fs

24 $

2e

34 4

3e <
44 0

4e L

54 T

5e \

64 d

6c 1

74 t

7c

005 enq 006 aek 007 bel

015 cr 016 so 017 si

025 nak 026 syn 027 etb

035 gs 036 rs 037 us

045 % 046 & 047'

055 - 056 057 /

065 5 066 6 067 7

075 076 > 077

105 E 106 F 107 G

115 M 116 N 117 0

125 U 126 V 127 W

135 136' 137

145 e 146 f 147 9

155 m 156 n 157 0

165 u 166 v 167 w

175 176 177 da

05 enq 06 ack 07 bel

Od cr Oe so Of si

15 nak 16 syn 17 etb

1d gs 1e rs 1f us

25 % 26 & 27'

2d - 2e 2f /

35 5 36 6 37 7

3d 3e > 3f

45 E 46 F 47 G

4d M 4e N 4f 0

55 U 56 V 57 W

5d] 5e • 5f

65 e 66 f 67 9

6d m 6e n 6f 0

75 u 76 v 77 w

7d } 7e - 7f del

BOOT(M) BOOT(M)

Name

boot - Secondary bootstrap program.

Syntax

/boot

Description

The boot program brings up the operating system from a
cold start. In addition to bringing an operating system
file into memory from disk, boot also initializes all I/O
subsystems and loads them with their operating software.
The boot program keeps track of which I/O boards are
present in a particular configuration and passes this
information to the operating system.

The boot program is interactive and will prompt for the
name of an operating system file you want to use. This
permits the selection of one of several kernel files.
Additionally, if the CPU Monitor sets the appropriate
flag, boot will attempt to automatically boot the kernel
file. If it cannot find this file, boot will go into in­
teractive mode, and will display:

1

BOOT(M) BOOT(M)

For example, if you type ? 1R!DjI, you will see the follow­
ing display:

Enter the bootable program in the form:

roo t _ device(disk,partition) kernel Jile

where root device is:

fd - floppy disk
hd - main hard disk

The disk field selects a disk number which contains a file
system in which to find I/O subsystem download code and
kernel files. On the floppy, this is always 0. On the
hard disk, the disk is usually the root file system, 0 for
the root disk. The partition field specifies which parti­
tion contains the root file system, and is always 0 for
the floppy, and normally 2 for hard disk.

The kernelJile field is the path name of a kernel file
(relative to /).

Typical invocations are:

fd(0,0)unix. fd
hd(0,2)unix

2

BOOT(M) BOOT(M)

Files

The boot program searches the file system in which it
found the kernel for code files to load into the I/O sub­
system boards. Those files are always kept in the / etc
directory and are named:

/etc/dlcode/ioc generic IOC code (Series 1000
only)

/etc/dlcode/fp. type file processor specific
(Series 2000 only)

/etc/dlcode/sio generic SIO code (Series
2000 only)

/etc/dlcode/sio[0123] board-specific SIO code
(Series 2000 only)

/etc/dlcode/mdc generic MDC code (Series
2000 only)

/etc/dlcode/mdc[0123] board-specific MDC code
(Series 2000 only)

If boot can find a file that corresponds to a particular
SIO or MDC board, it will load that file; otherwise, it
loads the generic code file.

/boot
/unix*
/etc/dlcode/fp.esdi

/etc/ldlcode/fp

/etc/dlcode/sio
/etc/dlcode/sio?
/etc/dlcode/mdc
/etc/dlcode/mdc?

Secondary boot
Operating system kernel file
File processor download code
for ESDI drive

File processor download code
for ST506 drive

S I 0 generic code
SIO specific code
S I 0 generic code
SIO specific code

See Also

layout(M)

3

BOOT(M) BOOT(MJ

Diagnostics

For an error, boot displays an error message, then returns
to its prompt. The following is a list of the most common
messages.

bad drive specifier x
An invalid drive number was given, only 0-2 are
valid.

bad superblock: s magic x
The partition-given doesn't appear to have a
file system on it.

device error, status [0123]
An error occurred while trying to read the program.
The boot system retries up to 10 times on each error.
If all 10 attempts fail, the following message ap­
pears: "Fatal disk error (10) retries."

pathname not found

Notes

The supplied pathname does not correspond to an
existing file.

Boot cannot be used to load programs that have not been
linked for stand-alone execution.

4

BRC(M) BRC(M)

Name

brc - System initialization procedures.

Syntax

/etc/brc

Description

These shell procedures are executed via entries in
/etc/inittab by init(M) whenever the system is booted (or
rebooted).

The brc procedure clears the mounted file system table,
/etc/mnttab, and puts the entry for the root file system
into the mount table.

After these two procedures have executed, init checks for
the initdefault value in /etc/inittab. This tells init in
which run level to place the system. Since initdefault is
initially set to 2, the system will be placed in the
multi-user state via the /etc/rc2 procedure.

See Also

fsck(C), init(M), rc2(M), shutdown(C)

1

CAPTOINFO(M) CAPTOINFO(M)

Name

captoinfo - Converts a termcap description into a terminfo
description.

Syntax

captoinfo [-v .•.] [-V] [-1] [-w width] file ..•

Description

Captoinfo looks in file for termcap(M) descriptions. For
each one found, an equivalent terminfo(M) description is
written to standard output, along with any comments found.
A description that is expressed as relative to another
description (as specified in the termcap tc= field) will
be reduced to the minimum superset before being output.

If no file is given, then the environment variable
TERMCAP is used for the filename or entry. If
TERMCAP is a full pathname to a file, only the terminal
whose name is specified in the environment variable
TERM is extracted from that file. If the environment var­
iable TERMCAP is not set, then the file /etc/termcap
is read.

Options

-v Print tracing information on standard error as the
program runs. Specifying additional -v options will
cause more detailed information to be printed.

-V Print the version of the program in use on standard
error and exit.

-1 Cause the fields to print one to a line. Otherwise,
the fields will be printed several to a line to a
maximum width of 60 characters.

-w Change the output to width characters.

1

CAPTOINFO(M) CAPTOINFO(M)

Files

lusr llib/terminfol? 1* Compiled terminal description
database

Caveats

Certain termcap defaults are assumed to be true. ,For ex­
ample, the bell character (tenninfo bel) is assumed to be
"G. The linefeed capability (termcap nl) is assumed to be
the same for both cursor down and scroll forward (tenninfo
cudl and ind, respectively). Padding information is as­
sumed to belong at the end of the string.

The algorithm used to expand parameterized information
for termcap fields such as cursor position (termcap cm,
tenninfo cup) will sometimes produce a string which,
though technically correct, may not be optimal. In par­
ticular, the rarely used termcap operation %n will produce
strings that are especially long. Most occurrences of
these non-optimal strings will be flagged with a warning
message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of
names in a termcap entry, a hold-over from an earlier ver­
sion of the UNIX system, has been removed.

Diagnostics

tgetent failed with return code n (reason).
The termcap entry is not valid. In particular, check
for an invalid 'tc=' entry.

unknown type given for the termcap code cc.
The termcap description had an entry for cc whose
type was not boolean, numeric, or string.

wrong type given for the boolean (numeric, string) termcap
code cc. The boolean termcap entry cc was entered
as a numeric or string capability.

the boolean (numeric, string) termcap code cc is not a
valid name. An unknown termcap code was specified.

2

CAPTOINFO(M) CAPTOINFO(M)

tgetent failed on TERM=term.
The terminal type specified could not be found in the
termcap file.

TERM=term: cap cc (info ii) is NULL: REMOVED
The termcap code was specified as a null string. The
correct way to cancel an entry is with an '@', as in
':bs@:' . Giving a null string could cause incorrect
assumptions to be made by the software which uses
termcap or terminfo.

a function key for cc was specified, but it already has
the value vv.

When parsing the kocapability, the key cc was
specified as having the same value as the capability
cc, but the key cc already had a value assigned to
it.

the unknown termcap name cc was specified in the ko
termcap capability.

A key was specified in the ko capability which could
not be handled.

the vi character v (info ii) has the value xx, but rna
gives n.

The rna capability specified a function key with a
value different from that specified in another set­
ting of the same key.

the unknown vi key v was specified in the rna termcap
capabili ty.

A vi(C) key unknown to captoinfo was specified in the
rna capability.

Warning: termcap sg (nn) and termcap ug (nn) had different
values.

terminfo assumes that the sg (now xmc) and ug values
were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be
rewritten by hand.

Null termname given.
The terminal type was null. This is given if the
environment variable TERM is not set or is null.

3

CAPTOINFO(M) CAPTOINFO(M)

cannot open file for reading.
The specified file could not be opened.

See Also

tic(C), terminfo(M) and curses(S), in the Reference
(CP, S, F)

Notes

Captoinfo should be used to convert termcap entries to
terminfo(M) entries because the termcap database (from
earlier versions of UNIX System V) may not be supplied
in future releases.

4

CHECKLlST(M) CHECKLlST(M)

Name

checklist - Lists file systems processed by fsck.

Description

The / etc/ checklist file contains a list of the file sys-
tems to be checked when fsck(C) is invoked without argu­
ments. The list contains at most 15 special file names.
Each special file name must be on a separate line and must
correspond to a file system.

See Also

fsck(C)

1

CKBUPSCD(M) CKBUPSCD(M)

Name

ckbupscd - Checks file system backup schedule.

Syntax

/etc/ckbupscd [-m]

Description

Ckbupscd consults the file / etc/bupsched and pl'ints the
file system lists from lines with date and time specifica­
tions matching the current time. If the -m flag is pre­
sent an introductory message in the output is suppressed
so that only the file system lists are printed. Entries
in the / etc/bupsched file are printed under the control of
cron(C).

The file /etc/bupsched should contain lines of 4 or more
fields, separated by spaces or tabs. The first 3 fields
(the schedule fields) specify a range of dates and times.
The rest of the fields constitute a list of names of file
systems to be printed if ckbupscd is run at some time
within the range given by the schedule fields. The gen­
eral. format is:

time[,time] day[,day] month[,month] fsyslist

where:

time

day

month

fsyslist

Specifies an hour of the day (0 through 23),
matching any time within that hour, or an exact
time of day (0:00 through 23:59).

Specifies a day of the week (sun through sat) or
day of the month (1 through 31).

Specifies the month in which the time and day
fields are valid. Legal values are the month
numbers (1 through 12).

The rest of the line is taken to be a file sys­
tem list to print.

1

CKBUPSCD(M) CKBUPSCD(M)

Multiple time, day, and month specifications may be sep­
arated by commas, in which case they are evaluated left to
right.

An asterisk (*) always matches the current value for that
field.

A line beginning with a sharp sign (II) is interpreted as a
comment and ignored.

The longest line allowed (including continuations) is 1024
characters.

Examples

Files

The following are examples of lines which could appear in
the / etc/bupsched file.

06:00-09:00 fri 1,2,3,4,5,6,7,8,9,10,11 /appli~

Prints the file system name / applic if ckbupscd is run
between 6:00am and 9:00am any Friday during any month ex
cept December.

00:00-06:00,16:00-23:59 1,2,3,4,5,6,7 1,8 /

Prints a reminder to backup the root (f) file system if
ckbupscd is run between the times of 4:00pm and 6:00am
during the first week of August or January.

/etc/bupsched Specification file containing times
and file system to back up

See Also

Notes

cron(C), echo(C), sh(C), sysadm(C)

Ckbupscd will report file systems due for backup if in­
voked any time in the window. It does not know that bac:
ups may have just been made.

2

CLOCK(M) CLOCK(M)

Name

clock - Provides access to the time-of-day chip.

staticram - Provides 16 bytes of battery-back ed-up memory.

Description

The file /dev/clock provides access to the time-of-day
chip. The current time, date, and year can be read or
written as ASCII data. (See for example, the -s option of
date.) The date is stored in the form:

MMDDhhmmYY

Where MM is the month, DD is the day of the month, hh is
the hour, mm is the minute, and YY is the last 2 digits of
the year.

The clock is maintained by a battery, even when the power
is off. The clock is normally used to set the system's
idea of the date on every power-up.

The file /dev/staticram provides 16 bytes of
battery-backed-up memory, which is actually part of the
time-of-day chip. It may be used for anything the system
administrator wishes, such as a system ID code, etc. This
memory remains valid until the battery wears out, or until
it is rewritten.

1

CLONE(M) CLONE(M)

Name

clone - Opens any minor device on a STREAMS driver.

Description

Clone is a STREAMS software driver that finds and opens
an unused minor device on another STREAMS driver. The
minor device passed to clone during the open is inter­
preted as the major device number of another STREAMS
driver for which an unused minor device is to be obtained.
Each such open results in a separate stream to a previous­
ly unused minor device.

Notes

The clone driver consists solely of an open function.
This open function performs all of the necessary work so
that subsequent system calls (including close(S» require
no further involvement of clone.

Mul tiple opens of the same minor device cannot be done
through the clone interface. Executing stat(S) on the
file system node for a cloned device yields a different
result from executing fstat(S) using a file descriptor
obtained from opening the node.

See Also

log(M), and the STREAMS Programmer's Guide

1

CLR/(M) CLR/(M)

Name

clri - Clears an inode.

Syntax

/etc/clri special i-number •••

Description

Clri writes nulls on the 64 bytes at offset i-number from
the start of the inode list. This effectively eliminates
the inode at that address. Special is the device name on
which a file system has been defined. After clri is exe­
cuted, any blocks in the affected file will show up as
"not accounted for" when fsck(C) is run against the
file-system. The inode may be allocated to a new file.

Read and write permission is required on the specified
special device.

This command is used to remove a file which appears in no
directory; that is, to get rid of a file which cannot be
removed with the rm(C) command.

See Also

Notes

fsck(C), fsdb(M), ncheck(M), rm(C), and fs(F) in the
Reference (CP, S, F)

If the file is open for writing, clri will not work. The
file system containing the file should NOT be mounted.

If clri is used on the inode number of a file that does
appear in a directory, it is imperative to remove the en­
try in the directory at once, since the inode may be allo­
cated to a new file. The old directory entry, if not re­
moved, continues to point to the same file. This sounds
like a link, but does not work like one. Removing the old
entry destroys the new file.

1

CRASH(M) CRASH(M)

Name

crash - Examines system images.

Syntax

/etc/crash -d dumpfile] [-n name list] [-0 offset]
-w outputfile]

Description

The crash command is used to examine the system memory
image of a live or a crashed system by formatting and
printing control structures, tables, and other informa-
tion. Command line arguments to crash aredumpfile,
namelist, offset, and outputfile.

The dumpfile is the file containing the system memory
image. The default dumpfile is / dev /kmem. The system
image can also be /dev /hdO.restart if the system is in a
panic state.

The text file namelist contains the symbol table informa­
tion needed for symbolic access to the system memory imagE
to be examined. The default namelist is /unix. If a sys­
tem image from another machine is to be examined, the cor·
responding text file must be copied from that machine.

The offset option offsets from the beginning of dumpfile
at which data starts. This is useful with
/dev /hdO.restart where offset is 1024.

When the crash command is invoked, a session is initiated.
The output from a crash session is directed to outputfile.
The default outputfile is the standard output.

Input during a crash session is of the form:

function [argument •••]

where function is one of the crash functions described in
the Functions section of this command description, and
arguments are qualifying data that indicate which items of
the system image are to be printed.

1

CRASH(M) CRASH(M)

The default for process-related items is the current pro­
cess for a running system and the process that was running
at the time of the crash for a crashed system. If the
contents of a table are being dumped, the default is all
active table entries.

The following function options are available to crash
functions wherever they are semantically valid.

-e

-f

-p

-s process

-w file

Display every entry in a table.

Display the full structure.

Interpret all address arguments in the com­
mand line as physical addresses.

Specify a process slot other than the
default.

Redirect the output of a function to file.

Note that if the -p option is used, all address and symbol
arguments explicitly entered on the command line will be
interpreted as physical addresses. If they are not phys­
ical addresses, results will be inconsistent.

The functions mode, defproc, and redirect correspond to
the function options -p, -s, and -w. The mode function
may be used to set the address translation mode to phys­
ical or virtual for all subsequently entered functions;
defproc sets the value of the process slot argument for
subsequent functions; and redirect redirects all subse­
quent output.

Output from crash functions may be piped to another pro­
gram in the following way:

func tion [argumen t •••]!sheZZ_ command

For example,

mount ! grep rw

will write all mount table entries with an rw flag to the
standard output. The redirection option (-w) cannot be
used with this feature.

2

CRASH(M) CRASH(M)

Depending on the context of the function, numeric argu­
ments will be assumed to be in a specific radix. Counts
are assumed to be decimal. Addresses are always hexa­
decimal. Table slot arguments are always decimal. Table
slot arguments larger than the size of the function table
will not be interpreted correctly. Use the flndslot func­
tion to translate from an address to a table slot number.
Default bases on all arguments may be overridden. The C
conventions for designating the bases of numbers are re­
cognized. A number that is usually interpreted as decimal
will be interpreted as hexadecimal if it is preceded by Ox
and as octal if it is preceded by o. Decimal override is
designated by Od, and binary by Ob.

Aliases for functions may be any uniquely identifiable
initial substring of the function name. Traditional
aliases of one letter, such as p for proc, remain valid.

Many functions accept different forms of entry for the
same argument. Requests for table information will accept
a table entry number or a range. A range of slot numbers
may be specified in the form:

a-b

where a and b are decimal numbers. An expression consists
of two operands and an operator. An operand may be an
address, a symbol, or a number; the operator may be +, -,
*, /, &, or I. An operand that is a number should be pre­
ceded by a radix prefix if it is not a decimal number (0
for octal, Ox for hexadecimal, Ob for binary). The ex­
pression must be enclosed in parentheses (). Other func­
tions will accept any of these argument forms that are
meaningful.

Two abbreviated arguments to crash functions are used
throughout. Both accept data entered in several forms.
They may be expanded into the following:

table_entry = table entry 1 range

start _ addr = address 1 symbol 1 expression

3

CRASH(M) CRASH(M)

Functions

?[-w file]
List available functions.

!emd
Escape to the shell to execute a command.

< filename
Take input from filename until end-of-file (EOF).
Lines starting with a "#" are comments and are
ignored.

adv [-e] [-w file] [[-p] table entry •••]
Print the advertise table.

base [-w file] number •••
Print number in binary, octal, decimal, and hexa­
decimal. A number in a radix other than decimal
should be preceded by a prefix that indicates its
radix as follows: Ox, hexadecimal; 0, octal; and Ob,
binary.

buffer [-w file] [-format] bufferslot

or

buffer [-w file] [-format] [-p]start_addr
Alias: b.

Print the contents of a buffer in the designated for­
mat, where format can be:

-b byte
-c character
-d decimal
-x hexadecimal
-0 octal
-r directory
-i inode

If no format is given, the previous format is used.
The default format at the beginning of a crash ses­
sion is hexadecimal.

4

CRASH(M) CRASH(M)

bufhdr [-f] [-w file] [[-p]table entry •••]
Alias: buf. -
Print system buffer headers.

callout [-w file]
Alias: c.
Print the callout table.

dballoc [-w file] [class...]
Print the dballoc table. If a class is entered, only
data block allocation information for that class will
be printed.

dbfree [-w file] [class •.•
Print free streams data block headers. If a class is
entered, only data. block headers for the class speci­
fied will be printed.

dblock [-e] [-w file] [class •••

or

dblock [-e] [-w file] [[-p] table entry...]
Print allocated streams data block headers. If the
class option (-c) is used, only data block headers
for the class specified will be printed.

defproc [-w file] [-c]

or

defproc [-w file] [slot]
Set the value of the process slot argument. The pro­
cess slot argument may be set to the current slot
number (-c) or the slot number may be specified. If
no argument is entered, the value of the previously
set slot number is printed. At the start of a crash
session, the process slot is set to the current pro­
cess.

dis [-w file] [-a] start address[count]
Disassemble from the start address for count instruc­
tions. The default count is 1. The absolute option
(-a) specifies a nonsymbolic disassembly.

5

CRASH(M) CRASH(M)

ds [-w file] virtual address •••
Print the data symbol whose address is closest to,
but not greater than, the address entered.

file [-e] [-w file] [[-p]table entry •••]
Alias: f. -
Print the file table.

findaddr [-w file] table slot
Print the address of slot in table. Only tables
available to the size function are available to
findaddr.

findslot [-w file] virtual address •••
Print the table, entry slot number, and offset for
the address entered. Only tables available to the
size function are available to findslot.

fs [-w file] [[-p] table_entry •••]
Print the file system information table.

gdp [-e] [-f] [-w file] [[-p] table entry .••]
Print the gift descriptor protocol table.

gdt [-e] [-w file] [[-p] table entry •••]
Print the global descriptor table.

help [-w file] -a function •••
Print a description of the named function, including
syntax and aliases. The -a option lists all func­
tions.

idt [-e] [-w file] [[-p] table entry •••]
Print the interrupt descriptor table.

inode [-e] [-f] [-w file] [[-p]table entry •••]
Alias: 1. -
Print the in ode table, including file system switch
information.

kfp [-w file] [value]
Print the frame pointer for the start of a kernel
stack trace. If the value argument is entered, the
kfp is set to that value.

6

CRASH(M) CRASH(M)

lck [-e] [-w file] [[-p] table entry •.•
Alias: 1. -
Print record-locking information. If the -e option
is used or table address arguments are given, the
record lock list is printed. If no argument is en­
tered, information on locks relative to inodes is
printed.

ldt [-e] [-w file] [-s process] [[-p] table entry •••]
Print the local descriptor table for the given pro­
cess, or for the current process if none is given.

linkblk [-e] [-w file] [[-p] table entry •••]
Print the linkblk table. -

map [-w file] mapname •••
Print the map structure of the given mapname.

mbfree [-w file]
Print free streams message block headers.

mblock [-e] [-w filename] [[-p]table entry •••]
Print allocated streams message block headers.

mode [-w file] [mode]
Set address translation of arguments to virtual (v)
or physical (p) mode. If no mode argument is given,
the current mode is printed. At the start of a crash
session, the mode is virtual.

mount [-e] [-w file] [[-p]table_entry •••]
Alias: m.
Print the mount table.

nm [-w file] symbol •••
Print value and type for the given symbol.

od [-p] [-w file] [-format] [-mode] [-s process]
start addr[count]

Alias: rd.
Print coun t values starting at the start address in
one of the following formats: character (-c), deci­
mal (-d), hexadecimal (-x), octal (-0), ascii (-a),
or hexadecimal/character (-h), and one of the follow­
ing modes: long (-1), short (-t), or byte (-b). The
default mode for character and ascii formats is byte;
the default mode for decimal, hexadecimal, and octal

7

CRASH(M) CRASH(M)

formats is long. The format -h prints both hexa­
decimal and character representations of the ad­
dresses dumped; no mode needs to be specified. When
format or mode is omitted, the previous value is
used. At the start of a crash session, the format is
hexadecimal and the mode is long. If no count is
entered, 1 is assumed.

pagemode [-1 lines] [-on I-off]

panic

Toggle pagemode. If on, pause after every lines (24
by default). Similar to more(C).

Print the latest system notices, warnings and panic
messages from the limited circular buffer kept in
memory.

pcb [-w file process]
Print the process control block (TSS) for the given
process. If no arguments are given, the active TSS
for the current process is printed.

pdt [-e] [-w file] [-s process] section segment

or

pdt [-e] [-w file] [-s process] [-p] start addr[count]
The page descriptor table starting at the start ad­
dress for count entries is printed. If no count is
entered, 1 is assumed.

pfdat [-e] [-w file] [[-p]table entry •••]
Print the pfdata table. -

proc [-f] [-w file] [[-p]table_entry

or

proc [-f] [-w file] [-r]

#procid •••]

Print the process table. Process table information
may be specified in two ways. First, any mixture of
table entries and process ids may be entered. Each
process id must be preceded by a #. Alternatively,
process table information for runnable processes may
be specified with the runnable option (-r). The full
option (-f) details most of the information in the
process table as well as the pregion table for that
process.

8

CRASH(M) CRASH(M)

qrun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-p]table entry •••
Print streams queues. -

quit
Alias: q.
Terminate the crash session.

rcvd [-e] [-f] [-w file] [[-p]table entry •.•
Print the receive descriptor -table.

redirect [-w file] [-c]

or

redirect [-w file] [file]
Used with a file name, redirect output of a crash
session to the named file. If no argument is given,
the file name to which output is being redirected is
printed. Alternatively, the close option (-c) closes
the previously set file and redirects output to the
standard output.

region [-e] [-f] [-w file] [[-p]table entry •••]
Print the region table. -

search [-p] [-w file] [-m mask] [-s process] pattern
start addr count

Print the long words in memory that match pattern,
beginning at the start address for coun t long words.
The mask is anded (&) with each memory word and thE
result compared against the pattern. The mask de­
faults to Oxffffffff.

size [-w file] [-x] [structure_name •••]
Print the size of the designated structure. The-x
option prints the size in hexadecimal. If no argu­
ment is given, a list of the structure names for
which sizes are available is printed.

sndd [-e] [-w file] [[-p]table_entry •••
Print the send descriptor table.

srmount [-e] [-w file] [[-p]table_entry •••
Print the server mount table.

9

CRASH(M) CRASH(M)

stack [-w file] [process]
Alias: s.

Dump stack. If no arguments are entered, the kernel
stack for the current process is printed. Otherwise,
the kernel stack for the given process is printed.

stream [-e] [-fl [-w file] [[-p]entry_table •••
Print the streams table.

strstat [-w file]
Print streams statistics.

trace [-w file] [-r] [process]
Alias: t.
Print stack trace. The kfp value is used with the -r
option.

ts [-w file] virtual address •••
Print closest text symbol to the designated address.

tty [-e] [-f] [-w file] [-ttype[[-p]table entry •••]]
Valid types: mdc, sc, kd -
Print the tty table. If no arguments are given, the
,tty table for mdc is printed. If the -t option is
used, the table for the single tty type specified is
printed. If no argument follows the type option, all
entries in the table are printed. A single tty entry
may be specified from the start address.

user [-f] [-w file] [process slot]
Alias: u.
Print the ublock for the designated process.

var [-w file]
Alias: v.
Print the tunable system parameters.

vtop [-w file] [-s process] start addr •••
Print the physical address translation of the virtual
start address.

10

CRASH(M)

Files

/dev/kmem

/ dev /hdO. restart

See Also

sh(C), test(C)

CRASH(M)

System image of currently running
system

Used to access the saved system image
on hard disk.

11

DEFAULT(M) DEFAULT(M)

Name

default - Default program information directory.

Description

Files

The files in the /etc/default directory contain the de­
fault information used by system commands such as lpd(M)
and remote(C). Default information is any information
required by the command that is not explicitly given when
the command is invoked.

The directory may contain zero or more files. Each file
corresponds to one or more commands. A command searches
for a file whenever it has been invoked without sufficient
information. Each file contains zero or more entries
which define the default information. Each entry has one
of the following forms:

keyword or keyword=value

where keyword identifies the type of information available
and value defines its value. Both keyword and value con­
sist of letters, digits, and punctuation. The exact
spelling of keyword and the appropriate value depends on
the command and are described with the individual com­
mands.

Any line in a file beginning with a number sign (U) is
considered a comment and is ignored.

/ etc/ default/lpd
/ etc/ defaul t/passwd
/etc/default/quot
/etc/default/su

See Also

lpr(C), quot(C), su(C)

1

DF(M) DF(M)

Name

df - Reports number of free disk blocks and inodes.

Syntax

df [-It] [-f] [file-system I directory I mounted-resource]

Description

The df command prints out the number of free blocks and
free inodes in mounted file systems, directories, or
mounted resources by examining the counts kept in the
super-blocks.

File-system may be specified either by device name (e.g.,
/dev/hdlb) or by mount point directory name (e.g., /usr).

Directory can be a directory name. The report presents
information for the device that contains the directory.

Mounted-resource can be a remote resource name. The re­
port presents information for the remote device that con­
tains the resource.

If no arguments are used, the free space on all locally
and remotely mounted file systems is printed.

The df command uses the following options:

-1 Reports on local file systems only.

-t Causes the figures for total. allocated blocks and
inodes to be reported as well as the free blocks and
inodes.

-f An actual count of the blocks in the free list is
made, rather than taking the figure from the
super-block (free inodes are not reported). This
option will not print any information about mounted
remote resources.

1

DF(M)

Note

Files

DF(M)

If multiple remote resources are listed that reside on the
same file system on a remote machine, each listing after
the first one will be marked with an asterisk.

/dev/*
/etc/mnttab

See Also

mount(M) mnttab(M), and fs(F) in the Reference (CP, S, F)

2

DIR(M) DIR(M)

Name

dir - Format of a directory.

Syntax

#include (sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word
of its inode entry (see filesystem(M». The structure of
a directory is given in the include file
/usr /include/sys/dir.h.

By convention, the first two entries in each directory are
"dot" (.) and "dot dot" (..). The first is an entry for
the directory itself. The second is for the parent direc­
tory. The meaning of "dot dot" is modified for the root
directory of the master file system; there is no parent,
so "dot dot" has the same meaning as "dot."

The first 2 bytes of each entry are the inode numbers,
which will be zero if the entry has been removed. The
next 14 bytes are the filename. If the name is exactly 14
bytes, there will be no terminating null byte.

See Also

dir(S), filesystem(M)

1

DISPLAY(M) DISPLAY(M)

Name

display - Series 500 system console display.

Description

The system console (and user's terminal) is composed of
two separate pieces: the keyboard (see keyboard(M» and
the display. Because of their complexity and because
there are two possible display interfaces (the monochrome
and color/graphics adapters), they are discussed in sepa­
rate manual entries.

The display normally consists of 25 lines of 80 columns
each; 40-column lines are also supported by the color /
graphics adapter. Writing characters to the console
(/dev/console) has an effect that depends on the charac­
ters. All characters written to /dev/console are first
processed by the terminal interface (see termio(M». For
example, mapping new-line characters to carriage return
plus new-line and expanding tabs to spaces will be done
before the following processing:

x

BEL

CR

LF,VT

FF

BS

Where x is not one of the following, displays x.

Generates a bell (audible tone, no modulation).

Places the cursor at column 1 of the current
line.

Places the cursor at the same column of the next
line (scrolls if the current line is line 25).

Clears the screen and places the cursor at line
1, column 1.

Depends on the previous character: if a
(underscore), see below; otherwise, if the -cur­
sor is not at column I, it is moved to the left
one position on the same line. If the cursor is
at column 1 but not line 1, it is moved to
column 79 of the previous line. Finally, if the
cursor is at column 1, line 1, it is not moved.

1

DISPLAY(M)

BSx

ESCx

DISPLAY(M)

Sets the underscore attribute for the character
x to be displayed. The underscore attribute for
the color/graphics adapter is a red background
with a white foreground.

Where x is any of the 256 possible codes (except
for c and [), displays that value interpreted.
This is useful for using the full set of graph-
ics available on the display. Note again that
the characters are processed through the termi­
nal interface prior to this escape sequence.
Therefore, to get some of the possible 256 char­
acters, it is necessary that the character not
be post processed. The easiest way to accom­
plish this is to turn off OPOST in the c oflag
field (see termio(M»; however, this may -have
other side effects.

This display can be controlled by means of ANSI X3.64
escape sequences, which are specified sequences of charac­
ters, preceded by the ASCI I character ESC. The escape
sequences, which work on either the monochrome or
color / graphics adapter, are the following:

ESCc

ESC[n @

ESC[n A

ESC[n B

ESC[n C

ESC[n D

ESC[n E

Clears the screen and places the cursor at
line 1, column 1.

Insert character - inserts n blank places
for n characters at the current cursor po­
sition.

Cursor up - moves the cursor up n lines
(default: n=l).

Cursor down - moves the cursor down n line~
(default: n=l).

Cursor right - moves the cursor right n
columns (default: n=l).

Cursor left - moves the cursor left n
columns (default: n=l).

Cursor next line - moves the cursor to
column 1 of the next line, then down n-l
lines (default: n=l).

2

DISPLAY(M)

ESC[n F

ESC[n G

DISPLAY(M)

Cursor previous line - moves the cursor to
column 1 of the current line, then up n
lines (default: n=l).

Cursor horizontal position - moves the
cursor to column n of the current line
(default: n=l).

ESC[n m H Position cursor - moves the cursor to

ESC[n J

ESC[n K

ESC[n L

ESC[n M

ESC[n P

ESC[n S

ESC[n T

ESC[n X

column m of line n (default: n=l).

Erase window - erases from the current
cursor position to the end of the window if
n=O, from the beginning of the window to
the current cursor position if n=l, and the
entire window if n=2 (default: n=l).

Erase line - erases from the current cursor
position to the end of the line if n=O,
from the beginning of the line to the cur­
rent cursor position if n=l, and the entire
line if n=2 (default: n=l).

Inserts n lines at the current cursor
position (default: n=l).

Deletes n lines at the current cursor
position (default: n=l).

Deletes n characters from a line starting
at the current cursor position (default:
n=l).

Scroll up - scrolls the characters in the
current window up n lines. The bottom n
lines are cleared to blanks (default:
n=l).

Scroll down - scrolls the characters in the
current window down n lines. The top n
lines are cleared to blanks (default: n=l).

Erase character - erases n character
positions starting at the current cursor
position (default: n=l).

3

DISPLAY(M) DISPLAY(M)

ESC [Ps Ps;... m

Ps

0

1
4

5
7
10
11

12

30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47

Meaning

Character attributes - each Psis one of
the following characters; multiple charac­
ters are separated by semicolons. These
parameters apply to successive characters
being displayed, in an additive manner
(e.g., both bold and underscoring can be
selected). Only the parameters through 7
apply to the monochrome adapter; all param­
eters apply to the color/graphics adapter.
(Default: Ps=o.)

all attributes off (normal display)
(white foreground with black background)

bold intensity
underscore on

(white foreground with red background on color)
blink on
reverse video
selects the primary font
selects the first alternate font; lets ASCII

characters less than 32 be displayed as ROM char-
acters

selects a second alternate font; toggles high bit
of extended ASCII code before displaying as ROM
characters

black (gray) foreground
red (light red) foreground
green (light green) foreground
brown (yellow) foreground
blue (light blue) foreground
magenta (light magenta) foreground
cyan (light cyan) foreground
white (bright white) foreground
black (gray) background
red (light red) background
green (light green) background
brown (yellow) background
blue (light blue) background
magenta (light magenta) background
cyan (ligh t cyan) background
white (bright white) background

4

OISPLAY(M) OISPLAY(M)

Note that for character attributes 30 through 37, the
color selected for foreground will depend on whether the
bold intensity attribute (1) is currently on. If not, the
first color listed will result; otherwise the second color
listed will result.

Similarly, for character attributes 40-47, the color se­
lected for background will depend on whether the blink
attribute (5) is currently on. The color selected for
background also depends on whether blinking is enabled in
color mode byte or no blinking is selected (see the
MODE BLINK and MODE BG16 bits in the color mode byte
defined below). If the blink attribute is not on, then the
first color listed will result. If the blink attribute is
not on, and blinking is enabled, then the first color
listed will result and it will blink. If the blink attri-
bute is on, and no blinking is enabled, then the second
color listed will result.

Ioctl calls

The display driver supports ioctl(S) calls of the form:

ioctl(filedes, command, arg)

filedes
command
arg

is a valid open file descriptor.
is one of the commands listed below.
is the argument of command. The type of arg is
specific to the command in use.

The following is a list of valid ioctl commands for dis­
play adapters. These commands and structures are defined
in sys/kd.h.

KDDISPTYPE
Returns information about the current display adap­
ter. The argument is the address of a structure
(defined in sys/kd.h) of the following type:

struct kd_disparam {

long type;

char *addr;

ushort ioaddr[];

5

DISPLAY(M)

type

addr

ioaddr

DISPLAY(M)

describes the type of adapter installed,
and is one of: KD _MONO, KD _HERCULES,
KD _ CGA, or KD _EGA.

is the physical address of the display mem­
ory for this adapter.

is a list of I/O addresses valid for this
adapter.

