
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 56

1987
NATIONAL

COMPUTER
CONFERENCE

June 15-18, 1987
Chicago, Illinois

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1987 National Computer Conference
or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 80-649583
ISSN 0095-6880

ISBN 0-88283-051-1

AFIPS PRESS
1899 Preston White Drive

Reston, Virginia 22091

The National Computer Conference
sponsored by

AMERICAN FEDERATION OF INFORMATION PROCESSING SOCIETIES, INC.
ASSOCIATION FOR COMPUTING MACHINERY

DATA PROCESSING MANAGEMENT ASSOCIATION
IEEE COMPUTER SOCIETY

SOCIETY FOR COMPUTER SIMULATION

© 1987 by AFIPS Press. Copying is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) reference to the AFIPS
1987 National Computer Conference Proceedings and notice of copyright are included
on the first page. The title and abstract may be used without further permission in
computer-based and other information service systems. Permission to republish other

excerpts should be obtained from AFIPS Press.

Registered names and trademarks, etc., used in this publication, even without spe
cific indication thereof, are not to be considered unprotected by law.

Printed in the United States of America

Preface

JOHN M. BROWN
1987 NCC Chair

No industry has ever seen changes occur as rapidly as data processing. In 1987,
we find ourselves smack-dab in the middle of some of the most profound changes
to date, with no indication that the rate of change will ever slow. Even the name
"data processing" is bring replaced with new ones like "Information Management
and Movement." We are surrounded by an ever increasing ubiquity of distributed
computing brought about by powerful microprocessors, with an ever increasing
need to network microcomputers together and to mini and mainframe computers.
The 1987 National Computer Conference recognizes the needs of the data profes
sionals to stay current with these changes and to understand the trends for the
future. In NCC '87; we challenge you to "Discover the Power of Information."

The planning and execution of a conference with the size and scope of NCC
requires a large number of dedicated people. The volunteers who were part of the
1987 Conference Steering Committee and the various subcommittees are an es
pecially hardworking and professional set. They organized an extremely timely and
relevant conference-from the insightful technical program to the Professional
Development seminars to the many special activities. They participated with enthu
siasm because NCC is a special kind of conference sponsored by industry profes
sionals for industry professionals. They in turn received invaluable assistance from
the AFIPS.staff and the NCC Board, who all put in efforts well beyond the call
of duty.

As you read through these Proceedings, whether it is for the first time or as a
refresher for what you heard and saw at the conference, I am sure you will find it
to be a useful and valuable reference source for what is happening in computing.

iii

Introduction

MARGARET BUTLER
1987 NCC Program Chair

The technical program is designed to afford you, the Conference attendee, the oppor
tunity to "Discover the Power of Information" for yourself. National Computer Conference
attendees come from all segments of the information industry; they are a mixed lot, difficult
to characterize simply on the basis of educational background, profession or career, or
special interest. Consequently, in planning for NCC '87, the Program Committee attempted
to produce a balanced program which would permit you either to focus on acquiring
in-depth knowledge in your particular specialty or to broaden your perspective by exploring
what is going on in other parts of the computing world.

To cover the ever-widening scope of the industry, the program consists of some 90
sessions organized in ten major topic areas (ortracks). Featured sessions in the various topic
areas are scattered throughout the four-day program. In these, technical experts and
industry leaders describe recent developments, discuss issues of critical and timely im
portance, and present their views of the industry's future. Featured sessions are scheduled
so as not to conflict with one another to allow you to attend all of them should you so desire.

In addition to the topic area sessions, the NCC '87 Program includes a number of special
sessions and the Small Business Day seminar series. Also offered is a preview of plans for
the Smithsonian's major new exhibition on the development of information technologies,
centering on computers and communications and a pair of Pioneer Day sessions on Early
Operating Systems. You may also find the program dealing with software aspects of SDI
meets your fancy.

This volume is intended as a true Conference Proceedings, insofar as possible. Use it to
get the most from NCC '87 while in Chicago and as a valuable reference in your library
afterward. It contains the 62 percent of the submitted papers selected for presentation with
the assistance of this year's staff of referees, topic area descriptions, and position papers
contributed by session organizers, program participants, or members of the NCC '87
Program Committee. I speak for the entire Program Committee in saying we believe we
have succeeded in putting together an exciting and educational menu of program sessions
designed to meet your needs and interests. Enjoy.

v

CONTENTS
Preface

John M. Brown

Introduction
Margaret K. Butler

ARTIFICIAL INTELLIGENCE .. .

Preparing your company for artificial intelligence .. .
John Bowyer, Judith Markowitz, and Jay Yusko

A methodology for building expert systems
Howard Hill

A framework for expert modelbase systems
Robert W. Blanning

A concept space for experiments in artificial intelligence .. .
Richard D. Amori

Microcomputer PROLOG implementations: The state-of-the-art
Hal Berghel and Richard Rankin

Speech synthesis: System design and applications .. .
Jared Bernstein

Voice mail and office automation .. .
Douglas L. Hogan

Artificial intelligence in office information systems
Peter Cook, Clarence A. Ellis, Bipin C. Desai, Claude Frasson, John Mylopoulos, and Najah Naffah

A portable language interface
Bipin C. Desai, John McManus, and Philip J. Vincent ,

A method for increasing software productivity called object-oriented design-with applications for AI
David C. Rine

The Ada-AI interface '" .. .
Jorge L. Diaz-Herrera

Artificial intelligence and security: An overview
Alan C. Schultz

A methodology for rule-base integrity in expert systems .. .
George Stefanek and Shi-Kuo Chang

A parallel inference model for logic programming
Jie-Yong Juang and Daniel Cheng

The contextual parsing of natural language .. .
John C. Weber and W.D. Hagamen

COMPUTER DESIGN AND SUPERCOMPUTERS .. .

The system data structure contention problem and a novel software solution for shared memory,
floating control parallel systems

Jerry P. Place and Alan A. Goerner

A large/fine-grain parallel dataflow model and its performance evaluation
Behrooz Shirazi and Ali R. Hurson

Rule partitioning versus task sharing in parallel processing of universal production systems
Hee Won

Warp architecture: From prototype to production .. .
Marco Annaratone, E. Arnould, R. Cohn, T. Gross, H.T. Kung, M. Lam, O. Menzilcioglu,
K. Sarocky, J. Senko, and Jon A. Webb

vii

iii

v

1

3

7

13

19

27

37

43

49

53

59

67

73

77

87

97

107

109

119

127

133

The Warp programming environment .. .
B. Bruegge, e.H. Chang, R. Cohn, T. Gross, M. Lam, P. Lieu, A. Noaman, and D. Yam

Applications experience on Warp .. .
Marco Annaratone, Francois Bitz, Jeff Deutch, H.T. Kung, Leonard Harney, P.e. Maulik,
P.S. Tseng, and Jon A. Webb

Very large database applications of the Connection Machine system
David Waltz, Craig Stanfill, Stephen Smith, and Robert Thau

EDUCATIONAL AND HUMAN RESOURCE ISSUES .. .

Development of occupational taxonomies for computer specialists
Sylvia Charp

How to pick eagles: Research and application of selection systems within information systems
Robert A. Zawacki

Software ergonomics research and practice: Findings and recommendations
Richard P. Koffler

Creating an in-house software ergonomics group: A case study .. .
Doreen L. Kushner

Software ergonomics guidelines and standards
John Karat

Bridging the computer-user gap
Betty Sherwood

Prospects for improved user productivity: A visual perspective .. .
Robert Rothbard

Software project stress versus quality and productivity .. .
Sarah L. Sullivan and Howard Hill

Computer education in the United States of America: State policy on training, instruction, and control
Gary D. Brooks, Brent Edward Wholeben, and Sandra Boswell

The computer and thinking skills: Rationale for a revitalized curriculum
Michael Neuman

Developing integrated applications and installation schedules for comprehensive information
management systems in education

Brent Edward Wholeben

Usability of corporate information systems .. .
Jon Meads

HARDWARE DIRECTIONS

Optical pattern recognition .. .
George Eichmann

Neurocomputer applications
Robert Hecht-Nielsen

Optical programmable logic arrays
Raymond Arrathoon

Structure and operation of the HERMES multiprocessor kernel
N.G. Bourbakis and D.K. Fotakis

Object recognition on the GAM Pyramid
David H. Schaefer and Man B. Chu

Multilayered petri-nets for distributed decision making
A.Z. Ghalwash, P.A. Ligomenides, and R.W. Newcomb

Logic machines: A survey
G .Z. Qadah and M. Nussbaum

viii

141

149

159

167

169

173

175

179

183

185

193

199

205

215

223

233

235

237

239

245

247

253

257

265

CD-ROM: The Microsoft perspective ,
Carl Stork

Hardware and operating system perspectives on CD-ROM .. .
Mark T. Edmead

Real-time operating system design for CD-ROM using OS-9 .. .
Peter Gallanis

INFORMATION TECHNOLOGY MANAGEMENT

Integrating corporate and information systems strategies .. .
Richard F. Mitchell

Management decisions and technology trends
AmyD. Wohl

End-user computing: A grand concept running "amuck"
J. Daniel Couger

The project unit costing method: Constructing a financial justification for the knowledge-based system
Michael L. Morgan and Gail D. Wolf

Assessing IS organizational performance: Problems and suggestions
Connie E. Wells

Executive information systems: Definitions and guidelines .. .
Allan Paller

MICROCOMPUTERS

Micros in the workplace-the 1990s .. .
Bruce Gjertsen and Cecil Pretty

Basic networking implementation for the small computer environment
p, Tobin Maginnis and Donald F, Miller

Microcomputing word processing software: A functional perspective
Hal Berghel

Towards the integration of integrated software within organizations
James A. Carter, Jr.

MC68030: The second generation 32-bit microprocessor .. .
Michael Ruhland

Transaction processing systems on future workstations: A feasibility study
Jacob Slonim, John Henshaw, Avi Schonbach, and Michael Bauer

SURF: A semantic update and retrieval facility .. .
Fred Maryanski and Darrell Stock

Text database systems .. .
F.J. Smith

NETWORKING AND CONNECTIVITY .. .

Mobile data communications .. .
Howard J. Gunn

ISDN for MIS applications .. .
J.A. Newell and L.D. Landy

ISDN MIS applications
Daniel G. DeBusschere

ISDN-A new high performance platform for distributed computer systems
R.F. Hoffmann

Northern Telecom PBX LANSTAR data services .. .
Robert Kelsch

ix

279

281

283

285

287

289

293

301

309

311

315

317

321

329

341

349

359

367

375

381

383

385

397

399

401

Beyond ISO: The extended network
Joseph B. Rickert

IBM's LU6.2: Implications for the future of corporate distributed processing
Bonnie M. Weiss

Evolution of a hierarchical ring bus network .. .
Mark G. Larsen

Token-ring local area network management
Barbara J. Don Carlos

The sub-LAN solution to office connectivity needs
Cornelius Peterson

Connecting terminals to multiple LANs .. .
Bronson Hokuf, Paul D. Amer, and Daniel Grim

SECURITY, PRIVACY AND LAW

Development and management of a national information policy
John Clement

Corporate computer crime and abuse policy statement
Richard Cashion

Access control-The key to information security in a remote user system
Bruce E. Spiro

SYSTEMS SOFIWARE AND LANGUAGES .. .

Software workbenches: The new software development environment
Carma L. McClure

It's not the technical problems.
Donald M. McNamara

Evolution of operating environments for new communication service control
Shuzo Morita

An overview of the Pick Operating System .. .
Richard Pick

Concurrent phasing: When time means money .. .
Richard G. Lefkon

Software engineering in the large .. .
John C. Chiang

Design methods for distributed software systems
Carl K. Chang, Mikio Aoyama, and Tsang Ming Jiang

An analysis of the roll-back and blocking operations of three concurrency control mechanisms
Vijay Kumar

Implementing distributed algorithms using remote procedure calls
Henri E. Bal, Robbert van Renesse, and Andrew S. Tanenbaum

Hardware assists for relational database systems
Paula Hawthorn

Deployment strategies for new software technology .. .
Kenneth C. Latoza

Evidence on separately organizing for software maintenance .. .
Ned Chapin

PC proliferation: Minimizing corporate risk through planning for application maintenance
Linda Shafer and John Connell

x

403

409

417

423

431

437

449

451

453

455

457

459

467

469

471

473

475

477

485

499

507

511

517

523

A measure of program nesting complexity .. . 531
Eldon Y. Li

Towards automatic software fault location through decision-to-decision path analysis 539
James S. Collofello and Larry Cousins

Tool integration in lifecycle support environments 545
Jayashree Ramanathan and Vasudevan Venugopal

An interactive software maintenance environment 553
Stephen S. Yau, Sying-Syang Liu, and Sheausong Yang

The design of distributed databases with cost optimization and integration of space constraints 563
Dalia Motzkin and Elmo Ivey

How sensitive is the physical database design? Results of experimental investigation 573
Prashant Palvia

Design of a distributed data dictionary system 583
Hongjun Lu, Krishn~ Mikkilineni, and Bhavani Thuraisingham

Protecting statistical databases by combining memoryless table restrictions with randomization 591
Ernst L. Leiss and Dave J. Ko

Some thoughts on intelligence in information retrieval .. . 601
Ravi Shankar Sharma

Beyond the command-response model for PC-based front ends: Some design principles and their application .. 609
David E. Toliver

Expert front ends in the environment of multiple information sources 611
Gabriel Jakobson

Thoughts about intermediary systems in information retrieval 613
Gerald Salton

Graphical query languages for semantic database models 615
Bogdan Czejdo, Ramez Elmasri, Marek Rusinkiewicz, and David W. Embley

A network forms database management system " 625
Shuhshen Pan

Translation of queries to account for direct communication between different DBMSs 637
Mehdi Owrang and L.L. Miller

A new approach to version management for databases 645
Vinit Verma and Huizhu Lu

The impact of data models on application development at Pacific Bell 653
Ray Straka

The ER approach, relational technology and application development. 655
Martin Modell

A retargetable vector code generator 657
Tom C. Reyes

Incremental generation of high-quality target code 665
Mary P. Bivens and Mary Lou Soffa

Ripple effect analysis based on semantic information 675
James S. Collofello and D.A. Vennergrund

Computer information system development methodologies-A comparative analysis 683
Daniel T. Lee

A model for monitoring software integration .. . 693
Mary Lou Lanchbury, David A. Gustafson, and Austin Melton

Software risk assessment .. . 701
Susan A. Sherer and Eric K. Clemons

xi

WORKPLACE APPLICATIONS

ABF: A system for automating document compilation .. .
James Sprowl, Martha Evens, Mohamed Gagaie Sayed Osman, and Henry Harr

AI/expert system applications for the automated office
Janet Palmer

WE: A writing environment for professionals
John B. Smith, Stephen F. Weiss, Gordon J. Ferguson, Jay D. Bolter, Marcy Lansman,
and David V. Beard

Managing data and design process in engineering development .. .
William S. Johnson

Possible productivity improvements using PDES
Larry O'Connell

A real world application of ED IF .. .
Michael A. Waters

CitiExpert: Artificial intelligence applied to banking
Kenan E. Sahin and Robert K. Sawyer

Use of expert systems in medical research data analysis: The POSCH AI project
John M. Long, James R. Slagle, Michael Wick, Erach Irani, John Matts and the POSCH Group

PIONEER DAY

Some threads in the development of early operating systems .. .
George H. Mealy

A batch-processing operating system for the Whirlwind I computer
Charles W. Adams

The North American 701 Monitor
Owen R. Mock

General MotorslNorth American Monitor for the IBM 704 computer
Robert L. Patrick

BESYS revisited
R.E. Drummond

FMS: The IBM FORTRAN Monitor System .. .
Ray A. Lamer

SMALL BUSINESS DAy .. .

xii

709

711

719

725

737

745

751

761

769

777

779

785

791

797

805

815

821

ARTIFICIAL INTELLIGENCE
MARTHA EVENS

Illinois Institute of Technology
Chicago, Illinois

and
HALBERGHEL

University of Arkansas
Fayetteville, Arkansas

and
SANDRA TAYLOR

Britton Lee, Inc.
Los Gatos, California

Artificial intelligence (AI) is probably the most controversial area of computer science.
Historically, the domain of AI was at best loosely formulated, as were the underlying
principles upon which this new field was constructed. As a result, the early days of artificial
intelligence were more concerned with characterizing the problems than with formulating
their solutions.

Because of the limited success achieved in developing systems which can purport to have
even a minimum level of intelligence, researchers lowered their expectations. Consequently,
there now exist many special-purpose AI systems with enormous practical benefits, albeit
with less than earthshaking significance. For example, research in natural language pro
cessing has advanced to the point where in some instances man-machine interfaces can be
tailored to the human rather than to the machine. Although you may not be able to strike
up a conversation with a computer, you can rely upon a question-answer system to simplify
the interface with a database management system, and while it is not useful to discuss your
health problems with a machine, knowledge-based systems may assist a physician in making
a differential diagnosis.

Other areas in which rapid progress is evident include expert systems, logic programming,
knowledge representation, rule-based systems, theorem proving, scene analysis, and pattern
classification. Each of these areas is at a stage in which real applications can be envisioned
to follow from current research. As a result, many busi,nesses and industries are developing
these resources.

The sessions in this track focus on some of the recent advances. Areas with great promise
include logic programming, speech synthesis, automated reasoning and intelligent learning
environments, natural language front-ends for databases, expert systems, and office auto
mation. These topics and more are covered.

Is your business ready for AI? The Artificial Intelligence sessions are designed to present
some of the most promising technological advances and show how they relate to real-world
problems. There may be an AI system today capable of solving one of your problems!

Preparing your company for artificial intelligence

by JOHN BOWYER, JUDITH MARKOWITZ, and JAY YUSKO
Navistar International
Oakbrook Terrace, Illinois

ABSTRACT

We have identified four critical facets of preparing a company for artificial intelli
gence (AI):

1. Support from upper management
2. Education and promotion
3. Initial project selection
4. Project development methodology.

The support of upper management should include both a positive attitude and
financial support. Educational and promotional programs must involve all parts of
a company, including the AI group. Both programs set a positive tone within the
entire company and help to separate unrealistic expectations and fear from reality.
However, initial AI projects must be selected carefully to ensure long term accept
ance of AI technology within a company.

Initial project selection must be based on a constellation of factors including
appropriateness to business philosophy, return on investment, delivery, likelihood
of technical success, and user acceptance. Proper project selection should be fol
lowed by a highly people-oriented project development methodology which in
volves experts and users from the onset of the project until completion.

3

INTRODUCTION

Preparing a company for artificial intelligence (AI) is a multi
faceted effort. We have identified four areas that must be
addressed: (1) support from upper management, (2) educa
tion and promotion, (3) initial project selection, and'
(4) project development methodology. This paper discusses
each of them in turn.

SUPPORT FROM UPPER MANAGEMENT

Support from upper management is critical to the success of
an AI program. This support must include more than a posi
tive attitude toward the use of AI technology within a com
pany; upper management must make an actual commitment
to using AI represented by adequate budget and personnel.
Such a commitment is the basis upon which a successful AI
program can be developed.

Support from upper management can establish an initial
positive attitude in a company which will act as a model for
other levels of management within the company. It also will
facilitate crossing departmental boundaries when that is re
quired for developing AI projects.

EDUCATION AND PROMOTION

To sustain the momentum begun by upper management, a
strong company-wide educational and promotional program
must be instituted. Different types of educational programs
are necessary for different levels and groups within the com
pany.

Management

One of the greatest problems in the AI industry is hype. It
is essential that management understands the difference be
tween hype and reality about what can be delivered using AI
technology. Otherwise, expectations will be unrealistic and
AI projects will be doomed from the start.

Non-AI Technical Personnel

There is no need for conventional data processing people to
become proficient in the technical aspects of AI. When a
problem can be solved using conventional data processing
methods, it should be solved that way. However, non-AI tech
nical personnel need to be educated to recognize when AI
technology fits a specific problem.

Preparing Your Company for Artificial Intelligence 5

AI Technical Personnel

Just as non-AI technical personnel need to understand AI,
AI technical people need to understand conventional data
processing. They have to realize that AI cannot and should
not be used to solve all the problems within a company.

Users

Users include both the experts whose knowledge is used to
build an AI system and the people who will use the system in
their everyday work. Users need to be educated in the basic
concepts of an AI system. Those who will use the system need
to view the system as a tool to help them in their jobs and
understand it will not replace them.

INITIAL PROJECT SELECTION

Because the first few AI projects selected can make or break
the AI initiative within a company, the projects must be se
lected to ensure success. The aspects to consider when select
ing an AI project are:

1. Technical success
2. Return on investment
3. Visibility
4. Business success
5. Cooperative experts
6. User acceptance

None of these criteria stand alone; all must be considered to
ensure company-wide success. For example, a project can be
technically successful and perform as designed yet it may not
be successful within the company. An AI system's return on
investment, visibility throughout a company, and how it will
fit into the total business plan of the company must all be
evaluated when selecting initial projects. Further, cooperative
experts must produce the knowledge needed in the system.
Finally, the system must be accepted by the users; if the users
do not use the system in their work environment, the AI
initiative will fail.

PROJECT DEVELOPMENT METHODOLOGY

AI project development is highly people-oriented. An AI
system is built around the knowledge of experts within the
company. These experts are providing more than specifica
tions; they are imparting their many years of knowledge and

6 National Computer Conference, 1987

experience. Because the system will incorporate their per
sonal and hard won knowledge, the company experts need to
be involved from start to end.

As mentioned earlier, the experts have to be educated in
the basic concepts of AI so that they fully understand what
knowledge is needed and how it will be used in the system.
Prototypes have to be developed very early, not only to show
proof of concept, but to show the experts their knowledge at
work. Prototypes give the experts a chance to critique the
system and be involved in the total system development pro
cess. Such prototypes should include only features that will
be delivered in the final system. False expectations, future
disappointment, and failure can result from unrealistic proto
typing.

Another important aspect of AI project development is the
early involvement of the people who will use the system. In
particular, the method of delivery must be developed during
the early prototype stages with input from the people who will

use the system. User involvement helps to guarantee that the
system can be delivered and will be used.

Finally, support and maintenance of the AI system must be
part of the project development. The users and experts need
to know that they will be able to add new knowledge and make
changes to the AI system when necessary. They also have to
know that the AI group will support user requirements if any
complex problems arise.

CONCLUSION

We have discussed what we believe are the four major areas
that should be addressed to prepare a company for AI:
(1) support from upper management, (2) education and
promotion, (3) initial project selection, and (4) project devel
opment methodology. Although we believe the one unifying
factor is education, all four areas have to be addressed to
make AI a lasting endeavor within a company.

A methodology for building expert systems

by HOWARD HILL
Knowledge Based Systems, Inc.
Oakbrook Terrace, Illinois

ABSTRACT

This paper provides a methodology, or process, that can be used to construct expert
systems. The methodology is suited primarily for building troubleshooting, ad
visory, and diagnostic expert systems; however, it also can be useful for building
other types of systems.

7

INTRODUCTION
This paper defines a methodology, or process, that can be
used to build expert systems. This rather informal paper is
intended for mallagers or engineers a.nd programmers un
familiar with expert systems. Therefore, the methodology de
scribed is practical, not theoretical. The thesis of this paper is
that it is possible to build working expert systems in signifi
cantly less time and for less money than is generally recog
nized, and this paper explains how it can be done.

Generally, most of the effort required to build an expert
system is in gathering and organizing knowledge from the do
main expert. Existing knowledge engineering approaches are
costly, time-consuming processes; they require much effort by
both the domain expert and the knowledge engineer.

Most of the time in building an expert system is consumed
by the itertative process of traditional knowledge engineering.
A prototype system is built, tested, found to be wanting, and
discarded. Information gleaned from this process is used to
build yet another prototype which in turn is tested, found to
be wanting, and ultimately discarded. This process continues
until a system is developed that seems to work.

The traditional process of knowledge engineering can be
improved by applying a concept software engineers have
known for some time: it is much easier to do the job right the
first time than to do it over and over. The cost of fixing bugs
during the requirements phase of a software project is orders
of magnitude less than the cost of fixing the same bugs after
a product has been released to customers. The same principle
applies to building expert systems. The development process
can be reduced to only one iteration by first defining what the
system should do, collecting all knowledge at one time,
choosing the best knowledge representation from the start,
and knowing what performance values the system must
achieve to be accepted.

Many of the conventional problems often present in knowl
edge engineering vanish when this one-iteration approach is
applied. For example, the problem of paradigm shift occurs
when acquired knowledge exceeds the limits of a chosen
representation. This problem is eliminated by selecting a
knowledge representation paradigm after all knowledge has
been collected.

Another cost present in building expert systems is the cost
of the domain expert's time. Good domain experts are ex
pensive; they have little time at best. Any good knowledge
engineering methodology must minimize the use of their time.

FOUNDATIONS

There are a few key principles we use to construct this new
methodology: problem decomposition, target system decom
position, and locality.

A Methodology for Building Expert Systems 9

First, all people know far more than they can tell. People do
not have complete access to the processes they use to solve
problems. Indeed, as people acquire more expertise, they
typically find it harder to state the reasoning and knowledge
they used to solve problems. Further, if they attempt to do so,
the offered reasoning model and knowledge often is incom
plete. This situation is called the paradox of expertise. 1 Con
sequently, some authors advise prospective knowledge engi
neers to be wary of a domain expert's advice, and perhaps to
seek less experienced domain experts.

Thus, much of the difficulty in knowledge engineering is
caused by the difficulty of experienced domain experts to
elucidate the methods and knowledge they use to solve prob
lems. If a knowledge engineer can help with this problem, the
cost of building an expert system will be reduced.

Although most expert systems work by modeling a domain
expert's reasoning process and knowledge, this does not have
to be the case. Commonly used knowledge representations,
for example, do not mimic human thought processes. No
expert I know thinks in terms of production rules, yet this is
one of the most popular and successful knowledge representa
tions used in expert systems today.

Second, the solution strategy used in an expert system also
does not have to be one that matches a domain expert's prob
lem solving technique. Once the requirement for an emulative
solution strategy is relaxed, a rather mechanical knowledge
acquisition process can be used to develop a solution strategy
that will be used by the expert system. This will speed up the
early stages of the development process.

The strategy of "divide and conquer" is well known in
computer science. Using this strategy, problems are decom
posed into separate subproblems, and the solution of the com
plete problem is obtained by combining the solutions to the
subproblems. This process is useful for some problems be
cause it can be much easier to solve many small subproblems
than it is to solve an original problem.

Diagnosis, advisory, and troubleshooting problems usually
can be decomposed using this technique. In such cases, the
divide and conquer principle is applied recursively to a prob
lem until the problem is broken down into atomic subprob
lems. These atomic subproblems represent the lowest level
of problem that an expert system is designed to solve.

For example, an expert system designed to give advice
about loans could have a problem decomposed into giving
advice about commercial loans and retail loans. These two
subproblems would be further decomposed into giving advice
about various specific types of commercial and retail loans
(e.g., asset-based commercial loans). The decomposition pro
cess would stop when the loan types being considered were
the basic, or fundamental, types that a system's user would
reasonably consider.

10 National Computer Conference, 1987

Further, not only can the expert system problem be decom
posed using divide and conquer, the target system that the
expert system is designed to troubleshoot, diagnose, or give
advice about, can also be decomposed into many atomic sub
systems.

An automobile can be considered to be a collection of
subsystems such as an engine, wheels, drive train, body, and
frame. Each of these subsystems also can be decomposed into
subsystems. For example, some subsystems of a drive train
would be the transmission, drive shaft, differential, and rear
axles. This process would be repeated until a complete hier
archy consisting of the smallest meaningful subsystems for an
automobile was obtained.

The third principle on which the methodology is based is the
principle of locality. That is, if a target system has been prop
erly decomposed, then separate atomic subproblems will be
associated with each atomic subsystem. As a result, it should
be possible to recursively decompose large target systems into
hierarchies of atomic subsystems with one or more atomic
subproblems associated with each atomic subsystem.

For diagnosis, advisory, and troubleshooting expert sys
tems, the process of recursive decomposition of both the tar
get system and the problem usually can be done by a knowl
edge engineer with only a minimal amount of help from the
domain expert.

If presented with the complete decomposition of a target
system, a domain expert will find it easy to elucidate the
methods he or she used to solve the subproblem. Given a
complete hierarchical decomposition of the target system and
the problem, it is possible for a domain expert and knowledge
engineer to elucidate the methods, that is, the knowledge and
reasoning strategies, needed to solve every atomic subprob
lem. Therefore, since the solution to a problem is the sum of
the solutions to all its atomic subproblems, it follows that the
domain expert and knowledge engineer can obtain through
target system and problem decomposition, the knowledge and
reasoning strategies necessary to solve the complete problem.

METHODOLOGY

This section describes a methodology that can be used to build
troubleshooting, advisory, and diagnostic expert systems.

Define System Objectives

First, it is necessary to determine what a proposed system
will do. The system's function should be specified in a one- or
two-page document that clearly states the objectives of the
finished system. Documenting a system's objectives requires
the cooperation of the system's end users, the domain expert,
and the knowledge engineer.

Define Subsystems

After the problem that the expert system must solve is
stated, the knowledge engineer uses the divide and conquer
strategy to decompose both the target system and the problem

into atomic subsystems. Each subsystem is then broken down
to the lowest level that the expert system should address. An
automobile-mechanic advisory system, for example, would
not need to address the theory of condensed matter to advise
a mechanic about changing a power-steering unit. Often, ex
isting documentation can be used as a knowledge source for
such a step.

Next, a knowledge engineer and the domain expert should
identify every possible subproblem that can occur in each
atomic subsystem. This step requires a series of interviews
with the domain expert. At the end of this step, the problem
should be completely decomposed into atomic subproblems,
and each subproblem related to an atomic subsystem. Typi
cally, every atomic subsystem will have several different sub
problems associated with it.

Create Cause Tables

The domain expert must identify the causes of each atomic
subproblem and the symptoms associated with each cause.
Symptoms fall into two categories: those that increase the
confidence that the cause is present, and those that rule out
the cause. The end result of this step is a series of tables, one
for each cause. Each table should list the subproblem to which
a cause is connected, the subsystem to which the subproblem
relates, and the symptoms that are associated with the cause.
If more than one domain expert is available, then a Delphi
technique can be used to increase the accuracy of the cause
tables.

Write Knowledge Engineering Document

Next, the knowledge engineer writes a knowledge engi
neering document. This document contains the cause tables,
the complete hierarchical decomposition of the target system,
and a complete list of subproblems together with their rela
tionship to the subsystems.

Perform Parretto Analysis

The knowledge engineering document contains all the do
main knowledge needed for the system. However, because
many of the possible subproblems and their causes stated in
the tables actually may never occur, Parretto analysis is used
to screen the data for plausibility. The basic idea behind
Parretto's principle is that only a few of the potential causes
account for most problems encountered. This is the basis for
the 80/20 rule which states the 80 percent of the problems
occur due to about only 20 percent of the causes.

In some systems (e.g., medicai expert systems), it is neces
sary to include all potential causes, however unlikely. In such
cases, a Parretto analysis is not needed. 2

The Parretto analysis is accomplished best by analyzing
historical problem records and using the data to weed out
possible causes that (1) have never resulted in a problem and
(2) are expected never to result in a problem. The assistance
of a domain expert is necessary for this analysis. 1

However, in most situations a reliable set of historical prob
lem records will not exist. Therefore, it usually is necessary for
a domain expert to estimate the likelihood of problems occur
ring as a result of each cause identified. Because people typi
cally are not accurate at estimating probability, the domain
expert should rank each cause according to the following esti
mates:

1. Almost always causes problems.
2. Commonly causes problems.
3. Occasionally causes problems.
4. Rarely causes problems.
5. Possibly can cause probiems but there is no evidence of

problems related to this cause.
6. Problems related to this cause will never occur.

After each cause has been analyzed, the Parretto analysis
proceeds by plotting the ranked list of causes versus the like
lihood of each cause resulting in a problem. The plot will take
the form of a monotone decreasing curve. If the curve has a
definite knee, and the knee occurs low enough, then causes
below the knee can be eliminated safely from the knowledge
engineering document. If no knee is found, then causes with
a zero likelihood of resulting in problems can be eliminated
safely.

The outcome of the Parretto analysis is a ranking of the
problem-likelihood related to all possible causes in the knowl
edge engineering document together with a cutoff point that
specifies the problem-likelihood limit for causes that will be
included in the system. Only data associated with causes
above the cutoff "rill be included in the system.

Build Control Flow Model

Next, it is necessary to build a control flow model. Al
though the strategy the expert system will use does not closely
mimic the strategy the domain expert uses, the overall strat
egy used by the domain expert is best to use in the expert
system. The flow model is a high-level description of the steps
the domain expert uses to solve the specified problem. The
flow model will form the basis for the control-rule meta
knowledge the expert system will need. A typical flow model
consists of a flowchart or an equivalent design language
specification of the steps the domain expert takes to solve the
problem.

Verify Knowledge Engineering Document

After the flow model is constructed, it is necessary to verify
and inspect the knowledge that will reside in the finished
system. This step consists of carefully inspecting, on a line-by
line basis, each piece of information in the knowledge engi
neering document. Four issues must be considered. First, the
knowledge engineer should verify that the proper decom
position into atomic subsystems and atomic subproblems has
been achieved. Second, the engineer must ensure that the
causes and the symptoms for each cause within each sub
problem have been identified correctly. Third, the problem-

A Methodology for Building Expert Systems 11

likelihood for every cause within the document must be veri
fied. Finally, the consultation flow model must be reviewed
for correctness.

The inspected knowledge engineering document is a valu
able asset. It documents exactly what knowledge will be in
cluded in the finished system, completely specifies the behav
ior of the system, and acts as a reference guide for maintainers
of the system.

Define Shell Parameters

The next step is to decide which expert system shell param
eters to use. This step consists of choosing a knowledge
representation, an inferencing strategy, a user interface de
sign, the knowledge debugging parameters, and deciding on
the nature and strategy behind the system's explanations.
Many good books exist that can help knowledge engineers
choose shell parameters. Since all knowledge required in the
system has been collected prior to this step, the process should
be straightforward.

Code Knowledge Base

Once a shell3 has been acquired, the engineer codes the
knowledge contained in the knowledge engineering document
into a knowledge base the shell can use. Generally, the cause
table knowledge will be simple to code into either production
rules or frames and will form the bulk of the knowledge base.
The control flow-model knowledge will encode into meta
knowiedge that controls the order in which rules or frames are
invoked.

Establish Test Cases

While the knowledge base is being coded, a set of test
cases can be collected or constructed from scratch with the
help of the domain expert. The test cases should be selected
to reflect actual problems the system should be able to solve.
Remember, the purpose of testing is to find errors-not prove
correctness. Each test case, therefore, should be included
because it has the potential to find an error in the knowledge
base.

Building an expert system using the methodology described
in this paper, only a few possible types of bugs can occur. The
primary type of bug that could be found is the "insufficiency
bug," an error caused by missing knowledge. Insufficient
knowledge usually is results from using too high a threshold in
the Parretto analysis. Another type of bug could occur due to
incorrect partitioning of the target system into atomic sub
systems. Incorrect partitioning causes interactions between
the subsystems that the causes tables do not address. As a
result, the system will not be able to solve some problems
correctly. Insufficiency bugs are also a consequence of in
correct partitioning.

Many of the problems frequently encountered in traditional
expert system development will not occur, or will rarely occur
when this methodology is used. Such bugs include paradigm

12 National Computer Conference, 1987

shift, contradiction, subsumption, incorrect knowledge, and
bugs due to the inability to access knowledge, (i.e., a missing
relation in a frame, or a rule conclusion that is neither a goa]
nor subgoal).

Test and Validate

After the system is coded, testing must be done. This con
sists of running the test suite through the system and observing
the system's behavior. Because no human activity is perfect,
bugs will exist in any non-trivial knowledge base. Testing and
fixing these bugs is a necessary part of knowledge engi
neering.

When testing is complete, validation can be performed.
Validation consists of comparing the accuracy of the expert
system against a known "gold standard" for accuracy.

Several levels of gold standards can be used. One of the best
is to build a validation test suite of cases by selecting cases
from actual problems that have occurred in the past. Accuracy
is established by giving these cases to a panel of human do
main experts and measuring its solution accuracy as well as the
extent to which it agrees on the solutions to each case. These
numbers form a baseline against which the expert system's
accuracy is measured.

Actual validation is done by running the calibrated valida-

tion test suite through the expert system and comparing the
system's accuracy to the accuracy of the domain-expert panel.
Although systems vary in accuracy, generally it is possible to
achieve the same level of accuracy as the domain expert panel.

Once the system is finished, the knowledge engineering
document and the system should be placed under change
control. All changes to the system must be reflected in the
knowledge engineering document.

CONCLUSION

I have used the methodology described in this paper to build
several systems, and found it superior to the methods gen
erally discussed in the literature. By concentrating on doing
the knowledge engineering only once, and doing it right the
first time, it is possible to build expert systems much more
rapidly than is commonly supposed.

REFERENCES

1. Waterman, D. A. A Guide to Expert Systems. Reading, MA: Addison
Wesley, 1985.

2. Buchanan, B. and E. Shortliffe. Rule-Based Expert Systems. Reading, MA:
Addison-Wesley, 1985.

3. Hayes-Roth, F., D. Waterman, and D. Lenat. Building Expert Systems.
Reading, MA: Addison-Wesley, 1985.

A framework for expert modelbase systems

by ROBERT W. BLANNING
Vanderbilt University
Nashville, Tennessee

ABSTRACT

The growing integration of database management systems with expert systems to
produce what are coming to be called expert database systems suggests that there
may also be a productive integration of causal decision models with expert systems.
We examine in this paper three possible areas of integration: (1) the use of expert
systems in helping end users to construct decision models and to interpret their
outputs, (2) the incorporation of knowledge bases into decision support systems
(DSS), and (3) the use of expert systems in interfacing models with their users. The
latter case consists of (1) natural language query processing for decision models,
and (2) the use of expert systems technology in integrating the appropriate models
in a model base to respond to a user query.

13

INTRODUCTION

An important theoretical and practical issue in decision sup
port systems (DSS) is managing decision models. Such deci
sion models include linear programming models of production
and distribution processes and simulations of the financial
structure of a firm. For this reason a discipline of model man
agement,1,2,3 along with a few commercially implemented
model management systems,4 is being developed within DSS.
The purpose of a model management system is to insulate its
users from the physical operations of model storage and pro
cessing, just as the purpose of a database management system
is to insulate its users from the physical operations of data
storage and processing. The principal areas of concern in the
model management literature are (1) the organization of
model bases (both network and relational frameworks have
been developed), (2) the design of model base query lan
guages, and (3) the efficient implementation and operation of
model management systems.

During the past few years increasing attention has been paid
to the application of artificial intelligence (AI)--especially
expert systems and, to a lesser extent, natural language query
processing-to model management. This development paral~
leIs a similar area of interest in database management-the
synthesis of database management systems with expert sys
tems to produce what are coming to be called expert database
systems.5

,6 An expert database system has been defined as
"a system for developing applications requiring knowledge
based processing of shared information.,,7 Implicit in this
definition is the assumption that the information under con
sideration is stored data. We examine here a case in which the
reformation is a decision model in the form of a stored algo
rithm, and we call such a system an expert modelbase system.

There are three areas in which AI may be applied to the
management of decision models. First, expert systems may be
developed to help end users to construct models and to inter
pret their results. Second, a DSS may contain an expert sys
tem along with or in place of a causal decision model. Third,
certain AI techniques (including expert system techniques)
may be useful in translating and executing user queries to a
model management system. These three topics are examined
in the following three sections of this paper.

INTELLIGENT MODEL CONSTRUCTION
AND INTERPRETATION

We begin by defining a model base as a set of one or more
models. We expect there will be some commonality among
the models' input and output attributes, which means that the
outputs of some models will be inputs to other models. For

A Framework for Expert Modelbase Systems 15

example, the output of a sales forecasting model may be the
input to a production planning model, and the output of the
production planning model may be the input to a distribution
scheduling model. Such a linking of models corresponds to a
relational join in database management, in which the models
are viewed as virtual relations. Tuples in virtual relations do
not exist in stored form, they are generated on demand by a
stored algorithm.8 In this section we are concerned only with
individual models. Later we will be concerned with the inte
gration of models in a model base.

Models are similar to data files in that they contain func
tional dependencies. For example, the output of a model
is functionally dependent on its input, just as the content
attributes of a file are funtionally dependent on the key attri
butes. * However, there are additional functional dependen
cies in model management. For example, the output of a
model is also functionally dependent on any parameters in the
model, and assignment statements in imperative program
ming languages (and for that matter, let and where statements
in functional programming languages) are examples of func
tional dependencies. Since the dependency structures of
decision models are in many cases quite complex, it often
requires substantial expertise to construct these models and
to interpret their outputs.

There are two ways in which expert systems can be applied
to model construction. If the model solution technique has
been programmed and the software is available to the model
builder, as is usually the case in linear programming, then the
expertise required is to identify the components of the model
from a description of the problem. For example, in linear
programming models, the components would be the decision
variables, the objective function, and the constraints. Expert
systems are now being developed to help users formulate
linear programming models in certain restricted problem do
mains (e.g., determining optimal product mixes or transpor
tation schedules).9,10 On the other hand, if the tool is a pro
gramming language (such as a simulation language), then the
problem is one of automatic programming. An example is a
system used for generating GPSS programs from natural lan
guage descriptions of queueing problems. 11

Since most expert systems provide explanations of their
reasoning processes, it seems reasonable that expert systems

*There are two possible departures from determinism in decision modeling,
neither of which presents a problem in practice. First, certain constrained
optimization models can have multiple global optima, but this seldom arises in
practice. Second, Monte Carlo simulations can produce different outputs from
the same input, depending on the sequence of random numbers used, but for
most applications the sample size is sufficiently large (and variance reduction
techniques may be used) that the differences in output are small.

16 National Computer Conference, 1987

should be developed to help a user to interpret the outputs of
causal models and to evaluate the inputs to and the assump
tions in the models. Two such systems have been developed,
one for linear programming models12 and the other for spread
sheet generators. 13,14 The former system accesses the output
of a linear programming model (i.e., the optimal tableau or
a tableau demonstrating that there is no feasible solution or
that the solution is unbounded) and answers questions about
causal chains of events (e.g., from resources through facilities
to end products). The latter system uses the algebraic expres
sions in a spreadsheet generator to answer questions about
why particular outputs are unusually high or low or why cer
tain outputs have changed very little although some of the
inputs have changed significantly (e.g., certain changes may
have cancelled each other out).

A problem domain closely related to the construction and
interpretation of decision models is (1) the selection of statis
tical procedures that help an analyst draw inferences from a
set of data and (2) the interpretation of the outputs of these
procedures. This is also an active area of AI research, and
expert systems are being developed for this purpose. IS Thus,
we may expect to see a growing number of software systems
that allow end users to construct, solve, and interpret decision
support algorithms without having to know details of the algo
rithmic techniques. 16

INTELLIGENT MODELS

A second approach to intelligent model management is to
capture in the models some of a manager's knowledge of the
real world. This has been done in the development of knowl
edge-based DSS (i.e., expert systems as applied to manage
ment).17 Expert systems of this type have been developed in
the following problem domains:

1. Finance and accounting. Examples are expert systems
for portfolio selection,18 auditing accounts receivable ,19
and analyzing corporate financial statements. 20

2. Operations. Examples are systems for configuring custo
mer orders,21 scheduling production,22 and servicing
equipment. 23

3. Marketing. There are a large number of models, called
decision calculus models, in use in marketing that have
some of the properties of expert systems.24,2S,26 The
models contain a certain amount of expertise in a gen
eral area (e.g., advertising budgeting), but they require
substantial expertise on the part of the user that is spe
cific to the product line under consideration.

Incorporating expertise into DSS gives rise to such issues
as the proper way to incorporate knowledge-based DSS
into existing corporate planning and other decision-making
processes, the integration of knowledge-based DSS with data
based and model-based DSS, and the possible use of knowl
edge-based DSS in helping researchers and managers to
understand and possibiy improve manageriai decision pro
cesses. 27,28 These and other similar issues will almost certainly

be investigated thoroughly as more knowledge-based DSS
are implemented.

INTELLIGENT MODEL EXECUTION

Once a model base has been constructed, its users will pre
sent queries that must be translated and executed. Two types
of intelligence may be required here. First, if the query is
presented in a "natural" language (i.e., in a sufficiently large
subset of the user's language that the user appears to be
conversing with the model base or, more exactly, with the
model management system), then the system must translate
the query into an unambiguous form for execution. This is
currently accomplished in some database systems by nat
ural language query processors,29 and there are indications
that similar processors can be constructed for decision
models. 30, 31,32

Second, after a model management system has interpreted
a query (whether it was presented in a natural language or in
a structured model query language), the model management
system must (1) select the model or models needed to prepare
a response and then (2) execute the models. When only one
model is required, this is usually not difficult. If there is more
than one model, it will be necessary to identify the appropri
ate models and to construct a sequence of operations (i.e.,
model executions) needed to respond to the query. It has been
suggested that models be represented as statements in first
order logic and that a query be viewed as a statement to be
inferred from the model statements by means of resolution
programming,33,34 connection graphs,3s or, more generally,
logic programming. 36, 37

A more flexible model base may be constructed by using
more powerful AI techniques, such as semantic nets and
frames. 37,38,39 Using such techniques would allow several pro
cessing functions (e.g., matrix generation and optimization in
liner programming) to be combined in one information struc
ture. It also would allow integrity constraints and other rules
relevant to model base processing to be conveniently stored
and accessed. Several recent software development efforts
suggest that these more complex knowledge structures can be
usefully applied to model management. 40,41

CONCLUSION

Until recently, three important sources of information for
decision support-stored data, decision models, and expert
knowledge-have been regarded as largely separate, but we
are beginning to find interesting relationships among them.
Some of the literature on model management emphasizes the
relationships between data and models, and the ongoing re
search on expert database systems is focused on the relation~
ships between data and knowledge. In addition, we have seen
a growing interest in the relationships between models and
knowledge. Such interest suggests that it may be productive to
view a DSS as a system that provides convenient user access
to a variety of information sources-especially data, models,
and knowledge42-that are useful in decision support.

ACKNOWLEDGEMENT

This research was supported by the Dean's Fund for Faculty
Research of the Owen Graduate School of Management of
Vanderbilt University.

REFERENCES

1. Bonczek, R. H., C. W. Holsapple, and A. B. Whinston. "The Evolution
from MIS to DSS: Extension of Data Management to Model Manage
ment." In M. J. Ginzberg, W. R. Reitman, and E. A. Stohr. Amsterdam:
North-Holland, 1982, pp. 61-78.

2. Dolk, D. R. and B. R. Konsynski. "Model Management in Organizations."
Information & Management, 9(1985), 1, pp. 35-47.

3. Blanning, R. W. "Issues in the Design of Relational Model Management
Systems." AFIPS, Proceedings of the National Computer Conference, (Vol.
52) 1983, pp. 395-401.

4. Palmer, K. H., N. K. Boudwin, H. A. Patton, A. J. Rowland, J. D.
Sammes, and D. M. Smith. A Model-Management Framework for Mathe
matical Programming. New York: Wiley, 1984.

5. Kerschberg, L. (ed.) Proceedings of the First International Workshop on
Expert Database Systems (Vols. I and II) 1984.

6. Kerschberg, L. (ed.) Proceedings of the First International Conference on
Expert Database Systems. 1986.

7. Smith, J. M. "Expert Database Systems: A Database Perspective." Pro
ceedings of the First International Workshop on Expert Database Systems
(Vol. I) 1984, pp. K-1-K-22.

8. Blanning, R. W. "A Relational Framework for Join Implementation in
Model Management Systems." Decision Support Systems, 1 (1985), 1,
pp.69-81.

9. Binbasioglu, M. and M. Jarke. "Domain-Specific DSS Tools for
Knowledge-Based Model Building." Proceedings of the Nineteenth Annual
Hawaii International Conference on System Sciences, (Vol. 1A) 1986,
pp. 503-514.

10. Murphy, F. H. and E. A. Stohr. "An Intelligent System for Formulating
Linear Programs." Decision Support Systems, 2 (1986), 1, pp. 39-47.

11. Heidorn, G. E. "Simulation Programming Through Natural Language Di
alogue." In M. A. Geisler (ed.) Logistics. Amsterdam: North-Holland,
1975, 71-83.

12. Greenberg, H. J. "A Functional Description of ANALYZE: A Computer
Assisted Analysis System for Linear Programming Models." ACM Trans
actions on Mathematical Software, 9 (1983), 1, pp. 18-56.

13. Kosy, D. W. and B. P. Wise. "Self-Explanatory Financial Planning Mod
els" Proceedings of the National Conference on Artificial Intelligence, 1984,
pp. 176-181.

14. Kosy, D. W. and B. P. Wise. "Overview of ROME: A Reason-Oriented
Modeling Environment." In L. F. Pau (ed.) Artificial Intelligence in Eco
nomics and Management. Amsterdam: North-Holland, 1986, pp. 21-30.

15. Gale, W. A. and D. Pregibon. "Artificial Intelligence Research in Statis
tics." AI Magazine, 5 (1985), 4, pp. 72-75.

16. Hwang, S. "Automtic Model Building Systems: A Survey." In J. J. Elam,
(ed.) DDS-85 Transactions, 1985, pp. 22-32.

17. Blanning, R. W. "Management Applications of Expert Systems." Informa
tion & Management, 7 (1984), 6, pp. 311-316.

18. Clarkson, G. P. E. Portfolio Selection: A Simulation of Trust Investment.
Englewood Cliffs, NJ: Prentice-Hall, 1962.

19. Dungan, C. W. and J. S. Chandler. "AUDITOR: A Microcomputer-Based
Expert System to Support Auditors in the Field." Expert Systems, 2 (1986),
4, pp. 210-221.

A Framework for Expert Modelbase Systems 17

20. Bouwman, M. J. "Human Diagnostic Reasoning by Computer: An Illus
tration from Financial Analysis." Management Science, 29 (1983), 6,
pp. 653-672.

21. Scown, S. J. The Artificial Intelligence Experience: An Introduction. Digital
Equipment Corporation, 1985 pp. 110-145.

22. Fox, M. S. and S. F. Smith. "ISIS-A Knowledge-Based System for Factory
Scheduling." Expert Systems, 1 (1984), 1, pp. 25-49.

23. Richardson, J. J. (ed.) Artificial Intelligence in Maintenance. Park Ridge,
IL: Noyes Publications, 1985, pp. 391-405.

24. Little, J. D. C. "Models and Managers: The Concept of a Decision Cal
culus." Management Science, 16 (1970), 8, pp. B-466-B-485.

25. Chakravarti, D., A. Mitchell, and R. Staelin. "Judgement Based Market
ing Decision Models: Problems and Possible Solutions." Journal of
Marketing, 45 (1981), 4, pp. 13-23.

26. Little, J. D. C., and L. M. Lodish. "Commentary on 'Judgement Based
Market Decision Models.''' Journal of Marketing, 45 (1981), 4, 24-29.

27. Blanning, R. W. "Issues in the Design of Expert Systems for Manage
ment." AFIPS Proceedings of the National Computer Conference (Vol. 53)
1984, pp. 489-495.

28. Dhar, V. "On the Plausibility and Scope of Expert Systems in Manage
ment." Proceedings of the Nineteenth Annual Hawaii International Confer
ence on System Sciences (Vol. 1) 1986, pp. 328-338.

29. Tennant, H. Natural Language Processing. New York: Petrocelli, 1981.
30. Blanning, R. W. "Conversing with Management Information Systems

in Natural Language." Communications of the ACM, 27 (1984), 3,
pp. 201-207.

31. Blanning, R. W., "A System for Natural Language Communication Be
tween a Decision Model and Its Users." In L. F. Pau (ed.) Artificial Intel
ligence in Economics and Management. Amsterdam: North-Holland, 1986,
pp.77-85.

32. Blanning, R. W. "A Framework for StructuredlNatural Language Model
Query Processing." Proceedings of the Nineteenth Annual Hawaii Interna
tional Conference on System Sciences (Vol. 1A) 1986, pp. 487-493.

33. Bonczek, R. A., C. W. Holsapple, and A. B. Whinston. Foundations of
Decision Support Systems. New York: Academic Press, 1981.

34. Dutta, A. and A. Basu. "An Artificial Intelligence Approach to Model
Management in Decision Support Systems." IEEE Computer, 17 (1984), 9,
pp.89-97.

35. Chen, M. C., J. E. Fedorowicz, and L. J. Henschen. "Deductive Processes
in Databases and Decision Support Systems." Proceedings of the North
Central ACM 82 Conference, 1982, pp. 81-100.

36. Blanning, R. W. "A PROLOG-Based Framework for Model Manage
ment." Proceedings of the First International Workshop on Expert Database
Systems (Vol. II) 1984, pp. 633-642.

37. Lee, R. M. and L. W. Miller. "A Logic Programming Framework for
Planning and Simulation." Decision Support Systems, 2 (1986), 1,
pp.15-25.

38. Dolk, D. R. and B. R. Konsynski. "Knowledge Representation for Model
Management Systems." IEEE Transactions on Software Engineering,
SE-lO (1984), 6, pp. 619-628.

39. Fedorowicz, J. and G. B. Williams. "Representing Modeling Knowledge in
Decision Support Systems." Decision Support Systems, 2 (1986), 1,
pp.3-14.

40. McIntyre, S. C., B. R. Konsynski, and J. F. Nunamaker, Jr. "Automating
Planning Environments: Knowledge Integration and Model Scripting."
Journal of Management Information Systems, II (1986),4, pp. 49-69.

41. Applegate, L. M., B. R. Konsynski, and J. F. Nunamaker. "Model
Management Systems: Design for Decision Support." Decision Support
Systems, 2 (1986), 1, pp. 81-9l.

42. Blanning, R. W. "Expert Systems for Management: Research and Applica
tions." Journal of Information Science, 9 (1985), 2, pp. 153-162.

A concept space for experiments in artificial intelligence

by RICHARD D. AMORI
East Stroudsburg University
East Stroudsburg, Pennsylvania

ABSTRACT

Describing phenomena in terms of coordinate systems and vector spaces has been
beneficial in traditional science. Describing robotics experiments as points or vec
tors in a "space" of concepts taken from applied artificial intelligence has been
equally beneficial. Such a perspective has benefits for both robotics and artificial
intelligence. The five concepts, each of which constitutes an ordered axis or dimen
sion, are: (1) task specification/directions, (2) perception (sensing) and other input!
output (110), (3) world modeling, (4) reasoning, and (5) activity planning/execution.
The implemented projects, which involve digital vision, natural language proces
sing, tool manipulation, and a robot under expert system control, are discussed as
points in this space. Additional experiments underway are described in the same
context.

19

A Concept Space for Experiments in Artificial Intelligence 21

INTRODUCTION

In a recent paper Hopcrofe argued persuasively that we
should take a more general view of robotics as the study of
representing, manipulating, and reasoning about objects
using a computer. Such a view raises issues in programming
languages and representations, which are traditional com
puter science concerns. He argues that not only will computer
science contribute greatly to robotics, but that robotics and
other application areas will contribute greatly to computer
science. We agree, and wish to point out that such a mutually
beneficial relationship is especially fruitful for general arti
ficial intelligence. We argue that, just as artificial intelligence
has contributed greatly to the development of robotics, ro
botics can contribute greatly to, and permit systematic in
vestigation of, more broadly-based artificial intelligence
concerns. We have held this position for several years and
have used it to develop a research program based on robotics
but which addresses several, more widely applicable, themes
of artificial intelligence.

This paper (and an accompanying videotape2
) describes a

set of seven robotics projects and experiments conducted at
East Stroudsburg University. The robotics efforts are dis
cussed in the context of a five dimensional "space" of con
cepts from artificial intelligence. The dimensions of this space
are concepts from artificial intelligence which permit us to talk
conveniently about the ordering of experiments in the sense of
complexity of the experiment, location of an experiment in
the space, and future directions for experiments. Each con
cept is a dimension or axis, each project may be considered a
five tuple in this space and each can be discussed component
by component.

First we consider each concept dimension or axis and then
we discuss each robotics project, component by component.

CONCEPT DIMENSIONS OR AXES

The seven robotics projects are discussed in the context of the
following "space" of concepts: task specification/direction,
perception, sensing and other input/output (liD), world mod
eling, reasoning, and activity planning and execution. The
space may be represented as shown in Figure 1.

Task Specification/Directions

The task specification/directions axis describes the manner
in which a problem is posed to a robot, and the amount,
type, and source of directions provided to the robot. Such
specifications and directions can range from highly explicit to

highly implicit. An example of highly explicit task specifica
tion is traditional rote training: teach-by-guiding or teach-by
showing. A less explicit, and more flexible specification would
be the use of a high-level robot programming language to
provide the direction. An implicit task specification would
correspond to specify the task in a natural language, such as
English.

Perception (Sensing) and Other I/O

The perception (sensing) and other liD axis describes the
manner in which the robot interacts with its environment
how it senses its environment and how it changes its environ
ment. Sensory devices along this axis can range from no ex
ternal sensors (dead reckoning) and perhaps some simple
internal sensors such as limit switches; to a few sensors such
as sonic range finders, force/torque or digital vision; to a rich
coordinated array of sensors such as combinations of range
finders, multiple cameras, and lasers. Robots with no sensors
are non-adaptive whereas those with sensors can become
adaptive. A variety of end effectors can permit interactions on
this axis ranging from very simple pick and place interactions
to those capable of substantial environment changes perhaps
achieved by using a multi-fingered gripper with an assortment
of tools.

Figure I-The concept space

22 National Computer Conference, 1987

World Modeling

The world modeling dimension describes the model of the
world obtained from sensors and the location of model. For
most traditional robotics applications, the world model is cre
ated and maintained by a human operator; that is, no world
model is maintained by the robot. Some elementary world
modeling can be performed by robots programmed in robot
programming languages. Such programs maintain such model
information as coordinate system data, force/torque data, and
gripper open/closed data. Complex world models are manda
tory for experiments involving natural language processing,
vision scene analysis, or expert system control of a robot.

Reasoning

The reasoning axis describes the amount of reasoning
performed and whether a robot or human performs the infer
encing. Traditional industrial robotics applications do not in
volve reasoning by the robot. All inferencing is done by the
human operator. Thus, at the left end of the reasoning axis we
might attach the label "none." Elementary, on-board robot
reasoning is required for applications involving semantic ana
lysis for natural language but sophisticated inferencing is re
quired when an expert system is used for robot control or
when a complex visual scene must be analyzed.

Activity Planning and Execution

The activity planning and execution axis describes the type
of plan formulated and carried out, and whether planning is
done by the human operator or by the robot. Most traditional
robotics planning is performed by a human operator during
the training phase and robot execution is merely a direct
playback of previously stored activity sequences. Some plan
ning can be done on-board when a robot is directed by a robot
programming language. More sophisticated on-board plan
ning must be done if a robot is driven by natural language or
controlled by an expert system.

Advantages of Concept Space

Labeled appropriately, axes descriptions provide a richer
space within which we can place and discuss our robotics
projects, as seen in Figure 2. Further, when activities are
described within these dimensions, it is easy to see the
demarcation between traditional robotics (i.e., industrial,
non-intelligent) and advanced robotics, which requires arti
ficial intelligence techniques.

Using this space of concepts, robotics experiments can be
carried out which achieve robotics goals and at the same time
permit us to explore broader artificial intelligence issues. We
discuss a set of such projects and experiments next.

PROJECTS DISCUSSION

Let us consider the seven robotics projects and their locations
in this concept space. The first three projects-alphabet,

TRADITIONAL I INTELLIGENT
I

I ROBOTICS

I
ROBOTICS I (ARTIFICIAL I~TELLIr.ENCE BASED)

(INDUSTRIAL)

Figure 2-The concept space with some orderings on the axes

coffee, and piano worlds-involve no autonomous intelligent
behavior by the robots. The last four projects-egg harvest
ing, blocks, workbench, and bagger worlds-involve increas
ingly autonomous robotic behavior.

Alphabet World

In the alphabet world project, a robot picks up alphabet
cubes and spells out "ESU-ROBOTICS." The robot's end
effector is a magnetic finger, and each letter cube has a metal
strip attached to its top surface. This project is representative
of many simple industrial level tasks known as pick-and-place
operations.

Location in the concept space

Alphabet world is a traditional robotics application and is
located at the leftmost, or non-intelligent, end of each of the
concept dimensions. The task specification/direction is explic
itly provided by a human operator during training. Alphabet
world is also at the leftmost end of the perception axis because
there is no external perception. As do many current industrial
robots, the alphabet world robot operates by dead reckoning.
Knowledge of the world is entirely resident in the human
operator and world modeling and reasoning are performed
entirely by the operator. Activity planning is also performed
by the operator who provides it to the robot. Subsequent
robotic execution is a straightforward playback of the previ
ously stored, operator determined, set of moves.

A Concept Space for Experiments in Artificial Intelligence 23

Coffee World

In the second project, the robot prepares a cup of coffee.
The world objects are geometrically more complex (e.g.,
coffee pot and sugar container) than in the alphabet project,
and a more general purpose, 3-finger end effector is used. The
coffee application illustrates a popular way in which robots are
trained or guided to perform a task: the human navigator uses
his senses to inform another human operator, the pilot, about
how close the end effector is to the desired pickup point of an
object (e.g., the handle on the coffee pot). By means of
entries on a computer keyboard the pilot manipulates the
robot's movements. The computer records the moves for later
playback.

Location in the concept space

As is the alphabet world, coffee world is a traditional
robotics exercise that can be plotted at the leftmost, or
non-intelligent, end of each of the concept dimensions. Task
specification/direction, perception, world modeling, reason
ing, and activity planning all are provided by a human oper
ator. Execution is simply the playback of a sequence of moves
previously stored on disk.

Piano World

In the piano world project, a teach pendant is used to train
the robot to "play" a tune on a toy piano. A complete training
videotape exists for this traditional style of robotics. 3

Location in the concept space

Piano world falls into the same traditional robotics region as
alphabet and coffee worlds. Extensive human involvement is
required and the robot is used as a straightforward playback
device.

Egg Harvesting World

Egg harvesting world is a prototype project for the real
world application of harvesting vaccines that are grown in
eggs. A digital vision system, robot, and conveyor belt oper
ate together. The egg sack (simulated by a cardboard cutout)
travels down the conveyor and is detected by the vision sys
tem. A robot then positions its vacuum gripper over the egg
sack and transfers it to a petri dish for the next processing
step.

Location in the concept space

Egg harvesting world is the first project to take us out of
the region of traditional industrial robotics. Task specifica
tion/direction is not provided directly by a human operator
who guides the robot using a teach pendant or keyboard. No
advance guiding is done. We plot this project further to the

right on the task specification axis than the first three projects
because task specification is provided by program code in
Pascal on the robot host and by code in the vision system
programming language.4 We also plot the project further right
on the perception axis since blob (i.e., the egg) acquisition
and location are computed by the vision system. In the first
three examples, knowledge of the world resided in a human
and the necessary world modeling was performed by the
human. In the egg harvesting project, the world model
consisting of several distinct physical coordinate systems-is
housed in the computer. The robot's actions depend on the
on-board model of its environment. Reasoning is still pro
vided by a human operator and the result is reflected in the
design of the robot's Pascal control program. In effect, the
final product of the human reasoning process is "hardwired"
into Pascal program code. Although "hardwired" into code,
the use of a high-level programming language still provides
considerably more robotic flexibility than what is provided
by the simpler teach pendant guiding. In contrast with the
earlier examples, activity planning is no longer done by an
operator. Rather, the robot determines the necessary tra
jectory plans using the world model and the Pascal control
program. Further, the robot synchronizes its own operation
with the conveyor during execution.

Egg harvesting world illustrates reassignment of many of
the problem solving functions from a human operator to a
robot. Outward movement is observed on all axes, and the
robot is more autonomous than in the previous examples.

Blocks World

In the blocks world experiment, a robot is directed by
English sentences. Sentences such as "Move the yellow block
to the green workspace," and "Pick up the yellow block and
place it on the red area," are provided as input. The robot
then performs the task based on the natural language input.
In effect, the robot is "programmed" in natural language.

Location in the concept space

Because a number of techniques from artificial intelligence
are used, the blocks world project is plotted squarely in
the region of intelligent (i.e., non-traditional) robotics. It is
plotted to the right end of the task specification/directions
axis. Tasks are not explicitly and rigidly specified by guiding
or using a teach pendant; or even less rigidly, but still ex
plicitly, by using a formal computer programming language.
Rather, task specification/direction is given implicitly using a
very high-level language-English-in the same manner as
humans specify tasks.

In blocks world, the relatively simple domain and the em
phasis on processing natural language do not require much
perception (dead reckoning is sufficient). However, by re
quiring natural language interpretation, the project is plotted
farther right than egg harvesting on the world modeling, rea
soning and activity planning, and execution axes. The blocks
world robot must world model both physical level models
(coordinate systems) and semantic level models (for natural

24 National Computer Conference, 1987

language processing). The robot is also required to perform
some elementary linguistic reasoning as it extracts meaning
from a sentence. Activity planning likewise becomes more
sophisticated since analysis of natural language is required to
formulate a plan of action. Execution complexity is at about
the same level as in egg harvesting world.

Overall in blocks world, we observe robot behavior which
is yet more autonomous than that found in the previous
worlds.

Workbench World

In the workbench world experiment, a robot is again di
rected by English sentences, but the language and the domain
are more complicated than in blocks world. The world is a
child's toy workbench. Tasks are more complex than in pre
vious projects. The robot must select a proper tool (e.g.,
hammer, screwdriver) and mate it to a proper fastener (e.g.,
nail, screw). The robot understands and carries out instruc
tions of such sentences as "Drive a nail into the top hole in the
first column," and "Screw a screw into the first hole on the left
side. "

The language understood by the robot is more descriptive
and complex. For example, multiple prepositional phrases are
used and screw is used as both a noun and a verb.

Location in the concept space

As was the case for blocks world, the utilization of many
techniques from artificial intelligence places workbench
squarely in the region of advanced, intelligent robotics, yet
farther right on the axes. Tasks are not specified explicitly
using guiding or even at a higher level using a robot pro
gramming language. Rather, tasks are specified implicitly
using natural language even more complex than that used in
blocks world. Placement along the perception axis is the same
as in blocks world (i.e., dead reckoning). However, because
of the broader scope of the natural language accepted and the
richer domain (i.e., tool and fastener choices), the project is
plotted farther right along the world modeling, reasoning and
activity planning, and execution axes.

The methods used in the two natural language robotics
experiments are interesting in their own right, but are beyond
the scope of this paper. More extensive treatment of blocks
world and workbench world is available on videotape5 and in
a paper.6

Bagger World

Bagger world is the most complicated project. It illustrates
integration of a digital vision system, a robot, a voice syn
thesizer, and an expert system, The coordinating computer
is a Burroughs XE550 running under Centix (a UNIX V
variant). Six computers and six programming languages are
required. About 100 modules make up the bagger system.

The problem posed in this experiment and discussed by
Winston,] is to illustrate a forward-chaining expert system; in
this case, a system which automates the activities of a person

who bags supermarket groceries. The expert system models
the decision-making process of the expert human bagger. A
human bagger considers what groceries must be bagged and
determines the best way to bag those groceries based on ex
perience and reason. For example, the human bagger knows
that a bottle of Coke will crush a bag of potato chips and
therefore would not place the bottle on top of the bag based
on that knowledge. The human also reasons that bags cost
money and therefore bag space should be used efficiently.
Thus, a human bagger uses such knowledge and experience
to determine the best way to bag a set of groceries.

Input to the automated system is provided by a digital vision
system which views simulated grocery items (colored blocks
of wood with various geometric shapes). Scene analysis is
performed by the vision system and the result is passed to the
expert system. The expert system "reasons" to determine a
bagging solution, and directs the robot to carry out the solu
tion; that is, to place the grocery items into the proper large
or small bag. The bags are colored cardboard cutouts in the
robot's workspace. As the robot carries out its actions, a voice
synthesizer verbalizes what the robot is doing. Also, the robot
can be interrupted during execution and can explain its line of
reasoning. That is, the robot can explain why it is performing
certain selected activities.

Location in the concept space

Bagger's extensive use of artificial intelligence techniques
also places it in the region of advanced, intelligent robotics
but in a region different than blocks world and workbench
world. '

Bagger world tasks are not specified directly by guiding;
they are obtained by reasoning about a perceived visual scene.
The use of digital vision for individual object identification
and scene analysis move the project far to the right on the
perception axis. The use of several types of models, both
physical and conceptual, move the project farther to the
right along the world model axis. A separate inferencing
subsystem, the expert system, provides sophisticated de
cision making and moves bagger world farther right along
the reasoning axis. Activity planning is the result of acti
vating the separate inferencing subsystem which handles
various grocery item choices and bag selections. Execution is
similar to the other projects with the exception that the plan
is verbalized by the voice synthesizer which is synchronized
with the actions being carried out.

Discussion of how bagger is constructed is beyond the scope
of this paper but additional technical information may be
found in a paper by Brands, Peters, Shafer, and Snyder. 8 The
expert system tool used is commercially available RULE
MASTER,9 described by Michie, Muggleton, Riese, and
Zubrick. 10 The "voice synthesizer is from 1\1icrovox, Incor
porated. l1

WORK UNDERWAY

Several additional robotics experiments have been compieted
recently or are now underway that extend the work described

A Concept Space for Experiments in Artificial Intelligence 25

in this paper and which can be plotted even farther right along
one or more dimensions in the concept space.

TODUS is a task-oriented discourse-understanding system
which has just been completed. 12 TODUS is a natural lan
guage front end to a multi-agent robot domain that uses
an augmented transition network of utterance grammars to
process task-oriented English text. Well formed sentences,
sentence fragments, and pronominal and elliptical references
are handled. This project extends to the right along the task
specification/directions and world modeling axes.

MAPS is a multi-agent planning system under construction
which accepts directions from TODUS and must plan activ
ities for up to four robots, Robot cooperation is required to
perform some of the tasks. MAPS is plotted to the right along
the world modeling and the activity planning and execution
axes.

KNOVIS is a knowledge-based vision system under con
struction which uses a knowledge-based approach to improve
the robustness of digital vision systems for scene analysis in
an industrial setting. This project extends to the right along
the perception/sensing axis.

HITAS is a hierarchical target-assessment system under
construction which will incorporate dynamic recovery plan
ning (changing a plan due to a change in the world and formu
lating a new plan) and elementary qualitative geometric rea
soning about the domain. This project will extend to the right
along the activity planning and execution, world modeling,
and reasoning axes.

Each of these experiments uses robotics to investigate is
sues of broad artificial intelligence interest: natural language
interfaces, multiple cooperating intelligent agents, vision, dy
namic planning, and qualitative reasoning.

CONCLUSION

The robotics projects presented in this paper illustrate the
utility of the notion of a concept space for experiments in
artificial intelligence. The concept space provides a unifying
framework for a variety of robotics activities and permits
systematic experimentation and development. Experiments
have been conducted and are now underway which are con
veniently expressed and discussed using the concept-space
taxonomy.

The limited robot domains chosen have resulted in steady
progress in robotics as well, by permitting the orderly inves
tigation of broader artificial intelligence topics not usually

associated with robotics, such as natural language interfaces
and embedded expert systems.

The mutually beneficial relationship between robotics
and more broadly based artificial intelligence concerns is par
ticularly clear when placed in the context of robotics experi
ments in the concept space.

ACKNOWLEDGEMENTS

Thanks are due to all of the East Stroudsburg University
students who worked on the projects during the past several
years as part of their class work or internship experience; John
Peters, Ray Shafer, Sheldon Snyder, Kathy Brands and Kevin
Lysek merit special recognition for exemplary service.

Portions of this research were supported by a grant from the
Ben Franklin Partnership, Commonwealth of Pennsylvania.

REFERENCES

1. Hopcroft, J. "The Impact of Robotics on Computer Science." Communi
cations of the ACM, 29 (1986), 6.

2. Amon, R. A Concept Space for Experiments in Artificial Intelligence
(Videotape). East Stroudsburg, Pennsylvania: East Stroudsburg University
Communication Center, 1986.

3. Becker, R. and S. Shackleford. Training the Rhino (Videotape). East
Stroudsburg, Pennsylvania: East Stroudsburg University Communication
Center, 1985.

4. Control Automation Inc. Intervision V-1000, Digital Vision System.
Princeton, New Jersey, 1985.

5. Arnori, R. Natural Language Robotics-II (Videotape). East Stroudsburg
Pennsylvania: East Stroudsburg University CommUnication Center, 1984.

6. Arnori, R. "NLITEMPLATE: An Approach and Tool for Building Prac
tical Natural Language Interfaces." Proceedings of the Annual Conference
of the Association for Computing Machinery-ACM85, held in Denver,
Colorado, October 1985.

7. Winston, P. Artificial Intelligence (2nd ed.). Reading, Massachusetts:
Addison-Wesley, 1984.

8. Brands, K., J. Peters, R. Shafer, and S. Snyder. East Stroudsburg Univer
sity Bagger System, Design Documents, Computer Science Dept., East
Stroudsburg University, Pennsylvania, 1986.

9. RULEMASTER, Expert System Tool. Available from Radian Corp., 8501
Mo-Pac Boulevard, Austin, Texas 78766.

10. Michie, D., S. Muggleton, C. Riese, and S. Zubrick. "RULEMASTER: A
Second Generation Knowledge Engineering Facility." Proceedings of the
First Conference on Artificial Intelligence Applications, (IEEE/AAAI) ,
held in Denver, Colorado, December 1984.

11. Micrornint, Inc. Microvox. Text to Speech Synthesizer. Cedarhurst, New
York.

12. Percey, D. and C. Taylor. TODUS: A Knowledge Based Approach to a
Task Oriented Discourse Understanding System. M.Sc. Thesis, Computer
Science Department, East Stroudsburg University, Pennsylvania, 1986.

Microcomputer PROLOG implementations:
The state-of-the-art

by HAL BERGHEL and RICHARD RANKIN
University of Arkansas
Fayetteville, Arkansas

ABSTRACT

In this paper we discuss several characteristics of microcomputer PROLOG
implementations including an overview of current products, a comparison of the
range of built-in predicates, a description of the environment, and benchmark
results.

27

Microcomputer PROLOG Implementations: The State-of-the-Art 29

INTRODUCTION

Although logic programming has a relatively short history in
computer science, its impact has been significant. After the
announcement that the Japanese Fifth Generation Project
would standardize Japan's 1990s machines around the logic
programming approach ,1 industry leaders and researchers
began to devote considerable attention to this area. What
follows is a general description of the various implementations
of the logic programming language PROLOG that are avail
able for microcomputers. These implementations are of con
siderable importance, for they allow virtually every interested
person to enter the world of logic programming with minimal
expense. It is our intention to acquaint interested readers
with the current state-of-the-art.

PROLOG, as a logic programming language, developed
from the early work of Kowalski2

, 3, 4 and Colmerauer5
,6 in

the 1970s. As this work circulated, prototypes of the language
appeared in France, England, Hungary, and Canada, and
each was injected with some of its own design philosophy. As
a result, there are at least three different models, each relying
upon its own distinctive syntax, and each appealing to a par
ticular subset of the researcl>Jdevelopment community. To
standardize our treatment of a non-standardized language,
we employ the Edinburgh nomenclature 7 in the following
discussion.

One of the most significant aspects of PROLOG is that, at
least in the ideal, it supports a clear distinction between the
logic of the program and the mechanism of control. 8 This
means that the programming is oriented toward the logic of
the problem, leaving the control mechanism to the system.
The important implication of this strategy is that the range
of built-in predicates affects the convenience and speed of
software development. However, since the various software
houses have different design objectives, the predicates are not
uniformly distributed over the entire range. Thus, some prod
ucts may be better suited for certain applications than others.
We provide a detailed classification of these predicates to
gether with an analysis by product.

Of course, since the control mechanism is largely left to
the implementation, differing strategies will have different
effects upon performance. We also provide a series of bench
mark results which shed light on the relative performance
characteristics.

The products reviewed here are, alphabetically, Arity
PROLOG, version 4.0 (Arity Corporation); micro-PROLOG
professional (Logic Programming Associates); MPROLOG,
version 2.1 (Logicware); PROLOG 2, version 1.2 (Expert
Systems International); PROLOG-86 + , version 1.0 (Solu
tion Systems); Turbo PROLOG, version 1.0 (Borland Inter
national) and VML PROLOG, version 1.9m (Automata

Design Associates). We believe these are the most current
versions. Only one of the MS-DOS implementations that
we know of, PROLOG-V, was not included (at the request
of the manufacturer). One product from Applied Logic
Systems was announced but not released as of this writing.
This paper updates and integrates the results presented in
earlier publications and reports. 9, 10,11

GENERAL DESCRIPTION OF THE
IMPLEMENTATIONS

A general summary of the implementations appears in Table
1. As the table shows, two of the products provide compilers,
and all but one provide interpreters. The lack of an interpreter
for Turbo PROLOG is intended; the designers have devel
oped a compiler that behaves as if it were incremental (!),
therefore they believe the interpreter is not needed.

Three of the products support virtual memory (up to one
gigabyte in some cases), and all but one provide shell support

TABLE I-Overview

Product:
Version:

Interpreter
Compi ler
Virtual Memory
Shell Support
DOS Services
Time/Date
Interrupt Facilities
Directory Facilities
Keyboard Facilities
Internal Clock Timing

Editor
Interactive
Multiple Windowing
Screen Control

Modularization
Module Privacy
Export/Import
Multiple Worlds
Multiple Theories

Database Indexing
Clause Indexing
Hashing
B-Trees

Optimization

P2 AR LPA MP P86 VML TUR
1.2 4.0 PRO 2.1 1.0 1.9 1.0

+
+
+
+

+

+
+
+
+
+
+

+

+

+
+

+
+
+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+
+
+

+

+

+

+
+

+

+

+

+
+
+

+

+

+

+

+

+

+
+
+
+

+
+

+

+

+
+
+
+

+
+
+
+

Cyclic Structure Checking
Garbage Collection Control +
TRO + +

+

+
+

+
Stack Control

System Information
LIPS count
Heap Used/Remaining
CPU Time

DCG
Structured Programming

b-i preds (approx.)

+

+/+ +/- -/+ -/- -/+ -/+ -/+

+ +
+ +

+ +

255 170 90 150 155 210 90

30 National Computer Conference, 1987

which allows users to suspend PROLOG and execute inde
pendent object modules without altering the state of the
interpreter (see the Built-In Predicates section). Among the
DOS services supported are those concerning the time/date
information in the control information area, the BIOS/DOS
interrupt facilities, directory-related function calls (e.g., DIR,
MKDIR, CHDIR, RENAME, and COPY), and keyboard
facilities for retrieving scan codes and information from the
keyboard status byte. In addition, some products allow the
use of a programmable timer.

By interactive editor, we refer to an automatic re-invocation
of the editor upon determination of compiler/run-time error.
Multiple windowing refers to the ability to define different
screen functions for the available window partitions. Screen
control allows the user to configure the system for the desired
video attributes beyond the DOS specification for video
mode.

Six products support modularization of procedures. Mod
ule privacy is a technique whereby predicates are hidden from
users, frequently to prevent name conflicts between modules.
Worlds and theories are similar entities that are used to ac
complish roughly the same thing. Technically, a world is a
region within a database. One normally would use individual
worlds to avoid backtracking through the larger database of
which the world is a part. A theory is a database region which
may involve the physical separation of the clauses into sepa
rate files.

Database indexing refers to the way in which the clauses are
indexed and accessed. Clause indexing involves addressing a
clause by its internal reference number. Hashing and B-trees
increase the efficiency of searching. All of these features are
extremely important for large clause sets.

The sub-category entitled optimization is a grab-bag of fea
tures which in one way or another relate to the efficiency of
the implementation. A cyclic structure is created when a vari
able is unified with a term which contains that variable. The
result is the generation of an infinite term as the unification
repeatedly instantiates the term's variable with itself. It is
not at all clear that the procedural interpretation of this phe
nomenon is consistent with the semantics of first order logic.
Occur checks anticipate this behavior, but do so at consid
erable cost in efficiency. As a result, occur checking is not
supported (as far as we know). A compromise is cyclic struc
ture checking. In this case, the variable responsible for the
infinite loop is returned in lieu of the infinite term. This sur
rogate does not appreciably decrease performance. Garbage
collection control and stack control allow a programmer
greater latitude in speed/space trade-offs. TRO stands for tail
recursion optimization.

The system information features are useful for bench
marking and program development. DCG refers to the mech
anism for translating definite clause grammars into PROLOG
clauses. Finally, a ' + ' for structured programming indicates
that such control structures as "if then ... else ... ," "case,"
and so forth, are available.

We note that the number of built-in predicates specifically
excludes a count of logical and arithmetic operators. Further,
the numeric tally of the built-in predicates should be inter
preted as an estimate of the number of substantially different

predicates, rather than the total number. For example, since
the distinction between" getO(term)" and" getO(handle , term)"
is one of input type rather than functionality, both would be
subsumed under one predicate. However, the capabilities of
redirecting the standard input would be noted in the feature
tables. Other cases of essentially duplicate functionality in
clude predicates related to I/O, clause handling, formatting,
string manipulation, and so forth. We believe that this "selec
tive tally" approach provides a more reasonable first glance
estimate of overall functionality than those which overlook
the fact that some predicates are extremely narrow in scope,
and that predicates are not distributed uniformly over the
range covered in our classification.

One general consideration does not appear in the table.
This concerns the issue of whether one of the products is a
legitimate PROLOG. We do not enter into the controversy
here beyond mentioning that Turbo PROLOG is a strongly
typed language that does not support general unification.
Further, it lacks the metalogical facilities normally associated
with PROLOG environments. For further details on this is
sue, see Weeks and Berghel10 and Pereira. 12 Additional dis
cussion of Turbo PROLOG can be found in Rubin13

,14 and
Shammas.15

BUILT-IN PREDICATES

The classification of predicates used here is an emendation of
the taxonomy employed in Weeks and Berghel. 9 The scheme
is somewhat arbitrary and is simply the approach to the
classification we find convenient. We call attention to the fact
that the categorization is intended only for ease of use. For
example, creating a separate category for strings does not
imply that strings are separate data structures. No predicate
was counted unless it appeared in the documentation for
the product. Since the tables are self-explanatory, we make
only very general comments regarding anomalies within the
classification.

LPA's micro-PROLOG is distinctively different in terms of
built-in predicates. In this case, there are multiple program
environments, each of which has its own set of predicates.
The environments are SIMPLE, micro-PROLOG, and
DECsystem-lO. Both SIMPLE and micro-PROLOG use
syntax based upon the Marseilles implementation, where
as DECsystem-10 is essentially the Edinburgh syntax. Fur
ther, as a simplified interactive version of micro-PROLOG,
SIMPLE has its own character: it supports infix notation. This
makes the classification difficult because the range of built-in
predicates depends upon the environment.

Although SIMPLE and micro-PROLOG are compatible
to the extent that any module written in SIMPLE can be
included in micro-PROLOG, neither is completely compat
ible with the DECsystem-10 environment. To illustrate, one
can access micro-PROLOG clauses from the DECsystem-lO
mode, but not the converse. As a result, such features as
DCG's, which are supported in the DECsystem-lO environ
ment, are not available under micro-PROLOG. Thus, the
question becomes one of which environment should be com
pared. Since the DECsystem-10 predicates are only a subset

Microcomputer PROLOG Implementations: The State-of-the-Art 31

TABLE II-I/O predicates

Product: P2 AR LPA MP P86 VML TUR

PROGRAM/CLAUSE I/O
save ws by predicate(s)
delete ws by file
replace ws w/file
update file from ws
load/save binary image
load/save state

CHARACTER I/O

+

+

+

+

+

+

+

get char from stream/file
get pr char (stream)

+/+ +/+ -/- +/+ +/+ +/+ +/+
+ + + +

get w/o echo (stream) + + +

skip to char (stream/file)
skip w/o echo (stream)

+1+ +1+ -1- -1- +/+ +/+ -/-

+ +
put char to stream/file
newline (stream/file)

+/+ +/+ -/- +/+ +/+ +/+ +/+

+/+ +/+ -/- +/+ +/+ +/+ +/+

newpage (stream)
write spaces (stream/file) +/+

STRING liD
get string from stream/file +/+

put string to stream +

TERM liD
read term from stream/file +/+

read token from str/file +/+

read number from str/file +/+
write to stream/file +/+

wri~e quoted to str/file +/+
write ops prefix str/file +/+

write formatted +
declare operator +
remove operator +

get info about operator +

define a prompt for I/O +
direct file access position +
fixed length file access
report on output environment +

+
+/+ -/- +/+ +/+

+/+ -/- +/+ +/-

+ + +

+/+ +/+ +/+ +/+

-/- +/+ +/+ +/+

-/- -/- -/- -/-
+/+ +/+ +/+ +/+
+/+ +/+ +/+ +/+

+/+ -/- -/- -/-

+ + +
+ +

+ +
+ +

+ +
+
+ +

+

+
+

+

+
+/+

+/+

+

+/+

+/+

+/+

+/+
+1+
+/+
+
+
+

+

+/+

+/+

+

+/+
-/
+1+
+/+
+1+
-1-
+

+

of ClocksiniMellish, we evaluated micro-PROLOG. We em
phasize that without complete compatibility, representing the
product by an "inclusive-or" tally of each of the three environ
ments would be misleading.

In a similar vein, M PROLOG has a distinctive way of
supporting predicates. Some predicates, such as those for
program/clause I/O and debugging and tracing, are supported
only within the professional editor, PDSS. As a result, the
tally of predicates refers only to those predicates in the
language, although the features supported include those sup
ported in PDSS as well. We believe this is the most reason
able way to describe M PROLOG.

With regard to program/clause I/O (see Table 2), the kernel
is the pair of predicates which loads and stores a file (vari
ations of consult and reconsult). However, the enhancements
mentioned in Table 2 can save an enormous amount of work.
One must remember that only consult and reconsult were
present in the original PROLOG specification, so the vari
ation between products is quite wide. For example, some
products offer load options that are not cumulative and others
use buffered I/O which is user-transparent.

Since the control predicates for success and failure are
part of the language standard (such that it is), they are not
included in the comparison (see Table 3). We note, however,
that Turbo lacks the success predicate. Further, it is now quite
common for products to include limited cuts (e.g., "snips"),
which are l!~eful but not part of the original language. In

TABLE III-Control predicates

Product:

STREAM/FILE CONTROL
create a file
open a stream/file
close a stream/file
temporary redir stdin
temporary redir stdout
turn on/off error calls

BACKTRACKING
cut
repeat
logical set
explicit procedure call
special termination
number of solutions

P2 AR LPA MP P86 VML TUR

+ + + + + +

+/+ +/+ +/+ +1+ +1+ +/+ +/+
+/+ +/+ +/+ +/+ +/+ +/+ +/+

+ + + + + + +

+

+

+

+
+

+ + + + +
+

+

+
+
+

+

+

+
+

+

+
+
+
+

+

+

+
+

+
+

+
+

+

+

+

Table 5, full relational set refers to the set of operators
{ < , > ,< = , = > } or their notational equivalents.

Structure manipulation (see Table 7) is important if one is
to take full advantage of symbolic programming. Particularly
important are such predicates as the ability to unify on arbi
trary tree structures, decompose, compose, and convert be
tween structures.

We also wish to note that, in contrast to earlier re
ports ,9, 10, 11 the present comparison indicates that a great deal
of attention is being paid to extensions to the language. We
believe that this reflects a desire on the part of the developers
to establish PROLOG as a complete language environment
rather than simply an experimental tool. To illustrate, the
number of built-in predicates in the products under study
that are not directly related to PROLOG typically constitute
between 25 percent to 35 percent of the total.

PERFORMANCE CHARACTERISTICS

Traditionally, performance assessments fall into two cate
gories. In some cases, the analysis is based upon an abstract
model of the environment. Simulation and stochastic model
ing illustrate this sort of evaluation. In other cases, the actual
performance of the system in use is measured. These are
usually called "benchmarks" or "workload models." In either
case, one seeks to extract from the analysis some estimate of

TABLE IV-Term predicates

Product:

CLASSIFICATION/CONVERSION
is a variable
is a non variable
is an atom
is a number
is either atom or number
is a list
is quoted
is name

COMPARISON
matching plus unification
does not match
equivalent
not equivalent
relational inequalities

P2 AR LPA MP P86 VML TUR

+
+
+
+
+
+

+

+
+
+

+
+
+

+

+

+
+
+

+

+

+
+

+

+

+
+

+
+

+

+

+
+
+

+

+
+
+
+

+

+
+
+
+
+

+

+
+
+

+

+
+
+
+
+

+

+
+
+

+

32 National Computer Conference, 1987

TABLE V-Arithmetic evaluation predicates and operators

Product: P2 AR LPA MP P86 VML TUR

PREDICATES
evaluate and unify
arithmetically equal
not arithmetically equal
full relational set

OPERATORS
arithmetic operators
X**n
int(f or n)
float(f or n)
log2(X)
loglO(X)
lognat(X)
abs(X}
round(X,N}
sqrt(X}
sinO}
cos(X}
tan(X}
asin(X}
acos(X)
atan(.X)
floor(X)
greatest integer
atoi«ascii>,(int»
stof«ascii>,(flt»
bitwise AND
logical AND
bitwise OR
logical OR
bitwise EXCL-OR
logical EXCL-OR
bi twise NEGATION
arithmetic NEGATION
n-bit shift(left)
n-bit shift(right)
random number
random seed
counter

+
+
+

+
+
+

+

+
+

+
+
+

+

+

+
+
+

+

+
+

+

+

+
+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+
+

+
+

+

+

+

+

+
+
+

+

+

+
+
+

+
+

TABLE VI-Database control predicates

Product:

CLAUSE CONTROL
list all clauses

P2

+
list specified clauses +

assemble/disassemble clause +

add a clause to the database +
remove:
first clause for predicate +
all clauses for predicate +

report presence of predicate +

TERM CONTROL
record term
erase term
report term
replace term
manipulate reference #

AR LPA

+ +

+
+

+
+

+
+
+
+
+

+
+

+

MP P86 VML

+
+
+
+

+
+

+
+
+
+

+

+
+
+

+
+

+

+

+
+

+

+

+

+
+
+

TUR

+

+

system performance in terms of responsiveness, throughput,
and cost. 16

Ideally, the programs used in benchmarking are known a
priori to be relevant to the intended application of the com
puter resource. From our experience, this ideal is seldom
realized. Instead, general-purpose and "home-grown" pro
grams which anticipate patterns of usage are used. Of course,
if the anticipated patterns are unrealized, the benchmark re-

TABLE VII-Structure manipulation predicates

Product: P2 AR LPA MP P86 VML TUR

structure unification pred
get the Nth argument
convert list/structure
convert list/atom
convert list/string
length of a list
sort list
append

+
+

+
+
+
+
+

+
+
+
+

+
+

TABLE VIII-Set predicates

+
+
+

+
+
+

+
+
+
+
+
+

+
+

+

+

+

Product: P2 AR LPA MP P86 VML

set unification
findail/bagof
membership
intersection
union

+
+

+
+

+

TABLE IX-String predicates

+ +
+ +

+

Product: P2 AR LPA MP P86 VML

search for substring
get substring
get position of substring
get length of substring
get length of string
concatenate strings

+
+

+
+

+

+

+
+
+
+

+
+

+

TABLE X-Debugging and trace predicates

+

TUR

+

TUR

+

Product: P2 AR LPA MP P86 VML TUR

trace program execution
trace single goal
trace multiple goals
report goals to be traced
goal ancestry

+
+
+
+
+

+
+
+
+

+
+
+
+

+
+

+
+

+
+
+
+
+

+
+

+
+

+

TABLE XI-Shell support predicates

Product:

EXEC
report file existence
rename a file
erase a file
link files

P2 AR LPA MP P86 VML TUR

+
+
+

+

+
+
+

+

+
+

+ +

+
+

+

+

+
+
+
+

suits are likely to be unreliable. We mention this because we
believe benchmarks are very coarse measurements; and,
consequently, we encourage readers to take our results with
a large grain of salt.

Benchmarks are not without value as long as their results
are not misused. Misuse can result from misrepresenting the
relevance of the test or by misinterpreting the resuits.17 We
propose a modest objective: we try to gain some general un-

Microcomputer PROLOG Implementations: The State-of-the-Art 33

derstanding of the performance of the PROLOG products by
running rather typical sorts of procedures, in fact, those pro
cedures we use most often. As a result, our findings are biased
toward our own inter~sts in computationallinguistics18

, 19 and
approximate string matching. 2o

,21 However, because the rou
tines we used are mainstream, our results may be of interest
to others.

In the interest of completeness, we refer the reader to the
work of Wilk at Edinburgh. 22,23 Wilk's approach is completely
different. His intention is to develop standard benchmark
techniques for PROLOG environments, carefully selecting
benchmarks so that the entire breadth of PROLOG func
tionality is measured. This is an ambitious project and worthy
of continued attention, although we suspect no general agree
ment will be reached regarding the confidence level to assign
to his tests.

We also call your attention to other PROLOG benchmark
results appearing in the trade press, 15, 24 which occasionally
are at odds with our own.

BENCHMARK RESULTS

We begin the results discussion with an analysis of recursion
limits. Because PROLOG is an ideal environment for recur
sion, it is natural to determine the cost of implementation. In
microcomputer environments, memory consumption usually
is more critical than processing speed. The part of memory
most affected is the stack. Unless some optimization takes
place, recursion may fill the stack with unnecessary latent
calls. To reduce this problem, software developers implement
such functions as structure sharing, garbage collection, and
last call optimization. Because users typically have no way of
knowing whether and to what extent optimization is present,
empirical tests are useful.

We performed two separate recursion tests on each prod
uct. The tests were adapted from Covington. 25 The number
of full recursions before failure (stack space exceeded) is
presented in Figure 1. When possible, we defined the largest
stack space possible in the environment file. Otherwise, de
fault values were used.

Tail recursion (see Figure 2) should be more efficient be
cause the recursion is invoked at the end of a goal set. For

RECURSIONS

8000

7000

6000

5000

4000

3000

2000

1000

2573

1806

P86 VML API P21

7780
7351

2713

MP LPA APC P2C TUR

Figure I-Recursions before failure (normal recursions)

RECURSIONS

70000

60000

50000

40000

30000

20000

10000
1363 1499

o --

34745

75000 75000

18094

I

36852

2525
a:;:;;::R

75000

PBS VML API P21 MP LPA APe P2C TUR

Figure 2-Recursions before failure (tail recursion)

interpreted PROLOG 2, micro-PROLOG, and Turbo, the
tests were terminated at 75,000 recursions. Since these prod
ucts claim optimized tail recursion, additional testing seemed
unnecessary. In the case of Arity PROLOG, the failure was
not a result of non-optimization; it was a result of the way
that the counter represents large integers. Because there is no
way of determining the upper bound on recursions without a
counter, Figure 2 provides the actual results without adjust
ment.

The next benchmarks deal with string operations, and are,
for the most part, standard procedures defined in Clocksin
and Mellish.7 The values are presented in terms of run times.
The results of all tests appear in Figures 3 and 4. Naive re
verse is a variation on the de facto standard benchmark for
PROLOG. Despite its frequent use, it has shortcomings: it
can overstate the efficiency of the implementation.