KDGETMODE
Returns the current display mode. Arg is an integer,
whose values are one of the following:

KD TEXT
KD GRAPHICS

KDSETMODE

Text mode
Graphics Mode

Sets the current display mode. Arg is an integer,
whose values are one of those defined above for
KDGETMODE. Note, the user is responsible for pro­
gramming the color/graphics adapter registers for the
appropriate graphical state.

KDADDIO
Adds I/O port address to list of valid video adapter
addresses. Argument is an unsigned short type which
should contain a valid port address for the installed
video adaptor.

KDDELIO
Deletes I/O port address from list video adaptor ad­
dresses. Argument is an unsigned short type which
should contain a valid port address for the installed
video adaptor.

KDENABIO
Enables ins and outs to video adaptor ports. No
argument.

KDDISABIO
Disables ins and outs to video adaptor ports. No
argument.

6

DISPLAY(M) DISPLAY(M)

KDMAPDISP
Maps the display memory for the current adapter in
the user's data space. Argument is a pointer to
structure type "kd _ memloc." Structure definition is:

struct kd_memloc

char *vaddr; /* virtual address to map to */

char *physaddr;/* physical address to map from */

long length; /* size in bytes to map */

long ioflg; /* enable i/o addresses if set */

vaddr contains a paged-aligned virtual address in the
user's data space. To map the display memory for a
monographic adapter requires 4 Kbytes. In order to
map the display memory, the user must first use
KDSETMODE to place the adapter into graphics mode
and also use the VT_SETMODE option (see vt(M)) to
set the virtual terminal mode to VT PROCESS. In­
cluded in this section is a sample code fragment
showing how to correctly map the screen memory into
user data space.

KDUNMAPDISP
Unmaps the display adapter memory from user data
space.

The following code fragment details how to map the
display adapter memory into user data so the screen
can be accessed via memory references in user code.

#include <sys/types.h>

#include <sys/immu.h>

#include <sys/al_ansi.h>

#include <sys/kd.h>

#include <sys/vt.h>

unsigned char d[Ox2000]; /* allocate 2 pages of data */

unsigned char *c;

int fd;

7

D/SPLAY(M)

struct vt_mode vt;

struct kd_memloc mp;

struct screen

char ch;

char attr;

*scr;

/* assign a page-aligned address.

D/SPLAY(M)

* Starting in the middle of a 2*pagesize array assures

* it will contain 1 page-aligned address with 1 page of

* data following.

*/
c = (unsigned char *)«long)(&d[sizeof(d)/2]) & (NBPP-I»;

if (ioctl(fd.VT_GETMODE.&vt) == -1)

exit(1) ;

vt.mode VT_PROCESS;

/* set virtual terminal process control mode */

if (ioctl(fd.VT_SETMODE.&vt) -1)

exit(1) ;

/* set adapter in graphics mode */

if (ioctl(fd.KDSETMODE.KD_GRAPHICS) -1)

exit(l) ;

/* virtual address to map to */

mp.vaddr = (char unsigned *)c;

/* start of monographic display memory */

mp.physaddr = (char *)MONO_BASE;

/* length of monograph display memory */

mp.length = (long)MONO_SIZE;

mp.ioflg = (long)O;

/* map the display memory into user data space */

if (ioctl(fd,KDMAPDISP.&mp»

exit(l) :

/* start of screen memory */

scr = (struct screen *)c;

8

DISPLAY(M)

/* The layout of screen memory is:

* For each character:

*
*
*/

scr->ch =

scr->attr =

1 data byte

1 attribute byte

/* Unmap display and reset modes */

ioctl(fd,KDUNMAPDISP);

ioctl(fd,KD_TEXT);

vt.mode = VT_AUTO;

ioctl(fd,VT_SETMODE,&vt);

VT_OPENQRY
VT GETMODE
VT SETMODE
VT RELDISP
VT ACTIVATE

DISPLAY(M)

- These ioctl(S)
tual terminals.
tions.

options are used for controlling vir­
Refer to vt(M) for their defini-

Files

/ dev / console

See Also

stty(C), ioctl(S), keyboard(M), termio(M), vt(M)

9

ENVIRON(M) ENVIRON(M)

Name

environ - The user environment.

Description

The user environment (environ) is a collection of informa­
tion about a user, such as his login directory, mailbox,
and terminal type. The environment is stored in special
"environment variables," which can be assigned character
values, such as names of files, directories, and termi-
nals. These variables are automatically made available to
programs and commands that you can invoke. The commands
can then use the values to access your files and terminal.

Options

HOME

PATH

TERM

TZ

Names the user's login directory. Initially,
HOME is set to the login directory given in the
user's passwd file entry.

Defines the search path for the directories con­
taining commands. The system searches these
directories whenever a user types a command
without giving a full pathname. The search path
is one or more directory names separated by
colons (:). Initially, PATH is set to
:/bin:/usr Ibin.

Defines the type of terminal being used. This
information is used by commands such as more
which rely on information about the capabilities
of the user's terminal. The variable may be set
to any valid terminal name (see terminals(M»
directly or by using the tset(C) command.

Defines time zone information. This information
used by date(C) to display the appropriate time.
The variable may have any value of the form
xxxnzzz where xxx is standard local time zone
abbreviation, n is the difference in hours from
GMT, and z z z is the daylight-saving local time
zone abbreviation (if any). For example,
EST5EDT. The difference for a location east of
England can be given as a negative number.

1

ENVIRON(M) ENVIRON(M)

The environment can be changed by assigning a new value
to a variable. An assignment has the form

name=value

For example, the assignment:

TERM=altos3

sets the TERM variable to an Altos III. When using the
standard shell (sh(C», the new value can be "exported" to
each subsequent invocation of a shell by exporting the
variable with the export command (see she C» or by using
the env(C) command. Users of the C-shell (csh(C» can
set and export a variable with the setenv command (see
csh(C)).

A user may also add variables to the environment, but must
be sure that the new names do not conflict with exported
shell variables such as MAIL, PSI, PS2, and IFS. Placing
assignments in the .profile file is a useful way to change
the environment automatically before a session begins.

Note that the environment is made available to all pro­
grams as a string of arrays. Each string has the form:

name=value

where the name is the name of an exported variable and
the value is the variable's current value. For programs
started with a exec(S) call, the environment is available
through the external pointer environ. For other programs,
individual variables in environment are available through
getenv(S) calls.

See Also

login(C), sh(C), profile(M), and getenv(S) in the
Reference (CP, S, F)

2

ERRPRINT(M) ERRPRINT(M)

Name

errprint - Displays error log contents.

Syntax

/etc/errprint [date]

Description

Files

Errprint displays the error messages logged by the
strerr(M) daemon for a particular date. The optional date
argument may be specified on the command line in any of
the following formats:

mm dd
mm-dd
mm/dd
monthname dd

If no date is specified, the current date is used.

For ease of viewing, the only fields displayed for each
error message are the time of day and the text of the mes­
sage. The remaining fields found in the log file are not
displayed. The output is automatically piped through
more(C).

/usr / adm/ streams/ error. mm-dd
/usr /lib / errstrip. awk

See Also

strerr(M)

1

FF(M)

Name

ff - Fast find: lists file names and statistics for a
file system.

FF(M)

Syntax

/ete/ff [options] special

Description

Ff reads the i-list and directories of the special file,
assuming it is a file system. Inode data is saved for
files which match the selection criteria. Output consists
of the path name for each saved inode, plus other file
information requested using the print options below. Out­
put fields are positional. The output is produced in
inode order; fields are separated by tabs. The default
line produced by ff is:

path-name i-number

With all options enabled, output fields would be:

path-name i-number size uid

The argument n in the option descriptions that follow is
used as a decimal integer (optionally signed), where +n
means more than n, -n means less than n, and n means
exactly n. A day is defined as a 24 hour period.

-I

-1

-p prefix

-s

Do not print the inode number after each
path name.

Generate a supplementary list of all path
names for multiply-linked files.

The specified prefix will be added to each
generated path name. The default is .
(dot).

Print the file size, in bytes, after each
path name.

1

FF(M)

-u

-a n

-m n

-c n

-n file

-i inode-list

FF(M)

Print the owner's login name after each
path name.

Select if the inode has been accessed in n
days.

Select if the inode has been modified in n
days.

Select if the inode has been changed in n
days.

Select if the inode has been modified more
recently than the argument file.

Generate names for only those inodes speci­
fied in inode-list.

See Also

Notes

find(C), ncheck(M)

If the -1 option is not specified, only a single path name
out of all possible ones is generated for a multiply-
linked inode. If -1 is specified, all possible names for
every linked file on the file system are included in the
output. However, no selection criteria apply to the names
generated.

2

FILESYSTEM(M) FILESYSTEM(tv

Name

filesystem - Format of a system volume.

Syntax

#include (sys/filsys.h>
#include (sys/types.h>
#include (sys/param. h>
#include (sys/inode.h>
include (sys/ ino. h)

Description

Every file system storage volume (e.g., a hard disk) has a
common format for certain vital information. Every such
volume is divided into a certain number of 512 byte sec­
tors. Sector ° is unused and is available to contain a
bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block
is described in /usr /include/sys/filsys.h. In that in-
clude file, s_isize is the address of the first data block
after the i-list. The i-list starts in logical block 2;
thus the i-list is s isize-2 blocks long. S fsize is the
first block not potentially available for allocation to a
file. These numbers are used by the system to check for
bad block numbers. If an "impossible" block number is
allocated from the free list or is freed, a diagnostic is
written on the console. Moreover, the free array is
cleared so as to prevent further allocation from a presum­
ably corrupted free list.

The free list for each volume is maintained as follows.
The s free array contains, in s free [1], ... ,
s free1s nfree-11, up to NICFREE-l numbers of free blocks
S- free[Ol is the block number of the head of a chain of
blOcks constituting the free list. The first long in each
free-chain block is the number (up to NICFREE) of
free-block numbers listed in the next NICFREE longs of
this chain member. The first of these NICFREE blocks is
the link to the next member of the chain. To allocate a
block: decrement s nfree, and the new block is
s free[s nfreel. If-the new block number is 0, there are
no blocks left, so give an error. If s_nfree becomes 0,

1

FILESYSTEM(M) FILESYSTEM(M)

read in the block named by the new block number t replace
s nfree by its first word, and copy the block numbers in
the next NICFREE longs into the sJree array. To free a
blockt check if s nfree is 50; if SOt copy s nfree and the
s free array into-itt write it outt and set s nfree to o.
In any event set sJree[s_nfree] to the freed block's num­
ber and increment s_nfree.

S _ tfree is the total free blocks available in the file
system.

S ninode is the number of free i-numbers in the s inode
array. To allocate an inode: if s ninode is greater than
Ot decrement it and return s inode[s ninode]. If it was
Ot read the i-list and place the numbers of all free
inodes (up to NICINOD) into the s inode array, then try
again. To free an inodet provided s ninode is less than
NICINODt place its number into s inode[s ninode] and in­
crement s ninode. If s ninode is already -NICINODt do not
bother to -enter the freed inode into any table. This list
of inodes only speeds up the allocation process. The in­
formation about whether the inode is really free is main­
tained in the inode itself.

S tinode is the total number of free inodes available in
the file system.

SJlock and s_ilock are flags maintained in the core copy
of the file system while it is mounted and their values on
disk are immaterial. The value of sJmod on disk is also
immaterialt and is used as a flag to indicate that the
superblock has changed and should be copied to the disk
during the next periodic update of file system informa­
tion.

S ronly is a read-only flag used to indicate write­
protection.

S time is the last time the super-block of the file system
was changedt and is a doubleprecision representation of
the number of seconds that have elapsed since 00:00 Jan.
It 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the
system's idea of the time.

2

FILESYSTEM(M) FILESYSTEM('"

Files

I -numbers begin at 1, and the storage for inodes begins in
logical block 2. Inodes are 64 bytes long. Inode 1 is
reserved for future use. Inode 2 is reserved for the root
directory of the file system, but no other i-number has a
built-in meaning. Each inode represents one file. For
the format of an inode and its flags, see ino.h.

/usr/include/sys/filsys.h
/usr /include/sys/stat.h
/usr /include/sys/types.h
/usr /include/sys/param.h
/usr /include/sys/inode.h
/usr /include/sys/ino.h

See Also

fsck(C), mkfs(M)

3

FINC(M) FINC(M)

Name

fine - Fast incremental backup.

Syntax

fete/fine [selection-criteria] file-system raw-tape

Description

Finc selectively copies the input file-system to the out­
put raw-tape. The cautious will want to mount the input
file-system read-only to insure an accurate backup, al­
though acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelit(C).
The selection is controlled by the selection-criteria,
accepting only those inodes/files for whom the conditions
are true.

It is recommended that production of a fine tape be pre­
ceded by the ff(M) command, and the output of ff be saved
as an index of the tape's contents. Files on a fine tape
may be recovered with the free(M) command.

The argument n, in the selection-criteria that follow, is
used as a decimal integer (optionally signed), where +n
means more than n, -n means less than n, and n means ex­
actly n. A day is defined as 24 hours.

-a n True if the file has been accessed in n days.

-m n True if the file has been modified in n days.

-e n True if the inode has been changed in n days.

-n file True for any file which has been modified more
recently than the argument file.

Examples

To write a tape consisting of all files from file-system /
modified in the last 48 hours:

fine -m -2 /dev/root /dev/ret

1

FINC(M) FINC(M)

See Also

ff(M), frec(M), labelit(C) and cpio(C)

2

FREC(M) FREC(M)

Name

free - Recovers files from a backup tape.

Syntax

fete/free [-p path] [-f reqfile] raw_tape
inode number:name •••

Description

Free recovers files from the specified raw tape backup
tape written by voleopy(M) or fine(M), given their
inode numbers. The data for each recovery request will be
written into the file given by name.

Options

-p path Specifies a prefixing path (different from
your current working directory). This will
be prefixed to any names that are not fully
qualified, i.e., that do not begin with /
or . /. If any directories are missing in
the paths of recovery names, they will be
created.

-f reqfile Specifies a file that contains recovery
requests. The format is inode_number:name,
one per line.

Examples

To recover a file, inode number 1216 when backed-up, into
a file named junk in your current working directory, type:

free /dev/ret 1216:junk

To recover files with inode numbers 14156, 1232, and 3141
into files /usr/src/cmd/a, /usr/src/cmd/b and
/usr/joe/a.c, enter:

free -p /usr/sre/emd /dev/ret 14156:a 1232:b
3141 :/usr / joe/a. e

1

FREC(M) FREC(M)

See Also

Notes

ff(M), finc(M), labelit(M), and cpio(C)

While paving a path (i.e., creating the intermediate di­
rectories contained in a pathname), free can only recover
inode fields for those directories contained on the tape
and requested for recovery.

2

FSDB(M) FSDB(M)

Name

fsdb - File system debugger.

Syntax

/etc/fsdb special [-]

Description

Fsdb is used to patch up a damaged file system after a
crash. It has conversions to translate block and inode
numbers into their corresponding disk addresses. Also
included are mnemonic offsets to access different parts of
an inode. These greatly simplify the process of correct­
ing control block entries or descending the file system
tree.

Fsdb contains several error-checking routines to verify
inode and block addresses. These can be disabled if ne­
cessary by invoking fsdb with the optional - argument or
by the use of the a symbol. (Fsdb reads the i-size and
f-size entries from the superblock of the file system as
the basis for these checks.)

Numbers are considered decimal by default. Octal numbers
must be prefixed with a zero. During any assignment oper­
ation, numbers are checked for a possible truncation error
due to a size mismatch between source and destination.

Fsdb reads a block at a time and will therefore work with
raw as well as block I/O. A buffer management routine is
used to retain commonly used blocks of data in order to
reduce the number of read system calls. All assignment
operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:

absolute address
i convert from inode number to inode address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit

1

FSDB(M)

),(

=+

="
o
P
f
B
W
D

save, restore an address
numerical assignment
incremen tal assignmen t
decremental assignment
character string assignment
error checking toggle
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

FSDB(M)

The print facilities generate a formatted output in var­
ious styles. The current address is normalized to an ap­
propriate boundary before printing begins. It advances
with the printing and is left at the address of the last
item printed. The output can be terminated at any time by
typing the delete character. If a number follows the p
symbol, that many entries are printed. A check is made to
detect block boundary overflows since logically sequential
blocks are generally not physically sequential. I f a
count of zero is used, all entries to the end of the cur­
rent block are printed. The print options available are:

i print as inodes
d print as directories
0 print as octal words
e print as decimal words
c print as characters
b print as octal bytes

The f symbol is used to print data blocks associated with
the current inode. If followed by a number, that block of
the file is printed. (Blocks are numbered from zero.)
The desired print option letter follows the block number,
if present, or the f symbol. This print facility works
for small as well as large files. It checks for special
devices and that the block pointers used to find the data
are not zero.

Dots, tabs, and spaces may be used as function delimiters
but are not necessary. A line with just a new-line char­
acter will increment the current address by the size of
the data type last printed. That is, the address is set
to the next byte, word, double word, directory entry or
inode, allowing the user to step through a region of a

2

FSDB(M) FSDB(M)

file system. Information is printed in a format appropri­
ate to the data type. Bytes, words and double words are
displayed with the octal address followed by the value in
octal and decimal. A. B or . D is appended to the address
for byte and double word values, respectively. Direc­
tories are printed as a directory slot offset followed by
the decimal inode number and the character representation
of the entry name. Inodes are printed with labeled fields
describing each element.

The following mnemonics are used for inode examination and
refer to the current working inode:

Examples

386i

In=4

In=+1

fc

2i.fd

d5i.fc

md mode
In link count
uld user ID number
gld group ID number
sz file size
aU data block numbers (0 - 12)
at access time
ct creation time
mt modification time
maj major device number
min minor device number

Prints inode number 386 in an inode format.
This now becomes the current working inode.

Changes the link count for the working
inode to 4.

Increments the link count by 1.

Prints, in ASCII, block zero of the file
associated with the working inode.

Prints the first 32 directory entries for
the root inode of this file system.

Changes the current inode to that associ­
ated with the 5th directory entry (numbered
from zero) found from the above command.
The first logical block of the file is then
printed in ASCII.

3

512B.pOo Prints the superblock of this file system
in octal.

2i.aOb.d7=3 Changes the inode number for the seventh
directory slot in the root directory to 3.
This example also shows how several opera­
tions can be combined on one command line.

d7.nm="name" Changes the name field in the directory
slot to the given string. Quotes are op­
tional when used with nm if the first char­
acter is alphabetic.

a2b.pOd Prints the third block of the current inode
as directory entries.

See Also

fsck(C), and dir(S), fs(S) in the Reference (CP, S, F)

4

FSINFO(M) FSINFO(M)

Name

fsinfo - Reports information about a file system.

Syntax

fsinfo options file-system

Description

The fsinfo command displays information about the given
filesystem. All the values returned by fsinfo are ex­
pressed in 512 byte blocks.

Options

-f Returns the free block count of the file-system.

-i Returns the total number of blocks of inodes in a
file-system.

-1 Returns the total number of free blocks in the
file-system.

-s Performs a sanity check on the file-system. The re­
turn code will be 0 if the sanity check completes
successfully. A positive number is returned on fail­
ure.

See Also

df(M)

1

FSSTAT(M) FSSTAT(M)

Name

fsstat - Reports file system status.

Syntax

/etc/fsstat specialJile

Description

Fsstat reports on the status of the file system on
specialJile. During startup, this command is used to
determine if the file system needs checking before it is
mounted. Fsstat succeeds if the file system is unmounted
and appears okay. For the root file system, it succeeds
if the file system is active and not marked bad.

Diagnostics

The command has the following exit codes:

o - the file system is not mounted and appears okay,
(except for root where 0 means mounted and okay).

1 - the file system is not mounted and needs to be
checked.

2 - the file system is mounted.
3 - the command failed.

1

FSTAB(M) FSTAB(M)

Name

fstab - File system table.

Description

Files

The etc/fstab file contains information about file systems
for use by mount(C) and mountall(C). Each entry in
/ etc/fstab has the following format:

column 1 block special file name of file system

column 2 mount-point directory

column 3 "-r" if to be mounted read-only

column 4 (optional) file system type string

column 5+ ignored

White-space separates columns. Lines beginning with "#"
are comments. Empty lines are ignored.

A file system table might read:

/dev /hdlb /usr2

/etc/fstab

See Also

mount(C), mountall(C)

1

FSTYP(M) FSTYP(M)

Name

fstyp - Determines file system identifier.

Syntax

/ etc/fstyp special

Description

Fstyp allows the user to determine the file system identi­
fier of mounted or unmounted file systems using heuristic
programs. The file system type is required by mount(S)
and sometimes by mount(M) to mount file systems of differ­
ent types.

The directory /etc/fstyp.d contains a program for each
file system type to be checked; each of these programs
applies some appropriate heuristic to determine whether
the supplied special file is of the type for which it
checks. If it is, the program prints on standard output
the usual file-system identifier for that type and exits
with a return code of 0; otherwise it prints error mes­
sages on standard error and exits with a non-zero return
code. Fstyp runs the programs in /etc/fstyp.d in alpha­
betical order, passing special as an argument; if any pro­
gram succeeds, its file-system type identifier is printed
and fstyp exits immediately. If no program succeeds,
fstyp prints "Unknown _ fstyp" to indicate failure.

Notes

The use of heuristics implies that the result of fstyp is
not guaranteed to be accurate.

See Also

mount(M), and mount(S), sysfs(S) in the Reference (CP,
S, F)

1

FUSER(M) FUSER(M)

Name

fuser - Identifies processes using a file or file struc­
ture.

Syntax

/etc/fuser [-ku] file... I resource ..• [-] [[-ku]
file... I resource ..•]

Description

Fuser outputs the process IDs of the processes that are
using the files or remote resources specified as argu­
ments. Each process ID is followed by a letter code, in­
terpreted as follows if the process is using the file as:

c Curren t directory

p Parent of its current directory (only when the file
is being used by the system)

r Root directory

For block special devices with mounted file systems, all
processes using any file on that device are listed. For
remote resource names, all processes using any file asso­
ciated with that remote resource (Remote File Sharing) are
reported. (Fuser cannot use the mount point of the remote
resource; it must use the resource name.) For all other
types of files (text files, executables, directories, de-
vices, etc.) only the processes using that file are re­
ported.

The following options may be used with fuser:

-u The user login name, in pareritheses, also follows the
process ID.

-k The SIGKILL signal is sent to each process. Since
this option spawns kills for each process, the kill
messages may not show up immediately (see kill(S».

1

FUSER(M) FUSER(M

Files

If more than one group of files are specified, the options
may be respecified for each additional group of files. A
lone dash cancels the options currently in force; then,
the new set of options applies to the next group of files.

The process IDs are printed as a single line on the stan­
dard output, separated by spaces and terminated with a
single new line. All other output is written on standard
error.

You cannot list processes using a particular file from a
remote resource mounted on your machine. You can only
use the resource name as an argument.

Any user with permission to read /dev /kmem and /dev /mem
can use fuser. Only the super-user can terminate another
user's process.

/unix
/dev/kmem
/dev/mem

For system name list
For system image
Also for system image

See Also

mount(C), ps(C)
kill(S), signal(S) in the Reference (CP, S, F)

2

GETTY(M) GETTY(M)

Name

getty - Sets terminal type, modes, speed, and line disci­
pline.

Syntax

/etc/getty [-h] [-t timeout] line [speed [type
[linedisc]]]

/ etc/ getty -c file

Description

Getty is a program that is invoked by init(M). It is the
second process in the series, (init-getty-login-sheZZ)
that ultimately connects a user with the operating system.
It can only be executed by the super-user; that is, a pro­
cess with the user-ID of root. Initially getty prints the
login message field for the entry it is using from
/etc/gettydefs. Getty reads the user's login name and
invokes the login(C) command with the user's name as argu­
ment. While reading the name, getty attempts to adapt the
system to the speed and type of terminal being used. It
does this by using the options and arguments specified.

Line is the name of a tty line in /dev to which getty is
to attach itself. Getty uses this string as the name of a
file in the /dev directory to open for reading and writ­
ing. Unless getty is invoked with the -h flag, getty will
force a hangup on the line by setting the speed to zero
before setting the speed to the default or specified
speed. The -t flag plus timeout (in seconds), specifies
that getty should exit if the open on the line succeeds
and no one types anything in the specified number of sec­
onds.

Speed, the optional second argument, is a label to a speed
and tty definition in the file /etc/gettydefs. This defi­
nition tells getty at what speed to initially run, what
the login message should look like, what the initial tty
settings are, and what speed to try next should the user
indicate that the speed is inappropriate (by pressing
I!U¥'rJ1ml). The default speed is 300 baud.

1

GETTY(M) GETTY(M,

Type, the optional third argument, is a character string
describing to getty what type of terminal is connected to
the line in question. Getty recognizes the following
types:

none
ds40-I
tektronix, tek
vt6I
vt100
hp45
cIOO

default
Dataspeed40/1
Tektronix
DEC vt61
DEC vt100
Hewlett-Packard 45
Concept 100

The default terminal is none; i. e., any crt or normal ter­
minal unknown to the system. Also, for terminal type to
have any meaning, the virtual terminal handlers must be
compiled into the operating system. They are available,
but not compiled in the default condition.

Linedisc, the optional fourth argument, is a character
string describing which line discipline to use in communi­
cating with the terminal. Again the hooks for line disci­
plines are available in the operating system but there is
only one presently available, the default line discipline,
LDISCO.

When given no optional arguments, getty sets the speed of
the interface to 300 baud, specifies that raw mode is· to
be used (awaken on every character), that echo is to be
suppressed, either parity allowed, new-line characters
will be converted to carriage return-line feed, and tab
expansion performed on the standard output. It types the
login message before reading the user's name a character
at a time. If a null character (or framing error) is re­
ceived, it is assumed to be the result of the user pres­
sing I:Ji#*.,mI. This will cause getty to attempt the
next speed in the series. The series that getty tries is
determined by what it finds in /etc/gettydefs.

After the user's name has been typed in, it is terminated
by a new-line or carriage-return character. The latter
results in the system being set to treat carriage returns
appropriately (see ioctl(S».

2

GETTY(M) GETTY(M)

Files

The user's name is scanned to see if it contains any
lower-case alphabetic characters; if not, and if the name
is non-empty, the system is told to map any future
upper-case characters into the corresponding lower-case
characters.

Finally, login is executed with the user's name as an ar­
gument. Additional arguments may be typed after the login
name. These are passed to login, which will place them in
the en vironmen t (see login (C».

A check option is provided. When getty is invoked with
the -c option and file, it scans the file as if it were
scanning /etc/gettydefs and prints out the results to the
standard output. If there are any unrecognized modes or
improperly constructed entries, it reports these. If the
entries are correct, it prints out the values of the var­
ious flags. See ioctl(S) to interpret the values. Note
that some values are added to the flags automatically.

/ etc/ gettydefs
/etc/issue

See Also

Notes

ct(C), gettydefs(M), init(M), inittab(M), 10gin(C),
tty(M), and ioctl(S) in the Reference (CP, S, F)

While getty understands simple single character quoting
conventions, it is not possible to quote certain special
control characters used by getty. Thus, you cannot login
via getty and type a #, @, /, !, _, backspace, "u, "D, or
& as part of your login name or arguments. Getty uses
them to determine when the end of the line has been
reached, which protocol is being used, and what the erase
character is. They will always be interpreted as having
their special meaning.

3

GETTYDEFS(M) GETTYDEFS(M)

Name

gettydefs - Speed and terminal settings used by getty.

Description

The /etc/gettydefs file contains information used by
getty(M) to set up the speed and terminal settings for a
line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next
if the user types a 1:1IW'. character, which indicates the
current speed is not correct.

Each entry in /etc/gettydefs has the following format:

label#initial-flagsllfinal-flags#login-prompt#next-IabeI

Each entry is followed by a blank line. The various
fields can contain quoted characters of the form \b, \n,
\c, etc., as well as \nnn, where nnn is the octal value of
the desired character. The various fields are:

label

initial-flags

This is the string against which
getty(M) tries to match its second
argument. It is often the speed, such
as 1200, at which the terminal is sup­
posed to run, but it need not be (see
below).

These flags are the initial ioctl(S)
settings to which the terminal is to
be set if a terminal type is not spe­
cified to getty. The flags that getty
understands are the same as the ones
listed in /usr /include/sys/termio.h
(see tennio(M)). Normally only the
speed flag is required in the
inital-flags. Getty automatically
sets the terminal to raw input mode
and takes care of most of the other
flags. The initial-flag settings re­
main in effect until getty executes
login(C).

1

GETTYDEFS(M)

final-flags

login-prompt

next-label

GETTYDEFS(M)

These flags take the same values as
the initial-flags and are set just
prior to getty executes login. The
speed flag is again required. The
composite flag SANE takes care of
most of the other flags that need to
be set so that the processor and ter­
minal are communicating in a rational
fashion. The other two commonly spe­
cified final-flags are TAB3, so that
tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung
up on the final close.

This entire field is printed as the
login-prompt. Unlike the above fields
where white space is ignored (a space,
tab, or newline), they are included in
the login-prompt field.

If this entry does not specify the
desired speed, indicated by the user
typing a break character, then getty
will search for the entry with
next-label as its label field and set
up the terminal for those settings.
Usually, a series of speeds are linked
together in this fashion, into a
closed set. For instance, 2400 linked
to 1200, which in turn is linked to
300, which finally is linked to 2400.

If getty is called without a second argument, then the
first entry of /etc/gettydefs is used, and is the default
entry. It is also used if getty cannot find the specified
label. If /etc/gettydefs itself is missing, there· is one
entry built into the command which will bring up a ter­
minal at 300 baud.

After making or modifying /etc/gettydefs, run it through
getty with the check option to be sure there are no
errors.

2

GETTYDEFS(M) GETTYDEFS(M)

Files

/ etc/ gettydefs

See Also

getty(M), termio(M), login(C), uugetty(M)

3

GROUP(M) GROUP(M)

Name

group - Format of the group file.

Description

The /etc/group file contains the following information:

• Group name

• Encrypted password (optional)

• Numerical group ID

• Comma-separated list of all users allowed in the
group

This is an ASCII file. The fields are separated by
colons; each group is separated from the next by a new­
line. If the password field is empty, then you are not
prompted for a password, when using the newgrp(C) com­
mand.

This file resides in directory / etc. Because of the en­
crypted passwords, it can and does have general read per­
missions and can be used, for example, to map numerical
group IDs to names.

See Also

passwd(M)

HALTSYS(C) HALTSYS(C)

Name

haltsys - Closes out the file systems and halts the CPU.

Syntax

/ etc/haltsys

Description

You must be the super-user to access this command.

The haltsys command immediately terminates the operating
system and should only be used if a system problem pre­
vents the running of shutdown. Do not run haltsys in mul­
tiuser mode and when other users are on the system. Since
haltsys takes effect immediately, user processes should be
killed beforehand (see kll1(C».

Related Commands

kill(C), ps(C), shutdown(M)

1

INFOCMP(M) INFOCMP(M)

Name

infocmp - Compares or prints out terminfo descriptions.

Syntax

infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u]
[-s dlilllc] [-v] [-V] [-1] [-w width]
[-A directory] [-B directory] [termname ...]

Description

Infocmp can be used to compare a binary terminfo(M) entry
with other terminfo entries, rewrite a terminfo(M) de­
scription to take advantage of the use= terminfo field, or
print out a terminfo(M) description from the binary file
(term(M» in a variety of formats. In all cases, the
boolean fields will be printed first, followed by the nu­
meric fields, followed by the string fields.

Default Options

If no options are specified and zero or one termnames are
specified, the - I option will be assumed. If more than
one termname is specified, the -d option will be assumed.

Comparison Options [-d] [-c] [-n]

Infocmp compares the terminfo(M) description of the first
terminal termname with each of the descriptions given by
the entries for the other terminal's termnames. If a cap­
ability is defined for only one of the terminals, the
value returned will depend on the type of the capability:
F for boolean variables, -1 for integer variables, and
NULL for string variables.

-d Produce a list of each capability that is different.
In this manner, if one has two entries for the same
terminal or similar terminals, using infocmp will
show what is different between the two entries. This
is sometimes necessary when more than one person pro­
duces an entry for the same terminal and one wants to
see what is different between the two.

1

INFOCMP(M) INFOCMP(M)

-c Produce a list of each capability that is common be­
tween the two entries. Capabilities that are not set
are ignored. This option can be used as a quick
check to see if the -u option· is worth using.

-n Produce a list of each capability that is in neither
entry. If no termnames are given, the environment
variable TERM will be used for both of the termnames.
This can be used as a quick check to see if anything
was left out of the description.

Source Listing Options [-I] [-L] [-C] [-r]

The - I, -L, and -C options will produce a source listing
for each terminal named.

-I Use the terminfo(M) names

-L Use the long C variable name listed in (term. h)

-C Use the termcap names

-r When using -C, put out all capabilities in termcap
form

If no termnames are given, the environment variable TERM
will be used ·for the terminal name.

The source produced by the -C option may be used directly
as a termcap entry, but not all of the parameterized
strings may be changed to the termcap format. Infocmp
will attempt to convert most of the parameterized informa­
tion, but that which it doesn't will be plainly marked in
the output and commented out. These should be edited by
hand.

All padding information for strings will be collected to­
gether and placed at the beginning of the string where
termcap expects it. Mandatory padding (padding informa­
tion with a trailing 'I') will become optional.

All termcap variables no longer supported by terminfo(M),
but which are derivable from other terminfo(M) variables,
will be output. Not all terminfo(M) capabilities will be
translated; only those variables which were part of
termcap will normally be output.

2

INFOCMP(M) INFOCMP(M)

Specifying the -r option will take off this restriction,
allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of
the capability, not all capabilities are output, mandatory
padding is not supported, and termcap strings were not as
flexible, it is not always possible to convert a
terminfo(M) string capability into an equivalent termcap
format. Not all of these strings will be able to be con­
verted. A subsequent conversion of the termcap file back
into terminfo(M) format will not necessarily reproduce the
original terminfo(M) source.

Some common terminfo parameter sequences, their termcap
equivalents, and some terminal types which commonly have
such sequences, are:

Terminfo Termcap Representative Terminals

%pl%c %. adm

%pl%d %d hp. ANSI standard. vt100

%pl%'x'%+%c %+x concept

%i %i ANSI standard. vt100

%pl%?%'x'%)%t%pl%'y'%+%; %>xy concept

%p2 is printed before %pl %r hp

Use= Option [-ul

-u Produce a terminfo(M) source description of the first
terminal termname which is relative to the sum of the
descriptions given by the entries for the other ter­
minals termnames. It does this by analyzing the dif­
ferences between the first termname and the other
termnames and producing a description with use=
fields for the other terminals. In this manner, it
is possible to retrofit generic terminfo entries into
a terminal's description. Or, if two similar ter­
minals exist, but were coded at different times or by
different people so that each description is a full
description, using infocmp will show what can be done
to change one description to be relative to the other.

3

INFOCMP(M) INFOCMP(M)

A capability will get printed with an at-sign (@) if it no
longer exists in the first termname, but one of the other
termname entries contains a value for it. A capability's
value gets printed if the value in the first termname is
not found in any of the other termname entries, or if the
first of the other termname entries that has this capabil­
ity gives a different value for the capability than that
in the first termname.

The order of the other termname entries is significant.
Since the terminfo compiler tic(C) does a left-to-right
scan of the capabilities, specifying two use= entries that
contain differing entries for the same capabilities will
produce different results depending on the order in which
the entries are given. Infocmp will flag any such incon­
sistencies between the other termname entries as they are
found.

Alternatively, specifying a capability after a use= entry
that contains that capability will cause the second speci­
fication to be ignored. Using infocmp to recreate a de­
scription can be a useful check to make sure that every­
thing was specified correctly in the original source de­
scription.

Another error that does not cause incorrect compiled
files, but will slow down the compilation time, is speci­
fying extra use= fields that are superfluous. Infocmp
will flag any other termname use= fields that were not
needed.

Other Options [-s dlilllcl [-vl [-Vl [-I] [-w width]

-s Sort the fields within each type according to the
argument below:

d Leave fields in the order that they are stored
in the terminfo database.

i Sort by terminfo name.

1 Sort by the long C variable name.

c Sort by the termcap name.

4

INFOCMP(M) INFOCMP(M)

If no -s option is given, the fields printed out will be
sorted alphabetically by the terminfo name within each
type, except in the case of the -C or the -L options,
which cause the sorting to be done by the termcap name or
the long C variable name, respectively.

-v Print out tracing information on standard error as
the program runs.

-v Print out the version of the program in use on stan­
dard error and exit.

-1 Cause the fields to printed out one to a line.
Otherwise, the fields will be printed several to a
line to a maximum width of 60 characters.

-w Change the output to width characters.

Changing Databases [-A directory] [-B directory]

Files

The location of the compiled terminfo(M) database is taken
from the environment variable TERMINFO. If the variable
is not defined, or the terminal is not found in that loca­
tion, the system terminfo(M) database, usually in
/usr/lib/terminfo, will be used. The options -A and -B
may be used to override this location. The -A option will
set TERMINFO for the first termname and the -B option
will set TERMINFO for the other termnames. With this,
it is possible to compare descriptions for a terminal with
the same name located in two different databases. This is
useful for comparing descriptions for the same terminal
created by different people. Otherwise the terminals
would have to be named differently in the terminfo(M)
database for a comparison to be made.

/usr /lib/terminfo/? /*

5

Compiled terminal description
database

INFOCMP(M) INFOCMP(M)

Diagnostics

malloc is out of space!
There was not enough memory available to process all
the terminal descriptions requested. Run infocmp
several times, each time including a subset of the
desired termnames.

use= order dependency found:
A value specified in one relative terminal specifica­
tion was different from that in another relative ter­
minal specification.

'use=term' did not add anything to the description.
A relative terminal name did not contribute anything
to the final description.

must have at least two terminal names for a comparison to
be done.

The -li, -d and -c options require at least two
terminal names.

See Also

Note

tic(C), curses(S), term(M), terminfo(M), captoinfo(M)

The termcap database (from earlier releases of UNIX Sys­
tem V) may not be supplied in future releases.

6

INIR(M) INIR(M)

Name

inir - Cleans the file system and executes init.

Syntax

/etc/inir

Description

Files

Inir first checks that the console devices (/dev /console,
/dev /syscon, /dev /systty) are correct, and if not removes
and creates them. Inir will then fork a child process
that reports the number of users licensed for this system
and that cleans the file system by running fsck(C).

Inir is called as "c" or "d" to indicate whether the file
system is clean or dirty. If inir is invoked as anything
other than "c," it assumes the file system is dirty.

When the child process returns, inir will execute init(M).

/ dev / console
/ dev / syscon
/ dev / systty

See Also

init(M), fsck(C)

1

INIT(M) INIT(M)

Name

init, telinit - Process control initialization.

Syntax

/etc/init [0123456SsQq]
/ etc/ telinit [0 123456sSQqabc]

Description

lolt is a general process spawner. Its primary role is to
create processes from a script stored in the file
/etc/inittab (see inittab(M)). This file usually has init
spawn getty(M) processes on each line that a user may log
in on. It also controls autonomous processes required by
any particular system.

Inlt considers the system to be in a run-level at any
given time. A run-level can be viewed as a software con­
figuration of the system where each configuration allows
only a selected group of processes to exist. The pro­
cesses spawned by init for each of these run-levels are
defined in the inittab file.

Inlt can be in one of eight run-levelS, 0-6, and S or s.
The run-level is changed by having a privileged user run
/etc/telinit (which is linked to /etc/init). This
user-spawned init sends appropriate signals to the orig­
inal init spawned by the operating system when the system
was booted, telling it which run-level to change to.

loit is invoked as the last step in the boot(M) procedure.
The first thing it does is to look for /etc/inittab and
see if there is an entry of the type initdefault (see
inittab(M)). If there is, init uses the run-level speci­
fied in that entry as the initial run-level to enter. If
this entry is not in inittab or inittab is not found, init
requests that the user enter a run-level from the virtual
system console, /dev /syscon. If an S (s) is entered, init
goes into the SINGLE USER level. This is the only
run-level that doesn't require the existence of a properly
formatted inittab file.

1

INIT(M) INIT(M)

If /etc/inittab doesn't exist, then by default the only
legal run-level that init can enter is the SINGLE USER
level. In the SINGLE USER level, the virtual console ter­
minal / dev / syscon is opened for reading and writing and
the command /bin/su is invoked immediately. To exit from
the SINGLE USER run-level one of two options can be
elected. First, if the shell is terminated (via an end­
of-file), init will reprompt for a new run-level. Second,
the init or telinit command can signal init and force it
to change the run-level of the system.

When attempting to boot the system, init may fail to
prompt for a new run-level because the device /dev/syscon
is linked to a device other than the physical system ter­
minal Udev /systty). If this occurs, init can be forced
to relink /dev /syscon by typing a delete on the system
console that is located with the processor.

When init prompts for the new run-level, you may enter
only one of the digits 0 through 6 or the letters S or s.
If S is entered, init operates as previously described in
SINGLE USER mode with the additional result that
/dev /syscon is linked to your terminal line, thus making
it the virtual system console. A message is generated on
the physical console, /dev /systty, saying where the vir­
tual terminal has been relocated.

When init comes up initially and whenever it switches out
of SINGLE USER state to normal run states, it sets the
ioctl(S) states of the virtual console, /dev /syscon, to
those modes saved in the file /etc/ioctl.syscon. This
file is written by init whenever SINGLE USER mode is
entered. If this file does not exist when init wants to
read it, a warning is printed and default settings are
assumed.

If a 0 through 6 is entered, init enters the corresponding
run-level. Any other input will be rejected and the user
will be reprompted. If this is the first time init has
entered a run-level other than SINGLE USER, init first
scans inittab for special entries of the type boot and
bootwait. These entries are performed, providing the
run-level entered matches that of the entry before any
normal processing of inittab. In this way, any special
initialization of the operating system, such as mounting
file systems, can take place before users are allowed onto
the system. The inittab file is scanned to find all en­
tries that are to be processed for that run-level.

2

INIT(M) INIT(M)

Run-level 2 is usually defined by the system administrator
to contain all of the terminal processes and daemons that
are spawned in the multiuser environment. Run-level 3 is
defined to start up remote file sharing processes and
daemons as well as mount and advertise remote resources.
So, run-level 3 extends multiuser mode and is known as the
Remote File Sharing state.

In a multiuser environment, the inittab file is usually
set up so that init will create a process for each ter­
minal on the system.

For terminal processes, the shell will ultimately termi-
nate because of an end-of-file either typed -explicitly or
generated as the result of hanging up. When init receives
a child death signal, telling it that a process it spawned
has died, it records the fact and the reason it died in
/etc/utmp and /etc/wtmp if it exists (see who(C». A his­
tory of the processes spawned is kept in / etc/wtmp if such
a file exists.

To spawn each process in the inittab file, init reads each
entry and for each entry which should be respawned, it
forks a child process. After it has spawned all of the
processes specified by the inittab file, init waits for
one of its descendant processes to die, a powerfail sig­
nal, or until it is signaled by init or telinit to change
the system's run-level. When one of the above three con­
ditions occurs, init re-examines the inittab file. New
entries can be added to the inittab file at any time. To
provide for an instantaneous response the telinit Q or
telinit q command can wake init to reexamine the ini ttab
file.

If init receives a powerfail signal (SIGWPR) and is not
in SINGLE USER mode, it scans inittab for special
powerfail entries. These entries are invoked (if the
run-levels permit) before any further processing takes
place. In this way init can perform various cleanup and
recording functions whenever the operating system experi­
ences a power failure. Note that in the single-user
state, only powerfail and powerwait entries are executed.

When lnit is requested to change run-levels (via telinit),
it sends the warning signal (SIGTERM) to all processes
that are undefined in the target run-level. Init waits 20
seconds before forcibly terminating these processes via
the kill signal (SIGKILL).

3

INIT(M) INIT(M)

Telinit

Init.d

Telinit, which is linked to /etc/init, is used to direct
the actions of init(S). It takes a one-character argument
and signals init via the kill system call to perform the
appropriate action. You must be the super-user to run
telinit.

The following arguments serve as directives to init.

0-6 Tells init to place the system in one of the
run-levels 0-6. Run level 0 is used for shut­
down; 1 is single user mode; and 2 is multiuser
mode. To switch between single and multiuser
modes, use the scripts /etc/singleuser and
/etc/multiuser.

a,b,c Tells init to process only those /etc/inittab
file entries having the a, b, or c run-level set
(see inittab(M».

q,Q Tells init to re-examine the /etc/inittab file.

s,S Tells init to enter the single user environment.
The virtual system teletype, /dev /syscon, is
changed to the terminal from which the command
was executed.

The /etc/init.d directory contains initialization and ter­
mination scripts for changing init states. These scripts
are linked with appropriate files in the rc?d direc­
tories.

File names in rc?d directories are of the form
[S I K]nn(init.d filename> where S means start this job, K
means kill this job, and nn is the relative sequence num­
ber for killing or starting the job. When entering a
state (init 0, 2, 3, etc.), the rc[0-6] script executes
those scripts in /etc/rc[0-6].d that are prefixed with K
followed by those scripts prefixed with S.

For example, when changing to init state 2 (default
multi-user mode), /etc/rc2 is initiated by the init pro­
cess. The following steps are performed by /etc/rc2:

4

INIT(M) INIT(M)

Files

•

•

In the directory /etc/rc2.d are files used to stop
processes that should not be running in state 2. The
file names are prefixed with K. Each K file in the
directory is executed (by /etc/rc2) in alpha-numeric
order when the system enters !nit state 2 (see the
following example).

The rc2.d directory also contains files used to start
processes that should be running in state 2. As in
the step above, each S file is executed.

Example:

The file /etc/netdaemon contains a script that ini­
tiates networking daemons when given the argument
start and terminates the daemons if given the argu­
ment stop. It is linked to /etc/rc2.d/S68netdaemon,
and to /etc/rcO.d/K67netdaemon.

This script is executed by /etc/rc2.d/S68netdaemon
start when !nit state 2 is entered and by
/etc/rcO.d/S67netdaemon stop when shutting the sys­
tem down.

/etc/inittab
/etc/init.d
/etc/rcO
/etc/rcO.d
/etc/rc2
/etc/rc2.d
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon

See Also

brc(M), getty(M), inittab(M), 10gin(C), rcO(M), rc2(M),
sh(C), utmp(M), who(C)

5

INIT(M) INIT(M)

Diagnostics

Notes

If init finds that it is continuously respawning an entry
from /etc/inittab more than 10 times in 2 minutes, it as­
sumes there is an error in the command string, generates
an error message on the system console, and refuses to
respawn this entry until either 1 minute has elapsed or it
receives a signal from a user init (telinit). This pre­
vents init from eating up system resources when someone
makes a typographical error in the inittab file or a pro­
gram is removed that is referenced in the inittab.

Telinit can be run only by someone who is the super-user
or a member of group sys. Attempting to relink
/dev /console with /dev /contty by typing IimI on the sys­
tem console does not work.

6

INITTAB(M) INITTAB(M)

Name

inittab - Script for the init process.

Description

The letc/inittab file supplies the script to init(M) 's
role as a general process dispatcher. The process that
constitutes the majority of init's process dispatching
activities is the line process getty(M) that initiates
individual· terminal lines. Other processes typically dis­
pa tched by init are daemons and the shell.

The inittab file is composed of entries that are position
dependent and have the following format:

id:rstate:action:process

Each entry is delimited by a newline; however, a backslash
(\) preceding a newline indicates a continuation of the
entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the
sh(C) convention for comments. Comments for lines that
spawn getty(M) are displayed by the who(C) command~
They typically contain some information about the line
such as the location. There are no limits (other than
maximum entry size) imposed on the number of entries
within the inittab file. The entry fields are:

id

rstate

This is one or two characters used to uniquely
iden tify an en try.

This defines the run-level in which this entry
is to be processed. Run-levels effectively cor­
respond to a configuration of processes in the
system. That is, each process spawned by init
is assigned a run-level (or run-levels) in which
it is allowed to exist. The run-levels are rep­
resented by a number ranging from 0 through 6.
As an example, if the system is in run-levell,
only those entries having a 1 in the rstate
field will be processed. When loit is requested
to change run-levels, all processes that do not
have an entry in the rstate field for the target
run-level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace perio{

1

INITTAB(M)

action

INITTAB(M)

before being forcibly terminated by a kill sig­
nal (SIGKILL). The rstate field can define mul­
tiple run-levels for a process by selecting more
than one run-level in any combination from 0-6.
I f no run-level is specified, then the process
is assumed to be valid at all run-levels 0-6.

,There are are three other values, a, b, or c,
which can appear in the rstate field, even
though they are not true run-levels. Entries
that have these characters in the rstate field
are processed only when the telinit (see
init(M» process requests them to be run
(regardless of the current run-level of the
system). They differ from run-levels in that
init can never enter run-level a, b, or c.
Also, a request for the execution of any of
these processes does not change the current
run-level. Furthermore, a process started by a,
b, or c command is not killed when init changes
levels. They are only killed if their line in
/ etc/inittab is marked off in the action field,
their line is deleted entirely from
/etc/inittab, or init goes into the SINGLE USER
state.

Key words in this field tell init how to treat
the process specified in the process field. The
actions recognized by init are as follows:

respawn If the process does not exist then
start the process, do not wait for its
termination (continue scanning the
inittab file), and when it dies re­
start the process. If the process
currently exists then do nothing and
continue scanning the inittab file.

wait Upon init's entering the run-level
that matches the entry's rstate, start
the process and wait for its termina­
tion. All subsequent reads of the
inittab file while init is in the same
run-level will cause init to ignore
this entry.

2

INITTAB(M) INITTAB(M)

once Upon init's entering a run-level that
matches the entry's rstate, start the
process, do not wait for its termina­
tion. When it dies, do not restart
the process. If upon entering a new
run-level, where the process is still
running from a previous run-level
change, the program will not be re­
started.

boot The entry is to be processed only at
init's boot-time read of the inittab
file. Init is to start the process,
not wait for its termination; and when
it dies, not restart the process. In
order for this instruction to be mean­
ingful, the rstate should be the de­
fault or it must match init's
run-level at boot time. This action
is useful for an initialization func­
tion following a hardware reboot of
the system.

bootwait The entry is to be processed only at
init's boot-time read of the inittab
file. Init is to start the process,
wait for its termination, and, when it
dies, not restart the process.

powerfall Execute the process associated with
this entry only when init receives the
power fail signal (SIGPWR, see
signal(S », which normally occurs wher
a UPS detects a power failure.

powerwait Execute the process associated with
this entry only when init receives the
power fail signal (SIGPWR) and wait
until it terminates before continuing
any processing of inittab.

off If the process associated with this
entry is currently running, send the
warning signal (SIGTERM) and wait 2~
seconds before forcibly terminating
the process via the kill signal
(SIGKILL). If the process is nonexis­
tent, ignore the entry.

3

INITT AB(M) INITTAB(M)

process

ondemand This instruction is really a synonym
for the respawn action. I t is func­
tionally identical to respawn but is
given a different keyword in order to
divorce its association with run­
levels. This is used only with the a,
b, or c values described in the rstate
field.

initdefault

restart

sysinit

An en try with this action is only
scanned when init initially invoked.
Init uses this entry, if it exists, to
determine which run-level to enter
initially. It does this by taking the
highest run-level specified in the
rstate field and using that as its
initial state. If the rstate field is
empty, this is interpreted as 0123456
and so init will enter run-level 6.
Also, the initdefault entry cannot
specify that init start in the SINGLE
USER state. Additionally, if init
does not find an initdefault entry in
/etc/inittab, then it will request an
initial run-level from the user at
reboot time.

Entries of this type are executed on a
warm restart of the system after a
power failure.

Entries of this type are executed be­
fore init tries to access the console.
It is expected that this entry will be
only used to initialize devices on
which init might try to ask the
run-level question. These entries are
executed and waited for before con­
tinuing.

This is a sh(C) command to be executed. The
entire process field is prefixed with exec and
passed to a forked sh as sh -c exec command.
For this reason, any legal sh syntax can appear
in the process field. Comments can be inserted
with the ; #comment syntax.

4

INITTAB(M) INITTAB(M)

Files

/ etc/inittab

See Also

getty(M), init(M), sh(C), who(C)

5

INODE(M) INODE(M)

Name

inode - Format of an inode.

Syntax

#include (sys/types.h)
#include (sys/ino.h)

Description

Files

An inode for a plain file or directory in a file system
has the structure defined by (sys/ino.h). For the meaning
of the defined types off_t and time_t, see types(F).

/usr /include/sys/ino.h

See Also

filesystem(M) and stat(S), types(F) in the Reference (ep,
S, F)

1

INSTALL(M) INSTALL(M)

Name

install - Installs commands.

Syntax

/etc/install [-c dira] [-f dirb] [-I] [-n dire] [-m mode]
[-u user] [-g group] [-0] [-s] file [dirx •••]

Description

The install command is most commonly used in "make files"
(see make(C» to install a file (updated target file) in a
specific place within a file system). Each file is in­
stalled by copying it into the appropriate directory,
thereby retaining the mode and owner of the original com­
mand. The program prints messages telling the user exact­
ly what files it is replacing or creating and where they
are going.

If no options or directories (dirx •••) are given, install
will search a set of default directories (/bin, /usr /bin,
/etc, /lib, and /usr/ lib, in that order) for a file with
the same name as file. When the first occurrence is
found, install issues a message saying that it is over­
writing that file with file, and proceeds to do so. If
the file is not found, the program states this and exits
without further action.

If one or more directories (dirx •••) are specified after
file, those directories will be searched before the direc­
tories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory
specified by dira, only if it is not found. If
it is found, install issues a message saying
that the file already exists, and exits without
overwriting it. May be used alone or with the
-s option.

1

INSTALL(M)

-f dirb

-1

-n dire

INSTALL(M)

Forces file to be installed in given directory,
whether or not one already exists. If the file
being installed does not already exist, the mode
and owner of the new file will be set to 755 and
bin, respectively. If the file already exists,
the mode and owner will be that of the already
existing file. May be used alone or with the -0

or -s options.

Ignores default directory list, searching only
through the given directories (dirx •••). May
be used alone or with any other options except
-c and -f.

If file is not found in any of the searched
directories, it is put in the directory speci­
fied in dire. The mode and owner of the new
file will be set to 755 and bin, respectively.
May be used alone or with any other options ex­
cept -c and -f.

-m mode The mode of the new file is set to mode. Only
available to the super-user.

-u user The owner of the new file is set to user. Only
available to the super-user.

-g group The group id of the new file is set to group.
Only available to the super-user.

-0 If file is found, this option saves the "found"
file by copying it to OLDfile in the directory
in which it was found. This option is useful
when installing a frequently used file such as
/bin/sh or /etc/getty, where the existing file
cannot be removed. May be used alone or with
any other options except -c.

-s Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

See Also

make(C)

2

KEYBOARD(M) KEYBOARD(M)

Name

keyboard - Series 500 system console keyboard.

Description

The system console (and user's terminal) is composed of
two separate pieces: the keyboard and the display (see
display(M». Because of their complexity they are dis­
cussed in separate manual entries.

The actual code sequence delivered to the terminal input
routine (see termio(M» is defined by a set of internal
tables in the driver. These tables can be modified by
software (see ioctl calls below). In addition, the
driver can be instructed not to do translations, deliver­
ing the keyboard up I down scan codes directly.

There are four translation tables: normal keys, shifted
keys, alt keys, and shifted alt keys. Each table contains
128 16-bit entries, with an entry being made up of flags
in the high-order 8 bits and the character code in the
low-order 8 bits. The values that can be set in the flag
byte, as defined in (sys/kd.h), are as follows:

/* Flag bits */

#define NUMLCK

#define CAPLCK

#define CTLKEY

/* Key types */

#define NORMKEY

#define SHIFTKEY

#define BREAKKEY

#define SS2PFX

#define SS3PFX

#define CSIPFX

#define NOKEY

Ox8000

Ox4000

Ox2000

OxOOOO

OxOlOO

Ox0200

Ox0300

Ox0400

Ox0500

OxOfOO

/* key is affected by num lock */

/* key is affected by caps lock */

/* key is affected by control key */

/* key is a normal key */

/* key is a shift key *1
/* key is a break key */

/* prefix key with <ESC> N */

/* prefix key with <ESC> o */

/* prefix key with <ESC> [*/

/* key sends nothing */

The tables are indexed by the keyboard scan code received.
The table that is used is determined by the state of the
following special keys:

1

KEYBOARD(M) KEYBOARD(M)

ALT This key essentially chooses an alternate key­
board. If it is not depressed, the normal and
shifted tables are used; if it is depressed, the
alt and shifted alt tables are used.

SHIFT Depending on the ALT key, this key shifts into
either the shifted table or the shifted alt
table. The default shifted table is set up such
that SHIFT will generate the ASCII uppercase
characters.

The character code found in the table may be further modi­
fied by the following keys:

CTRL Produces the appropriate ASCII control character
if the CTLKEY bit is set in the flag byte. The
control character is produced by masking off all
but the low-order 5 bits of the character code
in the table. If the CTLKEY bit is not set, the
normal character (the code in the table) is gen­
erated. In the default tables, the CTRL key
only modifies keys in the normal and shifted
tables; it has no effect in the alt or shifted
alt tables.

CAPS LOCK
This is a toggle; it controls whether keys that
have the CAPLCK bit set in their flag byte go to
the normal or shifted table. If the CAPLCK bit
is not set, the normal character is generated
regardless of the state of the CAPS LOCK. The
SHIFT key inverts whatever state is indicated by
the CAPS LOCK. Thus, if CAPS LOCK is off,
SHI FT produces uppercase characters; if CAPS
LOCK is on, SHI FT produces lowercase characters.
In the default tables, the only keys affected by
CAPS LOCK are the alphabetic keys.

NUM LOCK
This is a toggle; it controls whether keys that
have the NUMLCK bit set in their flag byte go
to the normal or shifted table. I f the NUMLCK
bit is not set, the normal character is gener­
ated regardless of the state of the NUM LOCK.
The SHIFT key inverts whatever state is indi­
cated by the NUM LOCK. In the default tables,
the only keys affected by NUM LOCK are the

2

KEYBOARD(M) KEYBOARD(M)

keypad keys. Note that CAPS LOCK and NUM
LOCK do exactly the same thing; the only dif­
ference is the set of keys affected.

SCROLL LOCK
This key is marked as a BREAKKEY in its flag
byte in both the shifted and shifted alt tables.
This causes it to send BREAK to the terminal
handler.

The remaining values for the key type are discussed below:

SHIFTKEY
This is used to mark the left and right SHIFT
keys, the CTRL key, the ALT key, the CAPS
LOCK, and the NUM LOCK in the translation
tables. User programs will normally not be con­
cerned with this flag.

SS2PFX, SS3PFX, CSIPFX
These are used to generate codes for the func­
tion keys and for the AL T keys. If one of these
flags is specified in the translation table, the
driver will prefix the character code in the
table with (ESC)N, (ESC)O, or (ESC)[respec­
tively, where (ESC) represents the ASCII escape
character (lb hex).

NOKEY This is used to mark entries that should not
generate any character code. Keystroke combina­
tions that index table entries marked with this
flag generate nothing.

The following tables describe the codes generated by the
default tables for all the keys. Keycodes are the values
delivered at the keyboard interface when the corresponding
key is struck (the down scan code). Note that when the
key is released, the same code is delivered, but with the
high-order bit set. Thus, codes OI-7f are down codes, and
81-ff are up codes. The generated codes are the codes
delivered to the terminal driver after translation. All
numbers are in hexadecimal.

3

KEYBOARD(M) KEYBOARD(M)

Shifting Keys

Key Code Function

Ctrl 1d CTRL

Left Shift 2a SHIFT

Right Shift 36 SHIFT

Alt 38 ALT

Caps Lock 3a CAPS LOCK

Num Lock 45 NUM LOCK

Special Keys

Keyboard Generated Codes SHIFT

Key Code Normal SHIFT CTRL ALT ALT

BACKSPACE Oe 08 bs 08 bs 08 bs 08 bs 08 bs

TAB Of 09 ht 1d gs 09 ht 09 ht 1d gs

RETURN 1c Od cr Od cr Od cr Od cr Od cr

SPACE 39 20 sp 20 sp 00 nul 20 sp 20 sp

ESC 01 1b esc 1b esc 1b esc 1b esc 1b esc

4

KEYBOARD(M) KEYBOARD(M)

Alphabetic Keys

Keyboard Generated Codes SHIFT

Key Code Normal SHIFT CTRL ALT ALT

a le 61 a 41 A 01 soh 1b4e61 1b4e41

b 30 62 b 42 B 02 stx 1b4e62 1b4e42

c 2e 63 c 43 C 03 etx 1b4e63 1b4e43

d 20 64 d 44 D 04 eot 1b4e64 1b4e44

e 12 65 e 45 E 05 enq 1b4e65 1b4e45

f 21 66 f 46 F 06 ack 1b4e66 1b4e46"

9 22 67 9 47 G 07 bel 1b4e67 1b4e47

h 23 68 h 48 H 08 bs 1b4e68 1b4e48

i 17 69 i 49 I 09 ht 1b4e69 1b4e49

24 6a 4a J Oa If 1b4e6a 1b4e4a

k 25 6b k 4b K Ob vt 1b4e6b 1b4e4b

I 26 6c 1 4c L Oe ff 1b4e6c 1b4e4c

m 32 6d m 4d M Od cr 1b4e6d 1b4e4d

n 31 6e n 4e N Oe so 1b4e6e 1b4e4e

0 18 6f 0 4f 0 Of si 1b4e6f 1b4e4f

p 19 70 P 50 P 10 dIe 1b4e70 1b4e50

q 10 71 q 51 Q 11 del 1b4e71 1b4e51

r 13 72 r 52 R 12 de2 Ib4e72 1b4e52

s 1f 73 s 53 S 13 dc3 1b4e73 1b4e53

t 14 74 t 54 T 14 de4 1b4e74 1b4e54

u 16 75 u 55 U 15 nak 1b4e75 1b4e55

v 2f 76 v 56 V 16 syn 1b4e76 1b4e56

w 11 77w 57 W 17 etb 1b4e77 1b4e57

x 2d 78 x 58 X 18 can 1b4e78 1b4e58

y 15 79 Y 59 y 19 em 1b4e79 1b4e59

z 2c 7a z 5a Z 1a sub Ib4e7a 1b4e5a

5

KEYBOARO(M) KEYBOARD(M)

Numeric and Punctuation Keys

Keyboard Generated Codes SHIFT

Key Code Normal SHIFT CTRL ALT ALT

1 02 31 1 21 31 I Ib4e31 Ib4e21

2 03 32 2 40 @ 00 nul Ib4e32 Ib4e40

3 04 33 3 23 # 33 3 Ib4e33 Ib4e23

4 05 34 4 24 $ 34 4 Ib4e34 Ib4e24

5 06 35 5 25 % 35 5 1b4e35 Ib4e25

6 07 36 6 5e - Ie rs 1b4e36 Ib4e5e

7 08 37 7 26 & 37 7 1b4e37 Ib4e26

8 09 38 8 2a * 38 8 1b4e38 1b4e2a

9 Oa 39 9 28 39 9 1b4e39 1b4e28

0 Ob 30 0 29 30 0 Ib4e30 Ib4e29

Oe 2d - 5f If us Ib4e2d Ib4e5f

Od 3d 2b + 3d : Ib4e3d Ib4e2b

Ia 5b 7b Ib esc 1b4e5b Ib4e7b

Ib 5d 7d Id 9s 1b4e5d 1b4e7d

27 3b 3a 3b 1b4e3b 1b4e3a

28 27 . 22 .. 27 • lb4e27 1b4e22

29 60 7e Ie rs Ib4e60 Ib4e7e

\ 2b· 5e \ 7e Ie fs 1b4e5e Ib4e7e

33 2e 3e 2e 1b4e2e Ib4e3e

34 2e 3e > 2e . Ib4e2e Ib4e3e

/ 35 2f / 3f ? If us Ib4e2f Ib4e3f

6

KEYBOARD(M) KEYBOARD(M)

Keypad Keys
----------- -- ------------------

Keyboard Generated Codes SHIFT

Key Code Normal SHIFT CTRL ALT ALT

37 2a * 2a * 2a * 1b4e2a 1b4e2a

scroll lock 46 1b5b4d 00 break 1b5b4d 1b5b4d 00 break

home 47 1b5b48 37 7 1b5b48 1b5b48 1b4e37

up arrow 48 1b5b41 38 8 Ib5b41 1b5b41 Ib4e38

page up 49 1b5b49 39 9 1b5b49 1b5b49 1b4e39

minus 4a 2d - 2d 2d - 1b4e2d 1b4e2d

left arrow 4b 1b5b44 34 4 Ib5b44 1b5b44 1b4e34

5 4c 1b5b45 35 5 1b5b45 1b5b45 1b4e35

right arrow 4d 1b5b43 36 6 1b5b43 1b5b43 Ib4e36

plus 4e 2b + 2b + 2b + 1b4e2b 1b4e2b

end 4f 1b5b46 31 1 1b5b46 1b5b46 1b4e31

down arrow 50 1b5b42 32 2 Ib5b42 1b5b42 1b4e32

page down 51 1b5b47 33 3 Ib5b47 1b5b47 1b4e33

insert 52 1b5b4c 30 0 1b5b4c 1b5b4c Ib4e30

del 53 7f 2e 7f 7f Ib4e2e

sys req 54 00 00 00 00 1b5b35

-----_ .. --_ .. _-----_.-

Function Keys
---_._---------------_ .. _-

Keyboard Generated Codes SHIFT

Key Code Normal SHIFT CTRL ALT ALT

F1 3b 1b5b4d 1b5b59 1b5b6b 1b4e4d 1b4e59

F2 3c 1b5b4e 1b5b5a 1b5b6c 1b4e4e 1b4e5a

F3 3d 1b5b4f 1b5b61 1b5b6d 1b4e4f 1b4e61

F4 3e 1b5b50 Ib5b62 Ib5b6e 1b4e50 1b4e62

F5 3f Ib5b51 1b5b63 1b5b6f 1b4e51 1b4e63

F6 40 1b5b52 1b5b64 1b5b70 1b4e52 1b4e64

F7 41 Ib5b53 1b5b65 1b5b71 1b4e53 Ib4e65

F8 42 Ib5b54 Ib5b66 1b5b72 1b4e54 Ib4e66

F9 43 Ib5b55 1b5b67 Ib5b73 1b4e55 1b4e67

FlO 44 Ib5b56 1b5b68 1b5b74 1b4e56 1b4e68

Fll 57 1b5b57 1b5b69 1b5b75 1b4e57 1b4e69

F12 58 Ib5b58 1b5b6a 1b5b76 1b4e58 1b4e6a

7

KEYBOARD(M) KEYBOARD(M)

Foreign Character Set Support

The keyboard driver supports input and output mapping for
9 different foreign language keyboards and character sets.
The foreign keyboards supported are:

Language Type

Language defined in <sys/kd.h> Function key

English US_ENGLISH Fl

U.K./British UK_ENGLISH F2

French FRENCH F3

German GERMAN F4

Spanish SPANISH F5

Swedish SWEDISH F6

Norwegian NORWEGIAN F7

Danish DANISH F8

Italian ITALIAN F9

7/8 Bit Mode FlO

Toggle

The Series 500 Owner's Guide describes the keyboard lay­
outs and ASCII character sets for each keyboard.

There are 3 ways to change from one language mapping to
another. They are:

1. key combination Ctrl-Alt-Sysreq

2. / etc/language file

3. KDSETLANG and KDGETLANG ioctl commands

At any time when the operating system is running, the user
can simultaneously type the keys Dill, l1li and IBft1i ij ••
followed by a Function key, to change keyboard mapping.
The function keys for each language are listed in the
table above. To change to U.K. English, for example, the
user would simultaneously press then type
the iii key. The current language will stay in effect un­
til it is changed via a key sequence, an ioctl call, or
until the system is rebooted. Note, on some keyboards,
the SYSREQ key is labeled as PRINT SCREEN.

8

KEYBOARD(M) KEYBOARD(M)

The DDI key is used to toggle between 7-bit and 8-bit
versions of the language type currently in use. When the
system is first booted, 7-bit character sets are used by
default. The _ key does not change the language type.

The system can be configured to boot with a particular
language other than English as the default. This is done
via the /etc/language file. If this file is present and
contains a string matching one of the valid language types
from the table above, then that language is mapped in im­
mediately. If the file is not present or does not contain
a valid language type, then the default language
(US_ENGLISH) is used.

For an explanation of KDSETLANG and KDGETLANG, see
the 10ctI section that follows.

IoctI Calls

KDGKBTYPE
This call is used to get the current keyboard type.
It places one of the following numbers, as defined in
(sys/kd.h), at the unsigned char pointed to by the
loctI argument:

#define KB_84 1

#define KB_IOl 2

#define KB_OTHER 3

KDGKBMODE

/* 84-key keyboard */

/* lOl/102-key keyboard */

/* other type of keyboard */

This call is used to get the current keyboard mode.
It returns one of the following numbers, as defined
in (sys/kd.h):

#define K_RAW Oxoo

#define K XLATE OxOl

KDSKBMODE

/* send up/down scan codes */

/* translate to ascii */

This call is used to set the keyboard mode. The
argument to the loctI is either K_RAW or K_XLATE.
By using raw mode, the program can see the raw
up/down can codes from the keyboard. In translate
mode, the translation tables are used to generate the
appropriate character code.

9

KEYBOARD(M) KEYBOARD(M)

KDGKBENT
This call is used to read one of entries in the
translation tables. The argument to the ioetI is the
address of one of the following structures, defined
in (sys/kd.h), with the first two fields filled in:

struct kbentry {

unchar kb_table:

unchar kb_index:

ushort kb_value:

/* Table selectors */

#define K_NORMTAB

#define K_SHIFTTAB

#define K_ALTTAB

#define K_ALTSHIFTTAB

/* which table to use */

/* which entry in table */

/* value to get/set */

OxOO

OxOl

Ox02

Ox03

/* normal table */

/* shifted table */

/* alt table */

/* shifted alt table */

The foeti will get the indicated entry from the indi­
cated table and return it in the third field.

KDSKBENT
This call is used to set an entry in one of the
translation tables. It uses the same structure as
the KDGKBENT ioetI, but with the third field filled
in with the value that should be placed in the trans­
lation table. This can be used to partially or com­
pletely remap the keyboard.

KDGETLED
Used to return an unsigned character which may have
any or none of the following flags (defined in
(sys/kd. h» set:

LED CAP
LED SCR
LED NUM

KDSETLED

The CAP LOCK key is set
The SCROLL LOCK key is set
The NUM LOCK key is set

Used to set the CAP LOCK, SCROLL LOCK, or NUM
LOCK keys. The argument should contain one or all
of the valid flags shown under KDGETLED.

10

KEYBOARD(M) KEYBOARD(M)

Files

KDMKTONE
Used to ring the bell at given frequency and for a
given duration. The argument is a long integer hav­
ing the following format:

lower 16 bits
upper 16 bits

Contains desired frequency
Time to ring in milliseconds

The frequency used for the normal system bell charac­
ter is 1331 (decimal).