The last test (see Figure 5) is a general benchmark which is
supposed to have its origins in ICOT. The code fragment is as
follows:

tak(X,Y,Z,Z):-X = <Y,L
tak(X, Y ,Z,R):

takl(X,Y,Z,Rl),!,
takl(Y,Z,X,R2),!,

SECONDS
500

400

300

200

100

PB6

412

249

VUL API P21

I
Append

Reverse

Delete

Substitute

Unwind

UP

Figure 3--String functions (interpreters)

LPA

34 National Computer Conference, 1987

SECONDS

7

6

5

4

3

2

1

0

APC

7

4

2

P2C

~~~ Append 

Reverse 

Delete 

Substitute 

Unwind 

na 

TUR 

Figure 4-String functions (compilers) 

SECONDS 

300 

260 

250 

200 

150 

100 

50 
44 36 

0 na 4 1 

P86 VML API P21 MP LPA APe P2C TUR 

Figure 5-Agglomerative benchmark 

takl(Z,X,Y,R3),!, 
tak(RI ,R2,R3 ,R),! . 

takl(X,Y,Z,R):-XI is X-I, 
tak(Xl, Y ,Z,R). 

?-tak(12,8.4,N). 

The test was provided by Robert Morein of Automata 
Design Associates. It is an agglomerative measure which at
tempts to assess the overall strengths of the products. We note 
that PROLOG 86 + would not run the program, presumably 
due to inefficienl memory reclamation. 

For additional details on these and other benchmarks, in-

cluding a listing of the clause sets, see Berghel, Stubbendieck, 
Traudt. 11 

CONCLUSION 

As increasing attention is paid to PROLOG, growing num
bers of researchers and system developers wish to avail them
selves of PROLOG implementations. For many, micro
computer-based products offer the most cost-effective way to 
exploit logic programming. This paper is intended as a general 
overview of these products so that interested parties may se
lect the product most consistent with their needs. 



Microcomputer PROLOG Implementations: The State-of-the-Art 35 

ACKNOWLEDGEMENTS 

The classification scheme used in this paper is a result of 
collaboration with J. Weeks. The benchmark results are taken 
from earlier work with G. Stubbendieck and E. Traudt. We 
wish to thank L. Baxter, P. Gabel, J. Grayson, and R. Morein 
for many useful comments and criticisms. 

REFERENCES 

1. Mota-Oka, T. (ed.) Fifth Generation Computer Systems (Proceedings of 
the International Conference on Fifth Generation Computer Systems). 
Amsterdam: North Hollan.d, 1982. 

2. Kowalski, R. "Search Strategies for Theorem Proving." In B. Meltzer and 
D. Michie (eds.) Machine Intelligence (Vol. 5). New York: Edinburgh 
University Press, 1969. 

3. Kowalski, R. "And-Or Graphs, Theorem Proving Graphs and Bi
directional Search." In B. Meltzer and D. Michie (eds.) Machine Intel
ligence (Vol. 7). New York: Edinburgh University Press, 1972. 

4. Kowalski, R. "Predicate Logic as a Programming Language." Proceedings 
of IFIP 74, 1974, pp. 569-574. 

5. Colmerauer, A., H. Kanoui, R. Pasero, and P. Roussel. "Un Systeme de 
Communication Homme-Machine en Fram;ais." Report, Group Intelli
gence Artificielle, University d'Aix Marseilles, 1973. 

6. Colmerauer, A. "Les Systemes-Q ou un Formalisme pour Analyzer et 
Synthesiser des Phrases sur Ordinateur." Report #43, Department 
d'Informatique, Universite de Montreal, 1973. 

7. Clocksin, W. and C. Mellish. Programming in PROLOG. New York: 
Springer-Verlag, 1981. 

8. Kowalski, R. "Algorithm = Logic + Control." Communications of the 
ACM, 22 (1979), 7, pp. 424-436. 

9. Weeks, J. and H. Berghel. "A Comparative Feature-Analysis of Micro
computer PROLOG Implementations." SIGPLAN Notices, 21 (1986),2, 
pp. 46-61. 

10. Weeks, J. and H. Berghel. "Turbo + PROLOG." Bulletin of the IEEE 

Computer Society Technical Committee on Personal Computing (October 
1986), pp. 1-7. 

11. Berghel, H., G. Stubbendieck, and E. Traudt. "Performance Character
istics of Microcomputer PROLOG Implementations." Proceedings of the 
1986 ACM SigsmalliPC Symposium on Small Systems, 1986, pp. 64-71. 

12. Pereira, F., Bix Communication: ask. experts, message #17 (Electronic 
Mail). McGraw Hill/Byte Information Exchange, June 8, 1986. 

13. Rubin, D. "Turbo PROLOG: A PROLOG Compiler for the PC Program
mer." AI Expert, Premier Issue (1986), pp. 87-98. 

14. Rubin, D. "Inside Turbo PROLOG." Computer Language (July 1986), pp. 
23-28. 

15. Shammas, N. "Turbo Prolog." Byte (September 1986), pp. 293-295. 
16. Muntz, R. "Performance Measure and Evaluation." In A. Ralston and E. 

Reilly, Jr., Encyclopedia of Computer Science and Engineering. New York: 
van Nostrand Reinhold, 1983. 

17. Heming, P. and J. Wallace. "How Not to Lie with Statistics: the Correct 
Way to Summarize Benchmark Results." Communications of the ACM, 29 
(1986), 3, pp. 218-221. 

18. Berghel, H. and J. Weeks. "On Implementing Elementary Movement 
Transformations with Definite Gause Grammars." Proceedings of the 
Fifth Phoenix Conference on Computers and Communications, 1986, pp. 
366-370. 

19. Berghel, H. "Extending the Capabilities of Word Processing Software 
through Hom Gause Lexical Databases." AFIPS Proceedings of the 
National Computer Conference (Vol. 55) 1986, pp. 251-257. 

20. Berghel, H. "Crossword Compilation with Hom Gauses." The Computer 
lournal [in press]. 

21. Berghel, H. "A Logical Framework for the Correction of Spelling Errors 
in Electronic Documents." Information Processing and Management [in 
press]. 

22. Wilk, P. "The Production and Evaluation of a Set of PROLOG Bench
marks," Artificial Intelligence Applications Institute Report #AIAI
PSG51, University of Edinburgh, 1986. 

23. Wilk, P. "PROLOG Benchmarking," Artificial Intelligence Applications 
Institute Report #AIAI-TR-14, University of Edinburgh, 1986. 

24. Wong, W. "PROLOG-A Language for Artificial Intelligence." PC Mag
azine (October 14, 1986), pp. 247-263. 

25. Covington, M. "Programming in Logic-Part 2." PC Techlournal (January 
1986), pp. 145-155. 





Speech synthesis: System design and applications 

by JARED BERNSTEIN 
SRI International 
Menlo Park, California 

ABSTRACT 

This paper introduces speech synthesis. Included are: a review of current synthesis 
technologies, an examination of the component algorithms and control structures 
needed for text-to-speech synthesis, and a discussion of current and future research 
topics. 

37 





INTRODUCTION 

The purpose of this tutorial is to introduce speech synthesis. 
Included are: a review of current synthesis technologies, an 
examination of the component algorithms and control struc
tures needed for text-to-speech synthesis, and a discussion of 
current and future research topics. 

Current Synthesis Systems 

Speech synthesis refers to two kinds of processes: (1) en
coding, transmission or storage, and decoding of natural 
speech that might better be called "re-synthesis"; and (2) 
synthesis of speech by rule from linguistic input such as writ
ten text. One common method of encoding/decoding speech 
at low bit rates is Linear Predictive Coding (LPC) which is an 
efficient method of de-convolving the fundamental frequency 
from the spectral envelope based on the assumption that the 
speech spectrum can be adequately modeled as an all-pole 
linear filter that is excited by an impulse train. Fundamental 
work on LPC is presented in Markel and Gray, 1 Makhoul,2 

and Atal and Hanauer. 3 Encoding speech for later resynthesis 
is reviewed by Flanagan.4 

The focus of this tutorial is speech synthesis by rule and, in 
particular, synthesis from text. 

A paper by Kaplan and Lerner5 reviews commercial offer
ings in synthesis, and includes an overview of the component 
processes in the Prose 2000 product. Other system-level de
scriptions of text-to-speech systems can be found in Allen,6 
Allen, Hunnicutt and Klatt/ Hertz,8 and Umeda.9 An early 
Bell Laboratories systems is clearly presented in the text of 
patent 3,704,345.10 

Text to Speech Components 

A text-to-speech system can be implemented as a set of 
processes connected in series. The first linguistically inter
esting process of a text-to-speech converter is the system for 
translating words (as written in standard spellings) into pho
nemic forms that describe pronunciations. This is usually 
called letter-to-sound (LTS) conversion. The classic sources 
that provide complete descriptions with complete rule sets are 
MCIlro~;ll Hunnic~tt/2 and Elo~tz, Johnson, McHugh, and 
Shore. A companson of Hunmcutt's and Elovitz's rules is 
presented by Bernstein and N essly. 14 A more recent approach 
to LTS is explained in Hertz.8 Related morphological and 
lexical issues are covered in Allen,? Umeda,9 and Church. 15 

The next process in series is allophonics. Allophones are 
contextually conditioned variants of phonemes. Rules for se
lecting the appropriate allophonic form for a phoneme in a 

Speech Synthesis: System Design and Applications 39 

given context are important in synthesizing natural-sounding 
and intelligible speech. Rule sets are given in Klate6 and 
Allen6 for synthesis; computational allophonics are discussed 
with recognition applications in mind by Oshika, Weeks, Nue, 
and Auerbach;l? Woods et al. 18 and Church. 19 

After the text to be spoken is in allophonic form, a subse
quent prosodic process is required to assign a rhythm and 
melody to the string of allophones. Conventionally, the 
rhythm of the sentence is taken to be the result of segment
level durations. The best duration rules in the literature prob
ably are Klatt's. 16,20 A general problem with the rhythm of 
synthetic speech used in text-to-speech systems results be
cause the systems do not "understand" what they are saying, 
and conventional punctuation is less than complete (following 
the "when in doubt, leave it out" school of commas). One 
might gain some speech quality by implementing some of the 
processes studied by Cooper and Paccia-Cooper.21 

The melody of English sentences is encoded in the funda
mental frequency (fO) of the voiced portions and the way that 
the fO patterns are aligned in time. Most text to speech sys
tems use some version of a "hat and declination" fO pattern22 

as, for instance, parameterized by Maeda.23 This fO rule pro
vides a humdrum rendition of most neutral declarative sen
tences of the kind on which the hat and deciination studies 
were based, but it becomes wearing in connected text. Other 
sources on fO patterns are Cooper and Sorensen24 Bernstein's 
review5 of Cooper and Sorensen, and a recent collection 
edited by Cutler and Ladd.26 The most promising recent de
velopment is Pierrehumbert's PhD. thesis,27 but her 1981 
paper28 suggests a meaning-blind application of her theory 
which reduces it almost to a variation of Maeda.23 

The next process used in text -to-speech systems converting 
a linguistic transcription of allophones with durations and fO 
values into a parametric description suitable to drive a signal 
synthesizer. An excellent and clear introduction to this aspect 
of synthesis is Chapter 6 of Flanagan.4 The somewhat stan
dard approach now is Klatt's29 synthesis by rule logic that is 
used in DECTalk, the Prose 2000, and new products from 
Texas Instruments and IBM. Klatt presented his approach 
in more detail in Allen, Hunnicutt, and Klatt.? Some 
alternative approaches to phonetic synthesis are discussed 
in the "Phonetic Synthesis by Concatenation" section of this 
paper. 

FAST LETTER-TO-SOUND CONVERSION 

Introduction 

The usual practice in letter-to-sound conversion8, 12, 13 in
volves checking substrings of letters and right and left contexts 
for each of several rules, then replacing the letter string with 



40 National Computer Conference, 1987 

a phoneme string. Movement is from left to right through the 
word, with stress assignment and vowel reduction handled in 
a second pass through the word (usually from right to left). 
Unfortunately, the resulting software has been Byzantine, or 
the phonemic output is inaccurate, or both. Within this gen
eral framework, there also have been several attempts to 
automatically train letter-to-sound rules for optimal accuracy 
or size. 11,30,31 These optimizing approaches have not resulted 
in high accuracy systems for several reasons but at least in 
part because they assumed an overly restricted algorithm 
structure. 

Linguistic Content 

This section describes elements of an algorithm and its asso
ciated data structures that allow fast and accurate letter-to
sound conversion in English. The description ignores affix 
stripping. The structure of the algorithm is based on three 
generalizations about the linguistic content of the rules of 
English spelling and phonology: 

1. The rules of English phonology (and the published rule
sets for letter-to-sound conversion) may have more dif
ferent left environments but many more rules have right 
environments than have left environments. 

2. Stress assignment (inside the stress-neutral suffixes; 
e.g., -ed and -ing) is much more simply handled from the 
right end of the word than from the left end. 

3. There are orthographic cues for certain letter-sound cor
respondences that are not phonological. Such cues are 
either morphological or reflect changes in spelling con
ventions. 

Design Consequences 

Taking advantage of the historical and linguistic nature of 
English spelling, a system can perform high accuracy letter-to
sound conversion, stress assignment, and vowel reduction in 
one right to left pass, starting inside the stress-neutral suffixes 
(e.g., "-ing" or "-ly"). Thus, a right-environment semaphore 
can be set by the operation of the previous rule and checked 
with a single instruction. Furthermore, stress assignment can 
be accomplished by using three bits of the semaphore and a 
pointer to the last vowel phoneme, if any. The principal ad
vantage of this approach is increased speed. The increased 
speed results because the largest portion of the processing 
time in most implementations of context-sensitive rules is 
spent context matching (some 80 percent or more of which is 
trivialized in this approach). The rest of the summary de
scribes the rule structure and semaphore flags used and gives 
an example of how they work. 

Details 

A rule example is: 
(e.g., for (ian) as in "Armenian") : 

Right environment semaphore: 
(Boundary) 

Letter string: 
IAN 

Left environment: 
(or (N (sequence TH) (sequence PH») 

Phoneme string: 
EaN 

Semaphore Set: 
(Tense Vowel & I-Short) 

This example means check for the boundary bit in the sema
phore. If set, check the letter string, and if it matches, check 
the left environment which could be N or TH or PH. If right, 
replace the "ian" with lEaN!. Then, the phonological flags 
(like voiced, vowel, high) are set from the lEI, and the tense 
vowel and I-short flags are set out of the rule. The other 
consequence of this rule would be to increment the syllable 
count by two. 

The semaphore has three kinds of flags: (1) logical bits, 
like negative and disjunctive, that control the interpretation 
of the remaining flags; (2) the usual phonological flags such 
as voiced, nasal, stop, sonorant, and labial, that are set based 
on the leftmost phoneme inserted; and (3) morphological! 
orthographic flags such as soft, palatalize, irreducible, and 
latin, that are explicitly carried in the rule. 

PHONETIC SYNTHESIS BY CONCATENATION 

Designs for Phoneme-input Unlimited LPC Synthesis 

Phonemic synthesis is the transformation of a transcribed 
pronunciation, like that found in a dictionary, into a speech 
signal. Sivertsen32 is the classic reference on inventories for 
synthetic speech by concatenation. Units that have been tried 
with known results include phonemes, allophones, diphones, 
syllables, demisyllables, and words. Any of these units may be 
the internal unit in a phoneme-input synthesizer because the 
map from phonemic input into any of these units is straight
forward. The issue is: Which unit can give the highest quality 
at a reasonable memory size? In the following sections we 
describe allophones, diphones, and demisyllables with refer
ence to synthesis. 

Allophones 

Allophones are contextually determined variants of pho
nemes; so they are the same "size" as phonem~s except there 
are more of them. Though linguists rarely idennfy more than 
60 allophones in English, for reasonable synthesis one might 
need as many as 300 vowel allophones and 100 consonant 
allophones (assuming consonant voicing by rule.) For in
stance, a system might need a "labial-velar lei" as in "beg", 
and also use it in any of the contexts with {p,b,f,v,m} on the 
left and {k,g,ng} on the right . .J.

A .. description of Texas Instm
ments' allophonic synthesizer can be found in Electronic De
sign, June 25, 1981. With 128 allophones, the resulting speech 
is poor. C. Harris' early repore3 on the possibility of splicing 
phoneme length units is discouraging. Some of the reasons 
for the failure of phoneme concatenation are discussed by 
Wang. 34 



Diphones 

Diphones are stored lengths of speech that extend from 
near the target of one phoneme to near the target of the next. 
The diphone is an appropriate unit for synthesis because co
articulation is mainly restricted to the immediate phonemic 
context. In speech, the path between phoneme targets often 
is non-linear and even non-monotonic within any usual acous
tic parameter space (e.g., track the formants or LPC coeffi
cients in the word "joy"). Thus, the primary advantage of 
diphones over allophones is that they include exactly the tran
sition from one target to the next. The first diphone system 
was described by Dixon and Maxey;35 more recent diphone 
work has been reported by Olive36 and by Schwartz, Klovstad, 
Makhoul, Klatt, and Zue.37 Although there are only about 40 
phonemes in English and thus, ideally, about 1600 diphones, 
Schwartz suggests that about 2000 diphones would be needed 
for high quality diphone synthesis because some diphones are 
not really context-free, and the vowel dipthongs in Englisp. 
should be treated as pseudo-diphones. 

Demisy llables 

Demisyllables are initial or final portions of syllables that 
can be concatenated to form syllable sequences. Syllabic syn
thesis should be a very natural way to synthesize by concate
nation, -because (it is claimed) allophonic and coarticulatory 
variations rarely cross syllable boundaries. A method for cut
ting and joining demisyllables for synthesis by concatenation 
has been outlined by Fujimura, Macchi, and Lovins. 38 They 
estimate between 1000 and 1200 demisyllables would be 
needed for a high quality unlimited synthesis system. 

Hybrid 

A hybrid concatenation system may be necessary to fix 
apparent problems with any of the three concatenation 
methods. In particular, LPC-based concatenative synthesis 
methods have trouble with sequences like (vowel) {l,r ,y ,w} 
(vowel). These "vowel-medial semi-vowels" can be handled 
by what Sivertsen calls "syllable dyads." to synthesize these 
sounds by concatenation, about 300 vowel-medial semi
vowels would have to be added to any of the inventories. A 
system that actually reaches production may need to include 
several types of units reflecting solutions to various detailed 
problems encountered in development. 

System Requirements for These Designs 

Assuming 42 bits per frame, an average speech rate of 150 
words per minute, and a microprocessor that is fast enough to 
interpolate every other 20 msec frame, we can calculate a 
nominal memory size for each of the concatenation methods 
outlined. It probably is best to generate prosodic information 
by rule within the synthesizer system rather than try to store 
and adjust pitch, amplitudes, and gains as appropriate to cur
rent context. The "overhead" code (including the map from 

Speech Synthesis: System Design and Applications 41 

phonemes to internal units and the prosodics) would be less 
than 20k bytes. 

1. Allophones. Full length vowels average 180 msec and 
consonants average 80 msec. Sampling every other 20 
msec frame yields 4.5 frames per vowel and 2 frames per 
consonant. 300 vowels and 100 consonants, therefore, 
can be stored as 1550 frames at 6 bytes/frame for an 
allophone table of 10k bytes. 

2. Diphones. Inter-phoneme transitions average about 100 
msec. Sampling every other 20 msec frame of 2000 di
phones that average 100 msec in length requires 5000 
frames to be stored in 30k bytes. 

3. Demisyllables. The average length of a demisyllable is 
260 msec. 1200 demisyllables of 6.5 frames each would 
require storing 7800 6-byte frames in 48k bytes. 

Reasonable quality synthetic speech should be possible with 
a total memory size between 40 kbytes and 70 kbytes, an LPC 
chip, and a microprocessor. Methods such as vector quantiza
tion for compressing LPC data could reduce the nominal table 
sizes given here by 10 percent to 40 percent. 

VOICE INSTRUMENTATION 

One could use vocal cues to direct user attention and to code 
the source and urgency of information within a voice interac
tive command/control environment. Voice output has several 
particular advantages in a user interface, especially when inte
grated with a voice recognition capability. A voice message 
reaches users regardless of their visual orientation and, like a 
flashing display or a red warning light, it can notify users that 
the system designers believe some aspect of the current situ
ation requires user attention. 

Also, voice response or verification are needed to maintain 
the advantages of voice input during "hands-busy eyes-busy" 
operation. Note, however, that just as an all-red instrument 
panel would decrease the advantage of bright red warning 
lights, routine or needless use of voice output could nullify its 
real advantages-especially if the same or a similar voice re
cites all the messages in a similar way. Therefore, there is a 
need to think carefully and design voice into complex displays 
in ways that use the distinctive communicative value of voice 
to best advantage. 

In contrast to a written message, a spoken message carries 
several kinds of indexical information (for instance, the gen
der, size, and age of the speaker) as well as paralinguistic 
signals that express the speaker's attitude toward the message 
(for instance, the message is routine, or surprizing, or urgent). 
By understanding and modeling the indexical properties of 
speech, we can develop separate vocal identities for different 
information sources. Through control of the paralinguistic 
aspects of a synthetic speech signal, we can use conventional 
modes of speaking to command a user's attention or reinforce 
the intent of the message by speaking it in a manner consistent 
with its content. 

For example, differences in speech might be observed as 
message content changes from routine (e.g., "Fuel level at 80 



42 National Computer Conference, 1987 

percent") to urgent (e.g., "Fuel level reading inconsistent"). 
At each level of linguistic description, and at every stage in the 
synthesis process, there can be changes that reflect urgency. 
From the research literature we can guess that both voice pitch 
and amplitude may increase and that voice pitch may become 
more dynamic. Furthermore, the timing of the message and its 
enunciation may change, although these changes are less well 
understood. One course of action is to identify and test hy
potheses about these changes by studying human speech; then 
decide the correct level at which to implement these changes 
in the message-generation subsystem of the command/control 
system. 

The currently available text-to-speech devices (in particu
lar, the Prose 2000 and D ECTalk) are limited in the range of 
control that the host processor has over the indexical and 
paralinguistic properties of the synthetic speech. The Prose 
2000 allows considerable control of speech parameters related 
to paralinguistic meaning, but supports a limited range of 
voice identities. DECTalk, in contrast, features six different 
voice identities, although host control of paralinguistic aspects 
is limited. Neither device offers the host a full set of appropri
ate controls for selecting voices and for encoding apparent 
attitude into the speech signal. 

Steps needed for incorporating multiple voices into the 
command/control environment would involve: (1) under
standing the acoustic-phonetic bases of indexical and paralin
guistic information, (2) formulating that information in a way 
consistent with the message-generation logic of the command/ 
control system, and (3) adapting (i.e. simplifying) the voice 
output control specification to the limitations of the available 
synthesis devices for demonstration and user evaluation, or 
(4) attempting to implement a special-purpose synthesis sys
tem to support the full range of indexical and paralinguistic 
cues identified in (1). 

REFERENCES 

1. Markel, J. D. and A. H. Gray, Jr. Linear Prediction of Speech. New York: 
Springer-Verlag, 1976. 

2. Makhoul, J. "Liner Prediction: A Tutorial Review." IEEE, 63 (1975) 
pp. 561-580. 

3. Atal, B. S. and S. L. Hanauer. "Speech Analysis and Synthesis by Linear 
Prediction of the Speech Wave," Journal of the Acoustical Society of 
America, 50 (1971) pp. 637-655. 

4. Flanagan, J. L. Speech Analysis Synthesis and Perception. New York: 
Springer-Verlag, 1972. 

5. Kaplan, G. and E. J. Lerner. "Realism in Synthetic Speech," IEEE 
Spectrum, April 1985, pp. 32-37. 

6. Allen, J. "Synthesis of Speech from Unrestricted Text," Proceedings of 
the IEEE, 64 (1976) 4, pp. 433-442. 

7. Allen, J., S. Hunnicutt, and D. Klatt. From Text to Speech: The MITalk 
System. Cambridge, UK: Cambridge University Press, 1986. 

8. Hertz, S. R. "From Text to Speech with SRS," Journal of the Acoustical 
Society of America, 72 (1982) 4, pp. 11551170. 

9. Umeda, N. "Linguistic Rulcs for Text-to-Speech Synthesis," Proceedings 
of the IEEE, 64 (1976) 4, pp. 443-451. 

10. Coker, C. H. "Conversion of Printed Text into Synthetic Speech." U.S. 
Patent No. 3,704,345, November 1972. 

11. McElroy, D. "Synthetic English Speech by Rule." Memorandum, Bell 
Telephone Laboratories, Murray Hill, New Jersey, 1974. 

12. Hunnicutt, S. "Phonological Rules for a Text-to-Speech System." Am. J. 
Computational Linguistics, 1976, Microfiche 57. 

13. Elovitz, H. S., R. W. Johnson, R. W. McHugh, and J. E. Shore. "Letter
to-Sound Rules for Automatic Translation of English Text to Phonetics," 
IEEE Transactions: Acoustics, Speech, Signal Processing, 24 (1976) pp. 
446-459. 

14. Bernstein, J. and L. Nessly. "Performance Comparison of Component 
Algorithms for the Phonemicization of Orthography," Proceedings of the 
19th Annual Conference of the Association for Computational Linguistics, 
1981, pp. 19-22. 

15. Church, K. "Morphological Decomposition and Stress Assignment for 
Speech Synthesis," Proceedings of the 24th Annual Conference of the 
Association for Computational Linguistics, 1986, pp. 156-164. 

16. Klatt, D. "Structure of a Phonological Rule Component for a Synthesis-by
Rule Program," IEEE Transactions: Acoustics, Speech, Signal Processing, 
24 (1976) pp. 391-398. 

17. Oshika, B. T., V. W. Zue, R. V. Weeks, H. Neu, and I. Auerbach. "The 
Role of Phonological Rules in Speech Understanding Research," IEEE 
Transactions: Acoustics, Speech, Signal Processing, 23 (1975) pp. 104-112. 

18. Woods, W., et al. "Speech Understanding Systems, Vol. III." Final Tech
nical Program Report No. 3438, ONR Department of the Navy Contract 
No. NOOOI4-75-C-0533, 10-30-74 to 10-29-76. Bolt, Beranek, and Newman, 
Inc., Cambridge, Massachusetts, 02138. 

19. Church, K. W. "Phrase-Structure Parsing: A Method for Taking Advan
tage of Allophonic Constraints." Indiana University Linguistics Club, 
Bloomington, Indiana 47405. June 1983. 

20. Klatt, D. "Synthesis by Rule of Segmental Durations in English Sen
tences," in B. Lindblom and S. Ohman (eds.), Frontiers of Speech Commu
nication Research. New York: Academic Press, 1979, p. 287. 

21. Cooper, W. E. and J. Paccia-Cooper. Syntax and Speech. Cambridge, 
Massachusetts: Harvard University Press, 1980, pp. 180-193. 

22. t'Hart, J. and A. Cohen. "Intonation by Rule: A Perceptual Quest," Jour
nal of Phon., 1(1973) pp. 309-327. 

23. Maeda, S. A. "A Characterization of American English Intonation." Un
published Ph.D. thesis, Massachusetts Institute of Technology, 1976. 

24. Cooper, W. E. and J. M. Sorensen. Fundamental Frequency in Sentence 
Production. New York: Springer-Verlag, 1981. 

25. Bernstein, J. Review in IEEE Transactions: Acoustics, Speech, Signal Pro
cessing, 31 (1983) p. 515. 

26. Cutler, A. and D. R. Ladd (eds.). Prosody: Models and Measurements. 
New York: Springer-Verlag, 1983. 

27. Pierrehumbert, J. "The Phonology and Phonetics of English Intonation." 
Ph.D. dissertation, Cambridge, Massachusetts: MIT Press, 1980. 

28. Pierrehumbert, J. "Synthesizing Intonation," Journal of the Acoustical 
Society of America, 70 (1981) 4, pp. 985-995. 

29. Klatt, D. H. "Software for a CascadelParallel Formant Synthesizer," 
Journal of the Acoustical Society of America, 67 (1980) 3, pp. 971-995. 

30. Klatt, D. and D. Shipman. "Letter-to-Phoneme Rules: A Semi-automatic 
Discovery Procedure." Paper CC2 presented at the 104th Meeting of the 
Acoustical Society of America, Fall 1982. 

31. Lucassen, J. and R. Mercer. "An Information Theoretic Approach to the 
Automatic Determination of Phonemic Baseforms." Paper 42.5 presented 
at the IEEE ICASSP, 1984. 

32. Sivertsen, E. "Segment Inventories for Speech Synthesis," Language and 
Speech, 4 (1961) p. 27. 

33. Harris, C. "A Study of the Building Blocks of Speech," Journal of the 
Acoustical Society of America, 25 (1953) p. 962. 

34. Wang, W. S.-Y. "Transition and Release as Perceptual Cues for Final 
Plosives," Journal of Speech and Hearing Research, 2 (1959) p. 66. 

35. Dixon, R. and H. Maxey. "Terminal Analogue Synthesis of Continuous 
Speech Using the Diphone Method of Segment Assembly," IEEE Trans
actions on Audio and Electroacoustics, 16 (1968) 1, p. 40. 

36. Olive, J. "Rule Synthesis of Speech from Dyadic Units," Proceedings of 
the IEEE ICASSP, 1977, pp. 568-570. 

37. Schwartz, R., J. Klovstad, J. Makho\il, D. Klatt, and V. Zue. "Diphonc 
Synthesis for Phonetic Vocoding," Proceedings of the IEEE ICASSP, 1979, 
p. 891. 

38. Fujimura, 0., M. Macchi, and J. Lovins. "Demisyllables and Affixes for 
Speech Synthesis." Paper given at the Ninth International Congress of 
Acoustics, 1977. 



Voice mail and office automation 

by DOUGLAS L. HOGAN 
SPARTA, Incorporated 
McLean, Virginia 

ABSTRACT 

Contrary to expectations of a few years ago, voice mail or voice messaging technol
ogy has rapidly outpaced speech recognition and speech synthesis in applications for 
office automation. This growth is a result of rapid technological advances in such 
areas as computing technology and digital telephony. The falling cost of voice 
message storage, the power of computer control of messaging, and user comfort 
with voice information all contribute to making voice mail desirable. 

This paper reviews voice mail technology, including coding and storage. Also, 
three office automation areas are discussed. Finally, lack of standards for voice mail 
is discussed. 

43 





INTRODUCTION 

As recently as seven years ago in a survey of the speech 
technology markee there were predictions of rapid advances 
in the use of speech recognition and speech response for com
puter input and output. However, in the same report there 

,was no mention of voice mail ! Today we find that voice mail 
(also called voice store-and-forward or voice messaging) and 
its supporting technology have become the major market in 
speech technology and are becoming an intimate part of office 
automation. 

The major economic/technological reasons for the rapid 
growth of voice mail have risen out of the advances in com
puting technology. These advances have led to extensive use 
of computers in office automation and to advances in digital 
communications including digital telephony. Speech signal 
processing for data compression has become economical; 
storage of digital information has become even more eco
nomical. With speech in digital form, computer control can 
provide maximum flexibility in supporting applications involv
ing storage and retrieval of audio information. Additionally, 
the telephone is still the ubiquitous terminal; it is everywhere. 

The other major reason for the growth of voice mail is a 
matter of human factors. Speech is the natural means for 
human communication and individuals like to use it when it is 
convenient to do so. The importance of this last point cannot 
be overemphasized; applications must fit user needs. 2 

In the following sections, the technology of voice coding 
and storage, applications including office automation, and a 
standards issue are discussed. 

VOICE CODING 

Data and Information Rate 

Telephone-quality speech signals may be simply encoded at 
a sampling rate of 8,000 samples per second. These samples 
may then be converted to digital representation using an ana
log to digital (AID) converter; 11 bits per sample, or a rate of 
88,000 bits per second, maintains telephone quality. How
ever, if we examine the information rate in such a signal we 
conclude that it is well under 100 bits per second. This conclu
sion is obtained by assuming a speaking rate of four words per 
second, a generous estimate of 15 bits per word, and an allow
ance of 40 bits per second to account for ancillary information 
such as the speaker's identity and perhaps some indication of 
the speaker's physical and mental state. Voice coding methods 
are used to reduce the gap between the data rates of simply 
digitized speech and the true information rate. 

Voice Mail and Office Automation 45 

Removal of Redundancy 

The step following simple digitization consists of encoding 
the samples in a way that tries to eliminate some of the redun
dancy in the signal. Encoding may be minimal or extensive; 
with extensive encoding, speech intelligibility and quality is 
reduced and increased computational requirements are in
curred. Some encoding methods attempt to extract param
eters that are directly related to modeling speech signal gener
ation as a vocal tract excited by an appropriate source. A 
comprehensive discussion of voice coding is contained in the 
treatise by Jayant and Noll. 3 

Waveform coding 

Waveform coding methods deal directly with digitized voice 
signals. The simplest waveform coding uses only those signals 
as quantized by the AID converter; more complex waveform 
coding methods remove some or much of the inherent redun
dancy by methods that do not take into account information 
about generative constraints in the voice signal. There are two 
significantly different types of waveform coding. The first type 
of coding, framed signals, represents each time sample with a 
fixed number of bits that must remain in frame synchroniza
tion. The second type of coding, unframed signals, uses only 
one bit per sample and; achieving frame synchronization is 
not a problem. 

Framed signals. The simplest framed signal is an 11-bit lin
ear quantization of the speech samples often called pulse code 
modulation (PCM). It also has been determined that loga
rithmic companding (compressing followed by expanding) of 
a speech signal will provide the same perceived fidelity with 
the logarithmic samples described as 7-bit quantities. This 
log-PCM at ~6,000 bits per second has been the standard for 
most digital telephony. Other forms of waveform digitization 
based on PCM include differential PCM (DPCM) and adap
tive differential PCM (ADPCM). These variations attempt to 
exploit some of the redundancy remaining in the PCM quan
tized sequence. The difference in DPCM between successive 
samples can be encoded with fewer bits. In ADPCM, a certain 
amount of past history is retained and used to determine 
whether the quantization step size should be changed. In dif
ferentially coded systems, such as DPCM and ADPCM, any 
bias results in a gradual drift of the signal. This is countered 
by introducing a less-than-unity feedback in the reconstruc
tion feedback loop. Currently, a 32 kbit/sec ADPCM standard 
is being implemented for digital telephone circuits. It will 
eventually replace the present log-PCM standard by providing 
telephone quality speech at 32,000 bits per second instead of 
56,000 bits per second. 



46 National Computer Conference, 1987 

Another way of reducing the data rate of a PCM signal is 
called "block PCM". Because speech signals usually remain in 
high or low amplitude for a considerable number of milli
seconds, blocks of PCM values having fewer steps can be 
accompanied by a block multiplier. Still another PCM deriva
tive is sub-band coding. This method takes advantage of signal 
redundancy in a different manner: the spectrum is filtered into 
two or more frequency bands, each of these "sub-bands" is 
downshifted to baseband, sampled at an appropriate rate, 
then digitized and encoded. Since the upper frequency sub
bands contain less information than low frequency sub-bands, 
coding efficiency is improved by using appropriate and possi
bly different coding methods for each sub-band. 

Unframed signals. Unframed signal waveform coding of 
speech uses one-bit frames thus, frame synchronization can 
never be lost. This coding method is known as delta modu
lation. Delta modulation is accomplished by sampling the 
speech waveform considerably faster than required by the 
sampling theorem and by performing a reconstruction of the 
waveform with unit steps between successive samples. Anal
ysis is actually performed by comparing the sampled signal 
with the reconstruction. The sign of the difference of these 
two signals is encoded as a 1 or a O. If the reconstructed signal 
lags behind the true signal for too many samples, a condition 
known as "slope overload" is said to exist. Slope overload is 
countered by increasing the complexity of the coding to vary 
the slope of the reconstructed signal; such a process is called 
continuously variable slope deltamodulation (CVSD) or 
adaptive deltamodulation (ADM). 

Source/tract coding (vocoders) 

The source/tract class of speech coding techniques often is 
referred to as narrow band systems, most of which have data 
rates of 4800 bits per second or less. Source/tract coding is 
accomplished by modeling the speech generation process to 
some degree of fidelity. Such modeling is done in two parts: 
(1) modeling of the excitation and (2) modeling of the vocal 
tract. That is, narrow band coding systems extract the excita
tion and vocal tract descriptions separately and describe them 
efficiently. Systems using these techniques are also called 
vocoders. The two most common forms are the channel 
vocoder and the linear predictive vocoder. Both vocoder 
forms require extraction of the excitation. 

Modeling excitation. Excitation of the vocal tract can be 
considered (to a first approximation) as either "voiced" or 
"unvoiced". Voiced refers to excitation due to periodic pulses 
of air from the glottis (vocal cords). Unvoiced refers to excita
tion due to turbulent air flow or release of puffs of air by 
aperiodic openings and closures of the vocal tract. Thus, the 
analysis consists of making an excitation decision; and, if the 
excitation is voiced, to measure the distance between the 
excitation pulses (pitch period) or the frequency of those 
pulses (pitch frequency). The excitation decision generally 
can be made on the basis of energy concentration in the spec
trum. Determining pitch may be done in many ways: (1) the 
fundamental (first) harmonic may be followed with a tracking 
filter; (2) when the fundamental is not present, an auto
correlation process or an approximation to such a process may 

be used; (3) alternatively, some form of observing peaks in the 
time domain waveform may also be used. Information about 
the excitation can be coded at a relatively low bit rate; in most 
vocoders a rate of about 120 bits per second is used for this 
purpose. 

Modeling the vocal tract. The channel vocoder was an early 
(1937) attempt to remove some of the redundant information 
from the speech signal; in fact, it was an attempt to model 
speech in terms of source and tract. This vocoder obtains the 
spectral description of vocal tract shapes using a set of con
tiguous band-pass filters spanning the speech spectrum. The 
output of these filters is rectified, low-pass filtered (because 
the vocal tract shape is expected to change slowly), sampled, 
and quantized. Thus, the speech signal spectrum is described 
in from 10 to 16 channels, sampled 40 or 50 times per second, 
and quantized in a few bits per sample. A total data rate of 
approximately 2400 bits per second, encoded in fixed format 
frames every 20 or 25 msec, usually is sufficient to describe 
such a vocoder. 

The time behavior of the vocal tract also can be modeled as 
a predictor which is formed as a weighted function of a mod
erate number of past samples of the tract output. This linear 
predictor is based on obtaining the best fit between a pre
dicted signal and the true signal using a least-squares error 
criterion. Typically, the predictor is based on analysis of 100 
to 200 samples; the predictor can regenerate the analyzed 
segment of speech with about 10 to 14 coefficients operating 
recursively on an initial set of that many samples. The predic
tor is calculated by forming autocorrelations of sections of the 
speech signal over the period for which near stationarity of the 
signal is expected. This is approximately 20 msec for voiced 
speech. The set of autocorrelation equations is solved for its 
eigenvalues; these become the predictors. 

A number of variations of the linear prediction method are 
in use. One variation describes the prediction function in 
terms of the complex roots of the linear equation; this can be 
construed as approximating the vocal tract with an all-pole 
model. Another form describes the tract shape as though it 
were a lattice filter and the filter coefficients are derived 
iteratively by removing correlation effects of each coefficient 
successively. This method is known in the literature as the 
partial correlation or PARCOR method. 

Linear prediction methods are treated exhaustively in the 
book by Markel and Gray. 4 Linear prediction vocoders are 
normally encoded in fixed size frames of about 50 bits every 
20 or 25 msec. Thus, including excitation, a 2400 bit/sec 
vocoder can be achieved. A variation on these methods is the 
residual excited linear prediction (RELP) vocoder. With this 
method, the excitation signal is taken as the error signal be
tween the predicted and actual signal. This signal may be 
encoded by a waveform coding method in from 2400 to 7200 
bits per second with a resulting RELP vocoder rate of from 
4800 to 9600 bits per second. 

Adaptive predictive coding 

Another form of coding called adaptive predictive coding 
(APC) is, in effect, a hybrid of waveform coding and LPC 
vocoding. In one such system a fourth order spectrum pre-



dictor is combined with a pitch predictor and the error signal 
between these two predicted signals and the true signal is 
coded by a waveform coding method. The spectrum predictor 
is optimized by adaptation instead of direct computation as in 
the LPC vocoder. 

Technology 

A few years ago, real-time performance of the more com
plex voice coding algorithms would have required a significant 
investment in equipment. In the past three years, significant 
advances have been made in programmable signal processing 
devices. 5 Today, any of the algorithms described in this paper 
can be carried out in real time using a single signal-processing 
chip. For this reason, selection of the speech coding algorithm 
essentially has no economic impact on a voice mail system and 
the criteria for selection involve only data rate versus quality, 
and algorithm differences versus standardization. The latter 
point is discussed in the last section of this paper. 

VOICE STORAGE 

One primary feature of voice mail is important for storage: 
access to the information is inherently sequential. Thus, disk 
technology is totally appropriate for voice test storage. Given 
the assumption of a certain amount of random access memory 
for buffering, there are no bars to input and output of voice 
information from any rotating media. Further, the cost of disk 
technology is reduced by a factor of two about every two 
years; thus, capacious storage is quite economical. 

Additional economy can be achieved by not recording si
lence intervals. It is only necessary to delineate the beginnings 
and ends of speech segments and their time of occurrence 
relative to a baseline (e.g., the beginning of the message). In 
this way, it is possible to reproduce the original input speech 
with its correct timing including all of the pauses. Voice de
tector circuits are available; some are available on the same 
device as speech encoders and decoders.6 

Given digital storage of voice messages, many manipu
lations are possible. One possible manipulation is the ability 
to scan or review messages at speeds faster than real time. 
This is readily accomplished by deleting segments of the 
speech data of from 20 to 40 msec long, and playing out the 
un deleted parts of the speech data at their normal speeds. The 
result is an overall reduction in playback time without the 
pitch distortion associated with speeded speech. A number of 
voice mail systems provide some version of speeded voice 
message review. 

APPLICATIONS 

The net result of having digitized speech signals in a computer 
controlled memory is that any desired application can be built 
around that speech database. The success or failure of a sys
tem will take place at the applications stage. Applications 
functions must be both useful and convenient. In the simplest 

Voice Mail and Office Automation 47 

application, the telephone instrument must be a data entry 
device as well. In such a case, the speech compression signal 
processor can easily decode the dual tone multifrequency 
(DTMF) signals generated at telephone keypads. These sig
nals then can be used for any desired control functions. Three 
application areas for voice messaging are discussed briefly in 
the following sections. 

Telephone 

Voice messaging applications range from simple, such as 
an answering machine or the voice analog of electronic mail 
to complex, such as using data input with tone signals from 
the telephone keypad, forwarding calls, and automatic distri
bution. Voice mail can be used to respond with computer 
generated voice messages (either from text-to-speech systems 
or concatenations of prerecorded words/phrases in simple 
dialogs). In this way there can be interaction between a user 
with a telephone and a computer system. Applications of such 
interaction range from order entry to college class selection 
and scheduling. 

In the past, many voice mail systems have relied on using 
the conventional analog telephone plant for access to a central 
site containing the voice mail control and all of the voice mail 
files. Now the trend is to replace much of that plant with a 
local digital telephone system; this permits local data net
works to be integrated with the local telephone network. 
Thus, the switchboard becomes both a voice and data re
source in office automation. In addition, movement to the 
Integrated Services Digital Network (ISDN) in the telecom
munications industry wili accelerate the decline of the analog 
telephone network. For digital networks that do not have to 
differentiate between voice and data, it will become cost 
effective to handle voice mail similar to electronic mail-using 
the same sort of store-and-forward capabilities provided by 
interconnection of digital data networks. 

Text/Data 

Conversely, we may think of integrating text and data into 
the office telephone system. From either point of view, it is 
desirable to have voice mail and electronic (text) mail inte
grated within the same system. Text systems can facilitate 
telephone directory service and dialing, and can display infor
mation about voice messages that are waiting or have been 
previously heard and stored. 

Voice messages can be used to annotate text information 
and messages. This is useful to both an originator of text 
information and a recipient who is commenting on or re
viewing the information. 

Finally, voice messaging can be used to access text messages 
or text databases when a data terminal is not available. Text
to-speech systems can be used to access text messages and 
databases. A more complex control structure would be re
quired for formatted or non-text databases; as an example, 
consider the problem of reading a table to a listener and the 
extra words required to describe column and other structures. 



48 National Computer Conference, 1987 

Pictorial Information 

Just as with text information, voice message annotation 
can be helpful in describing pictorial information (i.e., graph
ics or images) displayed in an office automation system. For 
example, annotation can be used to explain and point out 
features of the pictorial information. 

Although voice messaging usually is thought of as a non
real-time (delayed time) service, its technology can be used to 
support records of real time multi-media remote confer
encing. This kind of conferencing normally involves pictorial 
information displays and voice discussions among participants 
located at two or more sites. An example of a potential 
application would be using voice messaging technology to 
support a record of a remote conference enabling review or 
later re-enactment of part or all of the conference. 

STANDARDS 

The major outstanding issue of concern for voice mail is the 
lack of standardization. Many vendors use a proprietary voice 
compression method; others use a variety of standard algo
rithms or standard implementations of algorithms that are 
available at the device level. Data rates in use range from 
32,000 bits per second down to 2400 bits per second. In addi
tion, there is no standard way in which voice data and asso
ciated time information are stored. Consequently, it is not 
possible to transfer digital voice message files between differ
ing systems; voice information must first be converted to 
analog form. Bridging disparate mail systems in analog form 
leads to another problem. A speech signal that has been en
coded and decoded with one algorithm will sound fine to a 
listener. However, if the speech signal is encoded with a sec
ond algorithm artifacts of the first algorithm may be left which 
can have an adverse effect on the quality of the speech pro
duced by the second algorithm. 

In addition to the coding standardization issue, the usual 

standards issues of using electronic mail across organizations 
including naming and addressing, directories, and routing in
formation, also must be addressed. These issues together with 
the problems of compatible voice coding, will be taken up at 
a future time by a standards organization. * In the meantime, 
the voice mail vendors continue to go their separate ways. 

ACKNOWLEDGEMENTS 

I would like to acknowledge the assistance of my colleague, 
Dr. Beatrice T. Oshika, in helping to shape this paper. I also 
would like to acknowledge the discussion I had with Ms. 
Nancy M. Dinicola of Voice Computer Technologies Corpo
ration regarding the real world of voice mail. 

REFERENCES 

1. Kolbus, D. I. "Computer Speech Communication," Research Report No. 
623, SRI International Business Intelligence Program, Menlo Park, Cali
fornia: SRI International, 1979. 

2. Gould, J. D. and S. J. Boies. "Speech Filing-An Office System for Prin
cipals." IBM Systems Journal, 23 (1984) 1, pp. 65-81. 

3. Jayant, N. S. and P. Noll. Digital Coding of Waveforms. Englewood Cliffs, 
New Jersey: Prentice Hall, 1984. 

4. Markel, J. D. and A. R. Gray, Jr. Linear Prediction of Speech. New York: 
Springer-Verlag, 1976. 

5. Bursky, D. "Algorithms and Chips Cooperate to Squeeze More Speech 
Signals into Less Bandwidth," Electronic Design, October 3, 1985, pp. 
90-100. 

6. "New Chip Integrates Codec Functions," Voice News, October 1986, p. 3. 
7. Data Communication Networks: Message Handling Systems Recommen

dations X.400-X.430. Red Book, Volume VIII-Fascile VIII.7, Geneva: 
CCnT,1985. 

* The most recent version of these standards is the X.400 series7 of the Inter
national Telegraph and Telephone Consultative Committee (CCITT) which 
reserves the voice coding problem as one for future study. Although these 
standards have begun to address many aspects of electronic mail, it will be some 
time before they become specific enough to be useful for voice mail. 



Artificial intelligence in office information systems 

by PETER COOK and CLARENCE A. ELLIS 
MCC 
Austin, Texas 

BIPIN C. DESAI 
Concordia University 
Montreal, Quebec, Canada 

CLAUDE FRASSON 
Universite de Montreal 
Montreal, Quebec, Canada 

JOHN MYLOPOULOS 
Unversity of Toronto 
Toronto, Ontario, Canada 

NAJAR NAFFAR 
Bull-Transac 
Massy, France 

INTRODUCTION 

The recent interest in the application of artificial intelligence 
(AI) to office problems through the vehicle of automated 
office systems is due both to the "pull" of those interested in 
office problems and the "push" of the AI community. The 
pull from within the body of manufacturers and users of office 
systems comes from the lessons learned during the last decade 
while observing the rise of management information systems 
and their problems. The push from the AI community is due 
to a widely held view within that group that many of their 
systems have matured to an extent that these can earn, and are 
earning, their keep in the commercial sector. 

Artificial intelligence, which has been confined largely to 
research and development laboratories, is finally moving to 
the office. One sees increasing evidence of AI technology that 
is being merged with existing products; this marriage of AI 
with the traditional product renders the union more powerful 
and easier to use. The goal of AI in the early days was to 
recreate the working of the human mind in a machine (and 
hence the oxymoronic term): this goal has evolved over the 
years into a more attainable one, namely, that of making 
computer systems easier to use by humans whatever their 
training and understanding. 

The current efforts of the AI community, as related to 
applications in OIS, is to merge AI smoothly into existing 
software and systems, making them easier to use. Thus expert 
systems, the most prodigious product of the AI research, 
are mated with existing systems like the Automatic Teller 
Machine to make the latter more expert in allowing a with
drawal or an advance without the intervention of a human 

49 

banker. Speech recognition and natural language interfaces 
allow additional ease in interacting with existing software 
systems. 

USER INTERFACE 

The evolution of user interfaces is based on several converging 
forces and components which have been the subject of recent 
research. 

The first step in this evolution involved relational query 
languages with non-procedural aproaches such as SQL 1 or 
example-based systems such as QBE.2 The main problems 
with this type of language are that the users must be aware of 
the database structure such as the relations and their attri
butes. The users, particularly the untrained end-users, have 
difficulties in building the request using the database manipu
lation language. Furthermore, they generally have imprecise 
ideas about what they are searching for. 

A natural language interface allows the user of a database 
to input a query in a natural language such as English or 
French rather than in the formal query language; the goal 
being to permit the user to express hislher information needs 
in hislher own language, and in conceptual terms particular to 
hislher understanding of the database application domain. 
The user is also freed from knowing about database manage
ment systems, data models, or database schemes. Allowing 
the user to access a database using natural language shifts onto 
the computer system the burden of mediating between the two 
views of data: the way in which the data is stored and the way 
in which an end-user thinks about it. A DBMS, particularly a 



50 National Computer Conference, 1987 

relational one, accomplishes part of this task. What the user 
interface must do is reconcile the user's view with the DBMS's 
view. 

In order to achieve this data independence, the interface 
must incorporate a considerable amount of knowledge. This 
includes knowledge about natural languages, the domain 
database application, and DBMS's and their query languages. 

THE USER PROFILE 

All the above approaches are means to facilitate the accessing 
of data, however, they do not identify the user. There is 
presently an increasing need for improving the user interface, 
but the effort should be directed toward considering the type 
of user for which the system is intended. 

The present systems do not distinguish between users who 
in fact, are different according to their knowledge and :xperi~ 
ence in the use of the system, their interests in the database 
the kind and the form of the reponse that they require fro~ 
the database. These aspects should be considered in order to 
fit the users' needs. The introduction of artificial intelligence 
components able to recognize a wide variety of users, should 
greatly enhance the interaction in database systems. The 
benefits are characterized by an individualized dialogue, per
sonally tailored help, simplification of the interactive process, 
and responses which are given according to the views and 
interests of the user. 

To achieve these objectives, the user profile should consti
tute an important part of an intelligent interface. A user pro
file can be composed of various types of information such as: 
(1) information on customs, level of experience and qualifica
tions of the user in his/her environment, (2) familiarity of the 
user with the system, (3) information objectives and interests 
of the user in the database, and (4) a recording of the trans
actions (history). 

The important fact is that this knowledge must be dynamic. 
It is updated after each transaction in order ot obtain a precise 
image of the user, who will then be identified automatically. 
With a classical system, the user is more or less able to query 
a database and extract pertinent data from the flow of the 
elements produced as output. An intelligent interface should 
be able to recognize the user and dynamically adapt the 
dialogue. The desired results should then be deduced by the 
interface. 

Applications of the user profile are numerous. The most 
important concern information retrieval systems and intel
ligent tutoring systems. In this last domain, other aspects such 
as the psychological reactions and performance factor of the 
user must be included in the profile. 

KNOWLEDGE REPRESENTATION 

Artificial Intelligence can be of value in the deveiopment of 
the "office of the future" in at least two ways. First, by adding 
to the functionality of office information systems with natural 
language front-ends, problem solving and planning submod
ules, expert system front-ends that add some subjective 
"judgment" to the system's capabilities. Fikes,3 Barber,4 and 
WOO,5 provide good examples of this type of application of 

AI. Second, and perhaps more important, AI can be used to 
facilitate the development of office information systems. One 
way to do this is to build "automatic programming" environ
ments. Another way is to adopt knowledge representation 
ideas in the development of new classes of languages for re
quirements analysis and design. It is this last area of AI influ
ence on Office Automation that will be the focus of the rest 
of the section. 

To construct a requirements or design specification for an 
office information system demands the representation and 
integration of disparate knowledge into a coherent knowledge 
base. Thus, a requirements specification for an office informa
tion system needs to capture the knowledge that exists within 
the office, and which prescribes the patterns of behavior of the 
system to be built and its environment. For instance, to build 
a student information system one needs to describe students 
their associated attributes-such as address, field of study: 
courses and supervisor-the activities they participate in 
(such as registering in courses) if certain rules are satisfied 
(such as pre-requisites for the courses have been completed 
successfully)-and the like. One needs also to describe the 
activities to be carried out by the intended system, the infor
mation it will handle, and how that information is obtained 
from the environment. In addition, for an office information 
system to be useful, there must exist a framework for the 
interpretation of its contents with respect to the intended 
application. Such interpretation is only possible if the system 
and/or its users "know" how accurate, complete, and precise 
the information handled by the system is. For the student 
registration system, for example, it must be known how often 
student records are updated in order to determine how the 
contents of the system "match" reality for a query such as 
"Who is taking course csc324?". If updating of the system is 
instantaneous, its contents fully reflect the current state of the 
environment. If, on the other hand, it is updated once a week, 
one can only answer the above question with something like 
"As of date X, the following students: ... ". 

It follows from these observations that knowledge bases 
built during the early phases of office information system 
construction will need to have a number of features. First, 
they must provide an account of the structure, static, and 
dynamic, of the environment within which the system must 
function. Second, they must provide an account of how the 
contents of the system to be built relate to the environment. 
~dditionally, one can expect that such knowledge bases will, 
In general, be large, involving thousands of concepts, which 
must be described and organized in a way that renders the 
knowledge base comprehensible. Moreover,' the knowledge 
bases will be dynamic in the sense that the rules and pro
cedures that determine the behavior of the environment will 
change frequently. 

What kind of a knowledge representation framework can 
accommodate these requirements? First; the framework must 
provide support for the representation of time to facilitate the 
modeling of the dynamics of the intended system and its en
vironment. Second, the framework must draw a distinction 
between the contents of the information system and the state 
of the environment, so that one can make statements about 
the accuracy and completeness of the information handled by 
the intended office information system. Third, the framework 



must offer structuring mechanisms since, as was said before, 
this is a knowledge engineering in-the-Iarge activity. The re
quirements modeling language RML,6 and its successor CML 7 

exemplify the kinds of linguistic tools one can develop taking 
these considerations into account. Both languages treat a re
quirements specification as a history of the world being 
modeled. CML, however, goes further in treating a require
ments specification as a history of our knowledge of the world. 
This feature makes CML powerful enough to talk about the 
completeness, accuracy, and precision of the information 
handled by the intended system. 

Applying knowledge representation techniques to the de
velopment of design specification languages is slightly more 
problematic. One might argue (and many have!) that design 
specifications should be independent of the environment 
within which the system under development will eventually 
function, and should simply provide an account of the sys
tem's behavior. Consider, however, a system which maintains 
information about, say, students at a University. A formal 
specification of such a system which merely describes its be
havior but doesn't try to provide an account of what the infor
mation handled by the system means in the first place (i.e., 
how it relates to reality), seems incomplete. It tells us how 
symbols will eventually be pushed around inside a machine. It 
doesn't give us any guidelines on how to interpret these sym
bols. This observation suggests that, at least for information 
systems, a design specification should come with an account of 
how mechanism behavior corresponds to the world being 
modeled. For design specifications of this sort we need linguis
tic tools that on the one hand, allow for the description of 
system components, their state, and I/O behavior; and on the 
other, come \vith a rich semantic theory that allows one to 
relate system states and functions to the world being modeled. 
The so-called semantic data models (attempt to) do just that. 
(See Brodie8 and Borgida.9

) An example of a semantic office 
model is described in Gibbs. 10 

We have discussed how and why knowledge representation 
techniques can influence the features of requirements and 
design languages for office information systems. Implicit in 
our arguments is the assumption that building such systems 
requires several linguistic levels: some for requirements mod
eling, others for design, and still others for implementation. 
What implications does such an influence have for the envi
ronments offered for building such systems? To start with, 
each linguistic level used needs an environment. Those for the 
more procedural levels can offer typical facilities such as 
special purposes editors, interpreters, tracing and debugging 
packages, version control, and the like. The environments for 
the less procedural levels need reasoning facilities so that a 
user can probe a knowledge base to see if it is consistent with 
hislher expectations. A second type of facility needed for such 
an environment is intended to make it possible to generate 
lower level (and more procedural) specifications from higher 
level (and more declarative) ones. Depending on the nature of 
the two levels, it may be possible to have a compiler that 
handles this job. Alternatively, the environment may provide 
facilities for the interactive generation of the lower level 
specification from the higher level one. These facilities could 
include expert system features so that the environment plays 
the role of an active assistant rather than a passive bookkeeper 

Artificial Intelligence in Office Information Systems 51 

in the generation of a specification. A third desirable facility 
involves the maintenance and management of multiple 
specifications for a particular software system corresponding 
to the different linguistic levels supported by the environ
ment. Such a facility would allow a user to maintain a require
ments specification, a design specification, and an imple
mentation specification of hislher software, along with infor
mation on how parts of one specification relate to parts of 
others. With such a setup, it is possible to determine how 
changes of the specification at one level affect the specifica
tions at other levels. The research project outlined in larke, 
Mylopoulos, Schmidt, and Vassilioull focuses on an environ
ment intended to provide all three facilities mentioned above. 
It is fair to add that there are scores of research issues to be 
addressed in realizing an environment of the type advocated 
here and that a research program addressing such issues can 
only be described as long term. 

OTHER OIS AIDS 

Meetings constitute an important part of the communication 
and coordination work of organizations. They are used to dis
seminate information, explore ideas, resolve disagreements, 
and enhance teamwork to achieve organizational goals. The 
large amount of manager time consumed by meetings has 
been documented and reported in the literature. 

The task of organizing and executing an effective meeting 
can, however, be both time consuming and difficult. After this 
time consuming preparation, there are no guarantees that the 
meeting will proceed smoothly, and evaluation of the "good
ness" of a meeting is quite elusive. Unsuccessful or wasteful 
meetings are experienced frequently, but the exact causes of 
these failures are largely undocumented and not well under
stood. One of the reasons for this lack of understanding is that 
the results and effects of a meeting can be quite diverse, 
ranging from meeting minutes and action items to feelings of 
wasted time and latent disdain for certain people and tasks: 
these can be very difficult to capture and quantify. Another 
reason is related to the sometimes surprising and unpredict
able nature of participant behavior. A further reason is the 
lack of formal models of meetings, and lack of a "theory of 
meetings" within which researchers can work and relevant 
results can be interpreted. The thrust of Project Nick at MCC 
is to perform interdisciplinary research into the analysis of 
content, structure, and protocols of meetings. Our group has 
been performing research in the areas of meeting analysis and 
meeting augmentation. In this ongoing effort, we are theoriz
ing on a large set of ideas; assembling and implementing a 
subset of these ideas; and performing experiments to validate 
those ideas which appear most promising and applicable. We 
believe that new technology may present the opportunity for 
new and better meeting styles and organizations. 

The meetings research is based on a two pronged approach 
with both aspects proceeding in parallel and complementing 
each other. The two prongs are building theories and building 
systems. 

Building Theories-This aspect of our work began with a 
careful definition of our basic notions (meeting, exploration, 
design) and proceeds by creating intuitions, wild ideas, asser-



52 National Computer Conference, 1987 

tions, and hypotheses. The hypotheses, in turn, suggest cer
tain systems which we can build to confirm these hypotheses. 
This work has tried to pinpoint aspects of meetings which 
frequently go wrong, and to develop measures of goodness of 
meetings; all of this interdisciplinary work is clearly depen
dent upon factors such as the type and intent of the meeting. 

Building Systems-This includes the construction, test, and 
usage of electronic meeting aids. Our meeting aid equipment 
includes an electronic blackboard and interconnected per
sonal computers for all meeting participants. 

In the future, we envision analyses of information derived 
during the meeting, and used to enhance the meeting in real 
time. 

HARDWARE FOR OIS USING AI 

Current work in office information systems has demonstrated 
the applicability of various techniques of artificial intelligence 
to the office environment. The main hardware components of 
an office information system must be developed specifically to 
support artificial intelligence programming in order to achieve 
maximum utilization. This is particularly true for a work
station, the site of interaction with a user which demands the 
highest degree of intelligence. Three characteristics of the 
workstation can be identified; emphasis on AI techniques, 
application to the office environment, and inclusion of multi
media and natural language processing (NLP) capabilities. 
Workstations for future office information systems must 
combine these features if they are to achieve any degree of 
success. 

In addition to the fairly standard hardware, the workstation 
requires a number of less common components that are re
quired to fulfill the software objectives of the projects. 12 

These components include: 

1. A telephone interface. 
2. Audio hardware. Specialized devices are to be used for 

the recognition and generation of human speech and 
possibly for sampling and compressing audio signals. 
This hardware is necessary for the multimedia user inter
face. 

3. A data filtering device. To perform pattern-oriented re
trieval from the disk at high speed, a special processor 
known as the Schuss filter13 will be integrated with the 
workstation hardware. The use of a hardware filter on 
the intelligent workstation is one of the most novel as
pects of the system. 

The main requirements for the operating system used by 
the intelligent workstation are support for: (1) distributed 
processing, (2) Real-time processing, and (3) Knowledge
based applications. 

Since office applications are inherently distributed, the 
operating system must provide facilities for networking and 
interprocess communication. The data handled in the office 
include audio and image data in addition to the traditional 
numeric and character data types. To perform such functions 
as acquisition and storage of audio data, the operating system 
must have real-time processing capabilities. Finally, knowl
edge-based applications can benefit from operating system 
support. For example, many intelligent applications for the 

office will make use of large, shared knowledge bases in which 
case adding and retrieving knowledge becomes crucial. It is 
expected that the Schuss filter can be used to improve the 
efficiency of knowledge retrieval. 

CONCLUSION 

We have examined the various areas of application of AI 
technology in office information systems and the office of the 
future. The use of more convenient user interfaces in the form 
of natural languages and the convenience of individualized 
interface require, the maintenance of a wide variety of knowl
edge by the interface system. In addition, the system must be 
able to interpret the contents of the information system. Such 
interpretation requires that the system know the dynamic en
vironment within which the system operates, as well as the 
accuracy of the information contained in the system. 

Support for other office functions like meetings, which con
stitute an important part of the communication and coordi
nation work of an organization, is also essential. The use of 
modern technology, including AI, to improve meetings is thus 
vital. 

The need of an intelligent workstation which supports AI 
programming is obvious. Such a workstation must have the 
capability to support AI programming, multimedia and 
natural language processing. 

REFERENCES 

1. Chamberlin, D.D. et al. "SEQUEL 2: A Unified Approach to Data Defi
nition, Manipulation, and Control." IBM J. R&D, 20 (1976) 6, pp. 
560-575. 

2. Zlooff, M.M. "Query-by-example: A Data Base Language." IBM Systems 
Journal, 16, 4, pp. 324-343. 

3. Fikes, R. "Odyssey: A Knowledge-Based Assistant." Artificial Intelligence, 
Vol. 16, 1981, pp. 331-361. 

4. Barber, G. "Supporting Organizational Problem Solving with a Work
station." ACM Transactions on Office Information Systems, 1 (1983) 1. 

5. Woo, C. and F. Lochovsky. "Supporting Distributed Office Problem Solv
ing in Organizations." ACM Transactions on Office Information Systems, 4 
(1986) 3. 

6. Greenspan, S. "Requirements Modeling: A Knowledge Representation 
Approach to Requirements Definition." Ph.D. thesis, Department of 
Computer Science, University of Toronto, 1984. 

7. Stanley, M."A Fonnal Semantics for CML." M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1986. 

8. Brodie, M.L. "On the Development of Data Models." in M., Brodie, J. 
Mylopoulos, and J. Schmidt. (eds.) On Conceptual Modeling: Perspectives 
from Artificial Intelligence, Databases and Programming Languages, New 
York: Springer Verlag, 1984. 

9. Borgida, A. "Features of Languages for the Development of Information 
Systems at the Conceptual Level." IEEE Software, January, 1985, pp. 
63-73. 

10. Gibbs, S. and D. Tsichritzis. "A Data Modeling Approach for Office 
Infonnation Systems." ACM Transactions on Office Information Systems, 
1, (1983) 4. 

11. Jarke, M., J. Mylopoulos, J. Schmidt, and Y. Vassiliou. "Towards a Knowl
edge Based Software Development Environment." in J. Schmidt, and C. 
Thanos, (eds.) Foundations for Knowledge Base Management, Proceedings 
of Workshop on Foundations on Knowledge Base Management, Chania, 
June 1986. 

12. Naffah, N. et al. "Design Issues of an Intelligent Workstation for the 
Office." AFIPS, Proceedings of the National Computer Conference 
(Vol. 55) 1986, pp. 153-159. 

13. Gonzales, Rubio R. et al. "The Schuss Filter; A Processor for Non
numerical Data Processing." Proc. of IEEE Annual Symposium on Com
puter Architecture, Ann Arbor, 1984. 



A portable natural language interface* 

by BIPIN C. DESAI, JOHN McMANUS, and PHILIP J. VINCENT 
Concordia University 
Montreal, Quebec 

ABSTRACT 

A natural language interface allows database system users to input a query in a 
natural language such as English or French rather than in a formal query language. 
Such interfaces could also provide for natural language updates, but this paper deals 
only with queries. 

The goal of a natural language interface is to permit users to express their infor
mation needs in their own language and in conceptual terms particular to their under
standing of the database application domain. Users also are freed from knowing 
about database management systems (DBMS), data models and database schemas. 

Allowing a user to access a database using natural language shifts onto the 
computer system (the interface and the DBMS) the burden of mediating between 
two views of data: the way in which the data is stored (the database view) and the 
way in which an end user thinks about it (the user's view). A DBMS, particularly 
a relational one, accomplishes part of this task. The interface must reconcile the 
user's view with the DBMS' view. 

To achieve such data independence, the interface must incorporate a consid
erable amount of knowledge including knowledge about natural language, the 
domain database application, and DBMSs and their query languages. 

*This work was supported in part by a contract from the Canadian Workplace Automation Research Center of the 
Department df Communication, Government of Canada. 

53 





INTRODUCTION 

A natural language interface is portable if it can be transferred 
with minimum effort from the database for which it was de
signed to a new database. The degree of portability is re
flected in the amount of effort required to transfer the inter
face. If an interface is handtailored to a particular database, 
major reprogramming is required to convert it to a new data
base. In the extreme case, the effort will be equal to the task 
of programming the interface to the original database. On the 
other hand, an interface that requires no effort to transfer is 
beyond the capabilities of current research. Such an interface 
would have to learn by itself the characteristics of a new 
database and adapt its linguistic and computational abilities 
accordingly. 

The general design structure for an interface that allows a 
moderate degree of portability is presented in the next sec
tion of this paper. The goal of the design structure is to min
imize the amount of reprogramming necessary for three types 
of database transfer: (1) change of DBMS, (2) change of 
application domain, and (3) conceptual reorganization of the 
database. 

Tne key to achieving some degree of portability is modu
larity. Early natural language systems! were handtailored for 
particular applications. In their data structures and pro
cedures, they intermixed knowledge about language with 

Natural 

Language 
Query 

Parser 

r ." 

" " " 

Parse 

Tree 

" " " " " " 

.. 

" " 

Semantic 
J\nalyzer 

! 

Semantic 
~bJel 

A Portable Natural Language Interface 55 

knowledge about the domain application. They also conflated 
user request with how to obtain the information requested. 
The early systems were inherently not portable because they 
were not modular. 

Natural language interfaces can be modularized in three 
dimensions. The first dimension keeps distinct the three main 
types of knowledge required; that is, knowledge about lan
guage, the application domain, and databases. The second 
separates procedural knowledge from declarative knowledge. 
The ability to parse an English sentence is inherently pro
cedural whereas the vocabulary a parser accepts is naturally 
declarative. A parser and its lexicon should therefore be kept 
separate. The third dimension distinguishes between general 
knowledge and domain-specific knowledge. This dimension is 
crucial for portability. As much of the interface as possible 
should be designed using only general knowledge. A transfer 
to a different DBMS or application thus would not require 
changing modules that incorporate general knowledge only. 

GENERAL DESIGN STRUCTURE 

Figure 1 graphically illustrates a possible design of a portable 
natural language interface. The design includes three pro
cedural modules and three declarative modules. The proce
dural modules are the parser, the semantic analyzer, and the 
query generator. The declarative modules are the lexicon, the 

Semantic 

Representa-
tion. 

Query 
Generator 

! 

Datahase 
Mlpping 

rormal 

Query 

I 7 
I database ( 
\ \ 

~ 

DB~lS 

Figure I-A general design structure for a portable natural language interface to a DBMS 



56 National Computer Conference, 1987 

semantic model, and the DB mapping. The DBMS and data
base also are shown in Figure 1, but they are not part of the 
interface. 

A natural language query is input to the interface and the 
interface's final output is a formal DBMS query. The pro
cedural modules, each using knowledge in the declarative 
modules, successively transform the natural language query. 
Using the lexicon and the semantic model, the parser outputs 
a parse tree representation of the query. Using the semantic 
model, the semantic analyzer transforms the parse tree into a 
semantic representation of the query. Finally, using informa
tion in the DB mapping, the query generator in turn trans
forms this semantic representation into a formal DBMS 
query. 

The procedural modules are written as generally as possi
ble, incorporating domain-independent knowledge only. The 
domain-specific knowledge is isolated in the declarative mod
ules. The lexicon contains the words users may use in their 
queries. The semantic model is a formal representation of the 
application domain. It should not be confused with the DBMS 
conceptual schema; rather, it corresponds to a DBMS enter
prise schema. The DB mapping contains the mapping be
tween the concepts of the semantic model and the correspond
ing structures of the database. 

Following is a description of the portability achieved by the 
design. If the application domain is changed, only the lexicon, 
the semantic model, and the DB mapping have to be modi
fied. If the DBMS is changed, only the query generator is 
modified. If the database is reorganized without semantic 
change, only the DB mapping is changed. The parser and the 
semantic analyzer are perfectly portable; immune to any do
main, DBMS, or database transfer. 

THE IMPORTANCE OF THE SEMANTIC MODEL 

Language can be described as the encoding of thought for the 
purpose of communication. Communication is between a 
sender and a receiver. The sender formulates a thought, en
codes it into language, and sends it to the receiver. The 
receiver receives the sender's language and decodes it, at
tempting to recreate the sender's original thought. An act of 
communication is deemed more or less successful according to 
how perfectly the original and recreated thoughts match. A 
match is possible only if a model of mutual comprehension 
exists. Culture provides such a model for normal human com
munication. 

The basic process of communication occurs analogously in 
a natural language database system. A user formulates his or 
her information need according to his or her understanding of 
the application domain. Then the user encodes this need into 
language and sends it to the interface. The interface (i.e., the 
parser and semantic analyzer modules) decodes the language 
and recreates the user's original information need. A model of 
mutual comprehension is necessary, and is provided by the 
semantic model which is the interface's representation of the 
application domain and, to complete the analogy, the com
mon culture of the user and the interface. 

The semantic model is therefore cruciai to the interface. 
Each natural language question is translated, or decoded, into 

a query on and in the terms of the semantic model. Its exact 
form depends upon the formalism of the semantic model. 
There is no general consensus about which formalism should 
be used in implementing the semantic model. Examples in
clude object-based data models2 and artificial intelligence 
knowledge representation schemes. 3

,4 The other declarative 
knowledge in the system is defined with reference to the se
mantic model. Each word in the lexicon is associated with a 
particular concept in the semantic model. The DB mapping 
relates the concepts of the semantic model to the database 
structures. 

Is the semantic model necessary? In other words: Could 
there be a mapping directly between the words of the lexicon 
and the database structures? The argument against this direct 
mapping is that a database schema does not adequately repre
sent the domain semantics and fails to provide a model of 
mutual comprehension. Without a separate semantic model, 
the burden of handling the domain-specific semantics de
volves onto the semantic analysis procedure. This procedure, 
as outlined in the previous section, is meant to be domain 
independent and portable. Eschewing a semantic model 
therefore results in a handtailored non-portable interface. 

THE PROBLEM OF AMBIGUITY 

A natural language interface has to cope with the inherent 
ambiguity of natural language. Ambiguity serves a useful pur
pose in human communication by reducing the verbiage nec
essary to express an idea. The ambiguity is resolved by context 
or by interaction. 5 

There are two main types of ambiguity: syntactic and se
mantic. Syntactic ambiguities arise when there are multiple 
valid parses of the same query. For example, "Which course 
has the largest enrollment of students in computer science?" 
may be parsed with "in computer science" modifying either 
the course or the students, with different interpretations re
sulting. Semantic ambiguities occur when the parsed constitu
ents have several possible meanings. For example, "Where is 
the Netherlands?" may request the position of a ship or a 
country, though syntactically it is unambiguous. 5 

Many ambiguities can be resolved with recourse to the se
mantic model. However, complete automatic resolution of all 
ambiguities is not possible. The system must echo back para
phrases of the possible meanings of the query and thereby 
allow a user to choose the intended interpretation. 

PARSING 

To parse a query, it is necessary to use a grammar that de
scribes the structure of strings accepted by the interface. 
Given such a grammar, the parser assigns a structure, or parse 
tree, to each grammatical query it processes. The grammar, 
which should allow a user wide linguistic variation, is incorpo
rated within the parser module. The domain-specific knowl
edge the parser requires is in the lexicon or dictionary. 

The lexicon contains all the words accepted by the parser. 
Associated with each word is its syntactic categOiY and its 
association to the semantic model. The entry for red would 



include adjective as its syntactic category and instance-oj-color 
as its conceptual association. The entry for part would indicate 
that it is a noun and that it is associated with the entity type 
"part" assuming an entity-based semantic model. The entry 
for who would indicate that it is an interrogative personal 
pronoun and indicate the set of entity types that it might refer 
to. The entry for supply would have verb as its syntactic cate
gory and the relationship or aggregation "supply" as its asso
ciated concept. 

Assuming such a lexicon and the simplified grammar of 
Figure 2, a parse of: "Who supplies red parts?" would pro
duce the tree of Figure 3. 

In addition to the parse tree in Figure 3, the parse would 
pass to the semantic analyzer: (1) pointers to the -appropriate 
concepts, (2) the morphological jnformation that the input 
string contains the third person singular form of supply and 
the plural form of part, and (3) the further syntactic informa
tion that who is the subject and part is the object of supply. 
The semantic analyzer would access the semantic model and 
disambiguate who by checking which entities can serve in the 
role of subject to the concept "supply." The morphological 
information of third person singular indicates that who refers 
to the specific entities. If entity types were desired, the phrase 
would have been: "Who supplies red parts?" 

This description represents one extreme of the use of se
mantics in parsing: a completely syntactic parse followed by 
semantic analysis. 2 However, pure syntactic parsing can cause 
problems. Natural language viewed syntactically has many 
ambiguities. The major type of syntactic ambiguity arises 
from the fact that modifying phrases and clauses can be phys
ically separated from the constituents they modify. For exam
pie, the question "Who drove down the street in the car?" has 
a syntactically valid reading of: "the street is in the car.,,5 
A simple semantic intervention would rule out this possible 
parsing. Indeed, when the length of the query and the num
ber of modifiers increases the number of parses grows 
exponentially. 4 

The other extreme of the use of semantics in parsing is a 
semantic grammar2 in which semantic and syntactic categories 
are intermixed in the constituent structures the grammar uses 
to describe the language. The problem with this approach is 
that it introduces domain-specific semantics within the parser 
and makes the interface less portable. It also makes it much 
more difficult to provide wide linguistic coverage. In a syn
tactic parser, the passive form of all verbs can be allowed with 
the introduction of one general transformation rule. In a se
mantic grammar, on the other hand, the passive transforma
tion would have to be added for every verb. 

There seems to be a general consensus2
, 4, 6, 7 that the best 

approach is a syntactically based parser with general semantic 

S ~NP VP 
NP ~PRON 

NP ~ADJS N 
ADJS ~ 01 ADJ 1 ADJS 
VP ~V 

VP ~V NP 
Figure 2-A simplifed grammar 

A Portable Natural Language Interface 57 

S 

NP 

PRON 

N 

who 

red 

Figure 3--A parse tree representation 

checks or routines. The syntactic base permits portability and 
wide linguistic coverage. With semantic intervention many 
ambiguities can be resolved early in the parsing process. Syn
tactic and semantic disambiguation proceed together. Modi
fier placement is determined by seeing which concepts are 
linked in the semantic model. Semantic or lexical ambiguity 
caused by words having multiple meanings is resolved by 
maintaining a set of candidate meanings for each word during 
p~rsing and restricting the set as the syntactic structure pro
VIdes a context. Often not all ambiguities will be resolved and 
the interface should present the multiple interpretations to the 
user as described in the previous section. 

Semantic checking may also reveal meaningless queries. It 
may not be possible to associate a modifying phrase with any 
head noun phrase. For example, "Who supplies red pro
jects?" is a meaningless query if projects do not have the 
attribute color. Similarly, the restriction of candidate mean
ings for words can lead to recognizing a meaningless query 
when the set of candidate meanings becomes null. This would 
occur in the following question: "Which projects supply red 
parts?" The word projects originally has one candidate mean
ing. However, the verb supply does not allow that candidate 
meaning as its subject, thereby rendering the query meaning
less. 

Adding semantics to the parsing process allows the output 
of the parse to be more than just a syntactic parse tree. An 
incipient semantic representation can be created. It would be 
based on the association of concepts implied by modifying 
phrases and clauses and by verb-noun phrase relationships. 

THE LEXICON 

Kaplan5 defines three types of lexical entries: general, struc
tural, and volatile. General entries are those that apply in 
practically any domain. These include closed classes of words 
such as auxiliary verbs, prepositions, and conjunctions. Gen-



58 National Computer Conference, 1987 

eral entries constitute a permanent part of the interface. 
Structural entries are those that make reference to aspects of 
the semantic model and must be changed for each new 
application. These are the nouns, verbs, adjectives and their 
many synonyms that typically are used in a particular domain. 
The impossibility of predicting during system design all the 
various synonyms that may be used argues for an interactive 
synonym generator that enables the user himself to extend the 
vocabulary accepted by the interface. Volatile entries are 
those which refer to specific values in the database. They also 
are the most problematic. Keeping each value in the lexicon 
is too expensive because doing so essentially entails a duplica
tion of the database. Searching the database is not a feasible 
solution because the interface may not know where the un
known lexical item is located in the database and because 
possible but not actual values can be used. One proposed 
solution8 is to represent values from limited domains or those 
used frequently and to disallow the user of other values in 
queries. However, a better solution is for the interface to ask 
a user for clarification when it is confronted with unknown 
lexical items. 

SEMANTIC ANALYSIS 

The semantic model encodes the user's view of the domain. In 
its simplest form, a semantic model must represent a user's 
knowledge of the objects in the domain, the properties of 
those objects, and the relationships among them. Various 
representation formalisms such as semantic data models,2 se
mantic networks,3 and case grammar frames? are used. The 
common point among them is that they are richer semantically 
than database schemas and are able to provide a data indepen
dence that DB schemas alone cannot provide. 

The semantic analysis must recognize the propositional 
content in a user's query. The basic proposition in a query is 
determined by the main verb and the noun phrases to which 
it relates. This verb-noun phrase relationship is similar to the 
way a predicate relates its arguments and the way aggregation 
relates entities and attributes. The main verb of a query can 
thus be seen as defining its main predicate. Additional propo
sitions or predicates are defined by modifying phrases and 
clauses. These predicates are, in effect, nested within the 
main predicate. Adjectival and prepositional phrases have 
very simple predicate realizations. For example, green be
comes color (x,green) and in London becomes in(x,London). 
Clausal modifiers add another level to the nesting because the 
verbs within the clauses also represent predicates. Therefore, 
the semantic analyzer must unnest all the predicates and re
late the resulting separated predicates through common vari
ables. 

This propositional content of the query must be trans
formed into a conceptual calculus form analogous to re
lational calculus. That is, the propositional content must be 
transformed into a declarative description of the information 

desired in terms of the users' concepts rather than the re
lations of a relational database. 

QUERY GENERATION 

The task of the query generator is to take a conceptual calcu
lus query and transform it into a query of the underlying 
DBMS. First it must map the concepts of the semantic model 
into the underlying database structures and then translate the 
query. If the back-end DBMS is relational, mapping and 
translating may be relatively straightforward. However, if the 
DBMS is a hierarchical or network system, the task is compli
cated . by an extra burden of having to physically navigate 
through the files and records of the database. 

CONCLUSIONS 

The basic framework for a portable natural interface to a 
DBMS is presented in this paper. The purpose of the interface 
is to make a database more user-friendly. To achieve por
tability, modularity and separation of general and domain
specific knowledge are necessary. The procedural modules 
are the parser, the semantic analyzer, and the query gener
ator. The declarative modules, in which all the domain
specific knowledge is isolated, are the lexicon, the semantic 
model, and DB mapping. The semantic model, more seman
tically expressive than a DB schema, is necessary to provide 
portability and data independence. 

REFERENCES 

1. Hendrix, G.G., E. Sacerdoti, D. Sagalowicz, and J. Slocum. "Developing a 
Natural Language Interface to Complex Data. ACM Transactions on Data
base Systems, 3 (1978) 2, pp. 105-147. 

2. Ishikawa, H. "A Knowledge-Based Approach to Designing a Portable Nat
ural Language Interface to Database Systems." Proceedings of the 1986 
International Conference on Data Engineering, IEEE Computer Society, 
1986, pp. 134-143. 

3. Ginsparg, J.M. "A Robust Portable Natural Language Data Base Inter
face." Proceedings of the 1983 Conference on Applied Natural Language 
Processing, 1983, pp. 25-30. 

4. Konolidge, K. "A Framework for a Portable Natural Language Interface to 
Large Data Bases." Technical Note 197, Artificial Intelligence Center, SRI 
International, 1979. 

5. Kaplan, S.J. "Designing a Portable Natural Language Database Query Sys
tem." ACM Transactions on Database Systems 9 (1984) 1, pp. 1-19. 

6. Boguraev, B.K. and K. Sparck Jones. "How to Drive a Database Front-End 
Using General Semantic Information." Proceedings of the 1983 Conference 
on Applied Natural Language Processing, 1983, pp. 81-88. 

7. Grishman, R., L. Hirschman, and C. Friedman. "Isolating Domain De
pendencies in Natural Language Interfaces." Proceedings of the 1983 Confer
ence on Applied Natural Language Processing, 1983, pp. 46-53. 

8. Templeton, M. and J. Burger. "Problems in Natural-Language interface 
with Examples from EUFID." Proceedings of the 1983 Conference on Ap
plied Natural Language Processing, 1983, pp. 3-16. 



A method for increasing software productivity called 
object-oriented design-with applications for AI 

by DAVID C. RINE 
George Mason University 
Fairfax, Virginia 

ABSTRACT 

Object-oriented design language research has suggested some basic concepts that 
object-oriented programming and languages should support. These are: (1) infor
mation hiding, (2) data abstraction, (3) dynamic binding, and (4) inheritance. 
Object-oriented languages are receiving extensive use in artificial intelligence. Al
though the Ada language possesses the information hiding and data abstraction 
concepts, it does not possess the dynamic binding and inheritance concepts. These 
and other limiting factors in developing AI software using object-oriented methods 
are discussed in this paper. Object-oriented design is becoming an important 
method for establishing database and knowledge base systems software as produc
tivity issues rely more on tools for reconfiguring existing software and rapidly 
prototyping software under development. We present some features of object
oriented design pertaining to the development of such databases and knowledge 
bases including data modeling, data sublanguages, and distribution techniques. 

59 





INTRODUCTION: OBJECT-ORIENTED 
DESIGN LANGUAGES 

Software development studies generally have confirmed that 
software development costs increase and software productiv
ity decreases in more than a linear relationship as the size of 
the entire project increases. 1 Software productivity also seems 
to depend upon such things as: 

a. The amount of code. 
b. The number of concepts that must be understood to 

make one programmer's subsystem interact properly 
with another's. 

Software metrics have been developed in an attempt to 
measure software productivity that includes (a) and (b). Fur
ther, (b) is influenced by such concepts as: 

c. Information hiding. 
d. Data abstraction. 

It has been observed that, consequently, one can reduce the 
amount of code written in some projects by acquiring most of 
the code parts from libraries containing pre-packaged code. 

Therefore, in this paper we do not think of databases or 
knowledge bases in the usual logical record-oriented fashion. 
We think of data banks of machine components-potentially 
live data banks that can be thought of as organized nests or 
hives of clones. These machine component banks, which we 
identify with logical entities termed objects, can be thought of 
as being managed in ways that are both similar and different 
from the ways logical records are managed. Ideally, the ob
jects themselves should be able to adapt, similar to self
adaptive automata, depending on the context in which they 
are placed. Adaptation makes such banks ideally suited for 
rapid proto typing and simulating of artificial intelligence (AI) 
software systems. With a little effort, one can see that a lan
guage supporting the definition and manipulation of such 
banks, or bases, goes far beyond the generic language proper
ties of Ada and into languages that possess powerful dynamic 
binding, inheritance, and adaptive properties. 

Pascoe3 has suggested some basic concepts of object
oriented programming and languages. These are: (1) informa
tion hiding, (2) data abstraction, (3) dynamic binding, and (4) 
inheritance. OOLs are used a great deal in AI. Although the 
Ada language possesses concepts (1) and (2), it does not 
possess (3) and (4). Therefore, it may be asked to what extent 
do these concepts limit development of AI software? 

In Artificial Intelligence, 20 Winston suggests three ap
proaches to answering the question: "Where is knowledge 
about procedures stored?" and later suggests that any of the 

Object-oriented Design: With Applications for AI 61 

three can be used in controlling a robot. Let us repeat these 
three approaches: 

• A system exhibits action-centered control when the sys
tem's procedures know what subproceedures to use to 
perform actions. 

• A system exhibits object-centered control when the sys
tem's class descriptions specify how to deal with objects 
in their own class. 

• A system exhibits request-centered control when the sys
tem's procedures know their own purpose so that they 
may respond to requests. 20 

In this paper, we address the second AI approach, object
centered control. 

NEEDS: OBJECT-ORIENTED 
DESIGN METHODS IN AI 

Rapid prototyping, simulating, and reconfigurating of systems 
are important to the development of AI software. In the past, 
managers of large organizations were only infrequently able 
to get answers to "what-if' questions. The reasons for this 
included: 

• Rapid proto typing of such systems was non-productive. 
• Simulatings of such organizations were too costly to de

velop. 
• Reconfigurating existing systems was not well-supported. 

Also, management would attempt to take advantage of the 
experience of a systems analyst who had worked on similar 
cases to gain answers to "what-if' questions. More recently, 
however, we have begun to see the emergence of AI tech
niques5 to model large organizations. Such techniques are 
used to automatically generate the necessary scenarios for a 
particular business environment through rapid prototyping 
that supports rapid reconfigurability of potential systems. 

Object-oriented programming is both a packaging technol
ogy and a software engineering method that addresses these 
software productivity issues. The kind of packaging ap
proaches used will influence: 

e. Software reconfigurability. 
f. Ability to prototype rapidly. 
g. The types of applications that may be developed. 

Issues of object-oriented languages (OOL) began with the 
Small-talk -80 system (trademark of Xerox Corporation). 2 The 
Small talk language offers a uniform and powerful metaphor 



62 National Computer Conference, 1987 

whereby procedures and data that belong together are pack
aged in an object. An object is a package of data and proce
dures that belong together, and Small talk procedures are 
called methods. An object can be thought of in many ways; for 
example, it can be casually thought of as a considerably ex
panded version of the Pascal record. Smalltalk does computa
tion by sending messages to objects. 

METHODS: DESIGN AND LANGUAGE 

Abstract reasoning has played an important role in designing 
modern software. On the one hand, the role of structured 
systems analysis has made such tools as data flow diagrams 
and structureIHIPO charts common in the top-down approach 
to procedure-oriented design. On the other hand, a bottom
up approach has been introduced by using existing packages 
and object-oriented designs. Shooman1 has suggested that 
certain applications are better developed through the top
down approaches, while other applications are more suited to 
bottom-up approaches. One factor, of course, is the amount 
of interaction anticipated between individual processes or 
modules. It has been suggested, for example, that the top
down approach is appropriate when there is a great deal of 
anticipated process/module interaction, and the bottom-up 
approach is more suitable when there is little, if any, inter
action. 

Booch6 has suggested an object-oriented design (OOD) 
method that includes: (1) defining the software engineering 
problem, (2) developing an informal strategy, (3) formalizing 
the strategy, and (4) implementing the solution. Formalizing 
the strategy includes: (a) identifying objects of interest by 
choosing them as nouns, pronouns, and noun clauses from the 
problem's text and (b) identifying operations of interest by 
choosing them as verbs, verb phrases, and predicates from the 
problem's text. Moreover, it is pointed out that some objects 
identify classes of objects. Further, operations are identified 
to manipulate or act upon certain objects. It also is pointed 
out that only proper nouns and nouns of direct reference will 
represent objects at the code level, while other objects iden
tify classes of objects. The method, therefore, implies an in
heritance concept through the introduction of such classes. 

It has been suggested that Ada is an 00L,7 but by our 
accepted definition, using concepts (1) through (4) described 
in the Introduction section, this is not the case. On the other 
hand, the OOD notation introduced in Booch's method, 
along with Ada, does imply the concepts of information hid
ing, data abstraction, and inheritance. 

In summary, we are faced with a problem of mapping or 
transforming an OOD notation that has three of the proper
ties of an OOL into a language, namely Ada, that has only two 
of the properties of an OOL. This problem may be severe 
because there is a possibility of losing information in the trans
formation. 

The problem of losing information is similar to that faced by 
database designers when mapping entity-relationship (E-R) 
model diagrams, which clearly distinguish entities from attri
butes, into a relational model which may not. Lossless trans
formations are those for which it is guaranteed that informa-

tion will not be lost. Identifying lossless transformations be
tween design notations (language syntax) is a fundamental 
problem in systems analysis. Automating these trans
formations is somewhat like developing a language parser or 
reverse parser that will transform language "programs" into a 
lossless equivalent representation in object form (for exam
ple, where the object form is a relation, relation of relations, 
tree, or tree of trees). 

Recent general research about AI software design using 
graphics support based upon hierarchies of data flow diagrams 
and knowledge base support using dictionaries of data defini
tions can be found in Harandi and Lubars.11 

DATABASE SUPPORT: SCHEMAS 

AI software engineers develop material in high level "chunks" 
which may be thought of as software design schemas. Often 
such schemas are developed in an arbitrary manner and so the 
software designer must recall many rather detailed design 
"objects." This further suggests a need for organized libraries 
of reusable code in software development tasks. In our frame
work, the high-level chunks are like database schemas. Design 
success may depend on the availability of schemas that log
ically locate desired library components and allow the soft
ware engineer to fit the components into the partially com
pleted design. 

Thus a library of these stored design schemas, which can be 
thought of as objects, and a system for schema manipulation 
are needed. These schemas, or objects, would be combined 
into an integrated knowledge base for use by a software en
gineer or program development expert system. 

At the lowest logical level of detail in these schemas, one 
may casually think of certain objects as being like database 
records, each record being comprised of procedures, func
tions (modules), and data items; a notion similar to the most 
general kind of Ada record. These database records may also 
be thought of in terms of E-R relationships or relations in a 
relational model, but such that the entities can be like proce
dures and functions (modules) as well as data items. On the 
other hand, higher level objects evolve by use of superclasses 
from lower level classes, permitting the inheritance character
istics of object-oriented design. 

Such schemas can be generated using object-oriented dic
tionaries as tools in the requirements gathering stage. 

Moreover, messages and methods afford a means for gen
eralizing the notion of data manipulation languages used in 
standard database management systems (DBMS). 

Objects and messages in this context may be termed object 
sub languages (borrowing from the notion of data sub language 
of DBMSs). An object base may also be managed in a distrib
uted fashion. Tools for designing such systems essentially are 
the same as the partitioning algorithm8 used in setting up 
distributed databases. 

Recent research has been carried out in this regard at a 
somewhat lower level of design abstraction that includes pro
gram structure as well as objects. In particular, Young12 has 
used the idea of a design template as an abstract and generic 
problem solution, which is applicable to a large number of 



such situations as we have mentioned here. Templates include 
a generic procedural structure as well as an abstract defining 
ability of data objects. Other results on relationships between 
object-oriented design and database systems also have been 
published. 13 

AI: OBJECT-ORIENTED DESIGN 

An early foundational work by P.J. Landin8 describes how 
some of the semantics of Algol can be formalized by establish
ing a correspondence between expressions of Algol and ex
pressions in a modified form of Church's lambda notation, an 
important formalism of LISP. Landin describes a model for 
computer languages and computer behavior that is based on 
the notions of functional application and functional abstrac
tion. That model then is used as an abstract object language 
into which Algol is mapped. The second part of Landin's 
paper gives a formal description realizing an abstract compiler 
into the abstract object language. Such mappings between 
languages are an important part of system design. 

The notion of "object" mentioned in this early paper is 
similar to the modem notion of "object" mentioned herein, 
since they are packaged parts of programs which can further 
be built-up into classes, which in tum are objects. 

Much AI software has been developed using LISP. More
over, relationships between Ada and LISP were reported at 
the 1985 AI-Ada Conference at George Mason University. 
For example, there has been some work in developing LISP 
translators in Ada, and LISP has been viewed as a higher-level 
design tool for software that eventually will be coded in Ada. 

The language ExperCommonLISP is one of the most com
prehensive OOLs for the Apple Macintosh because it imple
ments all the features of OOLs described in this paper except 
unique instance methods.9 Classes, superclasses, and sub
classes, for example, are nicely implemented in this expansion 
of CommonLISP. Another version of object-oriented LISP, 
Zeta LISP, is available on the Symbolics AI workstations. 

Therefore, from the computer language point of view, Ex
perCommonLISP incorporates more of the features of a true 
OOL than does Ada. Hence, because of the need for lossless 
transformations from design notation to computer language, 
ExperCommonLISP may be a more desirable initial target 
than Ada. This suggests a modification of the method of 
OOD, geared toward Ada, introduced earlier. 

The use of OOD also has appeared in PROLOG (another 
popular AI language) language programming. Shapiro and 
TakeuchilO have observed that Concurrent PROLOG is capa
ble of expressing object-oriented language concepts, achiev
ing the property of inheritance (i.e., the class-superclass hier
archy). In this approach certain goals can be thought of as 
objects which accept messages. Presumably this observation 
could be applied to (non-concurrent) PROLOG as well. 
There is a correspondence between PROLOG goals and Ada 
(also Pascal for that matter) procedures. 

Advantages of an object-oriented approach to database sys
tems design are described by Maier and Stein.14 They state 
that such an approach may result in a system that offers reduc-

Object-oriented Design: With Applications for AI 63 

tions in application development efforts beyond those achieve
able by traditional DBS approaches. Gem-Stone14 is such an 
object-oriented DBMS that affords packaging of both system 
behavior and structure. 

With data sublanguages and models of traditional DBMSs 
such as those using the relational approach, a data model is 
analogous to a fixed abstract data type which cannot change 
over time as additional operators, for example, become im
portant to the application. Even when designing and imple
menting such a DBMS with a language having powerful data 
abstraction and encapsulation capabilities (such as Ada) and 
including the use of generics, it is not easy to change types and 
expand the model (e.g., beyond the given relational model 
implemented through Ada packaging). Therefore, the man
agement of changing types in an object-oriented database is 
an important problem area. 15 

DISTRIBUTION OF OBJECTS: 
PARTITIONING ALGORITHMS 

Previously, partitioning in database design has been a proce
dure used to assign a logical object (e. g., relation in a rela
tional model) from a conceptual or external schema of the 
database to one or more physical objects identified in internal 
schemas (stored database). Further, in the design of a geo
graphically distributed database such logical objects (often 
termed fragments) are assigned, with possible replication, to 
the various geographical sites. 

With such traditional databases Navathe, Ceri, Wieder
hold, and Dou16 extended the work of Hoffer and Severance17 

by defining an algorithm in which attributes of an object are 
permuted in such a way that attributes with "high affinity" are 
clustered together. Further, information about the use of at
tributes by transactions is initially converted into a square 
matrix, termed the attribute affinity matrix, a symmetric 
square matrix u defined as follows: 

Uk- = [1 if transaction k uses attribute ai 

I 0 otherwise 

Their algorithm 16 is a specialization of general algorithms 
that permute rows and columns of a square matrix to obtain 
a semiblock diagonal form, applied to partition a set of inter
acting variables into subsets which interact minimally. 

In our context, the logical objects are objects as previously 
defined, and transactions from users may be replaced by mes
sages from users or other objects. 

Suppose that Ml, M2, M3, M4 are messages or users 
which refer to objects 01, 02, 03, 04, 05, 06. Then this can be 
represented by the following incidence matrix MO = 

Objects 
01 02 03 04 05 06 

Messages Ml 1 1 0 0 1 0 
M2 1 0 1 0 0 0 
M3 0 1 1 0 1 0 
M4 0 0 0 1 1 1 



64 National Computer Conference, 1987 

Then if we break up the objects into the following groups it 
is possible to process the messages in parallel: 

PI 

01 
04 

P2 

03 

P3 

05 

P4 

02 
06 

Another possible grouping follows, involving some duplica
tion with fewer groups (it is no longer a partition): 

PI 

01 
04 
05 

P2 

03 
05 

P3 

02 
06 

Once the grouping is carried out, it is possible to assign each 
group of objects to a segment of external storage-much like 
traditional program segmentation but at a higher level of 
abstraction-or to a node in a distributed system with its own 
processor and memory. Note that the processors may be non
von Neumann such as data flow processors. 

In summary, the following factors must be considered: 

1. Assignment of objects (and methods) to storage seg
ments and nodes as well as the segment or node 
arrangement 

2. Location of objects at storage segments or nodes and 
determination of all relevant addresses from user
supplied information and from information contained in 
a segment or node 

3. Assumptions about whether all instances of an object 
are to be stored on a single storage segment or node 
(similar to horizontal partitioning16

). 

DATA FLOW: OBJECT-ORIENTED MODELING 

From the Introduction of this paper, recall that we referenced 
three ways of controlling a roboeo and have emphasized 
object-centered control. Each component in a computer
integrated manufacturing system may be a self-contained ro
bot. The robots are therefore components of a distributed 
system. Bruno and Balsamo18 have described an object- . 
oriented approach for modeling such systems using data flow 
concepts. 

In this section, we take the position that data represents the 
internal states of an object and that data flow is the general 
means of describing connections between objects. Included 
are data flow diagrams between classes. Moreover, as a possi
ble application each object may comprise the logical behavior 
characteristics of a robot or automaton. 

Tools that support the design of such systems may include 
a database or knowledge base of such object descriptions. 
Such support would be helfpul in the rapid proto typing of 
potential distributed systems. 

Target implementation languages may differ and depend 

upon their ability to capture object-oriented and data flow 
designs, but Bruno and Balsama have used Ada. 

Let us now turn to further details used to represent an 
object. Because of our interest in capturing the behavior and 
control characteristics of each object, robot or automaton, we 
will use the concept of a finite state machine (or process). 

A finite state machine (fsm) is defined as a six-tuple 
(SO, S, 1,0, delta, lambda), SO in S, S, I, 0 are finite sets, 
delta and lambda are functions, and they are related as fol
lows: 

S~the initial state of the fsm 
S-finite set of states (different data in memory) 
I -set of inputs 
O-set of outputs 
delta: S x I ~ S-an input causes a state change 
lambda: S x I ~ O-an input causes an output 

With respect to the object-orientedness of the model, when 
a message m is sent to such an object an attempt is made to 
match the message with a selector i in I corresponding to a 
method of the object. If a match occurs, then the method is 
executed changing the internal state of the object and produc
ing some output. If no match occurs, then the object does not 
change its state non-trivially. 

It is also possible to consider another alternative when no 
match occurs. If message m does match with a selector corre
sponding to a method of the object, then a search may be 
made of those selectors in a fsm containing the given fsm as a 
subsystem, thereby allowing the object-oriented concept of 
superclassing and inheritance. 

THEORY: CATEGORIES 

A category K comprises a collection OBJ(K), called the set 
of objects of K, together with for each pair A, B of objects of 
K a distinct set K (A, B) called the set of morphisms from A 
to B subject to two conditions. 19 

In the object-oriented design sense, an object A can be 
thought of as a "package" (S, P) pair of states (data) and 
processes (procedures) P that can receive messages f and send 
messages g. When A - (S, P) receives a message correspond
ing to one of its methods associated with P it can change its 
internal state (manipulate its data accordingly). And data 
manipulation may include the sending of a message to another 
object B. 

An object category, OC can be formed from this object
oriented design concept by calling pairs (S, P) category ob
jects, which are members of OBJ(OC), and by calling mes
sages f (SI, Pl)~ (S2, P2) category morphisms, which are 
members of MORPH( ~C). It can be shown that this defini
tion of OC satisfies the properties of a category. 19 

An example of a pair (S, P) is an Ada package. However, 
since the Ada language does not possess the inheritance prop
erty of OOLs, subclasses and superclasses are not part of the 
language. Further in this respect, subobjects and superobjects 
do not occur naturally. Therefore, inclusion morphisms19 

would not be a natural part of the corresponding category. 



NATURAL LANGUAGES: 
FUZZY SETS AND OBJECTS 

An object, we recall, is a package of data and method (oper
ation) definitions. Associated with an object is its class, simi
lar to the idea of instance of a class. For example, to say that 
"Pussy is a cat" is an abbreviated way of saying that "Pussy is 
an instance of class cat." Thus, "Pussy" is a member of the 
class "cat." Hence, we also have the idea of membership. 

Using natural language, class instances can be purposefully 
quite abstract, often intentionally vague. For example, instead 
of saying "John is tall," i.e., "John is a tall person," we may 
say that "John is quite tall" or "John is very tall." Quite tall 
and very tall are imprecise. Moreover, a fuzzy see1 in natural 
languages is a mapping from a set U into the closed unit 
interval of reals [0,1]. For example: tall:U ~ [0, 1] is a fuzzy 
set. The range of tall determines the various grades or degrees 
of membership. Two attributes such as very tall or quite tall 
can be identified as similar or synonomous if there is sufficient 
overlap of their membership, as in common usage. 

While fuzzy sets afford some measure of similarity, in the 
past it has been common in database design to consolidate 
these attributes as identical when they are sufficiently syn
onomous, sometimes creating a standardized word, such as 
tall, in order to remove any undesirable logical redundancies. 

This concept of fuzzy sets allows us to add the idea of degree 
of membership of an instance in a class, as well as the inter
esting notion of imprecise inheritance. Moreover, earlier we 
had interpreted an object as a stand-alone automaton that is 
capable of receiving and sending messages, as well as chang
ing its internal states (data). In the context of this section a 
fuzzy object would be like a fuzzy automaton. 

Fuzziness is an intrinsic property of natural language. This 
is one of many ways by which user-friendliness of software 
may be increased, including: 

• Sentences 
• Menus 
• Levels of abstraction 
• Mix of the above 
• Approximate reasoning 
• Syntax and semantics 

In the second major step of database design22 and in the 
second step in knowledge base design, different initial user 
views are consolidated into a conceptual schema using the 
rules of identity, aggregation, and generalization. These rules 
can be thought of as class rules that rely upon "is a" to per
form generalization and "is part of' to perform aggregation 
with identity classes that are synonomous, have similar se
mantic meaning, and have overlapping grades of membership 
such that their intersection is a basis for the identity. More
over, aggregation and generalization allow for subclasses and 
superclasses based upon membership grades. 

One of the important system components used to maintain 
fuzzy objects is a piece of software, known as a defuzzifier, 
between the user interface and knowledge base. 

Object-oriented Design: With Applications for AI 65 

TABLE I-Differences between Smalltalk-80 and Ada 

Smalltalk-80 Ada 

Binding time late early 
Operator overloading yes yes 
Inheritance yes no 
Multiple inheritance yes no 
Classes yes no 
Information hiding yes yes 
Data abstraction yes yes 

SUMMARY: OBJECT-ORIENTEDNESS AND AI 

Object-oriented programming is more a code packaging tech
nique than it is a coding technique; and it is therefore a means 
by which software developers can encapsulate functional de
signs in a manageable fashion. While languages such as 
Smalltalk-80, LISP, PROLOG and Ada are very different 
languages, they do have certain object-oriented language 
properties in common which make each of them viable candi
dates for work in developing software for AI applications. 

Table I summarizes some of the differences between 
Smalltalk-80 and Ada. 

A class is sometimes referred to as a software integrated 
circuit in order to draw a comparison with the packaging of 
hardware silicon chips. 

Further basic concepts of object-oriented programming 
may be found in Cox.4 

REFERENCES 

1. Shooman, M. Software Engineering: Design, Reliability and Management, 
New York: McGraw-Hill, 1983. 

2. Goldberg, A. and D. Robson. Smalltalk-80: The Language and its 
Implementation, Reading, Massachusetts: Addison-Wesley, 1983. 

3. Pascoe, G. "Elements of Object-oriented Programming." BYTE, 11 (1986) 
8. 

4. Cox, B. Object Oriented Programming: An Evolutionary Approach, Read
ing, Massachusetts: Addison-Wesley, 1986. 

5. Klahr, P. and W. Fought. "Knowledge-based Simulation." Proceedings of 
the First Conference AAAI, Stanford, California, 1980. 

6. Booch, G. In An Object Oriented Design Handbook for Ada Software, 
Frederick, Maryland: EVB Software Engineering, 1985. 

7. Booch, G. "Object Oriented Design." ADA LETTERS, 1 (1982) 3. 
8. Landin, P. "A Correspondence Between Algol 60 and Church's Lambda

notation: Part I, Part II." CACM, 8 (1965) 2. 
9. Schmucker, K. "Object-oriented Languages for the Macintosh." BYTE, 11 

(1986) 8. 
10. Shapiro, E. and A. Takeuchi. "Object Oriented Programming in Concur

rent PROLOG." ICOT Technical Report TR-004, Institute for New Gener
ation Computer Technology, Japan, April, 1983. 

11. Harandi, M. and M. Lubars. "A Knowledge Based Design for Software 
Systems." ACM 0-89791-173-3. Univ. of Illinois Computer Science De
partment, 1985. 

12. Young, F. and M. Harandi. "Template Based Specification and Design." 
IEEE CH2138-6, Computer Science Department, Univ. of Illinois
Urbana, 1985. 

13. Proceedings of the 1986 International Workshop on Object-Oriented Data-



66 National Computer Conference, 1987 

base Systems. IEEE Computer Society, ISBN 0-8186-0734-1, September 
1986. 

14. Maier, D. and J. Stein. "Development of an Object-oriented DBMS," 
Proceedings of the OOPSLA Conf., ACM 548861, September, 1986 (SIG
PLAN Notices, Nov., 1986). 

15. Skarra, A. and S. Zdonik. "The Management of Changing Types in an 
Object-oriented Database." Proceedings of the i986 OOPSLA Conference. 
ACM 548861, September, 1986. 

16. Navathe, S., S. Ceri, G. Wiederhold, 1. Dou. "Vertical Partitioning Algo
rithms for Database Design." ACM Transactions on Database Systems, 19 
(1984) December. 

17. Hoffer, 1. and 1. Froscher. "The Use of Cluster Analysis in Physical Data-

base Design." Proceedings of the international Conference on Very Large 
Databases, Framingham, Massachusetts, 1975. 

18. Bruno, G. and A. Balsamo. "Petri Net-based Object-oriented Modelling of 
Distributed Systems." Proceedings of OOPSLA '86, ACM (SIGPLAN vol. 
21, no. 11), 1986. 

19. Mitchell, B. Theory of Categories, Academic Press, New York, 1965. 
20. Winston, P. Artificial intelligence (2nd ed.) Reading, Massachusetts: 

Addison-Wesley, 1984. 
21. Zadeh, L. "A Computational Approach to Fuzzy Quantifiers in Natural 

Languages." Compo and Maths. with Applications, 9 (1983) 1. 
22. Teory, T. and 1. Fry. Design of Database Structures, Prentice-Hall, 1982. 



The Ada-AI interface 

by JORGE L. DIAZ-HERRERA 
George Mason University 
Fairfax, Virginia 

ABSTRACT 

In this paper we investigate the interactions between artificial intelligence and Ada. 
The Ada language has been mandated for use in all U.S. Department of Defense 
mission critical embedded systems. Artificial intelligence has become an important 
ingredient in such systems. Currently, LISP is the language of choice among DoD 
AI implementors, and its continued use may retard the expected widespread use of 
Ada. However, many algorithms used in typical AI applications are procedural in 
nature, and thus are better suited to languages like Ada. Key pivotal questions 
addressed here are: What are the specific linguistic needs of AI applications soft
ware development? What has Ada to offer? Is there a missing link between AI and 
Ada? One main conclusion drawn is that Ada provides adequate support for the 
conventional techniques used in AI (which represent 75 percent to 80 percent of 
typical AI code); the other non-conventional techniques may not be directly sup
ported by the language itself but through the programming environment (APSE), 
the program library, and the run-time system. 

Ada® is a registered trademark of US DoD, AJPO 

67 





INTRODUCTION 

Several factors motivate this discussion about artificial intel
ligence (AI) and the programming language Ada. The most 
important is the fact that Ada has become the standard com
puter programming language for the U.S. Department of De
fense (DoD) and recently it has been mandated for use in all 
information systems, and in particular for mission critical em
bedded software. The language may eventually dominate the 
software world, since it has a high level of standardization and 
it is expected to have a wide dissemination. 

The Ada language is intended to be used in a great variety 
of applications; however, there may be some application areas 
for which the language may not be suitable. One of these 
areas is AI. Although no standard language exists, almost all 
AI programming within DoD is done in LISP. If this trend 
continues, Ada's expected usage and acceptance may be 
hampered. 

Another important aspect indicates that most AI tech
niques do not seem incompatible with Ada. It has been re
ported that only about 20 percent to 25 percent of the code 
written for a typical AI application is "pure" AI code;l in 
other words, 75 percent to 80 percent of AI code is inherently 
procedural (i.e., not appropriate for LISP or PROLOG but 
ideally suited to a language like Ada). 

In this paper we discuss some of these factors, paying partic
ular attention to the needs of AI and the features offered by 
Ada in this area. We do not intend to compare programming 
languages or discuss the benefits and pitfalls of AI, the Ada 
language, or their methods for software development. In
stead, we provide a positive view about their coexistence. 
First of all, we explore the interrelations between these two 
radically different approaches to problem solving. We analyze 
AI and Ada approaches to software development within the 
framework of modern software engineering and current sys
tem complexity problems and reliability needs. We then iden
tify the general requirements of typical AI applications and 
present the relevant aspects concerning the use of Ada for AI 
applications. 

SOFTWARE ENGINEERING, ADA AND AI 

For several years there has been considerable general discon
tent with the process of designing and producing software and 
the quality of the software produced. Efforts are underway to 
find ways for greatly increasing programmer productivity and 
for enhancing the quality of the products. 

Two main research directions have been proposed. On the 
one hand, a popular evolutionary (or transformational) ap-

The Ada-AI Interface 69 

proach strives to develop a refined "programming environ
ment" that provides full automation of the software pro
duction process and which is centered around one standard 
language and a standard set of interfaces. 2 On the other hand, 
a less widespread but more revolutionary (or breakthrough 
seeking) approach tries to devise a new programming para
digm by adopting "knowledge based" tools into the software 
production environment. 3 Both approaches are centered 
around the idea of sophisticated software engineering envi
ronments (SEE). 

Ada 

The Ada language is the cornerstone of many efforts within 
the evolutionary approach.4

,5 The language is the result of an 
international competition for a new standard higher-order 
language specially designed for programming large real-time 
embedded applications. 6 The effort came as a response to the 
increasing cost of software mainly caused by the difficulties of 
software maintenance and the huge number of languages and 
dialects in use. 

Ada is basically a block-structured language, with excellent 
information hiding capabilities and system-level structuring 
features. The language provides a unified set of concurrent 
programming constructs and a well-defined program library 
and configuration management system. Ada is a design and 
implementation language, supporting both bottom-up and 
top-down incremental programming in which programs are 
made up of one or more (typically many) separately compiled 
units. 

The Ada language defines a standard multi-layered open
ended programming support environment (APSE) as an inte
gral part of the solution.7

,8,9 The environment includes all 
facilities and tools that a software designer requires through
out the software life cycle, including methodology-specific, 
language-specific, and applications-specific tools. 

AI 

The revolutionary approach to the software problem is 
based on AI research, seeking ways out of the "von Neumann 
bottleneck" through newer computational formalisms for the 
software process. However, AI researchers have rarely con
cerned themselves with software reliability and maintain
ability. Software engineering techniques must be used during 
development,10 although various AI techniques can add new 
power to existing development tools.11 In AI, open-ended 
"knowledge representation systems" are the paradigms for 
programming in the future. 



70 National Computer Conference, 1987 

AI has made progress towards the development of con
cepts, linguistic tools, and techniques for knowledge 
representation. Different computational paradigms have been 
put forward and some of the most widely known are: func
tional programming, logic or predicate programming, rule
based and knowledge based systems, object-oriented or mes
sage passing systems, networks, and frame-based and produc
tion systems. 12 In fact, the sheer number of programming 
paradigms may prevent the development of a standard envi
ronment. Recent developments call for more consolidated 
environments combining features originally found only in in
dividual paradigm environments. 13 

It is clear that programming is a problem solving activity. 
Thus it is expected that future programming environments 
will include "intelligent" tools. From an AI point of view, 
programming should be made as easy as possible by shifting 
the burden from the programmer to the machine through the 
construction of programming environments. 

ADA SUPPORT FOR AI APPLICATIONS 
DEVELOPMENT 

AI languages focus on symbol manipulation and list process
ing, supporting dynamically changing representations and 
flexible (non-procedural) control flow. 14 The linguistic and 
computational needs of AI can be grouped into two broad 
categories; namely, traditional and non-traditional require
ments. 

Ada Support for Traditional AI Requirements 

Traditional AI requirements include basic features such as 
dynamic data structures, recursion, symbol manipulation, 
pattern matching, data as objects, reusable functions, and 
relaxed typing. Ada certainly is capable of handling tradi
tional AI techniques. 

All these basic requirements are satisfied by Ada's clear 
and up-to-date control and data structuring facilities, power
ful data abstraction mechanisms, and comprehensive support 
for modularity. 

Dynamic data structuring 

Ada defines a rich basic set of data primitives as well as 
novel facilities for specifying programmer-defined new data 
types. Dynamic data structuring; that is, defining and con
structing data structures at run-time, is done in Ada as it is 
done in LISP. 15,16 Automatic storage management is not re
quired in Ada, although the Language Reference Manual 
does not preclude garbage collection (an imp!ementa
tion-dependent feature). 

Recursion 

Ada provides good recursive programming facilities. 

Symbol processing and pattern matching 

Ada library packages15 are the means for providing LISP
like list processing and pattern-directed computation on list 
structures. 

Data as objects 

Ada provides specific language mechanisms which unify the 
representation and operations of programmer defined data 
types. This is achieved by using private types in packages, one 
of the unique features of the Ada language. Although not a 
"complete" object-oriented language, Ada possesses many of 
the required features. 17 

Relaxed type checking 

Even though Ada is a strongly typed language, it allows for 
the creation of "type-less" programs by using generic program 
units. 

Reusable functions 

Reusability is one of Ada's strong points. It also is achieved 
through library units-an intrinsic concept in Ada-in the 
form of self-contained (generic) packages. 

Ada Support for Non-traditional AI Requirements 

Non-traditional requirements are AI techniques not usually 
found in procedural programming. These include functional 
programming and programs as data, logic and predicate pro
gramming, incremental (and interactive) compilation, and 
rapid prototyping. These requirements are not directly sup
ported by Ada at the language level, but can conveniently be 
satisfied by the Ada environment, its library system, and the 
Ada run-time system. 

Non-traditional AI requirements can be satisfied by the 
Ada programming system at the programming environment 
level and at the standard libraries level. The environment level 
incorporates special AI tools. The set of standard libraries 
provides interoperability among the tools for supporting spe
cific AI applications. 

Functional programming and programs as data 

Functional programming refers to elementary forms of 
function definition (no side effects). The idea is to use factor
forming operations combining primitive functions into more 
complex functions, and so on. This approach also eliminates 
the need for variables and "procedural" descriptions. In gen
eral mappings define applicative operators in which a function 
takes another function as input. 18 

Ada satisfies the requirements for functional programming 
by providing a rich set of objects and primitive functions, data 
abstraction facilities for defining new types of objects and new 
primitive operations, and a mechanism for defining function 
forming operations-generic functions-with other functions 
as parameters to derive still other functions. 



"Programs as data" deals with dynamically defined func
tions and self-modifying programs. Dynamically definable 
functions is a topic closely related to self-generating code, a 
technique used in LISP and other interpreted languages in 
which a function or program segment is developed at run
time. Employing this technique, data structures can be con
structed and directly executed. 

Ada does not directly offer the capability of producing 
"self-generating" code. In fact, this is possible if and only if 
the language involved is the "native" language of the under
lying computational system (either as a virtual or physical 
machine). Dynamically definable functions might be possible 
with an Ada machine that directly executes Ada code (either 
virtually or physically). 

Logic programming 

Logic programming requires at least an elementary form for 
defining facts and rules (declarative programs). The main pro
gram component is information about the application, not 
procedural instructions. Algorithms are not completely under 
the control of the programmer. Instead an underlying mech
anism known as an inference engine controls the algorithms. 
Programmers must master this underlying process in order to 
specify a correct set of assertions. These control mechanisms 
are inherently procedural and can be written entirely in 
Ada,19 in which case traditional declarative programs (e.g., 
PROLOG Programs) may be considered as pure data. 

Incremental and interactive compilation 

A key tool in modem programming environments is an 
incremental compiler, which operates (usually interactively) 
as the source program is changed by recompiling only what is 
necessary. The simplest approach to incremental compilation 
is to determine the minimal separately-compilable unit. In 
System-oriented languages such as Ada which have compre
hensive automatic configuration management facilities, a sim
ple change can easily cause several compilation units to be 
compiled. Syntax-directed editors and the maintenance of an 
online intermediate program representation (e.g., DIANA20 

for Ada) makes incremental compilation more feasible for 
complex languages like Ada.21 

Rapid prototyping 

Rapid proto typing is a methodology that can be applied in 
any programming environment. For example, logic pro
gramming considers programs as executable statements of the 
requirements analysis. As such, logic programming can assist 
in the early stages of the software life cycle, unifying exe
cutable systems analysis with databases containing rules as 
well as explicitly stored data, and using the same formalism 
for both programs and specifications. The executable analysis 
becomes some sort of system prototype, which could be auto
matically converted into Ada programs. Furthermore, "inter
face programs" (written in Ada) can be used to handle neces
sary typing, subprogram calls, and error handling.22 

The Ada-AI Interface 71 

Can Ada Coexist with Other AI Languages? 

The Ada language definition makes provision for the possi
bility of inserting "foreign" code in an Ada program in the 
form of a pragma. However, multi-lingual, multi-paradigm 
programming environments in which traditional software en
gineering languages like Ada can directly interact with non
traditional AI languages are difficult to define for several 
reasons.23 

AI languages are interpreted languages, thus there is no 
common (low-level) language which can be used by a linker to 
produce running programs made up of Ada and LISP/ 
PROLOG code. Furthermore, a direct interface from Ada to 
other languages is difficult, because Ada's run-time kernel 
depends heavily on its data types and exception handling 
mechanism. Finally, pragmas are recommendations; it is up to 
the implementer whether to provide them. 

The Ada programming environment facilitates coexistence 
with other AI languages. Tools can be provided for auto
matically converting sentences written in a "functional nota
tion" to Ada (generic) instantiations. In such a case, we are 
not using a programming language; we are using a program 
generator: a computer-aided program generator from ("exe
cutable") specifications. Furthermore, the run-time system 
provides the virtual machine needed, since it can provide 
LISP/PROLOG-like interpretative capabilities. 

AN ADDITIONAL ADA FEATURE: TASKING 

Unrestricted self-modifying functions are mathematically un
decideable and therefore should be avoided. Ada provides a 
different view of programs as data, in the form of task objects, 
which opens up new possibilities for "controlled" generative 
programs. In Ada, a (potentially concurrent) process is real
ized as a (constant) task object which is a data object consist
ing of: (1) a particular sequence of statements, (2) local data, 
and (3) entries for interprocess communication. As are other 
data objects in Ada, a task object belongs to a type: a task 
type. This type is a limited private type which can be used 
anywhere a limited private type object can be used. For exam
ple, it can be used: 

• (chiefly) as an actual generic parameter 
• as a subprogram actual parameter 
• as a private package 

However, even though we know their structure, we cannot 
manipulate task types as literal values. This restriction pre
vents the dynamic generation of completely new tasks. 

Task types can be used to define task templates which, 
when combined with access types, can be conveniently used 
for dynamically creating (activating) as many tasks as needed 
at run-time. This is a very powerful technique leading to con
venient designs of inference schemas corresponding to PRO
LOG clauses.24 Ada tasks also provide an executable model of 
the system, something quite useful for simulation and rapid 
prototyping purposes. 



72 National Computer Conference, 1987 

CONCLUSIONS 

The successful support that Ada gives to AI applications cre
ates new software systems with a higher degree of portability 
and reliability, increasing the chances for creating reusable 
software and for alleviating maintenance problems. 

Both traditional and non-traditional requirements of AI 
applications development can be satisfied by the Ada pro
gramming system at three levels: (1) the language level, (2) 
the programming environment level, and (3) the standard 
libraries level. The language support level provides basic lin
guistic features and programming building blocks. The envi
ronment level incorporates special AI tools. The set of stan
dard libraries provides interoperability among the tools for 
supporting specific AI applications. 

Large portions of AI code are procedural by nature. Other 
AI-intensive code can be tackled by using functional and de
clarative notations, automatic conversion tools, and Ada run
time kernel (RTK) support. The factors involved are Ada 
language features and methods, APSE tools, and RTK (CArS 
dependent) . 

Many practical results have already been reported, some of 
which are: 

• Several efforts have produced systems for generating Ada 
packages from natural language specifications as well as 
PROLOG prototypes. 

• Several inference engines for expert systems have been 
implemented in Ada. 

• LISP programs have been automatically rewritten in 
Ada. Further, it has been shown that run-time perfor
mance is much better in Ada than in current interpreted 
functional languages! 

• Semantic networks have been implemented in Ada, pro
ducing more flexible and enhanced networks. 

REFERENCES 

1. Naedel, D. "Ada and Artificial Intelligence." SIGAda Conference Pro
ceedings, Minneapolis, Minnesota, July 1985. 

2. Lieblein, E. "The Department of Defense Software Initiative: a Status 
Report." Communications of the ACM, 29 (1986) 10, pp. 734-744. 

3. Backus, J. "Can programming be liberated from the von Neumann style?: 
A Functional Style and Its Algebra of Programs." Communications of the 
ACM, 21 (1978) 8, pp. 613-641. 

4. Martin, E.W. "The Context of STARS." IEEE Computer, November 
1983, pp. 14-17. 

5. Barnes, B. "An Introduction to The Software Productivity Consortium." 
SPC Internal Presentation, September, 1986, Fairfax, Virginia. 

6. "Steelman." Requirements for High Order Computer Programming Lan
guages, U.S. Department of Defense, June 1978. 

7. "Stoneman." Requirements for the Ada Programming Support Environ
ments, U.S. Department of Defense, February 1980. 

8. Requirements and Design Criteria for the Common APSE Interface Set 
(CAIS). KIT/KITIA, U.S. Department of Defense, September 1985. 

9. Wolfe. "Artificial Intelligence and the CAIS." SIGAda Conference Pro
ceedings, Minneapolis, Minnesota, July 1985. 

10. Kowalski, R. "AI and Software Engineering." Datamation, November 1, 
1984, pp. 92-102. 

11. Rome Air Development Center Report on Knowledge-Based Software Assis
tant. Kestrel Institute, California, 1983. 

12. Steels, Y.L. "AI and Programming Languages." Information Processing 
86. H.-J. Kugler (ed.), Amsterdam: North-Holland, 1986. 

13. Ramamoorthy, C.V., S. Shekhar, and V. Garg. "Software Development 
Support for AI Programs." IEEE Computer, January 1987, pp. 30-40. 

14. Huet, G. "In defense of programming language design." In Luc Steels and 
J.A. Campbell (eds.), Progress in Artificial Intelligence, New York: John 
Wiley, 1985, pp. 219-241. 

15. Reeker, L.H. and K. Wauchope. "Pattern-Directed Processing in Ada." 
Proceedings of the 2nd IEEE International Conference on Ada Applications 
and Environments, Miami, Florida, 1986. 

16. Adkins, M. "Flexible Data and Control Structures in Ada." Proceedings of 
the 2nd Annual Conference on Al and Ada, George Mason University, 
Fairfax, Virginia, November 1986, pp. 9.1-9.17. 

17. Rine, D. "A Brief Comparison of Ada and Object-oriented Design Ele
ments for AI." Proceedings of the 2nd Annual Conference on Al and Ada, 
George Mason University, Fairfax, Virginia, November 1986, pp. 
10.1-10.10. 

18. Messon, R.N. "Function-level Programming in Ada." IEEE Computer, 
March 1984, pp. 128-132. 

19. LaVallee, D.B. "An Ada Inference Engine for Expert Systems." Pro
ceedings of the 1st International Conference on Ada Programming Language 
Applications for the NASA Space Station, Houston, Texas, June 1986. 

20. Goos, G. and W.A. Wulf. DIANA Reference Manual. Report of Institut 
fuer Informatik II Univeritaet Karlsruhe and Computer Science De
partment, Carnegie-Mellon University, March 1981. 

21. Reiss, S.P. "An Approach to Incremental Compilation." ACM SIGPLAN 
Notices, 19 (1984) 6, pp. 144-156. 

22. Rueher, M., M. Chantegreil, and L. Jullien. "Using PROLOG prototypes 
for Ada Programs Design." Proceedings of the Annual Conference on Al 
and Ada, George Mason University, Fairfax, Virginia, November 1986, pp. 
6.1-6.8. 

23. Wallace, D.R. "An Evaluation of Ada for AI Applications." Proceedings 
of the 1st International Conference on Ada Programming Language Applica
tions for the NASA Space Station, Houston, Texas, June 1986. 

24. Lander, L., D. Linder, and A. Ramer. "The Use of Ada in Expert Sys
terns." Proceeedings of the 2nd Annual Conference on Al and Ada, George 
Mason University, Fairfax, Virginia, November 1986, pp. 7.1-7.12. 



Artificial intelligence and security: An overview 

by ALAN C. SCHULTZ 
The Navy Center for Applied Research in Artificial Intelligence 
Washington, District of Columbia 

ABSTRACT 

The junction of AI and computer security is an area of increasing concern, due to 
the imminent application of AI to fielded systems. Two new areas of research need 
are identified: artificial intelligence techniques in the development of secure sys
tems and in analyzing the security characteristics of software; and verification of the 
security of artificial intelligence. Current and proposed research in these areas by 
the Department of Defense will be discussed. 

73 





INTRODUCTION 

While the areas of artificial intelligence and computer security 
have been explored for many years, the intersection contains 
many interesting, useful, and, in some cases, dangerous 
implications. The intersection can be viewed from two direc
tions. First, how can artificial intelligence techniques be used 
in the design and analysis of secure systems? Second, what can 
be said about the security characteristics of artificial intel
ligence software, particularly expert systems? 

Artificial intelligence techniques are being relied on more 
in various security related tasks. Although some work has 
been done in both directions, the intersection still has many 
under-explored or unexplored areas in need of further re
search. This paper will briefly identify some areas under re
search, and areas in need of exploration. 

USING AI TECHNIQUES IN COMPUTER SECURITY 
DESIGN AND ANALYSIS 

While many software engineering tools and methodologies 
have been devised to help in creating reliable and easy to 
main.tain software, secure software a..Tld systems require a 
greater degree of assurance about their behavior. One area 
that has received much attention is in formal verification of 
software. The necessity of formal verification is mandated by 
the National Computer Security Center (NCSC), which re
quires that for a computer system to achieve a top rating of 
AI, a formal top-level proof must be done for the system. 1 

Artificial intelligence techniques have been introduced in the 
form of automated theorem provers. 

Given a program and a set of formal specifications, an 
automatic theorem prover can be used to verify that the pro
gram satisfies the specifications. One example of a verification 
system that uses a theorem prover is Gypsy. 2 Although other 
verification systems are in use, Gypsy has been used with 
much success, particularly by NCSC. 

Looking towards the future, it has been said that the ulti
mate goal of artificial intelligence applied to software en
gineering is automatic programming, and we might expect to 
have a system that automatically generates secure software 
when a user specifies the requirements. 

While the above methods are useful in the development 
stage of software, experience has shown that they cannot be 
applied to existing software. Large bodies of software exist 
that need to be used in secure environments. Therefore, test
ing and analysis techniques are used to determine the security 
characteristics of the software. In this area, very little work 
has been done using artificial intelligence techniques. 

As far back as 1974, the RISOS (Research in Secure Oper
ating Systems) project at Lawrence Livermore Laboratory 

Artificial Intelligence and Security: An Overview 75 

had developed a set of tools to analyze operating systems for 
security flaws. 3 The tools used powerful pattern-matching 
techniques to search the code for sequences of operations that 
might characterize security flaws. The tools analyzed various 
assembly languages, and are not currently in use; although at 
the time good results were obtained. The tools should be 
updated to analyze high-level languages. 

One area that could be quite productive is the use of an 
expert system to analyze software and recommend testing 
strategies-a task well suited for an expert system. In this 
respect, the expert system would act as an assistant to a secu
rity analyst. 

A related issue is the study of a system in operation to 
discover security violations. In this area, several groups have 
made advances using artificial intelligence techniques for in
trusion detection and for on-line analysis of the system. 

Discovery is the name of TRW's expert system that is used 
to detect anomalies in subscribers' usage of a database. The 
system searches for frequently occurring patterns in data and 
compares these patterns to daily activity to detect variations 
from normal behavior.4 Sytek, under contract for the Depart
ment of the Navy, is investigating the use of pattern matching 
for the automated analysis of audit trails to assist security 
officers in detecting security violations.5 Still others are using 
pattern matching and audit trails for intrusion detection. 6,7 

SECURITY OF EXPERT SYSTEMS 

The other side of the artificial intelligence and computer 
security coin is an area of much concern. Specifically, what 
can be said about the security characteristics of artificial intel
ligence programs, in particular, expert systems. Now that ex
pert systems are starting to be routinely created and used, 
computer security officers must now concern themselves with 
the security analysis of these systems. 

Although in the early days of expert systems, they were 
hailed as being easy to maintain and understand, most would 
now agree that expert systems are actually hard to understand 
and maintain. The existing methodologies for software design 
and maintenance are not readily applied to expert systems, 
and this is one area that needs considerable research. 

At least one research group is currently investigating design 
methodologies for rule-based systems.8 More work needs to 
be done in the verification of expert systems in order to assure 
their behavior prior to installation in a security environment. 

Other areas of artificial intelligence research will have even 
greater difficulties with computer security. What of systems 
that learn? There must be some assurance that these sys
tems maintain their security characteristics. No research to 
date has addressed this problem, since machine learning is still 
in its infancy. However, the problem should be addressed 



76 National Computer Conference, 1987 

now, and should not wait until systems have been imple
mented and installed. 

CONCLUSION 

Artificial intelligence techniques are starting to be applied to 
the analysis of secure computer systems, and, hopefully, their 
use will improve the utility of security analysis and verifica
tion. On the other side of the coin, more research is needed 
to address the security implications of artificial intelligence 
systems. Design, verification, and analysis techniques are 
needed for expert systems and systems with learning mech
anisms, and these techniques should be developed now, not 
after the systems are fielded. 

ACKNOWLEDGEMENTS 

I would like to thank Randall Shumaker and Carl Landwehr 
for their time and insight and David Rine for the opportunity 
to express myself. 

REFERENCES 

1. "Trusted Computer System Evaluation Criteria." CSC-SID-OOl-83, De
partment of Defense, August, 1983. 

2. Good, D.I. "Mechanical Proofs About Computer Programs." Phi/os. Trans
actions of the Royal Society of London, 312 (1984) 1522, pp. 389-409. 

3. "Handbook for Analyzing the Security of Operating Systems." RISOS 
Project. DOD S5-2068, November, 1976. 

4. Tener, William. "Discovery: An Expert System in the Commercial Data 
Security Environment." Information Security: The Challenge, IFIP, Reprints 
of the Fourth IFIP Security on Information Systems, 1986, pp. 283-291. 

5. Halme, L. and J. Van Horne. "Automated Analysis of Computer System 
Audit Trails for Security Purposes." Ninth Annual National Computer Secur
ity Conference Proceedings, NCSC, Washington, D.C., September, 1986, 
pp.71-74. 

6. Denning, Dorothy and Peter G. Neumann, "Requirements and Model for 
IDES-A Real-Tune Intrusion-Detection Expert System." Menlo Park, 
California: SRI International, August, 1985. 

7. Kuhn, J. "Research Toward Intrusion Detection Through Automated Ab
straction of Audit Data." Ninth Annual National Computer Security Confer
ence Proceedings, NCSC, Washington, D.C.: September, 1986. 

8. Jacob, Robert J.K. and Judith N. Froscher, "Software Engineering for Rule
Based Systems." Proceedings of the Fall Joint Computer Conference, IEEE 
Computer Society Press, November 1986, pp. 185-189. 



A methodology for rule-base integrity in expert systems 

by GEORGE STEFANEK 
Illinois Institute of Technology 
Chicago, Illinois 

and 

SHI-KUO CHANG 
University of Pittsburgh 
Pittsburgh, Pennsylvania 

ABSTRACT 

The incremental addition of rules over time in a rule-based system warrants the 
need for a system to ensure rule-base integrity. A methodology is proposed in this 
paper that will check the addition of new niles against the existing rule-base for 
conflict, redundancy, subsumption, knowledge-related limits, resource conflict, 
knowledge conflict, and message conflict. A relational database is used to store the 
rules, and relational database techniques are used to analyze the database. A 
directed graph is used to represent relationships between knowledge, resources, 
messages, and database attributes. Thus, both the relational database and the 
directed graph serve as unifying methodologies in the design of the system. Also, 
a trace mechanism is provided to show the type of conflict and the rules involved. 

77 





A Methodology for Rule-base Integrity in Expert Systems 79 

INTRODUCTION 

This paper presents a methodology to be used along with 
expert system shells to check rule-based systems for rule-base 
integrity. The Rule Integrity Sub-System, called RISS, uses a 
relational DBMS to store rules making up the rule-base and 
to analyze them for consistency and conflict using relational 
database techniques. A directed graph also is used to repre
sent interrelationships between knowledge. Together, the 
relational database and directed graph form the unifying ap
proach in storing, representing, and analyzing the rule-base. 

As new rules are collected from various experts and added 
into a rule-based system, the rule-base becomes more com
plex and the probability of rule-base inconsistency increases. 
The proposed rule-base integrity subsystem increases the 
integrity of the rule-base by checking for: rule conflict, redun
dancy, subsumption, knowledge related limits, resource con
flict, knowledge conflict, and message conflict (see Figure 1). 
Rule conflict, redundancy, and subsumption have been dis
cussed by Suwa, l but are formalized and expanded in this 
paper. Knowledge-related limits, resource consistency, know
ledge consistency, and message consistency are introduced 
and formalized here. Also, a trace mechanism is included in 
the system to report the type of conflict that occurs, display 
the rules involved in conflict, and provide other useful infor
mation. Finally, a secretarial rule-base of 60 rules is used as an 
example rule-base for analysis.z,3 

KNOWLEDGE REPRESENTATION 

Data organization and knowledge representation are key 
points in the design of RISS. These strategies form the basis 
for the type of analysis performed throughout the entire sys
tem. 

Much of the problem solving is accomplished using meta
knowledge. Meta-knowledge4 is knowledge about knowledge; 
in our case it is knowledge about various aspects of the system, 
rule-base, and other domain specific information. This proce
dural knowledge is specified in RISS as meta-rules, templates, 
and knowledge tables. All these forms of meta-knowledge are 
stored in various forms of knowledge tables. 

Meta-rules are meta-knowledge in the form of "if-then 
rules." They are used in manipulating the internal knowledge 
or specifying knowledge about strategies. For example, meta
rules are used to activate groups of rules in the inference 
process: 

rOll 

If: category .eq. phone_call 
Then: search rules 1 thru 12 

Expert 

1 
System Interface 

Conflict Avoidance 
Redundancy 
Subsumption 

Knowledge Limits 

n 

Figure l-System diagram 

Knowledge tables in the form of database relations hold 
mappings, function templates, and some dynamic informa
tion. Templates are in the form of list structures4 (object, 
attribute, value) where object is the name of some function 
such as "notify," attribute is the first function parameter, and 
value is the second function parameter, usually indicating the 
type of action to be taken by the function. These templates 
offer a lot of flexibility because they can differ from function 
to function and primarily are used to check function specifica
tions within rules. 

Graph Theoretic Approach 

The simple directed graph is the unifying representation for 
all rule and database paradigms. Related-resource models, 
related-knowledge models, and message models all use the 
directed graph approach to represent interrelated informa
tion. Formally, a digraph G consists of a set of vertices V = 
{Vl, vi, ... }, a set of edges E = {el' ez, ... } and a mapping tV 
that maps every edge onto some ordered pair of vertices 
(Vi, Vj ).5 A vertex is represented by a circle and an edge by a 
line segment between Vi and Vj with an arrow directed from Vi 



80 National Computer Conference, 1987 

to Vj, or Vj to Vi, or both. The digraph has no self-loops, but 
can have parallel edges between some nodes. This approach 
toward representing knowledge and its interrelationships 
gives a common methodology for the representation and the 
analysis of knowledge. Directed graphs are a mathematically 
formalized approach for interrelating information, and they 
can easily be expanded to other knowledge representations as 
needed. The digraph structures are stored as knowledge 
tables in a relational database. 

Relational Database Approach 

A relational database6 is used for storing all data, rules, and 
meta-knowledge. It provides a cohesive way of manipulating 
all data. Standards can be enforced, data can be shared, re
dundancy reduced, and integrity increased. Relational data
base techniques such as restriction, projection, and division 
are used to manipulate and extract desired data and check for 
rule-base inconsistencies. That is, since all existing and new 
rules are stored in a relational database, all matching and 
checking is done within the context of the relational database. 

Initially, new rules and other design information are ac
cepted by the expert system front-end which outputs the gath
ered information in its own format. RISS uses an interface 
module to reformat the rules into a standard format under
stood by all its modules. The rules will be placed in temporary 
condition and action relations. The New_Conditions relation 
contains the attributes: NewRuleNo., Antecedent, Owner, 
Date, and Comment. 

To analyze the rules for conflict, redundancy and sub sump
tion against the existing rule-base, the rules in the New_ 
Conditions and New_Actions relations are parsed and put 
into separate temporary relations that are used only during 
analysis. For example, in the New_Conditions and New_ 
Actions relations the antecedent and consequent attributes 
hold all the conditions and actions of a rule. The conditions 
and actions must be broken up so that there is one condi
tion or action per tuple in a relation. These relations are 
called Parsed_New_Conditions and Parsed~ew.Actions. 

Parsed~ew_Conditions contains the attributes: SeqNo., 
NewRuleNo., Antecedent, and Consequent. 

The existing rule-base and meta-rule base are also stored in 
relational database form. The existing rules are stored in the 
Conditions and Actions relations and other rule information 
such as ownership and date of entry are stored in· Condi
tionLData and Actions.J)ata relations. 

The ActionsJ)ata relation contains one additional attri
bute called rule dependency which points to other rules, if 
any, that depend on the existing rule. This is necessary during 
deletion. Any rules associated with an existing rule in infer
ring a conclusion may also have to be removed given that the 
rule was the sole support. 7 A rule supports other rules that are 
used before it in an inference process. If a rule is supported by 
more than one rule, then all of them must be erased before it 
is erased. 

Meta-rules that specify system-related knowledge are 
stored in relations having identical attributes as the relations 
for the existing rule-base: McConditions, McCondi
tionLData, McActions and McActions.J)ata. Other meta-

knowledge is stored in database relations including knowledge 
tables for locks and knowledge-related limits and decision 
tables. 

SYSTEM TRACE CAPABILITIES 

RISS has a trace and error handling capability. The trace 
mechanism keeps track of the current module in which analy
sis is taking place, the type of problem encountered, the exist
ing rules involved, a display of those rules, the new rules 
involved, and the new rules that have passed so far. If an error 
is recoverable, the trace will prompt the user to decide 
whether to continue or to stop. An example of a trace is found 
in Figure 2. The following sections present the formalized 
methodologies used in enhancing rule-base integrity. 

RULE CONSISTENCY 

When knowledge is represented as production rules and new 
rules are added incrementally, inconsistencies! may appear as: 

1. Conflict: this may appear in two forms. 
a. Action conflict: two or more rules fire because they 

have the same conditions, but there is conflict in the 
action portion of the rules (that is the results are 
different). 

b. CF conflict: if certainty factors8
, 9 are used, the condi

tions and actions may be the same, but the associated 
certainty factors differ. 

SYSTEM TRACE 

MODULE: Consistency module 

TYPE OF PROBLEM: Action Conflict 

EXISTING RULE(S) INVOLVED: 036 

If: 

Then: 

category .eq. filing and 
filing.type .eq. letter 
file (1etter ,filing.company) and 
notify(sender, stat7) 

NEW RULE INVOLVED: 002 

rnew 
If: 

Then: 

category .eq. filing and 
filing.type .eq. letter 
file (letter, filing.product) and 
notify(sender, stat7) 

NEW RULES PASSED SO FAR: 001 

HARDCOPY? < YIN> 
Figure 2-Example of output from RISS trace 



A Methodology for Rule-base Integrity in Expert Systems 81 

2. Redundancy: two or more rules fire because they have 
identical conditions and actions. 

3. Subsumption: two or more rules have the same condi
tions and actions, but some of the rules have more con
ditions that make such rules more restrictive. Also, two 
or more rules have identical conditions, but some of the 
rules have more action clauses than other rules. 

The following sections describe each area of rule conflict in 
detail, starting with the presentation of the problem and fol
lowed by examples. 

Conflict Avoidance 

Rule conflict may occur as either action conflict or CF con
flict. Action conflict occurs when a rule that is being added has 
identical conditions with an existing rule, but the actions dif
fer. The actions may differ completely in task execution or can 
merely have more action clauses in one rule vs. another. 

A rule ri is defined as the ordered pair (Ci , Ai ). The set of 
all conditions in rule ri is denoted by Ci and the set of all 
actions in rule ri is denoted by Ai. Given two rules ri and rj 
from the set of rules in the rule-base R, conflict occurs when 
C = Cj , Ai =1= Aj , and Ai is not a proper subset of Aj , Ai ct Aj . 
For instance, there is an existing rule in the example secre
tarial rule-base r035 which specifies that a letter should be filed 
according to the company to which it is addressed, and that 
the sender should be notified that the filing has been accom
plished. 

r035 
If: category .eq. filing and 

filing. type .eq. letter 
Then: file(1etter, filing. company ) and 

notify(sender, stat7) 

Suppose the domain expert wishes to add another rule into 
the rule-base which has the form: 

rnew 
If: category .eq. filing and 

filing. type .eq. letter 
Then: file(1etter, filing. product) and 

notify ( sender ,stat7) 

These two rules differ in that the new rule's actions desig
nate the letter to be filed with documents describing the prod
uct to which it pertains, as opposed to the existing rule which 
specifies the letter should be filed by company. This is a 
simple case of rule conflict: the conditions are the same, but 
the actons differ. The system will flag this problem and report 
it through the trace module shown in Figure 2. The trace will 
halt further analysis of additional new rules as soon as a con
flict is found. From the trace, the expert adding rules will have 
enough information to know how to proceed. For a new rule 
to be added successfully, the existing rule will have to be 
removed first or the new rule and any related new rules may 
have to be modified. 

The second form of conflict is CF conflict, which occurs 
when all conditions and actions are the same but the certainty 
factors (CF) associated with the conclusions differ. Given a 
rule ri consisting of the ordered pair (C , [Ai, CF;]), the set of 
all conditions in a rule ri is denoted by C, and the set of 
actions having a certainty factor of CEi is denoted by Ai . Given 
two rules ri and rj, CF conflict occurs when rule rj has a 
different certainty factor from an existing rule ri in the rule
base R. That is, Ci = Cj , Ai = Aj and CF; =1= CFj. For instance, 
given an existing copy machine rule R052 and a new rule Rnew : 

r052 
If: copy machine is on and 

copy button is pressed with no response and 
no warning light is on 

Then: there is strongly suggestive evidence (.9) 
that the machine is broken 

rnew 
If: copy machine is on and 

copy button is pressed with no response and 
no warning light is on 

Then: there is strongly suggestive evidence (.8) 
that the copy machine is broken 

Both rules are the same except that the certainty factor in the 
existing rule is .9 and the certainty factor for the new rule 
is .8. Once the certainty factor parameter of the Copy_ 
Machine function is compared and found different, the trace 
will report the error and the program will terminate. The 
system will check whether C = Cj , Ai = Aj , and CEi =1= CFj and 
if it is true, the system will generate a trace reporting this type 
of conflict and end analysis of the rule-base. After receiving 
the trace, the user will have to decide whether to delete the 
existing rule. 

Redundancy 

Rule redundancyl exists if two or more rules have identical 
conditions and actions. Given two rules ri and rj, redundancy 
exists when Ci = Cj and Ai = A j , thus ri = rj. If the conditions 
and actions are identical, but the order of either conditions or 
actions differs, then the redundancy check will still flag the 
rules as identical and go through the trace. To change the 
order of the conditions or actions in a rule which is redundant 
with a new rule, the existing rule must be deleted from the 
rule-base and the new rule added afterward. For example, the 
following two rules will be treated as being redundant: 

r020 
If: category .eq. IILperson 

IILperson.name .eq. employee 
IILperson.meeting .eq. 1 
IILperson.travel .eq. 1 
free(IILperson.time) .eq. t 

Then: schedule(IILperson. time, IILperson.name) 
travel(IILperson. name, IILperson. time, 
IILperson. dest) 



82 National Computer Conference, 1987 

If: category .eq. I~person 
I~person.name .eq. employee 
I~person.meeting .eq. 1 
I~person.travel .eq. 1 
free(I~person.time) .eq. t 

Then: travel(IN_person.name, I~person.time, 
I~person. dest) 
schedule(I~person. time, I~person. name) 

The new rule's actions make travel reservations before 
checking a person's schedule. The order of the clauses will not 
be considered during the check for redundancy. Other tech
niques not discussed here would have to be used to check for 
the order of clauses. Even though redundancy may not neces
sarily affect the correctness or consistency of the rule-base, it 
will unnecessarily increase the overhead in storage and analy
sis of the rule-base. 

Subsumption 

Rule inconsistency can also occur in the form of sub sump
tion. That is, a new rule can subsume an existing rule if it has 
a superset of conditions or actions of an existing rule. Sub
sumption has been discussed by Suwa 1 and is expanded and 
formalized in this section. Subsumption can occur in two 
forms: 

1) a superset instance 
2) a subset instance 

The superset instance occurs when a new rule has a superset 
of the conditions of an existing rule. The new rule will have 
more conditions, be more restrictive, and include all the con
ditions of an existing rule as a subset of its conditions. If r;i is 
a new rule and rj is an existing rule, then the superset instance 
occurs when, Cj C Ci and Aj = Ai. Another possibility is if the 
new rule has a superset of the actions in an existing rule, 
Cj = Ci and Aj C Ai. Finally, both conditions and actions in a 
new rule may be supersets of an existing rule, Cj C Ci and 
Aj C Ai. In the event that any of these superset instances 
occur, the new rule will supersede the existing rule. As an 
example, given an existing copy machine rule r054 and a new 
rule rnew: 

r054 

If: copy machine warning lights are checked and 
toner light is on 

Then: open machine 
fill with toner 

If: copy machine warning lights are checked and 
toner light is on 

Then: open machine and 
fill with toner and 
turn machine on 

The new rule's actions are a superset of the existing rule's 
actions; therefore, the new rule will supersede the existing 
rule. This is an example of subsumption superset instance. 

When certainty factors are involved, this check of logical 
consistency will flag the problem as if certainty factors didn't 
play a role. If the conditions or actions are a subset of an 
existing rule but have a different certainty factor, the trace will 
indicate it and the existing rule will not be superseded. It must 
first be deleted in order for the certainty factor to change. In 
the superset instance, the new rule will supersede the existing 
rule with the new certainty factor replacing the old. 

The subset instance occurs when a new rule has a subset of 
the conditions in an existing rule. If ri is a new rule and rj is an 
existing rule, then a subset instance occurs when C C Cj and 
Ai = A j • Also, the situation exists when a new rule has a 
subset of the actions in an existing rule, Ai C Aj and C = Cj . 
Finally, both conditions and actions in a new rule can have 
subsets of an existing rule's conditions and actions, C C Cj 

and Ai C Cj • If any of these subset instances occur, then the 
new rule will not be added to the rule-base. 

Knowledge-related Limits 

Many higher level variables and resources may be used in a 
rule-base. These should be kept track of so that they are not 
depleted and so certain artificially set limits are not exceeded. 
Also, the knowledge related limits should be dynamically ad
justed to accommodate changes in the rule-base. For exam
ple, suppose the following rule exists in the rule-base: 

r056 

If: category .eq. stationery and 
number of envelopes .It. 10 

Then: order a new box of envelopes 

A new rule to be added is: 

If: category .eq. stationery and 
number of envelopes .It. 8 

Then: order a new box of envelopes 

It can be seen initially that these are two different rules with 
the same conclusion. Upon closer inspection, the second con
dition in each rule is related. That is, the existing rule already 
includes the limit set by the new rule. Since the number 8 is 
less than 10, the new rule's limit falls under the existing rule's 
larger limit. However, it may be that the new rule is in
tentional and that the limit should be lowered from 10 to 8. In 
this case the system should flag the problem, report it in the 
trace, and the user should delete the existing rule before 
adding the new one. Knowledge tables hold constraint infor
mation of the form {ai,'i, <t>} where ai is an attribute such as 
the number of envelopes, 'i is a relational operator such as 
"It" or "eq," and <1> is the constraint or limit. Each time an 
attribute is encountered, it is compared against the knowledge 
limits table to check if it falls within some limit already pre
scribed. If a rule has identical conditions to an existing rule 
except for the constraining condition, then the knowledge 
limits table is searched for the attribute with the constraining 
condition. If it is found, the constraint is compared and re
ported in the trace. If it is not found, the rule is passed to the 



A Methodology for Rule-base Integrity in Expert Systems 83 

next test and the constraint flagged for update into the knowl
edge table. 

RESOURCE CONSISTENCY 

A rule-based system may make use of a database. If a data
base is to be updated by functions invoked by a rule which 
fires, then one of the considerations that should be addressed 
is the possibility of resource conflict. A resource is defined as 
a quantity of objects or allocation of time. Typically, a re
source is an item quantity (e.g., the number of nuts or bolts) 
or a time related attribute (e.g., for scheduling or reserving 
dates). Resource conflict will occur when a rule fires and: (1) 
requires access to a resource which was recently updated, (2) 
rules in an inference path have access to the same database 
attribute, (3) rules update or access an attribute which is 
related to other attributes, or (4) individual rules are incom
plete and therefore may contribute to a resource conflict. 

To maintain resource consistency by avoiding the problem 
of resource conflict, the following strategies are used: 

1. lock table: used to lock a resource on either a time de
pendent basis or by user ID 

2. multi-rule resource conflict model: used to check that the 
same resource isn't accessed during an inference process 

3. related resource model: used to show the relationships 
between various related resources. 

Lock Table 

A resource such as reserving a room or scheduling an ap
pointment should be checked against being updated shortly 
after it has been set. A rule may fire which invokes a function 
that allocates a resource. Subsequent access to this resource 
by other rules or other functions within a rule should be 
restricted on a time- or ID-dependent basis. The restriction on 
a resource will be in the form of a lock, which will be specified 
in a lock table. The lock table is a knowledge table in the form 
of a database relation and consists of the following attributes: 

1. DB relation: specifies the database relation containing 
the resource to be locked. 

2. DB attribute: specifies the attribute in the relation repre
senting the resource to be locked. 

3. RB function: specifies the function in a rule that requires 
access to the resource. 

4. Tuple Num.: the number of the tuple in the relation 
holding the resource to be locked. 

5. Lock type: specifies the type of lock to be put on the 
resource. The lock type may be either time dependent or 
ID dependent. The time dependent lock is set on an 
attribute for a length of time t. The time length is set 
ahead of time by updating the lock table. The ID de
pendent lock is used to lock a resource by user ID. Only 
the original updater can unlock the resource. Both of 
these types of locks are set ahead of time in the lock 
table. 

6. Time: specifies the length of time t that a resource attri
bute may be locked. 

7. ID: specifies the ID of the user who updated the re
source last. 

The lock types are preset in the lock table and may be 
changed anytime. To avoid resource conflict when a rule fires, 
the lock table is checked by keying off the DB relation and DB 
attribute, which is the resource, and by checking the lock 
type. If the lock type is time, the time field is then checked to 
see ifthe resource can be accessed. If the lock type is ID, then 
the ID attribute is checked against the current updating user. 
Most of the problems of resource conflict can be handled by 
either the knowledge tables or appropriate database relations 
(e.g., include attributes such as "appointee," "visitor" to 
identify the person for which the appointment is made). 

Multi-rule Resource Conflict Model 

The multi-rule resource conflict model is used to check 
rules in an inference path for access to a single resource. A 
resource should not be updated more than once in a single 
inference since the second update will cancel out the first and 
make it meaningless. Therefore, a set of rules involved in an 
inference should be checked for functions which update the 
same database attribute. 

To check for this potential problem, a model in the form of 
a directed graph Gmrm is constructed. All conclusions in a rule 
represented as functions which update the database are 
assigned as vertices Vmrm = {Vmrml' V mrm2 , • •• } in the graph 
Gmrm • The direction of the arc ei from a vertex Vi to a vertex 
Vj indicates that vertex Vi, representing a database updating 
function, precedes vertex Vj which represents another data
base function. The graph Gmrm contains all database updating 
functions of rules involved in an inference path. The functions 
are linked by directed arcs in the sequence they fire during an 
inference. If a vertex Vi has more than one arc ai, aj, ••• point
ing to it, then there are duplicate functions or conclusions in 
the inference path. If this function updates a database, then it 
can cause resource conflict. 

Related-resource Model 

Resource conflict can also occur if resources that are related 
to orie another are not updated simultaneously. That is, a 
resource such as a nut is related to a resource such as a bolt. 
For every nut there should be a bolt, or every time a trip is 
scheduled for a period of time, all appointments during that 
period should be rescheduled. These relationships or associ
ations between resources in the database are represented by 
a related resource model. 

The related-resource model is in the form of a directed 
graph Grr where the vertices V = {Vrrl , vrr2 ' ••• } correspond to 
a resource attribute and each arc from the set E = {erq , err2 , ••• } 

connects two related attributes Vi and Vj. The associations 
between resources are predefined as world knowledge. Any 
new associations should be updated manually in this model. 
The functions in the actions portion of a new rule ri are 



84 National Computer Conference, 1987 

checked against a knowledge table holding all functions which 
update a database. If the new rule's function matches and 
therefore updates a database, then the functions' parameters 
are checked for the attribute being updated and this attribute 
is matched against the graph Grr • If the resource attribute Vj 

is associated with another resource Vj , then the resource Vj is 
checked further for any other associations and so on. Last, the 
list of all associated resource attributes, which are found by 
searching the graph Grr , are compared with functions up
dating the database. The actions portion of a rule must con
tain functions which update all these related resource attri
butes in the list. 

KNOWLEDGE CONSISTENCY 

An extension of resource conflict in a database domain is 
knowledge conflict. Knowledge is defined as an item of infor
mation or as an object of information. Knowledge conflict can 
occur when related pieces of knowledge are not updated si
multaneously. 

Some attributes in a database such as a company, its phone 
numbers, street address and city address may be related to 
one another. If a company changes its location, not only does 
the street address have to be changed, but probably the zip 
code and possibly city, state, and other attributes have to be 
changed as well. These are related pieces of knowledge. Also, 
a semantic network consists of related piec.es of knowledge 
that may have to be updated simultaneously when a change is 
made. 

A related-knowledge model in the form of a digraph Grkm 

is set up to represent related pieces of knowledge. Each vertex 
Vi in the graph represents either an object in the form of a fact 
or a database attribute. Related pieces of knowledge are con
nected by arcs. Each time a piece of knowledge is referenced, 
it is checked against the graph Grkm to see if other pieces of 
knowledge should be updated simultaneously. 

MESSAGE CONSISTENCY 

Some rule actions may include messages that are sent if a rule 
fires. If multiple rules are in an inference path, then many 
messages may be sent. Following is a list of some of the poten
tial problems that may be encountered when many rules fire: 

1. Identical or redundant messages may be sent by several 
actions invoked within a single rule. 

2. Conflicting messages may be sent from more than one 
rule in a single inference. 

3. Identical or redundant messages may be sent from more 
than one rule in a single inference. 

4. Conflicting messages may be sent by actions invoked 
within a single rule. 

All these message problems make up a category of conflict 
called message conflict. Message models are proposed as a 
method of increasing message consistency by checking for 
message conflict. 

Intra-rule Message Conflict 

Rules may contain a number of actions that may fire result
ing in more than one message being sent from a single rule. 
For instance, two messages which will be sent when rule rOO1 

fires: 

r001 

If" category .eq. phone_call 
phone_call. speak .eq. "boss" 
phone_call. name .ne. null 
location(boss) eq. "out" 

Then: notify( sender ,stat1) 
inquire (phoneJlumber ) 
generateform(type.memo,memo.info) 
mailbox( memo ,receiver ,stat14,sender) 

First, the sender is notifieed with a message statl that the 
person he wishes to talk to is out, notify (sender,statl). Then 
the sender is notified that the intended receiver of his phone 
call has been notified by a mail message, mailbox (memo, 
receiver, stat 14 ,sender). 

Intra-rule message conflict is defined as conflict between 
messages sent from a single rule. Message conflict is defined 
as separate messages appearing together and having conflict
ing or contradictory information. A message model is used to 
designate what is conflicting or contradictory between mes
sages. The message model consists of a set of vertices Vmm = 
{Vmml' V mm2 '· •• }, a set of arcs Emm = {emm1 , emm2 , •• • } where 
each vertex Vi corresponds to a message mj and each arc ej has 
a flag F designating a positive or negative association [ei' E]. 
A negative association, F = -1, from vertex Vj to Vj indicates 
that message mj should not be associated with message mj. A 
positive flag, F = + 1, indicates that the association is valid. 
That is, both messages mj and mj can appear together. All 
messages in the graph are linked to all other messages and 
each link is assigned an association flag. 

Intra-rule message conflict is resolved by using the message 
model to check whether messages in the action portion of the 
rule conflict or are redundant. The action functions in the rule 
to be analyzed are compared to a knowledge table containing 
templates matching the correct message to a particular func
tion (see Table I). 

The message associated with a particular action function is 
then matched against the message model. If additional func
tions in the rule send messages, they also are compared to the 
message model. If these messages are connected by arcs, the 
flag F associated with the arc ej connecting the two messages 
mj and mj is checked to verify the validity of the association of 
the two messages, mj and mj. If the flag equals -1, then the 

Context 

mail 
file 

TABLE I-Sample knowledge table 

Function 

mailbox 
notify 

Attributes 

?x,rec,M,send 
sender,M 

Message (M) 

stat14 
stat7 



A Methodology for Rule-base Integrity in Expert Systems 85 

grouping of these messages in a single rule is not allowed, and 
RISS reports the problem through the trace. If the messages 
are the same, then this problem is also reported through the 
trace. Otherwise, the messages may be grouped together and 
RISS continues on without interruption. 

Inter-rule Message Conflict 

Rules may fire one after another in an inference path before 
coming to a conclusion. As the actions are invoked, messages 
may be sent that are conflicting or redundant. To avoid this 
problem, new rules are checked to see if they are standalone 
or if they are involved in an inference path. This is done by 
checking a rule dependency model for all rules involved in an 
inference. The details of this model will not be discussed here. 
Once all the rules in an inference path are found, the action 
clauses of these rules are searched for functions containing 
messages. Those functions are compared to the knowledge 
table containing templates which match the correct message 
to the function in the action portion of the rule. All messages 
involved are gathered and each message is matched to the 
message model to see if any messages in that inference path 
should not be grouped together. If any messages should not be 
grouped together as indicated by the association flag, then this 
problem is reported through the trace module. 

Database Message Conflict 

In a database environment, access or update of certain 
attributes in various relations may be monitored. Specific ac
cesses or updates trigger messages that are sent by the monitor 
on the database relation. The monitor kernel may be rule
based in the form of alerter rules, which designate actions that 
should be taken upon any access or update of database attri
butes. Therefore, the techniques described in the last two 
sections would apply. 

CONCLUDING COMMENTS 

Developing and formalizing a methodology that tries to in
crease rule-base integrity is helpful during the ongoing addi
tion of rules into an expanding rule-base. This paper intro
duces some techniques for achieving rule-base integrity and 
opens up some new possibilities and questions. Future work 
will include the development of rule models,IO rule-set mod
els, and knowledge belief maintenance models. Rule models 
will be used to check rules for completeness (e.g., whether 
certain conditions or actions are missing for a rule). Rule-set 

models will attempt to check for missing rules, and belief 
maintenance models will attempt to check new rules against 
an internal view of the world (belief) as based on existing rules 
and previous world knowledge. This will include the ability of 
a system to learn about itself in all modules including the 
ability to learn about the world through the addition of new 
rules to the rule-base and thereby expand its knowledge dy
namically. Currently, world-view knowledge is predefined 
and added manually. Also, a friendly administrative interface 
should be developed to make changes to domain specific 
knowledge, templates, etc. Additional modules could be ad
ded to handle specifics about backward chaining and other 
inference mechanisms as well as analysis of other knowledge 
structures and the inferences that are made from them. 

Although this paper focuses on rule-base integrity, the con
cepts presented can apply to other knowledge representa
tions. These methodologies could easily be extended or 
tailored to encompass other knowledge representations. 
These additional extensions based on the original concepts 
could make this a more general knowledge integrity meth
odology that would be more applicable to systems which make 
use of several representations in their design. 

RISS is implemented on a VAX 111780 running VMS, and 
uses the ORACLE database to store rules, and ORACLE's 
SQL language to handle database analysis. C programs call 
embedded SQL procedures to handle rule-base analysis. 

REFERENCES 

1. Suwa, M., A.c. Scott, and E.H. Shortliffe. "Completeness and Consis
tency in a Rule-based System." Rule-based Expert Systems, Reading, Mas
sachusetts: Addison-Wesley, 1984, pp. 159-170. 

2. Chang, S.K., H.L. Chen, L. Leung, L.S. Liang, and G. Stefanek. "An 
Intelligent Message Management System." ISL Report, Department of 
Electrical and Computer Engineering, Illinois Institute of Technology, Oc
tober 1985. 

3. Stefanek, G. and C. Lin. "Alerter Rules for a Secretarial Expert System 
and Formal Definition using OPM." ISL Report, Dept. of Electrical and 
Computer Engineering, Illinois Institute of Technology, May 1985. 

4. Davis, R. and B.G. Buchanan. "Meta-level Knowledge." Rule-based Ex
pert Systems, Reading, Massachusetts: Addison-Wesley, 1984, pp. 507-530. 

5. Deo, N. Graph Theory with Applications to Engineering and Computer 
Science. Englewood Cliffs, New Jersey: Prentice-Hall, 1974. 

6. Codd, E.F. "A Relational Model of Data for Large Shared Data Bank." 
Communications of the ACM 13 (1970) 6. 

7. Chamiak, E. and D. McDermott. Introduction to Artificial Intelligence. 
Reading, Massachuetts: Addison-Wesley, 1985, pp. 411-415. 

8. Adams, J.B. "A Probability Model of Medical Reasoning and the MYCIN 
Model." Mathematical Biosciences 32 (1976), pp. 177-186. 

9. Shortliffe, E. H. and B. Buchanan. "A Model of Inexact Reasoning in 
Medicine." Rule-based Expert Systems, Reading, Massachusetts: Addison
Wesley, 1984, pp. 233-262. 

10. Davis, R. "Interactive Transfer of Expertise." Rule-based Expert Systems, 
Reading, Massachusetts: Addison-Wesley, 1984, pp. 171-208. 





A parallel inference model for logic programming 

by HE-YONG JUANG and DANIEL CHENG 
Northwestern University 
Evanston, Illinois 

ABSTRACT 

In this paper, we describe a parallel inference model for logic programming on 
general-purpose multicomputers. In the model, input clauses are partitioned into 
subsets, and resolution is conducted on each subset concurrently. The partitions are 
dynamically adjusted via clause migration as inference proceeds. This allows each 
processor to work on virtually the whole clause set while a shorter resolution cycle 
is achieved. In the context of AND/OR tree space search, the parallel model 
explores another dimension of parallelism in addition to AND/OR parallelism. It 
implicitly forces multiple processors to jointly search the same path that leads to a 
refutation. Problem-solving heuristics can be incorporated in the parallel model 
systematically to determine clause partitions and guide inference. With a distance 
measure derived from problem-solving heuristics, a partition that has the best 
combination of clause subsets and a small rate of clause migration can be obtained 
using existing clustering algorithms. Clause migration decisions can also be made 
based on the distance measure. Last, we point out that all the mechanisms of the 
parallel model can be efficiently supported by a connection graph. The graph also 
simplifies the implementation of the subsumption strategy. 

87 





INTRODUCTION 

Logic inferencel
-

3 is a method of acquiring new knowledge 
from a set of known facts represented as clauses, and reso
lution is the most commonly used technique for logic infer
ence. Logic programming languages such as Prolog4 have 
been successfully used in solving complex problems, espe
cially in developing expert systems. 5 

In resolution, a theorem, that is, new knowledge, is formu
lated as a goal statement, and the known facts are treated as 
a set of consistent axioms. Then, a proof procedure is applied 
to show that the denial of the goal statement is false, a refuta
tion exists. The procedure involves repeated cycles of match
ing, unification and resolution of two clauses. The matching 
process identifies a pair of clauses such that the positive form 
of a literal appears in one clause and the negative form in the 
other. These two literals are unifiable if their variables can be 
unified by substitution during the unification process. After 
the two literals are unified, a new clause called the resolvent 
is generated by canceling them and combing the remaining 
literals. The two clauses involved are called the resolvable pair 
in this paper. The proof pI;ocedure terminates when an empty 
clause is generated. 

The resolution procedure is slow when it runs on today's 
computers. 6 Many efforts have been made to speed up logic 
inference,7 and parallel processing has been identified as one 
of the most promising approaches. Previous work in this area 
can be classified into five categories according to the level of 
parallelism they explore:7 (1) subrule level, (2) rule level, (3) 
search level, (4) language level, and (5) system level. At the 
subrule level (or the architecture level), emphasis has been 
placed on the exploitation of concurrency during unification 
because unification is the most often invoked module in logic 
inference. Pipeline architectures8 and construction of a dedi
cated unification hardware9

,10 fall in this category. For the 
rule level, efforts have concentrated on parallel matching of 
clause pairs that have unifiable literals. 6,11-13 Search-level par
allelism mainly deals with the selection of clauses, from the 
whole clause set, to resolve, and is gaining attention in the 
field of logic programming.14-17 Sharing resources is the main 
subject in system-level parallelism. To facilitate the automatic 
exploitation of parallelism in logic inference, many parallel 
logic programming languages have been proposed.18, 19 Their 
implementations are in progress. 

However, the revelation of the low degree of parallelism in 
typical logic programs and the difficulty of sharing variables 
make extensive parallelism difficult to achieve. In this paper, 
we propose a parallel model of logic inference in which the 
clause set of a problem domain is decomposed into several 
distinct partitions. Logic inference on each partition is con
ducted at a different processor in a multiprocessor system 

A Parallel Inference Model for Logic Programming 89 

simultaneously. Intermediate derivations in each partition are 
shared between partitions via clause migration. A formal 
method of partitioning the clause set is' proposed, that in
cludes sharing intermediate derivations via clause migration. 

A PARALLEL INFERENCE MODEL 
FOR LOGIC PROGRAMMING 

Our objective is to design a parallel logic inference scheme 
that will run on general-purpose multicomputers including 
mUltiprocessors and local area networks.20 Since no special
ized hardware is assumed for such a scheme, the parallelism 
will be explored primarily at the search level. Major problems 
confronting existing schemes are investigated below to mo
tivate our design. 

Problems in Existing Parallel Inference Schemes 

According to recent studies, parallelism at the subrule level 
and the rule level is limited. 6, 12,21 There was speculation, on 
the other hand, that search-level parallelism could offer a 
significant opportunity for a large degree of concurrency. 
Concurrency is a consequence of non-determinism in logic 
inference. That is, the order of resolution affects only the 
efficiency, not the correctness of the inference. Therefore, 
many clauses can be resolved simultaneously. Nevertheless, 
the non-determinism also has an adverse effect on logic infer
ence. In each resolution cycle, the two clauses to be resolved 
can be selected out of C(n,2) possible combinations. If the 
selection is unrestricted, the resolution cycle can be very long 
when the clause set is large. To tackle this problem, two 
restrictions are imposed: (1) only Horn clauses 1 are allowed in 
the clause set, and (2) either a top-down or a bottom-up proof 
procedure is used. The resulting inference procedure can be 
viewed as a search process in an AND/OR tree space.2 Each 
alternative branch in the AND/OR tree offers a possibility for 
parallelism since it represents a subtree that can be searched 
independently. The resulting inference procedure retains a 
high degree of parallelism, even though a strict sequence is 
imposed when it searches along a path. Nevertheless, due to 
sharing variables between AND branches and the small num
ber of OR branches found in most existing programs, 11,15,21 
concurrency in AND/OR tree search is also limited in 
practice. 

A procedure with a high degree of parallelism is able to 
exploit the potential of a multiprocessor since many pro
cessors will be kept busy for most of the time. For a con
ventional deterministic task, such as numerical analysis, 
better processor utilization implies greater speedup. Un
fortunately, logic inference is non-deterministic. Keeping pro-



90 National Computer Conference, 1987 

cessors busy does not guarantee a speedup. In other words, 
many processors may not be doing useful work even though 
they may be busy all the time. To prevent a processor from 
doing unproductive work, schemes that use the dominance 
relation to eliminate unnecessary clauses were shown to be 
very effective. 16, 17 Clause subsumption is a notable example. 22 

Unfortunately, it is difficult to implement in an AND/OR tree 
search procedure. 

Problem-solving heuristics provide another important ap
proach to improve the efficiency of logic inference. It may be 
used to guide the selection of resolvable clauses. However, in 
its current form, it is hard to incorporate problem-solving 
heuristics in an AND/OR tree search procedure. 16 

Partitioning Clause Set for Parallelism 

Since a matching process selects resolvable pairs from the 
whole clause set, resolution on a small clause set is usually 
much faster than on a large one. Another fact that can be 
observed is that a successful inference does not always involve 
all the clauses. These two observations suggest that inference 
can be conducted on all the possible subsets of clauses concur
rently; each is carried out by a different processor. The infer
ence terminates as soon as a processor finds a proof. If the 
processor that found the proof happens to work on a small 
subset, the inference time can be very short. Although such an 
approach toward parallel logic inference looks very promising 
at the first glance, it is impractical. For a set of n clauses, there 
are 2n subsets. It is impossible to exhaust all the subsets even 
for a medium-sized clause set. However, this approach can be 
made practical by the following modification. Initially, clauses 
are partitioned into as many subsets as the number of pro
cessors available. In this way, we can run the procedure on a 
system with an arbitrary number of processors, and all the 
processors can be kept busy all the time. Nevertheless, a 
subset so obtained usually does not contain sufficient clauses 
for a successful inference. To cope with the problem, clauses 
are transferred from one subset to another as inference pro
ceeds. The migration of clauses adjusts the partition dynamic
ally so that a refutation can be found in a subset. Thus, clause 
migration is essentially a robust clause partitioning scheme. 
To clarify this concept of parallel logic inference, the basic 
steps involved are outlined in the following procedure: 

Procedure: Parallel-Logic-Inference 
Begin 

Partition the input clause set into subsets; 
Load each subset into a processor; 
All the processors run the following loop concurrently: 

Loop until success or there are no more resolvable 
pairs 

Run a local inference cycle; 
If the resolvent is an empty clause, then set success 
flag; 
Invoke clause migration if necessary; 
Split into two subsets and request for another pro

cessor if local subset becomes too large; 
end Loop; 

end. 

Due to clause migration, a processor in the above proce
dure conducts inference on virtually the whole clause set, 
though it is in fact working only on a small subset of clauses. 
Thus, the parallel inference procedure can be viewed as a 
form of virtual inference. 

In the context of an AND/OR tree search space, the paral
lel model allows three forms of parallelism. In addition to 
AND parallelism and OR parallelism, processors may also 
jointly work on the same search path via sharing intermediate 
inference results. This parallelism is implicitly achieved by 
clause migration, which does not exist in the top-down or 
bottom-up proof procedure. 

The resolution procedure is non-deterministic, and the par
titioning approach creates no shared variables. Hence, no 
synchronization between processors is necessary. All the pro
cessors can run concurrently in the above procedure. Further
more, resolution and clause migration from one processor to 
another can also be carried out asynchronously. 

Issues in the Parallel Inference Procedure 

The proposed parallel inference model consists of three 
basic components: the initial partition, clause migration, and 
local inference. Each involves several unsettled issues. 

The initial partition is the basis of the whole inference pro
cedure. A proper partition will reduce the rate of clause mi
gration and improve the inference speed. Thus, clauses have 
to be grouped in such a way that local inference is most pro
ductive and the clause migration rate is minimal. The main 
issues that have to be investigated in determining the initial 
clause partition are the proper size of a clause subset and how 
related clauses are grouped together. Factors related to the 
target machine, such as processor speed and interprocessor 
communication delay, should be taken into consideration. 
However, problem-solving heuristics are more important 
since logic inference is extremely problem-dependent. 

Clause migration dynamically changes the partition of the 
clause set. Each processor has to determine which clause 
should migrate, when and where. Making such decisions in
volves not only static information but also information about 
the dynamic status of the inference. Thus, besides problem
solving heuristics, an efficient data structure for maintaining 
status information is important to making decisions about 
clause migration. 

Local inference is the component that does the actual work 
of resolution. Like a conventional inference procedure, it re
peats a resolution cycle that consists of matching a pair of 
clauses, unifying the matched literals, and resolving the pair. 
Issues that have to be investigated include how to reduce 
inference cycle time and how to identify the most promising 
pair. Inference cycle time may be reduced by keeping the local 
clause subset small and organizing it into an efficient data 
structure. The subsumption strategy can also help to reduce 
the inference cycle since it can eliminate unnecessary clauses, 
but it requires an efficient data structure because much 
searching is involved. Determining which pair to resolve, on 
the other hand, relies on problem solving heuristics. Ranking 
resolvable pairs requires an effective way to capture knowl
edge about the problem. 



Incorporating problem-solving heuristics and employing 
efficient data structures are two keys to a successful design 
of the parallel logic inference procedure. Depending on the 
problem to be solved and available knowledge about solv
ing it, different heuristics may be applied. This requires a 
parallel logic inference procedure that adapts different heuris
tics from problem to problem. Few existing parallel logic in
ference schemes provide mechanisms for this purpose. We 
will describe a systematic method for incorporating different 
problem-solving heuristics into the parallel inference proce
dure and a unified data structure for supporting clause mi
gration, local inference and subsumption. 

PROBLEM-SOLVING HEURISTICS 

Among resolvable pairs, some will lead to a refutation, but 
not all. The best inference procedure, would be the one in 
which every resolution makes progress toward a proof. It is 
hard to achieve due to the nondeterministic nature of logic 
inference. This motivates the use of problem-solving heuris
tics to predict which resolvable pair is more likely to lead to 
a proof so that that number of inference cycles can be min
imized. For example, in the set-of-support strategy,23 a set of 
clauses is "supported" and one of these clauses or their de
scendants should be included in each resolution. Accordingly, 
any resolvable pair with a supported clause is considered more 
useful than those without supported clauses. In the unit
preference strategy, 24 clauses with fewer literals are resolved 
first since these clauses are more likely to generate an empty 
clause. The unit-preference strategy belongs to a general class 
of probiem-solving heuristics, called ordering strategies. 2,22 

An ordering strategy ranks clauses to determine the order in 
which resolutions are performed. These strategies can be 
adapted to the local inference part of the proposed parallel 
inference model, but are difficult to apply to the initial par
tition and clause migration parts. 

Our objective is to provide a unified mechanism for incor
porating problem-solving heuristics to guide local inference, 
conduct initial partitioning, and determine clause migration. 
To this end, the problem-solving heuristic is transformed into 
a preference measure from which the order of resolution in 
local inference can be obtained directly. The measure is then 
transformed into another measure that helps grouping clauses 
into appropriate subsets. 

Resolution Preference 

There may be several unifiable literals in a resolvable pair, 
and the pair can be resolved with respect to each of them. 
Resolution on different unifiable literals may have different 
effects on the efficiency of inference, though they operate on 
the same clause pair. A problem-solving heuristic based on 
clause ordering will not reflect this fact. Thus, for a more 
productive local inference scheme, the preference measure 
should lend itself to the ranking of unifiable literals instead of 
individual clauses. 

It is easy to encode problem-solving heuristics using a pref
erence measure. For example, if the set of support (SOS) 
strategy is used, links attached to clauses having support can 

A Parallel Inference Model for Logic Programming 91 

be placed at a preference level an order of magnitude larger 
than others. If the kind of strategy used in the inference 
process defines a function value (e.g., a priority function, a 
weighting, or a literal number), preference measures can be 
assigned values in proportion to the function values. 

Another important factor is the nature of the inference 
procedure. As Kowalski suggests,l resolutions which lead to 
the simplification of the graph should be performed before 
others. With this regard, two connected literals, each of which 
has only this link attached, can be resolved upon without 
generating new clauses or links. Therefore, these links should 
be assigned a higher preference level than others. 

Distance Between Two Clauses 

The order of local resolution can be derived directly from 
the concept of preference. The grouping of clauses, however, 
cannot be determined with the same measure. Instead, it 
requires a measure that characterizes the similarity between 
clauses. We will call such a measure the distance between two 
clauses in this paper. Since the clause is the smallest unit in the 
initial partition and clause migration, a distance measure 
should be provided at this level. 

The next question is how to transform the problem-solving 
heuristics into the distance measure. It can be done indepen
dently. However, in order to provide an unified transforma
tion mechanism, the distance measure should be correspond
ingly derived from the preference measure. The advantage of 
doing so is that users only have to deal with the problem
solving heuristics, as in the conventional inference systems. 
Consequently, the partition and migration processes can be 
transparent to users. 

For two clauses that are resolvable, their distance can be 
determined by a function, which combines the preference 
levels of those unifiable literals associated with them. The 
function can be provided by the system as a default. It can 
also be overwritten by the user with one that is more appropri
ate for the problem to be solved. 

Two clauses may not be resolvable due to the lack of uni
fiable literals. However, their descendants may be resolvable. 
The distance between these two clauses, thus, can be ob
tained indirectly from other resolvable pairs. Consider an ex
ample in which Clauses Cl.1 and Cl.2 are not resolvable, 
but both are resolvable with Clause Cl.3. In this case Cl.2 
will be resolvable with the resolvent of Cl.1 and Cl.3. Let 
D(x,y) represent the distance between Clause x and Clause y. 
Then, D(Cl.1, Cl.2) can be reasonably defined as the sum of 
D(Cl.1, Cl.3) and D(Cl.2, Cl.3). In general, more complex 
functions than a summation can be used. Nevertheless, a 
linear function is desirable because it is convenient to manip
ulate. 

The distance between two non-resolvable clauses is in
finite if none of their descendants are resolvable. The distance 
measure of a resolvent inherits that of its parent clauses with 
some adjustments. 

Initial Clause Partitioning According to Distances 

After a distance measure has been defined for every pair of 
clauses, partitioning can be directly converted into a cluster-



92 National Computer Conference, 1987 

ing problem as in the fields of pattern recognition and statis
tics where efficient algorithms are available. 25

,26 Since the 
work of actual partitioning is passed down to a clustering 
algorithm, control over how partitioning is done can be 
based on the assignment of distance measures. 

The partition obtained in this way will have clause pairs with 
short distances in the same subset. This ensures that closely 
related clauses are grouped together. The distance of a pair of 
clauses in different subsets is a long one. This implies that the 
pair will be less likely to be resolved. As a result, the clause 
migration rate will be minimized. 

Solving different problems with the same clause set may 
generate different sets of distance measures because different 
heuristics are used. Each set of distance measures will result 
in a partition that is the best for its corresponding problem, we 
hope. 

Determining Clause Migration Based on Distances 

A clause should migrate from one subset to the other when 
it has a higher preference to be resolved at the remote site. 
The difference in preference is reflected in the distances 
between this clause and its local and remote counterparts. If 
the remote distance of the clause is less than its local distance, 
then this clause has preference to be transferred to the remote 
site. When a clause is not resolvable with any clause in the 
local subset, its local distance is infinite. Thus, apparently, it 
should migrate to another partition. Essentially, the criteria 
for clause migration are equivalent to the protocol that real
izes a· distributed adaptive clustering algorithm. 

UNIFIED DATA STRUCTURE 

The connection graph proposed by Kowalski! was found to be 
efficient for supporting the parallel logic inference. 27 In a 
connection graph, each literal is represented as a graph node, 
and nodes representing the literals of a clause are grouped 
together. Unification is then conducted to match every pair of 
literals that have the same predicate symbol and are com
plementary in sign. Unifiable pairs of literals are indicated by 
graph links, and each link is labelled by the most general 
unifier (MGU) of that link. The graph representation of the 
clause set in Figure 1(a) is shown in Figure 1(b). Such a graph 
is simple, yet provides a unified framework for managing re
solvable pairs, facilitating subsumption, and supporting clause 
migration. 

Managing Resolvable Pairs 

In a blind clause matching, resolvable pairs of clauses are 
determined by searching over the whole clause set from 
scratch in every resoiution cycle. The procedure is highly re
dundant since the set of resolvable pairs does not change 
significantly from iteration to iteration. With a connection 
graph, the unifiable clauses are identified beforehand and 
updated during the inference process. Because information 
about unifiable clauses is maintained, the matching process in 
each resolution cycle is immediately eliminated. 

Facilitating Subsumption 

Subsumption is effective but may incur a large overhead. It 
involves exclusive searching for candidates to be subsumed, 
and is invoked whenever a new clause is generated. With the 
connection graph, those candidates can be located immedi
ately since all of them are exactly two hops away from the new 
clause. 

Computing Distances 

To compute the distance measure of two unresolvable 
clauses, we need to know all the indirect resolvable pairs that 
relate the two clauses. This is readily available in the con
nection graph since these pairs form a chain in the connection 
graph. 

Supporting Clause Migration 

Local and remote distances have to be collected in making 
clause migration decisions. Since distance is incremental with 
respect to the number of indirect resolvable pairs involved, 
only those clauses on the partition boundary are candidates 
to be exchanged between subsets. If the input clause set is 
organized into a connection graph, these clauses can be deter
mined immediately, and potential migration paths are repre
sented by links crossing over the partition boundary. Hence, 
the overhead of clause migration can be greatly reduced by a 
connection graph. 

C1. 1. -G(e,O 
C1. 2. G(x,Y) -F(z,y) -N(x,z) 
CI. 3. M(v,w) -W(v,u) 
C1. 4. F(u,v) -P(u,w) -Q(w,v) 
C1. 5. F(u,v) -C(u,v) 
C1. 6. N(u,v) -K(u,v) 
C1. 7. N(u,v) -Z(u,z) -N(z,w) -K(w,v) 
C1. 8. P(x,y) -L(x,Y) 
C1. 9. C(x,y) -5(x,Y) 

C1. 10. K(x,y) -W(x,y) 
C1. 11. Z(x,y) -B(x,y) 
C1. 12. N(x,y) -J(x,y) 
C1. 13. L(d,e) 
C1. 14. 5(e,O 
C1. 15. B(e,b) 
C1. 16. J(b,c) 
C1. 17. W(c,d) 

(e) The input cleuse set 

(b) Greph representetion of input cleuse set 

Figure I-Example inference problem: (a) The input clause set, 
(b) Graph representation of input clause set 



AN EXAMPLE 

An example is described in this section to illustrate the key 
features of the parallel model presented in previous sections. 
In order to directly compare the performance of this model 
with that of PROLOG systems, a Horn clause set is used, as 
shown in Figure la. From the input clause set, a connection 
graph is first constructed as shown in Figure lb. 

Our next task, is to decompose the resulting graph through 
a clustering algorithm. For this example, let's define the pref
erence measure of a pair of unifiable literals to be the sum of 
the literals in the two associated clauses. If there exists only 
one link between two clauses, the distance measure is simply 
set to the preference measure of their unifiable literals; other
wise, the minimum of the preference measures of the links 
connecting them is taken. Accordingly, the distance between 
Cl.l and Cl.2 is 4, between Cl.2 and CI.4 is 6, and so on. For 
clauses having no unifiable links between them, the distance 
measure is defined to be the shortest path between them along 
the unifiable links. Thus, the distance measure between Cl.l 
and CI.4 is 10(4 + 6), between Cl.l and Cl.9 is 13(4 + 5 + 4). 
The complete distance measure between every pair of clauses 
is shown in Table I. 

The clustering algorithm is then invoked to run on this 
distance matrix which results in three partitions of the initial 
graph, as shown in Figure 2, assuming three processors are 
available. From Figure 2, we observe that the partitions are 
suitably cut on unifiable links, which have the largest distance 
measures, as we expect. Also, notice that clauses are evenly 
distributed over partitions, which is a quite desirable situ
ation. Each partition is, thereafter, loaded into one processor 
for execution. 

The links crossing over partitions, external links, are the 
points where communication takes place between partitions. 

TABLE I-Distance matrix of the clause set in Figure 1 

Clauses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 0 4 9 10 9 9 11 15 13 13 17 17 18 16 20 20 16 

2 4 0 5 6 5 5 7 11 9 9 13 13 14 12 16 16 12 

3 9 5 0 11 10 10 12 16 14 6 18 18 19 17 21 21 3 

4 10 6 11 0 11 11 13 5 5 15 19 19 8 8 22 22 18 

5 
: 9 5 10 11 0 10 12 14 4 14 18 18 17 7 21 21 17 

6 I 9 5 10 11 10 I 0 12 16 14 4 16 16 19 17 19 19 7 

I 

7 >1 i 7 12 13 12 I 12 0 18 16 6 6 6 21 19 9 9 9 
I 

8 I 15 I 11 16 5 14 i 16 18 0 10 20 24 24 3 13 27 27 23 

i: 13 i 
9 4 ! 14 

I 
25 ! 21 9 14, 5 16 10 0 18 22 22 ' 13 3 25 

I 

10 '113 i 9 6 15 14 4 I 6 20 18 0 12 12 : 23 21 15 15 
i 

3 

11 i 17 I 13 18 19 , 18 16 I 6 : 24 i 22 12 o i 12 I 27 l 25 3 15 i 15 

12 17 13 i 18 I 19 18 16 6 1 24122 12 12 0 27 25 15 ! 3 15 

18 14 19 19 21 I 3 113 23 27 27 i 0 
I 

30 ! 26 
I 

13 8 , 17 16 I 30 

14 16 12 ! 17 1 8 : 7 117 i 19 ! 13 3 21 25 25 116 o i 28 28 24 

15 20 16 21 22 i 21 19 9 27 25 15 3 15 30 28 I 0 18 18 

I 16 20 16 21 22 21 19 9 27 25 15 15 3 30 28 118 o ! 18 

! 17 16 12 3 18 ! 17 7 9 ! 23 21 3 15 15 26 24 18 18 0 

A Parallel Inference Model for Logic Programming 93 

P3I1itionC 

Figure 2-Distance measures and initial partition 

In this case, there are two between partitions A and B, two 
between partitions A and C, and none between partitions B 
and C. A copy of the MGU of each external link is maintained 
in each connecting partition. 

In the execution of inference on each partition, the pro
cessor picks a link of its partition, and resolves upon this link 
to generate a new clause, the resolvent. It selects links in 
ascending order of preference measures. Ties are broken ran
domly, but in favor of internal links. 

In Figure 3, a snapshot is shown after two steps of in
ference have been performed in each partition through the 
resolution of two links, indicated by the darkened lines in 
Figure 2 and selected according to the strategy, assuming 
equal execution time for these resolutions. Except for Cl.IO, 
whose new MGU is updated through interprocessor commu
nication, these beginning resolutions are completely done 

Figure :>-After 2 steps of resolutions on links indicated 
by the darkened lines in Figure 2 

Notice that C1.6 is to be subsumed by C1.3 



94 National Computer Conference, 1987 

within each partition. Inside partition A, we further observe 
that Cl.6 ought to be subsumed by Cl.3. After the deletion of 
Cl.6 and its links, Cl.lO becomes isolated in partition A and 
is subject to migration. It migrates to partition C as its only 
link goes to partition C, shown in Figure 4. 

During the migration of Cl.lO, we assume two inference 
steps are also taking place in partition Band C, and one 
inference step in partition A. The resulting situation is shown 
in Figure 5. For resolution performed on clauses with external 
links, the new MGU is checked for compatibility, as well as, 
internal links. Any incompatible links are immediately de
leted, as is the case, with the link between C1.2 and C1.3. If 
the external links are incompatible, they are deleted from 
both clauses through the communication protocol. If the 
new MGU is compatible with the old one, a copy of it is sent 
to the remote processor along the external link in order to 
keep the two copies consistent. 

Cl.2 now becomes isolated in partition A, and is subject to 
migration. Since it has two links with partition B and one link 
with partition C, we migrate it to partition B to save the 
potential communication overhead. Figure 5 also shows the 
arrival of Cl.lO from partition A, which is thus available for 
resolution in partition C. 

Here again, we assume that the migration of C1.2 can 
be performed in approximately the same time one inference 
step is performed in partition Band C. Figure 6 displays the 
situation after these operations. Cl. 7, in this case, must be 
migrated. Miscellaneous inference steps, thereafter, are 
shown in Figure 7 and Figure 8. In Figure 8, the goal state
ment is reached by the generation of an empty clause in 
partition B. Counting the migration process as one resolution 
step, it takes eight resolution steps to get the proof. 

Presenting this example clause set to a logic inference sys
tem, a typical PROLOG, we get 28 inference steps. By care
fully rearranging the order of these clauses, we can reduce it 
to 16 steps, and this turns out to be the best we can get from 
an uniprocessor inference system. Since most of the time in
ference problems involve a moderate number of clauses, 

Figure 4-After the removal of the subsumed clause (Cl.6) 
Cl.lO is now isolated and is subject to migration 

optimal ordering of the clauses is usually not obtainable. 
On the other hand, the performance of the parallel model 
can be further improved if a more elaborated heuristic is 
encoded. The shorter resolution cycle in each step is another 

Partition A. 

C1. 3 