KDGETLANG
Used to return the current language in use on the
console terminal. The argument returned is an inte­
ger which contains one of the valid language types
(defined in (sys/kd.h» listed previously under For­
eign Character Set Support.

KDSETLANG
Used to change the language in use on the console
terminal. Uses an integer argument which should be
set to one of the valid language types (defined in
(sys/kd.h». The change takes effect immediately.

If the argument is 7-bit or 8-bit (defined in
(sys/kd.h», the terminal switches to a 7 or 8-bit
version of the language currently in use.

/ dev / console

See Also

ioctl(S), display(M), termio(M), vt(M)

11

KILLALL(C) KILLALL(C)

Name

klllall - Kills all active processes.

Syntax

Jetc/killall [signal]

Description

Files

Killall terminates all active processes not directly re­
lated to the shutdown procedure. Killall is used by
/etc/shutdown, and can only be run by the super-user.

Killall terminates all processes with open files so that
the mounted file systems will be unbusied and can be un­
mounted.

Killall sends signal (see klll(C». The default signal
is 9.

Jetc/shutdown

See Also

kill(C), ps(C), shutdown(M)

1

LAYOUT(M) LAYOUT(M)

Name

layout - Manages hard disk partitions.

Syntax

/ etc/layout -c I -p driveid
/etc/layout -la Ib I cl dl e I fl gl h I.spares I.restart driveid
/etc/layout [-f] [-r mlc] [-d] I [-e] I [-m] driveid

ldevice

Description

The layout command is used to create, alter, and inspect
the partition map on a hard disk unit. The hard disk par­
tition map is a fixed-size table of 16 entries, each of
which describes the position and size of a logical device
on a hard disk. This information, along with the bad­
sector map (/ dev /hd? . secmap), is used by the file pro­
cessor subsystem.

CAUTION

Only an experienced system administrator
should use this command. Running layout
could make all of your files inaccessible.

Several of these devices are informational and have fixed
locations (track 0, cylinder 0). Other logical devices
are made available for definition by the user.

1

LAYOUT(M) LAYOUT(M

The logical devices are:

Offset Device Use

0 hdO unmapped drive
1 hdOa user defined - default swap area

on drive 0
2 hdOb user defined - root file system 0]

drive 0
3 hdOc user defined
4 hdOd user defined
5 hdOe user defined
6 hdOf user defined
7 hdOg user defined
8 hdOh user defined
9 hdO.spares alternates for unmapped bad

sectors
10 hdO.drinfo drive configuration information

(recorded during manufacturing)
11 hdO. badlist list of bad sectors (recorded

during manufacturing)
12 hdO.boot boot program
13 hdO.restart restart partition
14 hdO.layout layout information
15 hdO.secmap sector sparing map

--_._ .. _-------_._---

The second hard disk (hdl) starts at 16 and the third hard
disk (hd2) starts at 48.

Layout for the Series 500
UNIX - hdO

For the Series 500, if you partition the disk with more
than one partition, the driveid is a two-digit number.
The first digit is the physical disk number (0 or 1). The
second digit is the partition number (0, 1, 2, or 3).
For example, if you partition your hard disk for both
UNIX and DOS, the partitions are hdO and hdOl,
respectively,

2

LAYOUT(M) LAYOUT(M)

The following lists show the minor device number for the
partitions and logical devices on the Series 500 hard
disks. The major device number for all of these logical
devices is O. When UNIX is installed, minor devices 0 -
15 are automatically made. If a second hard disk is in­
stalled, only minor devices 16 - 31 are made for it.

If you want more than one UNIX partition, run fdisk(C)
to split up the hard disk. Then run mknod(C) to create
the logical devices for it. For example, run the follow­
ing 16 commands to make the devices for the second parti­
tion (i.e., partition 1) on drive 0:

Minor device numbers (offset) for the partitions and log­
ical devices are listed in the following pages.

3

LAYOUT(M)

Drive 0, Partition 0

Offset

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Device

hdO (or hdOO)
hdOa (or hdOOa)
hdOb (or hdOOb)
hdOc (or hdOOc)
hdOd (or hdOOd)
hdOe (or hdOOe)
hdOf (or hdOOf)
hdO. fsck (or hdOO. fsck)
hdOh (or hdOOh)
hdO.spares (or hdOO.spares)
hdO.drinfo (or hdOO.drinfo)
hdO.badlist (or hdOO.badlist)
hdO.boot (or hdOO.boot)
hdO.restart (or hdOO.restart)
hdO.layout (or hdOO.layout)
hdO.secmap (or hdOO.secmap)

Drive 1, Partition 0

Offset

16
17
18
19
20
21
22
23
24
25

Device

hd1 (or hd10)
hd1a (or hd10a)
hd1b (or hd10b)
hdlc (or hdl0c)
hd1d (or hdl0d)
hd1e (or hdl0e)
hdlf (or hdl0f)
hd1.fsck (or hd10.fsck)
hd1h (or hdl0h)
hd1.spares (or hd10.spares)

4

LAYOUT(M

LAYOUT(M)

Drive 1, Partition 0 (Cont.)

Offset

26
27
28
29
30
31

Device

hd1.drinfo (or hdl0.drinfo)
hd 1. badlist (or hd 10. badlist)
hd1.boot (or hdl0.boot)
hd1.restart (or hdlO.restart)
hd1.1ayout (or hdl0.1ayout)
hd1.secmap (or hdlO.secmap)

Drive 0, Partition 1

Offset

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Device

hdOl
hdOla
hdOlb
hdOlc
hdOld
hdOle
hdOlf
hd01.fsck
hdOlh
hdO 1. spares
hdO 1. drinfo
hdO 1. badlist
hdOl.boot
hdO 1. restart
hdO 1.1ayou t
hdO 1. secmap

5

LAYOUT(M)

LAYOUT(M)

Drive 1, Partition 1

Offset

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Device

hdll
hdlla
hdllb
hdllc
hdlld
hdlle
hdllf
hdl1.fsck
hdllh
hdll.spares
hdl1.drinfo
hdll. badlist
hdl1.boot
hdll. restart
hdll.1ayout
hdll.secmap

Drive 0, Partition 2

Offset Device

64 hd02

79 hd02.secmap

LAYOUT(M)

6

LAYOUT(M)

Drive 1, Partition 2

Offset

80

95

Device

hd12

hdl2.secmap

Drive 0, Partition 3

Offset

96

111

Device

hd03

hd03.secmap

Drive 1, Partition 3

Offset

112

127

Device

hd13

hdl3.secmap

LAYOUT(M)

7

LAYOUT(M) LAYOUT(M)

There are two additional devices that allow access to the
entire hard disk:

128 hdO.entire
144 hd1.entire

Partition Map Creation

All of Drive 0
All of Drive 1

The layout command determines the size and positions of
userdefinable areas from an ASCII format layout descrip­
tion file. Default layout descriptions are supplied, and
may be altered by a knowledgeable user during the hard
disk creation process. The install script and the
add.hd(C) script are used to configure the main hard
drive, and an additional drive, respectively.

On some machines, the optional Uninterruptible Power
Supply (UPS) is available (for example, the Altos Series
2000). In this case, the install script asks you if a
restart partition is desired, and if it is, whether it is
to be made the current size of main memory, or the maxi­
mum possible memory size. This partition is used by the
autorestartmechanism and may only be installed on the
main drive. See shutype(M) for further details.

Next you are asked whether the default layout is accept­
able for this disk. Select the default layout by deter­
mining the formatted size of the drive and consulting the
/etc/layouts/driveclass file, which contains the names of
default layout configuration files for different drive
sizes. These files are found in the directory,
/ etc/layouts/ defaults.

If the default layout is not acceptable, as in the case of
a system that requires a larger-than-normal swap area, a
dialogue is entered with the user (see the "Example" sec­
tion that follows). As a result of this dialogue, a new
layout file is created in the directory, /etc/layouts.
The format of a layout description file is a collection of
newline-terminated lines of the form:

The first field is the name of the partition, the second
field is the size of the partition in 512-byte blocks.
The partition name must be a lowercase character in the

8

LAYOUT(M) LAYOUT(M)

range a through h, or the reserved words . restart and
. spares. The size field is a decimal number. The parti­
tion description lines are not required to be in any spe­
cific order. The /etc/layouts/config file contains a map­
ping between the names of various user-configurable parti­
tions and the minor device to which they apply. A sample
layout file follows.

Any lines in the layout file with # in column 1 are con­
sidered comments and are ignored.

The layout command uses the following rules for map crea­
tion.

Each partition is allocated in the order it is specified
in the layout description file. Space is allocated start­
ing from track 2 of cylinder O. Unlike previous versions
of layout, partitions are made exactly the size cited in
the description file. Likewise, the size of the last par­
tition will not be automatically adjusted to make room for
the space required for the maximum number of bad sectors
on a drive. This number is calculated at a track per
megabyte of unformatted disk. An advisory message will
NOT be produced if the last partition spills over in the
bad sector reserved area. The command line options for
the partition creation invocation of layout are:

/etc/layout [-f] [-r m I c] [-d] I [-e] I [-m]
driveid ldevice

The value for driveid is a single character that selects
the drive in question. The main drive's driveid is O.
The value for ldevice is usually the raw layout device for
the specified drive. In the case of the main drive, this
value is /dev /rhdO.layout.

9

LAYOUT(M) LAYOUT(M)

-f This flag indicates that you want to alter a layout.
A dialogue will begin and a new layout description
file will be created with the values you specify.

-r This flag indicates that a restart partition is
needed. You may choose between a restart partition
sized the same as the maximum size of memory (m),
or the current size of memory (c).

-d This flag indicates that the default layout descrip­
tion file for this size of disk should be used for
all further operations.

-e This flag indicates that an altered layout descrip­
tion file for this size of disk should be used for
all further operations.

-m This flag indicates that the partition map already
installed on the disk should be used for all further
opera tions.

Layout Viewing

The -p option prints (on standard output) a representation
of the layout information for a particular drive. This
representation consists of the name of the logical device,
starting block number, and starting block size in 1/2K
blocks. The numbers are in decimal. The following is an
example taken from an 80 Mbyte hard disk:

/ etc/layout -p 0

10

LAYOUT(M) LAYOUT(M)

produces:

The -1 option with partition selector is used to supply
mkfs(C) with the size to make the corresponding file sys­
tem. For example,

/etc/layout -ld 0

produces:

and is best used in the following context:

DSIZE = "/ete/layout -ld 0"
/ete/mkfs /dev/hdOd "expr $DSIZE /2" 4 128

Besides a through h, the -1 option also takes .restart and
.spares as acceptable arguments.

The -e option reads the /dev /hd? .drinfo file and prints
the decimal values for size of drive in megabytes, number
of cylinders, number of heads, number of sectors per
track, numbers of sectors per cylinder, type of drive, and
recommended interleave if the drive is a SCSI. The fol­
lowing is the result from an 80 Mbyte ST506-type hard
disk:

11

LAYOUT(M) LAYOUT(M)

Other types of drives are SCSI "and ESDI. The -c option
is intended primarily for the benefit of shell scripts used
to configure hard disk drives.

Example

For example, to add swap space to an additional drive,
type layout -f 2 /dev/rhd2.layout. The following menu
will be displayed:

12

LAYOUT(M) LAYOUT(M)

Files

To increase the swap area size (move blocks to the main
swap area), type m (for move) and press Itmn. A mes­
sage on the screen prompts:

Type 14 (the partition number of currently unassigned
blocks). You are asked:

Type 1 (for the main swap area). When prompted for the
number of blocks, type the number you want to move from
partition 14 to 1. Then type d to display the new block
assignments. Finally, type q to quit.

/ etc/layouts/ config

/ etc/layouts/ defaults/*
/etc/layouts/driveclass
/dev /hd? secmap

Device map for configurable
partitions

Default layout descriptions
Drive classes file
Bad-sector map

See Also

mknod(C), mkfs(M), shutype(M)

13

LDUNIX(M) LDUNIX(M)

Name

ldunix - Altos configurable kernel linker.

Syntax

ldunix -d boot directory] -k kernel_file
-s system _file]

Description

Ldunix will link special object file modules produced by
mkboot(M) creating kernel and symbol table image files.
These image files can then be processed by mkunix(M) to
yield a bootable kernel file.

Ldunix is a utility based on the auto-configuration boot
procedure. It allows users to reconfigure a unix kernel
file to reflect changes in tuneable parameters, or the
addition of special purpose kernel drivers.

To create the image files, ldunix uses the KERNEL and sys­
tem files from the current directory and the special ob­
ject files from the boot.d directory. The -d, -k, and -s
options can be used to explicitly specify the pathnames
for ldunix to use for boot.d, KERNEL, and system, respec­
tively.

When ldunix links in the modules specified by the master
files and by the system file, it checks for functions with
specific names in modules that are drivers. The names
checked for are formed by concatenating the prefix speci­
fied in the master file and the desired suffix. For ex­
ample, in a driver with the prefix "hd," if ldunix is
checking for the suffix "intr," it will look for the func­
tion "hdintr." In most cases, if the routine is not found,
the appropriate table entry gets the entry for the "nodev"
routine. In the case of the "rstrt," "shut," and "init"
suffixes, if there is no matching routine, no entry is
made in the table.

1

LDUNIX(M) LDUNIX(M)

Files

The following suffixes are checked by ldunix for each load
module of the given type:

block device drivers:
intr interrupt handler

open routine
close routine
strategy routine

open
close
strategy
print

character device
intr
open
close
read
write

all drivers:
rstrt

shut

init

kimage
ksymbols

routine to call to report device
errors

drivers (including streams drivers):
interrupt handler
open routine
close routine
read routine
write routine

restart routine to be called when
power is restored after a power
failure (if UPS is installed)

shutdown routine to be called when
power fails (if UPS is installed)

routine to be called to initialize the
driver (called after all other kernel
initialization is completed)

Kernel image file
Kernel symbol table file

See Also

mkboot(M), mkunix(M)

2

LlNK(M) LlNK(M)

Name

link, unlink - Links and unlinks files and directories.

Syntax

/ etc/link file 1 file2
/etc/unlink file

Description

The link command is used to create a file name that points
to another file. Linked files and directories can be re­
moved by the unlink command; however, it is strongly
recommended that the rm(C) and rmdir(C) commands be used
instead of the unlink command.

The only difference between In(C) and link/unlink is that
the latter do exactly what they are told to do, abandoning
all error checking. This is because they directly invoke
the link (S) and unlink (S) system calls.

See Also

rm(C) and link(S), unlink(S) in the Reference (CP, 5, F)

Notes

These commands can be run only by the super-user.

1

LOG(M) LOG(M)

Name

log - Interface to STREAMS error logging and event trac­
. ing.

Description

Log is a STREAMS software device driver that provides an
interface for the STREAMS error logging and event tracing
processes (strerr(M), strace(M». Log presents two sepa­
rate interfaces: a function call interface in the kernel
through which STREAMS drivers and modules submit log mes­
sages; and a subset of ioctl(S) system calls and STREAMS
messages for interaction with a user level error logger, a
trace logger, or processes that need to submit their own
log messages.

Kernel Interface

Log messages are generated within the kernel by calls to
the function strlog:

strlog(mid. sid. level. flags. fmt. argl)

short mid. sid;

char level;

ushort flags;

char *fmt;

Required definitions are contained in (sys/strlog.h) and
(sys/log.h). Mid is the STREAMS module id number for the
module or driver submitting the log message. Sid is an
internal sub-id number usually used to identify a particu-
lar minor device of a driver. Level is a tracing level
that allows for selective screening out of low priority
messages from the tracer. Flags are any combination of
SL ERROR (the message is for the error logger), SL TRACE
(the message is for the tracer), SL FATAL (advisory - noti­
fication of a fatal error), and SL NOTIFY (request that a
copy of the message be mailed to-the system
administrator). Fmt is a printf(S) style format string,
except that %s, %e, %E, %g, and %G conversion specifica­
tions are not handled. Up to NLOGARGS (currently 3) nu­
meric or character arguments can be provided.

1

LOG(M) LOG(M)

User Interface

Log is opened via the clone interface, /dev flog. Each
open of fdev flog obtains a separate stream to log. In
order to receive log messages, a process must first notify
log whether it is an error logger or trace logger via a
STREAMS I STR ioctI call (see below). For the error log­
ger, the I STR ioctI has an ic cmd field of I ERRLOG, with
no accompanying data. For the trace logger,-the ioctI has
an ic cmd field of I TRCLOG, and must be accompanied by
a data buffer containing an array of one or more struct
trace ids elements. Each trace ids structure specifies an
mid, sid, and level from which messages will be accepted.
Strlog will accept messages whose mid and sid exactly
match those in the trace ids structure, and whose level is
less than or equal to the-level given in the trace_ids
structure. A value of -1 in any of the fields of the
trace ids structure indicates that any value is accepted
for that field.

At most one trace logger and one error logger can be ac­
tive at a time. Once the logger process has identified
itself via the ioctI call, log will begin sending up mes­
sages subject to the restrictions noted above. These mes­
sages are obtained via the getmsg(S) system call. The
control part of this message contains a log ctl structure
which specifies the mid, sid, level, flags, tfine in ticks
since boot that the message was submitted, the correspond­
ing time in seconds since Jan. 1, 1970, and a sequence
number. The time in seconds since 1970 is provided so
that the date and time of the message can be easily co­
mputed, and the time in ticks since boot is provided so
that the relative timing of log messages can be deter­
mined.

Different sequence numbers are maintained for the error
and trace logging streams, and are provided so that gaps
in the sequence of messages can be determined (during
times of high message traffic some messages may not be
delivered by the logger to avoid hogging system
resources). The data part of the message contains the
unexpanded text of the format string (null terminated),
followed by NLOGARGS words for the arguments to the for­
mat string, aligned on the first word boundary following
the format string.

2

LOG(M) LOG(M)

A process may also send a message of the same structure to
log, even if it is not an error or trace logger. The only
fields of the log_ ctl structure in the control part of the
message that are accepted are the level and flags fields;
all other fields are filled in by log before being for-
warded to the appropriate logger. The data portion must
be packed one word each, on the next word boundary follow­
ing the end of the format string.

Attempting to issue an I TRCLOG or I ERRLOG when a log­
ging process of the given type already-exists will result in
the error ENXIO being returned. Similarly, ENXIO is re­
turned for I TRCLOG loctIs without any trace ids struc­
tures, or for any unrecognized I STR loctI calls. Incor­
rectly formatted log messages sent to the driver by a user
process are silently ignored (no error results).

Examples

Example of I ERRLOG notification.

struct strioctl ioc;

ioc.ic_cmd = I_ERRLOG;

ioc.ic_timeout = 0;

ioc.ic_len = 0;

ioc.ic_dp = NULL;

/* default timeout (15 secs.) */

ioctl(log. I_STR. &ioc);

Example of I-TRCLOG notification.

struct trace_ids tid[2];

tid[O].ti_mid = 2;

tid[O].ti_sid = 0;

tid[O].ti_level = 1;

tid[1].ti_mid = 1002;

tid[I].ti_sid = -1; /* any sub-id will be allowed */

tid[l].ti_level = -1; /* any level will be allowed */

3

LOG(M) LOG(M)

Files

ioc.ic_cmd = I TRCLOG;

ioc.ic_timout = 0;

ioc.ic_len - 2 * sizeof(struc trace_ids);

ioc.ic_dp = char *)tid;

ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;

struct log_ctl lc;

char *message = "Don't forget to pick up some milk \

on the way home";

ctl.len ctl.maxlen = sizeof(lc);

ctl.buf (char *)&lc;

dat.len = dat.maxlen = strlen(message);

dat.buf message;

lc.level 0;

lc.flags = SL_ERRORSL_NOTIFY;

putmsg(log, &ctl, &dat, 0);

/dev/log
(sys/log.h)
(sYS/strlog.h)

See Also

strace(M), strerr(M), clone(M), and intro(S), getmsg(S),
putmsg(S) in Reference (CP, S, F) STREAMS Programmer's
Guide

4

LPADMIN(M) LPADMIN(M)

Name

Ipadmin - Configures the LP spooling system.

Syntax

/usr/lib/lpadmin -pprinter [options]
/usr/lib/lpadmin -xdest
/usr/lib/lpadmin -d[dest]

Description

Lpadmin configures LP spooling systems to describe print­
ers, classes, and devices. I t is used to add and remove
destinations, change membership in classes, change devices
for printers, change printer interface programs and change
the system default destination. Lpdamin may not be used
when the LP scheduler, Ipsched(M), is running, except
where noted below.

Exactly one of the -d, -p, or -x options must be present
for every legal invocation of Ipadmin.

-d[dest]

-pprinter

-xdest

Makes dest, an existing destination, the
new system default destination. If dest is
not supplied, then there is no system de­
fault destination. This option may be used
when Ipsched(M) is running. No other op­
tions are allowed with -d.

Names a printer to which all of the options
below refer. If printer does not exist
then it will be created.

Removes destination dest from the LP sys­
tem. If dest is a printer and is the only
member of a class, then the class will be
deleted, too. No other options are allowed
with -x.

The following options are only useful with -p and may ap­
pear in any order. For ease of discussion, the printer
will be called P.

1

LPADMIN(M)

-cclass

-eprinter

-h

-linterface

-mmodel

-rclass

-vdevice

Restrictions

LPADMIN(M)

Inserts printer P into the specified class.
Class will be created if it does not al­
ready exist.

Names a prin ter to which all of the options
below refer. If printer does not exist
then it will be created.

Indicates that the device associated with P
is hardwired. This option is assumed when
creating a new printer unless the -I option
is supplied.

Establishes a new interface program for P.
Interface is the path name of the new pro­
gram.

Selects a model interface program for P.
Model is one of the model interface names
supplied with the LP software (see Models
below).

Removes printer P from the specified class.
If P is the last member of the class, then
the class will be removed.

Associates a new device with printer P.
Device is the path name of a file that is
writable by the LP administrator, Ip. Note
that there is nothing to stop an adminis­
trator from associating the same device
with more than one printer. If only the -p
and -v options are supplied, then Ipadmin
may be used while the scheduler is running.

When creating a new printer, the -v option and one of the
-e, -i, or -m options must be supplied. Only one of the
-e, -i, or -m options may be supplied. The -h and -I key-
letters are mutually exclusive. Printer and class names
may be no longer than 14 characters and must consist en­
tirely of the characters A-Z, a-z, 0-9, and (underscore).

2

LPADMIN(M) LPADMIN(M)

Models

Model printer interface programs are supplied with the LP
software. They are shell procedures that interface be­
tween Ipsched(M) and devices. All models reside in the
directory /usr /spool/lp/model and may be used as is with
Ipadmin -me Models should have 644 permission if owned by
lp and bin, or 664 permission if owned by bin and bin.
Alternatively, LP administrators may modify copies of
models and then use Ipadmin -1 to associate them with
printers. The following list describes the models and
lists the options which they may be given on the Ip com­
mand line using the -0 keyletter:

dumb Interface for a line printer without special
functions and protocol. Form feeds are assumed.
Use this model to copy and modify (for printers
that do not have models).

Examples

Files

1. To create a printer named hp2 on port 02, use the
commands:

cd /usr/lib
lpshut
xtty disable tty02
Ipadmin -php2 -v/dev/tty02 -mdumb
accept hp2
lpenable hp2
lpsched

2. To print on hp2, use the command:

lp -dhp2 files

lusr /spool/lp/*

See Also

accept(C), Ipenable(C) , Ip(C), Ipsched(M), Ipstat(C)

3

LPD(M) LPD(M)

Name

lpd - Line printer daemon.

Syntax

lpd n

Description

The lpd command is the line printer daemon which supports
multiple printer spooling. The lpd command is executed
automatically by the Ipr(C) command. A single daemon is
used per printer device, and daemons are invoked only if
there is currently no daemon active. The lpd command does
not engage in any filtering of the data to the printer,
hence printer control codes, escape sequences and other
binaries will be reproduced. For serial printers, Ipr(C)
supplies lpd with a tty modes setting which is
non-destructively used to print individual requests. The
lpd command restores tty modes between each request, and
at exit time.

The lpr command decides whether to invoke the lpd daemon
based on the presence (or absence) of a "lock" file in
each spool directory. A daemon will run until there is no
more output for its printer. It also removes its lock
file so that a new daemon may be started up. If the
daemon were to terminate before removing its lock file,
the lock file must be removed from its spool directory
before printing can be resumed. The lpd command prints an
optional header (specified in lpr), followed by a sequence
of files (each followed by a formfeed).

Options

n N is a number that selects a spool directory and
printer device. If n were specified as "2",
/usr/spool/lpd2 and /dev/lp2 would be selected. If
no number is supplied, then lpd assumes / dev /lp and
/usr/spool/lpd. The lpr command invokes lpd with an
appropria te printer selector digit.

1

LPD(M)

Related Commands

Files

Ipr(C), printers(M)

/usr /spool/lpd?
/dev/lp*
/usr /spool/lpd? flock

spool directories
printer devices
lock file

2

LPD(M)

LPINIT(M) LPINIT(M)

Name

lpinit - Adds new lineprinters to the system.

Syntax

/usr/lib/lpinit

Description

Lpinit is a shell script for configuring and adding new~
lineprinters to a system. It should only be executed by

.. the super user.

Lpinit asks a series of questions for which the default
answers are displayed. You can type a response or press
I@D for the default answer. If you type a response to
the first question, a Help message is displayed. Lpinit
prompts for the following information:

• The print device pathname (default is /dev!lp).

• The name of the printer (default is linepr).

• The pathname of the printer interface program
(default is /usr/spool/lp/model/dumb).

The printer name can be any combination of up to 14 alpha
numeric characters or underscores. A printer interface
program can be a shell script, C program, or any execut­
able program; or the model interface program,
/usr/spool/lp/model/dumb, can be copied and modified.

After you have responded to these questions, lpinit stops
the print scheduler, lpsched, changes the acceptance
status of the new lineprinter to accept, and enables it to
print files. Lpinit then asks if the new printer will be
the default printing destination (default is Yes). All
nonspecific print requests are routed to the default des­
tinations (see Ip(C».

The steps to configure a new printer can be taken sepa­
rately (see Ipadmln(M), accept(C), Ipenable(C), Ipsched(M)
for details).

1

LPINIT(M) LPINIT(M)

Files

/usr /lih/lpinit

See Also

accept(C), Ipenahle(C), Ip(C), Ipadmin(M), Ipsched(M)

2

LPON(M) LPON(M)

Name

Ipon, Ipoff - Turns on/off line printer scheduling.

Syntax

Ipon
Ipoff

Description

Files

By default, line printer scheduling is activated in Altos
System V, version 5.3d. If there is no line printer at­
tached to the system, this scheduling is superfluous;
printer scheduling may be stopped, and boot-time startup
of scheduling permanently disabled by using the Ipoff com­
mand. If a printer is added to a system that has printer
scheduling disabled, the lpon command will start schedul­
ing and enable boot-time scheduling startup.

/ etc/ ini t. d/lpsched
/ etc/rcO.d/K36Ipsched
/ etc/rc2.d/S38Ipsched
/ etc/rc2.d/S02.printers
/etc/rc2.d/s02.printers

See Also

Ip(C), Ipenable(C), Ipdisable(C)

1

LPSCHED(M) LPSCHED(M)

Name

lpsched, lpshut, lpmove - Starts/stops the LP request
scheduler and moves requests.

Syntax

/usr /lib/lpsched
/usr /lib/lpshut
/usr/lib/lpmove request ••• dest
/usr/lib/lpmove destl dest2

Description

Files

Lpsched schedules requests taken by lp(C) for printing on
line printers.

Lpshut shuts down the line printer scheduler. All print­
ers that are printing at the time lpshut is invoked will
stop printing. Requests that were printing at the time a
printer was shut down will be reprinted in their entirety
after lpsched is started again. All LP commands perform
their functions even when Ipsched is not running.

Lpmove moves requests that were queued by Ip(C) between
LP destinations. You can use this command only when
lpsched is not running.

The first form of the command moves the named requests to
the LP destination, dest. Requests are request ids as
returned by Ip(C). The second form moves all requests for
destination destl to destination dest2. As a side effect,
Ip(C) will reject requests for dest 1.

Note that lpmove never checks the acceptance status (see
accept(C)) for the new destination when moving requests.

/usr /spool/lp/*

See Also

accept(C), Ip(C), Ipstat(C)

1

MAKEDEVS(M) MAKEDEVS(M)

Name

makedevs - Creates special device files.

Syntax

/etc/makedevs directory

Description

Makedevs creates all the special device files in the spe­
cified directory supported by the operating system.

- Makedevs is normally run to create the device files for
the hard disk at installation time, and to repair the de­
vice directory (/ dev).

See Also

mknod(C)

1

MAKEKEY(M) MAKEKEY(M)

Name

makekey - Generates an encryption key.

Syntax

/usr /llb/makekey

Description

Makekey improves the usefulness of encryption schemes by
increasing the amount of time required to search the key­
space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output de­
pends on the input in a way that is intended to be diffi­
cult to compute (i.e., requires a substantial fraction of
a second).

The first eight input bytes (the input key) can be arbi­
trary ASCII characters. The last two input bytes (the
salt) are best chosen from the set of digits, dot (.),
slash (/), and uppercase and lowercase letters. The salt
characters are repeated as the first two characters of the
output. The remaining 11 output characters are chosen
from the same set as the salt and constitute the output
key.

The transformation performed is essentially the following:
the salt is used to select one of 4,096 cryptographic
machines based on the National Bureau of Standards DES
algorithm, but broken in 4,096 different ways. Using the
input key as the key, a constant string is fed into the
machine and recirculated. The 64 bits that come out are
distributed into the 66 output key bits in the result.

Makekey is intended for use with programs that perform
encryption (e.g., passwd(M». Usually its input and out­
put will be pipes.

See Also

ed(C), vi(C), passwd(M)

1

MAKETTYS(M) MAKETTYS(M)

Name

makettys - Creates tty special files.

Syntax

/etc/makettys [directory]

Description

:<'iles

The makettys command creates all the special files in the
specified directory (fdev by default) for all the serial
ports (tty special files) supported by the operating sys­
tem and installed hardware.

Execute this command in single-user mode.

This is done by executing the IOCHOWMANY ioctl to deter­
mine how many ports are supported for each type of com­
munications board that is installed. If necessary, it will
first remove incorrect entries. It will NOT remove spe­
cial files that are not supported by the current hardware.
(This could happen after a board has been removed.)

All files created have the prefix "tty," and up to three
decimal digits appended. (For compatibHty, ports 1-9
become ttyO 1 - tty09.)

Currently, makettys supports only the SIO and Multidrop
boards; other devices may be supported in the future.

Makettys is normally run from / etc/brc on every system
boot to ensure that all tty devices are correct.

/dev default directory

iee Also

mknod(C)

1

MAKETTYS(M) MAKETTYS(M)

Diagnostics

Messages appear if makettys can't change to the correct
directory, if it is unable to execute the IOCHOWMANY
ioctl, or can't create the special files.

Makettys will not make the pseudo file /dev/tty.

2

MASTER(M) MASTER(M)

Name

master - Master configuration database.

Description

The master configuration database is a collection of
files. Each file contains configuration information for a
device or module that may be included in the system. A
file is named with the module name to which it applies.
This collection of files is maintained in a directory
called /usr/sys/master.d. Each individual file has an
identical format. For convenience, this collection of
files will be referred to as the master file, as though it
was a single file. This will allow a reference to the
master file to be understood to mean the individual file
in the master.d directory that corresponds to the name of
a device or module.

The file is used by the mkboot(M) program to obtain device
information to generate the device driver and configurable
module files. It is also used by the sysdef(M) program to
obtain the names of supported devices. Master consists of
two parts; they are separated by a line with a dollar sign
($) in column 1.

•

•

Part 1 contains device information for both hardware
and software devices, and loadable modules.

Part 2 contains parameter declarations used in part
1. Any line with an asterisk (*) in column 1 is
treated as a comment.

Part 1, Description

Hardware devices, software drivers, and loadable modules
are defined with a line containing the following informa­
tion. Field 1 must begin in the left-most position on the
line. Fields are separated by white space (tab or blank).

1

MASTER(M) MASTER(M)

Field 1: Elemen t characteristics:

o
r
b
c
a
t
s
f
m
x
number

Specify only once
Required device
Block device
Character device
Generate segment descriptor array
Initialize cdevsw[l.d ttys
Software driver -
STREAMS driver
STREAMS module
Not a driver; a loadable module
The first interrupt vector for a
device

Field 2: Number of interrupt vectors required by a
hardware device; "_" if none

Field 3: Handler prefix (4 chars. maximum)

Field 4: Software driver external major number; "_" if
not a software driver, or to be assigned during
execution of Idunix(M)

Field 5: Number of sUb-devices per device; "_" if none

Field 6: Mask of which CPU's driver can run on; "_" if
driver doesn't have multiprocessor knowledge

Field 7: Dependency list (optional); this is a comma
separated list of other driver or modules that
must be present in the configuration if this
module is to be included.

For each module, two classes of information are required
by mkboot(M):

• External routine references

• Variable definitions

Routine and variable definition lines begin with white
space and immediately follow the initial module specifica­
tion line. These lines are free form; thus they may be
continued arbitrarily between non-blank tokens as long as
the first character of a line is white space.

2

MASTER(M) MASTER(M)

Part 1, Routine Reference Lines

If the system kernel or other dependent module contains
external references to a module, but the module is not
configured, then these external references would be unde­
fined. Therefore, the routine reference lines are used to
provide the information necessary to generate appropriate
dummy functions at boot time when the driver is not
loaded. Routine references are defined as follows:

Field 1: Routine name ()

Field 2: The routine type: one of

{}
{nosys}
{nodev}
{false}
{true}
{pass}

routine name(){}
routine - name () {return nosys() j}
routine - name (){return nodev()j}
routine - name(){return OJ}
routine=name(){return Ij}
routine name(){return

first -='-argumentj}

Part 1, Variable Definition Lines

Variable definition lines are used to generate all vari­
ables required by the module. The variable generated may
be an arbitrary size, initialized or not, or arrays con­
taining an arbitrary number of elements. These variables
are defined as follows:

Field 1:

Field 2:

Variable name

[expr] - optional field used to indicate
array size

Field 3: (length) - required field indicating the size
of the variable (see below)

Field 4: ={ expr, ••• } - optional field used to
initialize individual elements of a variable

3

MASTER(M) MASTER(M)

The length field is mandatory. It is an arbitrary se­
quence of length specifierst each of which may be . one of
the following:

%i
%1
os
%c
%number
%number

%vname

Integer
Long integer
Short integer
Single character
Field which is number bytes long

c Character string which is number
bytes long

Length is the value that variable
name was initialized with in the
responding boot. d module

cor-

For examplet the length field

(%8c%1%Ox58%1%c%c)

could be used to identify a variable consisting of a char­
acter string 8-bytes longt a long integer t a Ox58 byte
structure of any typet another long integert and two char­
acters. Appropriate alignment of each % specification is
performed (%number is word aligned) and the variable
length is rounded up to the next word boundary during pro­
cessing.

The expressions for the optional array size and initiali­
zation are infix expressions consisting of the usual oper­
ators for additiont subtractiont multiplicationt and divi­
sion: +, -, *, and /. Multiplication and division have
the higher precedence, but parentheses may be used to
override the default order. The built-in functions min
and max accept a pair of expressions, and return the ap­
propriate value. The operands of the expression may be
any mixture of the following:

&name

#name

Address of name where name is any symbol de­
fined by the kernel, any module loaded or any
variable definition line of any module loaded

Size of name where name is any variable name
defined by a variable definition for any module
loaded; the size is that of the individual vari­
able, not of an entire array

4

MASTER(M) MASTER(M)

UC Number of controllers present; this number is
determined by the EDT for hardware devices, or
by the number provided in the system file for
non-hardware driver or modules

UC(name) Number of controllers present for the module
name; this number is determined by the EDT for
hardware devices, or by the number provided in
the system file for nonhardware driver or mod­
ules

UD Number of devices per controllers taken directly
from the current master file entry

UD(name) Number of devices per controller taken directly
from the master file entry for the module name

UM Internal major number assigned to the current
module if it is a device driver; zero if this
module is not a device driver

UM(name) Internal major number assigned to the module
name if it is a device driver: zero if that
module is not a device driver

name

number

string

Value of a parameter as defined in the second
part of master

Arbitrary number (octal, decimal, or hex
allowed)

Character string enclosed within double quotes
(all of the character string conventions sup­
ported by the C language are allowed); this op­
erand has a value which is the address of a
character array containing the specified string

When initializing a variable, provide one initialization
expression for each %i, %1, %s, or %c of the length field.
The only initializers allowed for a '%number c' are either
a character string (the string may not be longer than
number), or an explicit zero. Initialization expressions
must be separated by commas, and variable initialization
will proceed element by element. Note that %number speci­
fications cannot be initialized -- they are set to zero.

5

MASTER(M) MASTER(M)

Only the first element of an array can be initialized, the
other elements are set to zero. If there are more ini­
tializers than size specifications, it is an error and
execution of the mkboot(M) program will be aborted. If
there are fewer initializations than size specifications,
zeros will be used to pad the variable. For example:

={ "V2.LI", #C*#D, max(10,#D), #C(OTHER), #M(OTHER)}

would be a possible initialization of the variable whose
length field was given in the preceding example.

Part 2, Description

Parameter declarations may be used to define a value sym­
bolically. Values can be associated with identifiers and
these identifiers may be used in the variable definition
lines.

Parameters are defined as follows:

Field 1:

Field 2:

Field 3:

Example

I den tifier (8 characters maximum)

Value - the value may be a number (decimal,
octal, or hex allowed), or a string

A sample master file for a tty device driver would be
named atty if the device appeared in the EDT as ATTY.
The driver is a character device, the driver prefix is at,
two interrupt vectors are used, and the interrupt priority
is 6. In addition, another driver named ATLOG is neces­
sary for the correct operation of the software associated
with this device.

6

MASTER(M) MASTER(M)

* FLAG HVEC PREFIX SOFT HDEV CPU DEPENDENCIES/ VARIABLES

tca 2

$

ATID="fred"

ATMAX=6

at 2 ATLOG

atpoint() (false}

at_tty[HC*HD] (%Ox58)

at_cnt(%i) ={ HC*HD}
at_logmaj (%i) =(HM(ATLOG)}

at_id(%8c) ={ ATID}

at_table(%i%l%31%s)

= (max(HC ATMAX).

&at_tty.

HC }

This master file will cause a routine named atpoint to be
generated by the mkboot(M) program if the ATTY driver is
not loaded, and there is a reference to this routine from
any other module loaded. When the driver is loaded, the
variables at tty, at cnt, at logmaj, at id, and at table
will be allocated and initialized as specified. Due to
the t flag, the d ttys field in the character device
switch table will-be initialized to point to at tty (the
first variable definition line contains the variable whose
address will be stored in d _ ttys). The ATTY driver would
reference these variables by coding:

extern struct tty at_tty[];

extern int at_cnt;

extern int at_logmaj;

extern char at_id[8];

extern struct

int member1;

struct tty *member2;

char junk[31];

short member3;

at_table;

7

MASTER(M) MASTER(M)

Files

/usr/sys/rnaster.d/*

See Also

Idunix(M), rnkboot(M), sysdef(M)

8

MEM, KMEM(M) MEM, KMEM(M)

Name

mem, kmem - Memory image file.

Description

The mem file provides access to the computer's physical
memory. All byte addresses in the file are interpreted as
memory addresses. Thus, memory locations can be examined
in the same way as individual bytes in a file. Note that
accessing a nonexistent location causes an error.

The kmem file is the same as mem, except that it corres­
ponds to kernel virtual memory rather than physical mem­
ory.

Notes

In rare cases, the mem and kmem files may be used to write
to memory and memory-mapped devices. Such patching is
not intended for the naive user and may lead to a system
crash if not conducted properly. Patching device regis-
ters is likely to lead to unexpected results if the device
has read-only or write-only bits.

Files

/dev/mem
/dev/kmem

Some of /dev /kmem cannot be read because of write-only
addresses or unequipped memory addresses.

1

MENUS(M) MENUS(M)

Name

menus - Format of a Business Shell menu system.

Description

A menu system is defined as a collection of menus, each of
which is an ASCII text file. It is relatively easy to
create a new customized Business Shell (bsh(C» menu sys­
tem or to modify the default menu system. The procedure
to create a menu system follows.

To create a text file containing the source menu, use the
following format:

&Menuiden tifier
the sUbstance of the menu .
not over 24 lines length

&Actions
zero or more sequences. of .

- prompt size

sequences of actions .
for this prompt .

This sequence may be repeated as often as desired. The
ampersand (&) and tilde C) must appear in the first
column. &Actions must appear, even if there are no ac­
tions.

The substances of each menu is composed of text which will
be reproduced exactly as it appears in the location where
it appears. There are five exceptions where characters
have special meanings:

"-string"

"!date"

"tuser"

"!pwd"

"!@"

denotes a valid "prompt" string (the text
of the actual prompt).

inserts the current date and time.

inserts the current user ide

inserts the current directory.

indicates where to leave the cursor.

1

MENUS(M) MENUS(M)

The "!" may appear as a suffix, in which case the string
will be right-justified instead of left-justified.

The prompts must be reproduced as they are expected to be
typed in the Actions chapter. The actions may be composed
of bsh commands or commands which are executed by the
standard shell (fbin/sh). The actions should all be in­
dented one tab stop.

Size rows will be reserved at the bottom of the screen for
output. If size is omitted, a value of 5 will be used.
If size is 0, the entire screen will be used. After exe­
cuting the actions, the message

will appear at the bottom of the screen. If size is -1
the entire screen is used, but no message is issued; and
bsh resumes without pause after all the actions have been
executed.

Transfer to another menu is specified by writing the name
of the destination menu in the semantics field.

Commands to be executed by the bsh interpreter must be
typed one-per-line.

Commands to be executed by the operating system follow
the usual conventions.

For example, the menu for Electronic Mail can be created
as follows:

2

MENUS(M)

See Also

&Mail

!date \ELECTRONIC-MAIL-SERVICES

a - Receive-mail

-b - Send-mail

c - Return-to-starting-menu

&Actions

a 0

c

mail

echo -n "To whom do you wish to send mail?"

read x

echo "Now type the message."

echo "Terminate it by typing a control -d."

mail $x

Start

bsh(C), termcap(M)

3

MENUS(M)

MKBOOT(M) MKBOOT(M)

Name

mkboot - Converts an object file to a bootable object
file.

Syntax

/etc/mkboot [-m master] [-d directory] [-k kernel.o]
driver.o •.•

Description

The mkboot command is used to create a bootable object
file in a format compatible with the self-configuration
program. It can only be used by the super-user. The ob­
ject file specified as an argument must have a correspond­
ing master(M) file in the /usr /sys/etc/master.d directory.
The master file name for the UNIX system kernel object
file is always kernel. The other master file names derive
from their associated object file names in lowercase let­
ters minus any optional path prefix or ".0" suffix.

To create the new bootable object file, the applicable
master file is read and the configuration information is
extracted. Then, the new bootable file is created con­
taining this configuration information and written to the
/usr /sys/boot.d directory. It is given the same name, in
uppercase letters and without the ".0" suffix, as the ob­
ject file. Note that if the current working directory is
/usr /sys/boot.d when mkboot is executed, then the object
file used is the previous bootable object file residing in
this directory. ThIs means that you do not have to keep
separate ".0" files.

The options are:

-m master

-d directory

This option specifies the directory con­
taining the master files to be used for the
object file. The default master directory
is /usr /sys/master.d.

This option specifies the directory to be
used for storing the new bootable object
file. The default output directory is
/usr /sys/boot.d.

1

MKBOOT(M) MKBOOT(M)

-k kernel.o This option specifies the name of the ob­
ject file for the operating system. The
master file name used for this object file
is always named kernel.

The name of the object file for a module or driver is spe­
cified by the driver.o argument.

Example

mkboot -m newmaster gentty.o

See Also

This will read the file name gen tty from the direc­
tory newmaster for the gentty device configuration
data, take the file gentty.o from the current direc­
tory and create the formatted file
/usr /sys/boot.d/GENTTY containing the configuration
information for the gentty.

mkunix(M), master(M)

Diagnostics

Most messages are self-explanatory.

name.o: not processed; cannot open /etc/master.d/name

The file name.o was specified on the command line bu1
there was no master file in the master.d directory
for name.o.

name.o: not processed

An error has aborted processing for the named object
file.

2

MKFS(M) MKFS(M)

Name

mkfs - Constructs a file system.

Syntax

/etc/mkfs special blocks[:inodes] [gap blocks/cyl]
/etc/mkfs special proto [gap blocks/cyl]

Description

Mkfs constructs a file system by writing on the special
file using the values found in the remaining arguments of
the command line. The command waits 10 seconds before
starting to construct the file system. During this
10-second pause the command can be aborted by entering a
delete (':1kmU.lml).

If the second argument is a string of digits, the size of
the file system is the value of blocks interpreted as a
decimal number. This is the number of physical (512 byte)
disk blocks the file system will occupy. If the number of
inodes is not given, the default is the number of logical
(1024 byte) blocks divided by 4. Mkfs builds a file sys­
tem with a single empty directory on it. The boot program
block (block zero) is left uninitialized.

If the second argument is the name of a file that can be
opened, mkfs assumes it to be a prototype file proto, and
will take its directions from that file. The prototype
file contains tokens separated by spaces or new-lines. A
sample prototype specification follows (line numbers have
been added to aid in the explanation):

1. /stand/diskboot
2. 4872 110
3. d--777 3 1
4. usr d--777 3 1
5. sh ---755 3 1 /bin/sh
6. ken d--755 6 1
7. $
8. bO b--644 3 1 o 0
9. cO c--644 3 1 o 0
10. $
11. $

1

MKFS(M) MKFS(M~

Line 1 in the example is the name of a file to be copied
onto block zero as the bootstrap program.

Line 2 specifies the number of physical (512 byte) blocks
the file system is to occupy and the number of inodes in
the file system. Lines 3-9 tell mkfs about files and di­
rectories to be included in this file system.

Line 3 specifies the root directory.

Lines 4-6 and 8-9 specifies other directories and files.

The $ on line 7 tells mkfs to end the branch of the file
system it is on, and continue from the next higher direc­
tory. The $ on lines 10 and 11 end the process, since no
additional specifications follow.

File specifications give the mode, the user ID, the group
ID, and the initial contents of the file. Valid syntax
for the contents field depends on the first character of
the mode.

The mode for a file is specified by a 6-character string.
The first character specifies the type of the file. The
character range is -bcd to specify regular, block special,
character special and directory files respectively. The
second character of the mode is either u or - to specify
set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a 3 digit oc­
tal number giving the owner, group, and other read, write,
execute permissions (see chmod(C».

Two decimal number tokens come after the mode; they spec
fy the user and group IDs of the owner of the file.

If the file is a regular file, the next token of the spe­
cification may be a path name whence the contents and si:2
are copied. If the file is a block or character special
file, two decimal numbers follow which give the major and
minor device numbers. If the file is a directory, mkfs
makes the entries. and .. and then reads a list of
names and (recursively) file specifications for the en-
tries in the directory. As noted above, the scan is ter­
minated with the token $.

2

MKFS(M) MKFS(M)

The final argument in both forms of the command specifies
the rotational gap and the number of blocks/cyl. The fol­
lowing values are recommended:

Device Gap Size Blks/Cyl

30M Hard Disk 8 90
72M Hard Disk 8 162 (CDC Wren II)
72aM Hard Disk 8 144 (Micropolis)
72bM Hard Disk 8 198 (Priam)
72cM Hard Disk 8 198 (Fujitsu)
Floppy Disk 4 18

Mkfs uses a gap size in multiples of 4. If the gap and
blocks/ cyl are not specified or are considered illegal
values a default value of gap size 4 and 400 blocks/cyl is
used.

See Also

Notes

chmod(C), dir(F), and fs(F) in the Reference (CP, S, F)

With a prototype file, it is not possible to copy in a
file larger than 64K bytes, nor is there a way to specify
links. The maximum number of inodes configurable is
65500.

3

MKUNIX(M) MKUNIX(M)

Name

mkunix - Makes a bootable system file with kernel and
driver symbol tables.

Syntax

/etc/mkunix [-i kernelJile] [-0 unixJile]

Description

The mkunix command will create an· absolute, bootable sys­
tem file (new namelist) from the UNIX system kernel file
and the object files created by mkboot(M). This procedure
completes the generation of a new /unix. It can only be
used by the super-user.

The resulting unixJile can be used as the kernelJile for
ps(C), etc. In addition, this file may be booted di­
rectly, bypassing the self-configuration phase of the boot
process. This will save on the order of 30 to 60 seconds
at boot time.

KernelJile (defaults to the path name specified as the
BOOT program in the /usr /sys/system file) is read to ob­
tain the object, data, and symbol table for the basic ker­
nel. This name, if specified, must be the same as that
used in /usr /sys/system for the boot line; if not, a warn­
ing diagnostic is issued since the resulting namelist file
will not be accurate.

The argument -0 unixJile (defaults to a.out) is the new
file - a bootable image of the current operating system
with the composite symbol table.

See Also

mkboot(M), ps(C), and nm(CP) in the Reference (CP, S, F)

1

MNTTAB(M) MNTTAB(M)

Name

mnttab - Mounted file system table.

Syntax

#include <mnttab.h>

Description

The /etc/mnttab file contains a table of devices mounted
by the mount(C) command.

Each table entry contains the pathname of the directory on
which the device is mounted, the name of the device spe­
cial file, the read/write permissions of the special file,
and the date on which the device was mounted.

The maximum number of entries in mnttab is based on the
system parameter NMOUNT located in /usr /include/mnttab.n,
which defines the number of allowable mounted special
files.

See Also

mount(C)

1

MULTIUSER(C) MULTIUSER(C)

Name

multiuser, singleuser - Causes the system to enter
multi-user or single-user mode.

Syntax

/ etc/multiuser
/ etc/ singleuser

Description

This command can only be used by the super-user.

Multiuser changes the system mode of operation from
single-user to multi-user. Multiuser performs system
startup functions such as mounting file systems and start­
ing various daemons and spoolers. The / etc/telinit 2 com­
mand is executed to tell init(M) to enter multi-user mode
(run level 2).

Singleuser causes the system to kill all currently running
processes and enter system maintenance mode (run level 1).

See Also

init(M), shutdown(M), who(C}

1

NCHECK(M) NCHECK(M)

Name

ncheck - Generates path names from inode numbers.

Syntax

/etc/ncheck [-1 inode...] [-a] [-s] [file-system]

Description

Ncheck with no arguments generates a path-name vs. inode
list of all files on a set of default file systems (see
/etc/checklist). Names of directory files are followed by
/ ..
The options are as follows:

-i Limits the report to only those files whose in ode
numbers follow.

-a Allows printing of the names. and .. , which are
ordinarily suppressed.

-s Limits the report to special files and files with
set-user-ID mode. This option may be used to detect
violations of security policy.

File-system must be specified by the file system's special
file. The report should be sorted so that it is more
useful.

See Also

fsck(C), sort(C)

Diagnostics

If the file system structure is not consistent, 11 de­
notes the "parent" of a parentless file and a path-name
beginning with ... denotes a loop.

1

NULL(M) NULL(M)

Name

null - The null file.

Description

Data written on a null special file is discarded. Reads
from a null special file always return 0 bytes.

Files

/dev/null

1

OPTlONS(M) OPTlONS(M)

Name

options - Floppy disk installation menu.

Syntax

options

Description

The options command displays the installation menu on the
operating system Root diskette.

To display this menu, first go to system maintenance mode.
Then boot the system from· the Root File System floppy
disk. Type options to display the menu.

Use this menu to initially install or upgrade the operat­
ing system, restore data from a cartridge tape, shut down
the system, or exit to the shell.

1

PASSWD(M) PASSWD(M)

Name

passwd - The password file.

Description

The /etc/passwd file contains the following information
for each user:

• Login name

• Encrypted password

• Numerical user ID

• Numerical group ID

• Comment

• Initial working directory

• Program to use as shell

This is an ASCII file. Each field within each user'sen­
try is separated from the next by a colon (:). The com­
ment can contain any desired information; it typically
contains the user's real name. Each user is separated
from the next by a newline. If the password field is
null, no password is demanded; if the shell field is null,
the sh(C) command is used.

This file resides in the directory / etc. Because the
passwords are encrypted, the file has general read permis­
sion and can be used, for example, to map numerical user
IDs to names.

The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., /, 0-9, A-Z, a-z), except
when the password is null, in which case the encrypted
password is also nUll. Password aging is in effect for a
particular user if his encrypted password in the password
file is followed by a comma and a nonnull string of char­
acters from the above alphabet. (Such a string must be
introduced by the super-user.) The first character of the
age denotes the maximum number of weeks for which a pa
word is valid.

1

PASSWD(M) PASSWD(M)

Files

A user who attempts to log in after his password has ex­
pired will be forced to supply a new one. The next char­
acter denotes the minimum period in weeks which must ex­
pire before the password may be changed. The remaining
characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string
is equivalent to zero.) The first and second characters
must have numerical value in the range 0-63, where the dot
(.) is equal to 0 and lowercase z is equal to 63. If the
numerical value of both characters is 0, the user will be
forced to change his password the next time he logs in.
If the second character is greater than the first, only
the super-user will be able to change the password.

/ etc/passwd

See Also

group(M), login(C), passwd(C)

2

PRINTERS(M) PRINTERS(M)

Name

printers - Printer spooler configuration file.

Description

Using the printer spooler facility Ipr(C), you can print a
specified list of files on one or several line printers.
Additionally, a printer on a machine connected to WorkNet
can be shared by other machines on the same net. Such
printers may need to have an arbitrary set of terminal
modes set for tab expansion, baud rate, etc.

The system printer configuration file (jetc/printers) con­
sists of lines of printer configuration information.
These include WorkNet machine names, tty types, device
names, and tty modes. Each line in the /etc/printers file
is of the form:

lp[p]:name:ttytype: [netname]: [ttymodes]

Fields are separated by colons (:) and may not contain
spaces between the colon separators and field values. The
length of each line may not exceed 128 characters. Com­
ments are permitted in the configuration file. A comment
line begins with H#" in the first column. Any fields sur­
rounded by H[]" are optional, although their colon sepa­
rators are not. That is, if a field position is to be
empty, its place must be marked by two colons (::).

The fields are:

lp[p]

name

tty type

The printer device selected. Allowable values
for p are null or 0 - 255. This value is used
to specify one of several printers.

A tag by which a particular configuration line
can be selected. Allowable values are alpha­
numeric strings, which do not contain the ":H
character.

Exists for the convenience of word processing
programs that derive printer control sequences
from /etc/termcap (or similar database). (Not
used by the printer spooler.)

1

PRINTERS(M) PRINTERS(M)

netname May be null, which indicates that spooling is to
take place on the requestor's machine. Other
values are network machine names. The print
spooler uses this name to do remote printing.

ttymodes A list of whitespace-delimited tty mode specifi­
cations, such as would be supplied to stty.

Example

The following example shows the contents of a printer con­
figuration file (the contents of /etc/printers):

a printer configuration file

Ip:calcite:NEC3510:gateway:

Ip:galena:Oki93::-tabs 1200 nl

IpO:obsidian:I9:Marketing:tabs 9600 nl

Ip1:feldspar:epson::nl tabs 9600

Ip2:mica:TI810:Finance:9600 -tabs

In this example:

The first line uses the /dev /lp printer on the machine
named "gateway." The printer type is "NEC3510" and no tty
modes are set on that printer. This line may be selected
by specifying "calcite" to Ipr.

The next line specifies the /dev/lp printer on the user's
local machine (note the null netname field), is type Oki93
and sets tab expansion (-tabs), 1200 baud operation, and
no linefeed to cr-lf expansion. This line is selected
with the name "galena."

The third line requests /dev /lpO, is on the Marketing
machine, runs the printer at 9600 baud, etc., is type 19,
and is selected by the name "obsidian."

The last two lines use /dev/lp1 on the local machine, and
/ dev /lp2 on the Finance machine.

2

PRINTERS(M) PRINTERS(M)

Files

Jete/printers Printer mode control file

Related Commands

Ipr(C), Ipd(M), tty(M), Ip(C)

3

PROF/LE(M) PROF/LE(M)

Name

profile - Sets up an environment at login time.

Description

Files

The optional file .profile permits automatic execution of
commands when a user logs into /bin/sh and other shells
(except /bin/csh). Use this file to personalize a user's
work environment by setting exported environment variables
and terminal mode (see environ (M)).

When a user logs in, the user's login shell looks for
.profile in the login directory. If found, the shell exe­
cutes the commands in the file before beginning the ses­
sion. The commands in the file must match the command as
if typed at the keyboard. Any line beginning with the
number sign (#) is considered a comment and is ignored.
The following is an example of a typical file:

Tell me when new mail comes in

MAIL=/usr/mail/myname

Add my /bin directory to the shell search sequence

PATH=$PATH:$HOME/bin

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 22

The file /etc/profile is a system-wide profile that, if it
exists, is executed for every user before the user's
.profile is executed.

$HOME/ . profile
/ etc/profile

See Also

env(C), mail(C), sh(C), stty(C), su(C), login(M),
environ(M)

1

PWCK(M) PWCK(M)

Name

pwck, grpck - Checks password/group file.

Syntax

/etc/pwck [file]
/etc/grpck [file]

Description

Files

Pwck scans the password file and notes any inconsisten­
cies. The checks include validation of the number of
fields, login name, user ID, group ID, and whether the
login directory and the program-to-use-as-shell exist.
The default password file is / etc/passwd.

Grpck verifies all entries in the group file. This veri­
fication includes a check of the number of fields, group
name, group ID, and whether all login names appear in the
password file. The default group file is /etc/group.

/etc/group
/ etc/passwd

See Also

group(M), passwd(M)

Diagnostics

Group entries in /etc/group with no login names are
flagged.

1

RCO(M) RCO(M)

Name

reO - Runs commands performed to stop the operating
system.

Syntax

jete/reO

Description

This file is executed at each system state change that
needs to have the system in an inactive state. It is re­
sponsible for those actions that bring the system to a
quiescent state, traditionally called "shutdown." This
command can be used only by the superuser.

The system state that requires this procedure is:

state 0 - system halt state

Whenever a change to one of these states occurs, the
jete/reO procedure is run. The entry in /ete/inittab
might read:

hltO:O:once:/etc/rcO </dev/console >/dev/console 2>&1

Some of the actions performed by jete/reO are carried out
by files beginning with K in /ete/reO.d. These files are
executed in ASCII order (see files below for more infor­
mation), terminating some system service. The combination
of commands in jete/reO and files in /ete/reO.d determines
how the system is shut down.

The recommended sequence for / etc/reO is:

1. Stop System Services and Daemons.

Various system services (such as a local area network
or LP spooler) are gracefully terminated.

When new services are added that should be terminated
when the system is shut down, the appropriate files
are installed in /ete/reO.d.

1

RCO(M) RCO(M)

Files

2. Terminate Processes

SIGTERM signals are sent to all running processes
by killall(C). Processes stop themselves cleanly if
sent SIGTERM.

3. Kill Processes

SIGKILL signals are sent to all remaining processes;
no process can resist SIGKILL.

At this point the only processes left are those asso­
ciated with / etc/reO and processes 5 and 1, which are
special to the operating system.

4. Unmount All File Sysfems

Only the root file system (f) remains mounted.

Depending on which system state the system ends up
in (0 or 6), the entries in /etc/inittab will direct
what happens next. If the / etc/inittab has not de­
fined any other actions to be performed as in the
case of system state 0, then the operating system
will have nothing to do. It should not be possible
to get the system's attention. The only thing that
can be done is to turn off the power or possibly get
the attention of a firmware monitor.

The execution by /bin/sh of any files in /etc/rcO.d occurs
in ASCII sort-sequence order. See rc2(M) for more infor­
mation.

See Also

killall(C), rc2(M), shutdown(M)

2

RC2(M) RC2(M)

Name

rc2 - Runs commands performed for multi-user environment.

Syntax

/etc/rc2

Description

This file is executed via an entry in /etc/inittab and is
responsible for those initializations that bring the sys-
tem to a ready-to-use state, traditionally state 2, called
the "multi-user" state. This command can be used only by
the super-user.

The actions performed by /etc/rc2 are found in files in
the directory /etc/rc.d and files beginning with S in
/etc/rc2.d. These files are executed by /bin/sh in ASCII
sort-sequence order (see "Files" for more information).
When functions are added that need to be initialized when
the system goes multi-user, an appropriate file should be
added in /etc/rc2.d.

The functions done by /etc/rc2 command and associated
/etc/rc2.d files include:

• Setting and exporting the TZ variable.

• Setting-up and mounting the user (/usr) file system.

• Cleaning up (remaking) the /tmp and /usr /tmp direc­
tories.

• Loading the network interface and ports cards with
program data and starting the associated processes.

• Starting the cron daemon by executing /etc/cron.

• Cleaning up (deleting) uucp lock, status, and tempo­
rary files in the /usr /spool/uucp directory.

Other functions can be added, as required, to support the
addition of hardware and software features.

1

RC2(M) RC2(M)

Examples

Files

The following are prototypical files found in /etc/rc2.d.
These files are prefixed by an S and a number indicating
the execution order of the files.

MOUNTFILESYS

Set up and mount file systems

cd /

/etc/mountall /etc/fstab

RMTMPFILES

uucp

clean up /tmp

rm -rf /tmp

mkdir /tmp

chmod 777 /tmp'

chgrp sys /tmp

chown sys /tmp

clean-up uucp locks. status. and temporary files

rm -rf /usr/spool/locks/*

The file /etc/TIMEZONE is included early in /etc/rc2,
thus establishing the default time zone for all commands
that follow.

Here are some hints about files in /etc/rc.d:

The order in which files are executed is important. Since
they are executed in ASCII sort-sequence order, using the
first character of the file name as a sequence indicator
will help keep the proper order. Thus, files starting
with the following characters would be:

[0-9] very early
[A-Z] early
[a-n] later
[o-z] last

Files in /etc/rc.d that begin with a dot (.) will not be
executed. This feature can be used to hide files that are
not to be executed for the time being without removing
them.

2

RC2(M) RC2(M)

Files in /etc/rc2.d must begin with an S or a K followed
by a number and the rest of the file name. Upon entering
run level 2, files beginning with S are executed with the
start option; files beginning with K, are executed with
the stop option. Files beginning with other characters
are ignored.

See Also

rcO(M), shutdown(M)

3

SADCON(M) SADCON(M)

Name

sadcont sadcoff - Turns on/off system activity data col­
lector.

Syntax

sadcon
sadcoff

Description

Files

By defaultt the system activity data collector is deacti­
vated in Altos System Vt version 5.3d. The data collector
may be startedt and boot-time startup of the collector
enabled by using the sadcon command. A subsequent sadco1
command will disable boot-time data collector startup.

/etc/init.d/sadc
/etc/rc2.d/S34sadc
/usr/spool/cron/crontabs/sys
/usr/spool/cron/crontabs/adm

See Also

sar(C), cron(C)

1

SAR(M) SAR(M)

Name

sar: sal, sa2, sadc - System activity report package.

Syntax

/usr /lib/sa/sadc
/usr /lib/sa/sal
/usr /lib/sa/sa2

Description

[t n] [olile]
[t n]
[-ubdycwaqvmprSDA] [-s time] [-e time]
[-1 sec]

System activity data can be accessed at the special re­
quest of a user (see sar(C» and automatically on a rou­
tine basis as described here. The operating system con­
tains a number of counters that are incremented as various
system actions occur. These include counters for CPU
utilization, buffer usage, disk and tape I/O activity, TTY
device activity, switching and system-call activity,
file-access, queue activity, inter-process communications,
paging, and Remote File Sharing.

Sadc and shell procedures, sal and sa2, are used to
sample, save, and process this data.

Sadc, the data collector, samples system data n times
every t seconds and writes in binary format to olile or to
standard output. If t and n are omitted, a special record
is written. This facility is used at system boot time,
when booting to a multiuser state, to mark the time at
which the counters restart from zero. For example, the
/etc/init.d/perf file writes the restart mark to the daily
data by the command entry:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa"date +%d""

The shell script sal, a variant of sadc, is used to col-
lect and store data in binary file /usr/adm/sa/sardd where
dd is the current day. The arguments t and n cause

1

SAR(M) SAR(M)

records to be written n times at an interval of t seconds,
or once if omitted. The /usr /spool/cron/crontabs/sys
(see cron(C» entries:

o * * * 0-6 /usr/lib/sa/sal

20.40 8-17 * * 1-5 /usr/lib/sa/~al

will produce records every 20 minutes during working hours
and hourly otherwise.

The shell script sa2 writes a daily report in file
/usr /adm/sa/sardd. The /usr /spool/cron/crontabs/sys en­
try:

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

will report important activities hourly during the working
day. The structure of the binary daily data file is:

struct sa

struct sysinfo si; /* see/usr/include/sys/sysinfo.h */

struct minfo mi; /* defined in sys/sysinfo.h */

struck dinfo di: /* RFS info defined in sys/sysinfo.h

int minserve. maxserve; /* RFS server Jow and high water

* marks */

int szinode: /* current size of inode table */

int szfile; /* current size of file table */

int szproc; /* current size of proc table */

*/

int szlckf; /* current size of file record header table */

int szlckr; /* current size of file record lock table */

int mszinode; /* size of inode table */

int mszfile; /* size of file table */

int mszproc; /* size of proc table */

int mszlckf; /* maximum size of file record header table */

int mszlckr; /* maximum size of file record lock table */

long inodeovf; /* cumulative overflows of inode table */

long fileovf; /* cumulative overflows of file table */

long procovf; /* cumulative overflows of proc table */

time_t ts; /* time stamp. seconds */

long devio[NDEVS] [4]; /* device unit information */

#define IO_OPS 0 /* cumulative I/O requests */

#define IO_BCNT 1 /* cumulative blocks transferred */

#define IO_ACT 2 /* cumulative drive busy time in ticks

#define IO_RESP 3 /* cumulative I/O resp time in ticks */

};

2

*1

SAR(M)

Files

/usr /adm/sa/sadd
/usr /adm/sa/sarddl
/tmp / sa. adrfl

See Also

cron(C), sar(C)

3

Daily data file
Daily report file
Address file

SAR(M)

SHUTDOWN(M) SHUTDOWN(fv

Name

shutdown - Brings a system to single-user mode or to shut­
down.

Syntax

Jete/shutdown [-y] [-ggrace _period] [-iinit state

Description

This command is executed by the super-user to change the
state of the machine. By default, it brings the system
to a state where only the console has access to the
system. This state is traditionally called "single-user."

The command sends a warning message (via wall(C») and a
final message before it starts actual shutdown activities.
By default, the command asks for confirmation before it
starts shutting down daemons and killing processes. The
options are as follows:

-y Pre-answers the confirmation question so
the command can be run without user
intervention. A default of 60 seconds is
allowed between the warning message and
the final message. Another 60 seconds is
allowed between the final message and the
confirmation.

-ggrace _period Allows the super-user to change the numbe
of seconds from the 60-second default. Y (
can specify a number from 0 to 999 to de­
lay shutdown for that amount of time fol­
lowing notification to the users. If 0 is
entered, shutdown will be immediate, and i
no parameter is given, 60 seconds is as­
sumed.

-iinit state Specifies the state that init(M) is to be
put in following the warnings, if any. By
default, system state "s" is used (the
same as states "1" and "S").

1

SHUTDOWN(M) SHUTDOWN(M)

Other recommended system state definitions are:

state 0 Shut the machine down so it is safe to remove
the power. Have the machine remove power if
it can. The fete/reO procedure is called to so
this work.

state 1, s, S
Bring the machine to the state traditionally
called single-user. The fete/reO procedure is
called to do this work. (Though sand 1 are
both used to go to single-user state, s only
kills processes spawned by init and does not
unmount file systems. State 1 unmounts
everything except root and kills all user
processes, except those that relate to the
console.

state5 Stop the system and go to the firmware monitor.

state 6 Stop the system and reboot to the state defined
by the initdefault entry in / ete/inittab.

See Also

wall(C), init(M), rcO(M), rc2(M)

2

SHUTYPE(M) SHUTYPE(M)

Name

shu type - UPS shutdown configuration utility.

Syntax

shutype [-p] [-Uype] [-fjailtime] [-cpwrcnt] [-uupstime]
[wpwrtime] [-etermtime]

Description

The shu type command allows the alteration of the current
configurable settings for a UPS power failure condition.
The six configuration settings that can be changed are:

-Uype

-fja il time

-cpwrcnt

-uupstime

-wpwrtime

The type of shutdown that is to be initi­
ated for a power failure condition. This
option causes the following to occur: the
shutkill command issues a SIGPWR signal t(
all processes, and then posts SIGTERM and
SIGKILL signals to the processes; a sync(S:
command is then executed to maintain the
integrity of the file system; a shutsave
command delivers the SIGPWR signal to all
processes, but saves memory to disk so a
later restart can be attempted.

The time in ticks to wait to check for a
power failure condition after the first
power failure condition was detected. Thi~
is used to check if a power glitch only hm
occurred.

The maximum number of power failure intel
rupts that can occur within the above
FAILTIME time interval before the power
source is considered to be unreliable.

The time in seconds that the UPS battery
backup unit can operate reliably after
power has been turned off.

The time in seconds for the system to wait
after posting the SIGPWR signal to all pro
cesses before initiating shutdown proce­
dures.

1

SHUTYPE(M)

-etermtime

SHUTYPE(M)

The time in seconds for the system to wait
after posting the SIGTERM signal to all
processes before posting the SIGKILL signal
to all processes. This is only used when
the shutklll option is in effect.

If no options are given, shutype will prompt you for each
of the above parameters. A null response followed by a
carriage return will leave the current configuration value
the same.

The -p option will print out the current settings of the
above mentioned configurable parameters. No other options
are allowed to be given with the -p option.

A sanity check will be done on any and all of the values
entered. If the shutdown type is shutklll, the total
times of termtime, pwrtime, and failtime cannot exceed the
value of upstime.

If the shutdown type is shutsave, the total times of
pwrtime and failtime plus the estimated disk output time
cannot exceed ups time. The estimated disk output time
will be printed if no options are given, or the -p option
is given. If there are any inconsistencies, appropriate
error message will be output.

Only the super-user is allowed to change any of the above
mentioned configurable parameters.

See Also

shuttype(S)

2

STRACE(M) STRACE(M

Name

strace - Prints STREAMS trace messages.

Syntax

strace [mid sid level J •••

Description

Strace without arguments writes all STREAMS event trace
messages from all drivers and modules to its standard out­
put. These messages are obtained from the STREAMS log
driver (log(M». If arguments are provided they must be
in triplets of the form mid, sid, level, where mid is a
STREAMS module id number, sid is a sub-id number, and
level is a tracing priority level. Each triplet indicates
that tracing messages are to be received from the given
module/ driver, sub-id (usually indicating minor device),
and priority level equal to or less than the given level.
The token all may be used for any member to indicate no
restriction for that attribute.