~~~~~ -------{M(c,W)) 

PartitionB

PartitionC

Figure 5--After the migration of C1.10 and the resolutions
indicated in Figure 4

Notice that C1.3 is no longer unifiable with Cl.2, and is thus deleted.
Cl.2 is now isolated and is to be migrated to Partition B

C1. 2 ,,----,.---......

dlz

C1. 4

F(d,O

Figure 6-After the migration of el.2 and the resolutions
indicated in Figure 5

Notice that Cl. 7 is now subject to migration.

Partition A

PartitionB
PartitionC

Figure I-After the migration of Cl. I and the generaiion
of new resolvent (Cl.18)

However, C1.18 is not unifiable with Cl. 7 and is thus deleted.

Partition A

PartitionB

Figure 8-A proof is found in Partition B

speedup factor of the parallel model, that is implicitly illus
trated in this example. Therefore, we conclude, that this
parallel model will outperform uniprocessor inference sys
tems, with the potential speedup factor in proportion to the
number of partitions,

CONCLUDING REMARKS

We have described a parallel inference model for logic pro
gramming on general-purpose multicomputers. In this model,
input clauses are partitioned into subsets, and resolution is
conducted on each subset concurrently. All the available pro
cessors are fuBy utilized in this way. The partition is dynamic
ally adjusted via clause migration as inference proceeds. This
allows each processor to work on virtually the whole clause set
while achieving a shorter resolution cycle. No synchronization
is necessary between processors. In the context of AND/OR
tree space search~ the parallel model explores another dimen
sion of parallelism in addition to the AND parallelism and OR
parallelism. It implicitly allows multiple processors to jointly
search the same path that leads to a refutation. Problem
solving heuristics can be incorporated in the parallel model
systematically. They are encoded into a preference measure
of unifiable literals to guide local inference such that the
most promising clause is always resolved first. The preference
measure is then translated into the distance measure between
clauses. The distance measure allows closely related clauses
to be grouped in the same subset using existing clustering
algorithms. The partition so obtained has the best combina
tion of clause subsets and a small rate of clause migrations.
Clause migration decisions can be made based on the distance
measure also. The optimal migration decision would be the
one that realizes an adaptive clustering algorithm. Last, we
find out that all the mechanisms of the parallel model can be
efficiently supported by a connection graph. The graph also
simplifies the implementation of the subsumption strategy.

A Parallel Inference Model for Logic Programming 95

Therefore, we conclude that this parallel model will out
perform the uniprocessor inference systems.

REFERENCES

1. Kowalski, R. Logic for Problem Solving, 1979.
2. Nilsson, N. J. Principles of Artificial Intelligence, Tioga Publishing Co.,

1980.
3. Rich, E. Artificial Intelligence, McGraw Hill, 1983.
4. Davis, Ruth E. "Logic Programming and Prolog: A Tutorial." IEEE Soft

ware, (Vol. 2), 5, September, 1985, pp. 53-62.
5. Hayes-Roth, F. "The Knowledge-Based Expert System: A Tutorial." IEEE

Computer, September, 1984, pp. 11-28.
6. Forgy, C, A, Gupta, and A. Newell. "Initial Assessment of Architecture

for Production Systems." Proc. NCAL, 1984, pp. 116-120.
7. Douglass, R. "A Qualitative Assessment of Parallelism in Expert Sys

tems." IEEE Software, May, 1985, pp. 70-81.
8. Tick, E. and D. Warren. "Towards a Pipelined PROLOG Processor." Proc.

1984 Int'l Symp. Logic Programming, 1984, pp. 29-41.
9. Vitter, J. S. and R. A, Simons. "New Class for Parallel Complexity: A

Study of Unification and Other Complete Problem for P." IEEE Tr. Com
puters, May, 1986, pp. 403-418.

10. Mukhopadhyay, A. "Hardware Algorithm for Nonnumeric Computation."
IEEE Tr. Computers, June, 1979, pp. 384-394.

11. Stolfo, S. and D. Miranker. "DADO: A Parallel Processor for Expert
Systems." Proc. 1984 Int'l Conf. Parallel Processing, August, 1984, pp.
74-82.

12. Oflazer, K. "Partitioning in Parallel Processing of Production Systems."
Proc. 1984 Int'l Conf. Parallel Processing, August, 1984, pp. 92-100.

13. Deering, M. "Hardware and Software Architecture for Efficient AI." Proc.
NCAI, 1984, pp. 73-78.

14. Ciepielewski, A. and S. Haridi. "Execution of Bagof on the OR-Parallel
Token Machine." Proc. Int'l Conf. Fifth-Generation Computer Systems,
1984, pp. 551-560.

15. Conery, J. S. and D. F. Kibler. "AND Parallelism and Nondeterminism in
Logic Programs." New Generation Computing, (Vol. 3), 1985, pp. 43-70.

16. Li, G.-J. and B. W. Wah. "MANIP-2: A Multicomputer Architecture for
Evaluating Logic Programs." Proc. Int'l Conf. Parallel Processing, 1985,
pp. 123-130.

17. Li, G.-L. and B. W. Wah. "How good are parallel and ordered depth-first
searches?" Proc. Int'l Conf. Parallel Processing, 1986, pp. 992-999.

18. Shapiro, E. "Concurrent Prolog: A Progress Report." IEEE Computer,
August, 1986, pp. 44-58.

19. Oark, K. and S. Gregory. "PARLOG: Parallel Programming in Logic."
ACM Tr. Programming Language and Systems. (Vol. 8), 1, January 1986,
pp.1-49.

20 .. Hwang, K. and F. A. Briggs. Computer Architecture and Parallel Pro
cessing, McGraw-Hill, 1984.

21. Murakami, K., T. Kakuta, and R. Onai. "Architecture and Hardware
System: Parallel Inference Machine." Proc. Int'l Conf. Fifth-Generation
Computer Systems, Tokyo, 1984, pp. 18-36.

22. Wos, L., R. Overbeek, E. Lusk, and J. Boyle. Automatic Reasoning: Intro
duction and Applications, 1984.

23. Wos, L., D. Carson, and G. Robinson. "Efficiency and completeness of the
set-of-support strategy in theory proving." Journal of ACM, (Vol. 12),
1965, pp. 536-541.

24. Wos, L., D. Carson, and G. Robinson. "The unit preference strategy in
theory proving." Proc. Fall Joint Computer Conf., Thompson Book Com
pany, 1964, pp. 615-621.

25. Hartigan, J. A. Clustering Algorithms, John Wiley & Sons, Inc., 1975.
26. Dube, R. and K. Jain. "Oustering Methodologies in Exploratory Data

Analysis." Advances in Computers, (Vol. 19), Academic Press, 1980.
27. Cheng, P. Daniel. A Parallel Theorem Prover Based on Connection Graph,

Master's Thesis, Northwestern University, Evanston, Illinois, December,
1986.

The contextual parsing of natural language

by JOHN C. WEBER and W.D. HAGAMEN
Corneli University Medical College
Point Lookout, New York

ABSTRACT

This paper describes a mechanism for parsing natural language input. The mech
anism relies on context to resolve ambiguities. This ability is in turn dependent on
a functional relation between the parser and the data structure which represents
both the knowledge and logic of the subject matter domain. To illustrate this
interdependence, the discussion is limited to a single program used to teach anat
omy to medical students. However, the same parser has been used for other courses
in the medical curriculum.

97

INTRODUCTION

The Computerized Anatomical Teaching System (CATS) is
an interactive computer program used to teach gross anatomy
to medical students. CATS contains no prestored questions or
answers and does not rely on keyword analysis. It contains:
(1) a natural language parser that interprets the meaning of a
student's question or answer, (2) an abstract (numeric) repre
sentation of anatomical knowledge and logic which it uses to
answer or generate questions, and (3) the ability to generate
text and compose it into phrases, clauses, sentences, and para
graphs.

The anatomy each first year medical student is required to
learn comprises a very large body of knowledge. Because it is
a descriptive discipline, anatomy generally has been consid
ered a memory course consisting of learning the names of
things together with their functional and spatial relations. All
the information that CATS contains can be displayed on ap
proximately 15 typewritten pages. The program can use this
small database to answer virtually any question that could be
found in an unabridged textbook (1500 pages).

In addition to being able to use these basic relations for
deducing more complex ones, CATS also has the ability to
discover and articulate meaningful general principles which it
offers as "reasons" for its answers to further reduce the need
for memorization. It does this for 80 percent of the questions
asked. The pedagogic goal of the program is to demonstrate
to students the method of reasoning, and reasoning's advan
tage over rote memorization.

This paper is limited to a description of how the program
processes input, with particular emphasis on the use of con
text in resolving potential ambiguities. A more comprehen
sive description of the program, including the mechanisms of
reasoning and text generation, may be found in Hagamen and
Gardy.l CATS is coded in APL and implemented on both
8086 (IBM PC/AT) and 68000-based microcomputers.

DATA STRUCTURE

To understand the parsing mechanism, it is necessary to know
the types of information the program has about the domain in
which it operates. The parsing described relies on what we
shall call context. This, in turn, depends on the program's
anatomical knowledge.

The program has available four types of data: (1) node
descriptors, (2) relational matrices, (3) node profiles, and (4)
syntactic words.

The Contextual Parsing of Natural Language 99

Node Descriptors

The names of anatomical structures are stored as a list of
noun phrases that may be single words or groups of words.
Each of these node descriptors also may contain synonyms
enclosed within parentheses.

The noun phrases serve two roles. First, they are used by
the utility program that automatically generates the vocab
ulary lists which in turn are used to determine which nodes a
student is talking about. Second, they are used when the
program is generating the text involved in asking or answering
questions.

An example of a node descriptor is: FLEXOR DIGITI
MINIMI (FIFTH FINGER LITILE QUINTI V 5).
FLEXOR DIGITI MINIMI would be used when the program
is generating a question or reply. However, the program could
recognize any combination of words input that uniquely iden
tifies the structure. For example, it could recognize FLEXOR
OF THE LITILE FINGER or FLEXOR DIGITI V.

Relaiional1tlairices

A fact such as the musculocutaneous nerve innervates the
biceps is an expression of a functinal relation between two
anatomical structures (nodes). Within the domain of anatomy
there are more than 30 such generic types of relationships,
each of which is represented by verbs or verb equivalents.

Relationship information is stored in a series of two-row
numeric matrices. For the relationship of innervates (i.e., in
nervated by, nerve supply of), the node numbers of the struc
tures (nerves) doing the innervating are stored in the first row
of the matrix. Node numbers of the structures being inner
vated (e.g., muscles, viscera, and bones) are stored in the
second row. The verb uniquely defines this matrix. Similar
matrices exist for each different type of relationship (e.g.,
origin or insertion of, branches, arterial supply, venous or
lymphatic drainage, spatial relations such as anteriorl
posterior, and distal/proximal).

Node Profile

CATS includes an integer vector that is equal in length to
the number of node descriptors and which contains a number
to indicate the type of tissue each node represents (e.g., 1 =
artery, 2 = bone). This information is called the profile of the
node. The program uses this stored information to calculate
the "expected profile," which plays an important role in the
parsing.

100 National Computer Conference, 1987

Syntactic Words

The program also includes a predefined list of approxi
mately 128 special words or syntactic markers. Each special
word has an associated decimal value (called its word type)
that reflects the word's role within our rules of discourse.
These tagged words include interrogative pronouns, helping
verbs, anatomical "verbs," prepositions, pronouns, articles,
conjunctions, and punctuation.

These syntactic words serve three main functions. First,
they help in breaking a sentence into functionally useful parts
or phrases. Second, the anatomical verbs direct the program
to the proper numeric matrix. Third, combinations of inter
rogative pronouns and helping verbs define the nature of a
question-whether it is asking "what is," "why," "where," or
if something is true or false.

VOCABULARY LISTS, WORD TYPES,
AND NODE POINTERS

After the previously defined data has been entered, a utility
function scans the list of node descriptors. It takes the first
occurrence of each such naturally appearing word and stores
it in a vocabulary list. The utility function also records the
node numbers (relative positions of the noun phrases) in
which each occurrence of the word is found.

Some words in the special word list may also be found in
node descriptors. This is particularly true of the anatomical
verbs. The positional numbers of the nodes to which these
words point is also recorded. The vocabulary lists therefore
include both the special words and those that occur only as
part of node descriptors.

For every word in the vocabulary there are three types of
data: the word itself, its numeric word type, and the list of
nodes to which each word points. All the special words have
a decimal word type which, as stated, defines its syntactic role.
Words found only in the node descriptor list are given a zero
word type. All words found in the node descriptor list have an
associated vector of node pointers. For those syntactic words
that do not appear in the list of anatomical names, the pointer
vector is empty.

The total vocabulary is subdivided into 27 smaller lists ac
cording to the initial character in each word. Thus we have an
A-vocabulary, a B-vocabulary, and so forth. Punctuation and
numbers form the twenty-seventh list. This subdivision into
lists slightly reduces search time.

PARSING OVERVIEW

Parsing proceeds from left to right, one word at a time. The
first character of each word determines which vocabulary
must be searched. The location of a word in the vocabulary
also results in retrieval of its word type and the node descrip
tors, if any, in which that word occurs.

The goal of the parsing is to obtain the information neces
sary to understand a student's question. Thus, parsing in
cludes four features. First, it determines which nodes (anat
omical structures) are being asked about. Since several of the

nodes in question may occur in the same input string, individ
ual noun phrases are isolated. Second, it identifies the nature
of the relationship specified between the nodes. This involves
analyzing potential verb constructions, including predicate
adjectives and predicate. nominatives. Third, it determines
whether the domain of the verb is restricted by the presence
of adverbs and prepositional phrases. Fourth, it identifies the
combinations of interrogative pronouns and helping verbs
which serve to define the nature of the question, and this in
turn dictates the form of the answer.

A question such as: WHAT ARE THE ACTIONS OF
THE LONG HEAD OF THE BICEPS ON THE FORE
ARM? would be parsed as follows:

WHAT ARE
THE ACTIONS OF
THE LONG HEAD

OF THE BICEPS
ON THE FOREARM?

1.7 1.5
3 6.2

3 0
5.1 3

5.7

o 5.7 3 0
o 9

Those words found in the syntactic word list are underlined
so that a user can identify them. The numeric value (word
type) assigned to each word is also shown. The first two words
are interrogatives (the floor of their word types is 1), and their
combination specifies this as a "what-type" question. The
second row contains the relational phrase. In this example,
the relational phrase is a predicate nominative. The third row
is a noun phrase which indicates the anatomical entity (mus
cle) about which the student is asking. The fourth row is the
prepositional phrase which limits the various actions asked
about to those that move the forearm.

There are two types of relational words (verbals). (1) Some
words define specific functions or relations. Examples in
clude: INNERVATES, IS A BRANCH OF, and FLEXES.
These words are assigned a word type with a floor of 2 (indi
cating that it is such a specific verbal). The relational matrix
to which it points is encoded in the mantissa of its word type.
(2) Other words indicate more generic relationships and have
a word type with a floor of 6. Actions, for example, include
such specific movements as flexion, extension, abduction, ad
duction, supination, pronation, internal and external rota
tion. The mantissa of the word type of these generic verbals
points to a matrix which contains the numeric values of the
specific verbals involved.

Node descriptors are separated by words that flag the be
ginning of a noun phrase such as determiners or, more im
portantly, by word types (punctuation and conjunctions) that
signal the end of a previous noun phrase as in THE BICEPS
and BRACHIALIS AND CORACOBRACHIALIS. Prepo
sitions have a word type with a floor of 5. The specific type of
preposition is encoded in the mantissa. In this regard, OF
represents a special case. When OF separates two non-verbal
noun phrases (THE LONG HEAD OF THE BICEPS), the
two phrases are treated as one to define the node descriptor.
Any preposition that either immediately follows a verbal
(ACTIONS OF, BRANCHES INTO), or does not immedi
ately precede an article (OF WHAT IS THE RADIAL
NERVE A BRANCH?), is considered part of the verb
phrase.

VERB ANALYSIS

As stated, the verbs represent the nature of the relationship.
However, many of these relations are expressed as adjectivals
or nominatives, rather than as verbs. At one time a word may
be used to express a relationship, but at another time the same
word may be used as a node descriptor. Fifty percent of the
potential verbals exhibit this dual role. The program also must
determine which row of the pointer matrix to search for the
nodes, depending on their relation to the verb that is identi
fied.

Identifying The Functional Verb

Potential verbs are flagged by having a word type with a
floor of 2 or 6. Resolution is required when there is more than
one such word in the input. The first test is whether the tagged
word has any associated node pointers (can it be part of a node
descriptor?). If it has no node associations, it must be a verb.
If the ambiguity remains, two additional tests may be done.
(1) If the word is one of the adjectivals (ANTERIOR, POS
TERIOR, LATERAL, MEDIAL, INFERIOR, SUPE
RIOR, DEEP, SUPERFICIAL, DISTAL, PROXIMAL), it
must be followed by TO or it must be the terminal word in
order to be acting as a verb. (2) If it is an ambiguous nomi
native (BRANCH, PART), it must be preceded by a deter
miner (A, AN, THE), in order to be a verb. This takes advan
tage of the fact that these words are always preceded by an
adjective when they occur in a node descriptor (CLAVI
CULAR BRANCH OF, SECOND PART OF). Once the
active verb has been identified, the word types of the com
peting verbals are converted to zero, and they become avail
able to the parser as noun phrase constituents.

Determining The Row Numbers

The verbals encountered by the program include transitive
verbs, intransitive verbs, predicate nominatives, and predi
cate adjectives. For this reason it is not particularly useful to
think in terms of subject, verb, and object. However, it should
be apparent from the nature of the relational matrices that all
questions are dyadic-they involve a relation between two
things (or groups of things). One of these is stored in the first
row of the matrix and the other in the second row. It is the
program's task to determine which is which.

Some questions have the general form: WHAT IS THE
ORIGIN OF THE BICEPS? or WHAT IS THE COR
ACOID PROCESS THE ORIGIN OF? Clearly one of the
two arguments (nodes) is given in the question. The other is
unknown but is tokenized by the place holding function of
WHAT. This unknown represents the answer which the pro
gram must fill in. In true or false questions, both arguments
are given: IS THE CORACOID PROCESS THE ORIGIN
OF THE BICEPS? However, when attempting to answer this
type of question, the program temporarily masks the left argu
ment, processes the remainder as a what-type question, and
then compares its answer with the masked node. In both

The Contextual Parsing of Natural Language 101

situations the program needs to know which row contains the
given node and which contains the answer.

Determining which row contains the node and which con
tains the answer is performed by a simple APL function. A
brief introductory discussion may help in evaluating the
features of the APL function. First, all verbals, except adjec
tivals, have an infinitive verb form. For example, ORIGI
NATE is the infinitive form of ORIGIN OF and INNER
V ATE is the verb infinitive for INNERVATED BY. The node
that would be considered the subject of the verb infinitive is
stored in row 1. Second, the adjectivals occur in pairs of
logical opposites (e.g., ANTERIOR-POSTERIOR,
MEDIAL-LATERAL). These have no verb infinitive
equivalents. One half of each pair has a positive word type; its
opposite is the negative of the same word type. If you think of
a declarative sentence (e.g., THE AXILLARY ARTERY IS
ANTERIOR TO THE POSTERIOR CORD.), the left argu
ment (AXILLARY ARTERY) of a positive adjectival (IS
ANTERIOR TO) is in row 1, and the right argument (POS
TERIOR CORD) is in row 2. If the adjectival has a negative
word type (IS POSTERIOR TO), the relationship is reversed.
In this way the absolute value of these word types performs
both roles-there are no negative values in the relational ma
trices.

The APL function that performs this task returns a value (1
or 2) to indicate the row number where the answer, as defined
above, is located. The process involves several steps and con
ditional tests. (1) If the verb is followed by a noun phrase, the
answer is assumed to be in row 2; otherwise it is in row 1. (2)
This decision is reversed if the verb either has a negative word
type (IS POSTERIOR TO) or is the nominative form of an
intransitive verb (ORIGIN OF, INSERTION OF, PART OF,
BRANCH OF). The reason for this depends on the transivity
of the verb. In the nominative form of a transitive verb (THE
MUSCULOCUTANEOUS NERVE IS THE INNER
VATION OF THE BICEPS), the structure doing the inner
vating appears before the verb. When the verb is intransitive
(THE MUSCULOCUTANEOUS NERVE IS A BRANCH
OF THE MEDIAL CORD), the structure doing the branch
ing follows the verb. (3) If the question contains a possessive,
as indicated by the word types, the result is reversed again.
ITS INNERVATION is equivalent to INNERVATION OF
IT. (4) Passive voice, when present, causes an additional re
versal. (5) A final reversal occurs if the verb is immediately
followed by certain prepositions which have not already been
factored in (BRANCH FROM versus BRANCH INTO). All
decisions are based on the numeric (word type) form of the
question which already exists.

CONTEXTUAL UNDERSTANDING

If a system justifies the term intelligent, it should not impose
any special--even well accepted-rules of grammar or syntax
on a user. The program should be as understanding and flex
ible as its human counterpart. Therefore, the program must
be able to recognize and use the context of a dialogue. The
ways in which this program uses context to help its under
standing are illustrated in the following sections by specific
examples.

102 National Computer Conference, 1987

Role of Individual Words

Given the question WHERE DOES THE EXTENSOR
CARPI RADIALIS BREVIS ORIGINATE?, the program
extracts a four-word noun phrase, EXTENSOR CARPI
RADIALIS BREVIS. Each word (with a word type of zero)
occurs as part of a number of different node descriptors. The
node numbers associated with each word are shown:

EXTENSOR 41 69 7071 72 73 7475 76324 325 326 327 328
CARPI 69 70 71 87 88 315
RADIALIS 33 697087234
BREVIS 26975 97 197

The only node number that all four words share in common
is 69 which, not surprisingly, is the EXTENSOR CARPI
RADIALIS BREVIS. The first word in the sequence, no
matter what it happens to be, activates (brings to mind) a
number of associations. Each succeeding word, by a process
of logical "anding," makes the meaning more specific. Thus,
on the simplest level, the words in the noun phrase provide the
context. Indeed, noun phrases have evolved as a part of lan
guage to eliminate ambiguity.

Role of The Verb-Pronoun Reference

Pronoun reference is achieved by storing the node numbers
for the subject and objects (or answers) to the previous ques
tion. However, because the discussion usually involves a re
lation between two or more nodes, ambiguity is introduced.
To which should the pronoun refer?

Q: WHAT IS THE INNERVATION OF THE BICEPS?
A: THE MUSCULOCUTANEOUS NERVE.
Q: WHAT IS ITS ACTION?
A: IT FLEXES THE SHOULDER AND ELBOW AND

SUPINATES THE FOREARM.

In this example, the pronoun is interpreted to be referring
to the subject of the previous question, not to the answer.
However, if the second question had been WHAT ELSE
DOES IT INNERVATE?, both we and the program would
have coupled it to the previous answer: THE MUSCULO
CUTANEOUS NERVE. This is not dependent on grammat
ical rules. Rather, it is based on the semantic rule that nerves,
not muscles, innervate things.

In this situation the verb provides the context. Every node
has an associated profile (number) that indicates the type of
structure. When it searches the relational matrix representing
the verb INNERVATES, it determines that all the node num
bers in row 1 (representing the structure doing the inner
vating) have a profile of 6, which means they are nerves. We
call this the "expected profile." BICEPS has a profile of 5
(muscle) and MUSCULOCUTANEOUS NERVE has a pro
file of 6 (nerve). For this reason, the latter node is assigned to
the pronoun.

Role of the Verb-Partial Phrases

The profile and expected profiles have generic applications.
In this regard consider the following question, which has noth
ing to do with pronoun reference: WHAT ANASTOMOSES
WOULD DEVELOP FOLLOWING AN OCCLUSION
BETWEEN THE SECOND AND THIRD PARTS OF THE
AXILLARY? This is a very natural way to ask this question.
The program extracts more information than was explicitly
provided. It knows, for example, that the question refers to
the AXILLARY ARTERY, as opposed to the AXILLARY
NERVE or AXILLARY VEIN because it is the only inter
pretation that would agree with the expected profile. Similar
logic indicates that SECOND refers to SECOND PART OF
THE AXILLARY ARTERY rather than the SECOND RIB
or SECOND DORSAL INTEROSSEOUS.

After discarding the three non-zero word types (OF THE
?), the noun phrase contains three words: THIRD PARTS
AXILLARY. The APL function that takes over the selection
process from this point is called GNODE. Each word in the
vocabulary that has a zero word type has an associated vector
of numbers indicating all the node descriptors in which that
word was found. The right argument of GNODE is all of these
node numbers for each of the (three) words in this phrase. For
this particular phrase there are 17 such numbers. A list of the
numbers, together with the complete form of each node de
scriptor, follows:

153 LOWER ¥3 OF ANTERIOR SURFACE OF
HUMERUS (TWO THIRDS)

155 LUMBRICAL TO DIGIT 3 (FINGER THIRD)
294 THIRD PART OF AXILLARY ARTERY (3)
84 FIRST PART OF AXILLARY ARTERY (1)

251 SECOND PART OF AXILLARY ARTERY (2)
294 THIRD PART OF AXILLARY ARTERY (3)

19 AXILLA
20 AXILLARY ARTERY
21 AXILLARY GROUP OF MUSCLES
22 AXILLARY NERVE
23 AXILLARY VEIN
66 DORSAL SURFACE OF AXILLARY BORDER

OF SCAPULA
84 FIRST PART OF AXILLARY ARTERY (1)

228 QUADRANGULAR SPACE OF AXILLA
251 SECOND PART OF AXILLARY ARTERY (2)
294 THIRD PART OF AXILLARY ARTERY (3)
307 TRIANGULAR SPACE OF AXILLA

Notice that the first three node descriptors contain the word
THIRD; the next three include PART; and the remaining
eleven all represent AXILLA -.

GNODE next eliminates all the elements of the list that do
not have a node profile corresponding to ARTERY. The
reason for this is that the verb in this case carries an expected
profile of ARTERY-only arteries anastomose in the pro
gram's experience. The resulting shortened list follows (note
that they all contain the word ARTERY, even though this was
not included in the user's question):

294 THIRD PART OF AXILLARY ARTERY (3)
84 FIRST PART OF AXILLARY ARTERY (1)

251 SECOND PART OF AXILLARY ARTERY (2)
294 THIRD PART OF AXILLARY ARTERY (3)

20 AXILLARY ARTERY
84 FIRST PART OF AXILLARY ARTERY (1)

251 SECOND PART OF AXILLARY ARTERY (2)
294 THIRD PART OF AXILLARY ARTERY (3)

Notice the redundancy. Node 294 occurs three times, 84
and 251 each appear twice, and 20 is present only once. This
means that node 294 is the closest match and is selected as the
output of GNODE.

The program now looks at the next phrase (SECOND).
The right argument for GNODE contains eight node num
bers. There is no redundancy because there is only one word
in the phrase.

154 LUMBRICAL TO DIGIT 2 (FINGER SECOND)
246 SECOND CERVICAL NERVE (C2)
247 SECOND DORSAL INTEROSSEOUS (2 10)
248 SECOND FINGER (2 INDEX DIGIT)
249 SECOND METACARPAL (2)
250 SECOND PALMAR INTEROSSEOUS

(2 VENTRAL 10)
251 SECOND PART OF AXILLARY ARTERY (2)
350 VENTRAL SURFACE OF SECOND META

CARPAL (2 VOLAR ANTERIOR PALMAR)

Despite the fact that GNODE must determine that SEC
OND uniquely defines SECOND PART OF THE AXIL
LARY ARTERY in the context of the total question, the
process actually is simpler than before. The only node number
in the list that happens to have a profile number correspond
ing to ARTERY is 251.

Role of Complementary Phrases

As you and I read the original question, we would also
realize that SECOND referred to SECOND PART OF THE
AXILLARY ARTERY by an entirely different means. We
would probably assume that the two phrases were parallel and
that the missing parts of the partial phrase were to be found
in the following one. The program also uses this logic when
necessary.

Consider the question: WHAT IS THE INNERVATION
OF THE SECOND AND THIRD LUMBRICALS? Proces
sing begins with the second of the two noun phrases resulting
from the parsing (THIRD LUMBRICALS). The vector of
node numbers presented to GNODE is shown. Node 155
appears twice, indicating that it contains both words.

153 LOWER ¥3 OF ANTERIOR SURFACE OF
HUMERUS (TWO THIRDS)

155 LUMBRICAL TO DIGIT 3 (THIRD)
294 THIRD PART OF AXILLARY ARTERY (3)
154 LUMBRICAL TO DIGIT 2 (SECOND)
155 LUMBRICAL TO DIGIT 3 (THIRD)

The Contextual Parsing of Natural Language 103

156 LUMBRICAL TO DIGIT 4 (FOURTH)
157 LUMBRICAL TO DIGIT 5 (FIFTH)
158 LUMBRICALS

The program next looks at SECOND. The list of competing
node numbers is identical to what we showed earlier for
SECOND (PART OF THE AXILLARY ARTERY). Apply
ing the expected profile eliminates only node 246, since arte
ries (251), bone (249,350), and skin (248) as well as muscle
(247,250,154) are all innervated by nerves. We are still left
with seven nodes from which it must select one. There is no
redundancy because SECOND is a single word phrase.

The program does exactly what we would do-it borrows
the node pointers for the word LUMBRICALS from the pre
viously determined node descriptor and thus uniquely identi
fies node 154. This is the reason it processes the phrases in
reverse order. If the question had been WHAT INNER
VATES THE SECOND AND FOURTH DORSAL INTER
OSSEI?, it would have borrowed two words, DORSAL and
INTEROSSEI to select node 247.

Adjectives Restricting The Context

Some verbals (relational words) are generic in that they
each refer to several specific subtypes. Attachments include
both origins and insertions. Actions refer, for example, to
flexion, extension, abduction, adduction, pronation, supina
tion, and external and internal rotation. Relations include all
the logical opposites described in the VERB ANALYSIS sec
tion. Anterior-posterior and medial-lateral are two exam
ples.

If the question is WHAT ARE THE RELATIONS OF
THE WRIST?, the program will list the anterior relations and
then the posterior relations because anterior relations and
posterior relations are different "verbs." However, if the
question is WHAT ARE THE ANTERIOR RELATIONS
OF THE WRIST?, the program will list only the anterior
relations. Any logical variation of this question produces the
expected results. For example, WHAT ARE THE ANTE
RIOR AND POSTERIOR RELATIONS OF THE WRIST?
produces both answers. Effectively, this restricts the meaning
ofthe predicate nominative (ARE THE RELATIONS OF) to
whatever adjectives modify RELATIONS. If there are no
modifiers, all relations are listed.

Prepositional Phrases Restricting The Context

The domain of relational verbs may also be limited by prep
ositional phrases. Consider the following sequence:

Q: WHAT ARE THE ACTIONS OF THE BICEPS?
A: IT FLEXES THE SHOULDER AND ELBOW

JOINTS AND SUPINATES THE FOREARM.
Q: WHAT ARE ITS ACTIONS ON THE FOREARM?
A: IT SUPINATES THE FOREARM.

WHAT ARE THE ACTIONS OF THE BICEPS? pro
duces three verb-object pairings (flex-shoulder, flex-elbow,

104 National Computer Conference, 1987

and supinate-forearm). The prepositional phrase eliminated
those actions on objects not included in the prepositional
phrase (ON THE FOREARM).

Contextual Interpretation of Spelling Errors

The phrase EXTENSOR ACRPI RADIALIS BREVIS
contains a single typographical error-the reversal of CA in
CARPI. The program never becomes aware of this mistake,
because the three remaining words uniquely define the in
tended node. Because ACRPI is not in the vocabulary it can
not have any node pointers.

If two words are misspelled (EXTENSOR ACRPI RDIA
LIS BREVIS), the ambiguity in this case would be between
two nodes:

69 EXTENSOR CARPI RADIALIS BREVIS
(HAND SHORT)

75 EXTENSOR POLLICIS BREVIS
(SHORT THUMB)

However, because the context has narowed the ambiguity
to these two nodes, the misspelled words (those with no node
pointers) are compared only to the words in these two node
descriptors. This is done by means of the closest character
match, which is essentially an APL primitive function.

DISCUSSION AND SUMMARY

In a computational sense, the parser we have described is
much simpler than previous models. 2

,3,4,5 It does not back
track, look ahead, or consider parallel strategies. Despite this,
it meets all our needs. The program could interpret any input
we could understand-including ungrammatical but meaning
ful constructions.

Certainly the task is simplified by the limited subject matter
domain. On the other hand, anyone who has seen a 1500 page
textbook of gross anatomy could hardly call CATS a trivial
application. The ability to identify nodes despite the ambigu
ities in all the examples included in this paper, and to do so in
a fraction of a second, represents an important facility for
natural language comprehension.

One explanation for the simplicity is that the parser is goal
directed. It does not look for grammatical rules-any more
than people do. Rather, it looks for the specific information
needed to understand what is intended by a student. This
includes: (1) determining the topics (nodes) a student is talk
ing about which, in turn, involves isolating individual noun

. phrases; (2) looking for verbs (relations) that, if present, limit
what is being asked about the topics; (3) recognizing words
and phrases that may restrict the domain of the verbs; and (4)
using interrogatives and helping verbs to determine the nature
of the question. Minimal syntactic clues are used for these
purposes.

The importance of storing the noun phrases (names of
things) that define the subject matter domain rather than
individual words cannot be overly emphasized. It seems intu
itively apparent that people use the same technique; we think

in terms of names of things and use words in various combina
tions to access these names. The utility of this in resolving
typographical errors and other ambiguities is illustrated in this
paper.

Perhaps the most important feature of the parser is the
functional way in which it interfaces with the program's
knowledge of anatomy (the relational matrices). The ex
pected profile, which plays an essential role in defining the
context, is dynamic; it reflects the program's own anatomical
knowledge.

The two most important tools in resolving ambiguities-the
pointers from vocabulary words to specific nodes and the
expected profile-are calculated by the program; they are not
entered by a programmer. This is labor saving and it ensures
that the data is accurate and current as new information is
added.

The algorithmic generation of text, 1 which is not described
in this paper, also utilizes the progam's anatomical knowl
edge. The raw answers are columns of the relational matrices.
These consist of node numbers and verb values that directly
represent noun phrases and verb phrases. The program also
knows the purpose of the question and takes this into account
when phrasing the response. For the simplest questions, for
matting the answer may involve little more than retrieving the
appropriate noun phrase or verb phrase. When multiple
nodes and pointers are involved, proper sentence construction
requires combining nodes into logical groups (phrases) ac
cording to their profile types and adjective values and into
clauses according to the associated verbs.

CATS is an example of "intelligent" CAL 6 In addition to its
ability to demonstrate the advantages of reasoning over
memorization and its ability to discover and express general
principles, another advantage over more conventional com
puter mediated tutorials 7 is that a single teacher can enter the
information necessary to cover an entire discipline in a reason
able period of time. This same technique has been applied to
medical diagnosis (MEDCAT), 8 and we plan to extend it to
other subjects in the medical curriculum.

ACKNOWLEDGEMENTS

This work was supported in part by grants from the Anony
mous Gift Fund of Cornell University Medical College, the
Frances L. and Edwin L. Cummings Memorial Fund, and the
Advanced Education Projects of the IBM Corporation. We
would like to thank Mr. Ward Bell for writing certain auxillary
processors used in the 8086 version of the programs.

REFERENCES

1 Hagamen ; W.D. and M. Gardy. "The Numeric Representation of Knowl
edge and Logic-Two Artificial Intelligence Applications in Medical Educa
tion." IBM Systems Journal, 25 (1986) 2, pp. 207-235.

2. Kaplan, R.M. "A General Syntactic Processor." In R. Rustin (ed.), Natural
Language Processing. New York: Algorithmic Press, 1971.

3. Winograd, T. Understanding Natural Language, New York: Academic Press,
1972.

4. Woods, W.A. "Progress in Natural Language Understanding: An Applica-

tion to Lunar Geology." AFIPS, Proceedings of the National Computer
Conference (Vol. 42), 1973, pp. 441-450.

5. Winograd, T. Language As A Cognitive Process, (Vol. I). Reading, Massa
chusetts: Addison Wesley, 1983.

6. Barr, A. and E.A. Feigenbaum. The Handbook of Artificial Intelligence
(Vol. 1). Los Altos: William Kaufman, 1981.

The Contextual Parsing of Natural Language 105

7. Hagamen, W.D., D. Linden, M. Leppo, W. Bell, and J.e. Weber. "ATS in
Exposition." Computers in Biology and Medicine, 3 (1973) 3, pp. 205-226.

8. Hagamen, W.D., M. Gardy, G. Bell, E. Rekosh, and S. Zatz. "MEDCAT:
An Interactive Computer Program for Medical Diagnosis." AFIPS, Pro
ceedings of the National Computer Conference (Vol. 54), 1985, pp. 111-119.

COMPUTER DESIGN AND
SUPERCOMPUTERS

JACK DONGARRA
Argonne National Laboratory

Argonne, Dlinois
and

JORGE NOCEDAL and JIE-YONG JUANG
Northwestern University

Evanston, Illinois
and

EUGENE NORRIS
George Mason University

Fairfax, Virginia

Rapid advances in the development of computer architectures are revolutionizing scientific
research and technological development. In the last few years, an unprecedented expansion
has taken place in the boundaries of computer architectures directed towards parallel proces
sing and high execution rates. These sessions examine the impact this expansion is having on
the computer industry-specifically, the number of distinctive designs available commercially
and the effects on science and technology.

The system data structure contention problem and a novel
software solution for shared memory, floating control
parallel systems*

by JERRY P. PLACE and ALAN A. GOERNER
University of Missouri
Kansas City, Missouri

ABSTRACT

Of the many varieties of multiprocessor architecture which have been proposed in
the last five to eight years, shared memory, floating control multiprocessor systems
are in many ways the most elegant. Shared memory, floating control architectures
are distinguished by the structural attribute that each processor is an equal partner
in the management of system resources even to the point of sharing a common copy
of the operating system code and its data structures. A central feature and issue of
such systems is the provision of dynamic processor load balancing. The most natural
technique, however, for assuring dynamic processor load balancing by dispatching
processes from a single shared queue is, we show, highly inefficient. We make the
argument, validated by simulation studies, that the contention for the process
dispatching queue, as they are commonly implemented, becomes so great so
quickly as to severely limit the size and utility of such architectures. Examining the
requirements for a solution to this problem, we derive anew, highly concurrent
process dispatching queue structure with constant time average performance for all
operations.

* This research was supported by grant K-5-27116 from United Telecommunications, Inc., Westwood, Kansas.

109

AN INTRODUCTION TO PARALLEL SYSTEMS

Paranel configurations of computing machines are being de
veloped today across a wide range of architectures. 1

,2,3 It has
been recognized that parallel configurations of computing ma
chines can provide an enormous amount of computing power
for the solution of problems.

Parallel architectures may be characterized as loosely
coupled or tightly-coupled (see Figure 1). Loosely-coupled
systems generally exhibit a low level of sharing. Each system
has its own memory, peripherals and copy of the operating
system. Tightly-coupled systems exhibit a high degree of shar
ing. Typically, tightly-coupled systems share memory, periph
erals and the operating system.

Control in tightly-coupled systems fits into one of three
categories: master/slave, separate supervisor, and floating
control. The master/slave mode assigns one of the processors
in the configuration as the master. The operating system ker
nel routines always execute on the master. The master is
responsible for dispatching work to the slave processors. The
separate supervisor method of control maintains a copy of the
operating system kernel for each processor in the system.
Other system entities such as tables and common routines
must be accessible through shared memory or a shared file
system. The floating control method maintains one copy of
the operating system and each processor executes that one
copy. Thus, each processor is responsible for satisfying its own
requests for service. Floating control systems are the most
difficult to design and implement. The single copy of the
operating system must be reentrant and constructs to ensure
determinism must be embedded in the operating system.

The basic architecture of the parallel system and the mech
anism of control largely determine the granularity of the sys
tem. Granularity is a measure of the degree of cooperation
possible among processors in the system. Granularity may be
expressed as very coarse, coarse, medium, fine, and very fine.
Very coarse granularity implies parallelism at the independent
task system level. Coarse granularity implies parallelism at
the program level within a task system. Medium granularity
implies parallelism at the procedure level within a specific
program. Fine granularity implies parallelism among instruc
tions within a procedure, and very fine granularity implies
parallelism within a single instruction. Units of work in the
system can be considered as shown in Figure 2, with indepen
dent task systems at the top. Task systems are composed of
programs; programs are composed of procedures; procedures
are composed of instructions, and instructions can be divided
into the functional actions that occur in the hardware of the
system.4

The System Data Structure Contention Problem 111

Shared Bus

Loosely-Coupled Parallel Configuration

Tightly-Coupled Parallel Configuration
Figure 1-Parallel configurations

LOAD BALANCING AND THE SYSTEM
DISPATCHING QUEUE

A major problem in the successful employment of parallel
architectures, especially shared memory floating control ar
chitectures, is balancing the load among the processors in the
system. The easiest way to do this is to have a single queue of
processes ready to execute; a single dispatching queue. Figure
3 depicts a configuration of processors about a shared memory
with a single dispatching queue. Each program in the system
is divided into its component procedures. All procedures com-

112 National Computer Conference, 1987

PROGRAM Prog1;
PROCEDURE Proc1 ;

~

END Proc1;

~
PROCEDURE Pr0c3;

BEGIN

~
~

Procedures

Task System
(very coarse
granularity)

Programs
x: ... SQRT(y); >- Instructions

(medium
(coarse - (fine granularity) granularity) -]I- Intra-instruction granularity) J ...

a:-(b*c) I~

\ (very fine granularity)

END Pr0c3; .~

END Prog1;
l

1/ PROGRAM Progn;

~
l

END Progn;

Figure 2-Granuiarity

peting for resources in the configuration are represented by
procedure control blocks in the dispatching queue. The proce
dure control blocks indicate the status of the procedure, either
dispatchable or not, and the dispatching priority of the proce
dure. The scheduling mechanism behaves like a multi-level
feedback queue which allows procedures to migrate from one
priority level to another, depending upon their original point
of entry. Since processors share all system resources including
the operating system, processors are considered equivalent,
thus any procedure may execute on any processor, regardless
of the procedures that are executing on other processors.
Thus, it is possible that several procedures from the same
program will be executing in parallel on different processors
in the system. As a procedure executes, events occur that
cause the status of the procedure to change, perhaps it issues

Figure 3-System dispatching queue

an I/O request, or it consumes system resources beyond a
specified limit. In order to update the procedure control block
to reflect the new status of the procedure, the processor must
have exclusive access to the dispatching queue to ensure de
terminism in the system. 4

For example, a general purpose, moderately parallel sys
tem will support a number of concurrently active procedures;
a degree of mUltiprogramming of several hundred is not
unreasonable. The dispatching queue must support chang
ing of priorities and setting procedure status such as
EXECUTING, BLOCKED(SWAPPED-IN), BLOCKED
(SWAPPED-OUT), and READY. When a procedure is first
selected for execution, its control block must be marked ap
propriately so that it will not be selected by another processor.
When the procedure is blocked for I/O or completes, the
processor must again change the status in the procedure con
trol block. Assume a single dispatching queue with several
hundred procedures of varying priorities. Each processor
must implement the search algorithm to find the highest prior
ity procedure. Once the highest priority procedure is found,
its status must be changed from READY to EXECUTING.
Each processor must have exclusive access to the queue of
procedure control blocks so that processors do not interfere
with one another in the modification of the control blocks as
part of the dispatching process. Processors are synchronized
by requiring them to own the lock that guards the dispatching
queue before they are allowed access to the queue. Thus,
there must be mutually exclusive access to the dispatching
queue to ensure that processor 1 does not select procedure b
for execution when procedure b is in the process of getting its
status changed by processor 2.

The dispatcher is enacted by each processor executing the
single copy of the dispatching code that is part of the shared
operating system in the shared memory. In essence, floating

control means that each processor must find its own job to
execute next, independently of all the other processors. A
processor finds its next unit of work by searching the system
dispatching queue, and at a low level of entries (under 1,000),
existing implementation methods do not appear to have much
impact on performance. 5 Since the dispatching queue may be
used by one processor at a time, contention for its use can
become a major system bottleneck.

CONTENTION IMPACT ON PROCESSOR
OVERHEAD

The contention problem is graphically produced in Figure 4.
Three simulation models of moderately parallel systems were
created. The models evaluated degrees of parallelism from
one to thirty processors. Three cases were studied, a single
dispatching queue, a special dispatching processor and three
equivalent dispatching queues. Each case assumed an average
procedure execution time of 440 j-LS between context switches.
The dispatching queue size was set at two hundred process
control blocks and 200 ns was used as the memory access
time, with a setup time of 50 j-LS per access. Thus, all pro
cessors required 50 j-LS + U(1O,100) j-LS to update the dis
patching queue and find its next procedure to execute. The
simulations measured the time that processors had to wait
while other processors had exclusive access to the queue (i.e.,
processor wait induced by contention for access to the dis
patching queue).

The two alternatives to the single dispatching queue were
chosen because of their practicality and because they did not

0.9

0 0.8

v
e 0.7
r
h 0.6
e
a 0.5 1 Disp. Queue
d

per
0.4 P

r
0 0.3

c
e 0.2
s
s 0.1
0

0.0

3 5 7 9 11 13

The System Data Structure Contention Problem 113

materially increase the load balancing problem. The special
dispatching processor searched the dispatching queue while
other processors were executing user procedures. When a
general purpose processor required a context switch, it was
the function of the special dispatching processor to have a
procedure ready for immediate switching. The dispatching
function overlapped the execution of user procedures.

The three-queue case divided the dispatching queue into
three separate but equal dispatching queues. If queue #1 was
locked by processor b when processor a needed a context
switch, processor a attempted to obtain the lock for queue #2.
If that queue was locked by processor c, processor a at
tempted to obtain the lock of queue #3. If that queue was also
locked, processor a was forced into a wait state for anyone of
the queues. Thus, the amount of time required to find a
context-switch candidate by any processor was reduced by
approximately one-third. More dispatching queues would fur
ther reduce the access time and processor contention, how
ever, load balancing, the placement of procedures on queues,
would become a significant problem.

Processor wait-time overhead for the three cases is sum
marized in Figure 4. The single dispatching queue presents a
formidable impediment to moderate parallelism. At twenty
processors, 80% of each processor's time is spent waiting for
the dispatching queue lock. At a configuration greater than
six processors, wait-time overhead exceeds 30% per processor
in the configuration. The special dispatching processor is an
improvement for configurations up to six processors. After
six, however, the special dispatching processor behaves the
same as a single queue. Multiple dispatching queues perform
better. However, after twenty-two processors, contention for

3 Disp.
Queues

15 17 19 21 23 25 27 29

Degree of Multiprocessing
General Purpose Environment

Figure 4--Data structure contention overhead

114 National Computer Conference, 1987

the queues again induces significant wait time on every pro
cessor in the system. More dispatching queues would improve
performance, but, as the number of queues increased, load
balancing among the processors would also become a signifi
cant problem. The solution to this problem is to be found in
a more sophisticated data structure supporting the dispatching
process rather than multiple dispatching queues.

DISPATCHER-Ae(1) SOLUTION

Our solution to the problem of contention for the process
dispatching queue is embodied in a module called Dispatcher,
Dispatcher is unusual in two respects; in the analysis and
design methodology which gave rise to it as well as in its data
structure. That is, although novel in its structure, Dispatcher
is not an ad hoc solution. A specific goal of the solution phase
of this investigation was that the specification and imple
mentation of Dispatcher should, as much as possible, be de
rived and stated from the set of requirements drawn from the
preceding analysis.

The insights of these simulation studies give rise to five such
requirements, ordered from most to least important. First, a
complete package of services for process dispatching must be
considered, designed, and implemented, helping to ensure
that one operation is not optimized at the expense of others.
Second, the Dispatch operation must execute in as nearly
constant time as possible. Achieving this goal means, at min
imum, that processor contention will no longer be a binary
function of both the number of processes and processors, and
will depend only on the latter parameter; thereby reducing
significantly, we conjecture, the complexity of contention.
Third, for all operations, but especially for Dispatch, the
Dispatcher data structure and access protocol must minimize
concurrent access blocking as much as possible while ensuring
database consistency. That is, within the limits of consistency,
the Dispatcher data structure and protocol must: (1) reduce
the likelihood of collision and, thereby, reduce blocking, and
(2) reduce the duration of blocking. And finally, fourth, the
Dispatcher protocol must be live (i.e., free from deadlock),
and, fifth, all other operations must execute in as nearly con
stant time as possible.

In accord with our orientation mentioned above, the first
requirement is satisfied by developing a formal specification
for a process dispatching queue. The technique used is an
experimental one based on the notion of an inheritance hier
archy among abstract data types. 6 In this regard, the tech
nique is a descendant of the similar notions in object oriented
programming. Although a full description of the development
of the Dispatcher specification is the topic of a sequel to this
paper, the derivation of ProcesLDispatclLQueue, the imme
diate ancestor of Dispatcher in the hierarchy, exhibits most of
the interesting points (see Figure 5).

The most surprising point being that process dispatching
queues are not queues, nor are they priority queues. Upon
examination, process dispatching queues are seen to be a
hybrid data type combining features of priority queues and
simple databases. For example, a Dequeue operation seldom
actually removes a process from the data structure but, rather,
Updates its status to "Executing." This dual heritage is repre-

sented in the "is" clause of the derivation. This clause implies
that ProcesLDispatclLQueue multiply inherits all the oper
ators, exceptions, and axioms of both Priority_Queue and
Database_ V2.

Beyond this initial insight, the derivation also clarifies two
other subtleties of this heritage. First, the bridge axioms show
exactly how the priority queue function and database function
of ProcesLDispatclLQueue are related (i.e., that an enqueue
is equivalent to a store of a process with status "Ready" and
that a dequeue is not a delete but an update of the process's
status to "Executing." Second, the exception conditions for
ProcesLDispatclLQueue are exactly the union of the excep
tions for priority queues and for databases.

The end result of the derivation process is the automatic
generation of a package definition for Dispatcher and a set of
guidelines for the implementation of the package body. In the
case of Dispatcher, the most important guideline, the one
which gives the Dispatcher data structure its unique flavor
(see Figure 6), can be rendered "Implement mUltiple inher
itance as a multilinked structure." The rationale for this ap
proach is simply the congruence of the facts that Dispatcher
logically has two independent access mechanisms, the priority
queue and the database, and that multilinked structures, by
definition, have two orthogonal access paths. With this useful
hint, the requirements on a solution point, more or less di
rectly, to the nature of each access mechanism.

For priority queue access, Dispatcher uses a data structure
similar to the process state queue of Digital Equipment Cor
poration's VMS operating system. 7 This structure is a vari
ation of Henrikson's event set implementation which has re
cently been shown5 to have, with splay trees, better aggregate
performance than any other priority queue structure in the
literature. The Dispatcher implementation, like its VMS pre
decessor, uses a bit vector in the maintenance of the "Top"
field, thereby delivering 0(1) performance for the dequeue
operation Dispatch and realizing the second requirement.

The fifth requirement's goal of e(1) performance for all
other operations is guaranteed by the use of an open hash
table for database access. All operations of Dispatcher except
Dispatch (i.e., Create, Fetch, Block, Unblock, Terminate,
Delete, ChgData, and ChgPriority) access the data structure
through the open hash table. Dispatch alone enters through
the priority queue mechanism, which provides access only
to the subset of process control blocks with status equal
"Ready."

However, the time complexity of the corresponding oper
ations is only one reason for choosing the Henrikson and open
hash table structures. Equally important is the high degree of
partitioning these structures provide as a basis for satisfying
the third requirement. As noted above, one technique of re
ducing concurrent access blocking is to reduce the likelihood
of collision. The disjointness of the buckets of the open hash
table and of the subqueues of the Henrikson priority queue
support a much finer degree of locking than is possible in the
numerous tree and list implementations which are traditional
for priority queues and process dispatching queues.

The second objective of the third requirement (i.e., to min
imize blocking intervals), necessitates, then, the development
of a locking protocol (see Figure 7) to manage the fine grain

The System Data Structure Contention Problem 115

type Process_Dispatch_ Queue

imports
type
type
type

Proc_1 D is scalar;
Proc_Data is scalar;
Proc_Priority is scalar;

constant NulLID is Proc_ID ;
constant Null_Data is Proc_Data ;
constant NulLPriority is Proc_Priority ;

is
Priority_Queue (Proc_ControLBlock, Proc_Priority , NuILPCB)
and
Database_ V2 (Proc_ControLBlock, Proc_ID , Update_Field , Update_Value,

NuILPCB) ;

where
constant

NulLPCB is structure {NuILID, Null_Data, NulLPriority , Terminated} ;

types
Proc_Status is scalar {Ready, Executing, Blocked, Terminated} ;
Proc_ControLBlock is structure {Proc_ID, Proc_Data , Proc_Priority ,

Proc_Status} ;
Update_Field is
Update_Value is

scalar { Proc_Data , Proc_Priority , Proc_Status } ;
Proc_Data)) Proc_Priority)) Proc_Status ;

operators
Create_DQ is
Enqueue has

Create_Q and Create_DB;
Proc_ControLBlock unfolded;

Store has Proc_ControLBlock unfolded, Proc_ID redundant;
Replace deleted ;
ForAllltems deleted ;

axioms
{ PDQ : Process_Dispatching_ Queue;

ID : Proc_ID; D : Proc_Data; P : Proc_Priority; S: Proc_Status }

Enqueue { PDQ, ID , D , P , S} = Store (PDQ, ID , D , P , Ready) ;
Dequeue {PDQ} = Update { PDQ, Front (PDQ }.Proc_ID , Proc_Status ,

Executing) ;

exceptions
No_Ready_Procs renames Queue_Empty;
ID_Not_Found renames Key_Not_Found ;
ID_Already_Exists renames Key_Already_Exists;

end Process_Dispatch_Queue .
Figure 5---Modula-2 implementation of dispatcher structure

of Dispatcher's concurrency control. This protocol has three
levels of locking: bucket locks, queue locks, and node locks.
Each of these locks secures a different part of the node struc
ture. When a bucket is unlocked, all bucket links ("bNext"
fields) are guaranteed to be intact and safe to traverse. Simi
larly, queue locks manage the integrity of the queue links
"qPrev" and "qNext," and node locks manage the "id,"
"data," "status," and "priority" fields. The locking discipline
will lock and hold a bucket only as long as necessary to
traverse the bucket and lock the node. When the node is

successfully seized and the bucket is released, the Dispatcher
algorithms guarantee that no further changes will be made to
the "bNext" fields thus allowing another processor to enter
the bucket and traverse safely past the locked node as needed.

This "lock at the last moment and unlock at the first oppor
tunity" philosophy runs counter to the prevailing theory of
database concurrency control. 8 For general reasons of data
base consistency and deadlock prevention, the canonical ap
proach to database concurrency control is to lock all resources
at once and to release them at once. Dispatcher, as a special

116 National Computer Conference, 1987

DSP.b {.blOCk I-=-j..:......ii-=-l..::.....j.-=---+=-+~=-+=-+=~-+=-+=-+=-~+=-+-=-f-=-+
.first

[12] ~

[11] ~

[10]~

[9] ~ ••

[8] ~ ••

[7]~.

[6]~

[5] ~ ••

[4] ~ ••

[3]~

[2]~

[I]~

[0] ~ ••

IS ?- ~ ;
g :::t ,

~ -
~
. top .priority

DSP.q

Figure 6-Dispatching data structure

purpose system data structure, satisfies a more stringent set
of conditions, though, which justify the use of its looser and
more efficient philosophy.

Still, the demonstration of the liveness (i.e., freedom from
deadlock) of the Dispatcher protocol is a significant aspect
of its development. The formal proof of liveness is developed
by using the net invariant techniques of Petri net theory for
colored Petri nets. 9 However, a more intuitive argument can
be made based on the notion of a resource ordering.

We note that the classic deadlock situation, and the one
most applicable to Dispatcher, is resource waiting. That is,
deadlock occurs when processor 1 has seized resource 1, pro
cessor 2 has seized resource 2, processor 1 tries to seize re
source 2, and processor 2 tries to seize resource 1. While
neither processor will back off and release the resource it has,
neither one can progress. This elementary, but lethal, form of
deadlock arises simply because the two processors requested
their resources in the opposite order. The simple resolution

. which Dispatcher implements, thereby satisfying the fourth
requirement, is to define an ordering on resources, insist that
all resources be requested according to that ordering, and to
stipulate that any routine that violates this ordering will defer
to the others and back off.

This observation permits us to conclude that Dispatcher
is live in eight of its nine operators because they all enter
via the open hash table and respect the ordering
bucket~node~queue. Only Dispatch, which enters via the
priority queue mechanism, violates this ordering by seizing
a queue first and then attempting to seize a node. For this
reason, Dispatch, and only it, implements a simple backoff
subprotocol.

It is, finally, imporatnt to note that this implementation

does compromise, in a small 'way, the second requirement's
goal of 0(1) performance for Dispatch. The actual complexity
of Dispatch is 6(1) with the interesting caveat that its perfor
mance improves as the number of nodes in the structure in
creases. This latter effect arises because the probability of a
back off equals the probability of a collision on the one node
which is at the head of the priority queue. The probability of
this collision is proportional to p In where p is the number of
processors and n is the number of nodes, a probability that
decreases as n increases.

CONCLUSION

Clearly, tightly coupled, shared memory, floating control par
allel processors can bring, in an elegant and incrementally
extendable way, significant processing power to bear on the
solution of user problems. However, we have demonstrated
that neither the traditional control mechanisms and data
structures nor their coarsely parallelized counterparts are
effective and efficient approaches for the operating systems of
this new class of computer architecture. For these new parallel
processors to realize their promise in a general purpose envi
ronment, these control and data structures must be rethought
and not merely translated. Failing this, we show that the con
tention for the essential system data structures is sufficient to
fully negate the power and promise of these systems.

After a careful analysis of the requirements for a solution
to the system data structure contention problem and after a
thorough formal derivation of the specification for process
dispatching queues, we found that there were, in fact, aspects
of process dispatching queues which have gone unnoticed.
These points indicated that a natural solution to the conten
tion problem would possess three key attributes. These are:
(1) a multilinked structure with orthogonal priority queue and
database access mechanisms, (2) a highly differentiated struc
ture for each access mechanism partitioning the nodes into
many disjoint subsets, and (3) a fine grained, multilevel con
currency control mechanism. Dispatcher is a process dis
patching queue implementation possessing these attributes
and providing 6(1) performance for all operations.

REFERENCES

1. Dennis, J.B. "Data Flow Supercomputers." IEEE Computer, November,
1980, pp. 48-56 .

2. Hwang, K. and F.A. Briggs. Computer Architecture and Parallel Processing,
New York, NY: McGraw-Hill, 1984.

3. Hwang, K., S.P. Su, and L.M. Ni. "Vector Computer Architecture and
Processing Techniques." in Yovits (ed.), Advances in Computers, 20, New
York, NY: Academic Press, 1981, pp. 115-197.

4. Coffman, E.G. and P.J. Denning. Operating Systems Theory, Englewood
Cliffs, NJ: Prentice-Hall, 1973.

5. Jones, D.W. "An Empirical Comparison of Priority-queue and Event Set
Implementations." CACM, 29 (1986) 4, pp. 300-311.

6. Goerner, A.A. "Dispatcher: A Case Study in Data Type Derivation."
UMKC Technical Report, March, 1986.

7. Deitel, H.M. An Introduction to Operating Systems. Menlo Park, CA:
Addison Wesley, 1984.

8. Papadimitriou, C.H. "Serializability of Concurrent Database Updates,"
Journal of the ACM, 26 (1979) 4, pp. 631-653.

9. Jensen, K. "Coloured Petri Nets and the Invariant !v1ethod," Theoretical
Computer Science, 14, pp. 317-336.

Noa.c
Avaih\lc

The System Data Structure Contention Problem 117

Entry via
Hash Table

I············~:::~:,:~:::::::::~::~::::~:::~:~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~;.~~~~:~~::~:~~~~~~~:~~~~~:::~:r\

E... : .••. ...)

, , ~

I I <>,
I I 'I I

Need. I Bu<!ket Need. I Noa.c Need. ~ 'Need., Queue
Bu<!ket I h 'U$C No!c I h. 'U$C Queue I ! Queue ! :m. un ,

Create
Noa.c

I I! I i ~ Aiam ~ &\gam !
I I I' 'I I I

!, ____ -_~---------------) !, ____ ~. ~ -:-.:~~) i i
~ ,-------------- , , (~---------------" -- -- -- -- -- -' ! I', I (,__ _ ___________________________ "

I Bu<!ket, I I Queue
I Avaih\lc', I i Avaih\lc I , I,
I " I ~
I I I I
I I I,
, I I I

, I I,
, I 1 1 , I'" I

" I ~ I
, I

, I
, I

Need.
Bu<!kct
for
wert

, -'

Need.
Oueuc
for
wert

wcrt m
Qucue

,
~

..

Entry via
Priori ty Queue

l············@·······-·l
! N"oic !

1... Availa\lc_...I

....
\

Noa.c" ,
, Queue I
I :m. 'U$C '
, I I

---! ' i
! ~I i
'- ---~---------------'

Qucuc
Avaih\lc

Figure 7-Dispatcher protocol

/

A large/fine-grain parallel dataflow model and its
performance evaluation*

by BEHROOZ SHIRAZI
Southern Methodist University
Dallas, Texas

and
ALI R. HURSON
Pennsylvania State University
University Park, Pennsylvania

ABSTRACT

Data driven architecture has been widely proposed in literature as an alternative to
the von-Neumann design to handle real time and fifth generation applications. 1

,2

However, the network delays at the fine-grain dataflow level and handling of large
arrays are some of the problems which should be addressed in these architectures.
In this paper, we introduce a new model for dataflow computation which yields it
self to an efficient realization of both static and dynamic dataflow architectures.
Furthermore, the proposed model provides grounds for efficient handling of arrays
in an SIMD fashion. Some implementation issues, the VLSI constraints, and archi
tectural support for the model are discussed. The proposed organization achieves
parallelism at the program block level (large-grain parallelism), instruction level
(fine-grain parallelism), and data level (array processing). The system behavior is
studied through a probabilistic simulation model and the conclusions are presented.

* This research was supported in part by the Department of Defense under Contract 5-25089-310

119

INTRODUCTION AND BACKGROUND

The recent real time applications demand a computational
power of the order of 1 billion operations per second. 1, 2 How
ever, it has been proven that neither the conventional von
Neumann type computers nor the traditional concurrent sys
tems can offer such a computational power. This computation
gap is a result of factors such as: (1) the technological con
straints imposed by the physical laws, (2) the sequential na
ture of the von-Neumann architecture, and (3) the software/
hardware complexities introduced by the traditional concur
rent systems. These deficiencies encourage the design and
implementation of systems which are inherently parallel. The
data driven computations provide the basis for such an organi
zation. In this environment, a program is represented as an
acyclic directed graph in which the nodes are operations to be
performed and the arcs direct the data among the nodes. The
concept of asynchrony embedded in the definition of a data
driven architecture provides grounds for a high degree of
implicit parallelism. In addition, the data driven organization
eliminates the need for an updatable storage, use of identi
fiers, and all of their associated by-products such as global
side-effects and aliasing. Such a radical departure from the
sequential von-Neumann type organization has eliminated
familiar concepts such as the program counter, addressing
schemes, central memory, etc., with an eye towards increasing
the degree of parallelism.

However, the traditional fine-grain (instruction level) data
driven computation leads to the increased cost and complexity
of the network, or otherwise erecting a potential bottleneck
due to delays of the network for token transmission. There
fore, the large-grain data driven architectures have recently
been investigated as an alternative for their fine-grain coun
terparts. This has led to the development of the block driven
systems which explore the parallelism at the program block
level. 3, 4

In addition to the network problem, the elimination of the
global variables and addressing mechanisms enforces the
tokens (instruction and data) to be self contained (i.e., they
must carry a large volume of information in order to effi
ciently utilize the processing power). At the implementation
phase, this violates the pin limitation constraints imposed by
the current technology. Finally, the lack of updatable storage
and asynchrony in the operations requires special proce
dures and mechanisms for handling of the data structures. The
proposed data, driven architectures in the literature have
attempted to overcome these problems by shortening the in
terconnection paths and by developing new algorithms for
handling the data structures and I/O operations.

A viable data driven architecture should comply with the
technological constraints, offer a better performance for in-

A LargelFine-grain Parallel Dataflow Model 121

herently parallel problems, reduce fine-grain communication
costs, and introduce a practical and effective solution for the
manipulation of the data structures. These criteria have led us
to the introduction of a new model for data driven computa
tions capable of supporting array processing. This paper dis
cusses the proposed model, addresses the architectural sup
port for the model, and provides a performance evaluation of
the system.

THE PROPOSED MODEL

The dynamic dataflow machines allow simultaneous execution
of several activations of the same block. This provides a higher
potential for parallelism at the expense of more complexity.
On the other hand, the static dataflow architectures provide
simplicity with less parallelism. The advantages of these two
classes of dataflow machines have led us to the introduction
of a new model for the data driven architectures. Our goals
are simplicity of the design, reduction of communication re
quirements, and capability to handle arrays efficiently. These
goals can be achieved by distribution of the processing power
among the memory cells.

In this scheme, each memory cell holds an instruction and
its input operands. The system has enough processing power
to perform token matching for each instruction and to carry
out the operation within the cell. It is noticeable that the
simple, cellular architecture will be suitable for VLSI imple
mentation. Also, the communication requirements are re
duced since the tokens only need to go through one level of
networking as opposed to two or three, as in the static and
dynamic models. Furthermore, the cells can be viewed as an
array of processors which can be programmed in an SIMD
fashion for manipulation of array structures.

Figure 1 depicts a detailed version of the proposed Pro
cessing Module (PM). The input and output ports provide
communication between the PM and the outside world. The
instructions of a program block are assigned to the cells, one
instruction per cell. Each cell independently detects its firing
condition, executes the instruction, and routes the result
token to its destination cell(s) via the Sub-net. It is obvious
that fine-grain data driven computation is achieved with min
imal communication requirements.

A PM operates as a static data driven machine. Thus, the
tokens will not carry any coloring information related to the
recognition of the block activation. However, a number of
these PM's can be used to efficiently emulate the dynamic
data driven model through code duplication. As depicted in
Figure 2, the system has a large-grain block driven organiza
tion in which program blocks can be simultaneously executed
by simply duplicating the code and assigning it to a free PM.

122 National Computer Conference, 1987

---1 CellI ~-
· · ·

-1 Cell. ~ l

-1 Celli+1~ I I

· Sub-net · ·
-1 Cell ~ m

Input - port -
Output - port ~ ... -

Figure 1-The organization of a processing module

The coloring information need only be kept at the program
block level and individual tokens need not carry this informa
tion.

It should be mentioned that the system supports enough
parallelism to tolerate network delays. For this reason and
because we are concentrating on the model, not implementa
tion, we did not specify any particular interconnection scheme
for the networks used in Figures 1 and 2. Naturally, one will
take advantage of the advances in interconnection technology
to use the most cost efficient network during the implementa
tion. In addition, the choice of the type of application pro
grams to run on the system can affect the communication
requirements. We assume that the application programs pro
cessed by the proposed system will be functionl and block
oriented with a high degree of locality of effect and virtually no
global variables. These characteristics imply that the indepen
dent program blocks can be executed in parallel and that the
degree of communication among the instructions of a block is
much higher than the inter-block communication. Therefore,
we need a relatively high speed interconnection network for
the sub-net (see Figure 1), while the speed requirements of
the system network (see Figure 2) is not critical.

The Host Module

The host module holds the program blocks as they are gen
erated by the compiler. It performs system management tasks
such as: detection of the firing condition for a block, keeping
track of the free processing modules, and allocation of the
enabled program blocks to the processing modules. The task
allocation and load balancing is performed dynamically based

on the firing condition in a block driven environment. In other
words, as soon as a task (function or block) is enabled (fired)
for execution, it will be assigned to one of the processing
modules chosen from a pool of available PM's. The firing
condition consists of the availability of the input arguments
for a function (block) in a functional programming environ
ment. 10 The assumption is that the functions are strict, re
quiring all the inputs to be available before firing of the block.

Context switching may be used to increase the processing
power utilization. Thus, if an executing function becomes in
active (e.g., due to calling another function), its current image
is stored in a high speed memory in the host and the free PM
can be assigned to another enabled function. The inactive
block will be reactivated whenever it receives its requested
item. A completely different scheme may also be employed in
which an inactive block remains idle in a PM until it receives
the requested data. These two schemes are compared in our
simulation and the result will be discussed later.

The system management tasks are facilitated by labeling
(coloring) the program blocks. A block label is a tuple (a, ~),
where a is the static part assigned to the block during the
compilation and ~ is the dynamic part determined during
execution. Obviously, ~ is used to recognize different activa
tions of the same block during execution. For example, when
a called function completes, the ~ part of the label of the
calling function is used to determine to which activation of a

the value must be returned.

The Data Structure Module

This module is used to hold the data structures and pro
vides a smooth interface for their manipulation. The model is
flexible enough to allow implementation of heaps as in,7 1-

--1
-1

-1

l

PM I ~
PM

2 ~
· · ·
~ PM n

Host
Hodule

Data
tructure
Module

I

j
PH: Processing Hodule

Hetwork

Figure 2-The overall organization of the proposed model

structures as in,6 or array structures defined in. ll However,
one can take advantage of the functional programming style
and single assignment rule to increase opportunities for paral
lelism. A function consumes its input arguments and produces
output results. Therefore, a data structure is duplicated with
a proper label (e.g., appending the dynamic label of the block
to the data structure identifier) for each function to which it
is passed as an input argument. However, upon the comple
tion of the function, the input structures are deleted. The
functional programming style and block driven firing condi
tions ensure serialization of the dependent functions which
update the same data structure.

The cost of the structure duplication is justified by the
reduced cost of the memory chips and the fact that the dupli
cated structures only exist temporarily. It should be noted that
the dataflow concept has been traditionally applied to the
scientific and numeric application domains in which the size of
the data structures is often limited. For applications requiring
the manipulation of very large data structures, the model
yields itself naturally to a virtual memory organization, with
the data structures stored on a secondary storage device.

Duplication of the data structures for the blocks provides
opportunities for parallelism among them. However, within a
block the single assignment rule is used to avoid the write-after
write problem. According to this rule, a data structure ele
ment may be assigned a value only once. The read-before
write problem can be avoided by using a tag bit associated to
each element. If the tag is set, then the element is updated and
the read can proceed. Otherwise, the read should be queued
and checked for processing after each data structure update.
This method was first introduced in6 for handling of the I
structures. Tne tag bit can also be used for enforcing the singie
assignment rule during the execution.

There is a large body of scientific applications which rely
heavily on manipulation of arrays.12 Constructs such as
FORALL and OVAL13 can be used to express and exploit
parallelism in SIMD type array operation. For example,
FORALL defines the application of an operation to every
element of an array. While, OVAL consists of application of
an operation with associativity property, to the elements of an
array in a binary tree fashion (e.g., OVAL.SUM (array
A[l, 10]) returns the sum of the first 10 elements of array A.
The proposed PM's can easily support such vector processing
operations. The array of processing cells in a PM can be
programmed to perform the same operation on the elements
of an array. Thus as an element of an array is loaded into a
PM, it can be augmented with the operation to be performed
on it. This information is then used to set up the PM for the
particular SIMD operation to be carried out.

The SIMD array operations are treated as function calls
by a block. However, they are routed to the data structure
module instead of the host module. After initiating the call,
the block must wait for the result (either a value or a pointer
to a data structure) to be returned from the data structure
module. Upon receiving such a command, the data structure
module will request access to a free PM and begins loading it
with the array elements. The larger arrays have to be handled
in segments. This may become expensive in OVAL oper
ations. Let m be the number of processors and n be the size
of the array. It takes log2 m steps to apply the operations to m

A LargelFine-grain Parallel Dataflow Model 123

elements (pair-wise) and after (nlm) logzm steps, we will
produce a temporary array of (nlm) elements. Thus, it takes
~f =1 (nlmi) lo~m steps to generate the final result,
where k = logm n.

THE IMPLEMENTATION ISSUES AND
ARCHITECTURAL SUPPORT

Due to the space limitations it is not possible to discuss, in
detail, a complete implementation of the model. The inter
ested readers are referred to. 10 However, we will briefly intro
duce an implementation through a presentation of the flow of
operations and major characteristics of the architecture. This
architecture is used in the simulation of the model which will
be discussed in the next section.

The Processing Modules

It is obvious that the implementation cost of the model will
become prohibitively expensive if the cells (refer to Figure 1)
are complex. Therefore, we envision the cells to be simple
processors called Elementary processing Units (E-unit) which
can perform operations such as addition, subtraction, AND,
OR, etc. The more complex operations are to be routed to
coprocessors which are a collection of Functional Units (F
units). Thus, the cells of a PM are divided into E-units and
F-units. The E-units are our basic cells to which the instruc
tions and their input data are assigned. The flow of operations
in an E-unit is presented in the Petri-net of Figure 3. ~s shown

Token
Matching

Complex

Form
Operation

Token

To sub-net

Token from Sub-net

Accept token

Token destination address?

:':0 match, discard

Execute
instruction

Form ~ data
token

To sub-net

Processor idle

Figure 3--The flow of operations in an E-unit

124 National Computer Conference, 1987

in this figure, an E-unit matches the input tokens, performs
simple operations, and forms operation packets for complex
operations to be routed to the sub-net. An F-unit is simply a
hardware implemented functional unit which performs a spe
cific operation on the input operation token and sends the
result to the corresponding E-unit (indicated by the input
token) through the sub-net.

Granted the removal of the technical problems in Wafer
Scale Integration (WSI) , 14,15 we suggest the processing mod
ules be implemented on silicon wafers. WSI uses the entire
wafer, instead of dicing, to condense more functionality into
a single device. The intra-block communication among E- and
F-units is, therefore, improved by eliminating the delays and
difficulties associated to the multichip systems. However,
there are some problems with WSI (heat removal, yield, etc.)
which require further research and development in this area.

As previously mentioned, the sub-net can be any n x n
interconnection network with a reasonable performance. We
intend to investigate a variety of networks, beginning with an
arbitration network. The choice of the arbitration network
stems from performance and implementation issues. Dias and
Jump16 have shown that arbitration networks with buffering
capability between the stages can match the performance of
an equivalent crossbar network. In addition, the simple struc
ture of these networks allows their easy implementation by
WSI technology (i.e., crossovers and long parallel communi
cation lines are avoided).

The sub-net, as an arbitration network, funnels the output
tokens from the E-units and F-units in a pipeline fashion. The
funneled tokens are either sent to the outside world via the
output ports or distributed among the E-units and F-units
through a common data bus. The PM is loaded via the input
port in a bit-parallel word-serial pipeline method.

The Host and Data Structure Modules

The main function of the host module is to dynamically
manage (allocate/deallocate) the program blocks during the
execution using the dataflow concept as the primary task
allocation principle (i.e., a function is assigned to a free pro
cessing module when it receives its input arguments). Our
assumption, at this point, is that the compiler decomposes the
program into blocks which best match the size of a PM. There
fore, a large logical block will be decomposed into several
sequentially executable smaller physical blocks. If experi
mentation indicates that this scheme serializes the program
extensively, we can extend the model by providing local
memories for each PM. In this case, large blocks will be stored
in the local memory of a PM and are processed segment by
segment through some paging scheme.

The system management functions could be facilitated by a
set of hardware tables which determine the status of the sys
tem during its operations. For example, the block assignment
table determines the status of a block (passive, active, or
inactive), while the firing condition table keeps track of the
input arguments to a block and detects the firing condition for
it. To improve the performance, the operations on the status
tables are performed in associative fashion. This has two ad-

vantages: (1) the search of the tables are performed in paral
lel, and (2) we can have overlap of operation for different
system operations. lO

The host module's memory has a high-order interleaved
organization in which different program blocks are assigned to
different memory modules. This allows simultaneous loading/
unloading of blocks among several PM's. In this particular
architecture, the host and the PM's are organized in a master
slave organization with direct connections between the host
and each of the PM's. This is because of the need for block
transfers between the host and PM's, and due to the limited
intra-block communication in a functional programming envi
ronment. However, as we will discuss later, we are consid
ering other protocols such as a distributed host environment.

The data structure module is composed of a Data Structure
Memory (DSM) and a Data Structure Processor (DSP). The
DSM holds the data structures used in the data flow programs
as well as the temporary data structures which are created
to ensure the parallelism among different blocks. The inter
leaved organization of the DSM allows simultaneous access to
many elements. The DSP provides smooth access to the data
structures, manages the data structure memory, and initiates
the execution of vector processing instructions.

The System VLSI Complexity

In order to comply with the current technology in the design
of the proposed system, modularity has been explored at
three levels (3-dimensional modular system). First, the archi
tecture is composed of a few building blocks which are dup
licated many times across the system (e.g., processing mod
ules). Second, each processing module is composed of a group
of basic building blocks (e.g., E-units and F-units). Third, the
organization of each E-unit and F-unit is composed of a num
ber of basic cells which are duplicated in a two dimensional
space (see Hurson and Shirazi,17 for example).

The VLSI time and space complexities of the proposed
system have been evaluated through the analysis of its major
components. A detailed discussion of such analysis is out of
the scope of this paper, but can be found in Hurson and
Shirazi.17 Table I summarizes the geometry area and the tim
ing delay of some of the system major components.

THE SYSTEM PERFORMANCE EVALUATION

The purpose of this performance evaluation is to study the
behavior of the system and to recognize the weak points and
the bottlenecks. It is not our intention to run complete pro
grams on the simulator and compare it against the existing
data driven machines; although such a study is currently un
derway and the results will ~oon be available, As such, the
system simulation is based on an event-driven model which
passes tokens among different resources. The token gener
ation and routing is based on a probabilistic model reflecting
the program characteristics such as the degree of parallelism
in a block, execution delay of a block, number of function
calls, and the type of data structure operations.

Unit Geometrv Area 1 Timing (71sec)2

E-unit 4mmX4mm 250

Sub-net 40mmX20mm 6
1504

F-unit
iMultipJier)5

I
1OmmXIOmm 97

Host Module
(Aso;;o<t: t6ve lOmmX5mm 10
Memorv))

1. >"=2.5 }.Lm.

2. Average inverter delay=0.3 'f/sec.
3. 32-input, 4-output arbitration network, routing 64 bits in paraiiei.
4. Assuming no conflicts while going through the network.
5. Reference 18.
6. Reference 19.

TABLE I-The VLSI characteristics of the proposed architecture

The timing delays are based on either the VLSI timing
analysis of the designed components or timing information
obtained for the existing units. For example, loading of a
block takes log2 nAt to fill the arbitration network pipeline
plus (n - l)At to go through the pipe, where n is the number
of cells in a PM or the block size, whichever is less, and At is
the delay of an arbitration switch in the sub-net.

In order to obtain realistic statistics about the execution
delay of a function and its degree of parallelism, we could not
rely on a probabilistic simulation model. Therefore, an emu
lator was written which could mimic the operations of a pro
cessing module. We were then able to write actual dataflow
programs (small hand compiled functions) and run them on
the emulator. The results are presented in Table II.

The system simulator would then build a complete pro
gram, running in parallel on different PM's, from these func
tions. The program blocks are generated by randomly select
ing one of the functions and augmenting it with some global
program characteristics such as function calls, data structure
operations, and enabling other functions at the completion of
the current function. For example, in one experiment, the
number of function calls in a block is uniformly distributed
between a and 4, while the block may enable from a to 3 other
blocks at the end of its completion (called functions are

A verage degree Program rUll
Program of paralle lism time MIPS

du rin 0" execll tion l1J.sec)

Ouadratic e-.9..uation 1.01 25.0 0.44

Standard deviation 1.36 26.2 0.5:3

Simple data transformation 1.48 33.4 4.74
Xn n=3 1.27 7.2 3.89

n! n-10 1.24 23.7 4.47

1

fa x 2 dx 1.06 2l.2 3.07

ti, n=24 0.68 9.7 2.47

TABLE II-The processing module emulation results, running
actual dataflow programs (number of E-units = 32)

A LargelFine-grain Parallel Dataflow Model 125

MIPS

25

15 /
20

10

51'-------.--___ ___
16 32 48 64 No. of

PH's

Number of E-units = 16

Figure 4-The MIPS performance of the proposed architecture

treated differently; they only return a value to the calling
block).

Figure 4 depicts a plot of the MIPS (Millions of Instructions
Per Second) performance of the system against the number of
processing modules. The number of E-units in a PM is fixed
at 32, while the MIPS figures presented are the average of the
results collected from a number of simulations. It is noticeable
that the performance saturates relatively fast and addition of
the PM's does not improve the MIPS. Although not presented
here, the processor utilization study also reflected a similar
behavior (i.e., the PM utilization decreased as the number of
PM's was increased).

Our first attempt to seek the origin of the problem was to
study the loading/unloading of the blocks. The assumption
was that the blocks can be loaded/unloaded in parallel from/to
different modules of an interleaved memory in the host.
However, instead of a bit-parallel word-serial scheme (as in
the previous case), we employed a bit-serial word-parallel
method. As depicted in Figure 5, this change did not improve
the performance (i.e., there was no statistically significant
difference). Therefore, we focused our attention toward the
suspicious bottleneck, namely the host manager. In the next
study, we reduced the host module overhead by a factor of 5.
The results of this experiment are depicted in Figure 6. Notice
that performance has improved by a factor of 2 to 5, but
saturates around 64 PM due to overwhelming host overhead.
As a result, we are currently studying a variation of the model
in which the host tasks are distributed among a number of
sub-hosts and each sub-host controls a number of PM's in a
tree fashion. This model allows a better fault tolerance and
scalability compared to the original model.

In the above experiments we used a context switching
scheme to improve the processor utilization. In other words,
an idle block is removed from a PM and reinstated whenever
it receives the requested data such as function call or SIMD
type array operation. If we relax the high processor utilization

126 National Computer Conference, 1987

MIPS MIPS

25

20

15

10

5

16 32

Bit-serial " ______ ... _L liord-parallel

/r~Bit_parallel
Word-serial

48 64 No. of
PH's

Number of E-units = 16

Figure 5-A comparison of the two loadinglunl9ading schemes

requirement, an idle block may remain in a PM until its re
activation conditions are satisfied. To avoid a deadlock prob
lem, if all the PM's are occupied, we will begin preempting
the inactive blocks in a last-in-first-out basis. The major ad
vantage of this scheme is that it reduces the number of block
transfers between the host and PM's, and thus, reduces the
host module overhead for setting up the blocks for trans
mission.

The simulator was modified to reflect the new policy "no
context switching as much as possible" and the results were
very encouraging. The MIPS performance was improved from
45% in case of 16 PM's to 100% in case of 64 PM's, reaching
a performance of more than 200 MIPS. The processor utiliza
tion was reduced by about 40% in case of 16 PM's to about
10% in case of 64 PM's. Therefore, one can double the speed
at virtually no processor utilization cost when the number of
processing modules is large, more than 64.

CONCLUSION

This paper has introduced a new model for dataflow architec
tures based on the data driven (fine-grain parallelism) and
block driven (large-grain parallelism) principles. The model is
flexible enough to support both static and dynamic dataflow
computation models as well as vector processing operations.
It also provides opportunities for matching the underlying
architecture with semantics of the functional dataflow lan
guages. The model behavior was studied through the simu
lation of a system which represents an implementation of the
model. The results indicated that a central host module can be
the bottleneck and thus, a distributed control over the pro
cessing modules is more desirable. It was also concluded that
given a large number of processors, in excess of 64, it is more
advantageous to leave the inactive blocks in a processing mod
ule and only reallocate an idle module when there are no free
processing modules available.

100

80

60

40

20

16 32 48 64 :;0. of
P;'!' s

Figure 6---Performance of the system with the reduced host module
overhead

REFERENCES

1. Bernhard, R. "Computing at the Speed Limit." IEEE Spectrum, July,
1982, pp. 26-31.

2. Treleaven, p,c. and I.G. Lima. "Japan's Fifth-Generation Computer Sys
terns." Computer, August, 1982, pp. 79-88.

3. Lecouffe, M.P. "Architecture of a Multiprocessur Using Data Flow at a
Program Block Level." Proc. of the 1981 Int'l Conf. on Parallel Processing,
August, 1981, pp. 160-161.

4. Chang, T.L. and P.D. Fisher. "A Block-Driven Data Flow Processor,"
Proc. of the 1981 Int'I Conf. on Parallel Processing, August, 1981, pp.
151-155.

5. Gurd, J.R., C.c. Kirkham, and I. Watson. "The Manchester Prototype
Dataflow Computer." Comm. of the ACM, 28 (1985) 1, pp. 34-52.

6. Arvind, V. Kathail, and K. Pingali. "A Processing Element for a Large
Multiple Processor Dataflow Machine." 1980 Int'l Conf. on Circuits and
Computers, October, 1980, pp. 601-605.

7. Dennis, J.B. "First Version of a Data Flow Procedure Language." MAC
Tech. Memorandum 61, LCSIMIT, Cambridge, Massachusetts, May, 1975.

8. Dennis, J.B., G.R. Gao, and K.W. Todd. "Modeling the Weather with a
Data Flow Supercomputer." IEEE Trans. on Computers, c-33 (1984) 7, pp.
592-603.

9. Cornish, M. "The TI Dataflow Architectures-The Power of Concurrency
for Avionics." Proc. 3rd Conf. Digital Avionics Systems, 1979, pp. 19-25.

10. Shirazi, B. "WDDM-A Wafer-Scale Data Driven Multiprocessor." Ph.D.
Dissertation, University of Oklahoma, July, 1985.

11. Patnaik, L.M., R. Govindarajan, and N.S. Ramadoss. "Design and Per
formance Evaluation of EXMAN: An EXtended MANchester Data Flow
Computer." IEEE Trans. on Computers, c-35 (1986) 3, pp. 229-244.

12. Wetherell, C. "Desgin Considerations for Array Processing Languages."
Computer Science Group, University of California at Davis, 1980.

13. McGraw, J.R. "The VAL Language Description and Analysis." UCRL-
83251, Lawrence Livermore Laboratory, Dec., 1980.

14. McDonald, JF., E.H. Rogers, K. Rose, and A.J. Steckl. "The Trials of
Wafer-Scale Integration." IEEE Spectrum, 21 (1984) 10, pp. 32-39.

15. Johnson, R.R. "The Significance of Wafer Scale Integration in Computer
Design." Proc. ICCD '84, October, 1984, pp. 101-105.

16. Dias, D.M. and J.R. Jump. "Packet Switching Interconnection Networks
for Modular Systems." Computer; 14 (1981) 12, pp. 43-53.

17. Hurson, A.R. and B. Shirazi "A Wafer-Scale Data Driven M'J!ti
processor." The 29th Int'I Symp. on Mini & Micro Computers (MIMI '85),
June, 1985, pp. 115-119.

18. Hurson, AR. and B. Shirazi. "A Class of Systolic Multiplier Units for
VLSI Technology." Int'i Journal of Computer & Information Sciences, 14
(1985) 5.

19. Hurson, AR. and B. Shirazi. "The Design of a Hardware Recognizer for
Utilization in Scanning Operations." 1985 ACM 13th Annual Computer
Science Conf., March, 1985, pp. 112-119.

Rule partitioning versus task sharing
in parallel processing of universal production systems

byHEE WON
SUNY at Buffalo
Amherst, New York

ABSTRACT

Most research efforts in parallel processing of production systems have focused on
the rule partitioning method. This method cannot be successfully applied to the
universal production systems that allow different inference mechanisms, different
scopes ofWM (working memory) testing, different rates ofWM changes, and which
do not use empirical data for partitioning.

Parallel memory configuration is essentIal for memory intensive applications such
as production systems. Maximum parallelism cannot be achieved without sufficient
memory bandwidth.

A new parallel processing method that can run the universal production systems
on a parallel memory configuration is proposed, and is compared with the rule
partitioning method.

127

INTRODUCTION

Three main issues will be addressed: how to efficiently exe
cute parallel production systems, the importance of parallel
memory for the parallel production system, and the necessity
of architecture that is general enough to be applicable to
universal production systems.

Most parallel production systems try to partition the set of
rules by analyzing the parallel executability of the set. How
ever, a rule can be characterized differently, depending on
where it is used. A rule can be involved in more than one task.
The optimal partitioning of rules changes as the task changes.
Characterizing a rule according to a task is necessary in ex
ploiting the maximum parallelism.

The main computation of the production systems is to
match the condition elements to the data base. 1 It requires
sifting vast amounts of information. Thus parallel memory is
the key factor determining the success of parallel processing.
However, most parallel production systems ignore the neces
sity of parallel memory. Parallel CPUs cannot be fully utilized
if the information needed is not readily available because of
limited memory bandwidth. Without parallel memory, the

, true parallel processing cannot be achieved in the production
system.

In this paper, a set of heterogeneous processors are loosely
coupled to form a multiprocessor system rather than a special
parallel processing system such as a tree machine. 2 This con
figuration is more practical and less expensive because it can
be easily built by connecting already existing computers rather
than building a new computer system.

Another deficiency we can find in most parallel production
systems is the lack of universality. Most proposed systems are
based on a very narrow domain. Some proposals are only
good for forward inference chaining while others specialize in
backward chaining. More restrictions are imposed on its ap
plicability by requiring empirical data to produce the optimal
mapping of the rule to the parallel processor. 3

A task sharing concept is introduced to solve the problems
mentioned above. To execute the concept efficiently, a paral
lel memory system is advocated.

PRODUCTION SYSTEMS

Production systems consist of three basic components: a set of
rules, a data base, and an interpreter for the rules.

A rule consists of a conjunction of condition elements
called the left hand side (LHS) and a set of actions called the
right hand side (RHS). A set of rules called productions make
up the production memory (PM). Rules and productions are
interchangeably used in the following discussion.

Rule Partitioning Versus Task Sharing 129

The data base contains facts and assertions. The rules act
upon this data to update the state of knowledge by modifying
the data base. The data base is called working memory (WM).

The interpreter may be seen as a select-execute loop in
which one rule applicable to the current state of the data base
is chosen and then executed. Its action results in a modified
data base, and the select phase begins again. A well known
OPS5 interpreter goes through the following phases in the
select-execute cycle4

:

1. MATCH: Determines which productions are satisfied in
the current state of the working memory.

2. CONFLICT RESOLUTION: One of the matched pro
ductions is selected for execution based on some pre
defined criteria.

3. ACT: The actions specified in the RHS of the selected
production are executed.

PARALLEL PRODUCTION SYSTEMS

Many parallel production systems have been proposed with
the goal of accelerating the mle firing rate of each cycle.2

,3,5

Most methods partition the rules and assign each partition
to different processors. Each partition can be either a rule or
set of rules that are not usually affected by the same set of
working memory changes. Common characteristics of the pro
posed algorithms are: (1) Partitioning is made in compile
time, and (2) Rule partitions are disjoint subsets. The method
can be termed "Rule Partitioning" in the sense that the inter
dependency and the possibility of parallel execution between
rules are analyzed and used as criteria of the partitioning.
Thus this method tries to find the global optimum.

Another approach will be to find the local optimum. Exe
cution of the production systems consists of tasks. The
exploitation of parallelism within a task is the main idea of the
task sharing algorithm. But the sequence of tasks is deter
mined in run time. Therefore careful consideration should be
given to how to make efficient run time scheduling.

ASSUMED ARCHITECTURE AND UNIVERSAL
PRODUCTION SYSTEMS

The following discussion is based on a very general and real
istic processing environment.

A loosely coupled heterogeneous parallel processing archi
tecture is assumed. Each processor can store large programs
and execute them independently. Each processor varies in its
speed and size. Some processors might have very powerful
floating point ALUs while the others can have specialized I/O

130 National Computer Conference, 1987

units. One of the processors is used for user interface. The
processors communicate through a simple bus structure.

Universal production systems are to be run on the assumed
architecture. In the universal production systems, the infer
ence mechanism can be forward or backward, or both. The
condition element (LHS) of each rule requires different pro
cessing times, different resources, and different scopes of WM
testing. Some condition elements might require floating point
operation while others might need user's response to com
plete the evaluation. Global WM tests can be accommodated
in the universal systems. The action (RHS) part can also have
varieties of choices. The rate of change in WM can be massive
or limited. The number of rules affected by a change in WM
might vary to a great degree.

RULE PARTITIONING

In general, the rule partitioning method proceeds as follows:

1. Assign rules that are likely to be active at the same time
to different processors.

2. Assign the WM elements corresponding to the condition
elements of the allocated rules to the same processor.
The WM allocation does not necessarily lead to disjoint
WM partitions.

3. Repeat the following until no further rule can be fired.
a. For each change in WM, broadcast the change to all

processors.
b. All processors where local WM has been changed

conduct the match process and report results to the
control processor.

c. The control processor identifies a single rule for exe
cution, and the action part becomes the next change
inWM.

This partitioning method suffers from several significant
problems in executing the universal production systems on
parallel processing systems:

1. Predicting optimal partitioning is impossible in the uni
versal production systems. For example, optimal par
tition for the forward chaining method is no longer opti
mal for the other inference methods.

2. Balancing the load amongst the processors requires pre
dicting the processing time of each individual production
in addition to the parallel executability.

3. Parallel executability might adversely effect the atten
tion mechanism. Attention does not stay focused when
a condition element shared by two rules which belong to
different tasks is activated.

4. Compile time scheduling does not reflect the dynamic
behavior which is necessary to make the true optimal
rule partitioning.

5. Run time scheduling takes too much overhead because
the entire PM and WM should be rearranged in every
cycle.

TASK SHARING

Processing Grain

Different levels of processing can be defined in the produc
tion systems.

1. System level: Several independent production systems
can be integrated to build one large production system.

2. Task level: Execution of a production system is made of
tasks such as a series of goals or a sequence of WM
changes.

3. Rule level: Each individual rule can be found under the
task level.

4. Match level: Evaluating a rule involves matching condi
tion elements to WM elements.

5. Selection level: Selecting a rule to fire requires conflict
resolving task.

6. Action level: Firing a rule consists of WM-change tasks.

Parallel executability can be found within a level or across
the levels. In system level, parallelism can be found if more
than one production system can be concurrently activated to
solve the problem of the larger production system. At the task
level, sequential execution should be enforced if the next task
cannot be determined before the current task is completed.
One the other hand, parallel execution can be possible at the
task level if more than one task can be initiated simulta
neously.6 Most efforts for parallel production systems have
focused on the rule level because each rule can be evaluated
independently. Very fine grain parallelism can be found with
in match level, selection level, or action level. Additional
parallelism can be found across these levels.

How to exploit the existing parallelism depends on how the
processing element is assigned to the available resources. In
system level, parallel processing can be achieved by cooper
atively executing individual production systems assigned to
the different processors. The parallel processing method in
the task level is discussed in the following section.

Task Sharing

First the difference between Rule Partitioning and Task
Sharing should be made clear. In Rule Partitioning, the rules
themselves are partitioned and assigned to different pro
cessors in com.pile time. Thus only small portions of rules are
assigned to each processor. In Task Sharing, no partition is
made amongst the rules. Each processor has entire PM and
WM. However every processor shares the execution of the
task by running different rules. The decision as to which pro
cessor executes which rule is made dynamically. This dynamic
scheduling can be done without much overhead because no
transference of rules across the processors is necessary. The
way in which every processor can access the entire PM and
WM eliminates the overhead involved in rearranging the PM
and WM. The price to pay is, of course, the duplication of PM
and WM in every processor.

Task Sharing Algorithm

Heterogeneous processors connected to a bus are the un
derlying architecture on which this algorithm is based. The
main idea of this algorithm is to let each processor autono
mously schedule its task. The coordination of the system is
maintained by the fact that all the processors follow the same
scheduling strategy, and the scheduling activity is broadcasted
to all other processors if it is necessary.

Even distribution of the load to the processors should be
carefully planned. For a given task, a set of rules should be
assigned to the processors in an optimal way. The relationship
between the ability of the processor and the computational
need of the rule will determine how well a set of the rules will
map onto a parallel processor. Thus the abilities of the pro
cessors and the availability of each processor should be known
to the algorithm. The algorithm also should be intelligent
enough to identify the computational need of each individual
rule. For example, special condition elements such as user
interface elements should be identified in compile time so that
the information is readily available in run time. The algorithm
can be described as follows.

1. Task Identification: For a given task such as establishing
a goal in backward chaining or executing a match phase
for each WM change in forward chaining, every pro
cessor identifies the relevant set of rules and forms a task
table. The task table holds the scheduling information
and the condition element matching information.

2. Initial Task Scheduling: All the processors simulta
neously execute the first batch of scheduling. Each rule
is characterized by its special need such as user input or
floating point operation or special I/O operation. For
example, a rule with floating point operation condition
elements should be assigned to a processor having float
ing point ALU. The assignment of two rules with identi
cal characteristics to two identical processors is deter
mined by its rule order and the processor order which
are known throughout the system. The characteristic or
the rule order of the current set of rules can be identified
consistently throughout the processors so that consis
tency of scheduling can be maintained despite its auton
omous scheduling strategy. Every processor identifies its
rule to execute in addition to identifying the assignment
of the rest of the rules to the other processors.

3. Match: Repeat the following until all the relevant rules
for the current task are matched.
a. Every processor independently matches the rule as

signed to it.
b. Any processor having finished its match process iden

tifies the next rule to execute, and broadcasts its re
sults of matches (fail or success and/or its instantiated
variables) with the new scheduling information.

c. As soon as the message is received by all processors,
every processor updates its task table. A possible
scheduling conflict between two processors should be
resolved by some arbitration method.

4. Conflict Resolution: This process can be executed inde
pendently and concurrently by every processor. The re-

Rule Partitioning Versus Task Sharing 131

sults will be the same because every processor has the
same set of matched rules and the same conflict resolu
tion strategy.

5. Act: The same action is taken autonomously and consis
tently throughout the system.

Further overlapping between phases of the selection
execution cycle can be achieved. When some of the processors
are busy in matching the last portions of the active rules, the
idle processors can proceed to the next phase so that the
conflict resolution can be completed as soon as the last result
of the match phase is available.

RULE PARTITIONING VS. TASK SHARING

1. Load balance: In rule partitioning, it is hard to balance
the load among the processors. Balancing the load for
one cycle might conflict with the balance requirement of
the next cycle. Balancing the load for the forward chain
ing does not coincide with that of backward chaining.
Moreover, evenly distributing the same number of active
rules to the processors does not guarantee the load bal
ance because execution time of each rule varies. In the
worst case, the parallel processor might degrade to the
serial processor when all the active rules reside in the
same processor from cycle to cycle.
In task sharing, optimal load balance is always main
tained by dynamically assigning an even share of rules to
the processors. A processor can process several short
rules while another processor processes a 'long rule. A
processor can grab another rule to process as soon as it
has finished processing the current rule. Adaptive sched
uling can be achieved by matching the need of a rule with
the ability of a processor. Thus this method always guar
antees optimal load balance regardless of unpredictable
execution environment or execution time differences
among rules.

2. Communication: In match phase, two different kinds of
communications can be observed: one for testing WM,
the other for reporting the matched results.
In task sharing, no communication is necessary for test
ing WM because entire WM is available within the same
processor. In rule partitioning, it depends on how to
allocate WM. If no duplication of WM is allowed, then
quite a large amount of communication is required to
test the WM elements which are not available within the
same processor. The situation is aggravated if global
WM test is required. To eliminate communication of this
kind necessitates the duplication of part or the entire
WM.
In reporting the matched result, the rule partitioning has
advantage over the task sharing. Rule partitioning needs
to report the results of successful matches (or the results
of part of successful matches if only local maximum
needs to be considered in the conflict resolution phase).
In task sharing, all the results of the matches with the
scheduling information need to be broadcasted to the
other processors.
Rule partitioning needs to broadcast the actions of se-

132 National Computer Conference, 1987

lected rule(s) after resolving the conflict while task shar
ing does not because every processor can resolve the
conflict autonomously.

3. Universality: Three different criteria can be used to
measure the universality of the algorithm: hardware,
software, and application. The method should be appli
cable to different hardware configurations and be able to
take advantage of it. It should allow dynamic software
environments. It should be flexible enough to adopt new
applications without difficulty. None of these important
issues have been addressed in the rule partitioning meth
ods published so far. However, the task sharing method
considers all of these issues. Hardware specification can
be integrated into the scheduling scheme to take advan
tage of it. Users can choose or change any inference
mechanisms at any time without degrading the system
performance. New applications can be run efficiently
without extracting empirical statistics or analyzing rule
dependency in advance.

4. Fault Tolerance: The task sharing method has fault toler
ance which the rule partitioning method does not have.
The task sharing method has achieved fault tolerance
while achieving parallel processing. Each processor
keeps the record of execution status relevant to the cur
rent task as well as it own copy of the scheduling mech
anism, and the entire PM and WM and interpreter. This
complete distribution strategy eliminates need for any
hardcore element like a control processor for scheduling
purposes. Any partial breakdown of the system does not
effect the recovery of the overall system.

5. Hardware Requirement: Three different configurations
can be envisioned in the multiprocessor system. At the
low end multiple CPUs are connected to a single mem
ory. This method might suffer from severe memory con
tention when that method is applied to a memory in
tensive application such as a production system. In the
middle we can find multiple CPUs connected to shared
memories via interconnection networks. This method
might relieve some of the memory contention. But this
solution is still far from being universal.
At the high end we can find the architecture on which
task sharing is based. Each processor has its own mem
ory which can hold the entire PM and WM. A single bus
is used to connect the multiple processors. The only
traffic on this bus will be the broadcasting of the matched
result. All other information is readily available in each
processor system including the scheduling algorithm.
This method might be expensive. However, for a mem
ory intensive application like the production systems,
the importance of parallel memory outweighs that of
parallel CPUs.

EXTENSION OF THE ALGORITHM

The algorithm is based on the assumption that all of the PM
and WM can be stored within a processor. But only part of
PM and WM can be brought into the internal memory as the
volume of PM and WM grows. Every processor has its own
disk where the entire PM and WM resides.

The question is: how to efficiently bring in the necessary

PM and WM for a given task. It takes too much time for every
processor to search the entire PM and WM residing in disk.
One way of solving this problem is to partition the search area.
Every processor can search for different portions of PM and
WM without disk interference because every processor has its
own disk under its control. After bringing in different portions
of PM and WM into different processors, exchanging portions
of PM and WM throughout the system is necessary for every
processor to have entire PM and WM relevant to the current
task. Again duplication of PM and WM in disks can help to
decrease the disk search time.

A possible improvement is to decrease the communication
overhead in exchanging portions of PM and WM. Partial ex
change, like transferring only special rules to special pro
cessors and keeping the rest as local tasks, can decrease the
communication overhead at the expense of imperfect load
balancing. For example, a rule requiring user response must
be assigned to the processor having a user terminal while the
others can be executed in any processors.

CONCLUSION

This paper has pointed out the limitation of the rule par
titioning method. The method searches for the global opti
mum by analyzing the parallel executability of the rules in
compile time. The task sharing method has been proposed to
analyze the parallelism in the context of tasks. The local opti
mum of a given task can be found by analyzing parallel exe
cutability in run time. This local optimum should be used to
map the productions to the parallel processors in run time.

Parallel memory is essential to execute memory intensive
applications such as production systems. Parallel CPUs can
access the same information simultaneously because each pro
cessor has its own memory where the entire PM and WM is
available. Parallel CPUs cannot be fully utilized without par
allel memory. This duplication of PM and WM for every
processor can decrease the overhead incurred by the run time
scheduling method.

The universal system is needed in a growing area like the
production systems. A special architecture based on a special
algorithm will suffer from its shortcoming as the field ex
pands. The task sharing scheme on the heterogeneous pro
cessors with parallel memory is general enough to afford the
universal production systems.

REFERENCES

1. Gupta, A. and C. L. Forgy. "Measurements on Production Systems." Tech
nieal Report CMU-CS-83-167, Dept. of Computer Science, Carnegie
Mellon University.

2. Stolfo, S. and D. Miranker. "DADO: A Parallel Processor for Expert Sys
terns." The Proceedings of International Conference on Parallel Processing,
1984, pp. 74-82 .

• 3. Oflazer, K., "Partitioning in Parallel Processing of Production Systems."
The Proceedings of International Conference on Parallel Processing, 1984,
pp.92-100.

4. Forgy, C. L. "OPS5 User's Manual." Technical Report CMU-CS-81-185,
Dept. of Computer Science, Carnegie-Mellon University.

5. Tenorio, M. F. M. and D. I. Moldovan. "Mapping Production Systems into
Multiprocessors." The Proceedings of International Conference on Parallel
Processing, 1985, pp. 56-62.

6. Kumon, K., H. Masuzawa, A. Itashiki, K. Satoh, and Y. Sohma. "KABU
WAKE: A New Parallel Inference Method and Its Evaluation." The Pro
ceedings of 1986 Spring COMPCON, pp. 168-172.

Warp architecture:
From prototype to production

by MARCO ANNARATONE, E. ARNOULD, R. COHN, T. GROSS, H. T. KUNG, M. LAM,
O. MENZILCIOGLU, K. SAROCKY, J. SENKO, and Jon A. WEBB
Carnegie Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

The Warp machine* is a high-performance systolic array computer with a linear
array of 10 or more cells, each of which is a programmable processor capable of
performing 10 million floating-point operations per second (10 MFLOPS). A 10-cell
machine has a peak performance of 100 MFLOPS. Warp is integrated into a UNIX™

host system, and program development is supported by a compiler.
Two copies of a 10-cell prototype of the Warp machine became operational in

1986 and are in use at Carnegie Mellon for a wide range of applications, including
low-level vision processing for robot vehicle navigation and signal processing. The
success of the prototypes led to the development of a production version of the
Warp machine that is implemented with printed circuit boards. At least eight copies
of this machine are being built by General Electric in 1987. The first copy was
delivered to Carnegie Mellon in April 1987. This paper describes the architecture
of the production Warp machine and explains the changes that turned the prototype
system into a mature high-performance computing engine.

* Warp is a service mark of Carnegie Mellon University.

133

INTRODUCTION

Warp is a high-performance systolic array computer designed
to support signal and image processing. 1

,2 In a typical config
uration, Warp consists of a iinear systoiic array of 10 identical
cells; each cell is a programmable processor capable of per
forming 10 million floating-point operations per second. The
processor array is integrated in a multiprocessor host system
which provides adequate data bandwidth to sustain it at full
speed in the targeted applications. The host system also pro
vides a general-purpose computing environment, specifically
UNIX, for running application programs.2

Adequate support for programming has been a key concern
for the Warp project since its conception. The Warp machine
is integrated into UNIX as an attached processor and program
development is supported by a custom-tailored programming
environment. 3 Warp is exclusively programmed in a high-level
language called W2: programs are translated into efficient
microcode by an optimizing compiler. 4 Warp is implemented
with conservative technology; each prototype Warp cell is
built from off-the-shelf parts on a wire-warp board, and the
host consists of industry-standard boards. 1 We chose to imple
ment Warp with MSI and LSI components to reduce risk and
to build the prototype quickly. A single 19" rack hosts the
Warp array with 10 cells, the host system, as well as associated
power supplies and fans.

The Warp project started in 1984, and a 2-cell machine was
completed in June of 1985 at Carnegie Mellon. Construction
of two identical lO-cell prototype machines was contracted to
two industrial partners, General Electric and Honeywell. The
first prototype machine was delivered by General Electric in
early 1986, and the Honeywell machine arrived at Carnegie
Mellon a few months later. Both systems are used on a daily
basis at Carnegie Mellon for applications that have high
computation demands. The machines' first applications are
low-level vision for robot vehicle navigation, signal process
ing, scientific computing, and research in image processing
algorithms. 5

The successful use of the prototype for several applications
created the demand for additional Warp machines. Since
some of the Warp machines built will be subject to environ
mental stress (for example, inside a moving autonomous vehi
cle), and since wire-wrap boards are not suited for replication
due to their high production cost, we decided to implement
the production Warp with printed circuit boards (PC Warp).
This decision to re-implement the Warp array on printed cir
cuit boards created the opportunity to revise and improve the
architecture for the production Warp machine.

The PC Warp systems are still implemented with MSI and
LSI parts, allowing us to use our experience with the proto
type system as leverage. Our long-range plans call for an

Warp Architecture: From Prototype to Production 135

integrated Warp system that offers a reduction in area, power
consumption, and cost by at least one order of magnitude
while extending the performance into the GigaFLOPS range.
We have started to develop a single-chip implementation in
collaboration with our industrial partner Intel, and a VLSI
Warp system is expected to be available in the early 1990s.

This paper presents the production Warp, a revision of the
wire-wrapped prototype in use at Carnegie Mellon. Our goal
in the architecture revision is to make it a production-quality
machine thus lengthening its lifetime. Since all programs are
written in a high-level language which hides the hardware
details from the programmer, we do not need to maintain
hardware compatibility in the evolution of the architecture.
All application programs can be ported to new architectures
by recompilation.

There are three primary sources for changes. First, we want
to extend the application domain of the Warp machine. The
primary goal of the prototype machine was to demonstrate
that the architecture could be constructed and used effec
tively. To keep the risk low, we omitted some architecture
features that are difficult to implement and are not necessary
for some limited application domains. After successful con
struction and use of the prototype, we are now ready to ex
pand the machine's application domain. Second, our experi
ence in developing the compiler and application programs for
the prototype system has given us insights on the strong and
weak points of the architecture. With our experience in the
prototype machine, we can better estimate the board area to
implement different functions, tune the machine, and im
prove its efficiency. Last, some modifications to the
implementation are made to take advantage of new and
denser chips on the market.

ARCHITECTURE OVERVIEW

The Warp machine has three components: the Warp processor
array (Warp array), the interface unit (IU), and the host, as
depicted in Figure 1. The Warp array performs the computa
tion-intensive routines, for example, low-level vision routines
or matrix operations. The IU handles the lIO between the
array and the host. It is also capable of generating data ad
dresses and control signals for the Warp array. The host exe
cutes the parts of the application program that are not mapped
onto the Warp array, and supplies the data to and receives the
results from the array.

The Processor Array

The Warp array is a one-dimensional array of identical cells.
Data flow through the array on two data paths (X and Y).
Each cell can transfer up to 20 million words (80 Mbytes) per

136 National Computer Conference, 1987

Adr

WARP PROCESSOR ARRAY

Figure I-Warp machine overview

second to and from its neighboring cells. The direction of the
Y path is statically configurable. This backward direction of
the Y path is important in algorithms, such as back-solvers,
the require results accumulated in the last cell be sent back to
the other cells.

Each Warp cell is a 10 MFLOPS programmable processor
with its own program memory and microsequencer; it exe
cutes one instruction every 200ns. The Warp cell data path for
the production Warp machine is illustrated in Figure 2. Con
nected together through a full crossbar are a queue for each
inter-cell communication path, a large local memory, a 32-bit
floating-point multiplier (Mpy) and a 32-bit floating-point
adder (Add). Each floating-point unit has its own register
buffer. An additional small data memory backs up the limited

XP re .. :r----3~

AdrPre

<Literal

Data
Cross
Bar

~-----~~ Address

~~.....-~

Cross
Bar

register space of the buffers. There are three possible sources
for addresses for the two data memories. Addresses can be
generated on the IV and sent via the Adr path, or generated
locally by an on-board address generator (AGV), or taken
from the literal field of the current microinstruction.

The Host System

The Warp host, depicted in Figure 3, consists of a SVN-3
workstation*** (the master processor) running UNIX and an
external host. 6 The external host consists of two cluster pro
cessors and a support processor. The support processor con
trols peripheral I/O devices (such as graphics boards), and
handles floating-point exceptions and other interrupt signals
from the Warp array. The two clusters work in parallel, each
handling a uni-directional flow of data to or from the Warp
processor, through the IV. The two clusters can exchange
their roles in sending or receiving data for different phases of
a computation, in a ping-pong fashion.

Each processor (P) is a Motorola MVME135 processor
board consisting of a MC68020 microprocessor with a MC
68881 floating-point coprocessor and 1MByte memory. The
processor board is connected to dual-ported memories (M).
Each processor has private access to its memory via a local
VSB bus, and shared access on the global VME bus to all
memories. The total memory in the external host can be up to
36 Mbytes. Each cluster is connected to the IV through a

*** SUN-3 is a trademark of Sun Microsystems, Inc.

XNext
YNext

YPrev

AdrNext)

Figure 2-Warp cell data path

jdJUNIX 4.2 Workstation

SUPPORT
PROCESSOR VSB

CLUSTER 1

WARP PROCESSOR

Figure 3-Warp system

processor
memory
switch
graphics input
graphics output

switch board (S). The switch has on-board DMA devices
and a VME interface. The workstation master processor
workstation is connected to the external host via a VME bus
coupler. All the boards except the switch and bus coupler are
off-the-shelf components.

ARCHITECTURAL REVISIONS FOR THE
PRODUCTION WARP

In this section we discuss the major architecture revisions in
the production Warp machine: hardware flow control, local
address generation, increased program and data memories, a
space-saving implementation for the queues, and DMA trans
fers between the host and the interface unit.

Inter-cell Flow Control

As depicted in Figure 2, a queue of 512 words is placed
along each communication channel. Flow control is imple
mented in hardware on PC Warp: when a cell tries to read
from an empty queue, it is blocked until a data item arrives.
Similarly, when a cell tries to write to a full queue of a neigh
boring cell, the writing cell is blocked until data is removed
from the full queue.

The blocking of a cell is transparent to the program; the
state of all the computational units on the data path freezes for
the duration. Only a cell that tries to read from an empty
queue or to deposit a message into a full queue is blocked. All
other cells in the array continue to operate normally unless
they block themselves. The data queues of a blocked cell are
still able to accept input; otherwise, a cell blocked on an
empty queue will never become unblocked.

The implementation of run-time flow control by hardware
has two implications. First, we need two clock generators-

Warp Architecture: From Prototype to Production 137

one for the computational units whose states freeze when a
cell is blocked, and one for the queues. Second, since a cell
can receive data from either of its two neighbors, it can block
as a result of the status of the queues in either neighbor as well
as its own. This dependence on other cells adds serious timing
constraints to the design since signals have to cross board
boundaries.

Hardware-based flow control is not needed for all applica
tion domains, and since the implementation of the flow
control hardware is complicated for a high-speed system, we
elected to omit it in the wire-wrapped prototype. This deci
sion limited our application domain to those programs whose
flow control can be handled statically by the compiler. 4 How
ever, the simplification in the design has permitted us to gain
useful experience in a much shorter time.

Address Generation

As shown in Figure 2, each cell contains its own address
generation unit (AGU). The AGU is a self-contained integer
ALU with a set of local registers. It can compute up to two
addresses per cycle (one read address and one write address).
This rate is sufficient to match the memory bandwidth. The
AGU is implemented by a single component, the IDT-
49C402, on AMD2901 equivalent unit with 64 registers.

There are several reasons for the absence of an integer
ALU in the prototype cell. First, as long as all cells execute a
copy of the same program which needs only data-independent
addresses, the interface unit can compute the addresses and
pass them through the cells. Quite a few algorithms fall into
this category.

Second, there was not enough space on the wire-warp board
to include an AGU. The area cost of the AGU includes the
space occupied by the address generator chip as well as a
larger control store made necessary by the longer instruction
word. Last, the IDT-49C402 was not available for the design
of the prototype, only the AMD2901 was available and was
used for the prototype interface unit. Since this component
has only 16 registers, the address generation unit in the
interface unit is backed up by a table that holds up to 32K
pre-computed addresses. We did not have the board area to
replicate this table on each cell and therefore an AGU was
included only in the interface unit.

Expanded Memory

The PC Warp cell contains more program and data memory
than the prototype cell. All memories in the Warp cell are
implemented with static RAMs with an access time of 45ns.
At the time of the redesign, higher density memory chips were
available. The PC Warp cell contains 8K instruction and 32K
data words, as opposed to 2K instruction and 4K data words
in the prototype machine.

The large local data memory and the high inter-cell commu
nication bandwidth are necessary to make Warp effective for
numerous applications. 2 Enlarging the data memory makes it
possible to use larger numbers of cells in the array just as

138 National Computer Conference, 1987

effectively without increasing the array's I/O bandwidth re
quirement. 7

The size of the instruction memory determines the size of
the largest program that can run on the machine, as well as the
startup time to invoke an application program. Since the W2
compiler is available, there is hardly a limit on the size of
programs that can be written. Programs that exceed the 2K
instruction space of the prototype already exist. A large in
struction memory also allows multiple programs to reside on
the cell at the same time. The application program on the host
selects the programs to invoke dynamically; if the program is
already present in the instruction memory, it is not necessary
to download the routine each time it is called. The large
instruction memory provides a fast startup time for real-time
applications for which a low latency is needed.

Backup Memory for Registers

In the prototype system, the only way a data item can be
retrieved from the register files is through the arithmetic units.
This restriction causes problems for the compiler's code gen
erator when spilling a register (that is, moving a value from
register to memory). Since the functional units are highly
pipelined, the arithmetic operation to move a register value
cannot be inserted easily into the code sequence but must be
considered when the instructions are scheduled. As a result,
a circularity is introduced into the compilation steps: the in
struction schedule cannot be determined until the register
usage is known, but the register usage cannot be determined
until the instruction schedule is known.

PC Warp remedies this situation with the addition of a
backup memory for register overflows. This memory is con
nected to both register files (see Figure 2) and provides a fast
way to copy a register from one file to another. This backup
memory contains 2K words and is used to hold all scalars,
floating-point constants, and small arrays. Addresses for this
memory come from the address crossbar.

The addition of this memory also helps improve the
throughput for those programs operating mainly on local
data. The functional units of Warp can consume up to four
words and produce two results per cycle. The local memory,
however, only allows one read and one write. This data
access bandwidth is improved with the addition of the backup
memory.

Queues

The IDT-7202 FIFO chips, not available at the time the
prototype was designed, make it possible to implement the
queues compactly. In the prototype, the queues were imple
mented by a memory bank and a couple of pointers which
together take up a lot of board space. The reduction in space
allows us to implement all the other changes described. In
addition, the size of the queues is increased four-fold to 512
words, a common length for a scan-line in image processing.

The size of the queues is important even with hardware flow
control. Queues buffer the input for a cell and smooth the
program execution. Although the average communication

rate between two communicating cells must balance, a larger
buffer allows the cells to receive and send data in bursts at
different times.

Other Cell Changes

There are two other noteworthy changes in the cell. The
prototype system included an internal feedback path: a cell
could write into its own queues. Because this path was not
used by the compiler, we have eliminated this path and used
the board area to enrich the functionality of the Warp cell.
Last, with all these changes, the Warp cell instruction be
comes even more horizontal, and we had to increase the width
of the microcode word from 224 to 244 bits.

Host Changes

In the prototype system, input and output between the
array and the host is performed by two dedicated MC68020
processors. Data that is transferred to Warp must be read
from host memory on the VME or VSB bus and written to a
switch board, which is the interface between the host buses
and the IV. In the PC Warp system, a DMA device was added
to the switch board, increasing the peak host-array bandwidth
from 4 Mbytes/s to 8-12 Mbytes/s.

Transfers between the host and the Warp array can be per
formed in two ways:

1. If the address pattern is not sequential, the MC68020
processor performs the transfer, and the switch board is
a VSB slave.

2. If the address pattern is sequential, DMA transfer is
used. In this case, the switch board becomes the bus
master.

In non-sequential transfers, the transfer time depends on
the complexity of the address pattern. For simple patterns,
one 32-bit word is transferred in about 1 IJ.S. The maximum
transfer speed is mainly affected by the memory speed and the
bus protocol. While static memory boards would allow at least
a transfer every microsecond, the large storage requirement
prevented us from using them.

Sequential transfers are performed by DMA, at a rate of
less than 500ns per word. Sequential transfers are important
in vision applications, in which digitized images are often
received and sent in raster-scan order. To fully sustain the I/O
requirements of the Warp array (one input data and one out
put data every 200ns in the worst case), the IV can unpack a
32-bit word containing four eight bit integers and generate
four 32-bit floating-point values (and perform the opposite
operation on the output) in 800ns. By sending bytes as packed
32 bit words, the I/O bandwidth of the external host is in
creased four-fold. Transferring one 32-bit word every 800ns
therefore satisfies the maximum I/O requirements of the
Warp array. DMA transfers easily meet this requirement (500
ns), while the nonsequential transfers miss the requirement by
20% (current time is 1IJ.s). However, the availability of faster
memory boards will aHow us to meet this worst-case require
ment in the near future.

Applications different from VISIon, specifically scientific
computing, use 32-bit floating-point quantities, and packing
and unpacking cannot be used. However, most of these
applications seldom require the full bandwidth of the Warp
array, because more operations are performed on each input
data. Furthermore, input datasets are often stored into the
array before processing. In this case, the latency introduced
by first storing the dataset in the Warp array is small compared
to the total execution time. As an example, performing a real
100 x 100 singular value decomposition takes about 1.3 s,
whereas storing the matrix in the array takes 10,000 x 1jJ.s = 10
ms. Even simpler algorithms on a problem of this size (e.g.,
LV decomposition, OR decomposition) aiways take hundreds
of milliseconds since they perform several operations on each
data item; reducing the I/O time does not significantly im
prove the overall performance.

EXTENDED PROGRAM DOMAIN

The various changes in the architecture allow us to extend the
application domain of the production Warp machine. In this
section, we study each of the extensions.

Data-dependent Control Flow

If the control flow of a program is data dependent, then the
exact sequence of operations to be executed cannot be deter
mined at compile-time. Structured programming constructs
such as conditional statements, FOR loops with dynamic loop
bounds and WHILE statements can indicate data dependent
control flow. Even with homogeneous computing, in which
the same program is executed by all the cells in the array, the
sequences of operations actually executed by individual cells
can be different. As a result, the addresses needed in each cell
are different as well and must be computed on each cell.
Furthermore, the accurate timing for the input and output
operations of a cell is unpredictable if the execution path
through the program is data dependent. This renders compile
time flow control impossible and requires runtime flow con
trol. Since the prototype machine has neither local address
generation capabilities nor dynamic flow control support,
it is incapable of supporting data dependent control flow in
general.

The prototype only allows one type of data dependent con
trol flow: restricted conditional statements. No branch of a
conditional statement can include any loops, and the number
and type of I/O operations must be identical for both
branches. The address sequences demanded by the two
branches of the conditional statement can be different.

With the addition of local address generation unit and hard
ware flow control, the production Warp can now handle data
dependent control flow. The benefits are three-fold. First, the
language is now Turing-complete; we expand the domain of
the language from primitive recursive functions in the proto
type machine to all recursive functions. Second, the pro
gramming task is no longer complicated by the lack of WHILE

statements and FOR loops with dynamic loop bounds. Pre
viously, the user would have to predetermine the maximum

Warp Architecture: From Prototype to Production 139

number of iterations a loop may execute instead of expressing
the loop with a straightforward WHILE statement. Finally, the
efficiency of the machine is improved. When we had to exe
cute the maximum number of iterations every time, we could
lose a large factor in performance.

Heterogeneous Computation

The support heterogeneous computing where cells in the
array execute different programs, we need the capability of
efficient address generation on each cell. Different programs
imply different address sequences. When heterogeneous
computation is implemented on the prototype machine, ad
dresses need to be generated slowly on the pipe lined floating
point hardware in the cell. A simple integer addition requires
three operations, fix-to-float conversion, floating-point addi
tion and float-to-fix conversion, for a total of 21 clocks. The
AGV included in each cell of PC Warp is as powerful as the
address generator of the IV and computes an addition in half
a cycle. Hence, efficient heterogeneous computation is sup
ported.

If we can support data dependent control flow, we can also
support heterogeneous computation; however, the converse is
not true. The compile-time flow control algorithm does not
rely on the fact that all cell programs are the same. Therefore,
as long as the individual programs do not exhibit data de
pendent control flow, dynamic flow control is not necessary
for heterogeneous computing.

Efficient Data Dependent Addressing

Some homogeneous programs need data dependent ad
dresses which we cannot generate on the IV. The addition of
a local AGV to the production Warp machine helps this class
of programs as well.

Bidirectional Data Flow

General bidirectional data flow through the array is not
supported by the compiler for the prototype hardware. The
compilation for programs with unidirectional data flow de
composes nicely into two independent problems: cell sched
uling and flow control. After the cell programs are generated,
we skew the initiation of the execution of each cell with re
spect to the preceding cell to ensure that the input operations
do not overtake the corresponding output operations. With
bidirectional data flow, it may be necessary for a cell to wait
for both of its neighbors at different times in the course of the
execution. The analysis to determine when pauses are neces
sary is nontrivial; moreover, the internal hardware pipelines
in the cells make efficient implementation of such pauses dif
ficult.

Only the SIMD model of computation is supported for
bidirectional data flow on the prototype machine. That is, the
user must program the cells in such a way that if the programs
were executed in lock step, all receives would be executed
after their corresponding sends. In other words, the re
sponsibility of flow control rests on the user.

140 National Computer Conference, 1987

Bidirectional data flow is difficult to implement because of
the semantic gap between the programming language and the
actual hardware in the prototype machine. While dynamic
flow control is assumed in the language, we can only imple
ment static flow control. In PC Warp, dynamic flow control
closes this gap, making the support of bidirectional data flow
straightforward.

CONCLUSIONS

The prototype Warp machine was a compromise between gen
erality and design complexity. The program domain, although
restricted, still covers a large set of important applications.
The simplification in the design allowed us to construct the
prototype and to demonstrate its usefulness quickly.

The development of a variety of applications for the proto
type made us aware of the strengths and limitations of this
machine, and led to the revisions incorporated into the pro
duction Warp system. Because we had a working compiler and
a realistic set of application programs, we could evaluate each
design change and assess its performance impact quite accu
rately. Since we had completed the implementation of the
prototype, we were able to estimate the hardware cost and
complexity of the revisions as well.

The production Warp machine is a major improvement over
the prototype. It handles an enlarged application domain
which includes programs with data dependent control flow
and addressing, heterogeneous computation, and bidirec
tional flow. Moreover, the performance of those programs
that run on the prototype Warp machine is not compromised.

ACKNOWLEDGEMENTS

The research was supported in part by Defense Advanced
Research Projects Agency (DoD) monitored by the Air Force
Avionics Laboratory under Contract F33615-81-K-1539 and
Naval Electronics Systems Command under Contract
NOO039-85-C-0134, and in part by the Office of Naval Re
search under Contracts N00014-80-C-0236, NR 048-659, and
N00014-85-K-0152, NR SDRJ-007. T. Gross is also supported
by an IBM Faculty Development Award, and H. T. Kung by
a Shell Distinguished Chair in Computer Science.

REFERENCES

1. Annaratone, M., E. Arnould, R Gross, H. T. Kung, M. Lam, O. Men
zilcioglu, K. Sarocky, and J. A. Webb. "Warp Architecture and
Implementation." Conference Proceedings of the 13th Annual International
Symposium on Computer Architecture, 1986, pp. 346-356.

2. Annaratone, M., F. Bitz, J. Deutch, L. Hamey, H. T. Kung, P. C. Maulik,
P. Tseng, and J. A. Webb. "Applications Experience on Warp." AFlPS
Proceedings of the National Computer Conference, (Vol. 56), 1987.

3. Bruegge, B., C. Chang, R Cohn, T. Gross, M. Lam, P. Lieu, A. Noaman,
and D. Yam. "The Warp Programming Environment." AFlPS Proceedings
of the National Computer Conference, (Vol. 56), 1987.

4. Gross, T., M. S. Lam. "Compilation for a High-performance Systolic Ar
ray." Proceedings of the SIGPLAN 86 Symposium on Compiler Construc
tion. ACM SIGPLAN, 1986, pp. 27-38.

5. Gross, R, H. T. Kung, M. S. Lam, J. A. Webb. "Warp as a Machine for
Low-Level Vision." Proceedings of 1985 IEEE International Conference on
Robotics and Automation, 1985, pp. 790-800.

6. Annaratone, M., E. Arnould, R Cohn, T. Gross, H. T. Kung, M. Lam, O. i

Menzilcioglu, K. Sarocky, J. Senko, and J. Webb. "Architecture of Warp."
Proceedings, Com peon Spring 87, IEEE Computer Society, 1987.

7. Kung, H. T. "Memory Requirements for Balanced Computer Architec
tures." Journal of Complexity, 1 (1985) 1, pp. 147-157.

The Warp programming environment

by B. BRUEGGE, C. H. CHANG, R. COHN, T. GROSS, M. LAM, P. LIEU,
A. NOAMAN, and D. YAM
Carnegie-Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

This paper describes the environment for developing and executing Warp* pro
grams. The center of the program development environment is a customized shell
that ties together a compiler for the Warp array, the Warp run-time system, and a
debugger. The compiler translates high-level language programs to microcode for
the Warp machine. It achieves a high utilization of the computation power of the
processor. The run-time system supports remote execution of Warp programs
across a network and makes the Warp machine available as a shareable resource.
The debugger permits symbolic debugging of Warp programs. The Warp pro
gramming environment makes the Warp machine an easily programmable and
accessible attached processor in a UNIX™ environment.

* Warp is a service mark of Carnegie Mellon University.

141

INTRODUCTION

In our programming environment, Warp is modeled as an
attached processor accessible from an interactive, program
mable, command interpreter called the Warp shell. The shell
provides traditional operating system commands as well as
commands to execute programs on the Warp machine. Calling
a Warp program is similar to invoking a procedure: the shell
calls the Warp program and passes input and output data
between the application and Warp. The run-time system pro
vides low-level support such as securing exclusive access to the
machine, downloading object code, and transferring data be
tween the host and the Warp system.

For programming the Warp, we have designed a language
called W2 and implemented an optimizing compiler. The pro
gramming model, as supported by the language, allows the
user to see the machine as a linear array of sequential pro
cessors and hides the low-level details from users. From a W2
program, the compiler generates microcode for the Warp
array and the interface unit, as well as C programs for the I/O
processors. 1

In this paper we first describe the objectives of the Warp
programming environment (\VPE), and the system config
uration. Then we describe the two methods for using the Warp
system. The primary method is the interactive mode through
the Warp shell; a library of existing Warp routines as well as
user programs can be invoked interactively through shell com
mands. Program development is done almost exclusively with
this method. The second method, used mainly for real-time
systems, is the direct mode, for users who cannot afford the
overhead of an interactive system. We then describe the sup
port software in WPE: the run-time system, compiler, and
debugger. We conclude with a review of the current status and
a brief discussion of our experience to date.

Objectives of WPE

The primary objective of WPE is to simplify the use of the
Warp machine. WPE is a uniform environment to edit, com
pile, debug, and execute W2 programs. Its audience includes
the user who calls routines from a W2library, the programmer
who develops new algorithms for Warp, as well as the imple
mentor who writes support software.

WPE must support efficient multiple user access because
the use of the Warp hardware in a typical user session is
sporadic. By allowing multiple user sessions to overlap and by
serializing the use of the hardware, the Warp machine can be
better utilized. WPE also provides multiple machine access; if
there is more than one Warp array available, a user has the
choice of connecting to any of these machines. It also provides

The Warp Programming Environment 143

network transparency, the user sees no difference whether he
uses the Warp array remotely from his personal workstation
or logs in directly to the Warp host machine.

WPE is designed to be development machine-portable. The
shell, compiler, and debugger are written in Common LISP,
which runs on many workstations, and the TCP/IP protocol is
used in inter-machine communication. Our current release of
WPE runs on SUN-3 under BSD UNIX 4.2. WPE is also de
signed to be target machine-portable. It has been in use for
our prototype system, and it can be used with the successor
Warp architectures: the production architecture implemented
with printed circuit boards as well as the VLSI Warp which is
currently in the design stage.

System Configuration

Figure 1 shows the configuration of WPE. Each worksta
tion, a SUN-3, runs one or more Warp shells. The worksta
tions communicate with a machine called the Warp host. This
is another SUN-3 which is physically connected via a bus
repeater to the external host and Warp array.2 The Warp
server executes on the Warp host and is the intermediator
between users and the Warp array and external host.

TWO MODES OF ACCESSING WARP

There are two methods of running programs on Warp. Users
may use the Warp shell which provides an interactive interface
to the constituents of WPE such as the compiler, run-time
system, debugger, and servers. Or, if absolute performance is
necessary, users may program the machine in direct mode,
without the overhead of a command interpreter.

The Warp Shell

The Warp shell binds together the components of WPE.
Shell commands can be used to invoke the compiler, run a
program on the array, and call debugging functions. The
Warp shell is based on an extensible shell written in Common
LISP. 3 The extensibility makes it possible to support different
classes of users. Specifically, the Warp shell distinguishes be
tween the novice and the experienced user. For example, the
implementation language Common LISP and the components
of the environment are completely hidden from a novice. This
is useful for programmers interested in using the Warp shell to
execute W2 programs from a library. On the other hand, the
LISP implementation and all the software components com
prising the Warp environment are easily available when de-

144 National Computer Conference, 1987

Workstation 1 (Sun-3) Warphost (Sun-3)

I WPE I Direct 1

User 1
User

Server1
~

Workstation 2 (Sun-3) I User Server2

I Direct 21
I User Server m

I WPE I User3

User2

I
I
I
I

Workstation n (Sun-3)

User m-1

Warp Server

VME

TCP-IP P: Processor M: Memory

Figure l-System configuration

sired. This means an experienced user can make use of Com
mon LISP's powerful control structures to implement new
commands.

The Warp shell allows the declaration and manipulation of
variables, which can be used as inputs or outputs for Warp
programs. All variables in the Warp shell are typed. The type
information determines how to present a variable to a user
(print as integer, floating-point number, ...) and how to
transfer it to the Warp array. The Warp shell offers predefined
and user-defined types and variables. For example, an image
can be defined by a user as a type "IMAGE = array [512,512]
of byte" and the user can define variables of type IMAGE. User
defined variables can then be passed as parameters to W2
programs.

Let us assume the user wants to invoke a W2 program
"filterSbyS" contained in a W2 library. This program expects
an input image and transforms it into an output image. A
typical sequence of Warp shell commands looks like this:

allocate -name IN -type IMAGE -init limglroad
allocate -name OUT -type IMAGE

filterSbyS IN OUT

The first command defines a Warp shell variable IN of type
IMAGE and initializes it with the data contained in file "/imgl

road." The second command defines the variable OUT to hold
the output image. The third line invokes the W2 program
"filterSby5" with the actual parameters IN and OUT. When the
execution is finished, the output image can be displayed or
inspected in an editor buffer.

The user types commands to the Warp shell which runs
inside the editor. The advantage of this structure is that such
features as intra-line editing, history buffers, re-execution of
previous commands and creation of script files are available
automatically. The Warp shell also provides a uniform help
mechanism. Each command is documented on-line and exam
ples from the help description of a command can be fed to the
command interpreter, providing easy exploration of the com
mand language.