The format of each trace message output is:

<seq) <time) <ticks) <level) <flags) <mid) <sid) <text)

where:

<seq)
<time)
<ticks)
<level)
<flags)

<mid)
<sid)
<text)

trace sequence number
time of message in hh:mm:ss
time of message in machine ticks since boot
tracing priority level
E: message is also in the error log
F: indicates a fatal error
N: mail was sent to the system administrator
module id number of source
sub-id number of source
formatted text of the trace message

Once initiated, strace will continue to execute until ter­
minated by the user.

1

STRACE(M) STRACE(M)

Examples

Output all trace messages from the module or driver whose
module id is 41:

strace 41 all all

Output those trace messages from driver/module id 41 with
sub-ids 0, 1, or 2:

strace 41 0 1 41 1 1 41 2 0

Messages from sub-ids 0 and 1 must have a tracing level
less than or equal to 1. Those from sub-id 2 must have a
tracing level of O.

Notes

Due to performance considerations, only one strace process
is permitted to open the STREAMS log driver at a time.
The log driver has a list of the triplets specified in the
command invocation, and compares each potential trace mes­
sage against this list to decide if it should be formatted
and sent up to the strace process. Hence, long lists of
triplets will have a greater impact on overall STREAMS
performance. Running strace will have the most impact on
the timing of the modules and drivers generating the trace
messages that are sent to the strace process. If trace
messages are generated faster than the strace process can
handle them, then some of the messages will be lost. This
last case can be determined by examining the sequence num­
bers on the trace messages output.

See Also

10g(M), and STREAMS Programmer's Guide

2

STRCLEAN(M) STRCLEAN(M)

Name

strclean - STREAMS error logger cleanup program.

Syntax

strclean [-d logdir] [-a age]

Description

Strclean is used to clean up the STREAMS error logger di­
rectory on a regular basis (for example, by using
cron(M». By default, all files with names matching
error. * in /usr/adm/streams that have not been modified in
the last 3 days are removed. A directory other than
/usr/adm/streams can be specified using the -d option.
The maximum age in days for a log file can be changed us­
ing the -a option.

Example

Notes

Files

strclean -d/usr/adm/streams -a 3

has the same result as running strclean with no arguments.

strclean is typically run from cron(M) on a daily or
weekly basis.

/usr / adm/ streams/ error. *

See Also

cron(C), strerr(M), and STREAMS Programmer's Guide

1

STRERR(M) STRERR(M)

Name

strerr - STREAMS error logger daemon.

Syntax

strerr

Description

Strerr receives error log messages from the STREAMS log
driver (log(M» and appends them to a log file. The error
log files produced reside in the directory
/usr/adm/streams, and are named error.mm-dd, where mm is
the month and dd is the day of the messages contained in
each log file.

The format of an error log message is:

(seq) (time) (ticks) (flags) (mid) (sid) (text)

where:

(seq)
(time)
(ticks)
(flags)

(mid)
(sid)
(text)

error sequence number
time of message in hh:mm:ss
time of message in machine ticks since boot
T: message was also sent to a tracing process
F: indicates a fatal error
N: send mail to the system administrator
module id number of source
sub-id number of source
formatted text of the error message

Messages that appear in the error log are intended to re­
port exceptional conditions that require the attention of
the system administrator. Those messages which indicate
the total failure of a STREAMS driver or module should
have the F flag set. Those messages requiring the immedi­
ate attention of the administrator will have the N flag
set, which causes the error logger to send the message to
the system administrator via manCe). Messages with a
module id of 0 are generated by the kernel.

1

STRERR(M) STRERR(M

Notes

Files

Only one strerr process at a time is permitted to open the
STREAMS log driver. If a module or driver is generating c
large number of error messages, running the error logger
will cause a degradation in STREAMS performance. If a
large burst of messages are generated in a short time, the
log driver may not be able to deliver some of the mes­
sages. This situation is indicated by gaps in the se­
quence numbering of the messages in the log files.

. /usr /adm/streams/error.mm-dd

See Also

10g(M), and STREAMS Programmer's Guide

2

SULOGIN(M) SULOGIN(M)

Name

sulogin - Special login program invoked by init (via
/etc/inittab) to bring the machine up in single-user or
multi-user mode.

Syntax

sulogin

Description

Files

Sulogin prompts you for system maintenance (single-user)
mode or multi-user mode.

If you select single-user mode by typing a valid root
password, the system is brought up in system maintenance
(single-user) mode by executing the shell script
/etc/singleuser. If you select multiuser mode by typing
UO.', or there is no reponse for 5 seconds, sulogin will
execute the shell script file / etc/multiuser, which will
bring the system up in multi-user mode.

/etc/multiuser
/ etc/ singleuser
/ etc/inittab

See Also

init(M)

1

SYSDEF(M) SYSDEF(M,

Name

sysdef - Outputs system definition.

Syntax

/etc/sysdef system_namelist [master.d]]

Description

Files

Sysdef outputs the current system definition in tabular
form. It lists all hardware devices, their local bus ad­
dresses, and unit count, as well as pseudo devices, system
devices, loadable modules and the values of all tunable
parameters. It generates the output by analyzing the
named operating system file (system name list) and extract­
ing the configuration information from the name list it­
self. The operating system file must be an "absolute"
boot file (see mkun1x(M)).

/unix

/usr /sys/master .d/*

Default operating system file
(where the system name list is)

Default directory containing
master files

See Also

mkunix(M), master(M), and nlist(S) in the Reference
(CP, S, F)

Diagnostics

internal name list overflow
if the master table contains more than an internally
specified number of entries for use by nlist(S).

1

TERM(M) TERM(M)

Name

term - Compiled term file.

Description

Compiled terminfo descriptions are placed under the direc­
tory /usr/lib/terminfo. To avoid a linear search of a
huge system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the
terminal, and c is the first character of name. Thus,
act4 can be found in the file /usr /lib/terminfo/a/act4.
Synonyms for the same terminal are implemented by multiple
links to the same compiled file.

The format has been chosen so that it will be the same on
all hardware. An eight (or more) bit byte is assumed, but
no assumptions about byte ordering or sign extension are
made.

The compiled file is created with the terminfo compiler
(tic(C» program, and read by the routine setupterm(S).
Both of these pieces of software are part of curses(S).
The file is divided into six parts: the header, terminal
names, boolean flags, numbers, strings, and string table.

The headers section begins the file. This section con­
tains six short integers in the following format.

• The magic number (octal 0432).

• The size, in bytes, of the names section.

• The number of bytes in the boolean section.

• The number of short integers in the numbers section.

• The number of offsets (short integers) in strings
section.

• The size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first
byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits.
(Thus, the value represented is 256*second+first.) The

1

TERM(M) TERM(M)

value -1 is represented by 0377,0377; other negative
values are illegal. The -1 generally means that a capa­
bility is missing from this terminal. Machines where this
does not correspond to the hardware read the integers as
two bytes and compute the result.

The terminal names section comes next. It contains the
first line of the terminfo description, listing the var-
ious names for the terminal, separated by the 'I' charac­
ter. The section is terminated with an ASCII NUL charac­
ter.

The boolean flags have one byte for each flag. This byte
is either 0 or 1 as the flag is present or absent. The
capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null
byte will be inserted, if necessary, to ensure that the
number section begins on an even byte. All short integers
are aligned on a short word boundary.

The numbers section is similar to the flags section. Each
capability takes up two bytes, and is stored as a short
integer. If the value represented is -1, the capability
is taken to be missing.

The strings section is also similar. Each capability is
stored as short integer, in the format above. A value of
-1 means the capability is missing. Otherwise, the value
is taken as an offset from the beginning of the string
table. Special characters in ... X or / c notation are stored
in their interpreted form, not the printing representa-
tion. Padding information $<nn> and parameter information
=%x are stored intact in uninterpreted form.

The final section is the string table. It contains all
the values of string capabilities referenced in the string
section. Each string is null terminated.

Note that it is possible for setuptenn to expect a differ­
ent set of capabilities than are actually present in the
file. Either the database may have been updated since
setuptenn has been recompiled (resulting in extra unrecog­
nized entries in the file) or the program may have been
recompiled more recently than the database was updated
(resulting in missing entries). The routine setuptenn
must be prepared for both possibilities -- this is why the

2

TERM(M) TERM(M)

Files

numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean,
number, and string capabilities.

Some limitations: total compiled entries cannot exceed
4096 bytes. The name field cannot exceed 128 bytes.

/usr /lib/terminfo/* /* Compiled terminal capability data
base

See Also

terminfo(M)

3

TERMCAP(M) TERMCAP(M)

Name

termcap - Terminal capability database.

Description

The file /etc/termcap is a data base describing terminals.
Terminals are described in termcap by a set of capabili­
ties and how operations are performed. Padding require­
ments and initialization sequences are included in
termcap. Note that the use of term(M) is preferred.

Entries in termcap consist of a number of ':' separated
fields. The first entry for each terminal gives the names
known for the terminal, separated by vertical bar (I)
characters. The first name is always 2 characters long
for compatibility with older systems. The second name
given is the most common abbreviation for the terminal,
and the last name given should be a long name fully iden­
tifying the terminal. The second name should contain no
blanks; the last name may well contain blanks for read­
ability.

Capabilities

The following is a list of the capabilities that can be
defined for a given terminal. In this list (P) indicates
padding may be specified, and (P*) indicates that padding
may be based on the number of lines affected.

Name Type Pad? Description

ae str (P) End alternate character set
al str (P*) Add new blank line
am boo 1 Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not -H
BE str Bell character
bs boo 1 Terminal can backspace with -H
BS str Sent by BACKSPACE key (if not bc)
bt str (P) Back tab
bw bool Backspace wraps from column 0 to

last column

TERMCAP(M) TERMCAP(M)

Name Type Pad? Description

CC str Corrrrnand character in prototype if
terminal settable

cd str (P*) Clear to end of display
ce str (P) Clear to end of line
CF str Cursor off
ch str (P) Like cm but horizontal motion only,

line stays same
CL str Sent by CHAR LEFT key
cl str (P*) Clear screen
cm str (P) Cursor motion
CN str Sent by CANCEL key
co num Number of columns· in a line
CO str Sent by CHAR RIGHT key
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vtl 00), like

cm
cv str (P) Like ch but vertical only
CW str Sent by CHANGE WINDOW key
da bool Display may be retained above
db bool Display may be retained below
dB num Number of millisec of bs delay
dC num Number of millisec of cr delay
dc str (P*) Delete character
dF num Number of millisec of ff delay
DK str Sent by down arrow key (if not kd)
DL str Sent by DELETE key
DL str Sent by destructive character delete

key
dl str (P*) Delete line
dm str Delete mode (enter)
dN number Number of millisec of nl delay needed
do str Down one line
ed str End delete mode
EE str Edit mode end
EG num Number of chars taken by ES and EE
ei str End insert mode; give ':ei=:'
EN str Sent by END key
eo str Erase overstrikes with a blank
ES str Edit mode start
ff str (P*) Hardcopy terminal page eject (default

AL)
Gl str Upper-right (1st quadrant) corner

character

2

TERMCAP(M)

Name Type

G2 str

G3 str

G4 str

GD str
GE str
GG num
GH str
GS str
GU str
GV str
hc bool
hd str
hz str
ic str
if str
im bool

in bool

ip str
is str
kO-k9 str
kb str
kd str
ke str
KF str
kh str
kl str
kn num
KO str
ko str

kr str
ks str

dT num

ku str
lO-19 str
LD str

TERMCAP(M)

Pad? Description

Upper-left (2nd quadrant) corner
character

Lower-left (3rd quadrant) corner
character

Lower-right (4th quadrant) corner
character

Down-tick character
Graphics mode end
Number of chars taken by GS and G
Horizontal bar character
Graphics mode start
Up-tick character
Vertical bar character
Hardcopy terminal
Half-line down (forward 1/2 linefeed
Hazeltine; can't print's

(P) Insert character
Name of file containing is
Insert mode (enter); give ':im=:q' if
ic

Insert mode distinguishes nulls on
display

(P*) Insert pad after character inserted
Terminal initialization string
Sent by 'other' function keys 0-9
Sent by backspace key
Sent by terminal down arrow key
Out of 'keypad transmit' mode
Key-clock off
Sent by home key
Sent by terminal left arrow key
Number of 'other' keys
Key-clock on
Termcap entries for other
non-function keys

Sent by terminal right arrow key
Put terminal in 'keypad transmit'
mode

Number of millisec of tab delay
needed

Sent by terminal up arrow key
Labels on 'other' function keys
Sent by line delete key

3

TERMCAP(M) TERMCAP(M)

Name Type Pad? Description

LF str Sent by line feed key
li num Number of lines on screen or page
LK str Sent by left arrow key (if not kl)
11 str Last line, first column (if no cm)
rna str Arrow key map, used by vi version 2

only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
MN str Sent by minus sign key
MP str Multiplan initialization string
MR str Multiplan reset string
mu str Memory unlock (turn off memory lock)
nc bool No correctly working carriage return

(DM25000,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default In)
ns bool Terminal is a CRT but doesn't scroll
NU str Sent by NEXT UNLOCKED CELL key
os bool Terminal overstrikes
pc str Pad character (rather than null
PD str Sent by PAGE DOWN key
PL str Sent by PAGE LEFT key
PR str Sent by PAGE RIGHT key
PS str Sent by plus sign key
pt bool Has hardware tabs (may need to be

set with is)
PU str Sent by PAGE UP key
RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RK str Sent by right arrow key (if not kr)
RT str Sent by RETURN key
RT str Sent by return key
se str End stand out mode
sf str (P) Scroll forward
sg num Number of blank chars left by so or

se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
TB str Sent by TAB key
tc str Entry of similar terminal - must be

last
te str String to end programs that use cm

4

TERMCAP(M) TERMCAP(M)

.-----------

Name Type Pad? Description

ti str String to begin programs that use cm
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by use or

ue
UK str Sent by up arrow key (if not ku)
ul bool Terminal underlines even though it

doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
WR str Sent by WORD RIGHT key
xb bool Beehive (f1=escape, f2=ctrl C)
xn bool A newline is ignored after a wrap

(Concept)
xr bool Return acts like ce /r /n (Delta

Data)
xs bool Standard out not erased by writing

over it (HP 2641)
xt bool Tabs are destructive, magic so char

(Teleray 1061)

A Sample Entry

Entries may continue onto multiple lines by giving a \ as
the last character of a line, and empty fields may be in­
cluded for readability (here between the last field on a
line and the first field on the next). Capabilities in
termcap are of three types:

• Boolean capabilities which indicate that the terminal
has some particular feature.

• Numeric capabilities giving the size of the terminal
or the size of particular delays

• String capabilities, which give a sequence which can
be used to perform particular terminal operations.

5

TERMCAP(M) TERMCAP(M)

The following entry describes the Altos II terminal.

a21altos21alt21altos 21Altos 11:\

:cd=\E[J:ce=\E[K:cl=\E:cl=\E[;H\E[2J:\

:up=\E[lA:do=\E[lB:nd=\E[lC:bc=\E[lD:cm=\E[%i%d;%dH:ho=\E[H:\

:al=\E[L:dl=\E[M:ic=\E[@:dc=\E[P:im=:ei=:\

:co#80:1i#24:ug#O:sg#O:bs:pt:sr:\

:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:\

:is=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8H:if=/usr/lib/tabset/vtlOO:\

:ku=\E[A:kd=\E[B:kr=\E[C:klR\E[D:kh=\E[f:kb="H:cr="M:\

:XUs"Aq\r:XD="Ar\r:XR="As\r:XL="At\r:\

:YU=hAQ\r:YD=hAR\r:YR="AS\r:YL="AT\r:\

:HLs"AP\r:\

:IS=\E[@:DE=\E[P:IL=\E[L:DL=\E[M:NS=\E[S:PS=\E[T:\

:LO=\E[Oq:LC=\E[5q:LL=\E[6q:\

:kO="A@\r:kl="AA\r:k2="AB\r:k3="AC\r:\

:K4="AD\r:k5="AE\r:k6="AF\r:k7="AG\r:\

:k8="AH\r:k9="AI\r:kA="AJ\r:kB="AK\r:\

:kC="AL\r:kD="AM\r:kE="AN\r:kF="AO\r:\

:cO="A-\r:cl="Aa\r:c2="Ab\r:c3="Ac\r:\

:c4="Ad\r:c5="Ae\r:c6="Af\r:c7="Ag\r:\

:c8="Ah\r:c9="Ai\r:cA="Aj\r:cB="Ak\r:\

:cC="Al\r:cD="Am\r:cE="An\r:cF="Ao\r:

Type of Capabilities

All capabilities have two letter codes. For instance, the
fact that the Concept has 'automatic margins' (i.e., an
automatic return and linefeed when the end of a line is
reached) is indicated by the capability am. Hence the
description of the Concept includes am. Numeric capabili­
ties are followed by the character '#' and then value.
Thus co, which indicates the number of columns the termi­
nal has, gives the value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to
end of line sequence) are given by the two character code,
an '=', and then a string ending at the next following
, . , A delay in milliseconds may appear after the '= ' in
such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to
provide this delay. The delay can be either an integer,
e.g., '20', or an integer followed by an '*', i.e., '3*'.
A '*' indicates that the padding required is proportional
to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required.

6

TERMCAP(M) TERMCAP(M)

When a '*' is specified, it is sometimes useful to give a
delay of the form '3.5' to specify a delay per unit to
tenths of milliseconds.

A number of escape sequences are provided in the
string-valued capabilities for easy encoding of characters
there. A \E maps to an ESCAPE character, AX maps to a
control-x for any appropriate x, and the sequence \0 \r \t
\b \f give a newline, return, tab, backspace and formfeed.
Finally, characters may be given as three octal digits
after a \, and the characters A and \ may be given as \ A

and \ \. If it is necessary to place a: in a capability
it must be escaped in octal as \072. If it is necessary
to place a null character in a string capability it must
be encoded as \200. The routines that deal with termcap
use C strings, and strip the high bits of the output very
late so that a \200 comes out as \000 WOUld.

Preparing Descriptions

We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
termcap and to build up a description gradually, using
partial descriptions. Be aware that a very unusual termi­
nal may expose deficiencies in the ability of the termcap
file to describe it.

Basic Capabilities

The number of columns on each line for the terminal is
given by the co numeric capability. If the terminal is a
CRT, then the number of lines on the screen is given by
the II capability. If the terminal wraps around to the
beginning of the next line when it reaches the right mar­
gin, then it should have an am capability. If the termi­
nal can clear its screen, then this is given by the el
string capability. If the terminal can backspace, then it
should have the bs capability, unless a backspace is ac­
complished by a character other than AH in which case you
should give this character as the be string capability.
If it overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capa­
bility.

7

TERMCAP(M) TERMCAP(M)

A very important point here is that the local cursor mo­
tions encoded in termeap are undefined at the left and top
edges of a CRT terminal. The editor will never attempt to
backspace around the left edge, nor will it attempt to go
up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to
scroll up, and the am capability tells whether the cursor
sticks at the right edge of the screen. If the terminal
has switch selectable automatic margins, the termeap file
usually assumes that this is on, i.e., am.

These capabilities suffice to describe hardcopy and
'glass-tty' terminals. Thus the model 33 teletype is de­
scribed as:

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as:

clladm31311si adm3:am:bs:cl=A:li#24:co#80

Cursor Addressing

Cursor addressing in the terminal is described by a em
string capability, with printf(S)-like escapes (%x) in it.
These SUbstitute to encodings of the current line or
column position, while other characters are passed through
unchanged. If the em string is thought of as being a
function, then its arguments are the line and then the
column to which motion is desired, and the % encodings
have the following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
% like %c
%+x adds x to value, then %
%)xy if value) x adds y, no output
%r reverses order of line and column, no output
%i increments lines/column (for 1 origin)
%% gives a single %
%n exclusive-or (xor) row and column with 0140

(DM2500)
%B BCD (16*(x/10» + (x mod 10), no output
%d Reverse coding (x-2*(x mod 16», no output

(Delta Data)

8

TERMCAP(M) TERMCAP(M)

Consider the HP2645, which, to get to row 3 and column 12~

needs to be sent \E&a12c03Y padded for 6 milliseconds.
Note that the order of the rows and columns is inverted
here, and that the row and column are printed as two
digits. Thus its cm capability is 'cm=6\E&%r%2c%2Y'. The
Microterm ACT-IV needs the current row and column sent
preceded by a AT, with the row and column simply encoded
in binary, 'cm=AT%%'. Terminals which use '%' need to be
able to backspace the cursor (bs or bc), and to move the
cursor up one line on the screen (up introduced below).
This is necessary because it is not always safe to trans-
mit \t, \n AD and \r, as the system may change or discard
them.

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus 'cm= \E=%+ %+ '.

Cursor Motions

If the terminal can move the cursor one position to the
right, leaving the character at the current position un­
changed, then this sequence should be given as nd
(non-destructive space). If it can move the cursor up a
line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left
corner of screen) then this can be given as ho; similarly,
a fast way of getting to the lower left hand corner can be
given as 11; this may involve going up with up from the
home position, but the editor will never do this itself
(unless 11 does) because it makes no assumption about the
effect of moving up from the home position.

Area Clears

If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this
should be given as ceo If the terminal can clear from the
current position to the end of the display, then this
should be given as cd. The editor only uses cd from the
first column of a line.

9

TERMCAP(M) TERMCAP(M)

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as al; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first
position on the line to be deleted. If the terminal can
scroll the screen backwards, then this can be given as sb,
but just al suffices. If the terminal can retain display
memory above, then the da capability should be given; if
display memory can be retained below then db should be
given. These let the editor understand that deleting a
line on the screen may bring non-blank lines up from be­
low, or that scrolling back with sb may bring down
non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using termcap. The most common insert/delete character
options affect only the characters on the current line and
shift characters off the end of the line. Other termi-
nals, such as the Concept 100 and the Perkin Elmer Owl,
make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an un­
typed blank on the screen which is either eliminated, or
expanded to two untyped blanks.

You can find out which kind of terminal you have by clear­
ing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the
cursor before the 'abc' and put the terminal in insert
mode. If typing characters causes the rest of the line to
shift rigidly and characters to fall off the end, then
your terminal does not distinguish between blanks and un­
typed positions. If the 'abc' shifts over to the 'def,'
which then move together around the end of the current
line and onto the next as you insert, you have the second
type of terminal, and should give the capability in, which
stands for 'insert null'. I f your terminal does something
different and unusual then you may have to modify the edi-

10

TERMCAP(M) TERMCAP(M)

tor to get it to use the insert mode your terminal de­
fines. No known terminals have an insert mode not falling
into one of these two classes.

The editor can handle both terminals that have an insert
mode and terminals which send a simple sequence to open a
blank position on the current line. Give as im the se­
quence to get into insert mode, or give it an empty value
if your terminal uses a sequence to insert a blank posi­
tion. Give as ei the sequence to leave insert mode (give
an empty value also if you gave im an empty value). Now
give as ie any sequence needed to be sent just before
sending the character to be inserted. Most terminals with
a true insert mode will not give ie; terminals that send a
sequence to open a screen position should give it here.
(Insert mode is preferable if a terminal has both.) If
post insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in in­
sert mode to delete characters on the same line (e.g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mi because of the way its insert mode
works.

Finally, you can specify delete mode by entering dIn and ed
to enter and exit delete mode, and de to delete a single
character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout
mode, these can be given as so and se respectively. If
there are several types of standout mode, (such as inverse
video, blinking, or underlining), the preferred mode is
inverse video by itself. If the code to change into or
out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, this is
acceptable, and although it may confuse some programs
sligh tly, it can't be helped.

11

TERMCAP(M) TERMCAP(M)

Codes to begin underlining and end underlining can be
given as us and ue respectively. If the terminal has a
code to underline the current character and move the cur­
sor one space to the right, such as the Microterm Mime,
this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a
nondestructive space.)

If the terminal has a way of flashing the screen to indi­
cate an error quietly (a bell replacement) then this can
be given as vb; it must not move the cursor. If the ter­
minal should be placed in a different mode during open and
visual modes of ex, this can be given as vs and ve, sent
at the start and end of visual mode respectively. These
can be used to change from a underline to a block cursor
and back.

If the terminal needs to be in a special mode when running
a program that addresses the cursor, the codes to enter
and exit this mode can be given as ti and teo This
arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only
memory-relative cursor addressing and not screen relative
cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters
(with no special codes needed), even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note
that it is not possible to handle terminals where the key­
pad only works in local mode (this applies for example, to
the un shifted HP 2621 keys). I f the keypad can be set to
transmit or not transmit, give these codes as ks and ke.
Otherwise the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kI, kr, ku, kd, and
kh respectively. If there are function keys such as fO,
fI, ... , f9, the codes they send can be given as kO, kI,
... , k9. If these keys have labels other than the default

12

TERMCAP(M) TERMCAP(M)

fO through f9, the labels can be given as 10, 11, ... , 19.
If there are other keys that transmit the same code as the
terminal expects for the corresponding function, such as
clear screen, the terrncap 2 letter codes can be given in
the ko capability, for example, ':ko=cl,ll,sf,sb:', which
says that the terminal has clear, home down, scroll down,
and scroll up keys that transmit the same thing as the cl,
11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on termi­
nals which have single character arrow keys. It is obso­
lete but still in use in version 2.0 of vi, which must be
run on some minicomputers due to memory limitations. This
field is redundant with kI, kr, ku, kd, and kh. It con-
sists of groups of two characters. In each group, the
first character is what an arrow key sends, the second
character is the corresponding vi command. These command:
are h for kl, j for kd, k for ku, I for kr, and H for kh.
For example, the mime would be :ma=AKrkAXI: indicating
arrow keys left (AH), down CK), up (A), and right (AX).
(There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) charac­
ter as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the termi­
nal uses a character other than - I to tab, then this can
be given as tao

Hazel tine terminals, which don't allow ,- -, characters to
be printed should indicate hz. Datamedia terminals, which
echo carriage-return line feed for carriage return and then
ignore a following line feed should indicate nco Early
Concept terminals, which ignore a linefeed immediately
after an am wrap, should indicate xn. I f an erase-eol is
required to get rid of standout (instead of merely writing
on top of it), xs should be given. Teleray terminals,
where tabs turn all characters moved over to blanks,
should indicate xt. Other specific terminal problems may
be corrected by adding more capabilities of the form xZ.
Other capabilities include is, an initialization string
for the terminal, and if, the name of a file containing
long initialization strings. These strings are expected
to properly clear and then set the tabs on the terminal,

13

TERMCAP(M) TERMCAP(M)

Files

if the terminal has settable tabs. If both are given, is
will be printed before if. This is useful where if is
/usr/lib/tabset/atd, but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be de­
fined as being just like the other with certain excep-
tions. The string capability tc can be given with the
name of the similar terminal. This capability must be
last and the combined length of the two entries must not
exceed 1024. Since termlib routines search the entry from
left to right, and since the tc capability is replaced by
the corresponding entry, the capabilities given at the
left override the ones in the similar terminal. A capa­
bility can be cancelled with xx@, where xx is the capabil­
ity. For example:

hh 12621nl:ks@:ke@:tc=2621:

This defines a 2621nl that does not have the ks or ke cap­
abilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

/ etc/termcap File containing terminal descriptions.

Related Commands

exeC), tset(C), more(C)

Credit

This utility was developed at the University of California
at Berkeley and is used with permission.

14

TERMCAP(M) TERMCAP(M)

Notes

Use of terrn(M) is preferred.

Ex(C) allows only 256 characters for string capabilities,
and the routines in terrncap do not check for overflow of
this buffer. The total length of a single entry
(excluding only escaped newlines) may not exceed 1024.

The rna, vs, and ve entries are specific to the vi(C) pro­
gram.

Not all programs support all entries. There are entries
that are not supported by any program.

15

TERMINALS(M) TERMINALS(M)

Name

terminals - Supported terminals.

Description

Files

The /etc/termcap file and the /usr/lib/terminfo directory
contain two types of descriptions: terminals that have
been tested and are supported by Altos, and terminals that
are supplied for information only. The corresponding
names can be used to assign the terminal type to TERM
(see environ(M».

If you wish to add a terminal from the "information only"
section of one of the terminfo files, choose a description
that closely resembles the terminal you are adding. Put
the terminal description in a file, and edit it to suit
your needs. Use tic(C) to compile the file by typing the
following:

tic filename

/etc/termcap
/usr /lib/terminfo/* /*

1

TERMINFO(M) TERMINFO(M,

Name

tenninfo - Terminal capability database.

Syntax

/usr /lib/tenninfo/* /*

Description

Terminfo is a database describing terminals, used, for
example, by curses(S). Terminals are described in
tenninfo by giving a set of capabilities that they have,
and by describing how operations are performed. Padding
requirements and initialization sequences are included.

Entries in tenninfo consist of a number of comma-separated
fields. White space after each comma (,) is ignored. The
first entry for each terminal gives the names which are
known for the terminal, separated by vertical bar (I)
characters. The first name given is the most common ab­
breviation for the terminal, the last name given should be
a long name fully identifying the terminal, and all others
are understood as synonyms for the terminal name. All
names but the last should be in lower case and contain no
blanks, the last name may well contain upper case and
blanks for readability.

Terminal names (except for the last, verbose entry) should
be chosen using the following conventions. The particular
piece of hardware making up the terminal should have a
root name chosen, thus alt3 for the Altos II I terminal.
This name should not contain hyphens, except that synonyms
may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator
of the mode. Thus, a vt100 in 132 column mode would be
vt100-w. The following suffixes should be used where pos­
sible:

1

TERMINFO(M) TERMINFO(M)

Suffix Meaning Example

-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
..,.na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory clOO-4p
-rv Reverse video clOO-rv

Capabilities

The variable is the name by which the programmer (at the
terminfo level) accesses the capability. The capname is
the short name used in the text of the database, and is
used by a person updating the database. The Lcode is the
two letter internal code used in the compiled database,
and always corresponds to the old termcap(M) capability
name.

Capability names have no hard length limit, but an in­
formal limit of five characters has been adopted to keep
them short and to allow the tabs in the source file caps
to line up nicely. Whenever possible, names are chosen to
be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specifi-

. cation.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm
with parms as given (#i)

(*) indicates that padding may be based on the number of
lines affected

(#i) indicates the ith parameter

2

TERMINFO(M)

Variable

Booleans:

auto_left_margin,

auto_~ight_margin,

beehive_glitch,

ceol_standout_glitch,

eat_newline_glitch,

erase_overstrike,

generic_type,

hard_copy,

has_meta_key,

has_status_line,

insert_null_glitch,

memory_above,

memory_below,

move_insert_mode,

move_standout_mode,

over_strike,

status_line_esc_ok,

teleray_glitch,

tilde_glitch,

transparent_underline,

xon_xoff,

column,

init_tabs,

lines,

lines_of_memory,

magic_cookie_glitch,

padding_baud_rate,

virtual_terminal,

width_status_line,

Cap- Termcap

name Code Description

TERMINFO(M)

bw bw cubl wraps from column 0 to last column

am am Terminal has automatic margins

xsb xb Beehive (fl=escape, f2=ctrl C)

xhp xs Standout (not erased by overwriting (hp)

xenl xn newline ignored after 80 cols (Concept)

eo eo Can erase overstrikes with a blank

gn gn Generic line type (e.g., dialup, switch)

hc hc Hardcopy terminal

km km Has a meta key (shift, sets parity bit)

hs hs Has extra "status line"

in in Insert mode distinguishes nulls

da da Display may be retained above the screen

db db Display may be retained below the screen

mir mi Safe to move while in insert modes

msgr ms Safe to move in standout modes

os os Terminal overstrikes

eslok es Escape can be used on the status line

xt xt Tabs ruin. magic so char (Teleray 1061)

hz hz Hazeltine; cannot print -·s

ul ul Underline character overstrikes

xon xo Terminal uses xon/xoff handshaking

cols co

it it

lines li

1m 1m

xmc sg

pb pb

vt vt

wsl ws

Number of columns in a line

Tabs initially every # spaces

Number of lines on screen or page

Lines of memory if > lines. 0 means varies

Number of blank chars left by smso or rmso

Lowest baud where cr/nl padding is needed

Virtual terminal number (UNIX system)

No. columns in status line

3

TERMINFO(M)

Variable

Strings:

acs_chars

back_tab,

belL

carriage_return,

change_scroll region,

clear_all tabs,

clear_screen,

clr_eol,

clr_eos,

column address,

command_character,

cursor_address,

cursor_down,

cursor_home

cursor_invisible,

cursor_left,

cursor_mem_address,

cursor_normal,

cursor_right,

cursor_to_11,

cursor_up,

cursor_visible,

delete_character,

delete_line,

dis_status_Iine,

down_half_line,

enter_alt_charset_mode,

enter_blink_mode,

enter_bold_mode,

enter_ca_mode,

enter_delete_mode,

enter_dim_mode,

enter_insert_mode,

enter_protected_mode,

enter_reverse_mode,

enter_secure_mode,

enter_standout_mode,

enter_underline_mode,

TERMINFO(M)

Cap- Termcap

name Code Description

acsc

cbt

bel

ac

bt

bl

cr cr

csr cs

tbc ct

clear cl

el ce

ed cd

hpa ch

cmdch CC

cup cm

cudl do

home ho

civis vi

cubl Ie

mrcup CM

cnorm ve

cufl nd

11 11

cuul up

cvvis vs

dchl dc

d11 dl

dsl ds

hd hd

smacs as

blink mb

bold md

smcup ti

smdc dm

dim mh

smir im

prot mp

rev mr

invis mk

smso so

smul us

4

Graphic char set pairs aAbBcC - def

Back tab (P)

Audible signal (bell) (P)

Carriage return (P*)

vt100+

Change to lines #1 through #2 (vt100) (PG)

Clear all tab stops (P)

Clear screen and home cursor (P*)

Clear to end of line (P)

Clear to end of display (P*)

Set cursor column (PG)

Term.settable cmd char in prototype

Screen reI. cursor motion row #1 col #2 (PG)

Down one line

Home cursor (if no cup)

Make cursor invisible

Move cursor left one space

Memory relative cursor addressing

Make cursor appear normal (undo vs/vi)

Non-destructive space (cursor right)

Last line, first column (if no cup)

Upline (cursor up)

Make cursor very visible

Delete character (P*)

Delete line (P*)

Disable status line

Half-line down (forward 1/2 linefeed)

Start alternate character set (p)

Turn on blinking

Turn on bold (extra bright) mode

String to begin programs that use cup

Delete mode (enter)

Turn on half-bright mode

Insert mode (enter)

Turn on protected mode

Turn on reverse video mode

Turn on blank mode (chars invisible)

Begin stand out mode

Start underscore mode

TERMINFO(M)

Variable

erase_chars

exit_alt_charset_mode.

exit_at tribute_mode.

exit_ca_mode.

exit_delete_mode.

exit_insert_mode.

exit_standout_mode.

exit_underline_mode.

flash_screen.

form_feed.

from_status_line.

init_lstring.

init_2string.

init_3string.

init_file.

insert_character.

insert_line.

insert_padding.

key_backspace.

key_catab.

key_clear.

key_ctab.

key_dc.

key_dl.

key_down.

key_eic.

key_eol.

key_eos.

key_fO

key_fl.

key_flO.

key_f2.

key_f3.

key_f4.

keY_f5.

keY_f6.

key_f7.

key_f8.

keY_f9.