In addition to the Warp-specific features described in this
paper, the Warp shell provides roughly the functionality of the
well-known UNIX C-shell. 4 It maintains a set of environment
variables such as SOURCEFILE~ the name of the W2 program;
HOST, the name of the Warp host in use; and BREAKPOINTS,

the set of currently defined breakpoints. These environment
variables can be inspected and assigned new values with Warp
shell commands. By setting variables, a user can configure the
environment. For exampie, assigning a value to HOST changes
the Warp host and array on which programs are executed.

Direct Mode

The Warp shell is programmed in Common LISP and there
fore garbage collection occurs regularly, making it hard t?
achieve predictable response times at the shell level. In addI
tion there is some overhead incurred in the network commu
nica~ion. Although this is tolerable when developing Warp
programs, it may not be acceptable for real-ti~e applicati~ns.
In this case, a user calls the run-time system dIrectly. ApplIca
tion programs in direct mode can be written i~ any langua?e.
The only requirement is that the language ImplementatIOn
supports the call of external C routines (the run-time system
is written in C).

Direct mode is supported for both remote and local exe
cution. Applications running remotely still use TCPIIP;
application programs executed locally on the Warp host
bypass the TCPIIP protocol. In Figure 1, "Direct 2" and "Di
rect I" are examples of the remote and local direct mode,
respectively.

The local direct mode is the mode with the lowest overhead
and is the preferred mode of execution when time is critical.
In this mode, the application program makes direct procedure
calls to the run-time system. A program in this mode can run
only on the Warp host" because it is linked with the library into
a single UNIX process.

The Warp Programming Environment 145

SUPPORT SOFTWARE

Figure 2 shows the major software components of WPE; a
compiler, a debugger, an editor, the Warp server, and the
shell user interface. The different components of the environ
ment communicate via the WPE database, which contains the
W2 source files, symbol tables, and syntax trees. The shell's
environment variables capture the current state of the session,
for example, which Warp machine is allocated and what class
of user (level of experience) is using the system. The integra
tion of the compiler's internal tables with the shell and the
debugger is important for the functionality of WPE. For ex
ample, the syntax tree produced by the W2 compiler is acces
sible by other components of \VPE. The debugger inspects the
syntax tree when a user tries to set a breakpoint. When exe
cution on the cell reaches a breakpoint, the corresponding line
is displayed in an editor buffer. Another part of the database
that is used frequently is the symbol table. The Warp shell
examines the symbol table when it displays the value of a
variable or when it matches the actual parameters of a Warp
program call with the formal parameters of the program.

The Run-time System

The WPE run-time system supports multiple user access by
including two kinds of servers, the Warp server and the user

:= X
16 a := (e+c) .. d CurrentSourcefile

CurrentSourceline
WarpHost
Experience
Breakpoints
WarpAllocated

b/ " / "d + /,
e c

Abstract Syntax Tree for
Current Sourcefil

Break at line 16

Screen
Buffers

WPE DATABASE

Figure 2-Software components

Environment Variables

146 National Computer Conference, 1987

servers. These server processes run on the Warp host and
communicate with the Warp shells on a user's workstation via
remote procedure calls using the TCP-IP protocol.

For each user running either the Warp shell or in direct
mode on a remote machine, there is a process called the user
server which also resides in the Warp host. Variables created
by a user in the Warp shell reside physically in the user server's
address space on the Warp host. Variables are transferred to
the user's site only when necessary. This organization reduces
the performance impact of running the Warp shell remotely
and accessing Warp over the network. Furthermore, because
Warp shell variables are allocated in the user server, they can
be initialized \vithout possessing the Warp array. This makes
it possible to perform costly file transfers (like reading an
image) between the workstation and the Warp host before
locking the Warp machine.

The Warp server manages the access to the Warp machine.
It provides functions to lock and unlock the Warp. When the
Warp server locks the machine for a particular Warp shell, the
memory of its user server is copied into the memory of the
external host of the Warp machine. This copy operation is
done inside the Warp host and is therefore quite fast. When
the Warp machine is unlocked, the memory of the external
host is copied back into the memory of the corresponding user
server. This scheme permits the environment to maintain
user-specific state information across several locks/unlocks of
the Warp machine.

The run-time system provides for sharing the Warp ma
chine, but does not preempt a user once the Warp machine is
locked. Most programs require a few seconds to run; the
overhead associated with swapping processes is too high com
pared with the execution time.

The W2 Programming Language and Compiler

In Warp, parallelism exists at several levels. At the cell level
there is a horizontal architecture with multiple pipe lined func
tional units; at the array level there are ten cells; at the system
level there are separate processors in the external host for
input/output, control, and computation. 5 The potential per
formance of Warp is enormous, but the complexity of using
the machine is proportionally overwhelming. To harness the
computation power of Warp, we have designed a pro
gramming language called W2 and implemented an opti
mizing compiler. The W2 language provides an abstract pro
gramming model of the machine that allows users to focus on
the parallelism at the array level. The compiler handles the
parallelism at the system and the cell levels.

Programming model

Users view the Warp system as a linear array of identical,
conventional processors that can communicate asyn
chronously with their left and right neighbors. Standard lan
guage constructs such as loops and conditionals are provided,
as are primitives for sending and receiving data. The seman
tics of the communication primitives are that a cell will block
if it tries to receive from an empty queue or send to a full one.

The general problem of partitioning a computation for a
processor array is difficult to solve. Usually, a solid under
standing of the application domain is necessary to find a good
mapping of a computation onto a processor array. Therefore,
the processor array configuration is exposed in the pro
grammer's model, giving the user or higher-level tools full
control over computation partitioning. Already there are
application-specific tools that map sequential algorithm de
scriptions into parallel W2 programs. 6

The W2 programming language

The W2language is a simple block-structured language with
assignment, conditional, and loop statements. A W2 program
is a module; it defines the interface between the host and the
array-the input and output to and from the array are given
by the module parameters. Specified next are the cell pro
grams, each of which describes the action of a group of one or
more cells. Only one cell program is allowed for the prototype
machine. When a group of cells share the same program, it
does not mean they necessarily execute the same instruction
at the same time. In fact, computations on different cells
typically are skewed in a pipe lined fashionz because a cell
cannot start executing until it receives data from the preceding
cell. Finally, a cell program may consist of several unnested
functions.

Example program

Figure 3 is a simple example of a Warp program which
evaluates a polynomial using an array of ten cells. The pro
gram evaluates the polynomial

P(Z) = coZ 9 + CIZ
8 + ... + C9

= (((co X z) + Cl) x z + ... + cs) x Z + C9

for a vector of 100 input data ZO,Zl,ZZ, ... By applying Horner's
rule, a polynomial evaluation becomes a series of inner
product computations, each of which is computed on a cell in
the array. Each cell (starting with cell 0 up to cell 9, the last
cell in the system) executes a copy of the program. The first
cell receives the values of the host program variables (bound
to parameters C and Z), and the results are sent and stored in
a host variable bound to parameter "results."

The compiler

The local optimizations implemented include common sub
expression elimination, constant folding, height reduction,
dead code removal, and idempotent operation removal. A
global flow analyzer collects detailed inter-block information
for all variables of the program. For regular accessing pat
terns, the analysis is powerful enough to distinguish between
individual array elements and different iterations of a loop so
that the code generator can overlap different loop iterations.
To exploit the high degree of pipelining and parallelism in the
machine, the compiler has a good global scheduler. We use

module polynomial (z in, c in, results out)
float z[100], c[10], results[100];

cellprogram (cid : 0 : 9)
begin

end

function poly
begin

end

float coeff,/* local copy of c[cid] */
temp, xin, yin, ans;/* temporaries */

int i;
receive (L, X, coeff, c[O]);
for i := 1 to 9 do begin

receive (L, X, temp, c[i]);
send (R, X, temp);

end;
send (R, X, 0.0);
for i := 0 to 99 do begin

receive (L, X, xin , z[i]);
receive (L, Y, yin, 0.0);
send (R, X, xin);
ans := coeff + yin*xin;
send (R, Y, ans, results[i]);

end;

call poly;

Figure 3-Example program

two scheduling algorithms: a scheduling technique specialized
for innermost loops called software pipelining, and a new
unified approach to scheduling both within and across basic
blocks.7

The Debugger

The Warp debugger provides two functions: setting source
line breakpoints and symbolic inspection of variables. Be
cause the optimizing compiler deletes redundant operations
and reorders source operations, it is not always possible to set
a breakpoint at a particular line in the W2 source code. A
special Warp shell command permits a user to explore possi
ble breakpoints. For a machine that executes 100 million oper
ations per second, a simple line-oriented debugging model is
not always appropriate. We must be able to qualify the break
point with a condition so that the program automatically re
sumes execution at the breakpoint if the condition is not sat
isfied. For example, we need to be able to stop at some partic
ular iteration of a loop, without stopping at all the previous
iterations.

For the wire-wrapped prototype, we can provide only post
mortem debugging; insufficient access to the internals of the
cell makes it impossible to continue execution after resources
have been inspected. This problem is alleviated in the produc
tion version of the Warp array.

CURRENT STATE

WPE is implemented in Common LISP and C, and is running
under BSD UNIX 4.2 on a SUN-3 Workstation. The current

The Warp Programming Environment 147

release supports mUltiple users and multiple machine access to
two copies of the lO-cell wire-wrapped prototype. 8 The core
image of Common LISP is about 7 MBytes; WPE uses an
additional 3 MBytes. We have found that a paging space of
25MBytes per user provides acceptable performance.

Altogether, approximately 75,000 lines of code have been
written. The W2 compiler accounts for about 34,000 lines of
Common LISP code, and the assemblers for 16,000 lines of C
code. The shell contains 8,000 lines of LISP code; it relies on
a text editor (Emacs). The debugger contains about 3,000
lines of LISP code. The run-time system is written in C and
consists of 4,000 lines of code. Linkers and simulators account
for the remaining lines of code.

Table I presents the performance results for some well
known programs for the prototype Warp system. The second
column shows the maximum floating-point computation
bandwidth that can be obtained for each program. Since there
are two distinct functional units for addition and multiplica
tion, this maximum rate is less than 100 MFLOPS if the num
ber of additions is not equal to the number of multiplications.
These numbers do not take into consideration the data de
pendencies in the program, but only the total number of oper
ations. The next column presents the computation bandwidth
achieved by the microcode generated by the compiler. The
overhead incurred by the host is not included.

Development of the Warp programming environment
started in 1984 as the architecture was defined. The major
emphasis of the early work was on the programming language
definition and the compiler design. Since the first prototype
machine became operational in Spring 1986, increased effort
has been allocated to the run-time support and the user inter
face. The programming environment has been continuously
developed and improved, with input from our application
users.

WPE provides a uniform environment for developing and
running Warp routines. The massive amount of details in us
ing the machine are abstracted out; efficient run-time support

TABLE I-Performance results

Some Benchmark Programs

Program MFLOPS MFLOPS Execution Compilation
max actual (ms) (min)

Convolution 94.4 65.3 68 4.9
(3x3 kernel
512><512 image)

Matrix multiply 99.5 74.5 25 1.7
(lOOxl00)

Successive 88.9 45.0 180 2.6
over-relaxation
(225x225,
10 iterations)

Local average 65.3 42.2 396 9.7
selective filter
(512x512 image)

Mandelbrot 90.0 86.8 6960 5.0
(512x512 image,
256 iterations)

148 National Computer Conference, 1987

is easily accessible through an interactive command inter
preter. The run-time system also allows multiple user access
and greatly increases the utilization of the hardware. The
development of software for Warp is made easy by a highly
optimizing compiler, which generates efficient microcode
from a high-level language. Microprogramming has been
phased out completely since the compiler became functional.
In summary, the Warp programming environment has turned
the Warp machine into an easily programmable and accessible
attached processor in a UNIX environment.

ACKNOWLEDGEMENTS

The research was supported in part by Defense Advanced
Research Projects Agency (DOD), monitored by the
Air Force Avionics Laboratory under Contract
F33615-81-K-1539, and Naval Electronic Systems Command
under Contract NOOO39-85-C-0134, and in part by the Office
of Naval Research under Contracts N00014-80-C-0236, NR
048-659, and N00014-85-K-0152, NR SDRJ-007. T. Gross is
also supported by an IBM Faculty Development Award.

REFERENCES

1. Gross, T. and M. S. Lam. "Compilation for a High-performance Systolic
Array." Proceedings of the SIG PLAN 86 Symposium on Compiler Construc
tion, ACM SIGPLAN, 1986, pp. 27-38.

2. Annaratone, M., E. Arnould, T. Gross, H. T. Kung, M. Lam, O. Men
zilcioglu, K. Sarocky, and J. A. Webb. "Warp Architecture and
Implementation." Conference Proceedings of the 13th Annual International
Symposium on Computer Architecture, 1986, pp. 346-356.

3. Giuse, Dario. "A Lisp Shell." Carnegie Mellon Robotics Institute Internal
Report, 1985.

4. Joy, William. "An Introduction to the C Shell." in UNIX Programmer's
Manual, 7th Edition, Computer Science Division, UCB, ed., UC Berkeley,
1981.

5. Annaratone, M., E. Arnould, R. Cohn, T. Gross, H. T. Kung, M. Lam, O.
Menzilcioglu, K. Sarocky, J. Senko, and J. Webb. "Architecture of Warp."
Proceedings, Com peon Spring 87, IEEE Computer Society, 1987,
pp.264-267.

6. Annaratone, M., F. Bitz, J. Deutch, L. Harney, H. T. Kung, P. C. Maulik,
P. Tseng, and J. A. Webb. "Applications Experience on Warp." AFIPS,
Proceedings of the National Computer Conference, (Vol. 56), 1987.

7. Bruegge, B., C. Chang, R. Cohn, T. Gross, M. Lam, P. Lieu, A. Noaman,
and D. Yam. "Programming Warp." Proceedings, Compcon Spring 87,
IEEE Computer Society, 1987, pp. 268-271.

8. Bruegge, B. Warp Programming Environment: User Manual, Department of
Computer Science, Carnegie-Mellon University, 1986.

Applications experience on Warp

by MARCO ANNARATONE, FRANCOIS BITZ, JEFF DEUTCH, H.T. KUNG,
LEONARD HAMEY, P.C. MAULIK, P.S. TSENG, and JON A. WEBB
Carnegie Mellon University
Pittsburgh, Pennsylvania

ABSTRACT

The prototype Warp* machine at Carnegie Mellon is being used to develop new
applications in magnetic resonance image processing, as a research tool in image
texture analysis, and for scientific computing. In these areas, orders of magnitude
speedup over conventional computers are being observed. These new applications
build on our use of Warp for low level vision, which is the area for which the
machine was originally designed.

Experience with the prototype Warp machine has led to rules that programmers
should follow to achieve best performance in their application. These rules concern
all levels of the Warp system, from input and output ordering to programming each
individual Warp cell to memory use in Warp's host. The new printed circuit board
version of Warp incorporates several architectural improvements, which lead to
better support of a wider class of applications.

An ambitious design for implementation of Warp in custom VLSI is underway,
which promises an increase of at least ten in cost-performance over the current
version of Warp, together with the opportunity to build much more powerful
systolic arrays delivering GigaFLOPS performance.

* warp is a service mark of Carnegie Mellon University

149

INTRODUCTION

Applications experience helps the development of a special
purpose computer at many levels. It can directly influence the
design of the architecture, and provide useful benchmarks to
make sure the architecture performs efficiently. Applications
can also help in the actual construction of the machine. For
example, in the Warp project, applications programs were
used first to debug the simulators, and then the prototype
hardware. Once the first full-scale Warp machines were built,
applications programs provided an effective acceptance test of
the machines.

Since the two copies of the wire-wrapped prototype Warp
machine became operational at Carnegie Mellon in 1986,
there have been substantial application efforts. As we have
previously discussed, l our first applications on the prototype
Warp concerned robot navigation. The systems we have im
plemented on Warp include road following, obstacle avoid
ance using stereo vision, obstacle avoidance using a laser
range-finder, and path planning using dynamic programming
(DP). We have also implemented several algorithms in
signal processing and scientific computing, including singular
value decomposition for adaptive beamforming, fast two
dimensional image correlation using fast Fourier transform
(FFT), successive over-relaxation (SOR) for the solution of
elliptic partial differential equations, as well as computational
geometry algorithms such as convex hull and algorithms for
the shortest path through a graph.

This paper presents new applications not discussed pre
viously; they reflect our growing effort to use Warp as a tool
in realistic applications, rather than as a machine purely for
research into parallelism. We are studying the use of Warp in
the analysis of magnetic resonance imagery (MRI) , and in
research into the analysis of repetitive textures in images. We
have also begun using Warp in scientific computing; algo
rithms in this area include partial differential equations prob
lems and sparse matrix computation. While some of these new
fields have been explored only recently, and we still do not
know how effective Warp will be in realistic applications, the
first results are encouraging enough to make us further pursue
these areas. The performance of the prototype Warp on a
range of applications will be summarized.

The success of the prototype led to the development of the
production version of the Warp machine, which is imple
mented on printed circuit boards. The production machine is
referred to as "PC Warp." Several architectural revisions
were incorporated in PC Warp. These revisions are discussed,
together with their impact on applications. We also briefly
describe the VLSI version of the Warp machine, currently
being designed by Carnegie Mellon and Intel Corporation.

Applications Experience on Warp 151

MRI IMAGE PROCESSING

MRI image processing is a new application for Warp. This
application is interesting for several reasons:

1. Many of the Warp programs we have already done, as
part of our work on parallel vision on Warp, can be
directly applied to this area without substantial modifi
cation.

2. Medical image processing requires the best and most
computationally expensive algorithms be applied to im
ages; an algorithm that can make, say, a tumor visible,
can save a life.

3. Medical image processing requires fast image process
ing, but not real-time-something of the order of sec
onds or minutes per image is acceptable.2

,3 Images are
acquired and examined off-line. Long processing time is
not acceptable, however, because a diagnostic session
occupies many resources and can be only of limited
duration.

We have implemented three different algorithms for process
ing MRI h"'1lages:

Contrast Enhancement

Typical MRI images have data values ranging over three
orders of magnitude more than we can display on a standard
video display device. The portions of the dynamic range the
physician wants to examine must be defined, and the mapping
of the image to the display device must be modified to show
this range. For example, in brain imagery the physician may
want to look at the dynamic range including the white-to-gray
matter transition, so that the area of the image taking part in
this transition is clearly identified.

Magnification

MRI images have resolutions of 1 mm or higher. Image
magnification is useful to detect small-scale irregularities. Im
age magnification is a computationally expensive process, es
pecially if it is done using optimal, or near-optimal, algorithms
such as cubic convolution. 4 The Warp implementation of this
algorithm is straightforward, and works well in the magnifica
tion of the image by a factor of eight or more both horizontally
and vertically.

152 National Computer Conference, 1987

Edge Detection

In medical image processing, edge detection serves mainly
to highlight structures that would otherwise not be visible and
to precisely define the location of a structure that might be
difficult to find, such as the boundary of an organ. This calls
for multi-resolution edge detection, using an operator that
finds, at each pixel, the edge with the best size and direction. 5

We have compared the Warp implementation of this with
subroutines from a commercial FORTRAN library,6 and
observed a factor of 1100 speedup over a SUN-3 running
FORTRAN code under UNIX. This remarkable speedup
makes it possible to do in a reasonable time (two minutes)
what would take more than a day using the FORTRAN code.

REPETITIVE TEXTURE ANALYSIS

In this research, repetitive textures are analyzed by using local
point symmetry to detect the texture elements. Point sym
metry is detected by an Analysis of Variance (ANOVA)7 sta
tistical test, which is applied to a window surrounding each
pixel location.

The ANOVA method consists of partitioning the variance
of the data into two portions: that which is explained by the
model and that which remains unexplained. The method is
applied at each pixel location to measure point symmetry. The
model assumes that pixels which are located opposite each
other should have similar intensities. The variance explained
by the model is given by the following equation, in which I
represents the window around each pixel, and Wis a weight
ing function used to emphasize particular pixels around the
central pixel, for example, by using a circular Gaussian
weighting function:

(I
.. + I ..)2 ~W;jlij
IJ -I-J - - l)

SSm = ~ W;j 2 - I ,where 1=--.
IJ "Lwij

ij

The unexplained residual variance is given by the following
equation:

The ratio of these two quantities is an F statistic.7 However,
the simple ratio has two faults: it is very sensitive to noise in
low-contrast portions of the image, such as sky, and its values
are unbounded. We therefore use the following ratio:

In this equation, V is a constant which is used to suppress the
response to noise, and is roughly equal to the noise variance
in the image multiplied by the sum of "Wtj ' The ratio S is
bounded below by zero and above by one. Local peaks in an
image of S values represent points of local symmetry.

In the Warp implementation of this algorithm, a pair of
nested loops over the input image window compute the
weighted mean surrounding each pixel. A second pair of
nested loops compute SSm and SSr. This implementation in
volves 1321 floating-point multiplications and 1982 floating
point additions per pixel. For a 512 x 512 image, 346 million
multiplications are required and 519 million additions. The
prototype Warp processes a 512 x 512 image in 30s. The same
processing would take more than an hour on a SUN-3.

SCIENTIFIC COMPUTATION

Scientific computation includes such tasks as solving systems
of linear equations, determining eigenvalues and eigenvec
tors, and factorjnq latrices. Our work in this field has just
started, but we ha\'..! already implemented a few important
algorithms, such as singular value decomposition (SVD) , QR
decomposition, and LU decomposition. 8 SVD has also been
used to develop a demonstration system which performs adap
tive beamforming on sonar data.

Singular Value Decomposition

The SVD of an m x n matrix A is:

where ~ is an m x n nonnegative diagonal matrix, and U and
V are m x m and n x n orthogonal matrices, respectively. The
nonzero elements in the diagonal of ~ are the singular values
of A. Here, we assume that A is an n x n square matrix;
results can be generalized in a straightforward way to the case
when A is rectangular.

Consider the Hestenes method9 for computing the SVD.
The method generates a sequence of J/s such that All .. . l.:~ =
U~. Each ~ is a tridiagonal matrix obtained by a set of plane
rotations that orthogonalize columns. We use a particular
rotation orderinglO that for n = 8 is:

(1, 2) (3, 4) (5, 6) (7, 8)
2 (1, 4) (3, 6) (5, 8) 7

(2, 4) (1, 6) (3, 8) (5, 7)
4 (2, 6) (1, 8) (3, 7) 5

(4, 6) (2, 8) (1, 7) (3, 5)
6 (4, 8) (2, 7) (1, 5) 3

(6, 8) (4, 7) (2, 5) (1, 3)
8 (6, 7) (4, 5) (2, 3) 1

where (i, j) means rotating the ith column against the jth
column. Each row in this table is called a rotation set, and the
eight rotation sets are caned a sweep. ~ has two forms:

~ = diag{fl' f3, ... ,ft - d, ~ = diag{l, f 2 , ••• ,ft-2' 1}

where t = n12. The ~ on the left corresponds to odd-even
column pairs (i.e., first, third ... , rotation sets). Each f; is a
2 x 2 matrix of rotation parameters:

r. = (sinei
, cosei

cosei)

-sinei

ei is the rotation angle that makes at ai+1 zero, where ai and
ai+1 are the rotating columns. This leads to the following
rotation formulae:

'Yi = at ai+l,
l:. = II ai+11l

z -II ai liz
"', 2'Yi '

ti = sign(~i)/(I~1 + (1 + e)ll2),
cos ei = 1/(1 + tl) 112 ,

sin ei = ti cos ei .

Two implementations on Warp are considered, storing A
either row-wise lO or column-wise. Currently, only the row
wise mapping is running on Warp, because the column-wise
mapping requires right-to-Ieft communication between the
cells, "backward path," that the W2 compiler has started
supporting only recently. We shall briefly examine the row
wise mapping first, and then we will discuss the column-wise
mapping in more detail, since it is much faster.

In a typical 100 x 100 problem, 10 rows are stored into each
Warp cell. While the array performs, in a systolic fashion, the
rotation of the A matrix and the computation of II ai+ 1 liZ, II ai liz,
and a/ ai+ 1, called "a" terms, the sin e and cos e values are
computed by one of the cluster processors. These terms leave
the array from the last cell and are sent to the receiving cluster
processor. This processor receives from the last cell a stream
of "a" terms, and performs the above rotation.

The floating-point MC68881 coprocessor inside the cluster
processor is used to compute the sines and cosines, which are
then routed back to the input cluster through the VME bus.
Both the use of the relatively slow coprocessor and the VME
transfers introduce a significant overhead. With this imple
mentation, a 100 x 100 SVD problem, which computes both
I, U, and V, takes 6.5 s to run on Warp, which is 23 times
faster than a Vax 111780 with floating-point accelerator run
ning the EISPACKll SVD routine. Analysis shows that more
than 80 percent of the time is spent by the MC68881 com
puting the sine and cosine parameters, while the Warp array
is heavily under-utilized.

The implementation that stores A column-wise is much
more effective.1z This works as follows. For a 100 x 100 prob
lem ten columns are stored into each cell. The following steps
are repeated until convergence:

1. All cells compute the three "a" terms for each column
pair (i.e., five pairs in an odd-even rotation set).

2. All cells compute the sine and cosine parameters (i.e.,
five sine-cosine pairs in an odd-even rotation set).

3. All cells compute the ~ multiplication, (which also
swaps locally within each cell the columns of A at the
same time).

4. Cell 0 contains columns 0 through 9, cells 1 contains
columns 10 through 19 and so on. At this point, a column
swapping takes place. That is, cellI sends to cell 0 (i.e.,
right-to-Ieft) column 10, cell 2 sends to cellI column 20,
etcetera. This communication requires the backward
path.

Applications Experience on Warp 153

5. An even-odd rotation takes place. Again, all the cells in
parallel compute the new "a" terms, compute the sine
cosine pairs, and perform the ~ multiplication. Then, a
left-to-right swapping of one column takes place.

For an n x n problem, a sweep consists of n rotation sets
(n12 odd-even rotations and nl2 even-odd rotations). Logzn
sweeps are usually sufficient to ensure convergence. There
fore, the steps outlined above are executed (nI2) logzn times.
Preliminary results show that a 100 x 100 real SVD takes
1.6 s with this mapping, a four-fold improvement over the
row-wise mapping. This represents a 100-fold speedup over
the Vax 11/780 with floating-point accelerator, or about 5
times slower than one CPU of a Cray X-MP (which has a peak
computing power of 210 MFLOPS, vs. Warp's 100 MFLOPS).
Reduction of the number of sweeps would further improve
this performance.

QR and LU Decompositions

The QR decomposition of an m x n matrix A with linearly
independent columns is A = QR, where Q is an m x m
matrix with orthonormal columns, and R is an m x n upper
triangular matrix.

Consider a square matrix A. Both Q and R are square. We
use a two-multiplication version of the square root free
Given's algorithm,13 so that once the rotation parameters are
computed two multiplications are required to update each
element of each row. The computation of the rotation param
eters requires eight multiplications, four divisions, and one
addition. The aigorithm is mapped onto the array as foiiows:

• Ten rows of the matrix are fed into the Warp array. The
elimination with respect to the i th row is done in the ith
cell, for i from 1 to 10.

• Then, the updated rows are fed back into the array
through the host, and elimination is performed on the
next ten rows. As each row is updated with respect to
some row in a cell, it is passed to the next cell so that
updating with respect to the next row can begin right
away on this row while the first cell can go on updating
other rows. The computation is therefore pipelined.

If we consider a 100 x 100 matrix, then at the end of the
computation the first cell will contain the first, eleventh,
twenty-first, ... , ninety-first rows of Q, the second cell will
contain the second, twelfth, twenty-second, ... , ninety
second rows of Q, and so on. Each cell will also contain the
corresponding rows of R.

The computation time for a 100 x 100 matrix on the proto
type Warp is 264 ms. The PC Warp version will be twice as
fast. This is because loop bounds must be constant on the
prototype Warp, and, as a result, the program cannot avoid
accessing a full rectangular matrix, even when only a trian
gular portion is non-zero.

A simplifed version of LU -decomposition has also been
implemented. The implementation assumes a positive definite
matrix, so pivoting is not needed. The mapping of this algo
rithm is similar to the mapping of the QR -decomposition

154 National Computer Conference, 1987

algorithm described above. The computation time on proto
type Warp is 242 ms, and the PC Warp should be twice as fast
as for QR -decomposition.

ALGORITHM AND PROGRAM DESIGN PRINCIPLES
TO MAXIMIZE PERFORMANCE

We now review a few techniques that Warp programmers use
to ensure good performance of the Warp machine in their
application areas. We concentrate on system-level issues, not
on concurrency formulation of a computation for the Warp
array, which has been covered elsewhere. 1

Host Issues

Although the Warp array is tightly coupled with Warp's
external host, and the external host is based on some of the
most powerful commercially-available microprocessor boards
and the highest bandwidth buses, the external host still is the
weakest link in the Warp system. This is a consequence of the
desire to take advantage of commercially-available, general
purpose processors, I/O boards, memory, and software. We
expect that similar concerns will prevail in future Warp-like
systems. Therefore, the programmer must avoid computation
on the external host, whenever possible.

Input and output from host

The ratio between the maximum of the number of floating
point multiplications and additions, and the maximum of
the number of inputs and outputs from the host is a crucial
parameter in establishing whether the algorithm execution is
bounded by the host I/O transfer speed. We call this ratio a.
Our algorithms fall into two classes:

1. Pixel-based algorithms. These algorithms have a ranging
as low as one, or as high as thousands (as in the algo
rithm to find repetitive textures). On the prototype,
packing and unpacking of pixels allow a to be as low as
15 before the host becomes a bottleneck. For some sim
ple edge detectors in vision, like the 3 x 3 Sobel, a is as
low as 11. In this case, the host limits overall per
formance. DMA transfer in PC Warp can reduce this
bottleneck. 14

2. Floating-point based algorithms. That is, data are stored
in the host memory as floating-point-rather than
pixel-quantities. In this case, packing and unpacking
cannot be used, and sequential (row-wise) transfers from
the host to the Warp array are rare (which would allow
us to use DMA transfer). Irregular memory access pat
terns, as in ID FFT (bit reversal) and 2D FFT (corner
turning) make this bottleneck worse. For these Ieasons,
the host will be a bottleneck if a < 60. However, many
such algorithms, including many scientific computing al
gorithms, feature large or very large a values. For exam
ple, for an n x n SVD, a = 13n, so that the host is not a
bottleneck when n ;:=: 5.

Host memory requirements

The memory in the external host is quite large, from a
minimum of 8 Mbytes up to 30 Mbytes, and is available to the
programmer to store variables that can be used by several
programs. Large data structures can be stored there, where
they will not be swapped out by the operating system. This is
important for consistent performance in real-time applica
tions. The external host can also support such special devices
as frame buffers and high speed disks. This gives the pro
grammer more flexibility in moving variables from memory to
other locations, but may involve some specialized hardware
design; for example, a special interface card is being devel
oped to transfer data from an Aptec bus device to the external
host memory.

Host computation requirement

Sometimes computation on the host is unavoidable. Here
are some examples of when the external host must be used:

1. Double-precision arithmetic. The Warp cell can perform
only single-precision arithmetic. As in SVD, some
floating-point operands may have to be passed out of the
Warp array to the cluster processors for double-precision
computation.

2. Merge results from cells. The prototype Warp cells can
not perform computations involving data-dependent
loop control; sometimes such computations are not
needed in the main body of an algorithm, but are needed
for the combination of results from different cells. For
example, in the connected components algorithm, each
cell can compute the connected components of one por
tion of the image, but these components must be merged
using a UNION-FIND algorithm IS which a Warp cell
cannot efficiently implement, because it is highly data
dependent. The component labels from the borders be
tween cells are therefore sent to the host, where they are
merged and sent back to the array.

3. Run-time decisions. Programs are executed on the Warp
array under control of the external host. Therefore,
when a high-level run-time decision is to be made, such
as whether to execute another iteration of a loop in a
relaxation algorithm, the decision must be made on the
external host using data supplied by the Warp array.

4. Circular connection. The Warp array does not have a
circular connection from the last cell to the first. This
connection can be implemented by passing data through
the interface unit, to the output cluster, and copying it'
from there to the input cluster, where the data can be
sent in to the first cell. This technique is used in SVD,
DP, and convex hull. Another way to implement this
path is to use the backwards path, as in column-wise
SVD. In programs that operate in phases, completely
producing one output before using it in the next phase,
the two clusters can exchange their roles in sending or
receiving data for different phases of a computation, in
a ping-pong fashion. This avoids the need to copy data

from one cluster to the other. This technique is used in
SOR and could be used in DP.

Cell Issues

Intra-cell parallelism

The Warp cell is horizontally microcoded; multiple func
tional units can be utilized at the same time. The compiler is
incapable of moving operations between different loops.
Therefore, if loops using different resources are merged, the
compiler can achieve better utilization.

Intra-cell pipelining

The compiler generates efficient microcode despite the
Warp cell's highly pipelined floating-point adder and multi
plier. This is accomplished by a sophisticated global flow
analyzer and highly optimizing global scheduling tech
niques. 16 Since these optimizations are only applied to inner
most loops, it is best to unroll all innermost loops with only a
few iterations.

Use of conditional statements

The programmer must avoid the indiscriminate use of IF
statements with long THEN or ELSE clauses inside short
loops. Otherwise, the compiler optimizations may increase
the code size enormously.

Cell memory requirements

The memory in the prototype Warp cell is quite small. This
has limited the application of certain programming models,
which otherwise might be quite efficient. For example, in
image warping,17 the input to output mapping is not prede
termined, but is a function of the particular transformation
that should be applied to the input image. Computing the
mapping function is a major part of the image warping algo
rithm. It is not possible for the input image to be sent in the
right order to produce the output image in, say, raster order,
because the right input order is not known until the mapping
function is evaluated by the Warp array. For this reason, the
entire input image must be stored at each cell, so that the
output image can be generated in raster order from the input,
by accessing the input image in the order determined by the
mapping function. If the cell memory is not large enough to
store the entire image, multiple passes over the output image
will be required. In other algorithms, such as matrix multi
plication, it is possible to partition the data so that each cell
has a portion of the data, and all the data are stored at the
same time on the array.

Applications Experience on Warp 155

PERFORMANCE SUMMARY

Table I gives the performaIlce of the prototype Warp on a
range of applications, using compiler-generated code, except
for FFf, which was hand-coded. Program download (100 ms)
and startup (25 ms) times are not included, but input and
output of data from the external host is included. In stand
alone applications, where a small group of algorithms are used
over and over, all code can be downloaded into the array
before the application is started, and startup of each algorithm
is not needed as long as the sequence of algorithms is fixed.
In a research environment, where many new algorithms are
being tested, these times may have to be counted in system
performance.

PC WARP IMPROVEMENT

The re-implementation of the wire-wrapped prototype Warp
machine in printed circuit board form made it possible to
incorporate many improvements, some resulting from the
more advanced technology now available, and others reflec
ting our experience with the prototype. Several changes were
made;14 here we discuss only those changes with the biggest
impact on applications.

Cell Data Memory

The PC Warp cell's data memory is increased from 4K to
32K words, with a direct impact on applications. For example,
the prototype cell's memory limits the largest convolution
window we can presently compute for 512 x 512 image pro
cessing to 34 x 34, using the current program. With a 32K cell
data memory, we will be able to compute convolution win
dows up to 115 x 115. In programs that store the entire input
or output dataset, such as those that are output partitioned,
like image warping, the larger memory leads to a linear speed
up, until the data memory is large enough to store the com
plete dataset.

Cell Program Memory

The PC Warp cell's program memory is increased from 2K
to 8K microwords, ensuring that we will not run out of mem
ory for a single algorithm (certain algorithms, such as SVD,
are very close to the limit). This also makes it possible to store
several algorithms at once in the program memory. This is
important for real-time applications which cannot afford to
stop and reload the program memory.

Increased Host I/O Bandwidth

PC Warp's external host uses faster processors with on
board memories and DMA support, as well as faster memory
boards. This increases host I/O bandwidth from 1-4 MB/s to
8-12 MB/s, if DMA can be used. Algorithms that do floating
point I/O, with a < 60, will benefit from this. With DMA, a

156 National Computer Conference, 1987

TABLE I-Measured speedups on the wire-wrapped prototype Warp

Task Time (ms) Speedup over Vax 11n80

(All images are 512><512.) with floating-point accelerator

5x5 Convolution 280 100 (*)

Quadratic image warping 400 100 (*)

Warp array generates addresses using quadratic form in 240 ms.

Host computes output image using addresses generated by Warp.

3x3 median fIlter 326

l00x100 matrix multiplication 25 200

Road-following 200 (*)

Obstacle avoidance using ERIM, a laser range-finder 350 60 (*)

Minimum-cost path, 512><512 image, one pass 500 60 (*)

Host provides feedback.

Detecting lines by Hough Transform 2000 387 (*)

Host merges results.

Minimum-cost path, 350-node graph 16000 98 (*)

Convex hull, 1,000 random nodes 18 74 (*)

Solving elliptic PDE by SOR, 50,625 unknowns (10 iterations) 180 440 (*)

Warp is 2.7 times slower than CRAY_118.

SVD of l00x100 matrix 1500 49 (**)

FFI' on 2D image 2500 300 (*)

Warp array takes 600 ms. Remaining time is for data shuftling by host

Image correlation using FFI' 7000 300 (*)

Data shuffling in host

Image compression with 8x8 discrete cosine transfonns 110 500 (**)

Mandelbrot image, 256 iterations 6960 100

(*) Further speedup by at least a factor of two with application program optimization.

(**) Fu..rther spee.dup by at least a factor of four with application program optimization,

can be as small as 16-25 to fully use the array. Algorithms that
do byte-packed I/O can fully use the host bandwidth with
DMA when ex ~ 10.

Onboard Integer ALU

Each PC Warp cell has an integer ALU, which can compute
Boolean and other integer functions. This expands the range
of data types that can efficiently be supported-the prototype
Warp cell cannot efficiently compute bit-wise functions, mak
ing it necessary for the programmer to figure out how to do
these operations using floating-point, precisely the opposite
of a programmer of a machine without hardware floating
point! This makes algorithms that incorporate specialized data
structures, such as graph algorithms, sparse matrix computa
tions, histogram, and connected components more efficient.

Hardware Flow Control and Onboard Address Generation

PC Warp's most significant increase in application support
comes from its hardware flow control mechanism, which, to
gether with onboard address generation (using the integer
ALU) , makes the Warp cells more independent of each other.

Because the cells are independent, each cell can perform
local control flow using data-dependent WHILE and FOR
statements. This simplifies programming for algorithms with
data-dependent control flow, such as those that must iterate a
variable number of times until convergence is achieved or data
is exhausted. This also gives better performance, since on the
prototype machine, where control flow is data independent,
worst-case estimates must be made and used for all cases.

Onboard address generation also makes support of hetero
geneous programs much easier. Heterogeneous computation
is known to be useful in many applications. 19 Using heteroge
neous computation, it is possible to perform several opera
tions on an image as it passes through the array. For example,
an image can be filtered, histogrammed, and thresholded in a
single pass through the array. This increases the number of
operations that can be performed on a datum in one pass
through the array, helping eliminate the host I/O bottleneck.

These mechanisms also increase the range of algorithms
that can read and compute with their operands directly from
the queues, reducing cell memory bandwidth. On the proto
type, if a cell does too much computation before passing
through operands to the next cell, the skew computed by the
compiler will be too large, and the address queue on the cell
may overflow. On PC Warp, this is no longer a concern.

APPLICATIONS OF VLSI WARP

Carnegie Mellon and Intel Corporation are designing an am
bitious VLSI version of the Warp machine. In this machine,
each Warp cell, excluding memory, will be reduced to a single
chip, with at least 16 MFLOPS and 10 MIPS in the integer

Applications Experience on Warp 157

unit. The baseline machine will include 72 cells, for a total
performance of at least 1.152 GigaFLOPS.

The implications of this machine for applications are ex
citing. Besides the raw power of the large array, we will also
implement a more sophisticated model of inter-cell communi
cation, which allows non-neighboring cells to communicate
logically as if they were adjacent. This should help in the
implementation of heterogeneous programs, which will some
times be necessary in making effective use of such a long
array. Moreover, the same chip will be used as the basis of
non-linear arrays, such as two-dimensional arrays.

With the VLSI implementation, it should be possible to
build much larger arrays than with the current Warp imple
mentation. We expect that arrays of hundreds or thousands of
cells will be built and used in specialized applications, leading
to enormous speedups over conventional computers.

CONCLUSIONS

The ten cell prototype machines at Carnegie Mellon have
proved to be useful. There are many applications which can
make effective use of all ten cells. In no cases were we limited
because we could not find at least ten-fold parallelism in a
problem, where any parallelism was available at all. We have
outlined in this paper the rules we follow to get good perfor
mance on a number of Warp algorithms.

In certain application areas (e.g., the solution of partial
differential equations via successive over-relaxation) Warp's
power rivals that of much more expensive supercomputers,
such as the Cray-l.

Warp is particularly suited for application areas in which
there is a lot of sensor information to be processed for some
higher-level decisions, such as in image and signal processing.
Warp's external host allows Warp to easily interface to devices
for capturing such data; Warp's relatively small size and cost
make it possible to put it in places where such data is used; and
its power and programmability make it possible to process
such data effectively.

Many of the limitations in the prototype Warp machine
have been overcome in the printed circuit board version. We
expect the PC Warp machines to have an even wider range of
applications, especially because of their ability to support
heterogeneous programs and programs with data-dependent
control flow. The VLSI version of Warp will increase even
more the range of algorithms supported on Warp, and give
more than a factor of ten speedup for these applications.

ACKNOWLEDGEMENTS

The research was supported in part by Defense Advanced Re
search Projects Agency (DOD), monitored by the Air Force
Avionics Laboratory under Contract F33615-81-K-1539, and
Naval Electronic Systems Command under Contract
NOO039-85-C-0134, in part by the US Army Engineer Topo
graphic Laboratories under Contract DACA76-85-C-0002,
and in part by the Office of Naval Research under Contracts
N00014-80-C-0236, NR 048-659, and N00014-85-K-OI52, NR

158 National Computer Conference, 1987

SDRJ-007. H.T. Kung is also supported by a Shell Dis
tinguished Chair in Computer Science.

REFERENCES

1. Annaratone, M., F. Bitz, E. Clune, H.T. Kung, P. Maulik, H. Ribas, P.
Tseng, and J. Webb. "Applications and Algorithm Partitioning on Warp."
COMPCON Spring '87, IEEE Computer Society, 1987, pp. 272-275.

2. Mansfield, P. and I.L. Pykett. "Biological and Medical Imaging by NMR."
Journal of Magnetic Resonance, 29 (1978), pp. 355-373.

3. Matthaei, D., J. Frahm, A. Hasse, and W. Hanicke. "Regional Physio
logical Functions Depicted by Sequences of Rapid Magnetic Resonance
Images." The Lancet, 2 (1985), pp. 893.

4. Vocar, J.M. and RO. Faiss. "Image Magnification: Elementary with
STARAN." Tech. report GER-16342, Goodyear Aerospace Corporation,
August, 1976.

5. Rosenfeld, A. and M. Thurston. "Edge and Curve Detection for Visual
Scene Analysis." IEEE Transactions on Computing, 20 (1971) 5, pp.
562-569.

6. Electrotechnical Laboratory. SPIDER (Subroutine Package for Image Data
Enhancement and Recognition), Joint System Development Corp., Tokyo,
Japan, 1983.

7. Rao, C.R Linear Statistical Inference and Its Applications, 2nd ed., New
York: John Wiley, 1973.

8. Dongarra, J.J., J.R Bunch, C.B. Moler, and G.W. Stewart. LINPACK
Users' Guide. Society for Industrial and Applied Mathematics, 1979.

9. Hestenes, M.R., "Inversion of Matrices by Biorthogonalization and Re
lated Results." 1. Soc. Indust. Appl. Math., 6 (1958), pp. 51-90.

10. Schimmel, D.E. and F.T. Luk. "A New Systolic Array for the Singular
Value Decomposition." Proceedings of 1986 Conference on Advanced Re
search in VLSI, M.I.T., April, 1986, pp. 205-217.

11. Smith, B.T. et al. Matrix Eigensystem Routines-EISPACK Guide, Lecture
Notes in Computer Science 6, New York: Springer-Verlag, 1976.

12. Annaratone, M., E. Arnould, H.T. Kung, and O. Menzilcioglu. "Using
Warp as a Supercomputer in Signal Processing." Proceedings of ICASSP
86, IEEE, 1986, pp. 2895-2898.

13. Hammarling, S. "A Note on Modifications to The Givens Plane Rota
tions." 1. Inst. Maths Applics, 13 (1974), pp. 215-218.

14. Annaratone, M., E. Arnould, R. Cohn, T. Gross, H.T. Kung, M. Lam, O.
Menzilcioglu, K. Sarocky, J. Senko, and J. Webb. "Warp Architecture:
From Prototype to Production." AFlPS Proceedings of the National Com
puter Conference (Vol. 56), June 1987.

15. Abo, A, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms, Reading, Massachusetts:' Addison-Wesley, 1975.

16. Bruegge, B., C. Chang, R Cohn, T. Gross, M. Lam, P. Lieu, A Noaman,
and D. Yam. "Programming Warp." COMPCON Spring '87, IEEE Com
puter Society, 1987, pp. 268--271.

17. Kung, H.T. and J.A Webb. "Mapping Image Processing Operations
onto a Linear Systolic Machine." Distributed Computing, 1 (1986) 4, pp.
246-257.

18. Young, D. Iterative Solution of Large Linear Systems, New York: Academic
Press, 1971.

19. Gross, T., H.T. Kung, M. Lam, and J. Webb. "Warp as a Machine for
Low-level Vision." Proceedings of 1985 IEEE International Conference on
Robotics and Automation, March 1985, pp. 790-800.

Very large database applications of the
Connection Machine system

by DAVID WALTZ, CRAIG STANFILL, STEPHEN SMITH, and ROBERT THAU
Thinking Machines Corporation
Cambridge, Massachusetts

ABSTRACT

The architecture of the Connection Machine ™ system is particularly appropriate for
large database applications. The Connection Machine system consists of 65,536
processors, each with its own memory, coupled by a high speed communications
network. In large database applications, individual data elements are stored in
separate processors and are operated on simultaneously. This paper examines three
types of applications of this technology. The first, which will be examined in the
greatest detail, is the use of the Connection Machine System for document retrieval.
The second application is parsing large free text databases and preparing them for
searching. The third topic is the application of the Connection Machine to associa
tive memory or content addressable memory tasks. This ability has been put to use
in a method called "memory-based reasoning" which can produce expert system
like behavior from a database of records of earlier decisions.

159

Very Large Database Applications of the Connection Machine 161

INTRODUCTION

Toe rapid growth of on-line databases is a great challenge to
information processing technology. First, databases are grow
ing quickly in size: databases with tens of gigabytes are now
quite common, and databases with hundreds of gigabytes are
by no means unknown. Soon, with advances in optical disk
technology, we will have to deal with databases having terra
bytes or even tens of terrabytes of data.

This growth in database size creates two problems. The first
is obvious: when a database doubles in size, the amount of
storage it requires doubles, and the amount of compute power
necessary to process it doubles. The second is perhaps less
obvious: as a database grows, it becomes more and more
difficult to locate and manipulate the information it contains.

For text databases, this second problem manifests itself as
deteriorating search quality: as a database contains more and
more information, finding the right information becomes in
creasingly difficult, so that the system is likely to miss desired
information or to deluge the user with unwanted data. This
problem can be (at least partly) overcome by the use of more
sophisticated retrieval algorithms such as relevance feedback
(see below). These algorithms are, however, computationally
more expensive than the algorithms generally used for docu
ment retrieval today.

Databases containing numerical and symbolic data also re
quire more intensive processing as they grow in size. In the
current paradigm, a database might be abstracted to a much
smaller set of statistical characteristics (e.g., "The average
salary of the CEOs of Fortune 500 corporations"). However,
in abstracting a database to a few statistical parameters infor
mation is inevitably lost. We believe a good solution to this
problem is to search the database for precedents; a technique
called "Memory Based Reasoning" (see below). In this
method, decisions are made by searching a database for epi
sodes similar to the problem facing the user, then basing
conclusions on the data so located. Again, problems associ
ated with large databases may be attacked, but the algorithms
are computationally intensive.

Thus, it is desirable that computational power increase
faster than the size of the database. Unfortunately, just the
opposite is happening, as the performance of serial computers
has reached a plateau while databases continue to get bigger
and bigger. A solution to this problem is the use of a new
generation of parallel computers, such as the Connection
Machine ™ System, which have much greater computational
power than conventional (serial) machines. The remainder of
this paper will consider some specific applications of this new
machine to problems associated with large databases.

DOCUMENT RETRIEVAL

Document retrieval has traditionally been implemented as
Boolean search on an inverted file. The main difficulties of
Boolean search are that: 1) users require considerable training
in the use of a query language, and 2) users generally alternate
between being overwhelmed by too many documents if one
uses a too general search pattern, or too few documents if one
is more restrictive. 1

We have built an easy-to-use document retrieval system that
allows simultaneous searches of very large databases by a
large number of users.2 The system mixes AI ideas with
methods from information science. Its basis is a weighted
associative memory algorithm. In contrast to a Boolean
search system, a naive user can be trained to use our system
in a few minutes. The system operates very rapidly, and has
high precision and recall.

Using the algorithm described here, a single Connection
Machine system allows a 6 GByte free text database to be
searched and browsed rapidly and conveniently by over 2000
simultaneous users. Other algorithms (not yet implemented)
that are dependent on a high speed multiple disk mass storage
unit will allow much larger databases to be searched.

Relevance Feedback

From the user's point of view, the search process on the
Connection Machine document retrieval system has two dis
tinct phases. In the first phase, the user types a list of a few
keywords, for example, "Iran Contra arms deal." The re
trieval system returns a list of documents, ordered according
to how many of the keywords they contain, and how important
each keyword is (the rarer the word, the more important). In
the second phase, the user browses through these documents
and finds one or more that bear on the topic of interest. As
relevant documents are located, the user may command the
system to search for related documents by performing a full
text to full-text comparison between the documents he has
already found and every document in the database. This is
done by automatically extracting the words from the text of
the known relevant documents and rating the documents in
the database according to how many of those words they
contain.

This method, termed "relevance feedback," has been
known since the 1960s to yield high quality searches, but to
the best of our knowledge, it has never been used on a large
database because of its extremely high computational require
ments.

162 National Computer Conference, 1987

Implementation

Relevance feedback generates queries containing hundreds
or thousands of terms, where each term consists of a word and
the weight assigned to that word. Each processor in the system
is assigned a 25 word segment from a single document. To
execute a query, a serial front end processor broadcasts the
word-weight pairs to the Connection Machine System. As this
is done, each processor tests its segment for the presence of
each word. When a word is found, the processor accumulates
the word's weight to form a score for that document. After the
complete query has been broadcast, the results are sorted in
order of decreasing score, and the pointers to the 20-100
documents with the highest scores are sent to the user.

Documents are represented using a method of surrogate
coding described by Stanfill and Kahle. 2 In this method,
groups of 25 words are collected and used to set bits in a 1024
bit vector. Bits are set by applying n hash code functions to
each term (n typically = 10). Thus, to represent a document
with 75 terms, about 250 bits in each of three vectors of 1024
bits each would be set. Occasionally, more than one hash
function may set the same bit. This is handled by super
imposing the results. The vectors for each document are then
stored in a contiguous group of processors.

In order to search for a document, the same hash codes that
were used to construct the bit vectors are applied to each of
the terms in the search pattern, one at a time, and the posi
tions of the hash code bits are broadcast to all the processors.
Each processor checks to see whether it has all 10 bits set for
a given term and if so, it adds a score for that term to the total
score for the document stored in its document mailbox. This
algorithm is probabilistic: there is a small chance that a given
term will hash into 10 locations which were set by other terms,
causing the system to interpret it as a term occurring in a
document when in fact it has not. The probability of this
happening is dependent on the number of hash functions ap
plied to each term, the size of the vector, and the number of
terms in the overall database. The probability of a false hit can
be made arbitrarily small by applying more hash functions or
increasing the length of a bit vector. With the parameters we
have been using, the probability of a false hit is about
1/1,000,000. Additionally, since each query in a relevance
search contains an average of 75 terms, one or two false hits
cannot make much of a difference in the overall relevance
calculation.

Performance

The performance figures contained in this section assume
that a Connection Machine system with 65,536 processors and
2 GBytes of fast memory. Furthermore, we assume the data
preparation algorithms explained below have been applied,
yieiding an overaii data compression rate of 3.3:1. Finally, we
assume a user spends two minutes browsing between searches.

The bit vectors are much smaller than the memories of the
individual processing elements. This allows us to use the Con
nection Machine's "virtual processor" mechanism to increase
the amount of data stored in the system. To do this, each
processor's memory is segmented, and the processors se-

quentially perform any computation on each memory seg
ment. To the programmer or user, it appears that there are n
times as many processors, each with lin as much memory as
a real processor, each operating at lin the speed.3

,4

The 2GBytes of memory in the Connection Machine Sys
tem allows us to store surrogates built from 7 Gigabytes of raw
text. Each processor will then simulate 64 virtual processors,
and run at 1/64th the speed of a physical processor. Each
surrogate may be tested for the presence of a word in 2 micro
seconds, and a score may be added in 6 microseconds. Allow
ing for the virtual processor ratio, this allows us to execute a
single term in 512 microseconds. If we assume an average
query generated by relevance feedback contains 75 terms, we
may then perform a complete search in 38 milliseconds. This
would allow our system to support over 2000 users.

FORMATTING A DATABASE

As the size of databases and the rate at which data is fed into
a system increases, the problem of scanning raw data, index
ing it, and adding it to the database becomes ever more diffi
cult. We are attacking this problem by building a set of natural
language and text processing tools running on the Connection
Machine System. 5,6,7

Formatting a database proceeds in several phases, gradually
grouping the individuql characters of the raw file into words,
phrases, paragraphs, and documents. First, we use a regular
expression-based lexical analysis system to break the input
stream into tokens, such as words and punctuation marks.
Second, several dictionaries are used to differentiate im
portant from unimportant words and to group words into
known phrases. Finally, we take groups of words, put them
into surrogate tables, and write the results out to disk. We are
also working on generalized parsing algorithms, which may be
applied to identifying specialized forms of noun phrases (e.g.,
names of people, places, dates), as well as to full syntactic
parsing. These parsing tools have yet to be integrated into the
full system.

Lexical Analysis

The first step in processing raw text (e.g., a newswire tran
script) is parsing it into meaningful units. This must be done
on two levels. The words in the text must be found (and
distinguished from, say, embedded formatting directives).
Just as important, the incoming stream of raw text must be
split into separate documents, with paragraph delimiters,
identified headlines, and dates. All of this is done by a
regular-expression based lexing phase, which runs the regular
expressions by using precompiled finite state automata
(FSAs).

The lexer is driven off an action list, which contains pointers
to FSAs, and indications of what to do with the matches. For
example, paragraph delimiters are handled by having the ac
tion list run an FSA which finds paragraph boundaries and
inserts a special delimiting sequence. This regular expression
is specific to the source of text: it might look for indented
lines, blank lines, or embedded formatting directives.

Very Large Database Applications of the Connection Machine 163

The bulk of the work is done by two special directives. One
of them marks all substrings of the input matching a regular
expression as words. The other splits undelimited text into
documents while extracting information such as the headline
and date.

There are two algorithms for running FSAs on a Con
nection Machine System. The most direct is to put a copy of
the FSA in each processor, and stream the text by them.
Spurious matches like the "have" in "behave" are suppressed,
by using the first match that ends at a given point. This is fine
for FSAs that have only to match short strings (e.g., words),
but it is excessively time consuming when the FSA needs to
match a large amount of text (e.g., the headline of a newswire
article). In these circumstances, the log-time lexing algorithm
of Hillis' and Steel's "Data Parallel Algorithms"S is more
appropriate.

Dictionaries

The text compression algorithm uses word frequency dic
tionaries. These dictionaries consist of words paired with a
count of how many times they occurred in a corpus of known
size. One dictionary entry is stored per processor.

To construct such a dictionary from a textual database re
quires four distinct steps: 1) load the Connection Machine
with text from the given database, 2) accumulate the charac
ters such that there is one word per processor, 3) produce
dictionary entries for these new words, and 4) merge these
new entries with the existing dictionary. This last step is
accomplished by sorting the entries alphabetically, grouping
entries with the same word, and summing the count fields for
each group.

Look-up word frequencies in these dictionaries proceeds
similarly to the dictionary building phase described above:
1) a "dummy" entry is created for each word to be looked up.
This dummy contains a pointer back to the processor re
questing the word's definition. 2) the dummies are sorted with
the real dictionary entries so that dummy entries always follow
the real entries for a word. 3) entries for the same word (both
real and dummy) are grouped together. 4) definitions are
copied from real to dummy entries within a group. 5) the
definitions are sent back to the requesting processor via the
dummy's backpointer.

Frequency Based Indexing

The text compression algorithm being used in the current
Document Retrieval System is called "Frequency Based In
dexing." This algorithm extracts content bearing terms based
on the number of times they occur throughout some large
database. Words with high frequencies, such as "the," "of,"
and "to" are dropped. Words with low frequencies, such as
"parallel," "computer," and "algorithm" are retained.
Proper nouns like "han" and "Reagan" are always retained.

For words which are neither rare enough to be dropped
outright nor frequent enough to be automatically retained, we
use a word-pair based method. For example, the word "spe
cial" is too common to be retained by the frequency con-

siderations alone. However, when we build a dictionary of
word-pair frequencies, we find the two word phrase "special
prosecutor" is more common than the frequencies of "spe
cial" and "prosecutor" alone would suggest. Thus, the word
"special" is retained, and marked as part of a phrase.

Building Surrogates

The final step in formatting a database is building the sur
rogate tables. First, each processor computes the ten hash
codes for a single word. Next, 1024 bits are zeroed out in each
processor as a partial hash table. The bits that the ten hash
codes pointed to are then set. Finally, the 25 tables corre
sponding to a document segment are ORed together to form
the final surrogate.

Parsing

At the moment, the system only discriminates between
words on the basis of frequency. An improvement might be to
detect specific types of multi-word phrases. A quick and effec
tive way of doing this is to retrieve part-of-speech information
from the dictionary and use an FSA to recognize phrases.
Preliminary experiments using a dictionary of words likely to
appear in names of corporations indicate that this approach
can be used to find names of companies and such, with some
success. Experiments have also been done with full text
parsing.9

MEMORY-BASED REASONING

Memory-Based Reasoning (MBR) is a new paradigm for AI
in which an associative memory using a best-match algorithm
takes the place of rules. It is particularly well-suited to mas
sively parallel computers such as the Connection Machine
System. Memory-Based Reasoning places memory at the
foundation of intelligence, rather than at the periphery.
Memories of specific events are used directly to make deci
sions, rather than indirectly (as in systems which use experi
ence to infer rules). In its purest form, memory-based reason
ing uses the global nearest match computation to find the
items in memory most similar to a current situation and then
uses the actions associated with these items to deal with the
current situation. In essence, reasoning is reduced to percep
tion: the current situation is observed, it reminds the system
of something it has seen before, and an immediate reaction is
forthcoming without further analysis.

We can contrast memory-based reasoning in this extreme
form with models based on heuristic search. In heuristic
search, solutions are generated rather than looked up. To give
a concrete example, in solving a medical reasoning problem,
a memory-based reasoning system finds a patient or patients
most similar to the current patient by a global nearest match
operation, and uses the diagnosis, treatment, and outcome to
find a diagnosis and treatment, and to predict an outcome for
the current patient. A rule-based forward chaining system
takes the patient's symptoms and applies rules one after
another until it arrives at a diagnosis.

164 National Computer Conference, 1987

The advantages of memory-based reasoning are: 1) it is
much easier to generate examples than to generate rules, so
the knowledge acquisition for a memory-based reasoning sys
tem is much simpler; 2) memory-based reasoning systems
inherently have a mechanism for judging confidence in an
answer-if there is a very close match in memory to the cur
rent situation, one can be quite confident of the outcome. If
the nearest match is far away, the system can note that its
results are uncertain, "it can know that it doesn't know"; 3)
memory-based reasoning systems can scale well to very large
problems, and a single system can handle simultaneously a
number of different kinds of problems.

Significantly, parallel hardware reverses the relative effi
ciency of memory-based reasoning and rule-based reasoning.
On serial hardware, the best-match operation is very expen
sive because every data item must be considered in turn, while
rule-triggering is relatively cheap due to the existence of algo
rithms (e.g., Rete networks) that allow a database of rules to
be efficiently searched. On parallel hardware, the best-match
algorithm takes constant time, while rule-invocation takes
time proportional to the number of rules which must be
chained to obtain an answer.

The remainder of this section will discuss work to date on
memory-based reasoning, including experiments with pure
MBR and MBR augmented with a generalization mechanism.
We will then present our plans for further development of the
paradigm.

Work to Date

In this section we will discuss memory-based reasoning ap
plied to the classification problem. Given a database of ob
jects, each object belonging to one of a set of mutually exclu
sive classes, we classify new objects by finding the best match
in the existing database and looking at its class.

As reported in Stanfill's and Waltz' "Toward Memory
Based Reasoning,,,l0 we implemented a memory-based rea
soning "shell." This shell computes the nearest match to an
input pattern (which may be incomplete) using a set of weight
ing and distance measures, the net effect of which is to find the
distance from every individual example in memory to the
current example to be classified.

The shell assumes a relational database-like format for ex
amples. More formally, a database is a set of records. Each
record has a fixed set of fields. The field specifying the class
of a record is the goal field, and the other fields are predictor
fields. Novel records which are to be classified are target
records.

The computation of similarity is fairly complex. Field
weights are computed by judging how tightly a particular pre
dictor field constrains values of the goal field. The distance
between two records is then computed by summing the
weights for all predictor fields for which they have different
values. For example, if a patient reports having a sore throat,
this constrains the range of diseases he/she might be suffering
from to a relatively small range (e.g., a viral infection, a strep
infection, smoking). Thus, if a patient reported a sore throat,
all records in the database which did not include a sore throat
would receive a large distance measure. On the other hand,

having a low fever places relatively few constraints on the
possible maladies, so it would receive a small weight.

More recently, we have added a generalization algorithm to
the memory-based reasoning shell. This algorithm searches
for patterns in the database (e.g., "a high fever accompanied
by a sore throat indicates a strep infection"), and remembers
which records obey them. These stored patterns are then used
to augment the best-match process: if a target record matches
a stored pattern, the data records used to generate the pattern
will have their similarity-measures boosted. The primary
benefit of this generalization mechanism is to significantly
reduce the system's sensitivity to noise. In all cases, it pro
duces a significant improvement in the quality of MBR's
decisions.

An Experiment

Memory-Based Reasoning was applied to the problem of
pronouncing English words. The formulation of the task is
deliberately similar to Sejnowski and Rosenberg's NETtaik
system. ll In this case, the database is a dictionary.12 Each
record in the database consists of a seven-letter window in a
word (a letter, the three previous letters, and the next three
letters); a three-phoneme window in the pronunciation (the
phoneme plus the two preceding phonemes); and the stress of
the letter (primary stress, secondary stress). For example, the
word "file," which has pronunciation "fAL-" and stress
pattern "1- -," would yield the following four records:

* * * f i I e * * f +

* f i I e * * f A 1

f i I e * * f A 1 -

f i I e * * * A I - -

The 20,000 words in the dictionary thus yield 146,951
records.

It must be noted that perfect performance on the pro
nunciation task, as outlined above, is fundamentally impos
sible. First, many English words are borrowed from other
languages, often retaining their original pronunciations.
Thus, any system which pronounced "montage" correctly
would almost certainly mispronounce "frontage." Second,
the stress patterns of English words often depend on their part
of speech. In some cases, a word will even have two acceptable
pronunciations, depending on whether it is used as a noun or
a verb ("to object" versus "an object").

In spite of the difficulty of the pronunciation task, Memory
Based Reasoning does quite well. Given the three preceding
letters, the three succeeding letters, the two preceding pho
nemes, and the stress, MBR produces the correct phoneme
92% of the time. If we omit the previous two phonemes and
the stress, MBR gets the correct phoneme 87% of the time.
With a database of 128K records running on a 32K processor
Connection Machine System, each classification is accom
plished in 30 milliseconds.

Very Large Database Applications of the Connection Machine 165

Evaluation

The two MBR algorithms described above (pure MBR and
MBR with generalization-learning) were evaluated according
to sensitivity to database size, distraction, and noise. The
results of these experiments are discussed more fully in
Stanfill's "Memory-Based Reasoning Applied to English
Pronunciation." 13

Database size

Both algorithms exhibit graceful degradation as the size of
the database shrinks from 128K down to 4K. The generaliza
tion algorithm is always slightly better. With 4K records
(approximately 700 words), 78 percent of phonemes were
correct.

Distraction

In an effort to distract the algorithms, between one and
seven fields containing random values were added to each
record in the database. These had no effect on either
algorithm.

Noise

Two types of noise were considered. First, between 10%
and 100% noise was added to the predictor fields. * Neither
algorithm was significantly affected until noise exceeded
90%, at which point performance collapsed. Second, between
10% and 100% noise was added to the goal fields. For pure
MER, performance fell about linearly with added noise. For
MBR with generalization, performance degraded more slowly
until the noise level exceeded 60%.

Prospects for Memory-Based Reasoning

Work, so far, has concentrated on the application of pure
memory-based reasoning to "flat" relational databases, with

* For 10% noise, 10% of the predictor-fields in the database would receive a
random value.

the representation fixed by the system builder. The next
stages will be to relax some of these restrictions. Part of this
work has already been started, with the addition of generaliza
tion to MBR. We also plan to allow MBR to modify its
representations, as well as to allow for a greater flexibility in
their form (e.g., allowing networks and hierarchies).

In the long run, we believe that memory-based reasoning
will provide a unifying paradigm for Artificial Intelligence.
Most aspects of intelligence, we believe, can be expressed as
operations on or augmentations to memory. This includes
perception, attention, generalization, learning, and deduc
tion. Indeed, aspects of some of these phenomena appear as
emergent behavior of the simple MBR model presented
above.

REFERENCES

1. Blair, D. c., and M. E. Maron. "An Evaluation of Retrieval Effectiveness
for a Full-Text Document-Retrieval System." Communications of the ACM,
28 (1985) 3, pp. 285-299.

2. Stanfill, c., and B. Kahle. "Parallel Free Text Search on the Connection
Machine System." Communications of the ACM, 29 (1986) 12,
pp. 1229-1239.

3. Thinking Machines Corporation, Introduction to Data Level Parallelism.
Cambridge, MA, April, 1986.

4. Hillis, D. The Connection Machine. Cambridge, MA: MIT Press, 1985.
5. Sabot, G., "Bulk Processing of Text on a Massively Parallel Computer."

Proceedings 24th Annual Meeting of the Association for Computational
Linguistics, New York, June 10-13, 1986, pp. 128-135.

6. Waltz, D. L. "Applications of the Connection Machine." IEEE Computer,
20 (1987) 1, pp. 85-97.

7. Smith, S. "Extracting Content Bearing Terms in Parallel on the Connection
Machine," Thinking Machines Corporation Technical Paper DR87-1, 1987.

8. Hillis, D., and G. Steel. "Data Parallel Algorithms." Communications of
the ACM, 29 (1986) 12, pp. 1170-1183.

9. Thau, R., and S. Ferguson. "Context Free Parsing on the Connection
Machine System." Thinking Machines Corporation Technical Paper
NL87-1, 1987.

10. Stanfill, C., and D. L. Waltz. "Toward Memory-Based Reasoning." Com
munications of the ACM, 29 (1986) 12, pp. 1213-1228.

11. Sejnowski, T. J. and C. R. Rosenberg. "NETtalk: A Parallel Network that
Learns to Read Aloud." The Johns Hopkins University Electrical En
gineering and Computer Science Technical Report JHUIEECS-86.

12. Merriam Webster's Pocket Dictionary, 1974.
13. Stanfill, C. "Memory-Based Reasoning Applied to English Pro

nunciation." Proceedings, Sixth National Conference on Artificial Intel
ligence (AAAI-87), Seattle, Washington, July 13-17, 1987.

EDUCATIONAL AND
HUMAN RESOURCE ISSUES

ROBERT L. ASHENHURST
The University of Chicago

Chicago, Dlinois

The 1980s are witnessing an expansion in modes of computer use as personal microcomputers
and departmental midsize systems are added alongside the once exclusive centralized main
frame systems. This results in a marked change in job requirements for many positions, both
general and those specific to computing support. This, in turn, places heightened demands
on education and training programs in academic and corporate settings and on an organiza
tion's personnel and human resource functions. These sessions focus on educational and
human resource issues in this broadened context.

By its designation, the scope of this track is extensive, even if only considered in the
institutional context (i.e., schools and colleges, personnel departments, and management).
The rubric is extended even further, however, by including human factors considerations
where the context is the capabilities and limitations of individuals.

Submitted papers are presented in two sessions, Computer Technology and the Educational
System and Human Factors in the Computer SysterrtS Environment. The papers address issues
potentially of interest to ail, but which are directly relevant to those who oversee educational
efforts involving computing and organizational computing efforts.

The remaining sessions are panel presentations. Three panel sessions deal with topics of
direct relevance to the management of computer personnel. In the featured session, A New
Occupational Taxonomy for Computer Specialists, a job classification framework is pre
sented, and issues of skill requirements and salary compensation are pinpointed. The How
to Pick Eagles session deals with the interview and hiring process for computer professionals.
The New Technology and Human Resources session deals with the general impact of the
computer on the workplace. These sessions will interest personnel and project management
specialists.

Two panel sessions deal with human factors in systems and software. The Tackling Software
Ergonomics and Usability of Corporate Information Systems sessions cover the human en
gineering aspects of the user-system interface. These are designed to interest both managers
of systems projects and the developers who have the direct responsibility for system project
implementation.

Development of occupational taxonomies for
computer specialists

by SYLVIA CHARP
Charp Associates
Upper Darby, Pennsylvania

EXECUTIVE SUMMARY

Background

Rapid progress in the field of computers and high tech
nology during recent years has resulted in corresponding
changes in computer specialties occupations. These changes
have created new and unprecedented positions lacking com
mon job titles and well established job descriptions. Although
several taxonomies such as the Dictionary of Occupational
Titles (U.S. Department of Labor), the Standard Occupa
tional Classification Manual (U. S. Department of Commerce)
and the Taxonomy of Computer Science and Engineering
(AFIPS Taxonomy Committee) provide relevant information,
none include sufficiently detailed classifications of computer
specialists. This lack of detail has created problems for those
in government, industry, and academia who are involved with
occupational surveys and personnel functions. Perceiving a
need to improve the quality of information on occupations
within the computer field, the American Federation of Infor
mation Processing Societies (AFIPS) developed, under a
grant from the National Science Foundation, an expanded
taxonomy of computer specialist occupations which provides
a contemporary, standardized set of easily understood and
acceptable classifications.

Purpose

The following report is the result of a study conducted for
the National Science Foundation (NSF) by AFIPS which pro
duced such an occupational taxonomy for the computer spe
cialists field. The term "occupational taxonomy" refers to a
job classification list that specifies by title a series of related
job functions. The main purpose of the study was to develop
a new taxonomy which is easy to understand and use, func
tional in producing accurate data on actual jobs in the econ
omy, flexible to allow for future modifications, more com
plete than existing taxonomies, and consistent in design with
other taxonomies currently used by the NSF.

169

Scope

The new taxonomy consists of ten major occupational cate
gories, representing a significant expansion of the computer
specialties taxonomies currently available. Each of the gen
eral major categories includes a detailed list of specific com
puter specialties jobs and functional titles. These sub
categories serve to clarify the general categories and provide
the detail necessary for finer screening of personnel functions.

Procedures

To produce the type of taxonomy described above, the
following tasks were performed:

-Researched existing sources of occupational information
-Developed an initial taxonomy
-Established an expanded taxonomy and survey ques-

tionnaire
-Evaluated the expanded taxonomy through survey

pretest
-Distributed, collected and conducted statistical analysis

of questionnaire based on expanded taxonomy

Two surveys of selected representatives from industry, aca
demia, federal laboratories, and individual computer profes
sionals provided the data on which the findings of the study
were based. The pretest and survey samples consisted mainly
of individual members of AFIPS' constituent organizations.
The questionnaire, which includes questions about job re
sponsibilities and titles, was filled out by 107 respondents.
Further information on the statistics is shown in Appendix D
of the final report.

Participants

As noted earlier, the study, launched in the Spring of 1985,
was conducted for the National Science Foundation (NSF) by
the American Federation of Information Processing Societies

170 National Computer Conference, 1987

(AFIPS). Principal investigators for the project were Dr.
Sylvia Charp, Past President of AFIPS, and Arnold Eshoo,
Program Manager, Technical Resource Statistics, Technical
Personnel Development, IBM Corporation.

Responsibility for staff work, field surveys and preparation
of the final report was sub-contracted to Edward Perlin Asso
ciates, management consultants with expertise in the data
processing industry. A panel of computer specialists repre
senting a broad range of business, government, academia, and
laboratory research was selected to serve as an advisory
board.

Methodology

The key tasks involved in conducting the study were as
follows:

I. Research of Existing Sources
A. Identified relevant taxonomies, job descriptions,

and personnel surveys from government, industry,
and other organizations

B. Identified the target population, (i.e., organiza
tions employing computer specialists), for the sur
vey sample

C. Presented initial research to AFIPS panel
II. Development of Initial Taxonomy

A. Established list of primary computer specialties oc
cupational areas with descriptive statements

B. Developed and implemented survey sampling pro
cedures

C. Solicited and incorporated panel responses/
reactions/additions to initial taxonomy and pro
posed sampling methods

III. Established Initial Expanded Taxonomy and Survey
Questionnaire
A. Established occupational sub-categories and se

lected characteristics/requirements to differentiate
among sub-category levels

B. Listed a representative sample of organizations
employing computer specialists

C. Requested, evaluated, and incorporated panel rec
ommendations on survey questionnaire

IV. Taxonomy Evaluation Pretest
A. Surveyed small sample of pretest respondents by

mail and gathered responses
B. Met with respondents and validated accuracy of

responses
C. Analyzed accuracy/reliability of responses and

fine-tuned questionnaire and reporting require
ments

V. Taxonomy Evaluation Survey and Analysis
A. Mailed questionnaire to and gathered responses

from appropriate representatives of the organiza-
tions selected for the sample ~

B. Met with respondents and reviewed collected data
C. Evaluated the results statistically for accuracy/

reliability

Findings

The information obtained by carrying out the tasks pro
vided the following taxonomy of the computer specialist
occupational workforce: *

718 Computer Scientist-An individual, usually with an ad
vanced degree, who is engaged as a theorist, researcher,
designer or inventor (or any combination of these roles)
in the fields of computer hardware or software. The com
puter scientist most often specializes in one of the follow
ing areas:
A. Theory of Automata
B. Computer ArchitecturelNetworks
C. Number/Information Theory
D. Computer Logic
E. Computer Languages
F. Fundamental Algorithms
G. Software Structures/Operating Systems
H. Artificial Intelligence
I. Theory of Complexity
J. Graphics

K. Other

719 Computer Hardware Engineer-A highly trained spe
cialist, usually with an engineering degree, who applies
state-of-the-art knowledge to the design, installation,
adaptation or interfacing of computer or computer
related equipment.

720 Computer Software Engineer-A highly trained spe
cialist, usually with a degree in either engineering or
computer science, who applies state-of-the-art knowl
edge to the design of overall software systems, to the
setting of operational specifications, quality standards
and testing procedures, and to the definition of user
needs.

721 Telecommunications Specialist-A highly trained spe
cialist, usually with a degree in engineering, computer
science and/or information theory who deals with the
devices and techniques employed for transmission of
signs, signals, writing, images, sounds or data of any
nature by wire, radio, or other electromagnetic equip
ment, or in the interfacing of computer and communica
tions equipment.

722 Systems Programmer-A high level programmer, usually
with a college degree, who creates, maintains, and con
trols the use of computer systems software with the aim
of optimizing operational efficiency.

723 Systems Analyst-A specialist, usually with a college de
gree, who gathers information about the operation of a
given physical system, analyzes this information and then
formulates a logical plan to achieve desired objectives for
improving the system usually through the use of com
puter, or computer-related eqUIpment and software.

*The numbering system used here directly corresponds to the numbered com
puter specialties categories included in the current NSF taxonomy.

Development of Occupational Taxonomies for Computer Specialists 171

724 Programmer-A specialist, usually with a college de
gree, who writes, tests, and applies the instructions that
define the operations performed by a computer. Some
programmers move easily form one field of activity to
another, but the tendency is to concentrate in a single
area with its own unique content, vocabulary and proce
dures, as indicated below:
A. BusinesslFinancial
B. Scientific
C. Industrial Machines/Process Control
D . Graphics/Art/Animation
E. Other

725 Computer Operations Specialist
A. Data Center Director-An experienced professional,

usually a member of management, who directs a com
puter installation.

B. Computer Operator-A person who performs man
ual activities required for efficient operation of a
computer system, such as mounting tapes, aligning
paper, maintaining activity logs and monitoring sig
nals from the system on operational conditions.

C. Data Entry Specialist-A person who manually
enters data for use by the computer by such means as
keyboard punching, tape, disk or other storage media
for processing by the computer.

D. ArchivistlLibrarian-A person who deals with the
accumulation of computer center records, including
operational manuals, program listings, documenta
tion, and written sets of operational data as well as
the tapes, disks, cards or other storage media in
which the programs and data are preserved.

E. Other
726 Technical Support Specia/ist-A skilled professional who

responds to technical inquires from users concerning
problems encountered in using a computer system.

727 Computer Trainer-A skilled professional who instructs
those who use computer systems.

728 Other

Conclusions

1. The taxonomy meets the research needs of the NSF by
achieving the pre-study goals of being easy to understand
and use, functional in producing accurate data on actual
jobs in the economy, flexible to allow for future modifica
tions, more complete than existing taxonomies, and con
sistent in design with other taxonomies currently used by
the NSF.

These goals are reflected in the following character
istics of the final taxonomy:
A. Very few survey responses fell into the "other" cate

gory indicating that the taxonomy is complete and
inclusive for the computer specialist field.

B. Panel review showed that the occupational titles are
consonant with those used by computer professionals
working in the field, thus permitting easy association

between actual tasks and the nomenclature incorpo
rated in the taxonomy.

C. The taxonomy spans the computer specialties in depth
as well as range, facilitating detailed studies of labor
market factors in a leading-edge technological area.

D. The classifications can be readily cross-referenced
and aggregated to meet the requirements of public
sector statistical groups.

II. The taxonomy is a summation of the computer specialties
field as it is today. Continuing change in the industry will
necessitate updates at appropriate intervals, perhaps
every three to five years.

III. The problem of obsolescence already plagues existing
government taxonomies dealing with the computer spe
cialties field, with the notable exception being the De
fense Department's MOTD and those used by other
agencies for internal operations. The need to keep basic
government taxonomies current is vital.

IV. Existing taxonomies miss relatively small, but significant
groups of critical high-technology skills. Therefore,
strong efforts should be made to combine existing tax
onomies into a single listing which would address both
the public and private sectors' needs. This would facili
tate the process of planning for the future of the com
puter industry through an analysis of current personnel
resources.

Recommendations

The following actions are recommended to the National
Science Foundation:

1. The taxonomy should be incorporated as quickly as pos
sible into all NSF surveys and studies.

2. Additional in-depth statistical analyses are needed to
establish base line demographic profiles of the various
computer specialist fields.

3. A dissemination plan should be developed as soon as
possible to ensure the adoption of the taxonomy by
other agencies and organizations. Use of the taxonomy
by all federal agencies and the computer industry would
establish a much needed element of consistency among
studies and reports produced by each of the various
groups.

4. The need to keep basic government taxonomies current
is critical. The taxonomy should therefore be updated at
appropriate intervals (perhaps every 3-5 years) to reflect
continuing changes in the computer specialties field.

5. Small but significant groups of people employed in the
computer specialties field are often not large enough to
be identified in current taxonomies. A mechanism to
ensure that federal agencies, educational institutions,
and private sector organizations involved in personnel
analysis are able to identify these critical skills should be
created.

6. To simplify the use of this taxonomy, the development of

172 National Computer Conference, 1987

a document which would crossfoot with the DOT, SOC,
OES, and MOTD classifications is highly recommended.

Adoption of these recommendations will ensure that accurate
and informative data on the computer specialties field will be
obtained by the National Science Foundation and other gov-

ernmental agencies. The expanded taxonomy will broaden
the scope of knowledge of the current characteristics of the
computer specialties workforce and enable accurate projec
tions to be made of future personnel and resource needs by
the United States government.

How to pick eagles: Research and application of selection
systems within information systems

by ROBERT A. ZAWACKI
University of Colorado
Colorado Springs, Colorado

International Data Corporation recently reported that United
States information systems spending for salarieslbenefits was
35.7 percent of the total MIS budget for the first quarter of
1986. My experience with MIS organizations is that this figure
is nearer 40 percent in many firms. Because of the tremendous
cost associated with selecting and training MIS professionals,
this key function is too important to be left to the "pro
fessionals" in personnel. It must be controlled and driven by
MIS managers with the support of personnel.

My research and the research of others indicates that MIS
managers either leave this critical function to personnel, or
they give it lip service and their ability to PICK EAGLES and
eliminate losers is very poor. Further, once the MIS profes
sional is in the firm, those who are marginai performers are
rarely, if ever, eliminated from the firm.

Since 1978 over 300 articles have been written on the se
lection process. After reviewing the literature, conducting
research myself, and consulting with numerous MIS organiza
tions, some of the major reasons for poor selection are:

1. Biases are established early in the interview.
2. Interviewers tend to develop a stereotype of a good can

didate and then match applicants with stereotypes.
3. Interveiwers are influenced more by unfavorable than

favorable information because they are looking for rea
sons to not select the candidate.

4. If the interviewer has an early favorable impression of
the candidate, the interviewer talks more and in a more
favorable tone. If the early impression is negative, then
the interviewer talks in a negative tone with the hope
that the candidate self-selects out of the firm.

5. Seeing negative candidates before positive candidates
results in a greater number of acceptances than reversing
the order of interviewing.

6. Interviewers benefit very little from day to day inter
viewing. Training can help the selection process, how
ever.

7. The ability of a candidate to answer questions, stay to
the subject being discussed, and present a favorable ap
pearance seems to be critical to obtaining an offer.

8. Interviewers opinions of a candidate are crystallized
after a mean interview time of four minutes.

173

9. To increase predictive validity, interviews must be
planned and structured. Yet, because of the crisis envi
ronment within MIS, many managers "wing it."

Given the pessimistic nature of the research findings, what
can an MIS organization do to PICK EAGLES? What are the
objectives of the MIS organization? What predicts effective
job performance? How can an MIS department structure the
interview to increase their "hits" and decrease their "errors"?

First, the CIa and the top management team must decide
how many EAGLES they want. Intuition suggests that they
should want all of the EAGLES that they can recruit. How
ever, EAGLES are high achievers and require cutting-edge
and challanging work or they become dissatisfied. As MIS
departments move from development to more maintenance
work, the top management team should consider a mix of
people to match the jobs or attempt to enrich the jobs if they
are to hire a high percent of EAGLES.

Ability, motivation, and the job all influence performance
by a programmer. Figure 1 diagrams this relationship. Ability
includes skill, education, aptitude, and experience.

Programmers can have all of the ability in the world. With
out motivation, however, they will fail. Further, they can have
all the ability and motivation; if the job does not challange
them, or if it is not a good match-up between the person and
the job, they will not produce to their ability.

My research and consulting with MIS organizations indi
cates that managers do a very good job of determining ability

1 I MOTIVATION (GN:)I'" -----)~ ----:>~ I PERFORIIMICE

JOB (MPS)

Figure I-Determinants of employee performance

174 National Computer Conference, 1987

from the candidate's resume. They can review his/her educa
tion, additional courses, and previous job experience and
make a good prediction. The weakness of MIS managers is in
blocks 2 and 3 (see Figure 1). When we observe interviewers
they tend to stay in block 1 because they are more comfortable
in the technical areas. Predictive validity increased when the
interviewer asks questions about the candidates motivation.

One of the major findings of my research with Dr. J. Daniel
Couger (Motivating and Managing Computer Personnel,
Wiley Interscience, 1980) is that MIS professionals have very
high growth need strength (GNS). This is a measure of their
motivation. Prior to the interview, the interviewer should plan
four or five questions that examines candidates' need to be
challenged, to continue to grow, to develop and move beyond
where they are. Also, their need for education is a good
indicator of high GNS.

Couger and I determined that MIS professionals believe a
job is challenging if it contains: (1) skill variety, (2) task iden
tity, (3) task significance, (4) autonomy, and (5) feedback. If
a job is low or moderate in these five job dimensions, the MIS
department may decide to select a person with moderate
GNS. If you have a job moderate in MPS and still decide to
select an EAGLE, then how the interviewers set expectations
is critical. Only promise what you can deliver. Also, high GNS
people in a low or moderate MPS job will soon become bored
and dissatisfied. These people need a lot of feedback and
encouragement, joint goal setting, and career planning. Fur
ther, you can meet some of their high GNS need by formal
education while in a narrow job.

Guidelines for a Successful Match-up

1. Determine how many EAGLES you want in your MIS
department.

2. Select a team of interviewers and provide training on

good interviewing behavior. Include some peers on the
interview panel.

3. Pre-structure the interview and plan questions that ex
amine the candidate's GNS.

4. Conduct the interviews in a professional and timely man
ner. Remember the candidate is forming an impression
of your firm and will talk to other people.

5. The line must own and control the interview process.
Personnel specialists or psychologists are support staff
to the line.

6. After the interviews, have a meeting of the selection
panel and pool the evaluation of all interviewers.

7. After determining who is the best match-up with the job
(MPS), make a verbal offer to the candidate as soon as
possible. Also, how you notify the unsuccessful candi
dates can effect goodwill; they may be a source of future
talent. Remember, you may only hire one person, but
five or more may be talking about how your firm treated
them.

Following the above guidelines can result in improved
organizational effectiveness through a better match of the
need of the organization with the ability and motivation of the
person. PICKING EAGLES is not easy, it requires a heavy
time involvement by MIS managers and peers. However, the
results are well worth the effort. Either we do it right up front
or we live with our mistakes. The choice is ours!

REFERENCES

1. Couger, J. Daniel and Robert A. Zawacki, Motivating and Managing Com
puter Personnel, Wiley Interscience, 1980.

2. Campbell, J. P., M. D. Dunnette, E. E. Lawler, III and K. E. Weick, Jr.,
Managerial Behavior, Performance, and Effectiveness. McGraw-Hill, 1970.

3. Zawacki, Robert A. "How To Pick Eagles," Datamation, September 15,
1985.

Software ergonomics research and practice:
Findings and recommendations

by RICHARD P. KOFFLER
The Koffler Group
Santa Monica, California

INTRODUCTION

A major review of the software human factors engineering
(ergonomics) literature conducted during 19861 showed that
the field is growing very rapidly. Motivated by the need to
make computer technology accessible to people of all ages,
backgrounds and education, a growing amount of information
is available to guide the development, evaluation, and use of
ergonomically designed software.

This paper summarizes the results of analyzing 102 papers,
magazine articles, and books. Contributions from the field of
software human factors to developers, purchasers, and users
of software are documented as a set of findings and recom
mendations. Due to the different nature of their responsibili
ties, there are separate sections for software developers and
for purchasers and users. Table I illustrates how human fac
tors engineering fits into the traditional software development
process.

FOR SOFTWARE DEVELOPERS

Objectives, Benefits, and Costs

-
Conceptions of what is "ergonomic software" are becoming

more concrete. The major factor is usability, which should be
measured objectively and quantitatively. Developers should
specify explicit and testable usability levels at the outset of
design projects.

There are measureable paybacks to designing software
ergonomically. Case studies show that using quantifiable cri
teria reveals the paybacks before product release. Software
can be designed to match what people really need, rather than
waiting for later versions to improve a product. Another bene
fit is that usability measures can improve the marketability of
a product. Since many software development firms are look
ing for ways to satisfy users' needs, ergonomics is recom
mended as a means of keeping up with the competition.

The real costs of software ergonomics may be less than they
initially appear. Because there is a wide choice of methods
that can be used, it is possible to fit ergonomics into even a
tight budget. For instance, there are ways for designers to

175

incorporate ergonomics themselves as well as a variety of ways
to use the assistance of human factors professionals.

Although there are only a few examples stated in financial
terms, the evidence is sufficient to demonstrate that including
ergonomics in the design process saves resources that other
wise would be needed to revise, maintain and support the
software once it is out on the market. Therefore, the cost
savings of ergonomics often far outweigh the initial expense.

Including Ergonomics in the Design Process

A software developer's job is quite unlike the jobs of people
who use software products in offices. Therefore, it is neces
sary to find out about the people who will use the system and
their tasks before beginning a software design project. Tech
niques such as task analysis, activity analysis, and controlled
observations can provide this information.

The best advice an ergonomist can give to a software de
signer is: watch people interacting with the system, even if the
design is not yet complete. A lot can be learned just from
observing a few users. It must be remembered, however, that
people will do things not anticipated by the designer. These
behaviors are not wrong; rather, programs simply don't work
the way users expect. Observations should be made with an
open mind. People should be interviewed to find out why
they tried to do things a certain way. Then, designs should
be changed so that people are led to perform the actions that
will be successful. The aim is to improve the program, not to
prove it.

Sources of ergonomics guidance vary in their usefulness to
designers. Although the research data base is the most current
source of information, it is widely scattered and leaves many
questions unanswered. For this reason, research and design
methods are the most useful to designers.

A sound recommendation for software developers is to
apply ergonomics methods and guidelines during the design
process. This entails becoming familiar with the ergonomics
perspective as represented by theoretical viewpoints. Original
research papers should be referred to only to keep current on
the latest developments. Also, models should be watched for
of user behavior and usability that can be used instead of
testing with real users.

TABLE I-Fitting human factors engineering into the software design process

The "Traditional" Software Design Process* Possibilities for Applying Ergonomics at Each Stage

Requirements Definition

Determine the requirements the system will meet. Establish system
functions, inputs, and outputs. List constraints on system per
formance and economic considerations.

Establish the purpose of the system and the intended users. Deter
mine system functionality and general level of usability. Conduct task
analyses to find out how users perform these functions with similar or
non-automated systems.

Specifications Development

From the system requirements, determine the system specifications
for exactly what the system must do. Specify acceptance tests the
system must pass.

Determine specific user characteristics that the system must satisfy by
collecting data about the user population as necessary. Perform activ
ity analyses to find out the process of task completion. Set objective
(testable) usability and learnability criteria.

Preliminary Design

Develop models of possible solutions for satisfying the requirements
and specifications. Determine advantages and disadvantages of each
solution. Choose one or two promising solutions for further evalu
ation and investigation.

Create preliminary design ideas as potential solutions. Use ergo
nomics theories, models, and guidelines to evaluate each possibility.
Select the most promising designs for further development. The
Wizard of Oz technique begins at this stage (develop the bare-bones
system).

Intermediate Design

Develop the selected designs to demonstrate system organization and
structure. Use models and analysis methods to evaluate these designs.
Eliminate any design that is unsatisfactory.

Develop the proposed designs to include major organization and
structure of the user-system interface. Apply theories and models to
evaluate each proposal and weed out unacceptable ones. Determine
if a simulation will be required before testing can be done. Create a
prototype if an iterative design method is used. Begin collecting data
from users if the Wizard of Oz technique is used.

Detailed Design

Create a detailed architectural design of the proposed system. Evalu
ate it to determine whether it meets the system specifications and
requirements. Return to previous steps if the detailed design is un
acceptable. Use prototypes of sub-systems to gather further informa
tion if necessary.

Apply guidelines and standards during this stage. Refer to the re
search data base for information as needed. Use theories and models
in making any tradeoffs required by inconsistent guidelines. Test spe
cific aspects of the proposed design against models or in experiments
with real users to determine usability effects that are unknown and
likely to have large impact. Simulate system if working prototype is
not available for testing. Use iterative design methods to monitor
usability of different versions of the prototype as they are developed.
Collect subjective assessments after users have tried the prototype or
simulated system. Continue with testing and making modifications if
using the Wizard of Oz technique.

Implementation

Use the architectural design to implement the software for the system.
Test each subsystem to determine that it operates properly.

Conduct usability tests as soon as an operational system is developed.
Or, use the results of experiments with the simulated system to imple
ment the real system. Or, refine the design using iterative methods so
that the prototype evolves into the implemented system. Modify the
design until it meets the objective usability criteria, as determined by
experiments and subjective assessments.

Verification and Acceptance

Test the entire system to verify that it meets system requirements and
specifications.

Evaluate entire system (including documentation, on-line help, and
system support services) after it has been completed to verify the level
of usability and user acceptance. Test the system against validated
models of human behavior, or use task analysis, experiments, field
studies, and subjective assessments. Make any necessary changes
before product release. Follow up product release with field tests to
determine success of system and methods or to gather suggestions for
future product designs.

• The traditional design process is adapted from Booth, Brubaker, Cain, Danielson, Hoeizeman, Langdon, Soldan, and Varanasi.2

176

Software Ergonomics Research and Practice: Findings and Recommendations 177

Guidelines are available and can be applied directly to
product design. However, an understanding of ergonomic
theories is necessary to resolve tradeoffs between incon
sistent guidelines and to translate general rules into design
parameters.

Models are fairly new to software ergonomics. There is a
movement toward models for predicting product usability, but
many of these are not yet in a directly usable form. Cognitive
models can help designers maintain consistency in a user
system interface.

Newcomers to software ergonomics can benefit from tested
design principles that result in better software products. These
principles describe the important steps in the design process.
Because they have been used before, their benefits are known
and the risks of experimenting with some new ergonomics
techniques are reduced. These tried and true principles can
even be tailored to fit into the constraints of real-world
development projects.

The benefits of in-house software design guidelines should
be considered. Because user-system interfaces can be stan
dardized across many applications, in-house guidelines make
the software development process faster and easier.

There are several tools and techniques that software devel
opers can use to ensure their products are ergonomic. Some
are: task and activity analyses, simulations, prototyping,
iterative design, experimentation, field studies, subjective as
sessments, and the "Wizard of Oz" technique (described
next). The decision to use any of these should be based on a
project's scope and budget.

One tool that is becoming quite popular is based on a good
idea that the Wizard of Oz had. The "Wizard of Oz" tech
nique is a successful way to put an application together quickly
and easily, while building usability into the program. The
method combines prototyping, simulation, and iterative test
ing. It consists of configuring a system so all inputs to and
outputs from a system can be monitored and interrupted by a
hidden intermediary. The intermediary interrupts any input
from a user that the program cannot handle. Outputs from the
system which the user is unlikely to understand are also inter
rupted and rephrased before they are transmitted to the user.

FOR SOFTWARE PURCHASERS AND USERS

Ergonomic software increases productivity because it matches
what users really need. Ergonomics eliminates programs that
people cannot use or can use only in a limited way. Training
requirements, user errors and frustrations are also reduced.
To get the full benefits from computer software, usability
should be included as a purchasing criterion.

Software buyers should seek out software that has been
tested to meet explicit usability criteria. Ergonomic software
is defined in terms that can be tested and measured. Because
ergonomic software has been tested with people who repre-

sent real users, purchasers can find out how usable the soft
ware is before they buy it. It is almost a guarantee that people
will be able to successfully use a tested product for its intended
application.

Guidelines and standards are the most usable form of ergo
nomics information for software buyers and users. Models for
evaluating software may also become available in the future.
Currently, information contained in the research data base,
ergonomics theories, and research or design methods cannot
be applied directly to the selection of software.

Managers should encourage their employees to participate
in software usability tests of products that are designed or
purchased for in-house use. Users can give input on what they
need and want before the design or purchasing decision is
finalized.

To ensure consistency and enhanced usability across appli
cations, users can collaborate with software developers to
establish in-house software design guidelines based on the
latest available information as well as testing within an organi
zation. Once they have been approved, guidelines can speed
turnaround time on requests for new applications. They can
also reduce training requirements, since users only have to
learn one standard format and set of procedures for all soft
ware programs.

Before making a request for custom software, needs and
restrictions should be carefully determined. Subjective assess
ments of "wish lists" cannot be relied on to provide this infor
mation. More reliable data can be obtained with task and
activity analyses. After the requirements are passed on to the
software development staff, and effective way to keep up with
the project is to periodically try the software before it is com
plete. Without continual feedback, reaction to the final
product is likely to be, "That isn't what we wanted." By that
time, software developers probably will object to changing
anything on the grounds that it is too difficult or time
consuming.

When considering software purchases, questions about us
ability should be asked. It is also important for purchasers and
users to test the program themselves, rather than only watch
a carefully engineered and executed demo. If intended users
cannot operate the system with the salesperson or software
developer standing by, they will not have much luck when they
are on their own. Even after purchase, it is a good idea to give
feedback to the development company on the usability of its
products so future improvements can be made.

REFERENCES

1. Potosnak, K. (ed.). "Tackling Software Ergonomics, Part I: What's Avail
able?" and "Part II: Applying the Techniques." Office Systems Ergonomics
Report, 5 (1986) 3 and 4. Santa Monica, California: The Koffler Group.

2. Booth, T., T. Brubaker, T. Cain, R. Danielson, R. Hoelzeman, G.
Langdon, D. Soldan, and M. Varanasi. "Design Education in Computer
Science and Engineering." Computer, 19,6, pp. 20-27.

Creating an in-house software ergonomics group:
A case study

by DOREEN L. KUSHNER
Unisys
Mission Viejo, California

INTRODUCTION

They want proof. Software consumers are receiving supplier
claims of "ergonomic superiority" and "ease of use" with
caution. It's a buyer's market and usability has emerged as a
significant competitive edge.

The field of software psychology, a branch of human factors
engineering, has been a boon to the computer industry. It has
expanded the market by demonstrating that, theoretically
speaking, anyone can use a computer. This is not to say that
a specific computer device can or should be usable by all
people. In fact, the key to a successful design is to create a
product targeted to a specific class of users. The design should
draw upon the capabilities and compensate for the limitations
of the intended users.

Establishing a successful human factors function requires
careful staffing, calculated direction and appropriate tools of
the trade. This paper comments on the organizational model
of a human factors group and its application as an integral part
of the software design process. It is the case study of creating
a human factors team at Unisys.

HISTORICAL PERSPECTIVE

Human factors engineering activities at Unisys (the new com
pany resulting from the merger of Burroughs and Sperry Cor
porations) have been traditionally organized and centralized
at corporate levels, with a concentration on hardware-related
issues. In response to market demands for more "congenial"
software, though, there is a current trend toward: (1) decen
tralizing the function and strengthening expertise in software
design, (2) assuming a "division of skills strategy for develop
ment activities, and (3) expanding the envelope of usability
criteria for the mainframe software.

Prior to 1984 most human factors personnel were located at
world headquarters. Their role was to participate in hardware
design and to provide varied services to the development
plants as requested. As a result of the more recent increased
emphasis on software development, the function has since
migrated away from corporate positioning. Today, 85 percent
of the human factors staff is located within the separate devel
opment organizations.

179

In addition to decentralizing human factors to the software
engineering organizations, active measures were taken to in
tegrate their expertise with product developm,ent activity. A
"division of skills" strategy was taken to maximize develop
ment efficiency. Responsibility for human-computer interface
design, historically with the project programmers, shifted to
the human factors specialists. This allowed the programming
groups to focus attention on functionality design and imple
mentation. It is important to note, however, that the human
factors and programming staff do not work independently;
rather, they work as unique members of a multidisciplinary
team.

The first human factors assignment in Mission Viejo, Cali
fO!J1ia addressed consistency in style between alld within a
family of menu-driven software applications. This initial
project concentrated on quality in screen layout and screen
traversal techniques. Objectives of current projects also in
clude accurate identification of user classes and renderings of
user tasks.

HUMAN-COMPUTER INTERFACE DESIGN TEAM

Staffing the right people is a critical gate to any successful
function. A multidisciplinary cross-section of skills in support
of a human factors core is often ideal for designing human
computer interfaces.

Human Factors Technologists

When identifying the human factors talent, it is important
to understand that human factors itself can be viewed as mul
tidisciplinary. It deals with the manner in which people inter
act with their world. Therefore, experience in applying its
principles requires an understanding of human characteristics
as well as a working knowledge of the technology being stud
ied. For the design of computer-human interfaces, formal
education in human factors engineering or equivalent is basic
to understanding the human side of the interface. It is also
important, however, to employ designers who have special
ized in computer software-the other side of the interface.

The Mission Viejo facility employs six human factors pro
. fessionals, and has plans for continued growth. The current

180 National Computer Conference, 1987

ratio of human factors-to-programming staff is 1:16. An ap
propriate target is estimated to be 1:8.

All six human factors personnel hold degrees in psychology
and have an average of six years concentrated experience in
software ergonomics. One person has a Ph.D. in cognitive
psychology, two have an MS degree in industrial psychology,
two are MS degree candidates in human factors, and one has
a BS degree in psychology.

Multidisciplinary Support Team

The user's interface to a computer is likely to consist of a
combination of: hardware control panels, monitors, key
boards or other pointing devices, reference cards, application
software, on-line assistance, and user manuals. Moreover, the
design of the human-computer interface is based not only on
knowledge about the user and intended functionality of the
computer but also on knowledge about market demands.
Therefore, the development team should represent an appro
priate mix of skills, and might include:

1. Human factors technologists, to design, evaluate, and
specify the way in which people and a computer will
interact

2. Computer scientists, to provide counsel on the relative
costs and benefits of implementation alternatives and to
prototype software design concepts

3. Technical writers, to prepare the prose interfaces of on
line help and printed documentation

4. Market researchers, to identify market characteristics in
terms of requirements for functionality as well as charac
teristics of the targeted user classes

5. Hardware engineers, to provide counsel on hardware
design alternatives and prototype design concepts

6. Industrial and graphics designers, to contribute exper
tise in aesthetics and visual communications

The proper mix is of course dependent upon the nature of
the design project.

Organizationally, the Human Factors group resides, with
relative autonomy, within an organization responsible for the
development of system software. Lines of communication and
functional relationships with other key disciplines are being
established. Most design teams, consisting of talent from com
puter science, marketing research, user documentation, indus
trial design, and training lie across organizational boundaries.

ROLE OF THE HUMAN FACTORS TECHNOLOGIST

The role of the human factors technologist is to serve as the
users' advocate during product development. The job begins
during product conceptualization and continues until after the
product is introduced to the market. During each stage of the
product life cycle, broadly defined as analysis, design, and
implementation, specific types of human factors activity
should occur. 1

The analysis phase is typified by functionality definition,
costlbenefits projection, identification of hardware and soft-

ware constraints, and scheduling. The human-computer in
terface design team should also define the target user by:
(1) prior relevant experiences, (2) anticipated product use
patterns, and (3) cognitive, physiological, and perceptual
characteristics.

During the design phase, a product is designed, coded, and
tested. The role of the human factors technologist is to mold
the human-computer interface by applying principles of soft
ware psychology and drawing from expertise within the design
team. Development of the interface evolves through an itera
tive process of conceptualization, simulation or prototyping,
and evaluation or validation.

Lastly, the implementation stage is established when a
product is distributed and installed in its final locations, the
uses are trained, and the product is in operation. During im
plementation the best test of usability takes place, and it oc
curs as a function of normal product use. Human factors
responsibility lies in capturing and interpreting usage data as
it becomes available. Errors are then corrected, features are
added, and customer-driven ideas lead to new product plans.

Projects at Unisys Human Factors

The role of the Human Factors group at Unisys has recently
undergone a transition from impromptu consultation and par
ticipation just prior to the "implementation" phase, to re
sponsibility for design across product life cycles. This shift in
emphasis reflects an explicit commitment to understanding
and meeting user requirements by proactively applying ex
pertise in the human side of the interface.

The group's projects currently include human-computer in
terface design and evaluation for a variety of software prod
ucts. The group is also developing in-house software ergo
nomics standards, and links are kept with the American
National Standards Institute (ANSI) and the International
Standards Organization (ISO). Major projects are described
next.

Standard style design

Description. Design a standard presentation style for appli
cations displayed on a family of character-mapped, mono
chrome displays. Prepare a specification for implementors of
the User Interface Management System (UIMS). Write a
style guide to accompany the UIMS as a framework of design
for use by interface design teams.

Objectives. Maximize utilization of display capabilities.
Meet the functional requirements of targeted applications to
satisfy user needs while considering use patterns and user
characteristics. Maintain consistency with associated products
in such areas as keyboard functionality and pointing device
behavior.

Team. Human factors specialists. Software engineers, for
consultation on implementation costs.

Product design

Description. Design and specify the human-computer inter
face to four software products.

Creating an In-house Software Ergonomics Group: A Case Study 181

Objectives. Design a paradigm for functionality access so
the interface predicts and reacts to a user's next move and
steps aside when no prediction can be made. Involves provid
ing a task-orientation across several user classes, accommo
dating users with varying levels of product expertise, and min
imizing the likelihood of user error.

Team. Human factors specialists. Software engineers, for
functionality definition, estimation of implementation costs,
and prototype development. Marketing researchers, for com
petitive benchmarking and indentification of user character
istics and use patterns. Industrial designers, for keycap label
design.

Development of national software ergonomics standards

Description. Participate in the Human-Computer Inter
action Standards Committee of the Human Factors Society.
This committee, which represents ANSI and serves ISO in an
advisory capacity, is developing standards of design for the
interface between computers and their users.

Objectives. The major contribution from the Unisys repre
sentative to the committee will be to create standards and
guidelines for the use of color based on established human
factors research and practice.

Team. Human factors specialist.

TOOLS OF THE HUMAN FACTORS TRADE

There are basic resources which, when available, substantially
increase productivity, efficiency and effectiveness of the hu
man factors function. In addition, when used to document
design specifications, such resources lead to increased effi
ciency and timeliness of user documentation development.
These resources include computer technology, printer de
vices, and data recording tools. The functional requirements
of each are described in this section.

Computer Technology and Printer Devices

Basic to the requirements for computer technology are
productivity aids, for creating design documents with textual
and graphic matter, and simulation tools, for representing
design concepts. The remaining requirements for computer
power as well as for the print devices should be driven by
intended characteristics of the targeted product. The monitor
should be capable of displaying an accurate representation of
the human-computer interface design concepts; the printer
should produce accurate hardcopy representations; and the
software simulation package should be capable of modeling
the technology of the intended product.

Data Recording Devices

Design ideas should be verified by observing and analyzing
some representation of use. This can be accomplished with
paper-and-pencil simulations, software simulations, or live
prototypes. Regardless of the technique used, it is important

to have a method of capturing the data from these usability
evaluation sessions for later analysis.

Several types of techniques are available for capturing eval
uation data. These include audio and video recording, logging
and metering, and simple note-taking by the participant or
observer. The best method for recording usability data should
be determined by the nature of the evaluation and by the type
of information which is relevant.

HUMAN FACTORS TOOLS AT UNISYS

The functional shift of Unisys Human Factors from pre
implementation phase consultation to support across product
life cycles has created new toolkit requirements. Although the
current set of tools are adequate for pre-market release
usability evaluations and post-release field studies, they
are not useful for the remaining majority of design activities.
The tools currently in use as well as near term acquisition
plans are described.

Today's Computers, Printers and Data Recorders

Current tools for creating hardcopy design documentation
include workstations with character-mapped displays and
word processing software. These have been used in conjunc
tion with various draft- and letter-quality printers to prepare
textual matter and to capture character-driven designs. Soft
ware simulation tools are not available; therefore, paper-and
pencil and live proto typing techniques are heavily used.

Combinations of audio and video tape recording and play
back equipment are used for conducting usability evaluation
and vaiidation tests. Data recording strategies can include: (1)
voice only; (2) voice and computer display only; and (3) voice,
computer display, and motor activity. For voice only, a mini
cassette recorder is used, synchronized voice and computer
display records are captured with a video cassette recorder
and motor behavior is picked up by adding one or more
cameras.

Toolkit Limitations

The current set of tools is limited in three areas: (1) repre
senting designs for use in external documentation, (2) dis
playing bit-mapped design concepts, and (3) simulating
human-computer interactions. The workstations and printer
devices work well for creating internal documents. The accu
racy with which those designs can be represented, however, is
not sufficient to allow direct input to customer documenta
tion. Moreover, this technology is limited to character-driven
designs. Those which are pixel-driven cannot be represented
at all.

The inability to simulate presentation as well as behavior of
alternative human-computer interface designs also raises is
sues. First, the paper-and-pencil interaction is significantly
different from intended interaction. Therefore, when used as
a medium for design evaluation, it is likely to have some
confounding effect on evaluation results. Furthermore, inabil
ity to capture the true interaction precludes its evaluation.

The second issue has to do with using live prototypes for
design evaluation. When utilizing a prototyping technique,

182 National Computer Conference, 1987

there is often resistance to maintaining its disposability. Live
prototypes are costly and therefore lead to hopeful expecta
tions and schedule assumptions that the design will be right
the first time.

Fitting the Toolkit to New Requirements

To follow the transition in human factors responsibility with
an appropriate supporting toolkit, the following arrangements
are planned:

1. Unisys PCIIT personal computers (IBM PC/AT compat
ible) with bit-mapped displays will replace the current
character-mapped workstations. Software will provide
capabilities for full function text formatting, advanced
graphics design, and the ability to merge text and
graphics. Tools for the creation of human-computer in
teraction simulations will also be established.

2. Laser printer devices will be added so that accurate
hardcopy representations of human-computer interfaces
can be created. Any design document will potentially be
usable both as internal engineering specifications and as
direct input to customer documentation.

In addition to increasing the functional capabilities of the
Human Factors group, this new combination of tools can lead
to increased product development efficiency overall. The pro
cess of customer documentation development can be initiated
sooner by using product descriptions from early and accurate
design specifications; documentation development can be
aided by supplying high quality samples through the internal
specifications; and the costs associated with evaluating inter
action style design concepts can be reduced by utilizing soft
ware simulations in place of live prototypes.

SUMMARY

The most recent thrust by Unisys to tighten usability criteria
was initiated by market preferences; it is reflected in product

goals, and it has been carried forward by Human Factors. As
a result of an enthusiastic response to the 1985 menu-driven
offerings, corporate goals for new products regularly refer to
ease-of-use intentions. These goals, though, are stated in gen
eral terms and require interpretation by the development
groups. Human Factors has been responsible for defining
measurable objectives and, according to the requirements de
scribed herein, has established a long range strategy for
achieving those objectives.

Currently, a general regrouping of functional responsibili
ties is evolving, and changes to the product development pro
cess are being promoted and implemented. Although it is too
soon to quantify the long term impact of this new approach to
human-computer interface design, expectations are clear.
They include:

1. Increased market opportunities from an expansion of
the potential user base

2. Reduction in software development costs by more
closely matching personnel expertise to development
assignments, and thereby leading to fewer design
iterations

3. Reduced costs associated with customer training, result
ing from the design of self-evident product operation

4. Cost savings in documentation development, attributed
to the use of accurate design examples from engineering
specifications for user manuals

The ergonomic approach to software design offers a fresh
opportunity for competitive advantages. The key to a leading
edge includes unique staffing, appropriate tools, and pur
poseful direction.

REFERENCES

1. Anderson, N. S. and J. R. Olson. (eds). Methods for Designing Software to
Fit Human Needs and Capabilities. Proceedings of the Workshop on Soft
ware Human Factors. Washington, D.C.: National Academy Press, 1985.

Software ergonomics guidelines and standards

by JOHN KARAT
IBM Corporation
Austin, Texas

INTRODUCTION

There are four current software ergonomics projects con
ducted by organizations chartered to develop national and
international standards. Two projects are in the United
States, one by the American National Standards Institute
(ANSI) and the other by the Human Factors Society. The
third is in Germany sponsored by the Deutsches Institut fur
Normung (DIN), and the fourth is by a subcommittee of the
International Standards Organization (ISO).

Of the four, only the DIN committee has issued a draft
standard (DIN 66 234 part 8). The draft, however, has drawn
intense criticism because its specifications are not easily mea
surable. It is not always possible to determine when a user
system interface is in compliance.

The ISO and ANSI committees are still in their formative
stages. The activities of the Human-Computer Interaction
(HCI) Standards Committee organized by the Human Factors
Society are described in this article.

BACKGROUND

The HCI Standards Committee is working to provide a frame
work for the development of software quidelines and stan
dards for human-computer interactions in a manner consis
tent with the professional standards of the human factors
profession. It is the intention of the committee to play an
active role in the development of guidelines and standards and
to review and consult on the work of other standards groups.

The committee was formed in February 1985 as a task force
operating under the Technical Standards Committee of the
Human Factors Society. Its initial charter was to advise the
Society concerning the status of existing efforts to standardize
the human-computer interface and to report on the feasibility
of acting as a producer of user-system interface standards.

The task force met three times in 1985. Organizations in
volved in developing human-computer interaction standards
were identified and studied. It was decided that it was im
portant for the Society to take an active rather than a passive
role in this area. While members of the task force were skep
tical about their ability to produce useful standards in a short
period, there was a feeling that the skills of the Society mem-

183

bers should provide the necessary foundation for a serious
standards effort.

The task force concluded that the greatest impact would be
achieved through an initial effort to develop a framework or
reference model, and then to gradually add details for various
areas of human-computer interaction.

CURRENT ACTIVITIES

In late 1985 the task force became a technical standards sub
committee of the Human Factors Society. During 1986 the
committee created operating procedures, elected officers, es
tablished formal connections with ANSI and the ISO, pro
duced a reference model (draft proposal) for standards ac
tivities, and began work on content areas covered in the
proposal.

As stated in the committee's reference model, its objective
is to create a set of software ergonomics guidelines and stan
dards which have the following characteristics:

1. They must have a foundation on scientific evidence, em
pirical data, and have been generally recognized and
accepted by people knowledgeable in the area.

2. They must state the criteria for when and how they will
be applied relative to the type of task, type of user, the
kind of technology and the environment.

3. They must be written so that they can be consistently
interpreted in a clear and unambiguous way.

4. They must provide usable guidance to interface de
signers and provide information that can be directly ap
plied in tradeoff decisions during the design process.

5. They must be practical and capable of being imple
mented within generally available technology and cost
constraints.

6. They must be useful and exist only if they serve end users
by offering a solution to a known problem.

In addition to these attributes common to both guide
lines and standards, standards must comply with the
following:

7. They must indicate a pass-fail specification so compli
ance can be judged. Testing criteria must be stated.

8. They must provide some quantified, measurable benefit
for users.

184 National Computer Conference, 1987

The areas which have been identified by the committee for the
creation of standards and guidelines are:

Input devices and techniques
Output devices and techniques
Dialog techniques
User guidance (e.g., help and error handling)
Evaluation and testing

The committee's current reference model and short state
ments of various work efforts were published l for public re
view in the Bulletin of the Human Factors Society Computer
Systems Technical Group. An earlier draft of the proposal was
presented in May 1986 to the ISO subcommittee dealing with
software ergonomics (ISO Technical Committee 159, Sub
committee 4, Working Group 5: Software Ergonomics and
Man-Machine Dialogue).

TIMETABLE AND MEMBERSHIP

The committee meets four times per year for two days at a
time. Two of the meetings are scheduled to overlap with major
conferences (The CHI conference in the Spring and the Hu
man Factors Society Annual Meeting in the Fall). The two
other meetings are scheduled approximately midway between
the conferences.

Currently the committee consists of thirteen members.
Most are from industry, but they do not serve as company
representatives. They act as members of the human factors
profession.

REFERENCE

1. Draft Proposal of the Human Factors Society Human-Computer Interaction
Committee, Bulletin, 13,4. Published by the Computer Systems Technical
Group of the Human Factors Society. (Available from Andy Cohill, 112
Lucas Drive, Blacksburg, VA 24060.)

Bridging the computer-user gap

by BETIY SHERWOOD
Sherwood Consulting
Chicago, Illinois

ABSTRACT

This paper deals with that portion of the computer-user interface comprising user
manuals, training materials, and screen design. Several general principles are de
veloped from learning theory including matching and schema, taxon and locale
learning, and controlling the learning curve.

This paper develops more specific rules for applying these general principles to
the interface. These rules cover manual design for the benefit of users, the role of
typography in improving the design of any written materials, and the use of schema
and matching to improve the computer screen/manual interface.

Further, the paper discusses rules particular to manuals concerning addressing
different audience segments through sectioning, focusing on information, struc
turing the manual for each of two types of systems, and using sentence structure,
graphics, and typography to improve the reference aspects of the manual. Finally,
the principles of screen design which aid user acceptance, improve comprehension,
and increase the rate of learning are set forth.

185

INTRODUCTION

The subject of user-computer interface is much too large to
cover in a single paper. I focus on the user manual, training
and learning materials, and screen design.

Personal computers have been a major force in improving
these areas. Today, developers of hardware and software from
mainframe to micro are beginning to understand that these
issues can sell a product and make computerization acceptable
for human consumption. The upstart world of personal com
puters has also attracted people with expertise from other
disciplines which are important in application development
such as training, learning theory, human/machine ergo
nomics, graphics design, and writing. Although such changes
may have been addressed before, the personal computer has
accelerated the process.

GENERAL PRINCIPLES

Several principles from the discipline of learning theory are
vital to understanding and improving the computer-user inter
face.

The Human Mind

Both the computer and the brain suck up information in
much the same way, but they process it differently. The com
puter has a very large volatile memory; the human mind has
a very small one. The computer, subject to programmed
rules, will store everything from volatile memory into per
manent storage; the human mind is extremely picky and indi
vidualistic, and this is where the computer-user interface
problem is centered.

Human volatile memory (short term memory or working
memory) will hold about five of what experts call chunks for
anywhere from 1/4 second to one hourI-with practice. A
chunk can be words, syllables, letter groupings, phrases, or
ideas.2 Something in those chunks must connect with some
thing already in long term memory in order for the chunks to
make enough sense for the mind to process them further.
Even then only one or two pieces may ever reach permanent
storage in long term memory. The more the new material
relates to information already stored, the faster learning oc
curs.3 To test this, try learning a foreign language without
understanding either what the words mean or how to pro
nounce them. On the other hand, try learning BASIC after
you already are proficient in COBOL, FORTRAN, and a
database language; the learning time is significantly shorter
than it is for a computer language novice. This process is
called matching.

Bridging the Computer-User Gap 187

In addition, if the mind is given a schema for organizing
these chunks in short term memory before the chunks are
taken in, then these chunks can be processed even faster. 4 It's
like throwing objects at someone from behind a curtain. If a
person knows what kinds of objects to expect, then he can
catch more objects at a faster rate than can someone who has
to learn by experience what to expect. The principles of
matching and schema should lead developers to use language,
screen design, and system design principles that will be
familiar in some way to the intended audience (matching) and
to tell them first how it is organized (schema).

The most accurate model of communication I have found is
shown in Figure 1. This model explains how close relatives
sometimes communicate very effectively in obscure phrases.
It also says that no matter how hard you try, your knwoledge
base is going to bias both your communication and your com
prehension of someone else's communication.

Two kinds of learning, taxon and locale, also apply. Taxon
(rote) is easily lost unless it is practiced or used frequently,
and it is usually taught by simple verbal repetition, much as
dogs are taught tricks. Locale, on the other hand, is not lost
as easily. It is understood learning and usually involves both
verbal and visual stimulation in teaching. To promote total
comprehension, the training impression must be as vivid as
possible and may use as many kinds of sensory inputs and
media as can be combined without creating confusion. I

Combining the model and the two learning methods, we can
draw two principles: involve the user and utilize pictures,
words, word pictures, demonstrations, user-centered exer
cises (utilizing user's own data), and any other types of media
available in teaching the user about the system. Dale's "Cone
of Experience" lists 12 categories of ways which are roughly
age related to stimulate learning. They include direct experi
ence, simulation, and demonstration in the lowest age cate
gories and visual and verbal symbols at the top (comparable
to a sophisticated adult learning method). Pictures of all kinds
are somewhere in the middle. These categories can also relate
to the subject being communicated and to prior experience of
the audience with that subject and with learning itself.6

Therefore, the combination of media that developers
choose to present their applications and machines depend
heavily on the intended audience. In addition, effective learn
ing may be stimulated by categories lower on the scale, so that
user-centered exercises and illustrations may be the most ef
fective way to teach the system (successful with the highest
percentage of the audience). But a visual and verbal analysis

(AUTHOR/MESSAGE)t---........;;;::~.,;C AUD I ENCE/MESSAGE)

Figure I-A communication modelS

188 National Computer Conference, 1987

of how the system works may be the most efficient (promoting
locale learning and using fewer resources to create and absorb
training). A hint: always provide a system diagram for tree
structure menu systems. This is one of the hardest concepts
for users to ferret out from the system itself; it essentially
requires them to infer a three-dimensional structure from the
various one-dimensional pieces-almost impossible.

The Learning Curve

The learning curve (see Figure 2) is very important in de
signing the user-computer interface. I am interested most in
the tail because with it you can get more result for your ef
forts, and affect the rest of the curve.

This tail, depending what is to be learned, can be very long
(~) or very short (..,/). The
task of the computer-user interface is to make it short. A short
tail can also affect the slope of the rest of the curve thus
helping to achieve the entire learning process in less time by
generating enthusiasm in users (something that has been
shown to be a vital prerequisite for learning). The tail is most
affected by the user manual's introductory or overview section
which should give an overall understanding of the system: the
easier it is for users to understand (that is, they should be
provided with a schema and a basis for matching), the faster
the learners will escape the tail. The tail is also strongly af
fected by the training materials and the approach to training.
The slope will be most affected by the success with which users
can find the section of the manual (or help text) they need to
solve a particular problem and by the isolation of the answer
from the general textual explanation of the problem (i.e., the
reference aspects of the manual or help text). The slope is also
affected by the screen design-the easier it is for users to
relate screens to prior menus and other portions of the system,
the faster .(steeper) the actual learning process will be.

T1HE - - - -->
Figure 2-The learning curve

MANUALS AND SCREENS

Building on the general principles of learning theory as they
apply to computer applications, this section provides specific
design principles for the manual and the screen.

Patterns

Patterns are vital for reference materials and screen design.
Visual images (patterns) can remain fixed in the eyes for
several seconds; this physical ability can help users. When
users look for something in the manual, they will probably
have to deal with the instructions (once they find them) in two
or more passes. The eyes will move from the book to the
screen and back again to the book. If the writer/designer has
used typeface, color, white space, and illustrations so that the
page forms a visual pattern, there will be enough of the pat
tern remaining so that the eye will automatically return at
least very close to where it left off.

In addition, by using exactly the same wording in the man
ual as is contained on the screen and as close as possible to the
same typeface, the relationship between written material and
screen wording is established much faster.

Typography

Boldface, underlines, color, uppercase, reverse video,
italics, and type size, whether in written materials or in screen
design, must be used-not abused. They serve to:

1. Call attention to warnings (bold and uppercase)
2. Set off sections of the text with headings and titles

(underlining, uppercase, bold)
3. Emphasize (sparingly) text (underlining and italics)
4. Convey shorthand conventions for user input, screen

output, and key tops (bold, uppercase, underlining, and
italics)

5. Segregate ideas, illustrations, instructions, and remind
ers (boxes)

These typography graphics act as cues to memory and can
improve recall as well as alert readers. They are also, of
course, a part of the overall page pattern. If these aids are
overused or used inconsistently (a particular problem in
screen design), they will probably cause noise and hinder
rather than help comprehension. 7

Typography is therefore not purely cosmetic. But in addi
tion to aiding learning as described, it also aids learning by
generating enthusiasm, trust in the system (if the manual is
professional looking, then the system is good), and the desire
to learn--one of the more. important components.

Overall Comprehension

Drawing on the principles of matching and increasing the
slope of the learning curve, the best way to approach training
materials is to plan the materials and explain the ~ystem top

down; approach the training bottom up. Give users the frame
work of the system and the framework of the training ap
proach. Then each step, beginning with the system base, will
have an increasing amount of prior knowledge in permanent
memory to match. Signal (by schema) all new material with
topic sentences, headings, pointers, objectives, and summary
statements. 8 You can also display pictures of the system at
each step in the training to relate the new material to the
entire system-kind of a "you are here" map. This can be
particularly effective with the tree structure menu type of
system.

MANUALS

Mainframe developers took their approach to manuals from
mythology: instead of 1001 tales, you get 1001 manuals. If the
single application is to be used only by users, there should
never be more than one user reference manual and one train
ing manual. If data processing personnel are going to do some
technical manipulations before the users use it, then a tech
nical (programming, installation, system adaptation) manual
and a users' manual should be available.

Simple installation (except when users accidentally erase
diskettes) will only be done once. Therefore, it is logical ,to
segregate the instructions from the main body of the manual.
For simple installation procedures, use a short installation
booklet or card. An overview giving the installation schema
should be included. If the training manual is in the same
binder as the reference manual, it should be designed so it can
be removed after it has been used, because it, too, will be used
oniy once by each user. If the user has to refer to the training
manual for information that isn't in the reference manual,
then both manuals are badly done. Always adapt the training
materials from the reference materials.

1. The purpose of a user reference manual is to provide all
the information users need about a system if they are to
understand it and to use it in any way it could possibly be
used. The material must be organized for quick look-up,
easy comprehension, and easy access. The focus must be
on the information the user relies on from the system.

2. There are only two kinds of systems to use for manual
organization: command-driven (word processing, data
base systems) and screen-driven (general ledger, order
entry). This greatly simplifies developing the user man
ual structure.

3. The purpose of a training manual (and other training
materials) is to teach the user the basic aspects of the
system. Focus should be on the 20 percent of the system
that is used 80 percent of the time. Also, more than one
medium should be used. Simulation programs should
never be relied upon to accomplish training; users must
be involved and engaged as much as possible.

Audience and Communication

Some writers of user manuals seem to have a problem with
the audience, particularly when a system is to be used by

Bridging the Computer-User Gap 189

users with different levels of knowledge (either differentiated
groups or groups with graduated degrees of expertise). For
example, accounting systems are used by accounting clerks for
data input and by accounting managers for analysis of reports.
In some businesses, however, the clerk and the manager may
be the same person. Complete business systems (such as those
used by doctors, lawyers, restaurants, and other verticals) are
often used by different groups of employees (e.g., accounting
personnel, managerial personnel, and "expert" personnel).
Don't make two manuals: handle these different readers'
needs by sectioning one manual properly. Clerks and man
agers (even if they're the same person) aren't going to use the
same screen in two different ways. \Vhy would you explain
managerial decision making when you are talking about what
data is entered in a particular input screen? You talk about
managerial decision making in sections on system structure
and system output.

A successful reference book integrates the structure and
output of the system, and segregates the instructions on how
to make it go. You talk to all groups about the structure; you
speak to each group separately through the segregated in
structions covering the separate sections (input, reports) of
the system focusing on the purpose of that section.

If the same section is to be used by two different types of
readers, such as DP people and users, then write to the group
with most expertise and, using typeface graphics instead of
sections to segregate the information, include explanations of
any technical aspects for nontechnical people. See Figure 3 for
an example. Readers who understand subroutines are alerted
by a boldface and indented explanatory section to skip over
that part of the material. Readers who don't understand sub
routines have the explanation available in the place where it's
needed. Boxes, asterisks-whatever typefaces and graphics
available-can be used to segregate detailed explanations.

Never write down to anyone. First, you might confuse in
come levels for education (such as writing down to secretaries
rather than to executives), and second, most of the so-called
scientific methods previously used to write down have been
proven useless or even harmful. These include vocabulary
levels by school grades, and the infamous fog index.

You can use the specialized vocabulary of the reader wher
ever appropriate, but leave out the computerese if you can
possibly find an appropriate English language substitute.
"Enter" is perfectly acceptable, because that's what they are
doing; "file" is valid and it's an important concept to under
stand; VSAM, bytes, RAM, open/close a file, spool, and
report image are some terms I would try to avoid.

Terminal keys are a particular problem. "Learning to Use
a Word Processor,,9 contains a very amusing story about key-

The CALL command allows you to call a subroutine.

Explanation: A subroutine is a.... It is

most often used

Figure 3-Example of a manual explanation segregating instructions for
different levels of user expertise.

190 National Computer Conference, 1987

top labeling. This happened in an experiment using only the
training manual for training (wrong approach and obviously a
bad manual as well as terrible keytop labeling). The novice
word processing operator, wanting to remove a blank line that
she had inserted in error between two text lines, used the
"Required Return" key; this key was obviously the only one
that might possibly have done the job since it seemed to be
designed to require the bottom line to return to where it
belonged. Had she first been given the basic computer file
matching explanation-that there really are no such things as
blanks in a computer; things that appear to be blanks are
really caused by odd characters which the various keys insert
into the file-she might have found her way to one of the
delete or remove keys. Always remember this story when you
review written materials for clarity, and remember that your
readers are not programmers.

Do not write in the third person. Users are reading this.
They don't like to be referred to in the third person as though
they were invisible. Do not use passive voice and never, ever
start a sentence with "It has" or "It is." Users don't like
miracles. They want to control the system. Write the manual
and training materials from this perspective. 10

Words, Sentences, Paragraphs, and Sections

Write simply-to everyone. Eye movement tests show that
longer words and unfamiliar words take longer to process in
short term memory. As the number of complete thoughts in
a sentence (complexity of sentence) increases, so does the
time to comprehend the sentence. 11 However, the system
overview section or general sections explaining concepts are
designed for complete reading-not scanning. Therefore if
words, sentences, and paragraphs are too simple, the reader
may become bored and miss most of the material. 7 For these
expository sections, vary sentence lengths.

Other problems to watch for:

1. Be rigorous in checking spelling. Misspelled words can,
if the context is not absolutely clear, increase fixation
duration and interfere with learning. 12

2. Long distances between pronouns and referent nouns
can also slow comprehension and perhaps even defeat it
entirely. 12

3. The index should be comprehensive. If a user looks for
a word in the index and doesn't find it referenced,
whether it is system specific, task specific, or just plain
English, then the index has failed.

Graphics and Typography

Again in the manual, diagrams and pictures should be used
where appropriate to explain the system. Each illustration
should be physically as close as possible to the text which
relates to it. Repeat the chapter headings and subheadings
exactly for the table of contents and take great care in
choosing these words. The table of contents should give
readers a word picture of the structure of the system as well
as giving them the schema of the manual.

You can use call-outs in addition to summaries and key
words as an aid to users in skimming and learning. Short
explanations can be in footnotes, but in general, regard foot
notes as a last resort. Too many writing amateurs will hide
vital information in footnotes not realizing that it is vital. 10

To organize and present material succinctly, use numbered
lists if things must be done in a specific sequence or have a
hierarchy of importance; use bullets if listed items are of equal
importance. Use rules, arrows, tabular format, examples set
off from the text graphically, symbols, screen printouts
whatever you need to use in order to provide typographical
and graphic clues to aid learning.13 Don't get cute with
symbolism-you are talking to adults after all. Remember the
layout must be consistent throughout the manual. 14 It is
meant to be scanned, and inconsistency can cause any gain in
learning speed to be lost to processing dissonance.

Some obvious things which should be mentioned: read
ability of typefaces* (e.g., choose a typeface which distin
guishes the number one, the letter el, and capital letter I) and
readability of copies (use carbon ribbon for direct printing or
photocopying and a good printwheel).

Balanced pages (typography and illustrations) are much
less disconcerting for people, and asymmetrical balancing is
preferred over symmetrical. 15 There are many rules for op
timal typeface/reader comprehension. For example, wider
columns require larger typefaces (10-12 words per line is
optimal), and 9-12 point typeface (see Figure 4) is easiest to
read. 15 The goal is to reduce that learning curve and improve
the user/computer interface.

In designing the manual, remember that form follows func
tion; 15 the manual design should come from the system design
as perceived from the system/user interface. The user may use
menu item 4 first, followed by item 2, then 1, and then 3; but
the interface is 1, 2, 3, 4. Don't try to put the manual in the
same order as the user will use it. Don't try to organize the
manual to reflect the way the user will use the system. Design
the system as the user would use it, and then take the manual
from the system. Another problem with trying to design the
manual to the user rather than to the interface is that different
users will use the system differently. A manual designed for
one user may completely confuse another.

This illustrates the difference in serif and
sans serif typefaces. It is a 10 point typeface.
9 point is slightly smaller; 12 point is slightly
larger.

This illustrates the difference in serif and
sans serif typefaces. It is a 10 point type
face. 9 point is slightly smaller; 12 pOint is
slightly larger.

Figure 4-Typeface examples. 10 point serif is on the top; 10 point sans serif
on the bottom.

* In 1975, serif typeface was read 7 to 10 words faster per minute,14 but now that
sans serif is more widely used, there may be no difference.

SCREEN DESIGN

The computer screen was designed to suit technology rather
than human needs. White print on black background is the
hardest for humans to read. 15 Text in all uppercase letters
takes more time to process and, to the average person, it
signifies alarm. Yet many screen designers continue to use all
uppercase, not only on input screens, but in screen instruc
tions and in help text.

Color Problems

\Vhen given a choice between screens with text in white and
one other color or text in white only, most users chose the
white only as being easier to use. My opinion, based on color
text studies, is that it was the choice of color and how it was
used rather than the presence of color itself. People have
different color preferences and needs. Yet most designers who
develop for color screens continue to set the colors for the user
rather than letting the user set them. Color can also be over
used, causing confusion about what is important. 16

Specialized Screen Typography

The worst mistake that developers make is with help text.
A report by the American Institutes for Research says that it
is 20% to 30% harder for users to read text on the screen than
in a manual, yet developers insist on turing help text into a
full-fledged dissertation. Keep it brief-reminders only.

Use windows rather than screen replacement. Since the
brain can carrj only a few chunks in short term memory, the
act of reading text on a replacement screen replaces the
chunks and creates a kind of "now why did I come into this
room and what was I going to do with this thing in my hand?"
feeling in the user. Use windows for help text and training
instructions (either with or without borders and background
color changes), and, if necessary, make the windows movable
so that the user can comfortably examine both the problem
and the solution together.

Many years of experimentation and study have gone into
the effective design of today's newspapers so that readers can
scan the entire page in seconds without missing a subject
covered. These design principles can also apply to the com
puter screen. Use all the textual graphics available for de
signing screens, but don't make clutter from comprehension
aids. Use reverse video, large letters, high intensity, and
underline just as you would on paper, but remember the
computer screen has more limitations than paper.

1. The computer screen is, first, unnatural. People aren't
acclimated to text that is wider than it is long, so leave
wide margins on text screens to make it appear longer. 16

2. Flashing letters are irritating,17 so use them only when
you want to irritate-such as for a system crash warning.

3. All the typeface graphics call attention and pull the eye
with varying intensity, so make certain you use the
graphics to pull it in the general direction upper left to
lower right.17 Don't make users jump around on the
screen to get the information.

Bridging the Computer-User Gap 191

4. When replacing part of the screen, leave it blank long
enough for users to realize that it has been replaced. 17
This is particularly important with novice users, as they
tend to think that computers eat their input.

5. Don't use animation on the same screen with text be
cause it detracts from the text, and the text detracts from
the animation. 17

6. Some users prefer vertical input screens; some don't
mind horizontal. However, line things up so users don't
have to search for the cursor. (It's much easier to find the
cursor on vertical screens.)

LAST WORDS

A user's interest in a system centers on information-fast,
logical, understandable, efficient processing of the user's in
formation. Users aren't directly interested in efficient hash
routines or wonderful file structures. They are interested in
how these things affect their information. This is the user
computer interface. Make certain users can track their infor
mation from input to output--easily and completely-includ
ing every change the programs make to the information.

REFERENCES

1. Hand, J.D. "Brain Functions During Learning: Implications for Text De
sign." in D.H. Jonassen (ed.), The Technology of Text: Principles for Struc
turing, Designing, and Displaying Text. Englewood Cliffs, New Jersey:
Educational Technology Publications, 1982.

2. Bereiter, e. and M. Scardamalia. "Information Processing Demand of Text
Composition." in H. Mandl, N. Stein, and T. Trabasso (eds.), Learning
and Comprehension of Text. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, 1984.

3. Ellis, H.e. and R.R. Hunt. Fundamentals of Human Memory and Cog
nition. Dubuque, Iowa: Wm. e. Brown Company, 1983.

4. Otto, W. and S. White (eds.). Reading Expository Material. New York:
Academic Press, 1982.

5. SIess, D. Learning and Visual Communication. New York: John Wiley,
1981.

6. Gagne, R.M. and L.J. Briggs. Principles of Instructional Design. New
York: Holt, Rinehart & Winston, 1974.

7. de Beaugrande, R. "Learning to Read versus Reading to Learn: A Dis
course Processing Approach." in H. Mandl, N. Stein, and T. Trabasso
(eds.), Learning and Comprehension of Text. Hillsdale, New Jersey:
Lawrence Erlbaum Associates, 1984.

8. Pace, A.J. "Analyzing and Describing the Structure of Text." in D.H.
Jonassen (ed.), The Technology of Text: Principles for Structuring, De
signing, and Displaying Text. Englewood Cliffs, New Jersey: Educational
Technology Publications, 1982.

9. Carroll, J.M. and R.L. Mack. "Learning to Use a Word Processor: By
Doing, by Thinking, and by Knowing." in J.e. Thomas and M.L.
Schneider, Human Factors in Computer Systems. Norwood, New Jersey:
Ablex Publishing, 1984.

10. Schneiderman, B. Software Psychology Human Factors in Computer and
Information Systems. Cambridge, Massachusetts: Winthrop Publishers,
1980.

11. Graesser, A.e. and J.R. Rika. "An Application of Multiple Regression
Techniques to Sentence Reading Times." in D.E. Kieras and M.A. Just
(eds.), New Methods in Reading Comprehension Research. Hillsdale, New
Jersey: Lawrence Erlbaum Associates, 1984.

12. Rayner, K. and P.J. Carroll. "Eye Movements and Reading Comprehen
sion." in D.E. Kieras and M.A. Just (eds.), New Methods in Reading
Comprehension Research. Hillsdale, New Jersey: Lawrence Erlbaum Asso
ciates, 1984.

192 National Computer Conference, 1987

13. Waller, R. "Text as Diagram: Using Typography to Improve Access and
Understanding." in D.H. Jonassen (ed.), The Technology of Text: Prin
ciples for Structuring, Designing, and Displaying Text. Englewood Cliffs,
New Jersey: Educational Technology Publications, 1982.

14. Hurtley, J. "Designing Instructional Text." in D.H. Jonassen (ed.), The
Technology of Text: Principles for Structuring, Designing, and Displaying
Text. Englewood Cliffs, New Jersey: Educational Technology Publications,
1982.

15. Moen, D.R. Newspaper Layout and Design. Ames, IA: The Iowa State
University Press, 1984.

16. Christie, B. Face to File Communication: A Psychological Approach to
Information Systems. New York: John Wiley, 1981.

17. Merrill, P.F. "Displaying Text on Microcomputers." in D.H. Jonassen
(ed.), The Technology of Text: Principles for Structuring, Designing, and
Displaying Text. Englewood Cliffs, New Jersey: Educational Technology
Publications, 1982.

Prospects for improved user productivity:
A visual perspective

by ROBERT ROTHBARD
Private Practice, Optometry
Santa Ana, California

ABSTRACT

Computer-related vision problems and complaints are common. Ergonomic im
provements reduce such complaints by one third. All remaining problems are
attributable to the visual limitations of the individual operator. These problems
include poor ability to perform sustained near vision work, inadequate ocular
motor control, poor or inefficient control of focusing, aiming and teaming of the two
eyes, inefficient processing of visual information, and other productivity-reducing
effects of visually-induced stress. Optometric solutions are presented in this paper.

193

Prospects for Improved User Productivity: A Visual Perspective 195

INTRODUCTION

A significant finding of the Panel on Impact of Video Viewing
on Vision of Workers of the National Academy of Science was
that "The symptoms of ocular discomfort and difficulty with
vision reported by some workers who use VDTs appear to be
similar to symptoms reported by people performing other
near-visual tasks."l

Computer-related vision changes and problems, as well as
complaints about visual discomfort are common, yet poorly
understood. Computer users, their managers, unions, and
other groups lobbying for new laws regulating VDTs are func
tioning without adequate information.

Yet a rich body of clinical and research literature on vision
does exist and explains the source of vision problems and
changes in vision that afflict at least half of all computer users.
More important, the literature presents and explains a variety
of regimens that can halt or prevent those problems.

The purpose of this paper is to provide an overview of the
literature and its clinical implications and to relate that infor
mation to the prospects for improving user productivity.

NEARPOINT VISION TASKS: A RECENT PROBLEM

Beginning about sixty years ago, optometrists noticed that
traditional treatment of common visual problems (near
sightedness or myopia in particular) seemed to increase both
the rate of progression and the total amount of myopia. At
that time, the number of people developing myopia, astigma
tism, and other vision conditions was increasing rapidly.

Clinicians noted that the time of onset was beginning to
change from juvenile years to the late teens and into the twen
ties. The data were inconsistent with genetic origin theories.
Clinicians saw that vision deterioration is usually associated
with periods during which the individual performed near
vision tasks for prolonged periods. Other critical factors in
cluded: a confined visual target (the page of a book or a VDT
screen) and high attentional demand (the material must be
understood) .

Skeffington, a leading vision theorist who integrated scien
tific and clinical data, noted that sharp eyesight was just one
of many factors in vision. He suggested a more comprehensive
model thirty years before modem brain studies confirmed his
ideas.2

Skeffington proposed that vision is an understanding or
perception which emerges from a process which involves fo
cusing, fine ocular motor control (eye aiming and teaming),
combining the images of both eyes, comparing visual input
with memories of prior experience, and integration of input
from all the other senses. 3

Nearly all people are born with the mechanism for clear
distance eyesight, but the precision and efficiency (speed of
operation) of vision is determined largely by the level of fine
ocular-motor control (visual skill) developed during early vis
ual experiences. Skills for teaming the two eyes (binocular
vision) begins to develop beginning at about four months of
age.4

Behavioral optometrists and others have demonstrated that
the nature and quality of early visual experience determines
the way each individual adapts to cope with near vision tasks.
Virtually no effort (oculomotor control) is required to keep
the images of the two eyes aligned on distant objects. Near
vision, on the other hand, requires a complex and precise
interaction of focusing, aiming and alignment before visual
information can be taken in.

A demonstration of the difference in visual skill and effort
required for distance versus near vision work is appropriate
here. To do this experiment, hold both arms straight out in
front of you, then point both index fingers upward. Next,
without moving your head, quickly glance back and forth from
one finger to the other. Notice the effort and sensations asso
ciated with this eye movement.

Complete the experiment by bringing both hands toward
you, with forefingers still pointed upward. The distance
should be about 8 to 10 inches. Without moving your head,
glance again from finger to finger. Note the added effort
required this time, and notice any sensations of pulling or
straining near the eyes.

Although the sensations are exaggerated, this demonstra
tion provides personal experience of the effort involved in the
fine motor control required to focus, aim, and align the eyes.

This is the process that occurs five times per second for a
person reading at about 300 words per minute. It is a skill
which is learned by trial and error from infancy to about age
six.

Why is distance vision so natural? Throughout man's evo
lution, distance vision was a key to survival-hunting, evasion
of danger, and most other visually-guided tasks were distance
vision tasks. Although short periods of near visual effort were
also part of living, highly developed distance vision gave the
individual a considerable survival advantage.

Within the last 100 years, however, the conditions of life
have changed drastically. The industrial, post-industrial, and
now the information, ages require that workers do an ever
increasing amount of near vision work. The impact of this shift
has been profound. The percentage of the population with
myopia, for example, has increased from about 12 to 14 per
cent at the beginning of the century to an estimated 36 percent
in the 1980s.5

This was most clearly revealed by Young and Baldwin's
study of Eskimos at Point Barrow, Alaska. Among the gener-

196 National Computer Conference, 1987

ations raised before compulsory education imposed near
vision (reading) tasks, only a few individuals were near
sighted. Among the generations required to read, nearly 60
percent were myopic. 6

Myopia is seen as one of several adaptive responses by an
individual to the low but persistent levels of stress which is
produced by near vision work.

As viewed here, stress is not a psychological feeling. It is a
measurable physiological process; a flood of adrenal system
chemicals to prepare the body for fight or flight. These
changes are linked to increased absenteeism rates of VDT
users.7 Studies repeatedly show that prolonged, low levels of
stress trigger many physical and behavioral changes (adapta
tions) as the individual attempts to cope with the source of
stress: 8

Sperry states that investigation of the neurological and cyto
logical structure of the brain reveals nothing but a mech
anism for control of the musculature. Muscles only take
orders. If there is a physiological drive ... [i.e., pressure
from a supervisor to complete the computer task, or a drive
to achieve within the VDT user] ... and if that drive cannot
be satisfied by movement, the person will either a) cease the
activity to escape (avoid discomfort induced by) the task, b)
lower the achievement and understanding (reduce the per
formance and accuracy), c) distort the structure itself (any
temporary or permanent changes in vision), or d) ... some
combination of these three alternatives.9

RESOLVING OR PREVENTING
COMPUTER-RELATED VISION PROBLEMS

A recent study by the Data Entry Managers Association
(DEMA) found that about 73 percent of VDT operators had
vision-related complaints. This was up from 69 percent the
year before. The lowest level of complaints we have found is
in a Bell Laboratories study comparing VDT workers with
operators doing the same task, but with paper materials. Bell
researchers found that about 52 percent of VDT users had
vision-related complaints compared to about 41 percent for
the control group working with paper.

These data suggest that although environmental factors
playa role in vision changes and complaints, even the installa
tion of extensive ergonomic improvements will not resolve
what are in reality the visual limitations of individual
operators.

Behavioral optometrists use two major tools to deal with
visual limitations and problems: lenses and visual perfor
mance enhancement training (visual training, or VT).

VISUAL TRAINING TO DEVELOP VISUAL SKILLS

As with any learned process, performance can be improved.
Visual training, frequently mislabeled "eye exercise," is a
programmed series of activities that provides visual feedback
to the person in training about how well he or she is focusing
and aiming.

Training helps the person overcome one of the most subtle

but significant effects of visual stress, called "lag" by eye
doctors. In simple terms, it means that a person is focusing at
one distance, but aiming the eyes at another. This disagree
ment means the person must (1) see either an un sharp single
image, (2) suppress the images of one eye to avoid seeing
double, or (3) attempt to match focusing with aiming by in
creasing effort-which increases the visual stress, which in
turn increases the lag.

Each of these responses diverts attention from under
standing what is being read to struggling to overcome the
deficient visual skill, thus reducing user performance speed
and accuracy. Visual stress increases and a vicious cycle
ensues.

Visual training disrupts the habitual ocular-motor (focusing
and aiming) patterns of individuals with poor visual skills. The
activities of training provide feedback which enables the per
son to develop more accurate and precise motor control pat
terns and to reduce the effort required. Reduced effort dimin
ishes the visual stress reaction. 10 In terms of behavior, the
individual is able to perform visual work more quickly and
accurately. This produces an increase in on-the-job perfor
mance.

Symptomatic relief of headaches; eyestrain; intermittent
blurred eyesight; and certain neck, back, and shoulder dis
comforts usually begins within the first few weeks of training.

Unfortunately only 3,000 optometrists and a few hundred
ophthalmologists perform VT. If all VDT users with deficient
vision skills sought help, there would not be enough skilled
training specialists to provide it. In-plant group training may
be one way to resolve this dilemma. Alternatively, a "train the
trainer" program supervised by a behavioral optometrist but
with visual training conducted by company staff may be
viable.

LENSES, A TOOL FOR THE JOB

There are two major approaches to prescribing lenses. "Cor
rect the refractive error" (CRE) is the most common. It as
sumes that the findings of an examination (refraction) show
the amount of lens power needed to return the patient to
maximum distance acuity (sharpness). Emmetropia, the
norm, is commonly written as 20/20 eyesight. Although some
CRE-oriented doctors also test for eye teaming and sharpness
of near vision, the theory behind CRE does not provide for
the effects of stress.

CRE often ignores nearpoint vision needs. In myopia, for
example, CRE lenses clear distance but may also recreate the
visual conditions which were present when myopia began. A
Southern California College of Optometry study compared
100 records in both a CRE and a behavioral practice. Over a
ten year span, CRE records showed an average myopic in
crease of nearly 3.50 diopters. Behavioral records showed less
than 1.00 diopter of increase.

The behavioral model focuses on how a person's visual
system responds to nearpoint tasks. Distance compensation
lenses may be prescribed, but lenses for near vision tasks are
always offered, sometimes as bifocals. VDT users often re
ceive a separate (single vision) pair of spectacles specifically
for computer work.

Prospects for Improved User Productivity: A Visual Perspective 197

Behavioral nearpoint lenses prescriptions are based on a
complex, precise formula which takes into account the way
the individual responds to visual stress (case type). Individuals
with poor visual skills are extremely sensitive to small differ
ences in lens power and will often reject (find it impossible to
wear) lenses just .25 to .50 diopter stronger than the most
helpful lens.

Considerable research has been done over the years on the
stress-relieving qualities of nearpoint lenses ,11 including stud
ies which show that behaviorally prescribed lenses produce
positive improvements in posture and work performance.12

Behaviorally prescribed nearpoint lenses often closely
match the dioptric measure of an individual's lag. This sug
gests that the lens works by helping with the task of bringing
the point of focus and convergence into agreement. This elim
inates the lag, which seems to be a primary source of visually
induced stress.

CONCLUSION

The National Academy of Science study of VDT -related prob
lems suggests that although the computer itself does not cause
vision problems, workers with previously-existing vision prob
lems are likely to experience difficulties. In the United States,
about 54 percent of all people wear lenses to compensate for
vision problems. Another 10 to 12 percent of people would
benefit from, but do not wear, lenses. Thus, at least two-thirds
of people have previously-existing vision problems.

One response to visual stress is to avoid visual work. But as
more and more jobs become computer-centered, avoidance
may not be possible. These people are unlikely to stay on the
job for long and may be a source of rapid employee turnover.

For those employees already experiencing any of a variety
of computer-related vision problems, behavioral optometry
offers some practical solutions.

REFERENCES

1. "Video Displays, Work, and Vision," National Academy of Science, 1983,
p.2.

2. Wiesel, Thorsten N. The Post Natal Development of The Visual Cortex and
the Influence of Environment, Harvard Medical School, Department of
Neurobiology, (Nobel Prize for Medicine, 1981) Nobel Foundation, Copy
right, 1982.

3. Flax, Nathan. "Functional Case Analysis: An Interpretation of the Skef
fington Model." American Journal of Optometry and Physiological Optics,
62, 6, pp. 365-368.

4. McDermott, Jeanne. "Researchers Find There Is More to Vision Than
Meets the Eye," Smithsonian, April, 1985, pp. 96-107.

5. Figure obtained from the Optometric Extension Program Foundation,
Santa Ana, California, 1985.

6. Young, Francis, W.R. Baldwin, and R.A. Box. "Refractive Errors Within
Eskimo Families," American Journal of Optometry, 46 (1969) 1, pp.
676-685.

7. Frank, Arthur L. Effects on Health Following Occupational Exposure to
Video Display Terminals. Environmental Sciences Laboratory, Department
of Community Medicine, Mount Sinai School of Medicine, New York,
1983.

8, Selye, Hans. Stress Without Distress, New American Library, Signet Books,
1975.

9. Hendrickson, Homer H. The Vision Development Process, Optometric Ex
tension Foundation, 1969, pp. 8.

10. Birnbaum, Martin H. "Symposium on Nearpoint Visual Stress." American
Journal of Optometry and Physiological Optics, 62, 6, pp. 361-364.

11. Bibliography of Stress-relieving Lens and Visual Training Research, OEP
Foundation, Santa Ana, California, 1985.

12. Greenspan, Steven B. A Study of Near Point Lenses: Effects on Body
Posture and Performance. illinois College of Optometrj and Illinois Insti
tute of Technology Department of Psychology, Chicago, 1975.

Software project stress versus quality and productivity

by SARAH L. SULLIVAN and HOWARD HILL
Illinois Institute of Technology
Chicago, Illinois

ABSTRACT

Managing software project stress is the key to improving software quality and
productivity. Software development is a complex intellectual process involving pre
cise communication of abstract concepts across multiple discipline boundaries.
Optimum stress maximizes communication effectiveness and the ability to deal with
complexity.

199

INTRODUCTION

Software development is a complex intellectual process in
volving precise communication of abstract concepts across
multiple discipline boundaries. Stress produces symp
toms1,2,3,4,5 which interfere with this process.

Stress symptoms fall into several categories. Two of these
categories, cognitive and behavioral, reduce quality and prod
uctivity potential by reducing the ability to handle complexity
and by reducing communication effectiveness.

Cognitive stress symptoms include decreased concentra
tion, decreased creativity, indecisiveness, intolerance for am
biguity, mental confusion, memory problems, poor judge
ment, and tunnel vision. These symptoms reduce the ability of
the stressed person to formulate and communicate abstract
concepts, thus impairing intellectual function.

Behavioral stress symptoms reduce the ability of the
stressed person to communicate because these symptoms in
terfere with the processes of listening, speaking, reading, and
writing. These symptoms include anger, anxiety, increased
anti-social acts, increased grievances, overreacting to ex
ternal stimuli, reduced interpersonal skill, reduced teamwork
ability, and strained interpersonal relationships.

This paper describes the effect of stress on software project
complexity and communication and it shows the relationship
between stress and performance. It also identifies job sources
of stress on software projects and proposes suggestions for
managing this stress.

STRESS AND COMPLEXITY

High levels of complexity abound on software projects. Soft
ware engineering has focused on the development of struc
turing techniques to master this complexity. 6 These tech
niques apply to various phases of development and classes of
problems; they produce layers of system architecture in multi
ple levels of detail; they represent oblique levels of abstraction
and frames of reference; and they reflect differing develop
ment styles, cultures, and philosophies. These techniques
help to decompose complexity in an orderly fashion so that
humans can handle the complexity without errors. But stress
reduces the ability to use these structuring techniques effec
tively. Thus, software project stress counters the effect of
software engineering advances.

STRESS AND COMMUNICATION

Communication is the vehicle for conveying quality and pro
ductivity objectives. It is also the vehicle for conveying and
verifying the abstractions developed through structuring tech-

Software Project Stress vs. Quality and Productivity 201

niques. Certain techniques aid the communication process by
requiring formal structured documents.

Communication problems7
,8,9,10 are often encountered in

the work environment. These problems arise when communi
cating abstract concepts, complex interrelationships and inter
dependencies, and when communicating across discipline
boundaries. Problems also arise from cultural differences, de
fensiveness, distractions, interruptions, jargon, poor listening
skills, power and status, and sociological filters. These prob
lems interfere with the sender's encoding and sending of the
intended message and with the receiver's decoding and per
ception of the message received.

Stress intensifies existing communication problems and
adds new ones. Bolton and Bolton1 describe this reduction of
adaptive behavior in interpersonal interactions as:

. .. the predictable, unconscious shift of behavior to more ex
treme, rigid, and nonnegotiable forms in response to a high level
of stress. Backup behavior is usually counterproductive for the
person using it and very hard on his relationships It under
mines motivation; raises other people's stress thereby under
cutting their productivity; and may ultimately generate more
stress for the person exhibiting the backup behavior.

STRESS AND PERFORMANCE

The relationship between stress and performance is an in
verted U-shaped curve3,4 with peak performance occurring at
the optimum stress point.

The optimum stress point is evidenced by optimum stress
indicators.1,3,4,11 When a person's stress level is at the opti
mum stress point these indicators are present. Optimum stress
indicators include accurate judgement, composure during
crisis, high energy, high morale, high motivation, improved
memory and recall, interpersonal competence, mental alert
ness, optimistic outlook, sharp perception, thorough analysis
of problems, and the ability to work long hours without tiring.
Thus, people working at their optimum stress point can per
form at their highest potential for quality and productivity.

As the level of stress moves away from the optimum stress
point, cognitive and behavioral symptoms of stress increase.
The severity of stress symptoms intensifies under prolonged
exposure to stress. This cumulative stress comes from modern
living2 and life changes12 as well as from the job.3

JOB SOURCES OF SOFTWARE PROJECT STRESS

Job sources of stress3, 13, 14 include ambiguity, change, conflict,
mismatch between person and job, responsibility, uncer
tainty, unhealthy interpersonal relationships, and work over
load. Organizations unwittingly create stress. This reduces

202 National Computer Conference, 1987

the quality and productivity of the work performed by the
organization.

Something that is stressful for one individual may not be
stressful for others. Each individual has a unique cultural and
educational background along with a unique collection of per
sonal interests, biases, values, skills and aptitudes. Some per
sonalities are more stress prone. Personality factors include:
achievement needs, recognition needs, growth needs and
social needs.

Couger and Zawacki15 found that computer professionals
have high growth needs and Hackman 16 found that people
with high growth needs perform best in jobs that have a high
motivating potential. Job design affects motivating potential
as a function of the core job dimensions as follows:

[

Skill Task Task]
Motivating = Variety + Identity + Significance
Potential

3
Job

x Autonomy x Feedback

A mismatch between growth need strength and motivating
potential creates unnecessary stress.

Couger and Zawacki 15 also found that computer profes
sionals have the lowest social needs among professionals. This
is consistent with job demands that require long periods of
intense concentration to cope with complexity. Buie17 found
that the computer profession attracts a disporportional num
ber of introverts. Stressed by being in the company of others,
the introvert prefers to work on hislher own.3 Thus, the com
puter professional's preference to avoid lengthy large group
meetings and to have an individual private office with walls
and a door is really a preference for an environment condu
cive to peak performance. One-on-one and small group meet
ings (one hour or less) in a quiet room free of distractions,
facilitates the precise communication of complex, abstract
concepts without taxing the computer professional's low social
needs.

Software projects are particularly sensitive to change be
cause change taxes the low social needs of computer profes
sionals by demanding increased social interaction. The change
process increases ambiguity about current job assignments
while increasing uncertainty about the future. Frequent dras
tic change leads to turnover. Turnover increases time pres
sures and work overload. The temporarily reduced work force
spends precious time recruiting and training new team mem
bers as the project re-enters the teambuilding process of form
ing, storming, norming, and performing. 18 A high rate of task
reassignments and turnover increases the percent of time the
project spends in the forming, storming and norming phases.
These phases require more social interaction than the per
forming phase.

Just about any change generates more work and more
stress. Change is inevitable. But, continual rapid uncon
trolled change produces prolonged stress and intense stress
symptoms.

MANAGING SOFTWARE PROJECT STRESS

Managing software project stress improves project perfor
mance by bringing the stress level of all project members to
within an acceptable tolerance of their optimal stress point.
Managing project stress is a three step process of tailoring and
implementing stress reduction changes while minimizing
change stress. The first step is to recognize stress through
observation of symptoms. The next step is to identify the
stress source(s). And the third step is to minimize the stress
producing potential of stress sources through training, job
design, project management, and change management. This
is an ongoing iterative process.

Training reduces stress by developing needed skills. Par
ticipative workshops with structured group exercises that de
velop interpersonal skills while activating knowledge are su
perior to the traditional classroom lecture approach.

Job design reduces stress by engineering the job to fit the
worker. On every project there is more than one way to dis
tribute the work among team members. The distribution of
work affects the complexity of the intra-project interfaces
(both technical and interpersonal).19 Here software en
gineering structuring techniques can be applied to define dis
crete work modules with minimal interfaces and high visibility
to produce jobs with high motivating potential. The job
design can be further tailored by matching the skills, social
needs, and growth needs of individuals to role(s) and
responsibilities.

The responsibility of the project management role is to
keep a project on track by producing schedules and establish
ing budgets, by acquiring and allocating resources, by moni
toring progress, and by implementing corrective action.
Whether the corrective action relieves stress or creates more
stress depends on the process of assessing and implementing
change.

Change managemene6
, 20, 21 facilitates the change process of

unfreezing, changing, and refreezing. People tend to resist
change. The following change management techniques help to
overcome this resistance:

1. Plan for change.
2. Prepare ahead of time for unexpected problems.
3. Confront difficult problems early.
4. Be flexible. Someone else's approach may be more

effective.
5. Encourage participation. Change implementation will

be smoother when people buy in ahead of time.
6. Stop the rumor mill by keeping people informed. Par-

tial information is better than no information.
7. Avoid surprises.
8. Propose the change as an experiment.
9. Let others recognize the need for change.

10. Let others have control of their time by letting them
develop their own change timetable.

Managing software project stress maximizes quality and
productivity by managing stress sources to minimize the pres
ence of cognitive and behavioral stress symptoms.

SUMMARY

Since complexity and communication are fundamental com
ponents of software projects, and since stress reduces both the
ability to deal with complexity and the ability to communicate
effectively, it follows that stress reduces the quality and pro
ductivity potential on software projects. Managing software
project stress is therefore a key to improving quality and pro
ductivity.

Management techniques that allow software professionals
to achieve and maintain optimum stress produce peak per
formers. This enhances the ability to simplify complexity into
elega...T1t solutions that are less costly to develop and easier to
debug. It also enhances communication effectiveness, which
promotes good rapport with clients, reduces tension, im
proves job satisfaction, reduces errors, and facilitates solving
the right problem.

Managing stress on software projects enables people to
work smarter.

REFERENCES

1. Bolton, Robert and Dorothy Grover Bolton. Social Style/Management
Style. New York: AMACOM, 1984.

2. Charlesworth, Edward A. and Ronald G. Nathan. Stress Management. New
York: Atheneum, 1984.

3. Forbes. Rosalind. Corporate Stress. New York: Doubleday, 1979.
4. Ivancevich, John M. and Michael T. Matteson. "Stress and Performance."

in Richard M. Steers and Lyman W. Porter (eds.), Motivation & Work
Behavior (3rd ed.). McGraw-Hill, 1980.

5. Schuler, Randall S. "Definition and Conceptualization of Stress in Organi
zations." in Henry L. Tosi and W. Clay Hamner (eds.), Organization

Software Project Stress vs. Quality and Productivity 203

Behavior and Management (4th ed.). Columbus, Ohio: Grid Publishing,
1985.

6. Martin, James and Carma McOure. Structured Techniques for Computing.
New Jersey: Prentice-Hall, 1985.

7. Allen, T. Harrell. "How Good a Listener are You?" The Toastmaster, 42
(1976) 10, pp. 5-8.

8. D'Aprix, Roger. Communicating for Productivity. New York: Harper &
Row, 1982.

9. Foltz, Roy G. Management by Communication. Philadelphia: Chilton,
1973.

10. Wells, Theodora. Keeping Your Cool Under Fire: Communicating Non
Defensively. McGraw-Hill, 1980.

11. Garfield, Charles. Peak Performers. New York: William Morrow, 1986.
12. Holmes, Thomas H. and Richard H. Rahe. "The Social Readjustment

Rating Scale." Journal of Psychosomatic Research, 11 (1967), pp. 213-218.
13. Iva.."1cevich, John M., H. Albert Napier, a.."1d James C. Wetherbe. "An

Empirical Study of Occupational Stress, Attitudes and Health Among In
formation Systems Personnel." Information and Management, 9 (1985),
pp.77-85.

14. Saleh, Shoukry D. and K. Desai. "Occupational Stressors for Engineers."
IEEE Transactions on Engineering Management, EM-33 (1986) 1, pp. 6-11.

15. Couger, J. Daniel and Robert A. Zawacki. Motivating and Managing Com
puter Personnel. New York: John Wiley, 1980.

16. Hackman, J. Richard. "Work Design." in Richard M. Steers and Lyman
W. Porter (eds.), Motivation & Work Behavior (3rd ed.), New York:
McGraw-Hill, 1980.

17. Buie, Elizabeth A. "Jungian Psychological Type and Programmer Team
Building." Proceedings of the IEEE Computer Societies 9th Inter
national Computer Software & Applications Conference, (Vol. 9), 1985,
pp. 249-252.

18. Licker, Paul S. The Art of Managing Software Development People. New
York: John Wiley, 1985.

19. Weinberg, Gerald M. The Psychology of Computer Programming. Van
Nostrand Reinhold, 1971.

20. Huse, Edgar F. "Organization Development Interventions." in Henry L.
Tosi and W. Clay Hamner (eds.), Organizational Behavior and Manage
ment (4th ed.). Columbus, Ohio: Grid Publishing, 1985.

21. Schermerhorn, John R. Management for Productivity. New York: John
Wiley, 1984.

Computer education in the United States of America:
State policy on training, instruction, and control

by GARY D. BROOKS and BRENT EDWARD WHOLEBEN
University of Texas
El Paso, Texas

and
SANDRA BOSWELL
EI Paso Public Schools
El Paso, Texas

ABSTRACT

In April 1985 , a study was initiated to identify, define, and interpret national trends
related to state-based priorities for computer education instruction at the elemen
tary and secondary levels of American public education. Information was solicited
from state departments of education, state senate education committees, and state
legislative or general assembly committees on education policy. The four general
issues under study were concerned with existing or pending state legislation or
education policy related to: computer literacy and computer science curriculum for
K-12 public schools, state certification requirements for teachers who use com
puters in the classroom, regulations concerned with the training by state teacher
education institutions of computer science or literacy teachers, and rules or stan
dards related to ethical considerations for the use of computers in education. A
six-month follow-up was completed in December 1985. A critique of the formal
materials received from the states formulates a current national policy perspective
related to curriculum, certification, training, higher education involvement, and
ethical standards for the deployment of computers in American public education.

205

Computer Education in the United States: State Policy 207

INTRODUCTION

During April 1985, all state departments of education, state
senate education committees, and state legislative or general
assembly committees on education policy were contacted for
information on four issues relevant to the use of computers in
public and private elementary and secondary education.
These four issues were concerned with existing or pending
state legislation or education policy related to: (1) computer
literacy curriculum for K-12 public schools, and similar curric
ulum guidelines or related information for higher education;
(2) state certification requirements for computer literacy
teachers, or general classroom teachers who use computers in
their classes; (3) regulations concerning the training by state
teacher education institutions, of computer science teachers;
and (4) rules or general guidelines related to the ethics asso
ciated with the use of computers as an instructional medium
in the classroom.

Respondents typically replied with (1) a detailed discussion
of their state's attitude and progress regarding each of the four
areas, and (2) documentation in the form of policy manuals,
curriculum guides, and copies of attempted, pending, and
enacted legislation germa.'le to the foci of this study. A six
month follow-up study was completed in December 1985 to
update the material collected earlier.

GENERAL METHODOLOGY

Each chief state school officer and the individual chairpersons
of the various state senate and house education committees
were contacted directly, and invited to participate in the
study. The interpretive findings of this study are representa
tive of contributed state-level responses from all states, with
the exception of Alabama (AL), Delaware (DE), and South
Dakota (SD), which either declined participation or provided
unusable responses for inclusion in the study. Two earlier
interim reports, one to the American Association of Colleges
of Teacher Education in February 1986, and the other to the
Association for Educational Data Systems in April 1986, did
not contain information from New Mexico. A special inquiry
resulted in additional information, which has been included in
this final report.

Five areas of information aggregation were given priority in
the analysis: (1) curricular content and focus related to com
puter literacy and computer science instruction, (2) state
certification of computer-discipline teachers, (3) state guide
lines related to policy or regulations which address the com
puter literacy needs for the pre service and inservice training
of teachers, (4) recognized involvement or participation of
teacher education institutions in the preparation of both com-

puter literate as well as certificated computer literacy and
computer science teachers, and (5) state recognized standards
or guidelines related to the ethics of instructional computing.

All supporting documentation was· reviewed for specific
components related to the study. Structured data coUection
and aggregation instruments were designed specifically for
this study. For each item of research interest, at least two
individuals reviewed the materials independently in order to
maintain inter-rater reliability.

The investigators in this study have made every effort to
sustain optimal levels of validity and reliability given the nor
mal constraints of the literacy analysis methods employed in
this research. All findings, interpretations, and conclusions
can be documented from the formal materials and respondent
comments received from each state entity. Individual requests
for specific clarification, preferably in writing, are welcomed
by the principal investigators.

ANALYSIS AND RESULTS

The results of this national policy perspective on computer
literacy and computer science instructional guidelines across
the United States are presented in two parts. First, an analysis
of each state's policy concerning each of the major foci of this
study is summarized: curriculum, teacher certification, teacher
training, teacher education institutional involvement, and
ethical standards. Second, a detailed analysis of each state's
curriculum for computer literacy instruction, where applica
ble and available, is summarized by instructional emphasis
and state preference.

State Policy on Curriculum

A total of 27 states have developed or enacted state-level
guidelines for u~e by local school districts. Due to decen
tralized authority over the curriculum in many states, most of
these guidelines are offered simply as recommendations, or
"model programs," for district consideration. The status of
state-level guidelines for curriculum relevant to computer liter
acy and computer science instruction is displayed in Table 1.

The supporting documentation received indicates that at
least 12 states (AK, CT, HI, ID, NE, NC, ND, RI, UT, VT,
VA, and WA) have enacted or are in the process of developing
computer literacy/science curriculum guidelines for both ele
mentary and secondary schools, namely, K-12 orientation.
Eight states prefer a limited secondary (grades 9-12) curricu
lum emphasis, while four states prefer a primary or elemen
tary school orientation (either K-8 or 7-8). Specific curricular
guidelines (i.e., specified curricular objectives with demon
strable individual performance requirements) exist for 20

208 National Computer Conference, 1987

TABLE I-Status of state-level guidelines for curriculum relevant
to computer literacy and/or computer science instruction

Alabama Montana
Alaska E 1-12 Nebraska K-12
Arizona Nevada E K-8
Arkansas E 3-10 New Hampshire E 9-12
California 9-12 New Jersey
Colorado New Mexico
Connecticut E K-12 New York E 7-8
Delaware North Carolina E K-12
Florida E 3-11 North Dakota E K-12
Georgia E 9-12 Ohio
Hawaii E K-12 Oklahoma
Idaho K-12 Oregon
Illinois Pennsylvania
Indiana Rhode Island E K-12
Iowa South Carolina E 9-12
Kansas K-8 South Dakota
Kentucky E 9-12 Tennessee E 7-8
Louisiana E 9-12 Texas E 7-8
Maine 9-12 Utah E K-12
Maryland 9-12 Vermont E K-12
Massachusetts Virginia E K-12
Michigan E 9-12 Washington K-12
Minnesota E K-12 West Virginia E
Mississippi Wisconsin E 9-12
Missouri Wyoming

"E" = Exists or Pending
"I" = Attempted or Introduced

K-12 = Kindergarten through 12th Grade, Inclusive

states (AK, AR, CN, FL, HI, KY, LA, NY, NH, NY, NC,
ND, RI, SC, TN, TX, UT, VT, VA, and WI). The remain
ing 7 states have only very general statements of goals, or
alternatively, are still in the delineation stages of curriculum
development.

State Policy on Certification

Eighteen states responded with information regarding cur
rent or upcoming state certification considerations for com
puter literacy and computer science teachers. For these states,
the main between-state differences centered around whether
certification was perceived as mandatory, and whether formal
training in computer science was considered necessary. The
status of state-level guidelines regarding teacher certification
for computer literacy and computer science instructional
licensure is displayed in Table II.

From supporting documentation received from these states,
6 states (KS, KY, NC, OK, UT, and WI) have designated
formal instruction as mandatory. although 2 other states (AK
and IA) are considering a similar strategy. TX was the only
state to indicate it required a test to receive certification. This
practice was suspended after the Spring of 1986, but is cur
rently being reinstituted as part of the overall teacher com
petency examination (ExCET) system. The remaining 9 states
which have considered state certification demonstrate a pref-

erence to rely upon local school district discretion for deter
mining certification standards, if any, for teaching computer
science or literacy.

State Policy on Teacher Training

Twenty-eight states responded with information regarding
current policy or future preferences for training teachers in
the areas of computer literacy and science. For these states,
the main differences centered around the orientation for
inservice versus preservice instruction, and whether such
instruction should be mandatory for any or all computer
teachers and users. The status of state-level guidelines related
to teacher training provisions for computer literacy and com
puter science instructional methods is displayed in Table III.

From supporting documentation received from these states,
a total of 13 states prefer an inservice orientation, while 12
states prefer a preservice form of teaching training. HA and
UT use both preservice and inservice programs. Not less than
17 states (AK, CT, HI, ID, IL, IN, CA, MN, MT, NE, NY,
NC, TX, UT, VA, WI, and WY) demonstrate a preference
for both elementary and secondary training opportunities.
CT, HI, KS, KY, LA, ND, and OK require pre service train
ing (usually a major or a minor) in computer science or a
related field. The other fields include math, science, or busi
ness, and the requirement applies chiefly to secondary
teachers. Furthermore, a total of 7 states (KS, MI, MO, MS,
MT, UT, and WY) demonstrate an interest in mandatory
training, though not always including the full K-12 grade level
range. LA, MO, TX, UT, and WA require, or are planning to
require, computer training as part of the general teacher
certification at the pre service level.

State Policy on Teacher Education Involvement

The extent of involvement on the part of institutions of
higher education is naturally confounded by the existence or
nonexistence of certification standards and preservice training
requirements. However, 21 states supplied documentation,
which offers some understanding of this issue. The status of
state-level guidelines for involving teacher education institu
tions or programs in the development of computer education
curriculum and policy is displayed in Table IV.

Not less than 12 states (AK, IN, KS, LA, ME, MI, MT,
NC, TX, WA, WI, and XY) have policies related to formal
university-level involvement in computer literacy training,
while the remaining 9 states are "formally" studying similar
strategies. Ofthe 12 states, not less than 9 (AK, KS, CA, ME,
WI, MT, WA, WI, and WY) have policies designating such
involvement as mandatory. Involvement may vary from sup
plying the necessary training to acting as a formal planning
representative during the development of training guidelines.

State Policy on Ethics

Fourteen states have formal policy, guidelines, recommen
dations, or "structured planning activities" directed at the

Computer Education in the United States: State Policy 209

TABLE II-Status of state-level guidelines regarding teacher certification for computer literacy
and computer science instructional licensure

Alabama
Alaska S K-12
Arizona
Arkansas
California
Colorado
Connecticut D S K-6
Delaware
Florida
Georgia
Hawaii E K-12
Idaho
Illinois
Indiana
Iowa M P 9-12
Kansas M 9-1211987
Kentucky M 9-12
Louisiana M 9-12
Maine
Maryland
Massachusetts
Michigan
Minnesota P 10-12
Mississippi S
Missouri S

"M" = mandatory instruction
"s" = under study
"T" = test required
"." = tentative conclusion

"D" = discretionary
"p" = proposed
"E" = experience substitute

K-12 = Kindergarten through Grade 12, Inclusive

definition of operating procedures for ethical computing ac
tivities. Of these 14 states, at least 4 are still studying the need
for "policy" level guidelines. The status of state-level guide
lines related to policy governing the ethical deployment of
educational computing and computer equipment is displayed
in Table V.

Not less than 7 states (KS, ME, NC, OR, SC, WA, and
WV) have limited their interest in ethics to copyright issues.
On the other hand, CA and MN have policies that also relate
to the ethical responsibilities in software evaluation prior to
instructional deployment. NY was the only state with a formal
concern with privacy violations, although the policy guidelines
resident in WI include elements of privacy in their "human
values" criteria. The state of OK was particularly concerned
with equity issues, especially related to the concept of equal
educational opportunity. Nonetheless, WI has the most
comprehensive statement on ethics. In this state, copyright,
equity, human values (including privacy), and a legitimate
accountability for monitoring individual student performance
and progress during computer assisted instructional activities
were all viewed as major components of computer ethics.

Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico

7-12 New York
North Carolina M K-12
North Dakota E 9-12
Ohio
Oklahoma M E
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas T K-12
Utah M K-12
Vermont E 9-12
Virginia P-S 9-12
Washington
West Virginia
Wisconsin M 7-12
Wyoming

Computer Literacy Curriculum

A total of 29 states supplied interpretable documentation,
which delineated state requirements or recommendations
related to curriculum for computer literacy instruction at the
elementary and secondary school levels. In summary, of those
states who participated in the study, 19 states did not have
statewide programs or guidelines; therefore, their results
are not included in the curriculum synthesis of this study. NE
and RI reported they had specific curriculum but did not share
those documents with the investigators. Two states, IA and
WA, reported they will be publishing guidelines within the
next two years.

The curriculum documentation supplied by the states was
analyzed for (1) specificity of instructional objectives and (2)
grade level of required or recommended offering and mas
tery. Four generic areas of computer education goals were
discernibie from the curriculum, and are referred to in this
study as: computer operations, computers in society, pro
gramming and problems, and computer applications. Further
more, a total of 24 instructional objectives were synthesized

210 National Computer Conference, 1987

TABLE III-5tatus of state-level guidelines for teacher training provisions in computer literacy
and computer science instructional methods

Alabama
Alaska K-12
Arizona
Arkansas 3-8
California
Colorado
Connecticut S R K-12
Delaware
Florida
Georgia
Hawaii P R K-12
Idaho K-12
Illinois K-12
Indiana K-12
Iowa S 9-12
Kansas P M R 9-12
Kentucky P R 9-12
Louisiana C P S R K-12
Maine
Maryland
Massachusetts
Michigan P M 7-12
Minnesota K-12
Mississippi M S 9-12
Missouri C P M K-12

"P" = preservice
"M" = mandatory
"R" = related fields

K-12 = Kindergarten through Grades 12, Inclusive
"I" = inservice
"S" = under study
"e" = part of teacher certification

from these materials, and the placement of each objective was
identified across the K-12 grade continuum. The information
displayed in Table VI summarizes this analysis.

The grade levels noted on the charts may be subject to a
number of different illterpretations. Some states' responses
included the grade levels in which the subject matter was
introduced. Other responses listed the level at which mastery
was expected. Most states mentioned only the grades in which
the materials were covered. "NG" is used in the tables to
indicate that no grade level was specified. Hyphens appearing
before numbers in the charts, indicate the level at which sub
ject matter should be mastered. A hyphen following a number
indicates when the materials were introduced.

Computer operations

Keyboard skills refer to the use and understanding of the
functions of the keys on the keyboard. Vocabulary and termi
nology pertain to words and terms associated with computers
and their use, including the parts of and functions of com
puters. Operation of the computer deals with the knowledge
of all procedures and basic functions of the computer as well

Montana P M K-12
Nebraska S K-12
Nevada
New Hampshire
New Jersey
New Mexico
New York I K-12
North Carolina P I K-12
North Dakota P R 9-12
Ohio
Oklahoma P R 9-12
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee 7-8
Texas C P K-12
Utah C P M K-12
Vermont
Virginia S K-12
Washington C P K-12
West Virginia
Wisconsin S K-12
Wyoming P M K-12

as the proper care of the equipment. These procedures and
functions include turning the computer on and off, loading
software, initializing diskettes, saving data, and copying. Use
of peripherals primarily encompasses the use of printers,
modems, monitors, and disk drives. Other peripherals were
rarely mentioned. Use of software includes familiarity with
various types of software such as CAl, simulations, and CAD.
There is some overlapping with operating the computer in this
topic, since the ability to run software is a necessary element
in both categories. The ability to select appropriate software
and to react to error messages as well as the proper use of
documentation are considered under this topic.

Computers in society

History and development of computers cover the major
steps and people involved in the development of computers.
Daily uses of computers refer to the effects of and utilization
of computers on daily life. Business uses include discussions
and studies of general uses of computers in businesses. Career
opportunities, careers, pertain to the study of various fields of
business in which computer skills are useful in gaining em-

Computer Education in the United States: State Policy 211

TABLE IV-5tatus of state-level guidelines for teacher education involvement in the development
of computer education curriculum and policy

Alabama
Alaska U M
Arizona
Arkansas M
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa U G
Kansas U G MlI987
Kentucky
Louisiana M
Maine G M
Maryland
Massachusetts
Michigan U G M
Minnesota
Mississippi U G M
Missouri

"U" = preservice, undergraduate
"I" = inservice

"M" = mandatory
"G" = preservice, graduate
"S" = under study
"'" = "tentative conclusions"

ployment or achieving advancement. Ethical issues, ethics,
deals with such factors as computer crime, software protec
tion, copyright laws, issues of privacy, and misuse of computer
information. Future uses relate the many possible uses of
computers in years to come. Advantages and disadvantages
of computers include the cost of computers, the accuracy of
information gained from computer records, duplication of
information, speed of access and use, general capabilities and
limitations of computers, lack of software for specific uses,
and employment caused by computers.

Programming skills and problem solving

Writing programs includes use of languages to construct
programs, working with sub-routines, debugging programs,
and writing documentation. Learning programming languages
primarily refers to the use and understanding of LOGO,
BASIC, and Pascal. COBOL, FORTRAN, APL, PLI, RPG,
assembly and machine languages were also mentioned in
some materials. Understanding the logic of programming,
programming logic, deals with developing and using algo
rithms and flowcharts. Problem solving has to do with the use
of computers to solve specific problems. This topic includes

S

S

S
S

S

Montana U M
Nebraska U S
Nevada
New Hampshire
New Jersey
New Mexico
New York S
North Carolina U G
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas U G
Utah
Vermont
Virginia S
Washington U M
West Virginia
Wisconsin U M
Wyoming U M

the use of problem solving software and designing programs
to solve problems.

Computer applications

Word processing, spreadsheet, and data base each refer to
teaching these types of software and to students' use and
understanding of their special features. Telecommunications
deals with the uses of networking systems. Graphics pertains
to the creation and use of graphics software and graphics
programming. Robotics covers the development and study of
the uses of robotics. Sound includes the uses of voice syn
thesizers and the production of music on computers. Artificial
intelligence relates to studies and discussions of its develop
ment and possible uses.

NOTE

An annotated resource bibliography of state-source documen
tation, which serves as the research basis for this study, is
available for session attendees. Copies may be obtained from
Brent Edward Wholeben, University of Texas at EI Paso, EI
Paso, TX 79968-0567.

212 National Computer Conference, 1987

TABLE V-Status of state-level guidelines related to policy governing the ethical deployment
of education computing and/or computer equipment

Alabama Montana
Alaska Nebraska
Arizona Nevada
Arkansas New Hampshire
California C E New Jersey
Colorado New Mexico
Connecticut New York P
Delaware North Carolina C
Florida North Dakota
Georgia Ohio C
Hawaii Oklahoma Q

Idaho Oregon
Illinois Pennsylvania
Indiana Rhode Island
Iowa S South Carolina C
Kansas C South Dakota
Kentucky Tennessee
Louisiana Texas
Maine C Utah
Maryland Vermont
Massachusetts Virginia
Michigan Washington C
Minnesota C E West Virginia C
Mississippi Wisconsin C Q V M
Missouri Wyoming

"e" = copyright
"P" = privacy
"V" = human value
"S" = under study
"E" = courseware evaluation
"Q" = equity

"M" = student progress monitoring
",,, = tentative conclusions

S

S

S

TABLE VI-Summary of curriculum for computer literacy instruction, delineated by curriculum objective and grade-level of offering and mastery

AK AR CA CT FL GA HI ID KS KY LA ME MD MI MN NV NH NM NY NC ND SC TN TX UT VT VA WV WI

COMPUTER OPERATIONS
Keyboard
Terminology
Operation
Peripherals
Software

1-8
1-8
1-8
1-8
1-8

9-10 9-10 1-4 -5
9-10 9-12 K-12 -8
9-10 9-12 1-12 -3
9-10 -5

COMPUTERS IN SOCIETY
History 7-8
Daily Uses 4-8
Business Uses 4-8
Careers
Ethics
Future
Advantages

7-8
7-8

4-8

9-10 9-12 3
9-12 1-12

9-10 9-12
9-10 9-12
9-10 9-12 8-12
9-10 9-12 1-12

1-12

PROGRAMMING AND PROBLEMS

-8

5-8
5-8

5-8
9-11
8-11

Writing Programs 1-12 9-10 9-12 K-12 -11
Programming

Languages
Programming Logic
Problem Solving

1-12 9-10 9-12 K-12
7-12 9-10 7-12
4-12 9-10 9-12

COMPUTER APPLICATIONS
Word Processing 7-12 9-10 9-12 5-8
Spreadsheet 7-12 9-10 9-12
Data Base 7-12 9-12 6,8,12
Telecommunications 7-12 9-10 9-12 8-
Graphics 7-8 9-10 9-12
Robotics 7-12 9-10 7-12
Sound 7-12 9-10
Artificial Intelligence 8-

5-8

9-12 3 K-5 K-8 9-12
3--8 K-5 K-8 11-12 9-12

9-12 K-5 K-8 11-12 9-12 9-12
8-12 K-5 K-8 11-12 9-12 9-12
3--12 6-12 K-8 9-12 9-12

K-8
NG 9-12 K-12 K-3
NG 9-12 K-12 K-3
NG 9-12 K-12 3--8
NG 9-12 K-12 K-3

9-12 K-5 K-8 10-12 9-12 9-12 NG 9-12 K-12 8
K-3
K-3
8

8-12 K-5
3--12 6-9

9-12 3--12 6-9
9-12 6-9

-12 K-9

K-8 10-12 9-12 9-12
K-8 10-12 9-12
K-8 9-12 9-12
K-8

9-12

NG 9-12 K-12
NG 9-12
NG 9-12 K-12
NG 9-12 K-12
NG 9-12 K-12

8

K-8

6-9 K-8 9-12 9-12 9-12 NG 9-12 K-12

8-12 K-12
8-12 6-12 K-8 12
8-12 K-12 K-8 10-12 9-12

9-12 6-12 6-9
9-12 6-12 6-9
9-12 6-12 6-9

6-9

K-8

K-8
K-8
K-8
K-8
K-8

9-12 9-12
9-12 9-12
9-12 9-12
9-12 9-12
9-12 9-12

9-12 K-12
NG 9-12 K-12

8,K--3

9-12 K-12 8
K-12 8

9-12 K-12 8
K-12 8
K-12

9-12 K-12
K-12

9-12

9-12 NG 4-6
9-12 NG 4-6
9-12 NG K-3
9-12 10-12

K-5
K-5

5-6 9-12 7-8 K--6
K-9 9-12 7-8 7-9 1(--6
9-12 9-12 7-8 7-9 1(--6
K-9 7-8 K-6
9-12 9-12 7-8 7-9 K--6

NG 9-12
NG NG 9-12

K-8 NG NG 9-12
9-12

9-12 NG K-3 K-5 K-8 NG 9-12

9-12
9-12
9-12

9-12

9-12

NG
NG
NG 4-6
NG 4-12
NG 7-9
NG

7-9

K-5
K-5
K-9

8

K-5

9-12 9-12 7-8 7-9 7-8 2-8 NG
9-12 9-12 7-8 7-9 2-8 NG
9-12 9-12 7-8 7-9 7-8 2-8 NG

9-12 7-8 9-12
K-9 9-12 7-9 9-12 9-12 NG

9-12 7-8 7-8 2-8 NG
9-12 7-8 7-9 NG

9-12 NG 7-12 K-5 9-12 9-12 7-8 7-9 K-6 2-8

7-12 K-5 9-12 K-9 K-12 9-12
NG
NG

9-12 7-12 10-12 9-12 9-12 7-8 7-9 K--6
9-12 NG 7-12 6-9 9-12 7-8 7-9 1(--6

9-12 NG 10-12 8-12 11-12
9-12 NG 10-12 8-12 11-12
9-12 NG 10-12 8-12 11-12
9-12 10-12 8-12 11-12

10-12 9-12

7-8 7-9 7-8 K-8
7-8 7-9 7-8 4-8

7-9 7-8 5-8
7-9 7-8 5-8

7-8 7-8

NG
NG
NG
NG
NG

9-12 9-12 NG
7-9 7-8

9-12
9-12
9-12

9-12

9-12

9-12
9-12

NG 9-12
NG 9-12
NG 9-12
NG 9-12

9-12
9-12
9-12

Q
.g
~
f"+

~
trJ
0..
~
()

~ o·
~

S·
e-
o
c
S.
f"+ o
0..

~
~ o
~

en
f"+
P'
(ti

~ ,Q.

N ,.....
w

The computer and thinking skills: Rationale
for a revitalized curriculum

by MICHAEL NEUMAN
Capital University
Columbus, Ohio

ABSTRACT

Recent reports lament the devaluation of the baccalaureate degree; too often stu
dents fail to acquire the thinking skills needed after graduation. Fortunately, the
computer, besides offering utilities that increase productivity, can deliver
computer-aided instruction (CAl) that helps develop thinking skills by simulating
the mental processes of academic experts.

Liberal arts faculty sometimes dismiss CAl because they consider its algorithms
too narrow and rigid to serve as problem-solving devices. However, such algorithms
should not be viewed as capturing the essence of thinking skills, but as offering
simplified problem-solving approaches that students can grasp-approaches that
must be supplemented and even superseded by the professor in the classroom.

Despite objections, three recent trends are likely to hasten the advent of course
ware that models and develops thinking skills: improved integration of courseware
into coursework, increased attention to the ways students learn and experts think,
and the introduction of sophisticated authoring systems.

215

The Computer and Thinking Skills: Rationale for a Revitalized Curriculum 217

INTRODUCTION

Recent reports by a number of prestigious educational task
forces have brought to the attention of the American public a
concern professors have recognized for some time: the-decline
and devaluation of the undergraduate degree. The Study
Group on the Condition of Excellence in American Higher
Education, the Carnegie Forum's Task Force on Teaching as
a Profession, and the Association of American Colleges'
Project on Redefining the Meaning and Purpose of Bacca
laureate Degrees have all addressed the problem and judged
it a cause for national alarm. Among the various manifesta
tions of the decline, the one most frequently cited is this: too
often students receive their college degrees without acquiring
the thinking skills needed to direct their continuing education
or to advance in their chosen professions.

To cure our academic ills and restore vitality to the educa
tion of our undergraduates, the commissions on under
graduate education have prescribed a coherent curriculum
that subordinates the mere communication of information to
the development of a wide range of thinking skills. According
to the Carnegie Forum, the "core should develop the essential
skills of comprehension, computation, writing, speaking, and
clear thinking.,,1 Among the skills deemed most important by
the Association of American Colleges are logical inquiry and
critical analysis, the processes of literacy (writing, reading,
speaking, and listening), manipulating numerical data, under
standing the scientific method, and shaping values through
choices. Such a curriculum, according to the Association,
would constitute "the intellectual, aesthetic, and philosophic
experiences that should enter into the lives of men and women
engaged in baccalaureate education.,,2

If we accept this agenda for reform, then we must enlist all
the educational resources at our disposal. If the under
graduate curriculum must be reformed, not merely repaired,
then educators should not overlook the advantages of the
computer.

COMPUTERS AND THINKING SKILLS:
A MODEST PROPOSAL

Besides the use of computer utilities to increase productivity ,
the computer has another, more controversial use in educa
tion. Although the notion seems incongruous to some and
anathema to others, the computer can be used to guide stu
dents, step by step, through the difficult, iterative thinking
processes that characterize mastery of college-level disci
plines.

As an example, consider how a student could be taught
critical reading, one of the thinking skills most essential for a

revitalized postsecondary curriculum. According to the report
of the Association of American Colleges,2 our students

need to be taught how to read actively, arguing along the way
with every word and assertion; and how to read aesthetically and
critically, seeking the word, the expression, the exact form of
phrase or direction that catches the reader just when the reader
wants to escape ... (p. 18)

With the proper lesson, the computer can instruct the stu
dent how to read "actively"-either "aesthetically" or "crit
ically" as the student's discipline demands. Making explicit
the steps of the mental processes that an educated individual
follows when reading the primary works of a discipline, the
lesson would present a central text-a poem in a literature
course, a theorem in mathematics, a syllogism in philosophy,
an argument in debate-and then guide the student through
a careful reading. Slowly, sequentially, the lesson would high
light and explain key points, pause to explore the implications
of a phrase, and consider the rationale for analysis; in other
words, the computer would simulate the process of careful
reading the student needs to master. Furthermore the com
puter would engage the student's attention by its in;eractivity;
testing the student's comprehension through judicious ques
tions and providing direction through appropriate responses
and citations for further study.

Although we often consider speed to be the essence of the
computer's power, in this instance the power would lie in the
computer's potential for slow motion-its ability to advance
more measuredly, more circumspectly than the student is in
clined, to probe the significance of the text and to explain the
steps of the process with sufficient depth and care.

To a seasoned professor, such a lesson might seem stulti
fying in its slow pace and elementary level. The professor
might be eager to advance to topics of great pith and moment,
such as the significance of Hamlet; meanwhile the student,
just beginning an initiation into the academic discipline, needs
to master more elementary skills, such as how to read a Shake
spearean play. The professor-upholding high standards, for
getting an apprenticeship from long ago, or simply bored with
the basics-may demand the fruits of thinking skills without
helping develop and refine the student's ability to think. The
computer, which lacks the capacity for boredom and im
patience, can exercise the student at a level well below that
comfortable for the professor.

Because we learn best by doing, the computer's interactive
engagement of the student makes it a better device than a
textbook for teaching such skills. A text may offer the advan
tages of lower cost and greater accessibility, but its content
(for example, on how to read critically) is likely to be read at
least as perfunctorily as young students tend to read their

218 National Computer Conference, 1987

other assignments. Also, the book's interactivity is less com
pelling: it can pose questions, but it cannot withhold answers,
judge responses, and provide direction related to students'
responses. By contrast, the computer-based lesson not only
describes the process of critical reading, but promotes it. By
compelling students to employ the techniques of critical read
ing, the lesson enhances the possibility that those techniques
will be learned. Furthermore, the lesson can impose a regimen
of discipline and responsiveness that the student may lack. In
the hours after class-the two-thirds of the learning time dur
ing which the professor is absent-many students would profit
from the imposition of more discipline, rigor, and guidance
than solitary study provides.

The principle being proposed here is not, of course, that the
computer should replace the professor or the book, but simply
that the computer should perform the tasks that it can do most
profitably and efficiently. In this capacity, the computer
would function not as the professor's replacement or rival but
as a kind of teaching fellow, directing the basic but essential
learning processes that are relegated to the machine.

OBJECTIONS TO THE USE OF COMPUTERS
IN THE LIBERAL ARTS

The computer can help to revitalize the liberal arts only to the
extent that the professoriate welcomes its technology. Al
though faculty in increasing numbers are making use of the
computer, the reservations of many colleagues-especially in
the liberal arts-are still strong and need to be addressed.

Recent studies show that faculty have in fact "discovered"
the computer. According to a survey conducted in November
1985 by the American Council of Learned Societies, 45% of
all faculty respondents either owned a computer or had access
to one for their exclusive use; in 1980, by contrast, the figure
was 2%.3 This increasing use foreshadows broader educa
tional application, according to a study prepared by the Cor
poration for Public Broadcasting: Faculty Perspectives on the
Role of Information Technology in Academic Instruction re
ports that professors view the instructional potential of the
computer favorably to the extent that they have used the
technology. With respect to specific applications, 83% of the
respondents stated that the computer could help develop such
generic thinking skills as problem-solving, analysis, and writ
ing; 80% stated that the computer could encourage students
to be more active learners; and 79% stated that the computer
could help students learn important concepts or skills that are
difficult to master. 4

Nevertheless, among faculty who do not use the computer
especially in the disciplines of the liberal arts-there is still a
widespread conviction that the computer is inimical to their
enterprise. "Nothing that is human," said Terence, "is alien
to me;" by a strange corollary, some professors believe that
nothing cybernetic is congenial.

Mind Control

For some, the notion of a computer as guide to the thinking
process is threatening, conjuring up visions of Orwellian mind

control. These faculty fear that if students look to the com
puter as a mentor, as a guide to thinking, and a source for
answers, the students' own thinking processes will come to
resemble the mechanism of the computer: lock-step, single
minded, relentless. Such professors fear, as did Karl Marx,
"the intellectual desolation, artificially produced by con
verting immature human beings into mere machines."

Easy Answers

Other proponents of the liberal arts, less alarmed that the
computer will dehumanize the user, nevertheless fear that
students may become satisfied with the clear-cut formulas and
authoritative answers of the computer and thus fail to look
beyond the terminal screen for answers. These professors fear
a technological perversion of Occam's Razor-the philosoph
ical principle that, given two competing interpretations of a
phenomenon, the observer should choose the simpler. They
are concerned, in other words, that students who use the
computer will be content with the simplified, accessible, pre
determined patterns it provides and stop their quest for
richer, more complex answers and solutions.

Abrogation of Thinking

Underlying both of these views is the concern that an un
thinking reliance upon the computer could lead an individual
to abrogate his or her mental powers. But both views over
estimate the likelihood that the computer can thus undermine
one of the most cherished goals of the liberal arts. Critics of
computers in education frequently lack experience in using
computer-based lessons and misunderstand how a computer
works. Ironically, they exaggerate the power and attraction of
the computer, and they underestimate the inevitable and salu
tary resistance that characterizes the response of most users to
computer-based lessons.

However credulous the students and however circumspect
the developers, postsecondary users of computer-based les
sons are likely to discover that some of their choices and
responses have not been anticipated. Their inevitable reaction
of frustration, even to an otherwise effective program, will
prevent them from becoming mesmerized and indoctrinated.
In other words, the user's experience of the computer both
engages and alienates. Ideally, of course, it does the former
more consistently than the latter. But even the alienation can
be useful in signalling the existence of alternative responses
and approaches. This tendency of the computer simul
taneously to engage and detach is a characteristic often over
looked by the most adamant of inexperienced critics.

Limitations of Algorithms

There are, however, other proponents of the liberal arts
not only familiar with the computer, but knowledgeable about
its programming-who object to the computer on the basis of
a more deeply rooted educational and philosophical principle.
The opposition of these faculty colleagues is directed not to

The Computer and Thinking Skills: Rationale for a Revitalized Curriculum 219

the computer as an instrument, but to the algorithm as a
problem-solving device. Their views call for a more thorough
examination.

An algorithm is a rule or process for solving a certain type
of problem, as in basic arithmetic when we use an algorithm
to find the lowest common denominator of a series of frac
tions. But, the use of algorithms outside the realm of mathe
matics and the natural sciences troubles many humanists. Can
there be an algorithm for writing an expository essay? For
reading critically in an academic discipline? The computer
scientist, accustomed to solving a wide range of problems by
means of algorithms, may answer these questions with a qual
ified "yes." The humanist, however, is likely to answer the
same questions with a resounding "no."

Algorithms and Ambiguities

For humanists, an algorithm is of questionable worth in their
disciplines because the mitigating circumstances surrounding
any important human activity render rigid formulas nugatory.
Humanists have studied the human condition-across the
continents and throughout the ages-and they have developed
a respect for the complexities and ambiguities of life. Mor
ality, values, the deepest truths that individuals need to sta
bilize their psyches and enrich their experiences all are inimi
cal to generalization. In fact, the humanities engender a toler
ance for ambiguity, a wariness of simplistic formulas, final
solutions, incontrovertible truths.

And so, to these critics, the computer is unwelcome as a
teaching fellow; not so much because it is a technological
instrument but because it proposes to solve problems in a
heretical manner with tidy formulas, with algorithms. They
know the computer must run its programs and solve its prob
lems by following a single path, however rapidly and re
lentlessly; it does not take kindly to serendipity. By contrast,
the human brain, which follows a mysterious mUlti-path route
in solving problems, can use intuition as well as logic;5 its
wonderful vagaries cannot be simulated by machine.

Algorithms as Simplifications

In one respect, these opponents of computers are correct:
algorithms in the liberal arts are oversimplifications. And, if
our primary concern in the teaching of thinking skills is only
the delineation of the richness and complexity of these skills,
we would have to forsake algorithms and therefore computer
based instruction. Algorithms would utterly fail to capture the
mystery of the thinking processes, the wonders of inspiration,
what Wordsworth calls "a leading from above, a something
given." However, our initial concern in the teaching of think
ing skills is not to analyze and account for these skills, it is to
impart them to undisciplined, maturing minds. For this pur
pose, the oversimplification of algorithms is not only condu
cive to learning, it is necessary. Later, of course, after stu
dents have developed the rudiments of thinking skills, the
professor will have to supplement the algorithms and present
the rest of the story.

Algorithms and the Teaching of Writing

The successful use of algorithms to devlop thinking skills is
perhaps best exemplified by recent strategies in the teaching
of writing. In fact, this discipline can be considered a para
digm because the process of composition is taught at so many
educational levels, is undeniably a complex thinking skill, is
squarely within the domain of the liberal arts, and is congenial
to the use of computer-assisted instruction.

When adolescents begin to learn composition, most of them
have trouble organizing their ideas. Consequently, their writ
ing teachers have sometimes taught organization by means of
the algorithm of the five-paragraph theme. According to the
formula, the first paragraph introduces the subject and
presents the thesis, and the fifth paragraph restates the thesis
and concludes the essay; within this frame, the body of the
paper presents three separate illustrations of the thesis in one
paragraph apiece. This elementary organizational strategy
calls for thinking skills, and the majority of students are not
likely to learn to organize their essays without rigid adherence
to the formula. The prudent teacher therefore will not over
emphasize the fact that the five-paragraph theme is useful
only for papers that call for illustration as a pattern of organi
zation and for topics that can be developed in three examples.
In other words, the limited abilities and pressing needs of the
students warrant the teaching of a simplified organizational
formula, an algorithm.

Eventually though, the teacher of writing in college must
present techniques better suited to the developing thinking
skills and broader needs of the students. The oid algorithm
must be superseded and a new one employed. \Videly taught
now is a pattern derived from the study of professional writers
that is tailored to the needs of students. This much heralded
writing process consists of the four separate stages of: (1) pre
writing (i.e., considering audience and purpose), (2) incu
bating ideas, (3) composing drafts, and (4) revising the essay.
Naturally, presenting this new algorithm requires dismantling
the old one, and college freshmen are sometimes disillusioned
to discover they can no longer rely on the handy framework of
the five-paragraph theme.

Is the new algorithm of the writing process universally ap
plicable? No. A sportswriter with a midnight deadline has
scant time for incubating ideas; an executive responding to a
memo may have few options for selecting a format. But, for
the students in English 101 and for the writing they will be
called upon to do, the algorithm of the writing process is valid,
in being rooted in the actual composing process of profes
sionals, and is educationally sound, in imposing useful and
relevant guidelines suitable to the developing student. For
these reasons, the prudent professor will not overstate the fact
that this process can sometimes be set aside when the author's
purpose or audience warrants.

To summarize the point of this lengthy example, we can
concede that a central thinking process cannot be reduced to
a formula; at the same time; we can maintain that at various
stages of a student's education, algorithms can be useful in
developing simplified and productive patterns of thinking.
Such algorithms must be based upon the thinking processes of
trained, mature minds; and these algorithms will have to be

220 National Computer Conference, 1987

expanded or exploded later by the professor, even at the cost
of some disorientation or disillusionment to the student.

Algorithms as Models of Thinking

Once we grant the educational value of algorithms in the
liberal arts, we can begin to develop algorithms that model the
problem-solving processes of various disciplines and then use
those algorithms as the basis of computer-based lessons. Al
ready available are excellent computer-based lessons in pre
writing that engage students in Socratic dialogues about the
salient features of the papers they are about to write (for
example, the purpose, audience, length, thesis, supporting
points, and likely audience response). By extension, the pro
cess of critical reading and the other thinking skills necessary
for a revitalized curriculum in the liberal arts can also be
distilled into useful algorithms that are rooted in the practice
of experts and suited to the needs and abilities of college
students.

With the computer as the students' teaching fellow, the role
of the professor in the liberal arts will be to focus on the more
complex, more important processes that the computer cannot
address: to stay mindful of the limitations of algorithms, the
complexities of life, and the value of a tolerance for ambi
guity. Anticipating the students' restlessness over the
computer-based lessons, the professor can use class time
wisely by exploring answers that the computer did not antici
pate. Thus, the professorial role is not merely to supplement
or complement the computer-based lesson on thinking skills;
it is also to elevate the lesson to a higher conceptual plane.

Teacher as Director

How the professor remains in control of the educational
process of teaching thinking skills can be explained by a meta
phor from the world of the theatre. The director of a play
confronts the rich ambiguities of a dramatic text, extracts a
coherent pattern of meaning, and imposes upon the theatrical
production his or her conception of the work: the range of
characterizations, the patterns of blocking, the tone of dra
matic moments. Then the performers, having assimilated the
unified and coherent conception of the show, draw upon their
own talents and creativity to make natural, to fulfill, even at
times to adjust the director's original conception. And they do
so at the behest of the director.

In much the same way, the professor may confront the rich
complexity of a thinking skill, devise patterns or algorithms to
make the skill comprehensible to the students, and impose
these patterns rigorously and authoritatively with the help of
the computer. The student, having assimilated the thinking
process imposed by the computer, must then be encouraged
to discover the limitations of the imposed process and ad just
the learned algorithm to deal with unique features of the
problem-solving situation. Only through the combination of
steps will the professor impart to the students what the As
sociation of American Colleges calls "some sense of the
wonders, complexities, ambiguities, and uncertainties that
accompany the experience of learning and growing.,,2

PROSPECTS FOR COURSEWARE
ON THINKING SKILLS

Even if the professoriate was of one mind in welcoming the
computer as a friend of the liberal arts, using the computer in
developing thinking skills would, at present, remain in po
tentia. Nevertheless, three recent trends give promise that the
potential can be realized in the foreseeable future.

Improved Commercial Software

One reason for optimism is the improvement in commercial
software and in teachers' skills in using the programs effec
tively. Educators are now successfully using sophisticated
commercial programs at various academic levels and in vari
ous disciplines by subordinating the programs to the larger
goals of the courses. A promising development at the elemen
tary level is the Higher Order Thinking Skills project, which
is currently in its third year and funded by the Department of
Education at several sites across the country. Participating
students use several commercially available instructional
games that call for the same thinking skill (e.g., estimation);
then they link the strategies discovered in the computer lab to
concepts presented in their regular classrooms (e.g., esti
mation in arithmetic); finally, the students reinforce their syn
thesis of skills by programming questions and answers into a
computer lesson with the format of a quiz show. According to
Stanley Pogrow, the project director, students in the experi
mental group improved in thinking ability to a greater extent
than did the control groupS. 6

Methods of Learning and Teaching

A second development hastening the use of the computer to
teach thinking skills is also more pedagogical than technical:
the heightened awareness of the way students learn and pro
fessors employ the unique thinking skills of their disciplines.
In its report on the college curriculum, the Association of
American Colleges2 finds a basis for improvement in our im
parting of such skills:

A new area of research, still in its infancy, has been evolving
during the last decade ... It is directed toward understanding
how students learn (or fail to learn) specific subject matter, and
what difficulties they have with various modes of abstract logical
reasoning, what preconceptions or misconceptions impede their
mastery of concepts or principles in the given subject, what
instructional approaches and devices are effective in helping
learners overcome the obstacles which are encountered, what
exercises and feed-back accelerate the development of various
desirable skills, and how best to make use of the new instruc
tional technology. (p. 16)

The report emphasizes the fact that the new research is not
limited to the field of psychology but extends to "research
indigenous to specific subject areas-research having results
that can be readily understood and directly applied by
teachers of the subject.,,2 These investigations of the ways
students learn, together with explorations of instructional ap-

The Computer and Thinking Skills: Rationale for a Revitalized Curriculum 221

proaches, may ensure that the capabilities of the computer
receive careful attention.

In conjunction with the studies of how students learn is a
new engagement by subject-matter experts in analysis of their
disciplines. Liberal arts faculty are making explicit the steps of
what they do when they employ the unique thinking skills of
their various fields. Such scrutiny promises to issue in courses
that emphasize the processes of analytical thought and
therefore leave the students with more than notebooks of
test-worthy details.

Authoring Systems

The third reason to anticipate the use of the computer for
teaching thinking skills is a technological one: the develop
ment of sophisticated authoring systems. Until recently, the
creation of exemplary computer-based lessons required the
content expert to collaborate with a programmer and an in
structional designer because the faculty member seldom pos
sessed enough of the three skills to work successfully alone.
Invariably though, the faculty member ranked lowest in the
triumvirate. In the early years of courseware development,
the programmer generally prevailed because he or she was
most knowledgeable about the computer's capabilities. More
recently, the instructional designer has generally been ac
corded the final word in the shaping of the lesson.7

Now however, authoring systems based upon principles of
instructional design and offering "programmerless program
ming" have lessened the need for involvement by designers
and programmers. So to the extent that the professor under
stands the discipiinary thinking process and to the extent that
the lesson will be based upon an algorithm of that process, the
professor can direct the form of a computer-based lesson in an
authoritative way.

In summary, three developments-improvements in the
quality and implementation of commercial courseware, in
creased understanding of how students learn an<;l how faculty
teach disciplinary thinking skills, and the advent of sophis
ticated systems for authoring-all suggest that in the near
future professors can make the computer a teaching fellow to
help students acquire the thinking skills of their disciplines.
However, if this potential is to be realized, the professoriate
of the liberal arts will have to keep abreast of technological
developments and the pedagogical opportunities they pro
vide. If faculty fail to take responsibility for innovative educa
tional applications of the computer or if commercial devel
opers do not rely upon educators for insights into the central
thinking processes, then courseware to develop thinking skills
is not likely to emerge, and an important educational poten
tial of the computer will fail to materialize.

REFERENCES

1. "A Nation Prepared: Teachers for the 21st Century." The Chronicle of
Higher Education, May, 1986, p. 50.

2. Association of American Colleges' Project on Redefining the Meaning and
Purpose of Baccalaureate Degrees. "Integrity in the College Curriculum."
The Chronicle of Higher Education, February, 1985, pp. 18-21.

3. Morton, H.C., and A.J. Price. "The ACLS Survey of Scholars: Views on
Publications, Computers, and Libraries." Scholarly Communication, Sum
mer 1986, 5, pp. 1-16.

4. Lewis, R.J. Faculty Perceptions on the Role of Technologies in Academic
Instruction. Corporation for Public Broadcasting, 1985, pp. 12-13, 17.

5. Hawkins, G. Stonehenge Decoded. Garden City, New York: Doubleday,
1965, p. WI.

6. Pogrow, S. "Helping Students to Become Thinkers." Electronic Learning,
April, 1985, pp. 26-29, 79.

7. Lent, R. "Courseware Development: The Role of the Subject Matter Ex
pert." National Forum, 66 (1986) 3, pp. 15-17.

'Developing integrated applications and installation
schedules for comprehensive information
management systems in education

by BRENT EDWARD WHOLEBEN
University of Texas
El Paso, Texas

ABSTRACT

Plans for the design and development of information management systems in
education must be accompanied by technical implementation and evaluation aides.
Important among these aides are integrated applications and installation schedules
which outline (a) the overall mission of the system based upon a global needs
assessment; (b) the elements of administrative and instructional computing appli
cations that will have priority within this initial system design; (c) the anticipated
acquisition, allocation, and distribution of hardware and software resources over a
designated period of time; (d) strategies for assuring optimal economical centrali
zation of resources with effective decentralization and coordination of function;
(e) training requirements for all levels of intended users, and (f) a comprehensive
summary of all implementation efforts appropriate for both formative and sum
mative evaluation needs. It is imperative that these schedules denote priorities
between administrative and instructional applications, demonstrating the relation
,ship between these elements of the educational computing domain.

223

Developing Integrated Applications and Installations Schedules 225

INTRODUCTION

The primary mission of administrative computing is to per
form those service functions which directly or indirectly
facilitate the instructional requirements for the individual
classroom. Such service functions will range from the account
ing requirements associated with the faculty payroll to in
ventory procedures necessary for maintaining the adequate
availability of instructional equipment and materials. Any use
of the computer which is not involved directly in the teaching
of the individual student can be viewed as administrative in
nature.