Cap- Termcap

name Code

ech ec

rmacs ae

sgrO me

rmcup te

rmdc ed

rmir ei

rmso se

rmul ue

flash vb

ff ff

fsl fs

isl il

is2 i2

is3 i3

if if

ichl ic

ill al

ip ip

kbs kb

ktbc ka

kclr kC

kctab kt

kdchl kD

kdll kL

kcudl kd

krmir kM

kel kE

ked kS

kfO kO

kfl kl

kflO ka

kf2 k2

kf3 k3

kf4 k4

kf5 k5

kf6 k6

kf7 k7

kf8 k8

kf9 k9

TERMINFO(M)

Description

Erase Hl characters (PG)

End alternate character set (P)

Turn off all attributes

String to end programs that use cup

End delete mode

End insert mode

End stand out mode

End underscore mode

Visible bell (may not move cursor)

Hardcopy terminal page eject (P*)

Return from status line

Terminal initialization string

Terminal initialization string

Terminal initialization string

Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after character inserted (P*)

Sent by backspace key

Sent by clear-aIl-tabs key

Sent by clear screen or erase key

Sent by clear-tab key

Sent by delete character key

Sent by delete line key

Sent by terminal down arrow key

Sent by rmir or smir in insert mode

Sent by clear-to-end-of-line key

Sent by clear-to-end-of-screen key

Sent by function key fO

Sent by function key fl

Sent by function key flO

Sent by function key f2

Sent by function key f3

Sent by function key f4

Sent by function key f5

Sent by function key f6

Sent by function key f7

Sent by function key f8

Sent by function key f9

5

TERMINFO(M) TERMINFO(M)

Variable Cap- Termcap

name Code Description

key_home, khome kh Sent by home key

key_ic, kichl kI Sent by ins char/enter ins mode key

key_il, kill kA Sent by insert line

key_left, kcubl kl Sent by terminal left arrow key

key_ll, kll kH Sent by home-down key

key npage, knp kN Sent by next-page key

key_ppage. kpp kP Sent by previous-page key

key_right. kcufl kr Sent by terminal right arrow key

key_sf, kind kF Sent by scroll-forward/down key

key_sr, kri kR Sent by scroll-backward/up key

key_stab, khts kT Sent by set-tab key

key_up, kcuul ku Sent by terminal up arrow key

keypad_local. rmkx ke Out of "keypad transmit" mode

keypad_xmit. smkx ks Put terminal in "keypad transmit" mode

lab_fO. lfO 10 Label.s on function key fO if not fO

lab_fl, lfl 11 Labels on function key fl if not fl

lab flO. lflO la Labels - on function key flO if not flO

l.ab_f2, lf2 12 Labels on function key f2 if not f2

lab_f3, lf3 13 Labels on function key f3 if not f3

,lab_f4, lf4 14 Labels on function key f4 if not f4

lab_f5, lf5 15 Labels on function key f5 if not f5

lab_f6, lf6 16 Labels on function key f6 if not f6

lab f7. lf7 17 Labels on function key f7 if not f7 -
lab_f8, lf8 18 Labels on function key f8 if not f8

l.ab_f9, lf9 l.9 Label.s on function key f9 if not f9

meta_on. smm mm Turn on "meta mode" (8th bit)

meta_off, rmm mo Turn off "meta mode"

newl.ine, nel. nw Newline (behaves l.ike cr fOll.owed by If)

pad_char, pad pc Pad character (rather than nul.l)

parm_dch. dch DC Del.ete #1 chars (PG*)

parm_del.ete_l.ine. dl. DL Del.ete #1 l.ines (PG*)

parm down cursor, cud DO Move cursor down #1 l.ines (PG*)

parm_ich. ich IC Insert #1 blank chars (PG*)

parm_index. indn SF Scroll forward #1 lines (PG)

parm_insert_line il AL Add #1 new blank lines (PG*)

parm_1eft_cursor. cub LE Move cursor left #1 spaces (PG)

parm_right_cursor. cuf RI Move cursor right #1 spaces (PG*)

parm rindex. rin SR Scroll backward #1 lines (PG)

parm_up_cursor, cuu UP Move cursor up #1 lines (PG*)

6

TERMINFO(M)

Variable

pkey_key.

pkey_local.

pkey_xmit.

print_screen.

prtr_off.

prtr_on.

repeat_char.

reset_1st ring.

reset_2string.

reset_3string.

reset_file.

restor_cursor.

row_address.

save_cursor.

scroll_forward.

scroll_reverse.

set_attributes.

set_tab.

set_window.

tab.

to status_line.

underline_char.

up_half_line.

init_prog.

key_al.

key_a3.

key_b2.

key_cL

key_c3.

prtr non

Cap- Termcap

name Code

pfkey pk

pfloc pI

pfx px

mcO ps

mc4 pf

mcS po

rep rp

rsl rl

rs2 r2

rs3 r3

rf rf

rc rc

vpa cv

sc sc

ind sf

ri sr

sgr sa

hts st

wind wi

ht ta

tsl ts

uc uc

hu hu

iprog iP

kal Kl

ka3 K3

kb2 K2

kcl K4

kc3 KS

mcSp pO

TERMINFO(M)

Description

Prog funct key #1 to type string #2

Prog funct key #1 to execute string #2

Prog funct key #1 to xmit string #2

Print contents of the screen

Turn off the printer

turn on the printer

Repeat char #1 #2 times (PG*)

Reset terminal completely to sane modes

Reset terminal completely to sane modes

Reset terminal completely to sane modes

Name of file containing reset string

Restore cursor to position of last sc

Vertical position absolute (set row) (PG)

Save cursor position (P)

Scroll text up (P)

Scroll text down (P)

Define the video attributes (PG9)

Set a tab in all rows. current column

Current window is lines #1-#2 cols #3-#4

Tab to next 8 space hardware tab stop

Go to status line. column #1

Underscore one char and move past it

Half-line up (reverse 1/2 linefeed)

Path name of program for init

Upper left of keypad

Upper right of keypad

Center of keypad

Lower left of keypad

Lower right of keypad

Turn on the printer for #1 bytes

7

TERMINFO(M) TERMINFO(M)

A Sample Entry

The following is a complex example that describes a
Concept-IOO.

concept100lc100lc104lc100-4plconcept 100.

am. bel="G. blank=\EH. blink=\EC. clear="L$<2*>. cnorm=\Ew.

cols#80. cr="M$<9>. cubl="H. cudl="J. cufl=\E=.

cup=\Ea%pl%' '%+%c%p2%' '%+%c.

cuul=\E:. cvvis=\EW. db. dchl=\E"A$<16*>. dim=\EE:. dll=E"B$<3*>.

ed=\E"C$<16*>. el=\E"U$<16>. eo. flash=\EK$<20>\EK. ht=\t$<8>.

ill=\E"R$<3*>. in. ind="J .. ind="J$<9>. ip=$<16*>.

is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E.

kbs="h. kcubl=\E>. kcudl=\E<. kcufl=\E=. kcuul=\E:.

kfl=\E5. kf2=\E6. kf3=\E7. khome=\E?

lines#24. mir. pb#9600. prot=\EI. rep=\Er%pl%c%p2%' '%+%c$<.2*>.

rev=\ED. rmcup=\EV $<6>\Ep\r\n. rmir=\E\200. rmkx=\Ex.

rmso=\Ed\Ee. rmul=\Eg. rmul=\Eg. sgrO=\EN\200.

smcup=\EU\Ev 8p\Ep\r. smir=\E"P. smkx=\EX. smso=\EE\ED.

smul=\EG. tabs. ul. vt#8. xenl.

Entries may continue onto multiple lines by placing white
space at the beginning of each line except the first.
Comments may be included on lines beginning with a #.

Capabilities in terminfo are of three types: Boolean cap­
abilities which indicate that the terminal has some par­
ticular feature, numeric capabilities giving the size of
the terminal or the size of particular delays, and string
capabilities, which give a sequence that can be used to
perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the Concept-
100 has automatic margins (i.e., an automatic return and
line feed when the end of a line is reached) which is in­
dicated by the capability am. Numeric capabilities are
followed by the character # and then the value. Thus,
cols, which indicates the number of columns the terminal
has, gives the value 80 for the Concept.

Finally, string valued capabilities, such as el (clear to
end of line sequence) are given by the two-character code,
an =, and then a string ending at the next following ,. A
delay in milliseconds may appear anywhere in such a capa-

8

TERMINFO(M) TERMINFO(M)

bility, enclosed in $< ..) brackets, as in el=\EK$<3), and
padding characters are supplied by tputs to provide this
delay. The delay can be either a number, e.g., 20, or a
number followed by an *, i.e., 3*. A * indicates that the
padding required is proportional to the number of lines
affected by the operation, and the amount given is the
peraffected-unit padding required. (In the case of insert
character, the factor is still the number of lines af­
fected. This is always one unless the terminal has xenl
and the software uses it.) When a * is specified, it is
sometimes useful to give a delay of the form 3.5 to speci­
fy a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

A number of escape sequences are provided in the string
valued capabilities for each encoding of characters there.
Both \E and \e map to an ESCAPE character, AX maps to a
control-x for any appropriate X, and the sequences \n \1
\r \t \b \f \s give a newline, line feed, return, tab,
backspace, formfeed, and space. Other escapes include \ A

for A, \ \ for \, \, for comma, \: for:, and \0 for null.
(\0 will produce \200, which does not terminate a string
but behaves as a null character on most terminals.)

Sometimes individual capabilities must be commented out.
To do this, put a period before the capability name.

Preparing Terminal Descriptions

The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using
partial descriptions with vi(C) to check that they are
correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the tenninfo file to de-
scribe it or bugs in vi. To easily test a new terminal
description you can set the environment variable TERMINFO
to a pathname of a directory containing the compiled de­
scription you are working on and programs will look there
rather than in lusr llib/terminfo. To get the padding for
insert line right (if the terminal manufacturer did not
document it) a severe test is to edit a test file at 9600
baud, delete 16 or so lines (i.e., d16d) from the middle
of the screen, then press the u key several times quickly.
If the terminal messes up, more padding is usually needed.
A similar test can be used for insert character.

9

TERMINFO(M) TERMINFO(M)

Basic Capabilities

The number of columns on each line for the terminal is
given by the cols numeric capability. If the terminal is
a CRT, then the number of lines on the screen is given by
the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right mar­
gin, then it should have the am capability. If the ter­
minal can clear its screen, leaving the cursor in the home
position, then this is given by the clear string capabili-
ty. If the terminal overstrikes (rather than clearing a
position when a character is struck over) then it should
have the os capability. If the terminal is a printing
terminal, with no soft copy unit, give it both hc and os.
(os applies to storage scope terminals, such as TEKTRONIX
40 I 0 series, as well as hardcopy and APL terminals.) If
there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be car­
riage return, control M.) If there is a code to produce an
audible signal (bell, beep, etc.) give this as bel.

If there is a code to move the cursor one position to the
left (such as backspace) that capability should be given
as cub!, Similarly, codes to move to the right, up, and
down should be given as cun, cuul, and cud!. These local
cursor motions should not alter the text they pass over,
for example, you would not normally use 'cun =' because
the space would erase the character moved over.

A very important point here is that the local cursor mo­
tions encoded in terminfo are undefined at the left and
top edges of a CRT terminal. Programs should never at­
tempt to backspace around the left edge, unless bw is
given, and never attempt to go up locally off the top. In
order to scroll text up, a program will go to the bottom
left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner
of the screen and sends the ri (reverse index) string.
The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indn
and ri except that they take one parameter, and scroll
that many lines. They are also undefined except at the
appropriate edge of the screen.

10

TERMINFO(M) TERMINFO(M)

The am capability tells whether the cursor sticks at the
right edge of the screen when text is output, but this
does not necessarily apply to a cufl from the last column.
The only local motion which is defined from the left edge
is if bw is given, then a cub! from the left edge will
move to the right edge of the previous row. If bw is not
given, the effect is undefined. This is useful for draw­
ing a box around the edge of the screen, for example.

If the terminal has switch selectable automatic margins,
the tenninfo file usually assumes that this is on; i.e.,
am. If the terminal has a command which moves to the
first column of the next line, that command can be given
as nel (newline). It does not matter if the command
clears the remainder of the current line, so if the ter­
minal has no cr and If it may still be possible to craft a
working nel out of one or both of them.

These capabilities suffice to describe hardcopy and
glass-tty terminals. Thus the model 33 teletype is de­
scribed as:

331tty331model 33 teletype,

bel=AG, cols#72, cr=AM, cudl=AJ, hc, ind=AJ, os,

while the Lear Siegler ADM-3 is described as:

adm3131lsi adm3,

am, bel=AG, clear=A, cols#80, cr=AM, cub!=AH, cudl=AJ,

ind=AJ, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters
in the terminal are described by a parameterized string
capability, with prinf(S) like escapes %x in it. For ex­
ample, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to thE
physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor ad­
dressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes
to manipulate it. Typically a sequence will push one of
the parameters onto the stack and then print it in some
format. Often more complex operations are necessary.

11

TERMINFO(M) TERMINFO(M)

The % encodings have the following meanings:

%%
%d
%2d
%3d
%02d
%03d
%c
%s

%p[1-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}

%+%-%*%/%m
arithmetic
%&%I%A
%=%>%<

%? expr %t

outputs '%'
print pop () as in printf
print pop() like %2d
print pop() like %3d

as in printf
print pop() as %c
print pop() as %s

push ith parm
set variable [a-z] to pop()
get variable [a-z] and push it
char constant c
integer constant nn

(%m is mod): push(pop() op pop(»
bit operations: push(pop() op pop(»
logical operations: push(pop() op

pop(»
unary operations push(op pop(»
add 1 to first two parms (for ANS I

terminals)

thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? c1 %tb1 %ec2 %tb2 %ec3 %tb3 %ec4

%tb4 %e%;
ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in
the usual order. That is, to get x-5 one would use
%gx%{5}%-.

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E%&a12c03Y padded for six milliseconds.
Note that the order of the rows and columns is inverted
here, and that the row and column are printed as two
digits. Thus its cup capability is cup=6\E&%p2%2dc%p1%2dY.

The Microterm ACT-IV needs the current row and column
sent preceded by a AT, with the row and column simply en­
coded in binary, cup=AT%pl%c%p2%c. Terminals which use %c
need to be able to backspace the cursor (cub!), and to

12

TERMINFO(M) TERMINFO(M)

move the cursor up one line on the screen (cuu I). This is
necessary because it is not always safe to transmit \n - 0
and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so
that tabs are never expanded, so \ t is safe to send. This
turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus cup=\E=%pl%'
'%+%c%p2%' '%+%c. After sending '\E=', this pushes the
first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the
two previous values) and outputs that value as a charac­
ter. Then the same is done for the second parameter.
More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addres­
sing, these can be given as single parameter capabilities
.hpa (horizontal position absolute) and vpa (vertical posi­
tion absolute). Sometimes these are shorter than the more
general two parameter sequence (as with the hp2645) and
can be used in preference to cup. If there are parameter­
ized local motions (e.g., move n spaces to the right)
these can be given as cud, cub-:- cuf, and cuu with a single
parameter indicating how many spaces to move. These are
primarily useful if the terminal does not have cup, such
as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to the
very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower
left-hand corner can be given as 11; this may involve go­
ing up with cuu! from the home position, but a program
should never do this itself (unless 11 does) because it
can make no assumption about the effect of moving up from
the home position. Note that the home position is the
same as addressing to (0,0): to the top left corner of
the screen, not of memory. (Thus, the \EH sequence on HF
terminals cannot be used for home.)

13

TERMINFO(M) TERMINFO(M)

Area Clears

If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this
should be given as el. If the terminal can clear from the
current position to the end of the display, then this
should be given as ed. Ed is only defined from the first
column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed(C) is not
available.)

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as ill; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this
should be given as dll; this is done only from the first
position on the line to be deleted. Versions of ill and
dll which take a single parameter and insert or delete
that many lines can be given as il and dl. If the termi­
nal has a settable scrolling region (like the vtl 00) the
command to set this can be described with the csr capabil­
ity, which takes two parameters: the top and bottom lines
of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get
the effect of insert or delete line using this command -­
the sc and rc (save and restore cursor) commands are also
useful. Inserting lines at the top or bottom of the
screen can also be done using ri or ind on many terminals
without a true insert/delete line, and is often faster
even on terminals with those features.

If the terminal has the ability to define a window as part
of memory, which all commands affect, it should be given
as the parameterized string wind. The four parameters are
the starting and ending lines in memory and the starting
and ending columns in memory, in that order.

I f the terminal can retain display memory above, then the
da capability should be given; if display memory can be
retained below, then db should be given. These indicate
that deleting a line or scrolling may bring non-blank
lines up from below or that scrolling back with ri may
bring down non-blank lines.

14

TERMINFO(M) TERMINFO(M,

Insert/Delete Character

There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using terminfo. The most common insert/delete character
operations affect only the characters on the current line
and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either
eliminated, or expanded to two untyped blanks.

You can determine the kind of terminal you have by clear­
ing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the
cursor before the abc and put the terminal in insert mode.
If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your ter­
minal does not distinguish between blanks and untyped po­
sitions. If the abc shifts over to the def which then
move together around the end of the current line and onto
the next as you insert, you have the second type of ter­
minal, and should give the capability in, which stands for
insert null. While these are two logically separate at­
tributes (one line vs. multiline insert mode, and special
treatment of untyped spaces), no known terminals have an
insert mode that cannot be described with the single at­
tribute.

Terminfo can describe both terminals which have an insert
mode, and terminals which send a simple sequence to open
blank position on the current line. Give as smir the se­
quence to get into insert mode. Give as rmir the sequence
to leave insert mode. Now give as ich! any sequence
needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not
give ich!; terminals which send a sequence to open a
screen position should give it here. (If your terminal
has both, insert mode is usually preferable to iehl. Do
not give both unless the terminal actually requires both
to be used in combination.) If post insert padding is
needed, give this as a number of milliseconds in ip (a
string option).

15

TERMINFO(M) TERMINFO(M)

Any other sequence which may need to be sent after an in­
sert of a single character may also be given in ip. If
your terminal needs both to be placed into an insert mode
and a special code to precede each inserted character,
then both smir/rmir and iehl can be given, and both will
be used. The ieh capability, with one parameter, n, will
repeat the effects of iehl n times.

It is occasionally necessary to move around while in in-
sert mode to delete characters on the same line (e. g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the way
their insert mode works.

Finally, you can specify dehl to delete a single charac­
ter, deh with one parameter, n, to delete n characters,
and delete mode by giving smde and rmde to enter and exit
delete mode (any mode the terminal needs to be placed in
for dehl to work).

A command to erase n characters (equivalent to outputting
n blanks without moving the cursor) can be given as eeh
with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attri­
butes, these can be represented in a number of different
ways. You should choose one display form as standout
mode, representing a good, high contrast, easy-on-the-
eyes, format for highlighting error messages and other
attention getters. (If you have a choice, reverse video
plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as
smso and rmso, respectively. If the code to change into
or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do,
then xme should be given to tell how many spaces are left.

Codes to begin under lining and end under lining can be
given as smul and armul respectively. If the terminal has
a code to underline the current character and move the
cursor one space to the right, such as the Microterm Mime,
this can be given as ne.

16

TERMINFO(M) TERMINFO(M)

Other capabilities to enter various highlighting modes
include:

blink blinking

bold bold or extra bright

dim dim or half-bright

invis blanking or invisible text

prot protected

rev reverse video

sgrO turn off all attribute modes

smacs enter alternate character set mode

rmacs exit alternate character set mode

Turning on any of these modes singly mayor may not turn
off other modes.

If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes), tak-
ing 9 parameters. Each parameter is either 0 or 1, as the
corresponding attribute is on or off. The 9 parameters
are, in order: standout, underline, reverse, blink, dim,
bold, blank, protect, alternate character set. Not all
modes need be supported by sgr, only those for which cor­
responding separate attribute commands exist.

Terminals with the "magic cookie" glitch (xme) deposit
special "cookies" when they receive mode-setting se­
quences, which affect the display algorithm rather than
having extra bits for each character. Some terminals,
such as the HP2621, automatically leave standout mode whel
they move to a new line or the cursor is addressed. Pro­
grams using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout
mode, is present.

If the terminal has a way of flashing the screen to indi­
cate an error quietly (a bell replacement) then this can
be given as flash; it must not move the cursor.

17

TERMINFO(M) TERMINFO(M)

I f the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example, a
non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis. If there
is a way to make the cursor completely invisible, give
that as cvis. The capability cnorm should be given, which
undoes the effects of both of these models.

I f the terminal needs to be in a special mode when running
a program that uses these capabilities, the codes to enter
and exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative
cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.
This is also used for the TEKTRONIX 4025, where smcup
sets the command character to the one used by terminfo.

If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability u1. If
overstrikes are erasable with a blank, then indicate this
by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note
that it is not possible to handle terminals where the key­
pad only works in local (this applies, for example, to the
unshifed HP2621 keys). If the keypad can be set to trans­
mit or not to transmit, give these codes as smkx and rmkx.
Otherwise, the keypad is assumed to always transmit. The
codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kcubl, kcufl, kcuul,
kcudl, and khome respectively. If there are function keys
such as fO, f1, ... , f1 0, the codes they send can be given
as kfO, kfl, ... , kflO. If these keys have labels other
than the default fO through flO, the labels can be given
as I fO, Ifl, ... , Ifl O. The codes transmitted by certain
other special keys can be given: kll (home down), kbs
(backspace), ktbc (clear all tabs), kctab (clear the tab
stop in this column), kcIr (clear screen or erase key),
kdchl (delete character), kdll (delete line), krmir (exit
insert mode), keI (clear to end of line), kill (insert

18

TERMINFO(M) TERMINFO(M)

line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab
stop in this column). In addition, if the keypad has a 3
by 3 array of keys including the four arrow keys, the
other five keys can be given as kal, ka3, kb2, kel, and
ke3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

Tabs and Initialization

I f the terminal has hardware tabs, the command to advance
to the next tab stop can be given as ht (usually
control-I). A "backtab" command (move left to the next
tab stop) can be given as cbt. By convention, if the
teletype modes indicate that tabs are being expanded by
the computer rather than being sent to the terminal, pro­
grams should not use ht or ebt even if they are present,
since the user may not have the tab stops properly set.
If the terminal has hardware tabs which are initially set
every n spaces when the terminal is powered up, the nu­
meric parameter it is given, showing the number as spaces
the tabs are set to. This is normally used by the tset(C)
command to determine whether to set the mode for hardwar
tab expansion, and whether to set the tab stops. If the
terminal has tab stops that can be saved in nonvolatile
memory, the tenninfo description can assume that they are
properly set.

Other capabilities include lsi, is2, and is3, initializa­
tion strings for the terminal, Iprog, the path name of a
program to be run to initialize the terminal, and If, the
name of a file containing long initialization strings.
These strings are expected to set the terminal into modes
consistent with the rest of the terminfo description.
They are normally sent to the terminal by the tset(C) pro­
gram each time the user logs in. They will be printed in
the following order: lsi; Is2; setting tabs using tbe and
hts; if; running the program iprog; and finally is3. Most
initialization is done with Is2.

Special terminal modes can be set up without duplicating
strings by putting the common sequences in Is2 and special
cases in isl and is3. A pair of sequences that does a
harder reset from a totally unknown state can be analog­
ously given as rsl, rs2, and rs3, analogous to is2 and if.
These strings are output by the reset program, which is

19

TERMINFO(M) TERMINFO(M)

used when the terminal gets into a wedged state. Com­
mands are normally placed in rs2 and rf only if they pro­
duced annoying effects on the screen and are not necessary
when logging in. For example, the command to set the
vt100 into 80-column mode would normally be part of is2,
but it causes an annoying glitch of the screen and is not
normally needed since the terminal is usually already in
80 column mode.

If there are commands to set and clear tab stops, they can
be given as tbc (clear all tab stops) and hts (set a tab
stop in the current column of every row). If a more com­
plex sequence is needed to set the tabs than can be de­
scribed by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driv­
er. These are primarily needed by hardcopy terminals, and
are used by the tset program to set teletype modes appro­
priately. Delays embedded in the capabilities cr, ind,
cubl, ff, and tab will cause the appropriate delay bits to
be set in the teletype driver. If pb (padding baud rate)
is given, these values can be ignored at baud rates below
the value of pb.

Line Graphics

If the terminal has a line drawing alternate character
set, the mapping of glyph to character would be given in
acsc. The definition of this string is based on the al­
ternate character set used in the DEC VT100 terminal,
extended slightly with some modifications from the AT&T
44l0vl terminal. These characters and their corresponding
glyphs are shown in the following table:

20

TERMINFO(M)

Glyph Name

arrow pointing right
arrow pointing left
arrow pointing down
solid square block
lantern symbol
arrow pointing up
diamond
checker board (stipple)
degree symbol
plus/minus
board of squares
lower right corner
upper right corner
upper left corner
lower left corner
plus
scan line 1
horizontal line
scan line 9
left tee
right tee
bottom tee
top tee
vertical line
bullet

TERMINFO(M)

VT100+ Character

+

o
I

a
f
g
h
j
k
I
m
n
o
q
s
t
u
v
w
x

The best way to describe a terminal's line graphics set is
to add a third column to the above table with the charac­
ters for the new terminal that produce the appropriate
glyph when the terminal is in the alternate character set
mode. An example is on the following page:

21

TERMINFO(M) TERMINFO(M)

Glyph Name VT100+ New tty
Char. Char.

upper left corner R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Specify the characters defining the new tty character set
in a left-to-right order, as shown in the following ex­
ample (taken from the example above):

acsc=lRmFkTjGq\.x.

Miscellaneous

If the terminal requires other than a null (zero) charac­
ter as a pad, then this can be given as pad. Only the
first character of the pad string is used.

If the terminal has an extra "status line" that is not
normally used by software, this fact can be indicated. If
the status line is viewed as an extra line below the bot­
tom line, into which one can cursor address normally (such
as the Heathkit hI9's 25th line, or the 24th line of a
vt100 which is set to a 23-line scrolling region), the
capability hs should be given. Special strings to go to
the beginning of the status line and to return from the
status line can be given as tsl and fsi. (fsi must leave
the cursor position in the same place it was before tsi.
If necessary, the sc and rc strings can be included in tsl
and fsi to get this effect.) The capability tsl takes one
parameter, which is the column number of the status line
the cursor is to be moved to.

If escape sequences and other special commands, such as
tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsi. If
the terminal has commands to save and restore the position

22

TERMINFO(M) TERMINFO(M)

of the cursor, give them as se and re. The status line is
normally assumed to be the same width as the rest of the
screen, e.g., eols. If the status line is a different
width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be
indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can
be indicated with hu (half-line up) and hd (half-line
down). This is primarily useful for superscripts and sub­
scripts on hardcopy terminals. If a hardcopy terminal can
eject to the next page (form feed), give this as ff
(usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number
of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the
character to be repeated and the second is the number of
times to repeat it. Thus, tparm(repeat_char, 'x', 10) is
the same as 'xxxxxxxxxx'.

If the terminal has a settable command character, such as
the TEKTRONIX 4025, this can be indicated with emdeh. A
prototype command character is chosen which is used in all
capabilities. This character is given in the cmdeh capa­
bility to identify it. The following convention is sup­
ported on some UNIX systems: The environment is to be
searched for a CC variable, and if found, all occurrences
of the prototype character are replaced with the character
in the environment variable.

Terminal descriptions that do not represent a specific
kind of known terminal, such as switch, dialup, patch, and
network, should include the gn (generic) capability so
that programs can complain that they do not know how to
talk to the terminal. (This capability does not apply to
virtual terminal descriptions for which the escape se­
quences are known.)

If the terminal uses xon/xoff handshaking for flow con­
trol, give Kon. Padding information should still be in­
cluded so that routines can make better decisions about
costs, but actual pad characters will not be transmitted.

23

TERMINFO(M) TERMINFO(M)

If the terminal has a "meta key" that acts as a shift
key, setting the eighth bit of any character transmitted,
this fact can be indicated with km. Otherwise, software
will assume that the eighth bit is parity and it will
usually be cleared. If strings exist to turn this "meta
mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on
the screen at once, the number of lines of memory can be
indicated with 1m. A value of 1m#O indicates that the
number of lines is not fixed, but that there is still more
memory than fits on the screen.

If the. terminal is one of those support.ed by the UNIX
virtual terminal protocol, the terminal number can be
given as vt. Media copy strings which control an auxil­
iary printer connected to the terminal can be given as
mcO: print the contents of the screen, mc4: turn off the
printer, and mc5: turn on the printer. When the printer
is on, all text sent to the terminal will be sent to the
printer. It is undefined whether the text is also dis­
played on the terminal screen when the printer is on. A
variation mc5p takes one parameter, and leaves the printer
on for as many characters as the value of the parameter,
then turns the printer off.

The parameter should not exceed 255. All text, including
mc4, is transparently passed to the printer while an mc5p
is in effect.

Strings to program function keys can be given as pfkey,
pfloc, and pfx. Each of these strings takes two param­
eters: the function key number to program (from 0 to 10)
and the string to program it with. Function key numbers
out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities
is that pfkey causes pressing the given key to be the same
as the user typing the given string; floc causes the
string to be executed by the terminal in local; and pfx
causes the string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow -- characters to
be displayed should indicate hz.

24

TERMINFO(M) TERMINFO(M)

Terminals that ignore a line feed immediately after an am
wrap, such as the Concept and vt100, should: indicate xenl.

If el is required to get rid of standout (instead of mere­
ly writing normal text on top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved
over to blanks, should indicate xt (destructive tabs).
This glitch is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie", that to
erase standout mode it is instead necessary to use delete
and insert line.

The Beehive Superbee, which is unable to correctly trans­
mit the escape or Control-C characters, has xsb, indicat­
ing that the fl key is used for escape and f2 for
control-C. (Only certain Superbees have this problem,
depending on the ROM.) Other specific terminal problems
may be corrected by adding more capabilities of the form
xx.

Similar Terminals

If there are two very similar terminals, one can be de­
fined as being just like the other with certain excep­
tions. The string capability use can be given with the
name of the similar terminal. The capabilities given be­
fore use override those in the terminal type invoked by
use. A capability can be cancelled by placing xx@ to the
left of the capability definition, where xx is the capa­
bility. For example, the entry

2621-nl. smkx@. rmkx@. use=2621.

defines a 2621-nl that does not have the smkx or rmkx cap­
abilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

25

TERMINFO(M) TERMINFO(M)

Files

/usr /lib/terminfo/? /* Files containing terminal
descriptions

/usr /lib/terminfo/altos.src File containing descriptions
of terminals supported by
Altos

/usr /lib/terminfo/terminfo.src File. containing descriptions
of other terminals not sup­
ported by Altos

See Also

term(M)

26

TERMIO(M) TERMIO(M)

Name

tennio - General terminal interface.

Description

All of the asynchronous communications ports use the same
general interface, no matter what· hardware is involved.
The remainder of this section discusses the common fea­
tures of this interface.

When a terminal file is opened, it normally causes the
process to wait until a connection is established. In
practice, users' programs seldom open these files; they
are opened by getty(M) and become a user's standard input,
output, and error files. The very first terminal file
opened by the process group leader of a terminal file not
already associated with a process group becomes the con­
trol terminal for that process group. The control termi-
nal plays a special role in handling quit and interrupt
signals, as discussed below. The control terminal is in­
herited by a child process during a fork(S). A process
can break this association by changing its process group
using setpgrp(S).

A terminal associated with one of these files ordinarily
operates in full duplex mode. You can type characters at
any time, even while output is occurring, and are only
lost when the system's character input buffers become com­
pletely full, which is rare, or when the user has accumu­
lated the maximum allowed number of input characters that
have not yet been read by some program. Currently, this
limit is 256 characters. When the input limit is reached,
all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines.
A line is delimited by a newline (ASCII LF) character, an
end-of-file (ASCII EOT) character, or an end-of-line char­
acter. This means that a program attempting to read will
be suspended until an entire line has been typed. Also,
no matter how many characters are requested in the read
call, at most one line will be returned. It is not, how­
ever, necessary to read a whole line at once; any number
of characters may be requested in a read, even one, with­
out losing information.

1

TERM/O(M) TERM/O(M)

During input, erase and kill processing is normally done.
By default, the character # erases the last character
typed, except that it will not erase beyond the beginning
of the line. By default, the character @ kills (deletes)
the entire input line, and optionally outputs a new-line
character. Both these characters operate on a keystroke
basis, independently of any backspacing or tabbing that
may have been done. Both the erase and kill characters
may be entered literally by preceding them with the escape
character (\). In this case, the escape character is not
read. The erase and kill characters may be changed.

Certain characters have special functions on input. These
functions and their default character values are summar­
ized as follows:

INTR

QUIT

ERASE

KILL

EOF

(Rubout or ASCII DEL) generates an interrupt
signal which is sent to all processes with the
associated control terminal. Normally, each
such process is forced to terminate, but ar­
rangements may be made either to ignore the sig­
nal or to receive a trap to an agreed-upon loca­
tion; see signal(S).

(Control-\ or ASCII FS) generates a quit signal.
Its treatment is identical to the interrupt sig­
nal except that, unless a receiving process has
made other arrangements, it will not only be
terminated but a core image file (called core)
will be created in the current working direc­
tory.

(#) erases the preceding character. I t will not
erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.

(@) deletes the entire line, as delimited by a
NL, EOF, or EOL character.

(Control-d or ASCII EOT) may be used to gener­
ate an end-of-file from a terminal. When re­
ceived, all the characters waiting to be read
are immediately passed to the program, without
waiting for a newline, and the EOF is discarded.
Thus, if there are no characters waiting, which
is to say the EOF occurred at the beginning of a
line, zero characters will be passed back, which

2

TERM/O(M)

EOL

STOP

START

TERM/O(M)

is the standard end-of-file indication. NL
(ASCII LF) is the normal line delimiter. It
cannot be changed or escaped.

(ASCII NUL) is an additional line delimiter,
like NL. I t is not normally used.

(Control-s or ASCII DC3) can be used to tempo­
rarily suspend output. It is useful with CRT
terminals to prevent output from disappearing
before it can be read. While output is sus­
pended, STOP characters are ignored and not
read.

(Control-q or ASCII DCI) is used to resume out­
put which has been suspended by a STOP charac­
ter. While output is not suspended, START char­
acters are ignored and not read. The start/stop
characters cannot be changed or escaped.

The character values for INTR, QUIT, SWITCH, ERASE,
KILL, EOF, and EOL may be changed to suit individual
tastes. The ERASE, KILL, and EOF characters may be
escaped by a preceding \ character, in which case no
special function is done.

When the carrier signal from the data-set drops, a hang-up
signal is sent to all processes that have this terminal as
the control terminal. Unless other arrangements have been
made, this signal causes the processes to terminate. If
the hang-up signal is ignored, any subsequent read returns
with an end-of-file indication. Thus, programs that read
a terminal and test for end-of-file can terminate appro­
priately when hung up on.

When one or more characters are written, they are trans­
mitted to the terminal as soon as previously-written char­
acters have finished typing. Input characters are echoed
by putting them in the output queue as they arrive. If a
process produces characters more rapidly than they can be
typed, it will be suspended when its output queue exceeds
some limit. When the queue has drained down to some
threshold, the program is resumed.

3

TERM/O(M) TERM/O(M)

Several ioctI(S) system calls apply to terminal files.
The primary calls use the following structure, defined in
(termio.h):

#define NCC 8

struct termio

unsigned short c - iflag; /*input modes*/

unsigned short c_oflag; /*output modes*/

unsigned short c_cflag; /*control modes*/

unsigned short c_lflag; /*local modes*/

char c - line; /*line discipline*/

unsigned char c _cc[NCC] ; /*control chars*/

} ;

The special control characters are defined by the array
c cc. The relative positions and initial values for each
function are as follows:

0 VINTR DEL
1 VQUIT FS
2 VERASE #
3 VKILL @

4 VEOF EOT
5 VEOL NUL
6 reserved
7 SWTCH

The c_iflag field describes the basic terminal input con­
trol:

IGNBRK 0000001 Ignore break condition
BRKINT 0000002 Signal interrupt on break
IGNPAR 0000004 Ignore characters with parity

errors
PARMRK 0000010 Mark parity errors
INPCK 0000020 Enable input parity check
ISTRIP 0000040 Strip character
INLCR 0000100 Map NL to CR on input
IGNCR 0000200 Ignore CR
ICRNL 0000400 Map CR to NL on input
IUCLC 0001000 Map uppercase to lowercase

on input
IXON 0002000 Enable start/stop output

control
lXANY 0004000 Enable any character to

restart output
IXOFF 0010000 Enable start/stop input

control

4

TERM/O(M) TERM/O(M)

If IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored, that is, not put on
the input queue and therefore not read by any process.
Otherwise, if BRKINT is set, the break condition will gen­
erate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other
framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity
error which is not ignored is read as the three-character
sequence: 0377, 0, X, where X is the data of the charac­
ter received in error. To avoid ambiguity in this case,
if ISTRIP is not set, a valid character of 0377 is read as
0377,0377. If PARMRK is not set, a framing or parity
error which is not ignored is read as the character
NUL(O).