The primary mission of instructional computing is to per
form those service functions that directly support the in
structional requirements associated with student learning in
the individual classroom. Such teaching functions might range
from the introduction and demonstration to the student of
various instructional objectives to the actual computerized
teaching of these curricular components. Any use of the com
puter which is involved directly in the teaching of the individ
ual student can be viewed as instructional in nature.

. The installation of integrated administrative and instruc
tional computing systems in the comprehensive school district
requires detailed schedules that match indices of planning,
preparation, and evaluation across the several years of
implementation. Schedules are graphic charts which identify
elemental or time requirements for implementing an inte
grated information management system, and which are de
signed for each of (a) applications integration, (b) hardware
acquisition and distribution, (c) centralized control, (d) user
training, and (e) overall project summary.

INTRODUCTION TO INTEGRATED
EDUCATIONAL COMPUTING

The design and development of a highly functional data
processing system for comprehensive administrative and in
structional computing needs in a rapidly growing school dis
trict must take many issues and concerns into consideration. 1

Decisions must not be limited simply to what physical equip
ment (i.e., hardware), materials (e.g., software), and supplies
(e.g., paper, diskette, and tapes) will be purchased. Concerns
regarding which administrative and instructional applications
will have priority; how such applications will be concep
tualized, designed, implemented, and evaluated; and cer
tainly, who will have primary responsibility for assuring the
systematic and strategic satisfaction of district goals related to
these computer-based applications, must also be addressed
during these early planning and developmental efforts.

Tactical and Strategic Priorities

Tactically, the comprehensive school district must address
many current problems rdated to computer-based appiica
tions that demand immediate resolution. These areas of
immediate need include applications in the general areas of
policy administration, personnel management, financial ac
counting, budgetary control, and instructional supervision.

Strategically, the district must assure that any selection and
acquisition of equipment and materials in the immediate fu
ture must allow for continued support of district priorities in
the years ahead. Such concerns are not limited to equipment
alone, but include the projected life of applications software
in its support of the district's data processing priorities.

Growth Potential and Applications Compatibility

A common problem with any large-scale, systematic de
ployment of data processing resources lies in the initial se
lection of hardware equipment and software materials that
will support both current and future computing needs yet
remain affordable to the district within budgetary constraints.
In addition, initially purchased equipment must have the abil
ity to expand compatibly in consort with district needs. Simply
stated, initial computing resources should be large enough to
surpass current needs, continue to support district needs for a
period of five to seven years, and allow the district to add
directly to the equipment when necessary so newer priorities
can be addressed without any stoppage to current data proces
sing activities.

The ability to "grow into" immediate purchases over a pe
riod of time, rather than limiting initial acquisitions to the
satisfaction of then current needs, cannot be sufficiently
stressed. Any changes a computing system's hardware, soft
ware, or even, applications-use components can have serious
consequences for the remaining two components. Therefore,
any hardware system acquired must enable expansion in ac
cord with the district's growth pattern and, concomitantly,
support enhanced software application needs demanded by
future, more complex district requirements.

Integral Communications and Comprehensive Applications

The computer is an information machine, promoting the
ability to integrate the communication requirements of all
school district entities (e.g., administrative offices, school
campuses, and warehouses) into what is often referred to
as a "closed system;" that is, one allowing all necessary infor-

226 National Computer Conference, 1987

mati on to be available to all authorized decision-makers
at any time and instantaneously upon demand. While such
applications as word processing, electronic mail, database
management, and calendaring (e.g., via electronic bulletin
boards) may be the most obvious, and simplistic, of such an
integral communications environment, the entire concept
surrounding the "management information system" context
of information processing-the provision of valid and reliable
information in a timely manner for effective and efficient
decisionmaking-is the ultimate strategic mission for elec
tronic data processing and therefore is a priority goal for
its use in support of school district activities.

The generalized notion of a management information sys
tem includes those comprehensive text processing, database
management, and communication issues that are required for
both administrative and instructional computing require
ments. Computer-assisted instruction notwithstanding, equal
priority must be extended towards instructional management
concerns in addition to the typical priorities for an adminis
trative computing system that supports personnel accounting,
financial planning, or inventory control demands.

Standardization of Equipment and Materials

Standardization of equipment within the district-wide com
puting environment is a paramount priority during initial
planning. The obvious advantages lie in such areas as train
ing, cost, and communication abilities. Any changes to a
standardized system of hardware also are significantly easier
and more affordable than would be anticipated in a system
where different "makes" and "models" of computers must
be matched. These same advantages apply to the determina
tion of standardized software packages to support application
needs.

In the educational setting, however, it is typical to find that
no single software package or vendor source will satisfy all
application priorities for an entire school district. Therefore,
several different software units, often from different sources,
must be acquired to meet perceived administrative and in
structional management needs. Since different software pack
ages may only execute on certain machines, extreme caution
must be exercised in determining which software will meet
district priorities while remaining compatible within a single,
machine-based computing environment. It is seldom advis
able to employ machines from different vendors. However,
equipment from different vendors may become necessary,
particularly if a required software package is selected that is
compatible with only one vendor's hardware.

Centralization of Management and Control

The data processing environment, including administrative
as well as instructional computing applications, is a complex
service setting that requires direct managerial supervision and
control. All aspects of the supervision and control of data
processing applications within the school district should be
vested in one administrative office and assigned to a single
individual for accountability purposes. In addition, the super-

vision and control of the data processing environment should
be the primary, if not sole, responsibility of this office.

Centralized management and control of district data
processing activities allow for the careful coordination and
scheduling of information management requirements across
all district entities, from central office administrating to class
room teacher needs. A single source is then responsible for
the continued strategic planning and tactical evaluation re
quirements, which must be ongoing if the computing system
is to remain viable and responsive to current and future dis
trict priorities and individual campus-based needs.

Decentralization of Function

Although the responsibility for adequate and appropriate
planning and evaluation activities should be centralized in a
single district-level officer, the actual deployment of com
puting functions should be decentralized to the lowest level
possible. Therefore, computing services which support the
responsibilities of campus level administrators, such as atten
dance accounting, should be accessible directly from their
offices by means of remote terminal access. Other computing
services that support the distinct instructional responsibilities
of classroom teachers, such as student performance account
ing via the essential elements, should be accessible directly
from their classrooms by means of optical mark scanning
units. To the extent fiscally and physically possible, the origi
nators of data and the users of information derived from the
analyses of these data should be afforded direct access to
computing services and resources. Decentralized functional
access not only provides a more effective and effecient use of
available computing services, it also promotes a more highly
participative use of available information for performing
equally effective and timely decision-making related to in
structional supervision, fiscal management, and policy con
trol.

Application decentralization is desirable from the stand
point of equipment cost, associated materials support, and
contingent personnel requirements. For example, certain
types of software applications which would be used primarily
at the high school level (e.g., student scheduling for depart
mentalized curricula) could be accessible directly on the high
school campus, eliminating any need for intervention by indi
viduals at the district office level. Other processing needs,
such as attendance accounting, would be processed centrally
at the district level but decentralized functionally on each of
the various campuses.

System Integrity and Functional Backup

Throughout all district-based data processing actIVItIes,
whether administrative or instructional, extreme care must
be afforded to system and database security. This security is
concerned with restricting access to only authorized users via
specific, individual, and distinct access privileges and with
assuring that any loss of system operation does not affect
deleteriously the various ongoing functions of the district.
System integrity need not be compromised with the require-

Developing Integrated Applications and Installations Schedules 227

ments of a functionally decentralized system. However, for
mal policy concerning authorized access and specific training
for these authorized users will assure the appropriate use of
the information management system at all levels.

System integrity also requires the uninterrupted availability
of ne~essary software and hardware resources for meeting
prescnbed needs. Therefore, provision must also be made
for machine and source program backup. In the event of a
system failure at one location, another station will provide
immediate alternate service until the failed system has re
turned to scheduled operation.

Independence from Extra-District Support

Finally, the design and development of any integrated dis
trict computing system for administration and instruction
must parallel the desire of the school district to become inde
pendent from outside computing resources and services. Con
comitant with such service independence is the new potential
for the district system to promote certain cooperative services
for various extra-district entities on a periodic basis. Such
services can provide a source of net revenue to the district for
further system expansion and enhancement.

APPLICATIONS INTEGRATION

Functional software is defined as computer-executable in
structions, written in a source code which a particular com
puter hardware unit will understand and which directly
satisfies the data processing requirements of an organization,
as identified in an a priori needs assessment. These data
processing requirements usually include both administrative
and instructional computing strategies for a school district
that seeks integrated computing opportunities. The functional
basis of software, namely, the remediation of those specific
organizational needs via software-controlled data processing,
must include the strategic and decentralized allocation of soft
ware resources to those levels of an organization which have
demonstrated data processing needs.

The identified administrative and instructional computing
needs of the comprehensive school district have been initially
identified as comprising a total of 41 different areas of specific
data processing applications. Furthermore, these particular
application requirements may be generally categorized into
three areas: (1) generic data processing functions, (2) generic
management functions, and (3) generic instuctional functions.

A 1986 study2 posited a list of "top 20" applications based
upon the responses of district and campus level educational
administrators to a system of structured interviews and ques
tionnaires. Table I contains the "top 20" application needs
expressed by those educational officers and which form the
basis for the remainder of this discussion.

CENTRALIZED CONTROL

Centralized versus decentralized data processing applications
and the extent of shared data base utilization are based upon

Table I-Top ranking 20 of 41 possible computing applications

Top 20 Top 10 Rank

Student Attendance Accounting 84 63 3.8
Personnel Records and Payroll 68 58 4.3
Inventory Management 63 53 5.0
Student Records and Academic History 98 53 5.1
Word and Special Effects Processing 74 42 4.1
Student Progress and Grade Reporting 79 42 4.7
General Data File Management 84 42 5.1
T.E.A. Annual Performance Report 68 42 5.7
Report Formulation 63 42 6.4
Standardized Testing Assessment 68 37 4.7
Departmentalized Student Registration 74 37 6.0
Student Food Service Assignment 47 37 6.6
Student Bus Transportation Assignments 84 37 7.0
Essential Curriculum Elements

Accounting 53 32 6.5
Library Functions 53 32 6.5
Finance and Accounting 53 26 1.2
Accreditation Monitoring 58 26 5.6
Computer-Assisted Enrichment,

Gifted and Honors 42 26 7.8
Computer-Assisted Instruction,

Grades K-6 37 21 4.5
Requisition and Distribution 53 21 5.0

Top 20: percent of frequency occurrence when 20 of 41 applications selected
Top 10: percent of frequency occurrence when 10 of 20 (viz. Top 20) selected

Rank: median of ranks assigned to Top 10 where low rank is high priority

the particular role or function of the sub-organizational unit in
question. While totally centralized data processing may lead
to economies in hardware and software costs, the alternative
of decentralized processing for specific applications may be
more economical in work aCcomplished over time expended.

The role of administrative computing applications is the
direct control and support of all activities which impinge upon
the instructional mission on the various school campuses. This
role thereby includes all activities that are not directly in
structional (teaching and/or student learning). All activities
identified as "instructional management" in nature, for ex
ample, student attendance accounting or student grade re
porting, will be defined as elements of administrative com
puting for the educational organization. Alternatively, the
role of instructional computing lies in direct instructional
intervention within the student learning process. Typically,
this intervention will be connected to one or more of the
stages associated with computer-assisted instruction (CAl)
or computer-managed instruction (CMI). With most in
structional computing existing on microcomputers-utilizing
the minicomputer networking system for related support of
the instructional mission-the standardization of hardware
resources becomes of paramount importance.

The standardization of instructional software resources is
also a primary consideration for instructional system design
and development. Such standardization is required due to the
common elements of the instructional curriculum as well as
the technical requirements associated with hardware and soft-

228 National Computer Conference, 1987

ware system compatibility. Those instructional computing
activities necessary for classroom instruction will be decen
tralized to the individual campus. Those activities best
labeled as instructional support services will be physically res
ident on different networked stations, depending upon the
actual needs of the designated primary user. Table II displays
the level of centralization and shared access for both adminis
trative and instructional applications addressed by the top 20
priorities.

HARDWARE ACQUISITION AND DISTRIBUTION

Identification, evaluation, and selection of hardware for an
integrated district-wide data processing plan for both adminis
trative and instructional computing must always be preceded
by (a) a clear demonstration and understanding of perceived
computing needs,3 and (b) an equally clear demonstration of
available software and courseware that will satisfactorily sup
port these needs.4 The hardware chosen must support, to the
highest degree possible, the various software and courseware
packages that will provide a systematic resolution to these a
priori identified needs.

Administrative computing processes include, but are not
limited to, the ability to perform data processing functions
relative to: (1) financial accounting and budgetary control, (2)
tax collection and reporting, (3) staff and student personnel
recordkeeping, (4) payroll, (5) student performance monitor
ing and progress reporting, (6) physical plant maintenance
and control, (7) real property inventory and equipment!
materials accounting, (8) student attendance accounting, (9)

student and course scheduling for departmentalized curricula,
and (10) transportation routing and scheduling. In addition,
administrative computing also includes such generic functions
as word processing, data base generation with query-based
access capabilities, full document transfer, electronic mail,
calendaring, and decision simulation modeling.

Instructional computing is concerned primarily with the di
rect function of teaching and student learning in the classroom
or similarly related environment. Therefore, instructional
data processing activities are usually categorized as computer
assisted instruction (CAl) and computer-managed instruction
(CMI). Computer-assisted instruction is concerned with the
teaching of various curricular objectives within a computer
ized environment, and computer-managed instruction is asso
ciated primarily with the necessary monitoring and guidance
functions that control such computer-assisted teaching efforts.
However, computer-managed instruction need not be identi
fied with computer-based, instructional management activ
ities (e.g., performance monitoring via essential curriculum
elements, or student grades reporting), although this obvious
overlap of administrative data processing with the instruc
tional domain of computing can appear confusing. In a sense,
computer-managed instruction represents those data pro
cessing functions that assure that individual students will re
ceive self..,paced, personalized instruction within a computer
assisted environment based upon their individual need.

The optimal administrative data processing system might
exist as a multi-node, minicomputer-based networking sys
tem, linking multiple minicomputer stations individually resi
dent on each of the various administrative, instructional, and
support service sites throughout the district. This configura-

Table II-Centralized and shared access to applications by station

EDCCTR INSTRCAMPU CEN LIB WAREHOU
All Sec Elm Pri All All

Student Attendance Accounting C S S S -(B)
Personnel Records and Payroll C S S S S(B) S
Inventory Management C S S S S(B) S
Student Records/ Acad History C S S S S(B) S
Word/Special Effects Process D D D D D D
Student Progress/Grade Report C S S S -(B)
General Data File Management D D D D D D
T.E.A. Annual Perform Report C -(B)
Report Formulation D D D D D D
Standardized Testing Assessment C S S S -(B)
Departmental Student Registr S S S C -(B)
Student Food Service Assignment C S S S -(B)
Student Bus Transport Assignment C S S S -(B)
Essential Curric Elements Acct C S S S -(B)
LibraIY Functions Sen) s s s c (' ..,
Finance and Accounting C S S S S(B) S
Accreditation Monitoring C -(B)
Comp-Assist Enrich, GiftlHrs D D D
Comp-Assist Instr, Grades K-6 D D D
Requisition and Distribution C S S S S(B) S

C: centralized application; B: backup application; D: decentralized application; S: shared access.

Developing Integrated Applications and Installations Schedules 229

tion will provide multi-user/multi-tasking capabilities which
nevertheless remain transparent to the individual user. This
type of configuration will promote maximum power while
economizing on the comprehensive availability of software
advantages to any demanding user. On the other hand, de
centralization is often the best approach for instructional
computing systems, including campus-centralized learning re
source centers that incorporate multi-function instructional
computing laboratories.

Concomitant hardware support installation can be sched
uled graphically via the chart shown in Table III, which sug
gests an example of multiple-year scheduling for hardware
i...'1stallations for both academic and instructional computing
applications. Such schedules not only display intended bud
getary requirements over time but also demonstrate the long
range acquisition strategies of the school district.

USER TRAINING

Following the primary importance associated with (1) clearly
identifying and understanding the comprehensive data ma
nipulation needs of the school district, (2) objectively evalu
ating and selecting appropriate software based applications
that will adequately and appropriately address these needs,
and (3) efficiently installing and testing such hardware equip
ment as will effectively and economically operationalize these
software based applications, there remains the necessity of
promoting a comprehensive and diversified training regimen
for all potential users of the data processing system. Such a
training program must involve the direct users, namely, the

individuals who will physically deploy the computing system,
as well as the indirect users, namely, the individuals who will
come into contact with the system only through the results of
its applications.

The myriad problems connected with inadequate or in
appropriate training can relegate even a superior hardware
and software system to one of inferior status. Typically, the
inadequately trained direct user never understands the full
range of capability within the computing system. These indi
viduals are likely to remain concerned only with particular
applications identified during their initial training, and, fur
thermore, seldom seek or even recognize such modifications
that might enhance the deployment of the system in their
specific area of interest. When new direct users encounter the
system, further, usually the first direct users provide initial
training of later users, thereby coupling inappropriate training
with an inadequate background. Indirect users have little if
any understanding relevant to the capabilities of the system,
and therefore indirect users remain content to accept inade
quate or inappropriate applications without questioning possi
ble capabilities.

Tactically, application training regimen for administrative
versus instructional computing users is moderately distinct.
For administrative computing users, the goals of training are
associated with the deployment of data processing activities to
support the instructional environment of the classroom. For
instructional computing users, the goals of training are con
cerned with actual instruction within the classroom setting.
Based upon these differences, the training paradigm for ad
ministrative and instructional users must be somewhat differ
ent and, moreover, lies in the context of the applications that

Table III-Multiple-year scheduling for hardware support installation

1986 1987 1988 1989
Qtn Sp Su Fa Sp Su Fa Sp Su Fa Sp Su Fa

Education Center
High-End Minicomputer 1 1
Remote Terminal Workstation 30-35 25 10
High-Speed Band Printer 1
Medium-Speed Band Printer 1 1
Letter-Quality Printer 1 1
High-Capacity Removable Pack 3 2
Optical Mark Sensing Device 1
Optical Character Sensing Dev 1
High-Speed, Reel Tape Drive 1 1
Telecommunications, Rotary 10-12 6 5

Elementary campuses
Low-End Minicomputer 1 1 1*
Remote Terminal Workstation 12-16 10 6 10* 6*
Medium-Speed Band Printer 1 1 1*
Letter-Quality Printer 1 1*
High-Capacity Removable Pack 1 1*
Optical Mark Sensing Device 1 1*

': staggered acquisition over time

230 National Computer Conference, 1987

guide the user of the computing system within the daily func
tioning of the district.

At the same time, however, administrative users in one
particular area must have a clear understanding of other
administrative applications, though these users may not
routinely come into contact with these "remote" uses. Simi
larly, administrative users should have some rudimentary un
derstanding of the deployment of instructional computing
processes. Such cross-applications training objectives can be
even more critical for the instructional computing user, since
administrative computing processes maintain as a primary
mission the support of instructional activities within the pur
view of the district. Table IV denotes the level of training
suggested by application and station in terms of primary user,
backup operator, and indirect user.

SUMMARY

The focus of the administrative computing mission is to sup
port those peripheral activities that facilitate the primary
mission of the school district, namely, student learning on
the instructional campus. Various entities within the district
support student instruction in different and diverse ways;
nevertheless, each such organizational part exists only for
the purpose of student learning. Therefore, each member of
these sub-organizations must understand the total picture
of administrative computing-how it functions to support
education and how each individual's role impinges upon an
other person's functioning within the organization.

Unlike instructional computing, administrative practices
exist at every level of the educational organization, from cen
tral district office to the classroom. Communicating relevant
information for effective and efficient decision-making rap
idly and in a timely manner is the process goal of adminis
trative computing. Content goals are associated with types of
information retrieved, which might include bus transportation
routes and schedules, trial balances for various program
accounts, individual student attendance histories, or the
food stuffs requisition list from the food services staff.

The focus of the instructional computing mission is the
direct facilitation of classroom-based activities that fulfill the
primary mission of the school district, namely, student learn
ing on the instructional campus. As with administrative com
puting, because various entities within the district support
student instruction in different and diverse ways, each sub
organization must understand the total picture of instructional
computing-how it operates in the direct teaching of the stu
dent and how individual roles impinge upon others.

Unlike administrative computing, instructional practices
exist only at the decentralized level of the individual class
room or laboratory. Highly personalized communication of
relevant learning paradigms, required for effective and effi
cient student learning based upon individual needs and differ
ences, is the process goal of instructional computing. Content
goals are associated with the types of information retrieved,
which might include learning requirements of mathematics,
language arts, physical science, health and physical education,
foreign language, or the vocational trades.

TABLE IV-Level of training in applications by station

EDC INSTR CAMPU CEN LIB WAREHOU
Adm Sec Adm Sec Ins Adm Sec Adm Sec

Student Attendance Accounting S S S S S C A A A
Personnel Records and Payroll S S S C A S C S C
Inventory Management S S S S A S S S S
Student Records/ Acad History S S S S C C C A A
Word/Special Effects Process S S S S S S S S S
Student Progress/Grade Report S S S S S C A A A
General Data File Management S S S S S S S S S
T.E.A. Annual Perform Report S S S S C S S C C
Report Formulatin S S S S A S S S S
Standardized Testing Assessment S C S C C A A A A
Departmental Student Registr S S S S S C A A A
Student Food Service Assignment S S S S A A A S S
Student Bus Transport Assignment S S S S A A A S S
Essential Curric Elements Acct S S S S S C A A A
Library Functions S C S C S S S A A
Finance and Accounting S S A C A A C A C
Accreditation Monitoring S S S S C S S C C
Comp-Assist Enrich, GiftIHnrs S A S A S S C A A
Comp-Assist Instr, Grades K-6 S A S A S S A A A
Requisition and Distribution S S S S A S S S S

s: skill level (primary user); A: awareness level (non·user); C: cross training (backup user).

Developing Integrated Applications and Installations Schedules 231

TABLE V-Multiple-year scheduling for applications installation

1986 1987 1988
Sp Su Fa Sp Su Fa Sp Su

Student Attendance Accounting P DT V
Personnel Records and Payroll P DT V
Inventory Management P DT V
Student Records/Academic History P DT V
Word/Special Effects Process P DT V
Student Progress/Grade Reporting P DT V
General Data File Management P DT I V
T.E.A Annual Performance Report P DT I I V
Report Formulation P P DT I V
Standardized Testing Assessment P DT V
Departmentalized Student Registr P DT V
Student Food Service Assignment P P DT V
Student Bus Transport Assignments P P DT V
Essential Curric Elements Accounting P DT I V
Library Functions P DT I V
Finance and Accouting P P DT V
Accreditation Monitoring P P DT V
Computer-Assist Enrich, GiftIHnrs P DT I V
Computer-Assist Instr, Grades K-6 P P DT DT DT V
Requisition and Distribution P P DT I V

P: planning and scheduling; I: induction and evaluation; D: deployment and training; V: validation and incorporation; T: testing and piloting.

Summarizing across the total information management
system development project, Table V displays a suggested
schedule for the "top 20" desired applications incorporating
elements form initial planning to final validation. This three
dimensional framework also provides a firm basis for both
formative and summative control over the installation of all
applications.

REFERENCES

1. Wholeben, B.E. "Strategic Planning for the Design and Development of
Management Information Systems in Education." AFIPS, Proceedings of
the National Computer Conference, (Vol. 55), 1986, pp. 185-192.

2. Wholeben, B.E. "Five Year Integrated Computing System Development
Plan: Phase I (Needs Assessment and Priority Strategies)." Socorro Inde
pendent School District, El Paso, Texas, January, 1986.

3. Wholeben, B.E. "Designing Computerized Management Information Sys
tems (MIS) for Offices of Field Experience and Student Teaching." Paper
presented at the Annual Meeting of the American Association of Colleges
of Teacher Education, Denver, February 28, 1985.

4. Wholeben, B.E. "Evaluating Existing Administrative Computing Systems
for Future Management Information System Development Priorities." Pro
ceedings of the Annual Conference of the Association or Education Data
Systems, 1986, pp. 251-254.

Usability of corporate information systems

by JON MEADS
Jon Meads & Associates
Portland, Oregon

The ACM Special Interest Group on Computer-Human Inter
action (SIGCID) has organized this panel session. The focus
is on designing and developing Corporate Information Sys
tems for use by managers and analysts who are not likely to be
computer professionals and who are not likely to have sub
mitted themselves to the processing required to become
"computer literate."

Usability of Corporate Information Systems has several as
pects including access, functionality, interfacing, organiza
tion, presentation, and communication. The panelists have
been asked to comment on and discuss the requirements
for usability of Corporate Information Systems and the
problems-physical, technological, and cognitive-that will
hinder these systems from reaching their full utility as Cor
porate Information Systems mature and become more usable
and avaiiabie to a wider cross-section of users. There foHows
a brief discussion of some of the areas the panelists will be
addressing.

INTRODUCTION

Webster's New Collegiate Dictionary defines "usability" as
that which is convenient and practical to use. The interactive
utilization of CPU power, in and of itself, whether in a mas
sive mainframe distributed through networks or in a personal
computer dedicated to individual use, does not make a system
usable. There is more to making a system usable than simply
collecting, organizing, manipulating, and analyzing data inter
actively. It is necessary to understand how people think about
and use information. It is necessary to understand how human
thought processes work and how to integrate those processes
smoothly into a system so that a true cognitive symbiosis may
be achieved. The ACM SIGCHI, through its newsletters,
workshops, tutorials, and conferences, provides a medium for
discussion and investigation in these areas and for presenta
tion of significant results. SIGCHI presents this panel session
as a forum for the presentation and discussion of those
concepts pertinent to the usability of Corporate Information
Systems.

Corporate Information Systems are an integral part of a
corporation's management structure. They are designed to
provide a service and be used by managers and analysts
throughout the corporation. For the most part, these man-

233

agers and analysts are living, breathing human beings with
needs and requirements of their own. While it may be possible
to build systems for people, it is difficult to build people for
systems. Therefore, the systems we build must be designed
for the people who will be using them. This is particularly true
for Corporate Information Systems. Usability demands that
the average manager and analyst find both the system itself
and the applications to be convenient and practical to use for
obtaining the service and results they require.

The issues involved span just about every aspect of a Cor
porate Information System. For the purposes of this paper, we
have organized some of those issues into the standard com
ponents of input, functionality, and output/presentation.

INPUT

A goal of user interface development is to allow the user to
specify input in a manner that fits the user's frame of refer
ence. Current systems tend to require the translation of infor
mation as perceived and understood by the user into data
items properly and precisely organized in a form suitable for
the software system. Doing so not only introduces another
item of work but also provides additional opportunities for
error. The translation may not be appropriate or a data entry
error may not be evident because of its cognitive distance from
the information it represents. Reducing the cognitive distance
between information as known by the user and the data tokens
as input to the system requires that we know how people think
about information. Although understanding the conceptual
models that users employ in structuring information is of great
importance, it is necessary that we understand the very basic
processes of how the human brain organizes, stores, retrieves,
and interrelates information, and the processes used to ex
press aJ).d communicate information.

One of the fundamental intellectual processes of the human
mind is the ability to abstract and categorize. Support for
abstraction and categorization would be a major benefit for
users of large data base systems. What tools can we provide
the user to assist in expressing abstraction? There is no doubt
that the actual interaction between a CPU and the stored data
needs to be quite discrete (at least with today's technology).
But can we properly map the user's abstract specification into
the system's internal discrete instructions? It appears that

234 National Computer Conference, 1987

intelligent front ends based on expert systems and neural
networks may provide some solutions for this problem.

Establishing a compatible means for expressing input to a
system is no trivial matter either. People do not communicate
by command strings, menus, and forms alone. In fact, these
methods of expression could be considered as downright un
natural. These techniques have their benefits and, in some
cases, they may prove to be the most effective input method.
However, improperly used, they add a burden to the user. If
conscious thought, however slight, is required to convert in
formation into a required data form, then we should search
for a better method of inputting. Direct manipulation inter
faces and speech input are offered as productive alternatives.
Are they always better? When is it appropriate to use them
and when are commands or forms more appropriate? What
unexpected difficulties can we expect to encounter with these
technologies? These are issues we must explore and under
stand more fully.

It seems at times that speech input is the Holy Grail of user
interface technology. But are we being mislead by not fully
understanding the problems. Consider the strong differences
between communication with today's computer systems and
another knowledgeable person. Are there significant factors
which will make speech input inappropriate for most inter
action? It is interesting to think about the differences between
giving a stranger directions to a place across town and ex
plaining a new idea to a colleague. The level of feedback and
the mutual frame of reference are critical factors affecting
communication, perception, and understanding. However,
the technological advances in knowledge systems, pattern rec
ognition, and hardware may result in a significant break
through, allowing the computer to function as a knowl
edgeable partner. Until such breakthroughs are achieved, we
can learn how to build better user interfaces with current tools
and capability by understanding the additional support and
capability required for such advanced technology to be truly
usable.

FUNCTIONALITY

At first glance, direct manipulation as provided by systems
such as the Macintosh appears to be a very natural means of
specifying desired actions and operations. However, a number
of experienced computer users feel that such interfaces are
relatively limited and do not provide access to the power and
complexity available through command interfaces. Are direct
manipulation interfaces really kid stuff? Or are they means for
extending access to functionality without requiring lengthy
training and in-depth system expertise? What are their draw
backs and benefits?

While some users may exult in being system gurus, making
a system usable implies the elimination of arcane expertise. It
is not only necessary that the average user understands how to
invoke and apply a given function, but it is also necessary that
doing so is convenient and practical. The conflicts between
system requirements for simplicity in use and power in
application are not easily resolved. Where are the bottom
lines where trade-offs have to be made and where is there
need for additional innovation in user interface design?

Expert and goal-directed systems may also playa significant
role in providing access to functionality by assisting the user in
determining what techniques are applicable and how they
should be applied. This leaves open the conjecture that the
user may someday be able to simply specify the goals and let
the system do all the work in getting there.

OUTPUT/PRESENTATION

Calculation and analysis does not result in new information
just new data. Before it can become information, the data
must be understood by the user, placed into context, and
related to other relevant knowledge. The first act in making
this happen is perception. Computer graphics provides an
excellent means of presenting certain types of data so that it
is easily understood. But not all data lends itself to graphical
interpretation. Also, quite a bit of information is transient,
that is, meaningful only in the current temporal context. Mak
ing a system usable requires that the information required by
the user is not only available but that access to it is either
immediate or obvious and convenient. However, most soft
ware designers are not familiar with the art of presentation.
Understanding the perceptual processes can make presenta
tion more of a science and less of an art.

More critical for usability are the issues of feedback and
control. With the increased power provided by personal com
puters, researchers are no longer measuring response times to
determine if a system is usable but are looking at the semantic
level of feedback provided to the user. Increasing the level of
semantic feedback can reduce the cognitive distance between
presented data and understood information. Such techniques,
which are critical to direct manipulation interfaces, increase
usability by eliminating interpretive steps and providing sup
port for WYSIWYG (What You See Is What You Get) inter
faces. But they may also require substantial changes in the
design and support of information systems.

OTHER CONSIDERATIONS

Other considerations which are critical to the usability of a
Corporate Information System are related to organizational
and social issues. A system implies organization. How can
organizations be structured to support and utilize information
systems better?

Motivation and desire to use a system are also important
concerns. With the autonomy provided by personal com
puters and the insidious nature of the individual, subversion
of policy to avoid unpleasant activities can destroy the co
hesiveness of an integrated Corporate Information System.
The success of a system may require regular access and use by
a significant portion of users so that information may be ade
quately shared. If access to or use of a system is sufficiently
difficult, however, users will find other alternatives for man
aging information regardless of corporate policy. As such,
usability as perceived by the individual may be critical for the
success of a fully integrated Corporate Information System.

HARDWARE DIRECTIONS
JACK DONGARRA

Argonne National Laboratory
Argonne, Illinois

and
JORGE NOCEDAL

Northwestern University
Evanston, Illinois

and
EUGENE NORRIS

George Mason University
Fairfax, Virginia

The five sessions that constitute the Hardware Directions track provide an opportunity to
gauge some of the shapes of computing hardware. Some of these shapes of the future are
currently under active development; some are still in laboratories, where they are a gleam in
an inventor's eye. All help to define the shape of the future.

As information density and throughput requirements continue to escalate, data path
bandwidths must expa...'1d. The very large information content of beams of light represents an
attractive possibility for the use of data paths of large information capacity that can be closely
spaced in three-dimensional space. The incorporation of these ideas in hardware constitutes
a major theme of this track. One session, Current Developments in Optical Computing,
presents two papers from academic research laboratories and one from industry. The
"Optical Pattern Recognition" paper discusses the application of optical computing tech
niques in the area of pattern recognition. "Optoelectronic Programmable Logic Arrays"
outlines the successes in wedding optical computing techniques with an exciting parallel
architectural concept. The third paper in this session discusses an implementation of ideas
behind such neural computing concepts as architectures adaptive to a variety of fields includ
ing optical computing. This session will appeal to many technically oriented persons, espe
cially those with interests in computer architecture or neural ideas.

Data storage using optical techniques is the basis of another session, Optical Storage
Survey: Market/Technology/Product. The catchword is OD3

, optical digital data disks. Rep
resentatives of the OD3 industry present and discuss the status of key issues in the optical
storage market. Eleven man-years and two million dollars of effort have been expended to
date in this area to develop industry standards. Presenters from four of the leading OD3

companies discuss the status of standards and related problems, and the state of the hardware
art is addressed from a number of exciting viewpoints. This session should be of interest to
a large number of persons, and readers need no technical expertise.

The third session having an optical theme is database-oriented. The CD-ROM and CD
Interactive session is a panel discussion on the topic of CD-ROM, a standardized file format
for very large microcomputer-based distributed databases. CD-ROM and a subset, CD
Interactive, databases are being marketed to businesses, libraries, and other specialized users
needing up to a SOD-megabyte database capability.

Another direction of interest is special-purpose computing. Interesting descriptions and
progress reports on a representative and very diverse sample of special-purpose computer
architectures are the subject of the Special Architectures and their Applications session.
Technically minded persons will find presentations on such state-of-the-future systems ideas

as advanced multiprocessor parallel machines, a pyramid of massively parallel processor
planes, hardware for logic machines, and an application of Petri-net ideas for distributed
decision making.

Lest all the progress delineated in the four sessions described above induce a certain
euphoria, Gene Amdahl presents some sobering thoughts on performance limitations in
inter-processor communication that have given pause to some parallel computer architects.
In this featured session, Dr. Amdahl discusses these limitations in respect to one well-known
architecture, the Hypercube and other pauses for thought are indicated by the relatively
small performance advantage to date offered by gallium arsenide technology.

Optical pattern recognition

by GEORGE EICHMANN
The City College of The City Unive;sity of lVeW York
New York, New York

ABSTRACT

This paper surveys some recent trends in optical. pattern rec
ognition. In particular, five new optical pattern recognition
techniques; the Wigner distribution, the Hough Transform,
the auto- and hetero-associative memory, the symbolic substi
tution, and the syntactic pattern recognition-based techniques
will be described. Some optical and computer-generated
results will be presented.

SUMMARY

Pattern classification and recognition is a vision oriented task
generic to many diverse system applications. Inasmuch as
images are usually optical in nature, it is reasonable to ask that
such images or patterns be processed via an optical system.
Early optical pattern recognition systems evolved from coher
ent optical Fourier transform system concepts. Here, the idea
of an optically-encoded matched filter, a filter that optimizes
the signal-to-noise ratio, is used to detect and classify different
visual patterns. The high degree of sensitivity to topological,
in-class and intra-class variations between elements of
matched filter systems, however, has recently lead to a re
evaluation of such systems. In this survey talk, some recent
work on optical pattern recognizers will be described. In
particular, five new optical pattern recognizer systems will be
highlighted.

These new systems are based on the concepts of the Wigner
distribution (WD), the Hough Transform (HT), the auto- and
hetero-associative memory, the symbolic substitution and,
finally, syntactic pattern recognition ideas.

The WD has been used both as a signal processing and
system analysis tool to describe non-stationary signals and
systems. The WD of images can also be defined. Both the
one-dimensional (lD) and the two-dimensional (2D) WD can
be generated optically. 1 If the ID signal is a characteristics
function of a given pattern, a function that represents a topo
logically invariant description of the contour, the singular
values of the WD matrix are also topologically invariant de
scriptors of the pattern. 2,3,4 Examples of such descriptors will
be presented.

The HT has been shown to be a good straightline detector.
There are many patterns that can be encoded, using the

237

Freeman chain-code, in a set of straightline segments. Re
cently, a number of optical HT implementations were also
described.5 Using the optical HT as a preprocessor, new
topologically-invariant pattern descriptors may be formed.
Examples of such coding to both visual scenes and tex
tures6 , 7, 8, 9, 10 will be presented.

Auto- and hetero-associative memory concepts have re
cently been added to the repertoire of the optical image pro
cessing. Using these concepts, and using a variety of optical
systems, incomplete and/or noisy images were reconstructed.
By an appropriate image or pattern data encoding, and using
either auto- or hetero-associative recall, different but given
pattern features may be stored and recalled. 11,12,13,14,15 Appli-
cation of this technique to boundary descriptors and to the
superresolution of images will be detailed.

Recently, a new pattern detection technique, the so-called
method of symbolic substitution, has been introduced. In this
technique, a large and complex pattern is searched, in paral
lel, for both the location and number of times it occurs, of a
given small sub-pattern. The search procedure uses a number
of primitive operations that is sequentially applied upon the
large pattern. These operations are unit spatial shifts, super
position, and logic, such as AND and NOR, operations. By
applying these operations in a given sequence, parallel optical
pattern recognizers may be constructed. Recently, it was
shown that for pattern recognition only spatial shifts and a
multiple-input AND element are sufficient. Examples of this
approach16

, 17, 18 to both pattern recognition and arithmetic
operation as well as some optical ultrafast implementation
examples will be presented.

There are many pattern recognition problems where the
pattern's structural information is important. For these prob
lems, a syntactic pattern recognition is the proper approach.
In the syntactic approach the pattern is described as a
grammar or language. For each pattern, a new grammar is
assigned. The syntactic pattern recognizer, also called parser,
assigns an unknown pattern to a given grammar. A grammar
contains, in addition to some primitive symbols, rules of how
to form the pattern. By optically encoding both the symbols
and the rules, via either an associative memory or symbolic
substitution concepts, optical syntactic pattern recognizers
can be constructed. 19, 20 The application of this technique to
both noise-free and noisy pattern recognition will be also
discussed.

238 National Computer Conference, 1987

This work is supported in part by a grant from the U.S. Air
Force Office of Scientific Research.

REFERENCES

1. G. Eichmann and B.Z. Dong. "Two-dimensional Optical Filtering of 1-D
Signals." Appl. Opt., 21 (1982), pp. 3152-3156.

2. N.M. Marinovic and G. Eichmann. "An Expansion ofWigner Distribution
and its Application." Proc. ICASSP-85, (1985) pp. 1021-1024.

3. N.M. Marinovic and G. Eichmann. "Scale-invariant Wigner Distribution
and Ambiguity Functions." Proc. SPIE, Vol. 519 (1984), pp. 18-24.

4. N.M. Marinovic and G. Eichmann. "Feature Extraction and Pattern
Classification in Space-spatial Frequency Domain." Proc. SPIE, Vol. 579,
Proceeding of the 4th Intelligent Robot and Vision, September 1985.

5. G. Eichmann and B.Z. Dong. "Coherent Optical Production of the Hough
Transform." Applied Optics, 22 (1983), pp. 830-834.

6. G. Eichmann, M. Jankowski, and B.Z. Dong. "Optical Extraction of Pat
tern Shape Descriptors." Proc SPIE, Vol. 380, (1983) pp. 432-438.

7. T. Kasparis, N.M. Marinovic, and G. Eichmann. "Knowledge-based Image
Segmentation." 1986 SPIE Conference on Robotics and Machine Vision,
Cambridge, Mass., Proc. SPIE, Vol. 726-38, 1986.

8. G. Eichmann and T. Kasparis. "Texture Classification Using the Hough
Transform." Proc. SPIE, Vol. 638 (1986), pp. 46-54.

9. G. Eichmann and Y. Li. "Real-time Optical Line Detection." submitted
for publication, 1987.

10. Y. Li and G. Eichmann. "A Hough Transform-based Circle Detection
Using an Array of Multimode Optical Fibers." to appear in Optics Commu
nication, 1987.

11. I. Kadar, E. Liebman, and G. Eichmann. "Non-Baysian Optical Image
Feature Extraction." Proc. SPIE, Vol. 752-18 (1987).

12. G. Eichmann and M. Jankowski. "Shape Description Using an Associative
Memory Processor." Proc. SPIE, Vol. 638 (1986) pp. 76-82.

13. G. Eichmann and H.J. Caulfield. "Optical Learning (Inference) Ma
chines." Applied Optics, 24 (1985), pp. 2051-54.

14. Y. Li and G. Eichmann. "Conditional Symbolic Modified Signed-digit
Arithmetic Using Optical Content-addressable Memory Logic Elements. "
submitted for publication, 1987.

15. G. Eichmann and M. Stojancic. "Superresolving Image and Signal Restora
tion Using a Linear Associative Memory Filter." to appear May 15, 1987
Applied Optics.

16. G. Eichmann, Y. Li, and R.R Alfano, "Parallel Optical Logic Using
Optical Phase Conjugation." Applied Optics, 26 (1987) 1.

17. Y. Li, G. Eichmann, R. Dorsinville, and R.R. Alfano. "An AND-element
Based Optical Symbolic Pattern Recognizer." submitted for publication,
1987.

18. Y. Li, G. Eichmann, and RR, Alfano. "Optical Computing Using
Polarization Encoded Shadow Casting." Applied Optics, 25 (1986), pp.
2636-2638.

19. G. Eichmann and S. Basu. "Parallel Optical Syntactic Pattern Recognizer."
to appear in the May 15, 1987, Applied Optics.

20. S. Basu and G. Eichmann. "Error Correcting Optical Syntactic Pattern
Recognizers." Proc. SPIE, Vol. 752-13 (1987).

Neurocomputer applications

by ROBERT HECHT-NIELSEN
Hecht-Nielsen Neurocomputer Corporation
San Diego, California

ABSTRACT

Neurocomputing is a new engineering discipline concerned with the design,
implementation, and application of neural networks. Neural networks are non
algorithmic computing structures with the topology of a directed graph that can
carry out information processing by means of their state response to continuous or
initial input. The nodes in neural networks are called processing elements, and the
directed links (information channels) are called interconnects. Neural networks
have been shown to be capable of carrying out information processing operations
in the areas of sensor processing (pattern preprocessing, pattern recognition),
knowledge processing (knowledge representation, autonomous extraction of
knowledge from data, reasoning with imprecise and contradictory knowledge), and
control (smooth, fast robot arm and leg control, robot "hand-eye coordination").
Although neural networks cannot be cost effectively implemented using computers,
it has now been shown that specialized processors called neurocomputers can be
built that will allow neural network techniques to be affordably applied in a number
of areas, including industrial, commercial, and consumer products. This paper
presents an overview of some of the anticipated applications of this new technology.

239

INTRODUCTION

A neural network is a dynamical system with the topology of
a directed graph that can carry out information processing by
means of its state response to continuous or initial input. The
nodes in neural networks are called processing elements, and
the directed links (information channels) are called inter
connects. Figure 1 illustrates a typical neural network. Each
processing element's input to output relationship is described
by a set of difference or differential equations. Therefore, the
complete network can be viewed as a large system of coupled
difference or differential equations.

Neurocomputers are information processing machines that
are specifically designed to implement such systems of equa
tions. By taking full advantage of the structure of these equa
tions neurocomputers can implement neural networks one to
three orders of magnitude more efficiently than general pur
pose computers in terms of size, weight, power, and cost. 1

Neurocomputers function as coprocessors to standard von
Neumann computers, thus allowing the strengths of both to be
freely combined. Neural networks to be implemented on a
neurocomputer are expressed in a standard machine
independent neural net'.vork description language (such as
HNC's AXON™ language). Such descriptions are termed
netware-the neurocomputing equivalent of software. Net
ware to be implemented is loaded into the neurocomputer
from a floppy disk or from a data file on the host computer
and can then be called from host software when desired. The
neural network is called like any other software procedure,
except that the processing takes place on the neurocomputer
coprocessor. Standard netware packages that implement a
variety of important neural networks are now under develop
ment. It is anticipated that most users of neurocomputers will
find such prepackaged, tested, and standardized netware ade
quate for most of their needs.

To give a feel for the types of information processing oper
ations neural networks can carry out, two specific theoretical
results are presented. The first is a reinterpretation of

Figure 1-Typical neural network

Neurocomputer Applications 241

Kolmogorov's 1957 continuous function representation
theorem. 2,3

Kolmogorov's Mapping Neural Network Existence Theorem

Given any continuous function <1>: Em~ R n, <1>(x) = y,
where E is the closed unit interval [0,1] (and therefore Em is
the m-dimensional unit cube), <1> can be implemented exactly
by a three-layer neural network having m processing elements
in the first (x-input) layer, (2m + 1) processing elements in
the middle layer, and n processing elements in the top
(y-output) layer.

Kolmogorov's theorem guarantees that any continuous
mapping or function can be implemented by a small neural
network. However, it does not give us a convenient means for
constructing such a network. That is the subject of the next
result.

Counter propagation Network Construction Theorem

Given a set of examples {(Xl ,YI), (X2 ,Y2), ... ,(XL ,YL)}
of the action of a continuous function <1>: sm~ sn, where
sm and sn are the unit spheres in m- and n-dimensional
euclidean space, respectively, and where <1>(Xi) = Yi for
all i = 1,2, ... ,L, a five-layer neural network with
(2m + 2n + L) processing elements can be constructed that
implements a function '1', such that 'I'(Xi) = Yi for all
i = 1,2, ... ,L, and such that if Xj is closer to X E sm than all
other Xi(i =1= j), then Y = 'I'(x) will be close to Yj. Further, if
<1>-1 exists then the network also automatically implements a
mapping '1'-1 that has the above properties with X and Y inter
changed. Finally, for any N > 0 a five-layer neural network
having (2m + 2n + N) processing elements can be con
structed such that the relationship 'I'(Xi) = Yi (and
'I'-l(Yi) = Xi, if <1>-1 exists) is approximately satisfied for all i,
with the error being minimized in a certain least mean square
sense. The proof of this theorem utilizes the outstar and com
petitive network theorems of Grossberg4

,5 and the self
organizing map theorems of Kohonen.6

Thus, in the case of mapping implementation, neural net
work theory now provides the means for developing mathe
matical mappings, transformations, and functions based upon
examples. In many ways, this can be viewed as an advanced
statistical technique in which it becomes possible to embody
known constraints into the design of the network and to then
allow the network to self-organize the desired mathematical
operation in response to examples presented to it serially.
With such networks there is no requirement to store the data
used to condition the network. It can be collected, used, and

242 National Computer Conference, 1987

discarded. As with biological systems, the ability to incorpo
rate new data incrementally as it becomes available (rather
than having to batch it up) is a major advantage over typical
computer techniques. This allows neural networks to deal
effectively with data sets (such as thousands of hours of imag
ery, 10,000 hours of sonar data, etc.) that are too large to be
processed as batch data in any existing or contemplated
computer.

Besides their ability to self-organize on the basis of huge
data sets, neural networks have other advantages over tradi
tional approaches. For example, neural network architectures
can carry out 0 (1)-time parallel nearest neighbor searches in
which the search time is independent of the number of items
(patterns, knowledge, etc.) stored. They can also carry out
parallel associative memory operations and hypothesis testing
operations. 1, 8

Neural networks are perhaps best thought of as providing at
least some of the "missing capabilities" that computer science
has been unable to deliver in forty years of trying. Specifically,
operations such as continuous speech recognition, image pat
tern recognition, sonar and radar signal exploitation, inexact
knowledge processing, and autonomous learning of control
algorithms, may now become possible by using neural net
works. What is clear is that standard algorithmic computation
and neural networks complement each other with very little
overlap. Neural networks are useless for accounting. Algo
rithms are useless for understanding continuous speech. With
the development of a simple interface between computers and
neurocomputers we can now begin to use both technologies
together. A number of combined software/netware packages
are currently being developed for specific applications. Such
combinations have been termed cyberware.

Neurocomputer technology has now developed to the point
where neural networks that are large enough to solve many
real-world problems can be affordably (in terms of size,
weight, power, and cost) implemented in real time. Optical
computing technology seems well matched to the needs of
neurocomputing. As optical computing components are
added to neurocomputers over the next decade we can expect
an ever widening circle of applications to be encompassed. It
may well turn out that von Neumann computing will not be
able to exploit these advanced processing innovations nearly
as well (because of software development and software
parallelization limitations), thus making neurocomputing the
primary growth element in future computing. In the following
sections some potential applications of neural networks are
postulated.

SENSOR PROCESSING APPLICATIONS

Sensor processing involves two primary problem sets: pattern
preprocessing transformations and pattern recognition. Pre
processing transformations take patterns in one form and con
vert them to patterns in a more desirable or usable form.
Examples include: image compression/expansion, image edge
or boundary extraction, image contrast enhancement, image
or signal basis function (Fourier, Fourier-Mellin, Gabor) ex
pansion, and pattern noise suppression. Pattern recognition is
the operation of mapping a pattern to its class number. This

may be a fixed static mapping, or it may involve more complex
operations such as hypothesis testing based on previously re
ceived patterns and stored example patterns. Neural networks
can carry out a wide variety of pattern preprocessing trans
formations and pattern recognition operations and can deal
with both spatial patterns (fixed images, fixed power spectra)
and spatiotemporal patterns (dynamic video, continuous
speech, sonar, radar doppler audio). Specific examples of
sensor processing neural networks and some applications that
they suggest are now discussed.

The Grossberg/Mingolla Vision Processing Network9 and
the Fukushima Neocognitron lO have demonstrated that
template-driven image segmentation and shift/scale/rotation
invariant image pattern recognition are possible with neural
networks. While all of this work has been at the small problem
level and the individual pieces have not yet been put together,
the techniques used appear to be directly extensible and com
binable to solve full-scale image pattern recognition prob
lems. Assuming that this is correct, the following applications
would then appear to be feasible:

1. Automated object acquisition and classification for im
agery. Partially obscured objects with context clues can
be located.

2. Real-time image analysis for robotics. Operations such
as automated paint removal, washing, assembly, could
be supported. .

Spectral Pattern Recognition Networks such as that of the
author8 have demonstrated the ability to classify time-series
patterns by comparing their time-varying power spectra with
stored examples. This spatiotemporal pattern classification
approach has been theoretically shown to offer high (near
Bayesian) classification performance, near-optimal noise tol
erance, and to be extensible to real-world sized problems.
This approach appears to be of value for continuous speech
recognition.

In summary, neural networks hold significant promise of
solving a number of long-standing high-value problems in pat
tern recognition.

KNOWLEDGE PROCESSING APPLICATIONS

By virtue of their ability to autonomously acquire knowledge
from data, to incrementally incorporate new data into their
mapping functions and to carry out logical hypothesis testing,
neural networks are well suited for certain types of knowledge
processing. In general, if a problem involves highly quantified
and/or highly deterministic knowledge, processing is best ac
complished using more traditional software and artificial intel
ligence techniques. Neural networks seem best suited for situ
ations where the knowledge primarily concerns causality and
usuality, and where contradictions and errors may exist in the
data.

Three significant neural network knowledge processing pa
radigms have so far been developed. These are now men
tioned, along with potential applications.

First, the Andersonll knowledge processing neural network

works by coding knowledge in long attribute vectors. This
system is very robust and can deal effectively with contra
dictions and missing information. In the face of contradictions
it makes decisions based upon the "weight of evidence" (i.e.,
the response that has the largest number of supporting exam
ples is chosen). In the case of missing information, the system
guesses based upon known associations between the available
attributes. One disadvantage of this system is that it requires
a "hard" knowledge base. In other words, the data used to
configure the system needs to be exact and not fuzzy. An
derson has demonstrated that medical knowledge can be ex
tracted directly from medical patient records by encoding
each case as a vector with multiple attributes in each of the
areas of symptoms, diagnosis, treatment, and counterindica
tions to treatment. The Anderson system would appear to be
useful for the extraction of implicit knowledge from data
bases. This may be of value to MIS departments wishing to
exploit available data bases more fully.

Second, the Kosko Fuzzy Cognitive Map12 is a graph-like
structure, implemented in the form of a neural network, that
can store causal relationships between objects known as vari
able concepts. The fuzzy cognitive map can deal with im
precise, contradictory, and erroneous data. This network
would seem to be well suited for problems involving the devel
opment of a model of a complex system or organization based
upon knowledge of individual interactions. For example, a
functional model of an opposing sports team or corporate
senior management team-to allow analysis of strategies to
use against them.

Third, the Carpenter/Grossberg Adaptive Resonance
Network13 is able to carry out hypothesis testing and logical
inferencing operations. It can use existing knowiedge to judge
the "reasonableness" of a given hypothesis. It can also find
the most applicable existing knowledge by testing associated
knowledge items for consistency with the given item. Because
the associated items are retrieved by means of a parallel
search, this process is usually completed in from 1 to 3 steps.
Examples of how this capability might be applied include:

1. Context-sensitive pattern recognition systems for time
series data might be built using the ability to test each
local-in-time classification as a hypothesis against the
context information provided by earlier data. This might
be of particular value for speech classification, auto
mated reading, image scene analysis, etc.

2. Preliminary hypotheses regarding plans for robot activ
ity might be tested against a behavioral rule bank to
determine consistency. This might provide a mechanism
for implementing a highly simplified version of Asimov's
"Three Laws of Robotics.,,14

In summary, neural networks may be able to deliver valu
able real-time knowledge processing capabilities that tradi
tional knowledge based systems apparently cannot deliver.
The capabilities that have been demonstrated using neural
networks (albeit only at the small problem level so far) have
the correct "feel," in that they are intrinsically adaptive to
real-world data and are able to deal with fuzzyness, uncer
tainty, contradiction, and error.

Neurocomputer Applications 243

CONTROL APPLICATIONS

The application of neural networks to control goes back to at
least 1962. In that year Bernard Widrow of Stanford demon
strated a network that could successfully learn the control
algorithm for balancing a broomstick. Since then, several
other control problems have been solved by neural network
techniques. A notable example is the speech synthesis system
built by Terrence Sejnowski of Johns Hopkins that controls a
sound generator by means of text block inputs. This network
has yielded performance equal to or greater than the best
commercial speech synthesis systems. Two promising control
network approaches and some postulated applications are
now presented.

First, the GrossberglKuperstein Oculomotor Control
Neural Network15 has been demonstrated to be able to
carry out feedback control of an imaging sensor in the face
of actuator and image plane nonlinearities. The network is
capable of saccadic motions that boresight the image sensor
on a designated object in one motion. Further, it can gen
erate scan patterns for sequences of prioritized objects. A
potential application of this technology is camera control
in robotic systems. This could allow robots to carry out more
accurate pattern recognition by boresighting objects of
interest (selected by a simple neural network that views the
whole image).

Second, the RumelhartlWilliams Backpropagation
Network7 has demonstrated the capability to approximate ar
bitrary spatial mappings by means of self-organization in re
sponse to examples of that mapping (as in the Counter
propagation Network Construction Theorem stated above).
This is the network used by Sejnowski to build his speech
synthesis system. It has been shown to be useful for a wide
variety of applications in sensor processing, knowledge pro
cessing, and control. A possible application of this network is
advanced fighter aircraft control. The network might be used
to learn control laws directly from pilot inputs in a simulator.
The network would "sit on top of" the usual stability
augmentation and control safety systems and would be re
sponsible for determining stick "feel" and response in various
flight regimes (wing/tailpipe configurations, g-loading, thrust
setting, speedbrake setting). The network could make im
provements to minimize the mean square of some chosen
quantity or quantities (such as average stick deflection, aver
age deflection rate when deflected, etc.) in each flight regime.
It is interesting to note that these ideas have already been tried
out in flight in simplified form (using a slightly different type
of network). In 1969 an F-lOO supersonic jet fighter was flown
using a neural network control system. 16 This test was success
ful, but since neural networks are non algorithmic and simply
learn directly from data, the engineers of the day could not
readily accept this approach. Given the versatile digital con
trol systems of today, with their ability to automatically revert
to simpler subsystems in the event of the failure of a
higher-level system, neural network techniques may find more
acceptance in flight control this time around.

In summary, neural networks may add a number of new
adaptive control capabilities to the control engineer's reper
toire.

244 National Computer Conference, 1987

SUMMARY

Neurocomputing is a technology whose time has arrived. It
now seems likely that it can solve many of the problems in
sensor processing that other approaches have been struggling
with for over 30 years. Similarly, in knowledge processing
neural networks promise to provide the means to deal effec
tively with the difficulties of real-world knowledge with its
inexactitudes, contradictions, and errors. Finally, in the con
trol arena, a number of new techniques that will allow better
control tolerances to be achieved using less expensive compo
nents appear possible. Compensation for wear and partial
damage may also be possible.

REFERENCES

1. Hecht-Nielsen, Robert. "Performance limits of optical, electro-optical, and
electronic neurocomputers." SPIE Proc., (Vol. 634), 1987.

2. Kolmogorov, A.N. "On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and
addition." Dokl. Akad. Nauk SSSR, (Vol. 114), 1957, AMS Translation,
pp.55-59.

3. Lorentz, G.G. "The 13th problem of Hilbert." Proc. Symposia in Pure
Mathematics, (Vol. 28), American Mathematical Society, 1976, pp.
419-443.

4. Grossberg, Stephen. Studies of Mind and Brain, Reidel, 1982.
5. Hecht-Nielsen, Robert. "Book Review of Grossberg's Studies of Mind and

Brain. " 1. Math Psych., 27 (1983) 3, pp. 335-340.
6. Kohonen, Teuvo. Self-Organization and Associative Memory. Springer

Verlag, 1984.
7. Rumelhart, David E., and McClelland, James L. (Eds.). Parallel Distrib

uted Processing: Explorations in the Microstructure of Cognition, (Vols. 1
and 2), MIT Press, 1986.

8. Hecht-Nielsen, Robert. "Nearest matched filter classification of spatio
temporal patterns." to appear in Applied Optics, May, 1987.

9. Grossberg, Stephen and Ennio Mingolla. "Neural dynamics of surface
perception: Boundary webs, illuminants, and shape-from-shading." Com
puter Vision, Graphics, and Image Processing, in press, 1987.

10. Fukushima, K., and S. Miyake. "Neocognitron: A pattern recognition sys
tem tolerant of deformations and shifts in position." Pattern Recognition, 15
(1984) 6, pp. 455-469.

11. Anderson, James A., Richard M. Golden, and G.L. Murphy. "Concepts in
distributed systems." SPIE Proc., (Vol. 634), 1987.

12. Kosko, Bart. "Fuzzy cognitive maps." Internat. 1. Man-Machine Studies,
(Vol. 24), 1986, pp. 65-75.

13. Carpenter, Gail A. and Stephen Grossberg. "Adaptive Resonance." SPIE
Proc., (Vol. 634), 1986.

14. Asimov, Isaac. The Naked Sun, Doubleday, 1956.
15. Grossberg, Stephen and Michael Kuperstein. Neural Dynamics of Adaptive

Sensory-Motor Control, North-Holland, 1986.
16. Roger Barron. "Avionics Flight Control Systems for Aerospace Research

and Development." Paris, France Bionics Symposium Proceedings held
September 1968, Brussels, 1969.

17. Denker, John S. (Ed.). Neural Networks for Computing, Snowbird Utah
1986, AlP Conference Proceedings 151, American Inst. Physics, 1986.

Optical programmable logic arrays

by RAYMOND ARRATHOON
Wayne State University
Detroit, Michigan

ABSTRACT

A review is presented in this paper of recent developments in
the area of optical logic. Special emphasis is placed on optical
programmable logic arrays and the development of a rudi
mentary optoelectronic central processing unit.

SUMMARY

In considering the granularity of multiprocessor systems,
there is a linear progression in interconnection complexity
from conventional von Neumann architectures to massively
parallel systems such as neural networks. A content address
able memory may also be regarded as a parallel architecture.
wnen an input is appiied to such a system, the entire memory
is searched simultaneously. As the degree of parallelism and
the number of interconnections increases, the peculiar advan
tages of optical systems become apparent. One example of
these interconnection capabilities in content addressable
memories is provided by the recently developed optical pro
grammable logic arrays or OPLAs.l

The OPLA was fabricated for use in conjunction with a
rudimentary optoelectronic central processing unit capable of
executing ten million two-bit instructions per second.2 Within
the OPLA hundreds of hair-thin optical fibers were connected
in a specific crossbar pattern that provided the appropriate
optical interconnects for the specified instruction set. Fault
tolerance was designed into the unit by overlaying three re
dundant sets of optical connections. The system exhibited
extraordinarily large fan-in and fan-out capabilities iIi com
parison with conventional gates, moreover, fiberoptic devices
in this class are potentially capable of running at considerably
higher clock rates than conventional PLAs. The fan-in and

245

fan-out advantages of the system suggest that massive content
addressable memories can be built that will significantly ex
ceed the capabilities of PLAs based on electronic logic.

Before considering the architectural implications of these
devices, the issue of reconfigurability must also be addressed.
The inclusion of a spatial light modulator in the system could
convert the OPLA into a reconfigurable optical PLA or
ROPLA. Such a device would be functionally equivalent to a
dynamically programmable electrical PLA, however, the
reconfiguration speed, fan-in and fan-out capabilities of the
optical system would take the ROPLA into realms of content
addressable memories previously inaccessible to systems
based solely on electronic logic. What are the implications?
At the very least, the system would be capable of imple
menting complex logic operations in a single clock cycle. In
addition, the reconfigurable nature of such a device would
permit the mapping of certain algorithms into combinational
logic. This would result in substantial improvements in pro
cessing time since the algorithm would now be executed in a
massively parallel mode. The advent of massive content ad
dressable memories also permits the inclusion of adaptive
algorithms as a variety of control variables could be embedded
in the memory itself. These features suggest that optical pro
grammable logic arrays are likely to prove significant in a
variety of architectural considerations.

REFERENCES

1. Arrathoon R. "Historical Perspectives: Optical Crossbars and Optical Com
puting." invited paper, Soc. Photo-Opt. Inst. Eng. 752, Paper 01, 1987.

2. Arrathoon R. and S. Kozaitis. "Design and Performance of a Programmable
10 MIP Optical Central Processing Unit." Soc. Photo-Opt. Inst. Eng. 752,
Paper 06, 1987.

Structure and operation of the HERMES
multiprocessor kernel

by N.G. BOURBAKIS and D.K. FOTAKIS
George Mason University
Fairfax, Virginia

ABSTRACT

In this paper, we present the internal structural design and operation of the
HERMES multiprocessor Kernel. HERMES is a heterogeneous, realtime, multi
processor vision machine based on a two-dimensional array structure of (N2/4r)
microprocessor-nodes. N x N is the size of the picture and r is a resolution param
eter. The HERMES kernel consists of four Z -adjacent processors in the whole
HERMES array configuration. The internal design of the Kernel processors and the
efficient way of their intercommunication are also discussed.

247

Structure and Operation of the HERMES Multiprocessor Kernel 249

INTRODUCTION

The performance of the multiprocessor vision system archi
tectures is based on the efficient internal design of their pro
cessors and the flexible connectivity of their kernels. It is well
known that there is a great variety of multiprocessor vision
architectures. 1, 2, 3, 4, 5 However, the internal structural design
of their processors and the processors connectivity seem to be
similar for many of those mUltiprocessor architectures. 1,2,4 In
particular, many of the homogeneous multiprocessor archi
tectures are based on a simple processor internal structural
design such as adder or ALU, which processes on one bit
operands at a time. 1,2 The communication among these pro
cessors in the homogeneous structures is based strongly on the
neighboring connectivity.

On the other hand, many of the heterogeneous multi
processor architectures use a CPU as a processor. 3,4 The con
nectivity among the processors of those architectures has
many common features with the homogeneous ones, such as
neighboring. Moreover, it presents some features appearing
in the local area computer network configurations. 6,7

The goal of this paper is to deal with the internal structural
design of the HERMES multiprocessor kernel and the con
nectivity of the processors included in the kernel. Note
that, the HERMES multiprocessor kernel consists of four
Z -adjacent processors, where the upper left of them in the
array is their master-processor and the other three are the
slave-processors.

This paper is organized into four sections. The second sec
tion discusses the Kernel internal structure and operation of
two communication schemes (common-bus, parallel-buses).
The third section compares these two communication schemes
in a number of factors such as hardware complexity, and the
last section summarizes the overall presentation.

KERNEL STRUCTURAL DESIGN AND OPERATION

HERMES Vision Machine

A brief introduction of the HERMES vision machine will
assist the reader to understand the overall structure and oper
ation of the kernel configuration. HERMES is a hierarchical,
heterogeneous, real-time multiprocessor vision architecture,
that has been designed and, its local and global operation has
also been simulated by using Petri-net formal models.4

,8,9, 10

The horizontal organization of the HERMES machine is illus
trated in Figure 1. HERMES consists of (N2/4T

) micro
processor-nodes in a two-dimensional array structure, where
r is a resolution parameter.

The HERMES vision machine receives image data in par
allel from the environment by using a two-dimensional photo-

array of N x N cells and processes them in a parallel
hierarchical (top-down and bottom-up) manner. Orders go
down and abstracted picture information goes up along the
HERMES hierarchy. In particular, the microprocessor-nodes
process the available picture information in parallel, at the
first level (LO) of the HERMES hierarchy. At each of the
following levels of the hierarchical processing a designated
node ("the upper left" in each quartet of four Z- adjacent
nodes) accumulates, correlates, synthesizes, and attempts to
recognize the available picture information, feeding the re
sults upwards, as shown in Figure 2. The designated full
master node of the HERMES architecture receives various
commands from its users. It then makes decisions based on
both its decision making algorithms and the built in "experi
ence." If necessary, it also sends orders down to its successors
in the hierarchy, thus determining the processing tasks that
they have to execute.

Kernel Intercommunication Schemes

In this section, the structural design of the HERMES kernel
will be described. Two variations on the initial HERMES9

• PP'LoL1L2

E9 "'LoLJ
0""1.0

e JlP..,1 tche.s S~ . S!
I

" / _-
PoJ.

I
/

Figure I-Busing and switching orgaillzation of the HERMES architecture
of 16 nodes. The dashed arrows indicate "orders" that go down and the
solid arrows indicate "abstracted" information which goes up along the

HERMES hierarchy.

250 National Computer Conference, 1987

level lZ

p;lIeh

Figure 2-Pseudo-ternary tree operation of the HERMES architecture

design of the busses, interconnecting the processors of the
kernel, will be presented:

1. Common bus configuration
2. Parallel bus configuration

The selection between these two different implementations
is dependent on some factors such as: total processing speed
of the HERMES machine/' 8, 9,10 total cost of the full design
of the HERMES system, "real estate" considerations for a
future VLSI realization, and architectural schemes of the
"off-the-shelf' components (i.e., microprocessors) that are
going to be used for the implementation of the HERMES
system. In the following, the description of the two policies is
given, while their comparison is presented in a third section.

Common bus structure

The basic idea of this scheme (see Figure 3) is the 8-line
data bus which is coming out of each processor. In addition,
these buses are connected together and to the main bus of the
HERMES system. 9

The selective transmission/reception of the master of a ker
nel is occurred using the individual switches of the processors.
The direction of the flow of the information on the data bus
is selected by the enable signals of the tri-state individuals
switches. The manner in which the "opening" and the closing
of switches work, is described in the architectural design of
HERMES.9

The data-bus is 8-lines wide because, not only does it repre
sent one byte of information but, it also improves the com
munication procedure between the processors in the best case
of the HERMES operation (i.e., when a region of a picture is
of one gray level only). The data that are going to be trans
mitted or received in each processor (four processors per ker
nel) are latched on an 8-bit register (IN-OUT). The communi
cation packages are packets of 8 bits. Once a communication
session is initialized between two processors (master-slave), it
has to be terminated before another session occurs.

Note that the 8-line data bus carries pure data without
including control bits. Thus, the opening and the closing of a
communication session is supervised by two control lines,
namely: "one-way interrupt" line from a slave to the master
and a "one-way acknowledgement-interrupt" line in the op
posite direction. When the master wants to transmit to the

/jE,cT OPEAA'ICN~L.
UvH ..

~
...
I • I ;

r-____ ~I~.~ . ~

.,
I L _____________ .

I •
I .. ; : ~ .

~
S/.Av£ ~
f'~ES

. I

~I

~--.... : r---- --- --'" _TRI-!)Tl>,iE

S\$'1'ClilS

Interrupt

In t er rupt - AcknolNl ed gei71en t

: Data lines

Figure 3-Common bus configuration

slaves, there is the capability to transmit in parallel to all
of the processors by opening the individual switches and at the
same time interrupting them through the interrupt
acknowledgement line. This interrupt has the highest priority
in the internal structure of the processors. As to what the
structure of the overall HERMES architecture concerns, the
same information is sent to each processor at the same time.
However, there is the possibility for the master not to send
information to a number of processors so that they remain
idle. When a slave-processor wants to transmit information to
the master, it enables its interrupt line and lets it be enabled
until the last packet of information is sent to the master. In
addition, the processor does not send the first packet until the
master enables the interrupt-acknowledgement line. After the
first packet is sent, the rest of the packets are transmitted in
a synchronous manner.

On the other hand, the master has a service policy for the
interrupts. The first interrupt that reaches the master is going
to be serviced, and there is a fixed priority on the processors
(i.e., Z-manner) in the case of the simultaneous existence of
two or three interrupts. It is important to note, that any inter
rupt from a processor, higher in priority than the master, is of
the highest priority among the three processors. The indi
vidual switch of the master is controlled by itself and by its
master in a wider operational kernel (processor of higher
priority). It goes without saying that the kernel structure de
scribed is compatible with the global structure of the
HERMES machine.9

Structure and Operation of the HERMES Multiprocessor Kernel 251

Parallel bus structure

The basic idea of this scheme (see Figure 4) is the existence
of separate data buses connecting each slave to the master
processor in the kernel. There is also a separate data bus for
the communication of the master and the processor of the
higher hierarchy. Moreover, there is no need of individual
switches for each processor (including the master), since the
master is capable of transmitting or receiving in a parallel
manner.

The initialization and the termination of the transmission of
the packets, from the standpoint of master, is set up by the
interrupt and interrupt-acknowledgement lines, as discussed
in the previous section. The only difference is the lack of a
priority scheme in the master since transmission/reception
to/from the slaves is done in a parallel manner. In addition,
the transmission of packets is done in a synchronous manner
for each slave separately. It goes without saying that there is
a data IN-OUT register in each edge of each bus (8 bits) to
latch or buffer the communication packets. Note that the
slight difference of organization of the buses from the original
HERMES machine design9 does not contradict the com
patibility of this structure with the HERMES design.

SLAVE

PROCES~

Interrupt

, ,
1 L ______ _

Interrupt-Acknowledgement

Data lines

Figure 4-Parallel bus configuration

SLAVE

PROCfSSOp..

Slave-Processor Design of the Kernel

The architectural scheme of each of the three processors of
the kernel is depicted in Figure 5. As was mentioned in
"HERMES--A Heterogeneous Multi-processor Machine
Vision System,,,9 the horizontally microprogrammed ap
proach was utilized. In this section the basic components and
the organizational role of the slave-processors will be
presented:

111"1.-

1. Four registers of 8-bit size will accept the pixels from
the photoarray in the form of 8 bits.

2. A two to four decoder will select one of the above
registers.

3. A fast PROM memory will keep the micro-routines of
the microprocessor operation.

4. A microprogram sequencer will always provide the
control memory with the address of the next memory
word to be forwarded to the control register and the
address of the next instruction located in the PROM to
be executed. In addition, it will accept the interrupt
acknowledgement signal and will activate the appropri
ate service routine. It will also arrange the communica
tion sessions with the master.

5. The control memory (look-up-table) will contain the
control words required for the execution of the micro
instructions written in PROM.

6. A control register will keep track of the control words
coming out of control memory. Each bit represents a
control signal connected to a part or parts of the pro
cessor, as well as, the interrupt line and the control
lines required for the passing of pixel values from the
photo array to the pixel registers.

7. An 8-bit data register, MDR, will keep one of the oper
ands to ALU.

PROM

ffl,olol
cel\'TflOL
,,("I SOU#:

, -

CONTROL

MEMOP.y

[)f5r,IIA.'f'(')/I,
'lGNA,-S

Figure 5-Block diagram of the slave processor of the kernel

252 National Computer Conference, 1987

8. An 8-bit IN-OUT register will keep the byte of infor
mation that is going to be transmitted or received.

9. The X-register will keep the result of an ALU oper
ation.

10. The ALU will operate on 8-bit operands and is sup
posed to be a simple and fast hardware component
since it is going to perform only a few basic operations
(such as add, subtract, compare, change-bit, and, or,
xor, and move).

Some fast off-the-shelf logic components are going to be
used to implement the above design. The microprogrammed
design was preferred in order to have the flexibility to change
the basic operation algorithm (stored in PROM) of the pro
cessor, according to the final selection of the off-the-shelf
microprocessor type used to implement the master of the
kernel.

COMPARISON BETWEEN THE KERNEL
COMMUNICATION SCHEMES

In this section a comparison between the structural design of
the two communication schemes for the HERMES multi
processor kernel is realized. This comparison is based on a
number of factors such as number of data communication
lines per kernel-processor, number of control lines per kernel
processor, number of switches, kernel processing speed, total
number of components in the kernel area, and type of oper
ational mode.

Table I provides these comparative items giving a global
idea about the kernel communication schemes.

Choosing one of the two schemes discussed in this paper
requires consideration of several trade-offs, as shown in
Table I.

CONCLUSIONS

The structural design of the HERMES multiprocessor kernel
and its operation of the interprocessor communication have
been presented. Two communications schemes were de
scribed as well as the internal architectural design of the ker
nel slave processors was discussed. Both the communication
schemes of the kernel processors include advantages and dis
advantages as to what hardware complexity and processing
speed of the kernel concerns. The implementation of the

TABLE I

Comparison items Common Bus Parallel Bus

of data lines per kernel a) master 8 a) 32
processor b) slave 8 b) 8

of control lines per a) 12 a) 8
kernel processor b) 3 b) 2

of switches per kernel a) 1 a)-
processor b) 1 b)-

kernel processing speed fair fast
total # of components 4/..LPs 4/..LPs

in the kernel area 32 data lines 56 data lines
21 control lines 14 control lines
4 switches

type of operational mode priority full parallel

HERMES vision machine, using the above two communica
tion schemes, is in progress at George Mason University at the
department of Electrical and Computer Engineering.

REFERENCES

1. Duff, M. "Computing Structures for Image Processing," New York: Aca
demic Press, 1983.

2. Danielson, E.P. and S. Levialdi. "Computers architectures for pictorial
information systems." Computer, November, 1981, pp. 53-67.

3. Tanimoto, S. and A. Klinger. "Structured Computer Vision," New York:
Academic Press, 1980.

4. Bourbakis, N.G. "Design of a real-time supercomputing vision system
architecture," Proc. of IEEE Conf. on ICS-87, San Francisco, California,
May, 1987.

5. Fotakis, D. and N. Bourbakis. "A Simulation of a 4-bit Processing Element
for Array processors using Petri-nets," GMU-ECE-TR-1986, submitted to
Inter. Conf.

6. Bourbakis, N. "Data flow Simulation in Quadtree kernels," GMU-TR-
1986, submitted to Inter. Conf.

7. Bourbakis, N.G. and C. Vaitsos. "A multi-microprocessor tree network
configuration used on robot vision systems," Digital Techniques, ed. S.
Tzafestas, pp. 483-490.

8. Bourbakis, N. and P. Ligomenides. "A Real Time, Hierarchical Multi
microprocessor Vision System," Proc. of IEEE Con! on CVPR-86, Miami,
Florida, June 22-26, 1986.

9. Bourbakis, N. and D. Fotakis. "HERMES-A Heterogeneous Multi
processor Machine Vision System," submitted to IEEE Trans. on PAMI,
1986.

10. Bourbakis, N., D. Fotakis and D. Tabak. "On Data Flow Based Functional
Model for the HERMES Multiprocessor Vision System," accepted to be
published in the Proc. of IEEE Conf. on ICS-87, San Francisco, California,
May, 1987.

Object recognition on the GAM Pyramid

by DAVID H. SCHAEFER and MAN B. CHU
George Mason University
Fairfax, Virginia

ABSTRACT

The GAM Pyramid contains 341 processing elements which are arranged in a
pyramid structure that consists of five levels. A processing element can directly
communicate with one "parent" on the level above its own level, with four "chil
dren" on the level below, and with four "siblings" on its own level. This structure
can rapidly extract information about an image on the base of the pyramid such as
the number of holes, number of end-points, number of vertices, and other param
eters. This information is then used to identify an object of any size, in any orienta
tion, and without regard to whether objects such as pliers or scissors are open or
closed. Recognition of specific objects from an object vocabulary of ten has been
accomplished.

253

INTRODUCTION

A program to investigate non-traditional computer architec
tures suitable for "recognizing" objects in visually sensed in
puts has resulted in the fabrication of a five-level, general
purpose pyramid of processing elements, augmented by a pyr
amid of adders. This structure, the "GAM Pyramid,,,1,2,3,4 is
being used to examine pyramid algorithms suitable for identi
fying binary images such as triangles, cups, scissors, and
pliers. The algorithms being developed will perform identifi
cation independent of orientation or whether objects, such as
scissors or pliers, are open or closed.

THE GAM PYRAMID

The GAM Pyramid is a five-level pyramid machine which
contains 341 processing elements. The "G" in "GAM" stands
for "George Mason University," the "A" stands for
"Adder," as a supplementary pyramid of full adders counts
the number of "ones" on the level above the base of the
Pyramid, and "M" stands for the "MPP" the Massively Par
allel Processor whose custom processing elements chips are
utilized. 5

Each processing element in the pyramid can directly com
municate with nine other processors (except for those located
on the surface of the pyramid, where not all neighboring
processors exist). A processing element is connected to a
"parent" located on the level above its own level, four "chil
dren" located on the level below, and four "siblings," the
northern, southern, eastern, and western neighbors, on its
own level. These bidirectional connections between process
ing elements and the adder pyramid provide a fast and easy
way of obtaining global information about the image on the
base.

Each processing element is connected to 8K bits of external
memory. SUMOR circuitry on each level provides the OR's
of all the data busses on that level. These five SUMOR signals
along with the seven-bit output of the adder pyramid provide
feedback to the control computer. A camera and its associ
ated interface produce an image, which provides input to the
16 x 16 pixel base of the Pyramid. The pyramid of adders
provides a method for rapid counting of object pixels. For
instance, in order to obtain the sum of the image pixels on the
base, using the internal adder in the processing element, 178
cycles are required. With the adder pyramid, only eight cycles
are required for the same operation. Pixel counting is a prime
requirement for the image identification tasks to be described.

The GAM Pyramid is a modified SIMD (Single Instruction,
Multiple Data) system. Every instruction can be performed by
all of the processing elements. The control computer, how-

Object Recognition on the GAM Pyramid 255

ever, generates "level enables" allowing selected levels to
receive commands while other levels remain quiescent.

The motivation in building the pyramid was to provide
hardware capable of rapidly identifying visual inputs. The
GAM identifies input images, generally in the form of paper
cutouts that are sensed by the camera. Inputs can also be
provided by a cursor. Test images being examined can be one
of the ten objects in the object vocabulary. Classes of objects
identified are: scissors, pliers, cups, wrenches, forks, knives,
L-squares, T-squares, triangles, and triangles with holes. The
scissors and pliers are actual objects, not cutouts, and can
assume any degree of closure. The input image is identified as
one of the listed objects if its features agree with the very
generalized description of that object.

The object recognition algorithms are divided into two
parts. The first part extracts features of the input image.
Then, based on the information extracted, the image is iden
tified as one of the listed objects, or possibly an unknown
object. Object descriptions, stored in the control computer,
are of a very general nature, and apply to the object irre
spective of orientation or other variables of the image.

IMAGE PARAMETERS EXTRACTION

One of the features of the input image that can be easily
obtained is the number of holes in the viewed object. Since the
input image is assumed to contain only one object, the Euler
Characteristic Number can indicate the number of holes in the
object. The Euler number (C) indicates the number of con
nected regions minus the number of holes in those regions. It
is defined as:

C=V-E+F

where V is the number of pixels, E is the number of any pair
of horizontal or vertical adjacent pixels or, in the absence of
the horizontal and vertical pairs, any diagonally connected
pair of pixels, and F is any two by two pixels square. If the
number of connected regions (or objects) is equal to one, then
the number of holes will be equal to one minus C. The equa
tion to obtain C can be simplified to:

C= 10 _ Xl
00 10

where "X" is "don't care." On the right hand side of the
equation are two image patterns. The number of occurrences
of each of these patterns is counted utilizing the adder pyr
amid. The difference in the number of occurrences of the
patterns is then computed by the control computer. It requires
about 50 clock cycles to obtain C by using the above equation
and the adder pyramid.

256 National Computer Conference, 1987

The "center" of an object with one hole can be compared
with the "center" of the hole. The "center" is defined as the
center of the smallest rectangle enclosing the object or the
hole.

Another measurable feature of the image is the number of
"fingers" or small protrusions of an object. For instance, a
fork has four "fingers," a monkey wrench two. To obtain the
"fingers," every pixel on the base is ANDed with all of its
eight neighbors. This operation leaves only those object pixels
surrounded by eight object pixels, (i.e., the body of the ob
ject). This image of the body is then expanded twice, com
plemented, and ANDed with the original image, isolating the
fingers from the rest of the object. The fingers are now each
separate objects and can be counted by the Euler counting
routine.

The number of extreme points is another feature associated
with an image. A triangle, for example, has three extreme
points, a rectangle four. An extreme point is found if any of
the following patterns and their 90 degree rotations are
present.

000 000 0 0 0 0
o 1 0 or 11 0 or 0 1 1 0
XXX 110 XXXX

If two or more extreme points are touching each other, the
lower right pixel will be selected and the other will be
dropped. Those points remaining will then be counted.

Narrow objects can be identified by counting the number of
"end points." A "T," for instance, has three end points, an
"L" only two. Before the discussion of the end point algo
rithm, the concept of "tail point" must be presented. A tail
point is defined as one of the following patterns, their mirror
image, and their 90 degree rotations:

00 0 OOOX
01 0 or 010X
OAA 0110

If both A's of the first pattern are "one," the second pattern
is used. The tail points of the image on level 4 (the base) is
obtained and stored. Then each set of children is moved up to
level 3 and tail points calculated on level 3 for each of these
four images. The tail point of the image obtained by ANDing
the four children is also obtained on level 3. Out of those five
tail point sets on level 3, if three of them are touching each
other at a certain area, that area will be defined as an end
point. Those areas are then moved down to the base and
ANDed with the original image. Since by definition a tail
point on the base also must be an end point, the two image
planes are merged toget~er by ORing. Also, in order to re
duce the size of the end point, whenever an end point is
covering a tail point, only the tail point will be taken to be the
end point,

Long straight lines at :right angles indicate the presence of

an Lor T-like object. A portion of a vertical line, for instance,
is defined as any pixel that has both a north and south neigh
bor. Pixels with such neighbors are then ORed up to the level
above and the same procedure applied again. This is repeated
until no pixel can move up further. The further up the pyramid
such a propagation can take place, the longer the line. The
presence of long horizontal and diagonal lines are obtained in
a similar fashion.

RECOGNITION PROCEDURE

The recognition procedure that is under investigation involves
the collection of all the features, and then using all the col
lected evidence to determine which object in the vocabulary
is being sensed. If an unknown object contains no holes, has
three end points, no fingers, and two long lines at right angles
to each other, then, with a high probability, the object is a
T-square. The evidence, however, can be contradictory due to
the imprecision of the feature extracting algorithms. There
fore a "most probable" identification is made.

The existence of holes makes identification easier. A pair of
scissors is the only object in the object vocabulary that con
tains two holes. Several of the objects contain only one hole,
but can be differentiated by comparing the center of the hole
and the center of the object.

CONCLUSION

The features used in identification do not depend on the size
or orientation of the input image. Sensed objects can vary in
size, and have any orientation or degree of closure. It is felt
that the image parameters being utilized are suitable for very
large classes of image inputs. More complicated objects will
consist of a collection of elementary objects. Further experi
mentation is being undertaken.

REFERENCES

1. Schaefer, D. H. and G. C. Wilcox. "The MPP Pyramid Computer." Pro
ceedings of the 1985 IEEE International Conference on System, Man and
Cybernetics, Tucson, Arizona: November, 1985, pp. 671-675.

2. Schaefer, D. H., G. C. Wilcox, and V. J. Harris. "A Pyramid of MPP
Processing Elements-Experiences and Plans." Proceedings of the 18th An
nual Hawaii International Conference on System Science, Honolulu, Hawaii:
January, 1985, pp. 178-184.

3. Schaefer, D. H. and P. Ho. "Counting on the GAM Pyramid," in Levialdi
and Cantoni (Eds.): Pyramids Systems for Computer Vision, Berlin:
Springer-Verlag, 1986, pp. 125-131.

4. Schaefer, D. H., P. Ho, J. Boyd, and C. Vallejos. "The GAM Pyramid,"
in L. Uhr (Ed.): Parallel Hierarchical Pyramid-Based Computer Vision,
New York: Academic Press, (in press).

5. Burkley, J. T. "MPP VLSI Multiprocessor Integrated Circuit Design," in
J. Potter (Ed.): The Massively Parallel Processor, MIT press, 1985,
pp. 205-2i5.

Multilayered petri-nets for distributed decision making*

by A.Z. GHALWASH, P.A. LIGOMENIDES, and R.W. NEWCOMB
University of Maryland
College Park, Maryland

ABSTRACT

Decision making networks, employed for the control of complex cybernetic sys
tems,6,7,8,9,10 operate on the "Command, Status, and Message Layers" of concur
rent decision making activity. Decision making "nodes" function as multitasking
operators on all three layers, by executing command decomposition, status report
ing, and message exchanging tasks for the concurrent implementation of various
control policies. Aspects of real-time concurrency in hierarchical command decom
position over the command layer of the dm-net are, more particularly, analyzed in
this paper, using concepts and tools of Petri-net theory. 2, 3, 4, 5,11,12,14

* This work was partially supported by National Science Foundation Grant Number 1ST 84-08063.

257

Multilayered Petri-nets for Distributed Decision Making 259

INTRODUCTION

The control of systems that are significantly more complex
than any single decision maker can deal with alone, has
motivated investigations of distributed decision making
organizations. 13, 15 The employment of multiple decision mak
ers, coordinated in their local decision making efforts to reg
ulate complex systems, underlines the approaches followed in
these investigations.

In a more general sense, distributed decision making is used
in the design of real-time management and control organiza
tions for the regulation of "cybernetic" systems, such as vari
ous large scale business, military, and complex engineering
systems. Cybernetic systems are characterized by strongly
nonlinear interactions, and by regulatory processes designed
to counter the homeostatic tendencies of the controlled sys
tem and the incoherent (noisy) or regulated forces from the
environment, so as to derive the system away from certain
intigenous behavioral trajectories and toward preferred
"gainful" ones,6,7,8 as illustrated in Figure 1.

Hierarchical decision making organizations for the control
of complex cybernetic systems have been used by military,
governnlent, and business establishments for centuries. How
ever, the concept of real-time, computer-based, hierarchical
control of complex systems is a recent development. 4,5,6,7,13,15
The adaptive implementation of strategies and policies along
a command decomposition hierarchy, in the face of continu
ous environmental and system perturbations, involves the
concurrent and coordinated functioning of many, level-

\;

6

BEHAVIOR GENERATING
COMMAND DECO~WOSITION
HIERARCHY

CONTROLLED
CYBERNETIC SYSTEM

INTERFERING
ENVIRONMENT

Figure 1-Designed, homeostatic, and incoherent forces on a controlled
cybernetic system

organized, decision making modules. Command decom
position along the behavior generating hierarchy is guided by
the incitement of the "best" monotonic attainment of local
goals, derived from the goals and constraints contained in the
input command statements, and from the options of alterna
tive actions available.

In top-down hierarchical decision making networks (de
noted "dm-nets"), high level commands are decomposed both
spatially and temporally into related temporal sequences and
patterns of subcommands, unfolding from top-down. This
makes command decomposition a highly dynamic, behavior
generating, activity. Decisions at one level of the hierarchy
directly affect the decision making environment at other
levels, both lower and higher, by exerting influence on the
states, conditions, and alternatives available to other decision
makers.

Because of the highly concurrent and dynamic character of
hierarchical dm-nets, the use of concepts and tools of
Petri-net theory4, 5, 11, 12, 14 offer special advantages for per-
formance-analysis and system-specifications. In this paper we
will show the use of Petri-net concepts for the analysis of
hierarchical multilayered dm-nets, in which decision making
modules are allowed to operate concurrently on various poli
cies and on the various layers of the coordinated decision
making activity. In the second section we review concepts of
dm nodes and nets, and in the third section we derive the
equations for concurrent processing of commands along the
command decomposition hierarchy, using Petri-net sym
bolism. We conclude with comments in the last section.

DM NODES AND NETS

Decision making networks with emerging collective goal
seeking capabilities operate like highly asynchronous, real
time, cellular automata. The decision making nodes (denoted
"dm-nodes") receive, process, and distribute commands,
status reports, and messages from/to other dm-nodes of the
network in a highly asynchronous, real-time fashion. As such,
a dm-node operates concurrently on three "layers" of activity,
namely the command decomposition, the status reporting,
and the message exchanging layers, as illustrated in Figure 2.2

In this paper we will limit our discussion to the role of the
dm-node within the command decomposition hierarchy. As
illustrated in Figure 3, the dm-node, Puv(m, n) (i.e., the vth
node at the uth level), has m input connections and n output
connections. Input commands, '~/, are received over the m
input channels in a totally asynchronous manner, and, after
some processing delay, output subcommands, 8°, are trans
mitted to lower level dm-nodes in the hierarchy. In output
transmissions, sub commands are distributed in accordance

260 National Computer Conference, 1987

Message Layer dm-node

Figure 2-Layered concurrent operation of dm-nodes and nets

Figure 3----dm-node: Puv(m, n)-model

with the spatio-temporal distribution programs, which are
part of the output plan of the decision maker, functioning like
microprograms of subcommand distribution.

Borrowing concepts and symbolism from Petri-net theory,
we may represent the dm-node as the combination of an inter
face place, 'lTuv, and of a decision making transition, puv,

where the ordered subscripts uv denote the "level, individ
ual"-number designation of these components, as shown in
Figure 4(a). In accordance with the symbolism of "binary"
(also called "safe") Petri-nets, 1,2,3,4,5,11,12 places within the
dm-nodes designate the presence of commands by a single
"set-token." Each dm-transition has only one incident arc
(place connection), and it is enabled to "fire" if a set-token is
present in the incident place. Firing of a transition is also
enabled by the satisfaction of a local condition.

(a)

(b)

Figure 4----dm-node: (a) 'Truv/Puv model; (b) more detailed model.

p
Uy

On a more detailed level of description, the transition 'lTuv

may be broken down to an input transition pi, a command
fusion place and transition combination, -rI r/, the actual com
mand decomposition place and transition combination, 'lTd pd,
(further detailed in A.Z. Ghalwash's Ph.D. dissertation2

),

and an output place, 'lT0
, connected to the output transitions,

po, that distribute the output subcommands, 8°, as it is
illustrated in Figure 4(b).

Each dm-node functions within its own characteristic "deci
sion making worlds" (denoted "dm/w"), each specified by a
corresponding "domain of objectives" of the decision making
activity, and each composed of domain-related attributes, ob
jects, and events of the decision maker's concern. In response
to different input command statements, specifying temporal
goals and constraints, the decision maker of the dm-node (pd)
determines the corresponding "decision making subworlds"
(denoted "dm/sw"), on which the current decision making
attention is focused. 8,9,10

The dm-nodes may operate concurrently on various tem
poral tasks (within corresponding dm/sw's), specified in the
different, concurrently received, input command statements.
Decision making tasks deal with the analysis, implementation,
and monitoring of different policies specified over the various
domains of objectives of the decision maker's concern, as, for
example, a manager in a business organization may deal con
currently with various tasks as part of implementation of dif
ferent policies of production, marketing or finance.

There are various characteristic time-delays in the oper
ation of a dm-node. In order to analyze and determine various
temporal aspects in the operation of a dm-net, processing and

Multilayered Petri-nets for Distributed Decision Making 261

propagation delays must be defined and determined. Most
critical of such delays are those that must be determined in
real-time and are dependent on conditions and data measured
only dynamically. 2

For purposes of demonstration, we derive now the average
delay in a dm-node under the following simplifying assump
tions: The decision maker, pd, deals with a finite set of objects
in his dmlw, each object, Qi, taking only a finite number of
discrete values, qij. Input command statements contain condi
tions (IF part) of the type "Qi is qij ," which are found to be
satisfied in the dmlw with a probability (distribution) I1j • We
let I1 be the probability that the next input command, 8i

, will
address the object Qi , and ~/i be the probability that the value
qij will be addressed given that Qi is addressed. Also we let
that Pi&j be the probability that both Qi and qij are addressed
in 8i

•

The average time between two successive input commands
, is To, while the time required to check an IF-condition about
object Qi is T~, and the actual execution time for a command
when the IF-condition is satisfied is 1;,.

Then,

l1&j = I1li . R

and the average firing time delay in the pd-transition is easily
derived to be,

n

1'avg = 2: T!
. i=1 . mi [(1)]

T~ = 11· T~ + ~ l1&j R. - 1 To + 1;,
J=1 IJ

where mi is the number of the discrete values of Qi , and n is
the number of objects in the dmlw. Note that the total delay
in the dm-node puv may be determined if the delays in the
other transitions of the node (see Figure 4(b» are estimated
and added to the delay in pd. This derivation of 1'avg demon
strates that temporal aspects in the command decomposi
tion hierarchy may be computed under various statistical as
sumptions, or by estimations of delays from data collected in
real-time.

Within a hierarchical command decomposition organiza
tion, each dm-node is appropriately connected and is desig
nated to operate within specified dmlw's, in accordance to the
various assigned domains of objectives. As new policies are
generated by global commands issued at higher levels of the
command decomposition hierarchy, each defining its own
global goals and constraints, related decision making activity
is generated and ripples-down the fired dm-nodes of the hier
archy. We classify the commands reaching and leaving each
multitasking dm-node by color-coding the different policies
generated by the global commands. Different color-codes are
used to identify the related decision making activity, which
evolves over the three concurrent layers of command decom
position, of status reporting, and of message exchanging. We
distinguish three types of global commands which regulate
the generation, the maintenance, and the cancellation of
the active color-coded policies over the dm-net, namely:
"new policy-generating," "policy-modifying," and "policy
cancelling" types of global commands. 2

In the following section we derive functional relationships
about the operation of command decomposition hierarchy,
using Petri-net concepts.

RELATIONSHIPS AND EXAMPLES
OF PETRI-NET ANALYSIS

A hierarchical organization of N decision makers (dm-nodes)
consists of transitions and interface places, as illustrated in
Figure 5. The decision making transition puv is connected to
other such transitions through interface places that hold set
tokens according to their markings. The transitions will "fire"
(i.e., win perform decision making activity) if their incident
place holds a token and a corresponding firing condition is
satisfied. The places are represented by circles, the tokens by
dots in the places, and the transitions by bars. Each level of
the hierarchical organization contains interface places with
single outputs incident to corresponding transitions at the
same level. Incident upon each place are connections from
transitions at higher levels and from sources external from the
hierarchy. "External" inputs incident on the place 'TTuv are
denoted as Xuv •

At the firing time A., tokens are moved through the fired
transitions from the corresponding incident interface places
into the places on which the transition is incident, in accord
ance with an "activity vector" associated with each fired tran
sition. Notice that, in general, the activity vector may be time

--15------ --- ---
-1\-----
-R----------
--$- ----------- ----

Figure 5--Command decomposition hierarchy

Level i

Level 1

Ground
Level (0)

262 National Computer Conference, 1987

variable. The activity vector helps us to compute the next
marking (i.e., the marking at firing time A + 1).

If we assume that only one external incident .arc Xuv may be
accepted at most per interface place 7T uv, and that only one
external output (to an actuator) Yuv may be transmitted by a
transition puv , then each dm-net is characterized by an N -bit
external incidence input vector X = [... ,Xuv , ...] and by a
N-bit external output vector Y = [... ,Yuv, . ..].

Petri-net Description of Operations

For purposes of analysis we consider the hierarchical or
ganization shown in Figure 5. For a Petri-net representation of
N places and N transitions, we use the P-vector (N-bit binary)
of markings at time A, Mo(X.) and the T-vector (N-bit binary)
of firings at time A, F(A). An entry equal to 1 in the firing
vector F denotes that the corresponding transition will fire at
time x.. In addition, the P-vector X (X.) denotes the external
inputs at A to the interface places of the hierarchy, and the
T-vector Y(A) denotes the outputs to external actuators at A.
An N-diagonal matrix is defined to designate whether the
corresponding transitions are "ready" (i.e., conditioned) for
firing. An entry equal to 1 in the Condition (diagonal) matrix,
S(A) denotes that the corresponding transition is conditioned
for firing at A. The N-bit activity vector associated with the
transition puv is denoted with Cuv(A).

Equations of Operations

A marking of the dm-net at time A, M(A), designates the
distribution of tokens over the interface places at A. In order
to take the input X (A) into account we use the dotted equality 1

to obtain the total binary marking vector at A, as follows:

M(A) == Mo(A) + X(A)

For the dot equality we use normal integer arithmetic and we
replace any resulting positive number with 1 and all other
results by O.

Since a transition is enabled to fire by both a token in its
incident place and a satisfied condition, we may calculate the
firing vector at A + 1 as follows:

F(A + 1) = S(A)' M(A)

When a puv-transition fires, a token moves from the place
incident on puv into those places on which the transition is
incident and are designated in the associated activity vector at
x.. We use again the dotted equality to compute the marking
at time A + 1.

M(X. + 1) == M(A) - F(X. + 1) + K(X. + 1)

where

K(A + 1) == L C",.(>..)
PuvEq,

where <I> is the set of "firable" transitions (enabled by token
and condition) at time A.

We may calculate the Output (external actuation) vector at
time X. + 1, Y(A + 1) as follows:

Y(A + 1) = D . F(A + 1)

where D is a diagonal matrix, D = diag(yujpuv) and
Yuv/Puv = 1 if puv is connected to an external actuator (denoted
with triangular arrows in Figures 4-6). Using the above de
rived relations we may compute the ripple-effects from an
initial marking to the outputs to the external actuators.

If we assume that all transitions cause the same average
delay I'avg , then the levels will fire synchronously and the total
ripple delay from the time of global command input, Ainput , to
the time of (say, ground level) actuation, Aout, is given by

Tripple = (X.out - Ainput) • I'avg

If the assumption of uniform delay, I'avg, is lifted, asyn
chronous firing will result, which will alter the timings over
the various firing paths. An N-diagonal delay matrix,
V = diag(Tuv/puv), will have to be defined, or determined in
real time. Particularly interesting will be the formulation of a
solution for the ripple-time, if the delays Tuv are time variable
and situation (command)-dependent. 2

Illustrative Example

Let us consider the dm-net shown in Figure 6, where

II = [7T3d7T21 7T22 7T23 /7Tll 7T12 7T13 7T14 Y
T = [P31 /P21 P22 P23 /Pll P12 P13 P14 Y

We will assume that

Mo(O) = [O/OOO/ooooy
X(O) = [lIODO/OOooy
S(X.) = diag(lIl 1111 11 1) for all A.
D (A) = diag(0/000I1ll1) for all A.

and the activity vectors as

C31 (X.) = [O/lll/Oloor
C21 (A) = [O/OOO/OlOOy
C22(A) = [0/000/0010Y
C23(A) = [0/000/0011 Y for all A.

Figure 6-Example of hierarchical dm-net

Multilayered Petri-nets for Distributed Decision Making 263

At Ainput there is only one input to the place 'iT31 , and at Aout the
hierarchy affects the controlled system only through the tran
sitions pn, P12 , P13 • P14. If the Condition matrix enables all
transitions to fire, then

M(O) == Mo(O) + X(O) == [lIOOO/OOOor
F(l) = S(O)· M(O) = 1 1 = [lIOOO/OOOOY

1 0
1 0
1 0
1 0
1 0

L \J l ~J
At the next firing time, only P31 will fire.

K(l) == C31(0) = [O/lll/OlOOr
Mo(l) == M(O) - F(l) + K(l)

We have

== rIll 0 == [O/lll/OlOOY
o 0 1
o 0 1

I 0 OJ 1

l ~ ~ + ~
000
000

Y(l) = D . F(l) = [O/OOO/OOOOr, no effect on external
actuators.

M(l) == Mo(l) + X(l) == [O/lll/OlOOr, assuming no
external input at A = 1

F(2) = S(l)' M(l) = [0/1l1l0100r
K(2) == C21 + C22 + C23 == [0/000/012lr == [O/OOO/Ollir

Mo(2) == M(l) - F(2) + K(2) == [O/OOO/Ollir

The Mo(2) marking shows that at A = 2 there are tokens at
'iT12 , 'iT13 , 'iT14. Also,

Y(2) = D . F(2) =
[O/OOO/OlOOr, (i.e., there is an output Y13).

Assuming again that X(2) = 0, we have

M(2) == Mo(2) + X(2) == [O/OOO/01llr
F(3) = S(2)· M(2) = [O/OOO/Ollir
K (3) == [O/OOO/OOOor

Mo(3) == M (2) - F(3) + K (3) == [O/OOO/OOOor
Y(3) = D . F(3) = [O/OOO/01llr (i.e., there are outputs

at Y13 ,Y12 ,Yll to the corresponding external
actuators) .

We see that the sole initial marking at 'iT31 has generated an
external output at A = 2, (Y13), and again at A = 3,
(Y13 ,Y12 ,Yu). Since the hierarchy received no further exter
nal inputs, there were no more actuations (no more tokens left
in the Mo-marking).

Having assumed uniform delay in the dm-nodes, the exter
nal actuations were delayed by 21'avg and 31'avg respectively.

CONCLUSIONS

This paper has presented some aspects of applying Petri-net
symbology and concepts to the analysis of layered dm-nets,
and more particularly to policy implementation over com
mand decomposition hierarchies. The work is currently being
extended2 on all three concurrent layers of dm-nets. Problems
of reachability, timing, reconfigurability, and stability are es
pecially being investigated, and results will be reported soon.

REFERENCES

1. Alayan, H. and R.W. Newcomb. "Binary Petri-Net Relationships," sub
mitted for publication, 1987.

2. Ghalwash, A.Z. Petri-Net Modeling of Decision Making Organizations,
PhD Dissertation (in preparation), EE Dept. University of Maryland, 1987.

3. Ghalwash, A.Z., P.A. Ligomenides, andR.W. Newcomb. "Modes and Job
Performance Evaluation of Robot Petri-Nets." EE Dept., University of
Maryland, Technical Report. (Submitted for conference pUblication.)

4. Ho, G.S. and C.V. Ramamorthy. "Performance Evaluation of Asynch.
Concur. Systems Using Petri-Nets." IEEE Trans. Soft. Eng., SE-6 (1980)
5, pp. 440-449.

5. Johnsonbaugh, R. and T. Murata. "Petri-Nets and Marked Graphs. Math.
Models of Concur. Computation." The Amer. Math. Monthly, 89 (1977) 8,
pp. 552-566.

6. Ligomenides, P.A. "An Engineering Cybernetic Model for Policy Analysis
and Implementation." Int'l J. of PAIS, 6 (1982) 3, pp. 273-284.

7. Ligomenides, P.A. "Command Decomposition as a Decision Making Prob
lem." in S.K. Chang (ed), Management and Office Information Systems,
Plenum, 1983.

8. Ligomenides, P.A. "Dynamic Models for Information Quality Enhance
ment." Proc. IEEE Workshop on Lang. for Autom., Chicago: November
7-9,1983.

9. Ligomenides, P.A. "Specific. of an Experiential Data Base for Decision
Making." Proc. IEEE Conf. Trends and Applic. Bethesda, MD, NBS, May
22-24, 1984.

10. Ligomenides, P.A. "The Experiential Knowledge Base as a Cognitive Pros
thesis." in S.K. Chang, T. Ichikawa, P.A. Ligomenides (eds), Visual Lan
guages, Plenum Press, 1986.

11. Murata, T. "Modeling and Analysis of Concur. Syst." in C.R. Vick and
C.V. Ramamoorthy (eds), Handbook of Software Engineering, Van Nos
trand Reinhold, 1984.

12. Peterson, J.L. "Petri-Nets." Computer Surveys, 9 (1977) 3, pp. 223-252.
13. Sandell, N.R., Jr., P. Varaiya, M. Athans, and M. Safonov. "Survey of

Decentr. Control Meth. for Large Scale Sys." IEEE Trans. Aut. Contr.,
AC-23 (1978) 2.

14. Sifakis, J. "Use of Petri-Nets for Perf. Evaluation." in H. Beilner and E.
Gelembe (eds), Measuring, Modeling and Evaluation of Compo Systems,
North Holland, 1977.

15. Tenney, R.R. and N.R. Sandell, Jr. "Structures for Distributed Decision
Making." IEEE Trans. SMC, SMC-ll (1981) 8, pp. 517-527.