If INPCK is set, input parity checking is enabled. If
INPCK is not set, input parity checking is disable. This
allows output parity generation without input parity
errors.

IF ISTRIP is set, valid input characters are first
stripped to 7-bits, otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated
into a CR character. If IGNCR is set, a received CR char­
acter is ignored (not read). Otherwise, if ICRNL is set,
a received CR character is translated into a NL character.

If IUeLC is set, a received uppercase alphabetic character
is translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a receivec
START character will restart output. All start/stop char­
acters are ignored and not read. If IXANY is set, any
input character will restart output which has been sus­
pended.

If IXOFF is set, the system will transmit START/STOP cha
acters when the input queue is nearly empty/full.

The initial input control value is all-bits-clear.

5

TERM/O(M) TERM/O(M)

The c _ of lag field specifies the system treatment of out-
put:

OPOST 0000001 Postprocess output
OLCUC 0000002 Map lowercase to upper on

output
ONLCR 0000004 Map NL to CR-NL on output
OCRNL 0000010 Map CR to NL on output
ONOCR 0000020 No CR output at column 0
ONLRET 0000040 NL performs CR function
OFILL 0000100 Use fill characters for

delay
OFDEL 0000200 Fill is DEL, else NUL
NLDLY 0000400 Select new-line delays:
NLO 0
NL1 0000400
CRDLY 0003000 Selector carriage-return

delays:
eRO 0
CR1 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab

delays:
TABO 0
TAB! 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces
BSDLY 0020000 Select backspace delays:
BSO 0
BS1 0020000
VTDLY 0040000 Select verical-tab delays:
VTO 0
VT1 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters are
transmitted without change.

If OLCUC is set, a lowercase alphabetic character is
transmitted as the corresponding uppercase character.
This function is often used in conjunction with IUCLC.

6

TERM/O(M) TERM/O(M)

IF ONLCR is set, the NL character is transmitted as the
CR-NL character pair. If OCRNL is set, the CR character
is transmitted as the NL character. If ONOCR is set, no
CR character is transmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed
to do the carriage-return function; the column pointer
will be set to 0 and the delays specified for CR will be
used. Otherwise the NL character is assumed to do just
the line-feed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR
character is actually transmitted.

The delay bits specify how long transmission stops to al­
low for mechanical or other movement when certain charac-·
ters are sent to the terminal. In all cases a value of 0
indicates no delay. If OFILL is set, fill characters will
be transmitted for delay instead of a timed delay. This
is useful for high baud rate terminals which need only a
minimal dealy. If OFDEL is set, the fill character is
DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it
lasts for about two seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is
set, the carriage-return delays are used instead of the
new-line delays. If OFILL is set, two fill characters
will be transmitted.

Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3
is about 0.15 seconds. If OFILL is set, delay type 1
transmits two fill characters, and type 2, four fill char­
acters.

Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3
specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters will be transmitted for
any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is
set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

7

TERM/O(M) TERM/O(M)

The c _ cflag field describes the hardware control of the
terminal:

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
B38400 0000017 38400 baud (not supported)
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one
CREAD 0000200 Enable receiver
PARENB 0000400 Parity enable
PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hang up on last close
CLOCAL 0004000 Local line, else dial-up
RCV1EN 0010000
XMT1EN 0020000
LOBLK Block layer output 0040000

The CBAUD bits specify the baud rate. The zero baud rate,
BO, is used to hang up the connection. If BO is speci-
fied, the dataterminal-ready signal will not be asserted.
Normally, this will disconnect the line. For any particu-
lar hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include
the parity bit, if any. If CSTOPB is set, two stop bits
are used, otherwise one stop bit. For example, at 110
baud, two stop bits are required.

8

TERM/O(M) TERM/O(M)

If PARENB is set, parity generation and detection is en­
abled and a parity bit is added to each character. If
parity is enabled, the PARODD flag specifies odd parity if
set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no
characters will be received.

If HUPCL is set, the operating system disconnects ("hangs
up") the line when the last process (or file) for that
port closes. That is, the dataterminal-ready signal be­
comes false (is not asserted). If HUPCL is false, the
data-terminal-ready signal remains true even after the
last close on the port.

If CLOCAL is set when a port is opened, the operating sys­
tem assumes the line is a local, directly connected port
(i. e., there is no modem control) and the open completes
without waiting for carrier. The dataterminal-ready and
request-to-send signals are asserted, and incoming modem
signals are ignored. If CLOCAL is false for a port when
opening it, the operating system assumes there is modem
control, and the open waits for the carrier-detect to be
true (if the 0 NDELAY flag is not set on the file (see
fcntl.h». The- data-terminal-ready and request-to-send
signals are asserted.

The operating system also checks CLOCAL when a modem in
terrupt occurs, usually when the data-terminal-ready sig­
nal changes. The operating system assumes that the data­
terminal-ready signal reflects the carrier sense of the
modem and will kill the process group for the port if
data-terminal-ready goes from true to false. If data­
terminal-ready goes from false to true, the operating sys­
tem wakes up any open requests waiting for carrier-detect
to go true. If CLOCAL is true, the operating system dis­
ables modem interrupts.

Finally, CLOCAL also affects hardware flow control. If
CLOCAL is false, the operating system does not enable any
hardware flow control, regardless of the setting of hard­
ware flow control (see SETFLOW below) flags.

The initial hardware control value after open is B9600,
CS8, CREAD, HUPCL for modem ports, and B9600, CS8,
CREAD, CLOCAL for local ports.

9

TERM/O(M) TERM/O(M)

If LOBLK is set, the output of a job control layer will be
blocked when it is not the current layer. Otherwise the
output generated by that layer will be multiplexed onto
the current layer.

The initial hardware control value after open is B300,
CS8, CREAD, HUPCL.

The c lflag field of the argument structure is used by the
line discipline to control terminal functions. The basic
line discipline (0) provides the following:

ISIG 0000001 Enable signals
ICANON 0000002 Canonical input (erase and

kill processing
XCASE 0000004 Canonical upper/ower

presentation
ECHO 0000010 Enable echo
ECHOE 0000020 Echo erase character as

BS-SP-BS
ECHOK 0000040 Echo NL after kill character
ECHONL 0000100 Echo NL
NOFLSH 0000200 Disable flush after interrupt

or quit

If ISIG is set, each input character is checked against
the special control characters INTR, SWTCH, and QUIT. If
an input character matches one of these control charac­
ters, the function associated with that character is per­
formed. If ISIG is not set, no checking is done. Thus
these special input functions are possible only if ISIG is
set. These functions may be disabled individually by
changing the value of the control character to an unlikely
or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the as-
sembly of input characters into lines delimited by NL,
EOF, and EOL. If ICANON is not set, read requests are
satisfied directly from the input queue. A read will not
be satisfied until at least MIN characters have been re­
ceived or the timeout value TIME has expired between char­
acters. This allows fast bursts of input to be read effi­
ciently while still allowing single character input. The
MIN and TIME values are stored in the position for the
EOF and EOL characters, respectively. The time value
represents tenths of seconds.

10

TERM/O(M) TERM/O(M)

If XCASE is set, and if ICANON is set, an uppercase letter
is accepted on input by preceding it with a \ character,
and is output preceded by a \ character. In this mode,
the following escape sequences are generated on output and
accepted on input:

for: use:
\'
\!
\A

{ \(
} \)
\ \ \

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are pos­
sible. If ECHO and ECHOE are set, the erase character is
echoed as ASCI I BS SP BS, which will clear the last char­
acter from a CRT screen. If ECHOE is set, the NL char­
acter will be echoed after the kill character to emphasize
that the line will be deleted.

Note that an escape character preceding the erase or kill
character removes any special function. If ECHONL is set,
the NL character will be echoed even if ECHO is not set.
This is useful for terminals set to local echo (so-called
half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from from hanging
up.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit, switch, and interrupt
characters will not be done.

The initial line-discipline control value is all bits
clear.

The primary ioctl(S) system calls have the form:

loctl (filedes, command, arg)
struct termio *arg;

11

TERM/O(M) TERM/O(M)

The commands using this form are:

TCGETA
Get the parameters associated with the terminal and
store in the termio structure referenced by argo

TCSETA
Set the parameters associated with the terminal from
the structure referenced by argo The change is im­
mediate.

TCSETAW
Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF
Wait for the output to drain, then flush the input
queue and set the new parameters.

Another group of ioctl system calls have the form:

ioctl (filedes, command, arg)
char *arg;

The commands using this form are:

SETFLOW
Sets the hardware flow control bits, defined as
TXHARD and RXHARD for the terminal. If the
TXHARD bit is set, hardware output flow control
is enabled. If the RXHARD bit is set, hardware input
flow control is enabled. The argument is a pointer
to a byte with these bits set (or not). The software
flow control bits (TXSOFT and RXSOFT) are ignored.

GETFLOW
Returns the hardware flow control bits. The argument
is a pointer to a byte with these bits set (or not).

Additional ioct calls have the form:

ioctl (filedes, command, arg)
int arg;

12

TERMIO(M) TERMIO(M)

Files

The commands using this form are:

TCSBRK
Wait for the output to drain. If arg is 0, then send
a break (zero bits for 0.25 seconds).

TCXONC
Start/stop control. If arg is 0, suspend output; if
1, restart suspended output.

TCFLSH
If arg is 0, flush the input queue; if 1, flush the
output queue; if 2, flush both the input and output
queues.

SETMODEM
Sets the modem mode to USER, ON, or OFF for the
terminal. Arg should be either MDM ON, MDM OFF,
or MDM USER. --

GETMODEM
Returns the current modem setting, either MDM ON,
MDM_OFF, MDM_USER. Arg is ignored. -

See ioctl(S) for details on how to use this system call.

/dev/tty
/dev/tty*
/ dev / console

See Also

ioctl(S), stty(C), xtty(C)

13

TlMEZONE(M) TlMEZONE(M)

Name

timezone - Sets default system time zone.

Syntax

/ etc/TIMEZONE

Description

This file sets and exports the time zone environmental
variable TZ. This file is included into other files that
must know the time zone.

Examples

/etc/TIMEZONE for the East coast:

See Also

Time Zone
TZ=EST5EDT
export TZ

rc2(M), profile(M), and ctime(S) in the Reference (CP,
S, F)

1

TTYS(M) TTYS(M)

Name

ttys - Login terminals file.

Syntax

/etc/ttys

Description

Files

The / etc/ttys file contains a list of the device special
files associated with possible login terminals.

The file contains one or more entries of the form:

state mode name

The name must be the filename of a device special file.
Only the filename may be supplied, the path is assumed to
be /dev. If state is "1", the device is enabled for
logins; if "0", the device is disabled. The mode is used
as an argument to the getty program. It defines the line
speed and type of device associated with the terminal. A
list of arguments is provided in getty.

For example, the entry "16tty02" means the serial line
tty02 is to be enabled for logging in at 9600 baud.

/etc/ttys

See Also

getty(M), pconfig(C)

Notes

Edit the /etc/ttys file only when in system maintenance
mode. This file is obsolete, and is maintained only for
the convenience of old programs. Init(M) no longer ex­
amines this file.

1

UTMP(M) UTMP(M)

Name

utmp, wtmp - Utmp and wtmp entry formats.

Syntax

#include (sys/types.h)
#include (utmp. h)

Description

These files, which hold user and accounting information
for such commands as who(C), write(C), and login(M), have
the following structure as defined by (utmp.h):

#define

#define

#define

struct

char

char

char

utmp

short

short

struct

UTMP_FILE

WTMP_FILE

ut_name

ut_user[8];

ut _id[4] ;

ut line[12] ; -
ut_pid;

ut _type;

exit status -

"/etc/utmp"

"/etc/wtmp"

ut_user

/* User login name

/* /etc/inittab id

*/

(usually line

/* device name (console, Inxx) */

/* process id */

/* type of entry */

short e termination: /* Process termination status */ -
short e exit; -

ut exit; -

time t ut time; - -
} ;

/* Definitioins for ut_type */

#define EMPTY

#define RUN/LVL

#define BOOT_TIME

#define OLD_TIME

#define NEW_TIME

#define INIT_PROCESS

o
1

2

3

4

5 /*

/* Process exit status */

/* The exit status of a process

* marked as DEAD_PROCESS. */

/* time entry was made */

Process spawned by "init" */

#) */

#define LOGIN_PROCESS 6 /* A "getty" process waiting for login */

#define USER_PROCESS 7 /* A user process */

#define DEAD_PROCESS 8

#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING /* Largest legal value of */

/* ut_type */

1

UTMP(M) UTMP(M)

/* Special strings or formats used in the "ut_line" field accounting *1

/* accounting for something other than a process */

/* No string for the ut_line field can be more than 11 chars + */

/* a NULL in length */

#define RUNLVL_MSG "run-level %c"

#define BOOT_MSG "system boot"

#define OTIME_MSG "old time"

#define NTIME_MSG "new time"

Files

/etc/utmp
/etc/wtmp

See Also

getut(S), login(C), who(C), write(C)

2

UUCHECK(M) UUCHECK(M)

Name

uucheck - Checks the uucp directories and permissions
file.

Syntax

/usr/lib/uucp/uucheck [-v] [-x debug_'eve'

Description

Files

Uucheck checks for the presence of the uucp system re­
quired files and directories. Within the uucp make file ,
it is executed before the installation takes place. It
also checks for some obvious errors in the permissions
file (/usr/lib/uucp/Permlssions). When executed with the
-v option, it. gives a detailed explanation of how the uucp
programs will interpret the permissions file. The -x op­
tion is used for debugging. Debug level is a single digit
in the range 1-9; the higher the value, the greater the
detail. Note that uucheck can only be used by the
super-user or uucp.

/usr /lib/uucp/Systems
/usr /lib/uucp/Permissions
/usr /lib/uucp/Devices
/usr /lib/uucp/Maxuuscheds
/usr /lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr /spool/locks/LCK*
/usr /spool/uucppublic/*

See Also

Notes

uucico(M), uusched(M), uucp(C), uustat(C), uux(C)

The program does not check file/directory modes or some
errors in the permissions file such as duplicate login or
machine names.

1

UUC/CO(M) UUC/CO(M)

Name

uucleo - File transport program for the uucp system.

Syntax

/usr /lib/uuep/uucleo [-r role number] [-x debug level]
[-i interface] [-d spool_directory] -s system_name

Description

Files

Uueieo is the file transport program for uuep work file
transfers. Role numbers for the -r option are the digit
for master mode or 0 for slave mode (default). The-r
option should be specified as the digit 1 for master mode
when uueleo is started by a program or eron(C). Uux and
uuep both queue jobs that will be transferred by uucieo.
It is normally started by the scheduler, uusehed, but can
be started manually for debugging. For example, the
script uutry starts uucleo with debugging turned on. A
single digit must be used for the -x option with higher
numbers for more debugging. The -1 option defines the
interface used with uueleo. This interface only affects
slave mode. Known interfaces are UNIX (default), TLI
(basic Transport Layer Interface), and TLIS (Transport
Layer Interface with Streams modules, read/write).

/usr /lib/uucp/Systems
/usr /lib/uucp/Permissions
/usr /lib/uucp/Devices
/usr /lib/uucp/Devconfig
/usr /lib/uucp/Sysfiles
/usr /lib/uucp/Maxuuxqts
/usr /lib/uucp/Maxuuscheds
/usr/spool/uucp/*
/usr /spool/locks/LCK*
/usr /spool/uucppublic/*

See Also

cron(C), uusched(M), uutry(M), uucp(C), uustat(C), uux(C)

1

UUCLEANUP(M) UUCLEANUP(M)

Name

uucleanup - Uucp spool directory cleanup.

Syntax

/usr/lib/uucp/uucleanup [-Ctime] [-Wtime] [-Dtime
[-Xtime] [-mstring] [-otime] [-ssystem]
[-xdebug_'eve']

Description

Uucleanup will scan the spool directories for old files
and take appropriate action to remove them in a useful
way:

•

•

•

•

Inform the requestor of send/receive requests for
systems that cannot be reached.

Return mail, which cannot be delivered, to the
sender.

Delete or execute rnews for rnews type files
(depending on where the news originated--Iocally or
remotely).

Remove all other files.

In addition, there is provision to warn users of requests
that have been waiting for a given number of days (default
1). Note that uucleanup will process as if all option
times were specified to the default values, unless time is
specifically set.

The following options are available.

-Ctime

-Dtime

Any C. files greater or equal to time days
old will be removed with appropriate infor­
mation to the requestor (default 7 days).

Any D. files greater or equal to time days
old will be removed. An attempt will be
made to deliver mail messages and execute
mews when appropriate (default 7 days).

1

UUCLEANUP(M) UUCLEANUP(M)

Files

-Wtime Any C. files equal to time days old will
cause a mail message to be sent to the re­
questor warning about the delay in contact­
ing the remote (default 1 day). The mes­
sage includes the JOBID, and in the case of
mail, telling whom to call to check the
problem (-m option).

-Xtime Any X. files greater or equal to time days
old will be removed (default 2 days). The
D. files are probably not present (if they
were, the X. could get executed). But if
there are D. files, they will be taken
care of by D. processing.

-mstring This line will be included in the warning
message generated by the -w option.

-otime Other files whose age is more than time
days will be deleted (default 2 days). The
default line is "See your local administra­
tor to locate the problem."

-ssystem Execute for system spool directory only.

-xdebug_ZeveZ The -x debugJevel is a single digit be­
tween 0 and 9; higher numbers give more
detailed debugging information. (If
uucleanup was compiled with -DSMALL, no
debugging output will be available.)

/usr /lib/uucp

/usr /spool/uucp

This program is typically started by the
shell uudemon. cleanup, which should be
started by cron (C).

Directory with commands used by
uucleanup internally

Spool directory

See Also

cron(C), uucp(C), uux(C)

2

UUGETTY(M) UUGETTY(M)

Name

uugetty - Sets terminal type, modes, speed, and line dis­
cipline.

Syntax

/usr/lib/uucp/uugetty [-h] [-t timeout] [-r] line [speed
[type [linedisc]]]

/usr /lib/uucp/uugetty -c file

Description

Uugetty is identical to getty(M) but changes have been
made to support using the line for uucico, cu, and ct;
that is, the line can be used in both directions. Uugetty
will allow users to log in, but if the line is free,
uucico, cu, or ct can use it for dialing out. The imple­
mentation depends on the fact that uueieo, eu, and et
create lock files when devices are used. When the open(S)
returns (or the first character is read when -r option is
used), the status of the lock file indicates whether the
line is being used by uucico, cu, ct, or someone trying to
log in. Note that in the -r case, several carriage-return
characters may be required before the login message is
output. The users will be able to handle this slight in­
convenience. Uucico trying to log in will have to be told
by using the following login script:

"" \r\d\r\d\r\d\r in:--in: ...

where the ... is whatever would normally be used for the
login sequence.

An entry for an intelligent modem or direct line that has
a uugetty on each end must use the -r option. (This
causes uugetty to wait to read a character before it puts
out the login message, thus preventing two uugettys from
looping.) If there is a uugetty on one end of a direct
line, there must be a uugetty on the other end as well.
Here is an /etc/inittab entry using uugetty on an intelli­
gent modem or direct line:

1

UUGETTY(M) UUGETTY(M)

Files

tt12:2:respawn:env - TERM=altos5
/usr/lib/uucp/uugetty -r -t 60 ttyl2 1200

For an explanation of uugetty options, see getty(M).

/ etc / gettydefs
/etc/issue

See Also

uucico(M), getty(M), init(M), tty(M), cu(C), 10gin(M)
gettydefs(M), inittab(M), and ioctl(S) in the Reference
(CP, S, F)

Notes

Uugetty does not support linking of device files.

2

UUSCHED(M) UUSCHED(M)

Name

uusched - Scheduler for the uucp file transport program.

Syntax

/usr/lib/uucp/uusched -x debug_'eve'] [-u debug_'eve'

Description

Files

Uusched is the uucp file transport scheduler. It is
usually started by the daemon uudemon.hour that is started
by cron(C) from an entry in /usr/spool/cron/crontab:

39 * * * */bin/su uucp -c "/usr/lib/uucp/uudemon.hour > /dev/null"

The two options are for debugging purposes only; -x
debug_'eve' will output debugging messages from uusched
and -u debug level will be passed as -x debug level to
uucico. The debug level is a number between -0 and 9;
higher numbers give more detailed information.

/usr /lib/uucp/Systems
/usr /lib/uucp/Permissions
/usr /lib /uucp /Devices
/usr/spool/uucp/*
/usr / spool/locks/LCK*
/usr /spool/uucppublic/*

See Also

cron(C), uucico(M), uucp(C), uustat(C), uux(C)

1

UUTRY(M) UUTRY(M)

Name

Uutry - Tries to contact remote system with debugging on.

Syntax

/usr/lib/uucp/Uutry [-x debug_level] [-r] system_name

Description

Files

Uutry is a shell that is used to invoke uucico to call a
remote site. Debugging is turned on (default is level 5);
-x will override that value. The -r overrides the retry
time in /usr/spool/uucp/.status. The debugging output is
put in file /tmp/system name. A tail -f of the output is
executed. A (DELETE) or (BREAK) will give control back
to the terminal while the uucico continues to run, putting
its output in /tmp/system_name.

/usr /lib/uucp /Systems
/usr /lib/uucp /Permissions
/usr /lib/uucp/Devices
/usr /lib /uucp /Maxuuxqts
/usr /lib/uucp/Maxuuscheds
/usr /spool/uucp/*
/usr / spool/locks/LCK*
/usr /spool/uucppublic/*
/tmp/ system_name

See Also

uucico(M), uucp(C), uux(C)

1

UUXQT(M) UUXQT(M)

Name

uuxqt - Executes remote command requests.

Syntax

/usr/lib/uucp/uuxqt [-s system] [-x debug_'eve'

Description

Files

Uuxqt is the program that executes remote job requests
from remote systems generated by the use of the uux com­
mand. (Mail uses uux for remote mail requests.) Uuxqt
searches the spool directories looking for X. files. For
each X. file, uuxqt checks to see if all the required
data files are available and accessible, and file commands
are permitted for the requesting system. The Permissions
file is used to validate file accessibility and command
execution permission.

There are two environment variables that are set before
the uuxqt command is executed:

UU MACHINE is the machine that sent the job (the
previous one).

UU USER is the user that sent the job.

These can be used in writing commands that remote systems
can execute to provide information, auditing, or restric­
tions. The -x debug level is a single digit between 0 and
9. Higher numbers give more detailed debugging informa­
tion.

/usr /lib/uucp/Permissions
/usr /lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr /spool/locks/LCK*

See Also

uucico(M), uucp(C), uustat(C), uux(C), mail(C)

VOLCOPY(M) VOLCOPY(M)

Name

volcopy, labelit - Copies file systems with label check­
ing.

Syntax

/etc/volcopy [options] fsname speciall vol name 1 special2
volname2

/etc/labelit special [fsname volume [-nll

Description

The volcopy command makes a literal copy of the file sys­
tem using a blocksize matched to the device.

The labelit command creates a label for an unmounted disk
file system or a volcopy archive device. The -n option
provides for initial labeling on tapes only (this destroys
previous contents). Otherwise, a label must already exist
and only the fsname and volume arguments are modified. If
all optional arguments are omitted, labelit prints the
current label values of the special device.

Options

-a Invokes a verification sequence reqUlnng a pos­
itive operator response instead of the standard
10-second delay before the copy is made.

-s Prompts the user before the copy is made. The
copy is aborted if the user presses I:JMUN,ml
within 10 seconds (default).

-y Assumes a "yes" response to all questions.

The following additional options are used only with tapes:

-reelnum

-buf

Specifies the beginning reel number for a
restarted copy.

Uses double-buffered I/O.

1

VOLCOPV(M)

-feetnum

-bpinum

-tr

-tc

-scsi

-nonscsi

-typeLABEL

VOLCOPV(M)

Specifies the tape length, only valid when
using reel tape.

Specifies the tape density (bits/inch),
only valid when using reel tape.

Specifies reel tape.

Specifies cartridge tape.

Assumes tape drive is of scsi type, only
valid when using cartridge tape.

Assumes tape drive is not scsi type, only
valid when using cartridge tape.

Specifies the type of cartridge tape being
used, only valid when using cartridge tape.

The program requests length and density information if it
is not given on the command line or is not recorded on an
input tape label. Reel or cartridge tapes may be used.
If the file system is too large to fit on one reel,
volcopy will prompt for additional reels. Labels of all
reels are checked.

If volcopy is interrupted, it will ask if the user wants
to quit or wants a shell. In the latter case, the user
can perform other operations, such as labelit, and return
to volcopy by exiting the new shell.

The /sname argument represents the mounted name (for ex­
ample, root or usr) of the file system being copied. The
special argument should be the physical disk section or
tape, for example, /dev /rhdOb or /dev /rct.

The volname argument is the physical volume name (for ex­
ample, rhdOb), and should match the external label stick­
er. Such label names are limited to six or fewer charac­
ters. To use the existing volume name, specify -- for the
volname argument.

The arguments speciall and volnamel are the device and
volume from which the copy of the file system is being
extracted. The arguments special2 and volname2 are the
target device and volume.

2

VOLCOPY(M) VOLCOPY(M)

Neither the source or target device should have a file
system mounted while running volcopy, or while creating a
label with labelit. The exception is for the / file sys­
tem, where you should be in single-user mode. (Vou can
read the label of a mounted file system with labellt.)

The values for fsname and volname are. recorded in the last
12 characters of the superblock (char fsname[6],
volname[6];).

Examples

Files

To label a tape for the / file system, with volume label
v001, go to single-user mode and enter:

/etc/labellt /dev/rct / vOOI

To archive the / file system on a tape, labeled as in the
above example, enter:

/etc/volcopy / /dev/rhdOb hdOb /dev/rct vOOI

To restore a tape (archived as above) of the / file system
to disk, enter:

/etc/volcopy / /dev/rct vOOI /dev/rhdOb hdOb

Note that when using volcopy for the / file system, go to
single-user mode.

/ etc/log/filesave.log Record of file systems/volume:
copied

See Also

Notes

sh(C)

Only device names beginning with /dev /rct are treated as
tapes.

3

VT(M) VT(M)

Name

vt - Virtual terminal management (Series 500 only).

Description

The virtual terminal (VT) device driver is a layer of man­
agement functions that provides the facilities to support
and switch between up to eight screen faces on each phys­
ical device. Terminal or display device drivers that have
been written to take advantage of this facility can there­
fore present multiple VTs on a single physical device.
The correspondence between physical and virtual terminals
is determined using the minor device number of the phys­
ical device, with the bottom five bits selecting the phys­
ical device and the top three bits selecting the virtual
terminal.

Virtual terminals are accessed in exactly the same way as
any other device. The open(S) system call is used to open
the virtual terminal, and read(S), write(S), and loctI(S)
are used in the normal way and support all the functional­
ity of the underlying device. In addition, some
VT -specific loctl calls are provided as described below.

Virtual terminals provide the link between different
screen faces and the device. The virtual terminal that
corresponds to the currently visible screen face is called
the active virtual terminal. The active VT is the one
that input from the device will be directed to, and any
device-specific modes that can change on a per-VT basis
will be set to the characteristics associated with the
active VT.

Open virtual terminals on a device are placed on a "ring,"
with the active VT always being the VT on the top of the
ring. The ring can be cycled through via a "hot key" that
is specific to the underlying device driver. The first
open of a VT causes it to be placed at the top of the ring
and become the active VT. The last close on a VT causes
it to be removed from the ring, and if this was the active
VT, the previous VT on the ring becomes the active one.

Virtual terminal switching can be done in two different
modes: automatically on receipt of a hot key, or under
control of the process owning the VT. In the first case,

1

VT(M) VT(M)

the process associated with the VT knows nothing about the
switch and it is handled entirely by the underlying device
driver and the virtual terminal manager. In
process-controlled switch mode, when a switch hot key is
sent, the process owning the VT is sent a signal (see
sigset(S)) that it has specified to the VT manager. This
signal requests the process to release the physical de-
vice. The VT manager then awaits an foctI from the pro­
cess indicating that the VT either has released the phys­
ical device (in which case a switch occurs), or refuses to
release the device (in which case the switch does not
occur). If a predefined time limit expires before the
iocti is received from the process owning the VT, the VT
manager behaves as if an iocti indicating refusal was re­
ceived. The ring of active VTs can contain intermixed
auto mode and process control mode VTs. Process control
mode VTs will be sent a signal that they have specified
when they become the active VT. Some device drivers may
support a forced switch mode, in which case an alternate
hotkey sequence will cause the driver to force a switch to
the next VT even if a normal switch is refused. The driv­
er does the forced switch and the VT manager signals the
VT that it has been forced out.

Iocti Calls

The following loctI calls apply to any device that sup­
ports VTs.

VT_OPENQRY
This call is used to find an available VT. The argu­
ment to the iocti is a pointer to a long. The long
will be filled in with the number of the first avail­
able VT that no other process has open (this may be
the one currently opened). If there are no available
VTs then -1 will be filled in.

VT GETMODE
This call is used to determine what mode the VT is
currently in, either VT AUTO or VT PROCESS. The
argument to the iocti is the address-of the following
structure, as defined in (sys/vt.h).

2

VT(M)

Files

struct vt_mode {

char mode; 1* VT mode *1
char waitv; 1* if non-zero. hang on writes when

not active *1
short relsig; 1* signal to use for release request *1
short acqsig; 1* signal to use for display acquired *1
short frsig; 1* signal to use for forced release *1

1* Virtual Terminal Modes *1
#define VT_AUTO 0/* automatic VT switching *1
#define 1/* process controls switching *1

The structure will be filled in with the current
value for each field.

VT SETMODE

VT(M)

- This call is used to set the VT mode. The argument
to the ioctl is a pointer to a vt mode structure, as
defined above. The structure should be filled in
with the desired VT mode and whether or not' to block
on writes when not active. If process-control mode
is specified then the signals that should be used to
communicate with the process should be specified. If
a~y of the signals are not specified (value is zero),
then the default for that signal will be used
(SIGUSRI for relsig and acqsig and SIGUSR2 for
jrsig).

VT RELDISP
- This call is used to tell the VT manager if the dis­

play has been released or if the process has refused
to release the display. A non-zero argument signals
release and zero indicates refusal to release.

VT ACTIVATE
- This call has the effect of making the VT specified

in the argument the active VT. The VT manager will
cause a switch to occur in the same. manner as if a
hotkey had initiated the switch. If the specified VT
is not open or does not exist, the call will fail and
errno will be set to ENXIO.

/dev/vtxxn

3

VT(M) VT(M)

See Also

ioctl(S), sighold(S), signal(S), sigrelse(S), sigset(S)

Warnings

There is a potential for a race condition on a heavily
loaded system. When a process-control mode VT is sent the
release requested signal, it is possible that it may not
reply with a release ioctI before the internal timer ex­
pires and refusal to switch is assumed. The switch re­
quest will then be canceled and the VT will not switch
screen faces. This can be detected by the process at­
tempting to release the display. If the release ioctI
fails and errno is EINV AL, then the releasing process can
assume that the switch request was canceled.

4

WHODO(M) WHODO(M)

Name

whodo - Shows who is doing what.

Syntax

/etc/whodo

Description

Whodo produces formatted and dated output from information
in the /etc/utmp and /etc/ps_data files.

The display is headed by the date, time, and machine name.
For each user logged in, device name, user-id and login
time is shown, followed by a list of active processes as­
sociated with the user-id. The list includes the device
name, process-id, cpu minutes and seconds used, and pro­
cess name.

Example

The command:

whodo

produces a display like this:

Tue Mar 12 15:48:03 1985

bailey

tty09 men 8:51

tty09 28158 0:29 sh

tty52 bdr 15:23

tty52 21688 0:05 sh

tty52 22788 0:01 whodo

tty52 22017 0:03 vi

tty52 22549 0:01 sh

xt162 lee 10:20

tty08 6748 0:01 layers

xt162 6751 0:01 sh

xt163 6761 0:05 sh

tty08 6536 0:05 sh

1

WHODO(M)

Files

. /etc/passwd
/etc/ps data
/etc/utmp

See Also

ps(C), who(C)

WHODO(M)

2

XPD(M) XPD(M)

Name

xpd - Transparent printer daemon.

Syntax

xpd tty lp type

Description

Files

The xpd daemon directs any output sent to the lp device to
the printer attached to the tty device printer port.

tty is the name of the terminal device to which the
printer is attached. It must be invoked as
/dev/tty.

lp is the name of a FIFO special device to be used
by the printer. It must be invoked as /dev/lp.

type is the name of the terminal type. The altos2,
altos3, altos4, altos5, and Wyse 30 terminals
are supported.

/dev/tty??
/dev/lp?

Also See

mknod(C)

1

:hange Information

This is a summary of the changes that have been made to
the previous version of this manual. The chapters, page
numbers, and/or paragraphs mentioned in this summary ref­
erence the previous manual.

tle: Altos System V Series 386 Reference (M)

~vised Part Number: 690-22870-002

evious Part Number: 690-22870-001

lte: June 1989

anges:

Updated the Permuted Index and Table of Contents.

Added aliases(M) and aliashash(M).

Changed rc5(M) to rcO(M).

Changed the following pages:

Page Command Description

8 crash(M) Corrected pagemode on/off toggle
option to read -on or -off.

4 init(M) Run level 0 is now used for shut-
downs (formerly run level 5).

7 keyboard(M) Modified Keyboard Keys table and
added Other Keys table.

4, 20 terminfo(M) Added information about line
graphics character set mapping
with acsc.

CH-1

Change Information

Page Command

26 terminfo(M)

3 volcopy(M)

Description

Added two more files containing
terminal descriptions: altos. src
and terminfo. src.

Removed references to backing
up root file system with
volcopy(M).

CH-2

READER'S COMMENTS

Manual Title: Altos System V Series 386 Reference (M)

Part Number: 690-22870-002

Altos Computer Systems' Publications Department wants to
provide documents that meet the needs of all our customers.
Your comments help us produce better manuals.

Please Rate
This Manual:

Completeness of information
Organization of manual
Adequate illustrations
Overall manual

Excellent Good Average Fair Poor

Do you find any of the chapters confusing or difficult to use?
If so, which ones and why?

What could we do to improve the manual for you?

If you find errors or other problems when using this manual,
please write them below. Do include page numbers or section
titles.

Name: Title:

Company: ___________ Type of system: _____ _

Phone: (__ _ ext.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 7399 SAN JOSE. CA 95134

POSTAGE WILL BE PAID BY ADDRESSEE

Altos Computer Systems
ATTN: PUBLICATIONS DEPARTMENT
2641 Orchard Parkway
San Jose, CA 95134-9987
USA

11.1 ••• 1.1"1111 •• 11 •• 11111.1 •• 1.1 •• 1 •• 1.1 ••• 1.1.1.1

;)l;)H PlOd

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

PIN 690-22870-002
Printed in U.S.A.
9/89

Computer Systems
2641 Orchard Parkway, San Jose, CA 95134
408/946-6700, FAX 408/433-9335