Logic machines: A survey

by G.Z. QADAH
Northwestern University
Evanston, Illinois

and
M. NUSSBAUM
Institut fur Integrierte Systeme
ETH -Zurich/Switzerland

ABSTRACT

Logic(-based) programming languages are today the center of very many research
efforts. One of these languages, PROLOG (PROgramming in LOGic), is used to
program expert systems, natural language processors, computer aided design sys
tems and compilers. A parallel variant of PROLOG is suggested as the language of
the Japanese Fifth Generation computer project. Parallel to these efforts, a class of
computer architectures that is suitable for supporting logic programming is emerg
ing. Such a class is referred to as logic machines. In this paper, we propose a new
taxonomy for the architectural space of logic machines. Based on such taxonomy,
some of the proposed logic machine architectures are presented and compared.

265

INTRODUCTION

Logic Programming1
,2,3 (or programming using logic formu

las) is today the center of very many research efforts around
the world. Two important features of logic make logic pro
gramming attractive, namely, the fact that logic is declarative2

and that it rests on a very powerful mathematical formalism.
A language being declarative implies that the programmer
needs only to specify what computations need to be per
formed rather than how they should be performed (the
sequence of steps needed to carry them out). The language
processor then decides, independent of the programmer, how
such computations are to be performed. Declarative lan
guages have many advantages, namely, higher programmer
productivity and possibly high execution speed since novel
hardware architectures can be used to support their execution.

The fact that logic rests on a very powerful mathematical
base implies that many formal languages based on logic can be
easily developed. In fact, in the last several years we have
observed a good increase in the number of logic-based lan
guages available to the programming community. In addition
to PROLOG and its sequential and parallel variants,4,5,6 con
current logic-based ianguages such as PARLOG7 and Concur
rent PROLOG8 have been developed. PROLOG and other
logic languages have been used to construct expert systems,
natural language processors, computer aided design systems,9
compilers,lO and event-driven simulators. ll A parallel variant
of PROLOG, the Fifth Generation Kernel Language
(FGKL),4 is suggested as the language of the Fifth Generation
computer project. 12

The traditional implementation of logic programming sys
tems as complex software systems running on general-purpose
von Neumann computers, has resulted in slow and inefficient
systems. One major reason for this is the fact that, in such
implementation, the underlying hardware is general-purpose
and sequential and not tuned properly to the requirements of
such systems. The recent advances in VLSI technology, the
dramatic drop in hardware prices, and the fact that logic pro
gramming systems lend themselves well to novel hardware
architectures has inspired a new implementation. In such
implementations, the general-purpose von Neumann com
puter is replaced with a dedicated machine tailored for non
numeric processing and, in most cases, utilizing parallel
processing to support the logic programming systems. The
aggregate of software and hardware components dedicated to
the support of logic programming is referred to as a logic
machine. Logic machines claim to improve the performance
of logic processing through hardware specialization, increased
parallelism, and increased processing power.

Recently, many architectures for the logic machine have
been proposed. In this paper, we propose a new taxonomy for

Logic Machines: A Survey 267

the architectural space of logic machines. Based on such tax
onomy some of the proposed logic machines are presented
and compared. The following section overviews the computa
tional model as well as the inherent parallelism of logic pro
gramming. Next, a definition and a classification scheme (tax
onomy) for logic machines is presented. An overview of some
of the proposed logic machine architectures follows, and fi
nally, we offer some general comments and concluding
remarks.

THE COMPUTATIONAL MODEL OF
LOGIC PROGRAMMING

Logic programming is a mathematical formalism based on
horn clause logic suitable for expressing certain classes of
problems requiring deductive reasoning. 1

,2,3 In the following,
we present the elements of the computational model that
underlie such programming environments as well as the vari
ous types of parallelism that exist in such a model.

Elements of the Computational Model

Conceptually, the computational model of logic program
ming consists of three elements, namely, a set of horn clauses,
a set of goals (queries) and an inference (deduction) process.
These elements are presented next.

The Horn Clauses

From a syntactical point of view and using the notations
defined within the context of the logic-based language PRO
LOG,13 a (horn) clause has the general form

So :-Sl , S2 , ... ,Sn (1)

where Si (i = 0, 1, ... ,n) is a positive literal, ":-" is the
implication operator, and" ," is the logical AND operator.
So is the head literal (conclusion/goal) of the clause, while
Si (i = 1,2, ... ,n) denotes the body literals (subgoals) of the
clause. The literal in a clause is an expression of the general
form

P (t1 , t2 , ... , tm) (2)

where p is a predicate (relation) or functional symbol and ti

(i = 1,2, ... ,m) is a term. A term is either a constant (whose
symbol starts with a lower case character), a variable (whose
symbol starts with an upper case character), or an expression
of the same form as (2) except that p can only be a functional

268 National Computer Conference, 1987

symbol. The variables in horn clauses are typeless. That is,
they may assume different types throughout the process of
manipulating the clauses within which these variables are
defined.

From a semantic point of view, a literal may have only one
of the two logical values, true and false, and the horn clause
of (1), therefore, is interpreted as:

"So is true if S1 is true AND Sz is true ... AND Sn is true."

However, when a clause contains zero body literals, it is inter
preted as "So:-true." That is, "So is (always) true." Such a
clause is called the unit clause, assertion or tautology.

Horn clauses can express both simple and complex knowl
edge about objects in the real world. The unit clause expresses
a simple (atomic) fact about an object. For example, the unit
clause,

like(arthur,john):- (3)

expresses the fact that "arthur likes john." Such a clause is
called the ground unit clause. Replacing "john" of clause (3)
by a variable X, the new clause, the non-ground unit clause,
expresses the fact that "arthur likes X irrespective of the value
that X might have." That is, "arthur likes everyone and
everything. "

The more complex facts about objects are expressed using
clauses of the general form presented in (1). For example, the
clause

uncle(bob,ruth):-sister(ann,bob),mother(ann,ruth) (4)

expresses the fact that "bob is the uncle of ruth" if "ann is the
sister of bob" AND "ann is the mother of ruth." These types
of facts are implicit in the sense that the body of the clause
must be tested and proved to be true in order to conclude that
the head literal is true. A more interesting case arises when
the constants inside the literals of clause (4) are replaced by
variables, as follows:

uncle(X, Y):-sister(Z,X) , mother(Z, Y).

Such a clause then expresses a general "rule" that applies to
members of general classes. In the above case, the rule par
tially defines the "uncleship" relation between human beings
(a class of objects) in terms of the simpler relations, "brother
ship" and "fathership," defined on the same class.

Figure 1 shows a set of horn clauses. Any literal in such a
set is of the form r-symb(X, Y) and can be read as "X is
r-symb of Y. " Most examples and illustrations in the rest of
this paper will be based on this set.

The Goal(lquery)

The goal is a logical statement whose truth value needs to
be determined with respect to a set of horn clauses. The
statement is true if it is a logical consequence of such set,
otherwise, it is false. A goal has the following general format:

:-S1 , Sz , ... , Sn

C(
C2 :

C3:

C4·:
CS:

C
6

:

Ci
Ca:

brother (fred, larry):
brother (j oe, fred) :
brother (carl, larry):-

si ster (eva, sam) :-
s1 ster (ann, bob) :-

father (paul, ted):-

mother (ann, ruth):
mother (eva , ted) :-

c
9

:

C
10

:

uncle (XI V):- brother(Z,X), father(Z/V)
uncl e (X, V) :- si ster(ZIX), mother(Z, V)

Figure I-A sample set of hom clauses

That is, it is a horn clause with zero head literal and one or
more body literals. When a goal contains no variables (a
ground goal), its answer is simply true (if a proof can be
found), or false (otherwise). For example, invoking the set of
clauses of Figure 1 with the following goal,

:-uncle(bob,ruth)

yields the answer "true," since "bob is uncle of ruth" is a
logical consequence of the clauses C5 , C7 , and ClO of Figure
1. A more general situation occurs when the goal contains one
or more variables, as in the following:

:-uncle(X, ruth) (5)

In such a case, the answer to the goal is a set of patterns of
values to the variables in the goal under which such goal is
true, if any, otherwise the answer is false. Actually, the re
quirement of returning patterns of values to the variables in
the goal (if any variable exists) rather than returning only true
or false is one of the major differences between the computa
tional models of theorem proving and logic programming. 14
When the goal statement contains variables, it is more appro
priate for the goal to be called a query since such a statement
can be viewed as a specification of the set of value patterns
under which the statement is true. The value patterns for the
variables in a query are called solutions. Invoking the set of
clauses of Figure 1 with the query of (5), yields the answer
"true" and the solution X = bob.

The Inference Process

The inference (deduction) process takes a goal and a set of
horn clauses and tries to prove (infer) that such a goal is true
with respect to such set. Such a proof involves the establish
ment of the fact that the input clause (query) is consistent with
(or a logical consequence of) the set of horn clauses. One of
the most common inference methods that is suitable for horn
clause logic is the one based on the resolution principle. 15

At the heart of this method is the resolution (reduction) step.
Such a step can be decomposed into two steps, unification
and substitution. Unification is the process of making two
literals identical by replacing their free variables with a com
mon set of binding values, called the unifier. The process may
succeed or fail; however, if it succeeds, then it generates the
unifier. For example, the two literals, "brother(fred,larry)"
and "brother(Z, larry)" are unifiable under the binding set
{Z/fred} to yield the common literal "brother(fred,larry)."
The two literals "brother(Z, larry)" and "brother (X, Y)"
are also unifiable under the set of bindings {XIZ, Y/larry}. On
the other hand, the two literals "brother(Z, larry)" and
"brother(X, joe)" are not unifiable because there exists no set
of bindings for the free variables of the two literals which
make them identical (the second term in each of the literals
has a different constant value). For the same reason, the two
literals "brother(fred,larry)" and "father(fred,larry)" are
not unifiable (the predicate symbol is not the same in both
literals). An important feature of the unification process is
that it permits a bidirectional binding of a variable from one
literal to a constant, a variable, and even to a general term of
the other participating literal. It is also important to notice
that having the same predicate symbols and an equal number
of terms is a necessary (but not sufficient) condition for two
literals to unify. A general algorithm for the unification pro
cess can be found in Sterling and Shapiro. 16

The unification of a literal from a goal with a general clause
is performed by unifying the goal literal with the head literal
of the clause and generating the binding set. For example,
unifying "uncle(X, ruth)" from the goal ":-uncle(X, ruth)"
with

uncle(X, Y):-brother(Z,X) , father(Z, Y) (6)

will succeed and generate the binding set {XIX, Ylruth}.
The substitution step is to replace the literal in a goal with

the body literals of a clause that has unified with it; then each
variable in the new expression is replaced with its value from
the binding set (unifier). The expression resulting from the
substitution step is a new goal and is called the "resolvent." If
no body literal exists (the clause is a unit clause), then, the
substitution step replaces the literal of the goal with the logical
value "true" (the interpretation of the empty body of a unit
clause) and replaces the free variables with their values from
the unifier. "Anding" the terms in the goal yields the
resolvent. In the previous example, "uncle(X, ruth)" has
unified with clause (6) to yield the binding set {XIX, Ylruth}.
The substitution step replaces "uncle(X, ruth)" with
"brother(Z,X), father(Z, Y)," and substitute for X by X and
for Y by "ruth" to yield the resolvent

":-brother(Z,X), father(Z, ruth)." (7)

Unifying "brother(Z,X)" of (7) with the unit clause
"brother(fred,larry):-" yields the unifier {Z/fred, X/larry}.
The substitution step replaces "brother(Z,X)" with the
body literals of the unit clause (the logical value "true") to
yield the clause ":-'true', father(fred,ruth)" which in tum
yields the resolvent ":-father(fred,ruth)." In the same way,

Logic Machines: A Survey 269

"father(X, ted)" of the goal ":-father(X, ted)" unifies with
the clause "father(paul, ted):-." The substitution step results
in a resolvent of the form ":-'true'." Such a resolvent is called
the empty (or nUll) resolvent (a clause with no head or body
literals) and is given the symbol "[]."

The resolution process can be best described through the
algorithm shown in Figure 2. The proof of a goal G, using such
a process, starts by selecting one of the goal's literals g (step
1) and finds a clause c from the set of clauses that unifies with
g and the corresponding unifier e (steps 2 and 3). Applying,
then, the substitution step to the goal G and the clause c using
the unifier e results in a resolvent R (step 4). Each time a new
resolvent is derived (or in other words, a goal is reduced), the
former steps are repeated, with the new resolvent as its input
goal, until eventually one of the two states is reached, namely,
the new resolvent is an empty or a non-resolvable one. (A
resolvent is non-resolvable if it cannot unify with any clause in
the set of logic clauses.) Reaching an empty clause indicates
that the goal G is indeed derivable from the set of clauses
(subject to whatever bindings are made to the variables in the

--- ---(User Goal G) --- ---

CD 9 f- Select_Literal(G)

® S f-- {Un] fy(gl Lbase)}

®
~~--------~--------~

Figure 2-A non-deterministic resolution algorithm

270 National Computer Conference, 1987

goal statement). The sequence of resolution steps that termi
nates with "[]" is called a "success" proof sequence and the
set of bindings that has been made to the variables of the goal
throughout such sequence represents a solution to the input
goal (query). On the other hand, reaching a non-resolvable
clause indicates the failure of the sequence to prove the goal
G. The sequence that terminates with such a clause is called
a "failure" proof sequence. If neither the empty nor the non
resolvable clause is reached, the inference algorithm loops
forever, producing an infinite proof sequence. Figure 3 shows
a sequence of resolution steps generated by the inference
process in response to the goal ":-uncle(X, ruth)," using ~he
algorithm of Figure 2. Such proof sequence starts by umfy
ing "uncle(X, ruth)," with ClO of Figure 1 to yield the .re
solvenf ":-sister(Z,X), mother(Z, ruth)," then umfy
ing "mother(Z, ruth)" with C7 to yield the resolvent
":-sister(ann,X)" and finally unifying "sister(ann,X)" with
Cs to yield the empty resolvent. That is, the statement
"uncle(X, ruth)" when "X = bob" is indeed a logical con
sequence of the set of clauses presented in Figure 1.

The set of all proof sequences (success, failure, and infinite)
for a goal with respect to a set of clauses forms a space, the
search space. Such a space can be represented as a tree, the
search tree. 17, 18 Figure 4 shows such a tree for the goal
":-uncle(X, ruth)." The root of the tree is the goal to be
proved, while the rest of the nodes represent resolvents. A
leaf node (if it exists) represents an empty resolvent of a
non-resolvable resolvent. The arc between a node and one of
its children corresponds to a resolution step and is labeled by
the set of bindings generated during such step. The nodes at
the ith level of the tree represent the set of all resolvents that
can be obtained from the goal in i resolution steps. The path
from the root of the tree to a leaf represents the sequence of
resolution steps that leads to that leaf together with the sets of
bindings generated throughout such sequence. A tree may
contain sequences that terminate with success (1 ~ 2~ 3 for
example), with no success (1 ~ 4 for example) or sequences

"- uncle(X1 ruth) ~<-- gael

si ster(ZI X) I mother(Z, ruth)

{Z I ann}

:- 51 ster(ann l X)

Cs {X I bob}

H or II []" < null or empty
~-- clause

Figure >-A possible proof sequence

:- uncle(X, ruth)

{xlX,vl ruth} /C9
:- brother(Z,X) ,father(Z,ruth)

~3
:-fether(:-father(:-father(
fred,ruth) joe,ruth) carol, ruth)

{X I X,V I ruth}
C10

:_Sis~ter(z,x) ,mO!her(~®uth)

@ C ® C C7 4 5 '-
:- mother(:- mother(:-sister (
eva,ruth) ann,ruth) ann,X)

®IC7 @jcs
"[J"' "fl"

Figure 4-The search tree for the goal ":-uncle(X, ruth)"

that never terminate (not present in Figure 4). An important
feature of the search tree is that it is an "OR" tree. 19 That is,
to prove that any non-leaf node (resolvent or goal), in the tree
is true, it is sufficient to prove that any of its children nodes
(child1 "OR" childz "OR" ...) is true.

The resolution process is non-deterministic since at any step
of the proof, the selection of a literal from those of a resolvent
(step 1 of Figure 2) as well as the selection of a clause out of
the set of ones unifiable with g (step 3) to participate in a
resolution step, is performed in a non-deterministic fashion.
That is, the resolution process makes, at these steps, the cor
rect choice of a literal and a clause that leads to a solution.
Therefore, the non-deterministic resolution process can be
viewed as a process that finds (through making, somehow, the
correct choices at the non-deterministic points) the successful
proof sequences from all of the other ones in the search tree.
The resolution process is semantically very powerful, since it
guarantees finding all possible sequences leading to empty
clauses (solutions) even in the presence of infinite sequences.
Such power is not without a price. A non-deterministic pro
cess cannot be implemented (however, it can be simulated or
approximated).16 In addition, both space and time complex
ities of such processes are exponential in terms of number of
levels in the search tree and, therefore, invoking even a small
set of clauses with a goal can be very involved computa
tionally. Practical logic-based systems try to implement deter
ministic algorithms that are equivalent in semantical power to
(or even weaker than)* that of the presented algorithm but
have improved space and/or time requirements. These sys
tems simulate or approximate the non-determinism in the
resolution process using procedures that search the different
paths of the search tree (or a more efficient representation of
the search space) for solutions. Such systems are presented
next.

Parallelism in Logic Programming

The resolution process of logic programming contains many
activities with ample embedded parallelism. zo Step two of the
algorithm presented in Figure 2 finds a set of qualified clauses

* PROLOG, for example, implements an inference algorithm that, under cer
tain conditions, fails to generate solutions in the presence of infinite sequences.

S, each of which can unify with the literal of the current goal.
Instead of selecting one of these qualified clauses to reduce
the goal (producing a new resolvent), a procedure simulat
ing the inference process can proceed to reduce the goal
with two or more of the qualified clauses in parallel. Such
simultaneous activities are referred to as or parallelism.
Using such parallelism, for example, results in the simulta
neous reduction of the goal ":-uncle(X, ruth)" using the
two rules, "uncle(X, Y):-brother(Z,X),father(Z, Y)" and
"uncle(X, Y):-sister (Z,X),mother(Z, Y)," of Figure 1. The
or parallelism, when used, permits the inference process to
find different solutions for the same goal (query), in parallel.
The or parallelism is simple to exploit since or parallel activ
ities, once initialized, do not interact with each other. One
problem with the or parallelism is that when it is utilized
recursively at each goal in the search tree, the generated
parallel activities grow exponentially with respect to the num
ber of levels in the search tree. The exponentially-generated
activities are beyond the capability of any practical parallel
processing system, and therefore, some methods have to be
developed to restrict such parallelism.

A second type of parallelism is the so called and parallelism.
Such parallelism corresponds to the simultaneous solution of
two or more literals (subgoals) in a given goal (resolvent).
Using such parallelism, for example, a solution for each of the
subgoals ":-brother(Z,X)" and ":-father(Z, ruth)," of the
goal is found in parallel. That is, the two search trees which
correspond to the former subgoals are constructed and
searched simultaneously to find a solution for each of the
subgoals. When the literals in a goal have no shared (com
mon) variables, then the solution for the goal is simply the
concatenation of the individual solutions obtained for each of
the literals in the goal. However, when shared variables be
tween the literals exist (variable Z is shared between the two
literals ofthe goal ":-brother(Z,X), father(Z, ruth)"), special
care must be taken. A solution for the goal is not obtained by
simply concatenating the individual solutions but by obtaining
from them a solution in which the bindings for the shared
variables are the same. To illustrate this point, consider
obtaining the solution {Zlted, X/bob} for the subgoal
":-brother(Z,X)," and the solution {Z/paul} for the subgoal
":-father(Z, ruth)." A solution for the conjunction of the two
subgoals does not exist, because the two solutions bind differ
ent values for the shared variable Z. On the other hand, the
solution {Zlted} for the subgoal ":-father(Z, ruth)" together
with the previous solution for the other subgoal produces a
solution for the goal because the shared variable Z has the
same value in both of the individual solutions. The problem of
shared variables complicates, to a large extent, the utilization
of and parallelism by a parallel processing system.

A third type of parallelism is the so called search paral
lelism. This parallelism corresponds to the simultaneous
search of the set of clauses for those that can unify with a given
literal (SIMD search parallelism and can be used to initialize
or parallel activities) or the simultaneous search for clauses
that can unify with different literals (MIMD search
parallelism and can be used by the or parallel or and parallel
activities). Search parallelism is very important for parallel
logic systems-especially those that contain very large logic
bases.

Logic Machines: A Survey 271

A fourth type of parallelism is the so called unification
parallelism. This parallelism corresponds to the parallel activ
ities within the unification algorithm. In general, the amount
of this type of paralleiism is very small since the unification
operation tends to have a rather sequential nature. 21 How
ever, the unification parallelism can be of some advantage
when both of the literals that participate in the unification
operation contain many terms, each of which has a relatively
complicated structure.

LOGIC MACHINES: GENERAL ARCHITECTURE
AND A TAXONOMY

The entity "logic machine" can be defined as an aggregate of
software and hardware components designed to simulate or
approximate the computational model of logic programming.
By the word "simulate" we refer to those systems that attain
the full semantical power of logic programming (that is, for a
query and a set of clauses, these systems generate all the
solutions that can be generated by the non-deterministic infer
ence process). By the word "approximate" we refer to those
systems that implement a model of computation close to that
of logic programming, but have less semantical power than
logic programming (that is, they may not generate all possible
solutions). In the following, an abstract (general) architecture
and a taxonomy for logic machines proposed so far are
presented.

General Architecture

From an architectural point of view, a logic machine, Figure
5 is organized into two major components, namely, the logic
programming system and the underlying hardware system. In
addition to the (user) queries (goals), the workload of such a
computer system includes operations to manage, update, and
maintain the knowledge stored in such a system. The logic
programming system contains components for implementing
or approximating the computational model of logic pro
gramming. These components, as shown in Figure 5, are the
logic base (program) and the inference procedure.

The Logic Base

In general, the logic base (program) consists of a set of
logical statements which express certain facts about a collec
tion of real world objects and the relationships that exist be
tween these objects.! These statements are taken from a lan
guage, a logic programming language, which serves as a tool
for the user (programmer) to specify a logic program. Basic
ally, these statements are horn clauses extended to include
some extra information which helps the inference procedure
(see the following section) to perform a more efficient search
of the search space and/or to provide some explicit informa
tion about the sequence in which the literals in the body of a
clause or the set of clauses in the logic program are to be
processed by the inference procedure. For example, in the
logic programming language PROLOG13 the CUT operator
"!" helps PROLOG's inference procedure to trim the space

272 National Computer Conference, 1987

goal
___ ~9..~~..r:~~

USER
Answer

--------------------------------~

concl usions
rules

L OG/C BASE

L __ _

Figure 5-A general architecture for logic computers

that is being searched for solutions for a given query. In
PARLOG,7 a parallel logic programming language, the lit
erals in a clause are separated by either the operator "&" or
the operator" ,". The former indicates to the inference proce
dure that the literals within the body of a clause separated by
such operator are to be executed sequentially, whereas the
literals separated by the operator "," are to be executed in
parallel. In a similar fashion, the horn clauses in P ARLOG
are separated by the operator"." or ";". Two clauses sepa
rated by "." are to be processed serially, whereas those sepa
rated by ";" are to be processed in parallel.

The Inference Procedure

The inference procedure simulates or approximates the
resolution process of logic programming. For a given query,
this procedure searches a more efficient representation of the
search space than that of the search tree. One source of inef
ficiency in the resolution tree is the fact that it contains proof
sequences which generate the same solutions (redundant
proof sequences) for the same query and logic base. For exam
ple, in Figure 4, the two sequences 1~2~3 and 1~5~6
lead to the same solution for the query ":-uncle(X, ruth),"
namely, "X = bob." An efficient inference procedure needs
to generate (search) only one of these sequences but not both.
The tree which has no redundant proof sequences is called the
proof tree (another OR-tree). Such a tree is obtained by
expanding only one literal from each resolvent at each level of
the search tree (rather than by expanding all of the literals to
generate all possible resolvents). Depending on which literal
from each resolvent is expanded, a number of different proof
trees can be obtained. These trees are equivalene6 (that is, if
a solution for the query can be obtained from one of these
trees, then, the same solution can be obtained from every
other tree) but have a different total number of proof
sequences. A smart inference engine can take advantage of
such arbitrary choice to generate and search the proof
tree which has the minimum number of proof sequences.
Figure 6 presents two possible proof trees for the goal
":-uncle(x, ruth)." These trees are generated by reducing the
underlined literals in Figure 6 first. It is easy to see that
searching both trees will generate the same solutions, how-

:- uncle(X, ruth)

:- brother(Z X) ,father(Z,ruth)

~3
:-father(:-father(:-father(
fred,ruth) joe,ruth) carol, ruth)

(a)

:- uncle(X, ruth)

:- brother(Z,X) ,rather(Z ,ruth}

(b)

:-si:ster(Z X) ,mother(Z,ruth)

Ac,
:- mother(:- mother(
eva,ruth} ann,ruth)

IC7
"[] .

,-... ,,,(z,x> ."'t::17 "db)

:- si:ster (
ann,X)

IC 7
"[]"

Figure 6---Two possible proof trees for ":-uncle(X, ruth)"

ever, searching the tree of Figure 6(b) will take much less time
than searching the tree of Figure 6(a).

Still another source of inefficiency in the OR-tree repre
sentation of the search space is the high number of branches
coming out from a node in such a tree (this factor is important
for the efficient implementation of both sequential and par
allel inference schemes. 22,23 To illustrate this point, consider
the node (resolvent) ":-brother(Z,X),father(Z, Y)" and as
sume that only facts can unify with each of these literals and
the number of these facts are nand m, respectively. The
number of branches which come out from such a node equals
O(n x m). To overcome such a high factor, a new, more effi
cient representation for the search space has been introduced,
the AND/OR tree. 19 The basic principle underlying such
representation is the replacement of each non-leaf node in the
OR tree, such as the one shown in Figure 7, by two levels of
nodes. The first level has only one AND node and the second
level has as many OR nodes as the number of literals in the
resolvent. The AND node is labeled by the (conjunctive)
resolvent itself. The name AND is given to a such node be
cause in order to prove that such a node is true, we have to
prove that all of its children nodes (child1 and child2 and ...)
are true. Each OR node represents a resolvent of one literal
(unit resolvent or subgoal) and needs to have only one of its
children nodes to be true in order for itself to be true. A node
in such representation has oniy O(n + m) branches, a substan
tial reduction over that of the OR-tree representation, Figure

Logic Machines: A Survey 273

:-brother(Z,X), fether(Z,ruth) I'" Hordwore
(±)

:- brother(Z,X), fether(Z,ruth)
Orgonizol ion

MIMD

Figure 7-The transformation from the OR node to the AND/OR nodes S I MD
representation

8 shows the AND/OR tree for the goal ":-uncle(X, rutl)"
with respect to the logic base of Figure l.

The AND/OR tree representation is not without problems.
The search for solutions in such a tree is much more compli
cated than that of the OR-tree representation, since a solution
in this representation has the form of a subtree rather than a
sequence of branches from the root to a null leaf node. 24 For
example, the subtree 1~4~5~4~2~3 of Figure 8 repre
sents the solution for the query ":-uncle(X, ruth)." To search
the OR-tree for solutions one needs to go only top down, but
to search the AND/OR tree for solutions one needs to go first
top-down until the leaf nodes are reached, then the search
continues bottom-up.24 Despite the complex search problem,
most of the inference procedures in logic programming sys
tems use the AND/OR tree representation of the search space
because of its low branching property.

Many logic machines have been proposed so far. These
machines can be viewed as points in an architectural space,
the logic machine space. This space, Figure 9, is defined by
two attributes which characterize the abstract architecture of
Figure 5, namely, the search strategy and the hardware orga
nization. The attribute search strategy specifies partiaily or
completely the method by which the inference procedure in a
logic machine performs the search of the AND/OR or the OR
tree, respectively, for finding solutions. On the other hand,
the attribute hardware organization specifies the way the
hardware of the logic machine is organized to support the
search of the tree. Three possible methods exist for searching
a tree, namely, depth-first (DF), breadth-first (BR), and dy
namic (DYN). In the depth-first method and starting from the
root of the tree, the most recently generated children of an or
node (or goal) get searched (reduced) first. In the breadth
first search, the children of an or node get reduced in the

:- uncle(X, ruth) P l

I
:- uncle(X, ruth) P 2

'-b~,nrth)'J

:- brother(Z,.X) ? 5 :-f8ther(Z,ruth)? 6

C1~ c / Ic2":3
[] [] []

:-sister(Z,X) ,mother(Z,ruth) ?"

~
:-sister(Z,X) ? 7

c4 A Cs // ®Y(
[] []

:-mother(Z,ruth) P 1:

®!C7
[]

Figure 8---The AND/OR tree for ":-uncle(X, ruth)"

SISD

DF BF DYN
-, ,

SEARCH
STRATEliY

Figure 9--The architectural space of logic computers

order in whiCh they are generated. In the dynamic search, the
children of an or node are reduced in an order determined by
some criteria. Such criteria can be preprogrammed in the
inference procedure or specified by the user through the state
ments of the logic base (program). For the OR-tree repre
sentation of the search space, the previous methods fully
specify the search strategy of the inference procedure since
such tree contains nodes of only the or type. However, this is
not the case for the AND/OR tree and in order to completely
specify the search strategy of such a tree, one must specify the
method by which the children of an and-node (sub goals) get
reduced. We have omitted here such specification to keep our
classification scheme as general as possible. However, such
specification will be delayed until we present some of the
proposed logic machines.

The hardware of a logic machine can be organized in three
different ways, namely, as a single instruction stream-single
data stream (SISD), single instruction stream-multiple data
stream (SIMD), or multiple instruction stream-multiple data
stream (MIMD) machine.25 A logic machine in the SISD class
is simply a classical von Neumann processor programmed to
perform the serial search of the tree. Because of its serial
nature, such a processor can be active at only one node of the
tree at any point in time. The processor can be a classical
processor with general-purpose instruction set or a special
purpose processor that is tuned for efficiently implementing
the serial search of the tree. Such tuning varies from simply
extending the processor instruction set to include some more
suitable instructions for the symbolic processing environment,
all the way up to designing such a processor around a radically
different instruction set which is more appropriate for sup
porting the logic processing environment. In addition, such a
processor may include specialized hardware that takes advan
tage of the small amount of parallelism which exists in the
processing of a node in the tree, such as unification paral
lelism, pipe lined instruction, execution, and unification
coprocessing.

A logic machine in the SIMD class is organized as an array
of simple processors, each with its own local memory. These
processors are controlled and managed by a single master
processor. At any point in time, all the array processors are

274 National Computer Conference, 1987

performing the same task on the different data elements
stored in the processors' local memories. The master pro
cessor can have a general or special instruction set. An SIMD
machine is a good search engine since the search operation
can be performed in parallel on all the data elements in the
array processors. Storing the logic base in the local memories
of the array processors permits the efficient and parallel
implementation of many search-based operations such as the
unification operation. The SIMD class of logic machines is not
popular since it can take advantage of only one type of logic
programming parallelism, namely, the search parallelism (es
pecially when processing very large logic bases). Such organi
zation cannot take advantage of the other types of parallelism
that exist in logic programming.

A logic machine in the MIMD class is organized as a set of
independent processors intercommunicating over an inter
connection network. The processors can be general-purpose
or special-purpose ones and different types of interconnection
networks26 may be used. An important characteristic of this
class of machines is the ability to perform one or more tasks
in parallel. Actually, through the special design of the pro
cessor itself and through the interconnection of many of these
processors together, such a machine can use not only the
micro-parallelism but also the macro-parallelism imbedded in
logic programs to speed up its evaluation. One important
aspect of an MIMD machine is the scheme by which the
machine's parallel activities are controlled and synchronized.
Two broad classes of schemes have been developed, each is
based on one of the basic concepts; control-flow and data
flow. 27,28 The former scheme is the parallelized version of the
traditional control scheme adopted for the classical von
Neumann processor. A computation in such a scheme is con
trolled directly by the programmer through the programming
language. On the other hand, a computation in a data-flow
based scheme is performed only when all of the computation's
input data is available, thus permitting as much parallel activ
ity as possible. The advantages and disadvantages of both of
these approaches can be found in Arvind and Iannucci,29 and
in Gajski, Padua, Kuck, and Kuhn.30 Both of these control
schemes have been used by designers to develop MIMD logic
machines.

Figure 10 presents some of the proposed logic computers
classified according to the above scheme. Guided by such a
classification scheme, an overview of a sample of the architec
tures will be presented next.

OVERVIEW OF SOME LOGIC MACHINES

The Depth-First-SISD Logic Machines

The logic machines in this class search the AND/OR tree
re.pre.se.ntation of the se::!!ch space m:ing a ~ingle processor and
the depth-first strategy to search the children of both the or
nodes and and nodes of such representation. In processing the
children (subgoals) of an and node using such a strategy, one
can use one of two techniques: one-solution-at-a-time and
all-solutions-at-a-time. Using the first technique, as shown in
Figure 11, a solution is first obtained for subgoal1 • The solu-

MIMO

SIMO

SISO

.~ Hordwore
Orgonizol ion

UMSIMOU OAOO
"OAS·

OAOO[Colmb.]

Stand. PROLOG
PLM[Berkeley]
PSI[Sth G]

liaR Model
ORlAND Mo.

MU-PROLOG

PARLOG
Concurren t PROLOG

e) M ANIP-2(Purdu
B-LOG (Texas- Aust; n)

...

OF BF DVN
,

SEARCH
STRATEGY

Figure 10-Some of the proposed logic computers

tion is then used to instantiate the variables that are common
to both the first and the rest of the node's subgoals. The
processing of subgoah is frozen and the processing of the
second subgoal for finding a solution is activated. This process
is repeated for all the subgoals of the and node. A solution to
the and node is obtained if a solution is obtained for every
sub goal in that node. Obtaining a new solution for any sub
goal of the and node, sub goat for example, is carried out using
a technique called backtracking. Using such a technique, the
subgoali is first tried for a new solution using the old in
stantiations. If this fails, then the activation backtracks to the
previous subgoal to obtain a new solution for that subgoal.
Such a solution is then used to instantiate the variables in
subgoat and a new solution is tried. Such backtracking may
propagate recursively to one or more of the sub goals previous
to subgoali .

Processing an and node depth-first using the all-solution-at
a-time technique is performed, as shown ing Figure 11,
through first obtaining all the solutions for subgoah . This set
is then used to instantiate the variables that are common to
the first and the rest of the node's subgoals. Subgoah is then
eliminated and the control is transferred to subgoab to find all
of its solutions. Such a process continues until all the subgoals
of the and node have been processed. The set of solutions
which has satisfied all the sub goals is then the solution set for
the corresponding and node. It is important to note that using

Figure ll-An AND node in and AND/OR tree

the all-solutions-at-a-time approach, the backtracking is no
longer needed for processing the subgoals of an and node.

The search of the AND/OR tree representation using the
depth-first strategy at both the and and or node levels and the
use of the backtracking mechanism form the kernel of the
inference procedure of PROLOG, 13 today's most known logic
programming language (system). Such search strategies have
permitted an elegant stack-based implementation for such
inference mechanisms with excellent memory management
schemes.22 This implementation may take one of two forms:
interpretation based or compilation based. In the former, the
inference procedure is implemented as an interpreter pro
gram (written in some high-level language) and runs on a
single general-purpose processor (the host). Such a program
interprets the user query using the logic base to produce solu
tions. On the other hand, the compilation-based system in
cludes a compiler which compiles the user query and the logic
base to produce an object program which runs on the gen
eral-purpose processor. 31 The early implementations of
PROLOG followed one of these methods. Although the
compiler-based implementation is much faster than that of the
interpreter-based implementation, nevertheless, both of these
implementations resulted in slow PROLOG systems. To im
prove performance, several recent implementations which
augment or replace the general-purpose processor with more
suitable hardware have been proposed. PSI32,33 and PEK34 are
special purpose PROLOG processors which implement the
PROLOG Interpreter as a microprogram. In Robinson,35 and
WOO,36,37 the general-purpose processor is augmented with a
special-purpose hardware unification unit. Since the unifica
tion is a frequent operation when executing PROLOG pro
grams, speeding up the execution of such operations results in
a faster overall system.

PLM38,39 and RPM40 are true special-purpose PROLOG
processors. These processors have been built to execute an
instruction set, proposed by Warren,41 specially designed to
support PROLOG, its depth-first search strategy, and its
backtracking mechanism. The instruction set is at a higher
level than ordinary general-purpose instruction sets and in
cludes instructions which directly perform the unification,
memory management, and so forth. The execution of a query
on such a processor is carried out by first compiling the query
together with the logic base into statements using Warren's
instruction set. Then the resulting program is executed by the
specially designed processor. To further improve the exe
cution speed of PROLOG programs, Tick and Warren42 have
proposed a pipelined PROLOG processor. Such a processor
is essentially the same as PLM or RPM except that it is de
signed to pipeline the execution of Warren instructions.

The Breadth-First-MIMD Logic Machines

The logic machines in this class unfold and search the or
nodes of the OR or the AND/OR tree representation of the
query's search space using the breadth-first strategy. As a new
level of or nodes is unfolded, one or more processes are as
signed to search such nodes, thus creating a set of parallel
processes which cooperate to produce solutions. Such an as-

Logic Machines: A Survey 275

sembly of processes is assigned to the different processors of
a multiprocessor machine for execution. The parallel OR and
parallel AND/OR machines43

,44 are good representatives of
this class and will be presented next.

The parallel OR machine43,45 searches the OR-tree
representation for solutions. The process assigned to an or
node (the root node in Figure 6(a), for example) generates all
of its children nodes by performing a resolution step on one
of the node's literals and assigns a process to each one of the
newly generated nodes (resolvents). The children processes
inherit the binding environment from the parent process;
thereafter the parent process is eliminated and each of the
children processes repeats the parent's action. Such activities
continue until a leaf node is reached by a process; thereafter,
a new process for the leaf node is not generated, but rather a
solution is reported to the system if the leaf node is of the null
type. The assembly of processes execute on a mUltiprocessor
system. Such execution is controlled through an elaborate
token-based scheme.45

The parallel AND/OR machine44,20 searches the AND/OR
tree representation for solutions. A process, the and-process,
assigned to supervise the execution of an and node (the root
node in Figure 8, for example), generates one or-process for
each one of its children nodes (or, in other words, for each of
the literals in the body of the corresponding resolvents). An
or node (process), in turn, generates an and-process to super
vise the execution of each of its children and nodes (conjunc-

. tive resolvents). For example, the or-process Pz associated
with the node ":-uncle(X, ruth)" in Figure 8, generates two
and-processes P3 and g to supervise the execution of each
of the resolvents ":-brother(Z,X) , father(Z, ruth)" and
":-sister(Z,X), mother(Z, ruth)," respectively. As a solution
is obtained for the variables in the literal of an or-process (the
literal "sister(Z,X)" of Figure 8, for example), a "success"
message and the obtained solution are reported to the parent
and-process P4 • The P4 , then, invokes the or-process associ
ated with its second child Ps , passes to it the variable bindings
and requests a solution to the remaining free variables of the
associated literal. F, is then blocked. When an and-process
receives success messages from all of its children, it passes on
a similar message to its parent together with the obtained
bindings for the free variables. The and-process is then
blocked. Such activities continue until the and-process of the
root receives a "success" message from all of the or-processes
associated with its children nodes. The bindings to the free
variables in the query form a solution for the query.

The parallel AND/OR scheme is designed to run on a
loosely coupled multiprocessor (no shared memory is re
quired) in which processors (processes) exchange information
via message passing. Many improvements to this basic scheme
have been proposed. In Furukawa, Nitta, and Matsumoto ,46

the parallel AND/OR scheme is modified such that when a
process reports a "success" message and a solution to its
parent process, it is ordered to continue finding a second
solution. The process is then blocked only when the second
solution is found and the parent node is still processing the
first one (limited form of pipelining).

In the parallel AND/OR scheme reported in Lindstorm and
Pnangaden,47 a process never gets blocked, but rather it

276 National Computer Conference, 1987

continues supplying its parent process with solutions until it
runs out of them; thereafter such a process is eliminated. Such
a scheme includes many more parallel activities than the
AND/OR model of Conery and approaches the amount of
parallelism encountered in the parallel OR model of
Ciepielewski.43

DeGroot48 suggests the partitioning of the set of literals in
the body of a resolvent (the children of an and node) into
subsets such that no literals with shared variables can exist in
two different subsets. The independent subsets are then pro
cessed in parallel. The new scheme is stack-based which elim
inates the need to generate the large number of processes
encountered in Conery's scheme. 20 It also eliminates the need
to pass information around via messages; a large reduction in
the overhead encountered when processing a query.

The Dynamic-MIMD Logic Machines

The logic machines in this class unfold and search the nodes
in the tree representation of the query search space for a
single solution in an order determined by some criteria. Such
criteria can be specified by the user through the statements of
the logic base (program) as in the concurrent logic-based lan
guages, Concurrent PROLOG8 and PARLOG7 or prepro
grammed in the inference procedure as in Li and Wah23 and
Lipovski and Hermenegildo. 49 In the latter case, a heuristic
function 19 guides the search of the inference procedure for a
solution.

Concurrent PROLOG8 and PARLOG7 bear a close resem
blance to each other. They are both designed to execute on
parallel machines. These logic systems use an extended ver
sion of horn clauses-the guarded horn clauses. Such a clause
has the following format:

SO:-C1,C2, ... IS1,S2 ...

where SO and "Sl,S2, . .. " are the same as in an ordinary
horn clause. "I" is the guard operator and "C1,C2 ... " is a
conjunction of literals which form what is called the guard
condition. Procedurally, the above clause states that SO can be
replaced with "Sl,S2 ... " only after the guard condition
"C1,C2 ... " evaluates to "true." Or, in other words, control
is passed from SO to the conjunction of literals to the right of
the guard (the body of an ordinary horn clause) only after the
conjunction of literals to the left of the guard evaluates to
"true." The literals in the guard condition are not allowed to
instantiate any variables as they execute.

The Concurrent PROLOG and PARLOG search the
AND/OR tree representation. As a new level of and nodes in
the tree is unfolded (refer to Figure 8), each node is as
signed a process, an and-process, to supervise the execution
of the body of the corresponding guarded clause. Every
and-process, in parallel, evaluates the guard condition associ
ated with the corresponding and node. The first process to
evaluate its guard to "true" is allowed to unfold the tree
further (that is, the control is transferred from SO to
"Sl,S2, . .. "), while all of the other competing processes are
cancelled. An and-process evaluates a guard condition by

assigning one or-process to supervise the execution of each of
the literals in such a guard condition. In Concurrent
PROLOG,8 the or-processes evaluating the different literals
of a guard execute in parallel. In P ARLOG / the programmer
can specify the sequence (serial or parallel) in which the or
processes evaluate a given guard. The programmer can also
specify the sequence in which the different and nodes of the
same level execute. PARLOG has been implemented on a
reduction-based multiprocessor system called ALICE. 50 Re
cently, a new machine consisting of a set of processors, each
specially designed to execute P ARLOG, is being investigated.
A processor in such a machine is built to support a newly
proposed instruction set51,52 especially designed to support
the process-based search strategy of P ARLOG. A multi
processor called the Bagel53 has been proposed to execute
Concurrent PROLOG. The Bagel is a set of transputers 54
interconnected through a modified mesh network called the
torus. 55, 56

The search strategy adop,ted by Concurrent PROLOG and
PARLOG replaces the notation of nondeterminism (taking
the right choice) of the resolution process with indeterminism
(taking an arbitrary choice). That is, to find a solution for a
query only one path in the tree is tried. If the path leads to a
solution, then the query succeeds and this solution is returned
to the user; otherwise, the query fails without trying to search
the other paths in the tree. Because of adopting such a search
strategy, both Concurrent PROLOG and PARLOG are
semantically weaker than logic programming. That is, even if
a solution exists for a query, there is no guarantee that these
systems will be able to produce such solution. Finding such a
solution depends largely on the way the various generated
processes are scheduled for execution.

MANIP-2,z3 a multicomputer system consisting of a set of
computers interconnected through a global broadcast bus and
a selection and redistribution network, has been proposed to
process logic programs in parallel. It implements a parallel
heuristic search of the AND/OR or the ORlAND tree
representation of the logic program for finding a single solu
tion. Such a search is guided by a heuristic function that uses
the ratio of the success probability of a literal (or node) to the
estimated overhead of evaluating such literal.

COMMENTS AND CONCLUDING REMARKS

In this paper we have presented a taxonomy for a class of
computer architectures called logic machines that use special
purpose hardware and/or parallel processing to speed up the
processing of logic. Guided by such a taxonomy, some of the
proposed logic machines have been overviewed. Some general
comments concerning the proposed logic machines are
presented below.

The taxonomy presented in the section on parallelism
groups the logic machines, proposed so far, according to the
strategy of search carried out by the corresponding machine;
the machines fall into three classes, namely, the depth-first,
breadth-first, and dynamic. From a semantic point of view,
machines that use breadth-first search implement the
computational model of logic programming faithfully. How-

ever, those machines that use the depth-first search imple
ment a model of computation weaker than that of logic pro
gramming. Unless special care is taken, when infinite
branches are present in the search tree of a logic program,
these machines cannot produce some or all of the solutions
that can be generated by the non-deterministic resolution
processes. Depending on the heuristics adopted by the logic
machine in the dynamic class, such a machine may implement
faithfully the model of logic programming, as in MANIP-2,23
or much weaker computational models as those implemented
by PARLOG7 and Concurrent PROLOG. 8

Machines in the breadth-first class have exponential storage
and execution time compleyities with respect to the number of
levels in the search tree of logic programs. Such complexities
remain exponential even when a polynomial number of pro
cessors are used in the execution of logic programs. 57 The
exponential storage requirement is a severe drawback of ma
chines in the breadth-first class, especially when the search
tree is deep. Some mechanisms must be designed to limit the
maximum width of the tree during execution as in Epilog58

logic system. Machines in the depth-first class require ex
ponential time complexity and linear storage. This is a great
plus to this type of machine. Machines in the dynamic class
require variable time and storage complexities depending on
the heuristic function being used in association with the
particular machine.

From the parallelism point of view, the breadth-first ma
chines can take advantage of all the parallelism embedded in
the computational model of logic programming. However,
only "and," "search," and "unification" parallelism can be
used by the logic machines in the depth-first class. The
amount of parallelism available to a machine in the dynamic
class varies depending on the type of heuristic function being
used.

REFERENCES

1. Genersereth, M.R. and M.L. Ginsberg. "Logic Programming." ACM
Communications, 28 (1985) 9, pp. 933-941.

2. Kowalski, R., "Logic Programming." IFIP Proceedings, 1983, pp. 133-145.
3. Kowalski, R., Logic for Problem Solving. North Holland, New York, 1979.
4. Chikayama, T. et al. "A Draft Proposal of Fifth Generation Kernel Lan

guage," Technical memo of ICOT, TM-007, 1982.
5. Clark, K.L., and F.G. McCabe. Micro-PROLOG: Programming in Logic.

Prentice-Hall, Englewood Cliffs, NJ, 1984.
6. Clark, K.L., F.G. McCabe, and S. Gregory. "IC-PROLOG Language

Features." In K.L. Oark and S.A. Tarnlund (eds.), Logic Programming.
Academic Press, London, 1982, pp. 253-266.

7. Clark, K. and S. Gregory. "PARLOG: Parallel Programming in Logic."
ACM Transaction on Programming Languages and Systems, 8 (January
1986) 1, pp. 1-49.

8. Shapiro, E. "A Subset of Concurrent Prolog and Its Interpreter," ICOT
Technical Report TR-003, 1983.

9. Suzuki, N. "Concurrent Prolog as an Efficient VLSI Design Language."
IEEE Computer, February, 1985, pp. 33-40.

10. Citrin, W., P. Van Roy, and A. Despain. "A Prolog Compiler." Pro
ceedings of HICSS-19, 1986.

11. Broda, K. and S. Gregory. "PARLOG for Discrete Event Simulation."
Proceedings of the 2nd International Logic Programming Conference, 1984,
pp. 301-312.

12. Moto-oka, T. "Overview to the Fifth Generation Computer System
Project." Proceedings of 10th International Symposium on Computer Archi
tecture, 1983.

Logic Machines: A Survey 277

13. Oocksin, W.F. and C.S. Mellish. Programming in Prolog. Springer-Verlag,
1984.

14. Lloyd, J.W. "Foundation of Logic Programming," Technical report 8217,
Department of Computer Science, University of Melbourne, 1982.

15. Robinson, J.A. "A Machine-Oriented Logic Based on the Resolution Prin
ciple." Journal of the ACM, 12(1985)1, pp. 23-41.

16. Sterling, L. and E. Shapiro. The Art of Prolog. The MIT Press, 1986.
17. Apt, K.R. and M.H. van Emden. "Contributing to the Theory of Logic

Programming." Journal of the ACM, 29 (1982), pp. 841-862.
18. Oark, K.L. Predicate Logic as a Computational Formalism. Springer

Verlag, 1984.
19. Nilsson, N.J. Principles of Artificial Intelligence. Tioga, Palo Alto, CA,

1980.
20. Conery, J. and D. Kibler. "ParallelInterpretation of Logic Programming."

Proceedings of the ACM Conference on Functional Prograrr:zming Lan
guages and Computer Architecture, 1981, pp. 163-170.

21. Dwork, e., P. Kanellakis, and J. Mitchell. "On the Sequential Nature of
Unification." J. Logic Programming, 1984, pp. 35-50.

22. van Emden, M.H. "An interpreting algorithm for Prolog programs." Pro
ceedings of the First International Logic Programming Conference, 1982.

23. Li, G. and B.W. Wah. "MANIP-2: A Multicomputer Architecture for
Evaluating Logic Programs." Proceedings of the International Conference
on Parallel Processing, 1985, pp. 123-130.

24. Nilsson, N.J. Problem-Solving Methods in Artificial Intelligence. McGraw
Hill,1971.

25. Flynn, M. J., Some Computer Organization and their Effectiveness." IEEE
Transaction on Computers, Vol. C-23, No.2, pp. 121-132.

26. Siegel, H.J. Interconnection Networks for Large-Scale Parallel Processing.
Lexington Books, 1985.

27. Treleaven, P.e. "The New Generation of Computer Architecture." Pro
ceedings of the 10th Annual International Symposium on Computer Archi
tecture, 1983, pp. 402-409.

28. Treleaven, P.C. et al. "Data-driven and Demand-driven Computer Archi
tecture." ACM Computing Surveys, 14 (March 1982) 1, pp. 93-143.

29. Arvind and Iannucci. "A Critique of Multiprocessing von Neumann Style."
Proceedings of the 10th Annual International Symposium on Computer
Architecture. 1983, pp. 426-436.

30. Gajski, D.D., D.A. Padua, D.l. Kuck, and R.B. Kuhn. "l". Second Opin
ion on Data Flow Machines and Languages." IEEE Trans. on Computers,
February, 1982, pp. 58-69.

31. Warren, D.H.D. "Implementing PROLOG-Compiling Predicate Logic
Programs." Department of Artificial Intelligence, University of Edinburgh,
Technical Reports #39-40, May 1977.

32. Yokota, M. et al. "A Microprogrammed Interpreter for the Personal Se
quential Inference Machine." Proceedings of the International Conference
on Fifth Generation Computer Systems, 1984, pp. 410-418.

33. Yokota, M. et al. "The Design and Implementation of a Personal Se
quential Inference Machine-PSI." New Generation Computing, Vol. 1, No.
2, 1983.

34. Tamara, K. et al. "Sequential Prolog Machine PEK." Proceedings of the
International Conference on the Fifth Generation Computer Systems, 1984,
pp.542-550.

35. Robinson, P., "The SUM: An AI Coprocessor." Byte, June 1985,
pp. 169-180.

36. Woo, N.S. "A Hardware Unification Unit: Design and Analysis." 12th
Annual International Symposium on Computer Architecture, 1985,
pp. 198-205.

37. Woo, N.S. "The Architecture of the Hardware Unification Unit and an
Implementation." The 18th Annual Workshop on Microprogramming, De
cember 1985.

38. Dobry, T.P., A.M. Despain, and Y.N. Patt. "Performance Studies of a
Prolog Machines Architecture." The 12th Annual International Symposium
of Computer Architecture, 1985, pp. 180-190.

39. Dobry, T.P., Y.N. Patt, and A.M. Despain. "Design Decisions Influencing
the Microarchitecture for a Prolog Machine." Proceedings of the 17th An
nual Workshop on Microprogramming, Octobber 1984, pp. 217-231.

40. Nakazaki, A., et al. "Designofa High Speed Prolog Machine (HPM)." The
12th Annual International Symposium on Computer Architecture, 1985,
pp. 191-197.

41. Warren, D.H. "An Abstract Prolog Instruction Set." Technical Note 209,
SIR International, Menlo Park, CA, 1983.

42. Tick, E. and D. Warren. "Towards a Pipelined Prolog Processor."

278 National Computer Conference, 1987

Proceedings of Internatinal Symposium on Logic Programming, 1984,
pp.29-40.

43. Ciepielewski, A. and S. Haridi. "A Formal Model for or Parallel Execution
of Logic Programs." Proceedings of IFIP83, pp. 299-306.

44. Conery, J. "The AND/OR Process Model for Parallel Interpretation of
Logic Programs," Technical Report #204, University of California, Irvine,
1983.

45. Ciepielewski, A. and S. Haridi. "Execution of Bagof on the or-parallel
Token Machine." Proceedings of the International Conference on Fifth
Generation Computer Systems, 1984, pp. 551-560.

46. Furukawa, K., K. Nitta, and Y. Matsumoto. "Prolog Interpreter Based on
Concurrent Programming." Proceedings of the First International Logic
Programming Conference, 1982, pp. 38-44.

47. Lindstorm, G. and P. Pnangaden. "Stream-Based Execution of Logic
Programs." International Symposium on Logic Programming, 1984,
pp. 168-176.

48. DeGroot, D. "Restricted AND Parallelism." Proceedings of the Inter
national Conference on Fifth-Generation Computer Systems, 1984,
pp. 471-478.

49. Lipovski, G.J. and M.V. Hermenegildo. "B-Iog: A Branch and Bound
Methodology for the Parallel Execution of Logic Programs." Proceedings
of the International Conference on Parallel Processing, 1985, pp. 560-567.

50. Darlington, J. and M.J. Reeve. "ALICE: A Multiprocessor Reduction

Machine." Proceedings of the ACM Conference on Functional Pro
gramming Languages and Computer Architecture, October 1981, pp. 65-75.

51. Gregory, S., "Implementing PARLOG on the Abstract PROLOG Ma
chine," Research Report DOC 84/23, Department of Computing, Imperial
College, London, 1984.

52. McCabe, F.G. "Abstract Prolog Machine: A Specification," Research Re
port Doc 83/12, Department of Computing, Imperial College, London,
1984.

53. Shapiro, E. "Lecture Notes on the Bagel: A Systolic Concurrent Prolog
Machine," ICOT, Technical Report TM-0031, 1983.

54. INMOS Limited. "IMS-T424 Transputer Advance Information," INMOS,
1983.

55. Martin, A.J. "The Torus: An Exercise in Constructing a Processing Sur
face." Proceedings of the Conference on Very Large Scale Integration: Ar
chitecture, Design and Fabrication, 1979, pp. 52-57.

56. Sequin, C.H. "Doubly Twisted Torus Networks for VLSI Processor Ar
rays." Proceedings of the Eighth International Conference on Computer
Architecture, IEEE, 1981, pp. 471-480.

57. Wah, B.W., G. Li, and C.F. Yu. "Multiprocessing of Combinatorial Search
Problems." IEEE Computer, June, 1985.

58. Wise, M.J. "A Parallel Prolog: The Construction of a Data-Driven Model."
Symposium on Lisp and Functional Programming, pp. 56-66.

CD-ROM: The Microsoft perspective

by CARL STORK
Microsoft Corporation
Redmond, Washington

Compact Disc Read Only Memory (CD-ROM) is the ideal
medium for distribution of information. CD-ROM features
high capacity (550 megabytes), low cost, convenience, dura
bility, and a worldwide standard. Eight different companies
manufacture CD-ROM drives.

So far, CD-ROM has been used mainly in vertical applica
tions areas such as medicine, science, finance, and libraries.
CD-ROM has provided clear benefits for these applications
through reduced cost, improved accessibility of information,
and easier updating.

Microsoft Corporation recently announced a general pur
pose CD-ROM product, Microsoft Bookshelf. Microsoft
Bookshelf contains a library of ten of the most useful refer
ence works for anyone writing or editing with a Pc. The
innovative product includes a dictionary, thesaurus, and a ZIP
code directory, as well as, The World Almanac and Book of
Facts, the University of Chicago Manual of Style, Bartlett's
Familiar Quotations, and more. Microsoft Bookshelf helps
the PC user write more accurately, more precisely, and more
creatively by making these reference works available from
within a word processor at the touch of a keystroke.

Amdek Corporation, best known for its line of PC moni
tors, has recently announced a CD-ROM drive, the
Laserdrive-l, to be sold through retail computer dealers.
Amdek will include a copy of Microsoft Bookshelf with its
drive.

These developments are enabling the use of CD-ROM
in a general purpose PC environment. As a larger base of
CD-ROM drives is established, software developers and pub
lishers will be able to enhance their offerings by making them
available on CD-ROM without having to justify the purchase
of a drive for just one application. Publication of common,

279

low cost information will be a primary use of CD-ROM as
will publication of specialized information. The benefits of
CD-ROM will enhance existing applications by facilitating
production of better tutorials and help systems which include
audio, an increased number of examples, style sheets, tem
plates, and product drivers, and by incorporating advances in
artificial intelligence research to make possible entirely new
classes of applications, such as Microsoft Bookshelf.

Microsoft has also developed MS-DOS CD-ROM Exten
sions which allow standard IBM PCs and compatibles to read
files from CD-ROM discs in a transparent fashion. The Ex
tensions, which are included with many CD-ROM drives,
provide the CD-ROM disc interface to allow most existing
programs to read CD-ROM files without modification. The
MS-DOS CD-ROM Extensions read discs in the "High
Sierra" format which has been adopted by most CD-ROM
developers.

With CD-ROM moving from very specialized vertical ap
plications to more general purpose uses, the CD-ROM indus
try is now looking at adding multi-media capabilities to CD
ROM. The concept of interactive compact disc (lCD) marries
a CD-ROM player to a computer capable of displaying image
quality graphics, and playing audio. ICD will be an important
concept in bringing CD-ROM (and computers!) to the broad
est possible base of users, and also in delivering the benefits
of CD-ROM to consumers in the home. RCA has recently
announced a new technology called DVI (Digital Video Inter
active) which could play an important role in ICD systems.
Philips has proposed an ICD system called CD-I. There is still
a lot of work to be done before ICD systems are introduced
to the market.

Hardware and operating system perspectives on CD-ROM

by MARK T. ED MEAD
MTE Associates, Inc.
Del Mar, California

INTRODUCTION

This paper discusses the particular steps that take place in the
integration of a CD-ROM player to a computer. The com
puter can treat the CD-ROM player like any other external
data storage device, however, a CD-ROM has a low data
transfer rate as well as a low access time. The minimum data
transfer rate for a CD-ROM player to a host computer is
176Kb/sec as compared with 625Kb/sec for a hard disk.
Access time to the information is around one second com
pared to 0.15 second for the hard disk. To improve perfor
mance special software or hardware is needed.

One way to compensate for the slow data transfer rate is
to use a Small Computer Systems Interface (SCSI). Most of
the SCSI configurations are single-initiator, single-target
systems, with the CPU being the initiator and the CD-ROM
player the target. The SCSI bus allows quick transfers of
information and commands to I/O devices via a standard com
mand protocol. This protocol sends command-description
messages to target processors that process the commands. To
improve the operation, the CD-ROM drive needs to provide
an interim storage space for the data between the disc and the
CPU. A single-ported cache buffer can provide this capa
bility. RAM buffers are placed in the SCSI controller to allow
faster data collection. Using DMA the transfer rate between
devices is increased. The current CD-I standard calls for 2
DMA channels in the microprocessor. This eliminates disc to
CPU transfer time by loading the process directly into DMA.

A LOOK AT DIRECT MEMORY ACCESS (DMA)

The function of the DMA controller is to transfer a series of
operands (data) between the system memory and a peripheral
device. Operands can be in the form of bytes, words or long
words (32 bit). With cycle stealing, the data is transferred in
a single cycle. In a burst mode, the transfer is up to 64 kbytes
per burst.

When the DMA controller receives a valid request for data
transfer from a peripheral device, it arbitrates for and obtains
ownership of the system bus. By asserting its Bus Request line
(BR), it indicates that it desires to be the bus master. The
processor is at a lower priority level than external devices.
After completing the last cycle it had started, the processor
will give control to the controller. Then, it puts the bus up for
arbitration through its own Bus Grant output (BG). When a
device enables the BG input, it becomes the bus master.

The controller will then wait until the Address Strobe (AS),

281

Data Transfer Acknowledge (DTACK), and the Bus Grant
Acknowledge (BGACK) signals become inactive before
assuming command of the bus again. Next, the controller
activates its BG line and proceeds to transfer data. At the
completion of this phase, it gives back ownership of the bus
by de-activating its BGACK output.

SMALL COMPUTER SYSTEM INTERFACE (SCSI)

SCSI adds flexibility and performance to many design con
cepts. The SCSI bus supports a maximum of 8 units. This
limitation can be overcome by the use of a LAN. In addition,
each SCSI device can support seven additional logical units,
plus one master. Because SCSI serves as its own "traffic cop,"
the user's only concern is the management of the data at the
host adapter.

Most SCSI devices are in the 12-Mhz range. This is about
1.5 megabytes per second. This range can be increased to
about 32 MHz at distances of 50 feet. The rate then would be
around 4 Mb/sec. SCSI also provides a rich set of commands
and defined bus structures. The SCSI standard calls for eight
command-description byte (CDB) groups. Groups 0,1, and 5
are reserved for general purpose instructions, groups 2,3, and
4 are reserved by the National Bureau of Standards, and
groups 6 and 7 are vendor specific.

A computer equipped with a SCSI bus requires a few com
mands to retrieve the information from the CD-ROM player.
The computer has a key to the desired record and the logical
block starting address of the file. The host adapter acquires
control of the bus and it sends a Search Data Equal command
to the player. This provides the logical address for the file.

The player automatically moves the laser beam that reads
the information from the compact disc. This is done through
the SCSI based disc controller that locates the proper physical
address on the disc. The CD-ROM player then signals the
end of search to the source by sending a status byte with the
Condition Met bit set. This is then followed by a Linked
Command Complete message. The host adapter sends the
disc controller a Read command which contains the number
of blocks to be read and a logical block offset address. The
controller then transfers the data to the host adapter. If the
search for the key fails, the Condition Met bit is cleared in the
status byte which is sent to the host adapter. This is followed
by a Command Complete message, and the Read command
waiting in the host adapter is purged and not set to the target.

The development of SCSI drivers can be very complicated.
The user must have a good understanding of the device and its

282 National Computer Conference, 1987

operating system. Problems are compounded by the makers
of SCSI busses. They are insisting on system and device
specific device drivers.

In order to understand what the player is actually read
ing, it is important to learn the data structure format of a
CD-ROM sector. One sector contains 2352 bytes. The first
12K bytes are used for synchronization purposes. The next 4
bytes contain header information. The first 3 bytes of the
header are reserved for sector addressing and the 4th byte
denotes the mode. The next 2K bytes are user data, then 4
bytes for error detection code, 8 bytes of space, 172 bytes of
P-parity and 104 Q-parity error correction code.

The mode byte describes the nature of the user data. Mode
1 is used in applications which require maximum data in
tegrity. Mode 2 is used for applications where the integrity is
not an important issue (home or consumer applications).
Mode 2 provides 288 bytes of additional user data.

After accounting for the synchronization header, and error
detection and correction bytes, one disc contains 270K blocks
of user data at 2048 bytes per sector yielding about 540 mbytes
of usable data space. With the use of a sophisticated data
search routine, the user can search the disc for a particular
pattern or patterns. Each section can be encoded with an
address bit which is then linked to a search pattern algorithm
and the beginning of the disc. This algorithm would be placed
in RAM for maximum execution speed. If the pattern is
found, the program supplies the address byte sector informa
tion so the laser beam can move to the exact location. If the
pattern is not found, the program notes this and exits. This
reduces the wasted search time normally taken to search on
hard or floppy disks.

BASIC COMPONENTS OF A CD-ROM SYSTEM

As in any computer system integration procedure, it is im
portant to keep in mind the various components used. Design
procedures require a study of the long and short term goals of
the proposed system. In designing a computer system, there
are six basic elements to be considered. These elements apply
to CD-ROM system integration as well.

Capture

Where is the data coming from? In what form is it stored?
These are important questions to answer, since without data,
the system is useless. Recent developments in laser technol
ogy enable input data to be received from a number of
sources. Optical Character Readers (OCR) can digitize a page
and allow editing on the screen. Other digitizers allow pictures
and diagrams to be digitized. These are frequently useful for
CD-ROM applications.

Manipulation

Once the data are available, editing may be necessary. Re
cent advancements in desktop publishing software provide
extensive cut-and-paste capabilities. A wide variety of editors
can be used to modify textual information.

Storage

In order to maximize access time, careful thought must be
given to the data storage techniques. During this process, the
information is identified by name, size, and location. An in
dexing scheme is used to "tag" the information. There is no
set procedure for this process since it is dependent on the
application and retrieval software.

Of concern also is the "disc geographical layout. " This re
fers to the physical layout of the data on the disc. Geograph
icallocation greatly affects the speed with which an applica
tion can access and display the data. Storage methods include
contiguous or sequential files, mapped files (as on a hard
disk), and interleaved files (files broken into 2K blocks and
stored in spiral fashion). Interleaving is practical for reducing
access time between related files. For instance, a file contain
ing a database can be interleaved with a file containing its
indices.

The data then needs to be compressed. This is accom
plished by eliminating empty space and repetitive areas.
Several data compression schemes are available for both text
and video. One of the techniques is "Entropy Reduction."
This method reduces data by replacing repetitive items with a
short code.

Retrieval

This element is the software that determines the location of
the desired information on the CD. Specialized retrieval soft
ware is necessary for particular applications. Because of the
large amounts of data that can be stored on CD and the
current limitations of transfer rates, careful design of the re
trieve! software is essential.

For most CD-ROM applications, the retrieval software will
behave similarly to a database management system. The pro
gram requires a stand-alone indexing scheme to remember
where each piece of information is stored.

Transmission

Some applications may call for users to access information
from on-line databases. Several companies are setting up such
systems. Again, careful thought must be given to the type of
data to be transmitted, the transmission rate, and primarily to
the type of error detection and correction techniques to be
established.

Display

Depending on the application, this software can be complex
or relatively simple. Display software represents a large vari
able in CD-ROM system design. Resolution, aspect ratios,
and pixel configurations all play important roles in the selec
tion and installation of a display system.

All of these elements play an important role in the inte
gration of any computer system. They apply equally to
CD-ROM. The design process must be laid out properly and
appropriately from application to application.

Real-time operating system design
for CD-ROM using OS-9

by PETER GALLANIS
MicroTRENDS, Inc.
Schaumburg, Illinois

The implementation of a multi-media compact disc product
(CD ROM) requires some means of supporting and coordi
nating multiple tasks, where each task performs a specialized
function, related in some way to others. For example, con
sider a multi-media version of a "how to" book. In addition
to the usual text requirements, you have the considerations of
sound, graphics, and possibly video. A more specific example
would be a segment on automobile tuneups. This could in
clude a video image of where the adjustment would be made,
the sound of the engine as the adjustment is made, and a
graphic display of a piece of test equipment.

These multi-media applications achieve their level of inte
gration by defining specialized tasks to perform each function,
like an audio processor for speech and sound, as well as a
graphics task for producing graphics. This requires some level
of multi-tasking, which may need to be hardware-interrupt
driven.

OS-9/68000 is a small and fast multi-tasking operating sys
tem for the 68000 family of processors. The kernel, which is
13K in size, provides the functionality of a UNIX (tm) oper
ating system, with a flexible I/O and file system. Tasks are, by
design, re-entrant which make them excellent candidates for
"ROMing," in fact all of the operating system and applica
tions can be contained in ROM.

OS-9/68000 provides multi-tasking on a priority and event
basis along with priority aging to ensure that a process will
eventually get some CPU time. Time-slicing occurs when pro
cesses of the same priority are awaiting execution, and this
occurs on each clock tick (typically 100 times a second). As an
interrupt occurs, the first task in a prioritized list gets control,
and can pass the interrupt on to others in that queue. By
combining the re-entrancy of the processes and TRAP inter
rupt handling, generic run-time libraries can be accessed
system-wide. In fact, the console I/O routines and mathe
matical routines are implemented in just such away.

Multi-tasking also carries with it a requirement for coordi
nation of these tasks. OS-9/68000 provides numerous methods
of synchronization in addition to normal hardware-interrupt
processing. One such facility is the event mechanism, that is
an extension of a semaphore technique. Events are defined at
runtime (and later referencable by ASCII name from any
task) with a constant that is added to a counter every time a
task "POSTS" the event. A task waiting for the named event
can specify the range of counter values to be considered.

283

Another form of synchronization available is inter-task
communication. Signals are used as a method of forwarding a
"signal number" to a task that has defined an interception
routine. In addition, named "pipes" can be used to send
actual data to tasks waiting at the receiving end of the pipe.

An additional feature worth mentioning is the operating
system's ability to define named data areas that may be shared
among many tasks. This allows tasks to access global data in
a standardized yet flexible manner.

The OS-9/68000 I/O system provides for device as well as
data structure independence. An I/O device is defined at
three levels. The highest level is the file manager which coor
dinates all access to all devices of that file category (character
sequential, random block, random sequential). The next level
is the device driver which is responsible for performing I/O to
devices with similar characteristics much as a disk controller
controls multiple disk spindles. The lowest level is a device
descriptor that is really a table that ties together the file man
ager and device driver responsible for I/O to the specific de
vice. OS-9/68000 treats each of these as normal processes
(albeit supervisor state processes), which means that they can
be loaded at any time as well as ROMable.

Another feature that demonstrates the flexibility of OS-9 is
that the file system format is defined by the file manager. A
native file structure is distributed with disk versions of the O/S
which provides for a hierarchical structure with the USER and
GROUP concept for files and directories. A completely for
eign file structure can be defined by implementing another file
manager, such as one supporting the High Sierra Specification
structure for CD ROMs. Multiple file managers can co:"exist
within the O/S, and OS-9/68000 keeps track (via the device
descriptor) of which file manager to use.

SUMMARY

Multi-tasking is a requirement for multi-media compact discs.
OS-9/68000 provides a sophisticated multi-tasking environ
ment, usually found only in higher-level computer systems.
The synchronization and inter-task communication facilities
provide an excellent structured environment for the develop
ment and execution of applications. Its small-size ROM re
quirement make it an ideal choice for a custom or turnkey CD
operating system such as that utilized in Kiosk implementa
tions, as well as for general 68000-family computer systems.

INFORMATION TECHNOLOGY
MANAGEMENT

MARTIN L. BARIFF
Dlinois Institute of Technology

Chicago, Dlinois
and

RICHARD BARNIER
Digital Equipment Corporation

Rolling Meadows, Dlinois
and

DAVID FOSTER
LaSalle National Bank

Chicago, Dlinois

Everyone knows that the global business environment is changing at an accelerating rate. Is
MIS merely reacting or working to manage the process? The Information Technology Man
agement track brings together MIS leaders who are changing their organizations and indus
tries. MIS can take charge and direct the organization towards high-value, leading edge
technology; track participants show how.

Two of the sessions deal with change itself. MIS in a Changing World: Living with Mergers,
Deregulation, and Global Competition describes the collision of competitive forces in the
automobile and transportation industries. Among the critical trends: globalization, deregu
lation, and technology. Even Japan is nervously reassessing the direction of many of its
industries. Deregulation is spreading to many nations that once seemed hopelessly
bureaucratic. MIS is one of many elements of a successful effort to establish competitive
advantage in this new global market. In some companies, the burden of building systems that
provide competitive advantage falls on the CIa. In the session The Chief Information Officer
as Enterprise Change Agent, panel members share their experiences with this relatively new
and highly challenging role.

The most common theme for sessions in this track is the growing synergy between informa
tion systems strategy and the highest levels of corporate strategy. The Using Information
Technology as a Competitive Weapon session states the issue bluntly. This session covers a
range of technology and methodologies in use, while Integrating Corporate and Information
Systems Strategies presents enterprise-wide information management as a specific approach
to the complex problem of integrating the corporate information systems architecture. Since
the MIS department no longer has a monopoly on systems technology, let alone the total
knowledge base of the organization, another session addresses the question Have You Dis
covered the Markets for Your Information Services? Today's information systems executive
sells products as both intrapreneur and entrepreneur.

In the featured session, Amy Wohl offers her views of what technology has to offer in
Management Decisions and Technology Trends. In her words "1987 is not the Year of
Anything in Particular" but technologies are delivering more power to the user in an increas
ingly integrated environment.

Other issues for the MIS manager remain to be dealt with. Management looks at MIS as
an investment, in competition with new production facilities, stock buy-backs, and a myriad
of other potential uses for scarce cash. The Justifying and Evaluating Information Technology

Investments session offers techniques to do just that. Old and new delivery vehicles for
information are considered in two sessions: Transforming the Data Center into a Corporate
Utility shows how to revitalize the computer center; How to Manage End User Computing
discusses future directions for the information center.

Executive Information Systems: Putting Top Management On-Line deals with a high
visibility relationship that is changing as new on-line EIS systems replace the traditional
chartbook. A different angle on MIS management challenges is given in MIS Vendor Chal
lenges and Opportunities: the CIO Perspective. As the CIa's role is evolving into a strategic
management function, a dramatic change in the relationship with systems vendors is needed.

The MIS manager stands at the intersection between technology that changes daily and a
management structure that is also struggling with accelerating change. Managing information
technology is a tough proposition. But aphorisms, buzz-words, and trendy theories are of
little help in the day to day job. These sessions offer some concrete experience from the
troops, as successful change agents summarize their efforts to wear manager and technologist
hats at the same time.

The future will bring even bigger changes in technology, but the crucial challenge comes
from the management side of the equation. Increasingly, the IS function is regarded and run
as a business. To succeed in this environment the information technology executive must be
first and foremost an effective manager.

Integrating corporate and information systems strategies

by RICHARD F. MITCHELL
Illinois Bell
Chicago, Illinois

The challenge for Information Systems and its user organiza
tions is to accelerate toward an information leadership posi
tion, giving substance to a new corporate image and providing
a sustainable edge to newly competitive marketing forces.

Strategic business advantage is attained by anticipating cir
cumstances and being prepared to take advantage of oppor
tunities. Opportunities are transient; they crop up as the
business environment changes, opening during windows of
time that close as other environmental events occur.

Enterprise-wide Information Management (EwIM) is pian
ning, organization, implementation, and control of informa
tion resources to meet current and future strategic goals.
EwIM is a set of concepts and tools that enable a manager to
determine, for his/her enterprise, what can and should be
done with information technology. EwIM results in the align
ment of information technology with the enterprise plans and
the alteration of the enterprise goals through the use of infor
mation technology.

Information resources must be blended into competitive
business strategies, beginning with market understanding and
then focusing on strengthening sales and distribution channels
and customer ties. New information structures must reduce
data redundancy while both intersystem and corporate inter
nal communications are improved. Further integration with
other business processes allows improved business operations
control and increased productivity, while the use of informa
tion technology adds value to product and service offerings in
the eyes of the customer.

The fully integrated system is the product of a corporate
management committed to using data processing strategically.
It provides aggregated data for decision making and effective
resource control. Through improved operational efficiency
and the use of artificial intelligence technology, it also offers
force reduction opportunities.

An information architecture is the structure of an organiza
tion's computing technology. Similar in nature to telephone
network and building architectures; it is the systematic organi
zation of the basic components of information. These compo-

287

nents are data, applications, communications, work stations,
software, and hardware.

Data

A logical data structure, organized by subject matter (e.g.,
customers, products) is the most critical component of the
information architecture. Data must be separated from
applications and managed as a corporately shared resource to
position the architecture for optimum flexibility and support
the correlation of corporate and external data. Ideally, the
user will access information based on needs and authorization
without even being aware which system contains the data.

Applications

Applications collect, restructure, create, and distribute in
formation for business use. When freed of the traditional data
storage and management role by the newly defined data
architecture, applications will become more stable and readily
encompass entire processes. New applications can provide
customer, channel and supplier interactive capabilities, effec
tively stimulating revenue and controlling operational costs.

Communications

The connection of computer environments should appear
as a transparent information delivery network to the user,
supporting integrated voice, data, text, image, and graphics
capabilities.

Work Stations

The user's window for information access, work stations
should support the capabilities of the information architec
ture, encourage paperless communication of information, and
provide responsive delivery of information.

288 National Computer Conference, 1987

Software

Software is the programmer's and end user's tool kit to
manipulate and analyze data and information. Advances in
software technology will bring artificial intelligence potentials
to reality in the work place, automating technical activities
such as programming, engineering, and capacity planning.
Ideally, consistent software capabilities in all information
environments will provide understandable information in
answer to questions posed in common business language.

Hardware

The underlying component supporting the rest of the archi
tecture, hardware planning, and selection must allow for flex
ible, non-disruptive introduction of new technology and meet
the increasing processing demands of the business at optimum
cost.

Effective architecture development requires close coordi
nation with the planning function of the business to ensure
that implementation occurs in a timely fashion.

Management decisions and technology trends

by AMY D. WOHL
Wohl Associates
Bala Cynwyd, PA

1987 is not the year of anything in particular and yet it is a year
in which much change will occur in our industry. It is also a
year-like most years recently-in which managers of infor
mation systems will need to make important decisions that
will have a long range effect on the success or failure of their
organizations. Decision in times of change and imminent
change is tough and scary, and yet unavoidable. Perfect infor
mation (a crystal-clear crystal ball) is as scarce as ever and
there are no guarantees that decisions, however carefully con
sidered, will appear solid in next morning's brighter light.

Today, there is much more pressure on Information Sys
tems and their managers. We need to provide information of
better quality, more quickly, to larger numbers of users, at
lower costs. Also, at the very same time, we need to provide
information via a strategy which will make profit-oriented
organizations more competitive, both within the U.S. market
place and, perhaps more importantly, in international mar
kets. If we work in the government or non-profit sector of our
economy we need to learn how to make more and more from
less and less.

And we need to perform this already tough assignment in
an environment in which vendor's product lines and strategies
are shifting, and our end user customers are continuously
redefining and upgrading their information needs.

But we are not without tools to meet these demands-or
without hope that success is possible.

THE DECISION MAKING PROCESS

Making decisions about what information systems equipment
to buy, when to buy it, and how to use it has changed consid
erably in the last few years. With the advent of the personal
computer, end users and their managers now play much more
of a role than before. Sometimes, they select who will get
what-and when, picking from products and services pre
selected by their MIS department or by a committee of tech
nologists and users. In other companies, they may make these
selections entirely on their own, providing they fall within
budgetary guidelines and authorities. Some companies re
quire elaborate studies and precise systems design; others
proceed on an ad hoc basis, adding technology where users or
their managers identify a need and a solution, and often build
ing the system in place as needs evolve and grow.

289

THE UPWARD EXPANSION OF USER CONTROL

Initially, user involvement in the se1ction process-and user
driven systems management-was focused on the personal
computer, on small, inexpensive, individually used work
stations. However, as systems grew and (importantly) as users
became more sophisticated in identifying needs and aggres
sively seeking solutions, the user began to extend his control
upward, toward the multi-user system.

This desire to control a larger and more complex informa
tion systems world was substantially aided by various technol
ogy trends.

. Minicomputer systems came in smaller and smaller physical
packages at lower and lower prices. This meant that even
relatively small groups of users could afford the cost of
connecting themseives together and sharing information and
systems resources.

At the same time, the skills needed to manage mini
computer systems, especially small ones, started to shrink.
Vendors eager to sell more systems and to extend their mar
keting into the end-user arena (particularly because this
market was deemed less controlled by IBM, with its tradi
tionally close relationships with the management of large MIS
users) offered various "user friendly" tools and interfaces to
make the job of systems management more and more struc
tured and predefined. Anyone who could read the screen of
the computer could perform most administrative and mainte
nance tasks for such systems. Frequently that anybody was a
departmental clerical or secretarial employee; a considerable
cost savings to the organization.

The local area network (LAN) market began to solidify. A
few major vendors substantially controlled the market and
offered stable, well defined, and increasingly feature-rich
products. IBM entered the market, offering long-term com
mitment ot the LAN concept and enhanced credibility. LAN
software began to appear which, together with LAN's and
servers (themselves often low-cost PCs) offered an in
expensive, appealingly simple environment. Also, such LAN
environments, particularly if purchased a piece at a time,
incrementally to the original purchase of personal computer
workstations, fell well within departmental budgetary guide
lines.

This meant LANs often arrived in end-user departments
(particularly in those in remote locations) without notice to

290 National Computer Conference, 1987

the MIS department at all. In fact, MIS departments often
found out about these installations when they offered plans
for company-wide guidelines or implementations and found
to their chagrin-that they already had a de facto standard in
place.

Other technology trends have also altered the decision
making process. Many organizations are combining their
telecommunications departments (both telephony and data
communications) into their MIS function. Office automation,
end-user computing and microcomputer support and manage
ment are also candidates for integration with the MIS func
tion. This offers MIS an opportunity to provide more
integrated planning and more integrated systems design and
support. It also offers the opportunity to consider some of the
new combined function hardware which it was difficult for
companies with separate computer and communications func
tions, for instance, to contemplate, analyze or implement.

1987 TECHNOLOGY ACTIVITIES

What are the technologically centered trends we are likely to
encounter in 1987? And how will they affect the Information
Systems management process. A few likely technology areas
to watch include:

The Legitimization of Apple and the Macintosh

Apple's Macintosh products, especially its newest family
member, the Mac II, are robust, powerful personal work
stations. Also, there are now more than 2,000 software pro
grams, including personal productivity tools for almost every
imaginable area of business endeavor. Too, the consistent
interface, powerful performance, and image orientation of the
Macintosh has attracted some of the best software; IBM PCs
must often wait until later for the products which appear first,
more cheaply, and with more features on the Macintosh (e.g.,
Aldus' Page Maker and Microsoft's Word products, to name
a few popular packages with first Macintosh and only later
comparable IBM PC versions).

With Macintosh II, announced in March, Apple entered a
new phase. This Macintosh is open to product enhancement
via additional hardware and, perhaps more importantly to
corporate America, it openly embraces IBM's 80286 architec
ture. Users do not need to choose the simplicity of Macintosh
operation instead of the software compatibility of the IBM
environment. They can choose both at once.

Market reaction to this product is likely to be aided and
abetted by IBM's activities this spring and the market chaos
that may ensue.

The Acceptance of a Next Generation
iElvI PCiCompatibleiCione Standard

IBM has kept the market waiting, holding its breath, for a
very long time-too long. Exasperated competitors like
Compaq finally gave in and announced their own versions of
-386 Personal Computers (using Intel's 80386 chip).

Some believe that IBM will announce a different kind of

product incompatible, less compatible or compatible only
in some strange new way with the previous IBM standard.
(Actually, IBM is likely to announce more than one system,
with some enhanced -286 machines in the pot for Spring, 1987
and probably one or more -386 models.) This new system
from IBM seems very likely. But the market reaction to this
event is much less predictable.

Customers could choose to abandon the current IBM PC
standard, agree with IBM's greater wisdom, and follow IBM
down whatever paths it chooses. But customers could also
choose to stay in a comfortable, well-defined space, richly
furnished with innumerable hardware accessories and soft
ware packages. If developers' lag cycles for new software
remain long, and/or if developers continue their love affair
with the Macintosh, and/or if the end users decide the industry
standard has already been determined and cannot be re
defined by a single vendor, even IBM, Compaq, and the
standard continuers could triumph and IBM could stumble.

Apple could be a more than modest beneficiary in this
scenario. If Apple is carrying the standard and combines the
two most popular software environments, it could become a
preferred product in environments (like big corporations)
where it was previously overlooked, ruled an outlaw, or
scorned.

LANs Replace Minicomputers as the Basis
for Departmental Systems

The day of the departmental processor (read minicom
puter) may be drawing to a close. Minicomputers may be too
big, too expensive, and too support-intensive to be appealing
to the end users who often select department computing
power.

Minicomputers, will not, of course, disappear. They will
continue in ever-smaller, microcomputer-based versions.
They will be attached to larger LANs as servers or sources of
additional or specialized computing power. They will serve to
interconnect and add function to multiple LAN environ
ments.

More and more robust LANs with more robust operating
systems and substantially more multi-user software will in
creasingly be the selection of choice, based on ease of use and
price.

Image-oriented Applications Will Change Our Workstation,
Our LAN, and Our Storage Hardware Requirements

Graphics, rich word processing desktop publishing, and
icon interfaces are changing our standards for workstations.
Such applications require more robust workstations, with sub
stantially larger memories and faster processors. Also, image
oriented appiications and their software need substantiaily
more storage: a single bit-mapped 8.5 x 11" page can contain
1,000,000 bits of information. This means it's easy to fill entire
hard disk drives with only a hundred or so large images. Color
(still uncommon in these applications, except for low reso
lution business graphics and higher resolution engineering
graphics) multiples the memory, processing, and storage

problems by three (and doubling resolution quadruples all the
hardware requirements).

Optical storage is sure to be an element in solving this
problem. In both CD-ROM and WORM (writable) Optical
Disk forms, optical storage is now solidly in the market, with
commercial products multiplying rapidly. These products
need to be built directly into larger systems, rather than being
offered as specialized, separate components. Also, the neces
sary software for automatically indexing and quickly retriev
ing information on optical disk needs to be nurtured, in
order to manage such vast amounts of images and other data.
CD-ROM, which seems to be the medium for the reference
library of the future may actually be a consumer product some
day-but it seems destined to be a business product first.
CD-ROM pricing for monthly services can easily compete
with less information rich paper products and can be substan
tially cheaper for large, elaborate annual or semi-annual
publications.

LAN s will also need to accommodate this flow of enhanced
information. We suspect that many of the early LAN designs
will be too narrow and slow to carry the fast-moving, rainbow
colored information of this brave new world. Broadband
LANs may see a comeback (after their retreat into academe)
and enhancements to baseband technology will be critical to
support these applications with reasonable performance.

The Division of the Software Market

1986 was the year when the software market started to
divide; this trend will continue strongly into 1987 and beyond.
This is simply a recognition of a natural end to the usefulness
of emphasizing backward compatibility of new software to old
hardware and the new hardware becomes more and more
robust. The compromise required for this backward capability
is simply too expensive.

Instead, there will be a division between software which
truly exploits -286 machines and older software designed to
run successfully on less powerful computers. Desktop publish
ing is one of the applications which will mark this line, with
many desktop publishing packages simply too complex and
feature rich (to say nothing of their image requirements) to fit
on smaller, less powerful systems. There will be a similar
division in 1988 when the first -386 software hits the market.
The 68000 market is likely to have similar divisions, with
software which exploits 68020 machines just too hungry to fit
on older models.

The Upward and Downward Expansion of Software

A strange but necessary game is beginning to play itself out
in the software market. A number of microcomputer software
developers are trying to create viable multi-user versions of
their products for use on LAN servers and minicomputers. At
the same time, mainframe and minicomputer software devel
opers are attempting to create microcomputer versions of
their products.

This game has gone on for a long time, but previous success

Management Decisions and Technology Trends 291

stories have been few. Lack of success has largely been caused
by developers' assumptions that their new target market is
simply a larger (or smaller) version of their current market.
Actually, multi-user software environments require an en
tirely different, much more complex view of the world. And
smaller environments aren't just smaller-they typically have
users who demand much friendlier products. Failure, coupled
with the rewards of success, however elusive, have fueled a
new look at cross-system software and some successes seem
likely to appear in 1987.

THE ISSUE OF COMPETITIVENESS

If information systems-and their managers-are to play a
major role in the life and success of the organization,
they need to contribute to the competitiveness of the firm.
Thorough examinations of individual businesses nearly always
uncover a number of areas in which better information sys
tems (or better use of the ones already in place) can signifi
cantly improve the health of the organization. Likely areas for
inspection might include:

1. The timeliness of information, particularly if faster de
livery of data or analyzed data has a financial value to
your organization (such as improving time to market,
speeding up collection cycles).

2. The accuracy of information, especially where greater
accuracy permits better decision making. This might be
particularly true in consumer goods, for instance, where
changes in market share of less than one percentage
point can be critical.

3. Other uses for information. Information created for, or
as a by-product of, one business can create other busi
nesses. For instance, information about large groups of
customers and their behavior might be valuable to other
firms in their market research activities. Or an analysis
of the demographics of your customers might lead you to
provide other goods and services (some might be
information-based) to them.

4. The integration of information. Single facts by them
selves, particularly on separate, incompatible computer
systems, don't tell you much. Combined in meaningful
ways, these facts can give you new insights into your
organization and how it should be managed. New prod
ucts which cross system boundaries, and aggregate and
analyze information on behalf of managers with limited
computer expertise can greatly increase the information
available for decision making.

5. Alerting. Computers can become agents, tracking multi
ple events in ways too large or too complex for the hu
man brain to readily handle. They can be programmed
to look for specific events or combination of events and
to alert their human managers to act--or even, in some
circumstances, act on their behalf. (A chocolate com
pany might ask that its purchasing system automatically
buy additional cocoa beans whenever the world price
exceeded a certain value and bad weather was threat
ened in cocoa-bearing areas, for instance.)

292 National Computer Conference, 1987

This is an example, on a very small scale, of a so-called expert
system, a computer program that embodies the knowledge of
one or more experts about a particular narrow specialty. Ex
pert systems are now coming into their own, and we expect
them to blossom all over the largest companies-and some
small, insightful ones-during 1987.

Change in the computer industry will not be well behaved
in 1987. It will be rapid, unruly, and sometimes unpredictable.

Some vendors-especially those who are flexible and fleet of
foot-will do well in this era; others will find their stately style
ill-served by a rapidly changing environment. User fortunes
will rise and fall on the firm's ability to recognize appropriate
technology and appropriate technology partners, and to reject
technology that is premature or irrelevant.

Companies that move quickly to adopt relevant technology,
and to adapt it to their own ends, will do best of all.

End-user computing: A grand concept
running "amuck"

by J. DANIEL COUGER
University of Colorado
Colorado Springs, Colorado

ABSTRACT

A survey of 17 large firms, all with long-term computing experience and represen
tative of major U.S. industry categories, revealed serious problems in 11 of the
firms. The other firms were realizing significant benefits (i.e., ROlon the order of
2 : 1 to 6: 1). The six successful firms used a pattern that other companies can
emulate: (1) proactive rather than reactive approaches to implementing end-user
computing, (2) conducting costlbenefit analyses for each potential computer
application, (3) providing soft, rather than hard, controls for acquisition and use of
PCs and related software. This paper explains the details of the approaches used by
the successful firmso

293

End-user Computing: A Grand Concept Running "Amuck" 295

INTRODUCTION

End-user computing has, potentially, the greatest impact of
any development in the computer field. Some aspects of its
growth, such as personal computing, are exponential and
could easily continue that pattern through 1990. However, its
cost is far greater than anticipated-much more than it should
be. Worse yet, the obvious benefits realized in the past three
years are threatened because of below-the-surface problems
expanding and boiling like a volcano near eruption.

To identify the causes of these problems, 17 companies
were selected to study, all had long-term computing experi
ence and were representative of major U.S. industry catego
ries. Eleven experienced significant problems in implement
ing end-user computing. Seven were overspending budget by
a factor no less than three, and as much as ten. The situation
may be even worse in four other companies because they had
not prepared budgets for end-user computing!

On the other hand, six firms were realizing ROlon the
order of 2 : 1 to 6 : 1. They were realizing benefits of the mag
nitude of millions of dollars annually.

In the 11 problematic firms, there was proliferation of
Inicros a.'1d IT'icrosofitNare and installation by inexperienced
people, the users. The principal problems was lack of ade
quate planning for end-user computing. Had they standard
ized on micro hardware and software, training could have
been more consistent, the learning curve simplified, and
downtime reduced. Yet, the highest cost factor of all could not
be easily ascertained. Without standardization, the hidden
cost of errors resulting from the proliferation of hardware!
software may exceed the measured excess cost.

The problems of end-user computing are not insurmount
able, as shown by six of the survey companies. Analysis of
their successful approaches to implementing end-user com
puting reveals a generic approach which will enable other
organizations to leapfrog one of the three stages of end-user
computing growth. The result is improvement in both effi
ciency and effectiveness.

In 1983, 1,850,000 PCs were shipped. By year end of 1987
the total base of installed PCs is estimated to exceed 20 mil
lion. 1 If the pattern of the 11 less successful companies in the
survey is prevalent throughout the U.S., the result of install
ing 20 million micros could be chaotic. But risks can be greatly
lowered through following the guidelines of the six successful
firms, and most companies can then expect to realize the
potential of end-user computing.

The number of individuals directly using computers has
more than doubled in the past three years in those organiza
tions which have implemented the EUC approach. Figure 1
shows the exponential growth of use of terminals and PCs.
The data are derived from five surveys listed in the bibli-

"I ,-

60

Percent
50 ;'

of Personnel /'

Using

Terminals/Pes 40 Managerial
use

in

Reporting
30

Organizations Professional
and staff use

10

1982 1983 1984 1985 1986

Year

Figure I-Growth in terminallPC use by type of user

ography. On the other hand, the hoped-for level of mana
gerial use has not been realized. The large user group is
the professional, nonmanagerial staff, as shown in Figure l.
Managers are delegating to staff the tasks of developing
models and are using the systems primarily for information
retrieval. To change this pattern, more functions need to be
provided in an integrated manner with more user-friendly
access.

Those guidelines are summarized here and expanded
through the remainder of this paper: 1) proactive rather than
reactive approach to implementing end-user computing, 2)
conducting costlbenefit analyses for each potential computer
application, 3) providing soft rather than hard controls for
acquisition and use of PCs and related software.

PROFILE OF THE SURVEY FIRMS

The study began with a review of five previous surveys, listed
in the bibliography, on various aspects of end-user computing.
Next, 17 U.S. firms were selected for in-depth analysis. Net
annual income ranged from $100 million to $500 million. Total
number of employees ranged from 3,000 to 45,000. All com
panies had experience with mainframe computers for 15, or
more, years. Success in end-user computing had no corre
lation with size. The geographic distribution of the firms is
shown in Table I.

296 National Computer Conference, 1987

TABLE I-Industry representation and geographic distribution
of 17 firms included in the survey

Location
Total No.

Industry East Central West of Firms

Insurance 1 2
Banking 1 2
Manufacturing 1 3
Pharmaceutical 2
Extraction!
Processing 1 2
Public Utility 1 1 2
Transportation 1 2
Retailing 1 2

EVOLUTION OF END-USER COMPUTING

The trend toward end-user computing has evolved from three
distinct and parallel paths. As shown in Figure 2, all three
paths provided end-user computing, but to a limited degree.
Only with the convergence of the three paths is the potential
of end-user computing realized, that is, integrated end-user
computing.

The earliest path, interactive terminal access, primarily
provided users with information retrieval capability. They
could directly interact with a computer, but only in a very
limited way. Only the forerunners to user-oriented languages
were available and were not widely used. Technical support
came from the IS personnel assigned to develop the user's
transaction processing systems (e.g., order processing or in
ventory control) rather than from a special cadre of personnel
assigned exclusively to deal with the user's personal com
puting needs.

The second path, information centers, was the first attempt
to pull together the services needed for an individual to oper
ate relatively independently. The early ICs were physical 10-
cations where users could go for training, technical assistant,
retrieval-only access to live data bases such as the customer
database, and manipulative access (ability to change contents)
to copies of data bases. Today the IC is not confined to one
physical location but is an IS organization entity to provide

1970 1975 1980
I I I
I I I
I • Interactive terminal access
I I I
I I I
I I. Information centers
I I I

I

i . Micro computing/
I

I I I
1970 1975 1980

Figure 2-Evolution of end-user computing

these services to users wherever they reside. Though a signifi
cant improvement over the previous delivery system, ICs did
not provide many of the user-friendly benefits of personal
computing.

The third path, micro computing, is the only one of the
three that emerged primarily outside of the direction of the IS
organization. The low cost of both PCs and PC software en
abled user organizations to acquire these systems outside the
purchase controls of IS. The user-friendliness of these systems
enabled users to operate relatively independently of IS tech
nical assistance. But, independence was also a disadvantage.
PC users rarely had access to IS data bases. Also, most PCs
were acquired without communication capability.' ,

The convergent path, integrated end-user computing, not
only provides the best of each of these earlier delivery
services, but also enhances all three. PCs compatible with
mainframe computers can access data bases and utilize soph
isticated mainframe tools, as well as operate in standalone
mode to avail themselves of the rich variety of PC software.
This stage of end-user computing evolution also includes de
livery of electronic mail capability with the same Pc. With this
concept, office and computing activities are fully integrated.
Also included in this stage of evolution, is access to external
as well as internal data bases.

Table II shows the functions available to users in each of the
three stages of evolution of end-user computing.

ADVANTAGES OF END-USER COMPUTING

The rapid growth is itself the best indicator of the benefits of
end-user computing. It is obviously meeting the needs of a
large body of managers and staff. The advantages of end-user
computing are as follows:

1. Simplified tools for individuals to build their own appli
cations and models

Table II-Levels of sophistication in end-user computing in three
stages of evolution

I
rJ)

Interactive 0 on
S terminal
tI)

access

• Information
retrieval from se-
lect internal fIles

0

I~I >.
1<1
.~ I u l

~I II. Simplistic
modelIng

II
Information
centers and

personal computing

• Standalone PCs
and software

• Wides read p
access to inter
nal data bases
through main
frame terminals
only

• Intermediate
level modeling

III
Integrated
end-user

computing

• Full communi-
cation capabil-
ity with main-
frame and oth-
er PCS

• Access to ex-
temal data
bases

• Electronic mail
through same
PC

• Sophisticated
modeling

End-user Computing: A Grand Concept Running "Amuck" 297

2. Improved access to data bases:
a. For information retrieval
b. For data as input to models

3. Increased productivity of users:
a. Able to eliminate time required to translate their re

quirement to IS professionals for development of sys
tems by IS department

b. Able to reduce implementation time by prototyping
their own systems

c. Able to build applications tailored to their individual
needs

The principal advantage needs to be viewed from the macro
perspective of the effect on management in general rather
than the micro perspective of individual users. The end-user
computing approach has brought a result long-awaited by the
computer industry--computer literacy. We are on the thres
hold of widespread use of the computer throughout the com
pany.

The number of individuals directly using computers has
more than doubled in the past three years in those organiza
tions which have implemented the end-user computing. Data
derived from five surveysl,2,3,4,5 indicate an exponential'
growth of use of terminals and PCs.

On the other hand, the hoped-for level of managerial use
has not been realized. The large user group is the profes
sional, non-managerial staff. Managers are delegating to staff
the tasks of developing models and are using the systems
primarily for information retrieval. To change this pattern,
more functions need to be provided in an integrated manner
with more user-friendly access.

LACK OF FORMAL COST JUSTIFICATION

According to the surveys, few companies have formally ana
lyzed the cost/effectiveness of end-user computing. Where the
justification process for traditional IS applications is for
malized, the one for end-user computing is rarely formalized.
While each of the surveys cited benefits, few had been quan
tified. Why?

Surprisingly, the approach to end-user computing has fol
lowed the pattern of initiating computing in industry 25 years
ago. In many companies, end-user computing began with a
missionary thrust. The prevalent view was that converts could
not be gained without providing the service free to users, that
is, without chargeback to their budgets. Several organizations
that have had end-user computing in some form for over 10
years have not emerged from the missionary stage.

Because of the burgeoning costs of end-user computing,
companies are being forced to change the "free-goods" policy
and to move into Stage II of the traditional IS development
pattern, where chargeback occurs. In companies with a
chargeback policy, the costs of computing are distributed to
users according to the amount of services used. Stage III,
where cost/effectiveness analysis occurs, will be realized when
companies move to integrated end-user computing. Because
of access to all computing facilities, data bases and software,
a higher level of benefits and quantification is facilitated. A
user can more easily assess the total effect on his/her job.

EXACERBATING PROBLEMS OF END-USER
COMPUTING

Problems are not diminishing with the widespread growth
of end-user computing. To the contrary, the problems are
expanding.

1. Surface issues are:
a. Excessive equipment cost
b. Inefficient users
c. Inefficient applications
d. Friction between end-user computing technical staff

and rest of IS department
2. Below-surface issues are:

a. Proliferation of data bases
b. Proliferation of software products and PC machine

types
c. Problems of interface between tools
d. Developing systems difficult to maintain

With inexperienced users, computing costs soar. Much of
the learning is trial and error. Even with experience, person
nel without the training of an IS professional will be relatively
inefficient system developers. In addition, the 4th generation
languages are huge resource-burners; that is, associated com
puter costs are often higher than running applications devel
oped with procedural languages. Computer costs to support
end-user computing have grossly exceeded projections. For
example, in four of the six progressive organizations where
the in-depth analysis occurred, the three-year plan called for
end-user j::omputing usage approximating an extra shift of
mainframe time; instead an entire mainframe computer was
required.

Still in the missionary stage, many companies have yet to
install a chargeback system. Without a chargeback system,
users have less incentive to be efficient.

Although the typical end-user computing support group
reports to the IS organization, there have been some dis
ruptive results. System personnel responsible for the large
transaction processing applications have complained that their
user contact has been diminished by the technical personnel
assigned to end-user computing. It appears that the change is
not caused by the end-user computing personnel overtly
usurping that privilege, but that users developing their own
systems via end-user computing naturally spend more time
with the person most familiar with end-user computing facili
ties.

The data proliferation problem is perhaps the most in
sidious and costly. Data base security procedures prevent us
ers access to the on-line data bases, except in retrieval-only
mode so they cannot alter the data. Users who want to manip
ulate data to perform analyses must be provided copies of a
data base. The resultant problem is inconsistency of reports
when persons are using data bases not as up-to-date as the
reports produced by the transaction processing applications.
The solution that has been used is to give everyone current
data. In this mode a "shadow" data base copy is provided
daily from the corporate mainframes. While the currency
problem is resolved, a significant increase in data base cost

'occurs.

298 National Computer Conference, 1987

With PCs from a diversity of vendors with different versions
of software, the cost to maintain software and hardware is
higher than necessary. However, at present no single vendor
meets all the needs of a customer. The different systems also
complicate communication between pes and with main
frames. In addition, some companies make available to users
several 4th generation languages, causing interface problems.
For interface, users must learn several sets of commands.

Some users expand their application until it becomes so
large and complicated that they want to transfer its mainte
nance to the IS department. Because it was not developed
under IS department standards, it is difficult to maintain.

IMPERATIVE TO FORMALIZE END-USER
COMPUTING PLANNING

It is not surprising that the variety of approaches to imple
menting end-user computing has resulted in a hodgepodge of
hardware and software. The essence of end-user computing is
service. Although I know of only one company which explic
itly uses the slogan "the customer is always right," that ap
proach is the implicit objective of many end-user computing
facilities. The goal is to undergrid improvement in user effec
tiveness.

The emphasis on effectiveness of computer use, rather than
efficiency, can hardly be faulted. However, it is not necessary
to sacrifice one to attain the other. Satisfactory results are
possible. Examples in the PC area are: (1) limiting selection
to compatible PCs, (2) standardizing on an operating system
(e.g., a multiuser system with communication capability be
tween PCs and to the mainframes), (3) standardizing on
application packages (e.g., a single integrated spreadsheet
package and a single word processor). Examples of standard
izing on 4th generation tools are: (1) one language with com
prehensive information retrieval capability and (2) one lan
guage with strong modeling capability.

Although the move to cost/effectiveness analysis should oc
cur as soon as possible, a chargeback system is a satisfactory
interim policy. Users who must pay for their use will prize
efficiency as well as effectiveness.

Improved user training programs will produce higher levels
of efficiency in computer use. For example, there are many
tricks and shortcuts in spreadsheet development that can be
conveyed in formal training sessions. The same is true for use
of a 4th generation language.

Through improved attention to planning, the potential
benefits of end-user computing are substantial, as shown by
the results of the six successful firms, where R.O.I. ranged
from 2 : 1 to 6 : 1.

IMPLEMENTING SOFT CONTROLS

Progressive IS organizations have found that formal planning
can be introduced to achieve integrated end-user computing
without resorting to increased control measures. Many of the
benefits of end-user computing have been the result of the
freedom to experiment with other than traditional ways to
develop systems. Prototyping is an example. It has worked so

well in end-user computing that the IS function is adopting it
for developing certain types of transaction processing systems.
In prototyping, a simple model is computerized and tested.
Despite its simplicity, the model is producing useful results. It
is then enhanced and retested. Each cycle of refinement pro
duces improved results.

Tight or "hard" controls may stifle creativity of users. A
better approach is "soft" controls. Examples of soft controls
being adopted by the progressive IS organizations are:

1. Providing PC maintenance for a select set of PCs, en
couraging users to acquire only those PC types. Provid
ing centralized purchasing to attain quantity discounts
for both PCs and software while also limiting the number
of PC types and ensuring compatibility.

2. Providing training only on a select set of software and 4th
generation tools, motivating users to confine their activ
ities to that set alone.

3. Providing file sharing software, so a data set developed
or acquired by one user is also available to others.

4. Serving as the central agency for obtaining new releases
of software then implementing them for all interested
users, thereby reducing the possibility for incompati
bility/inconsistency from multiple releases existing
throughout the organizations.

5. Providing training in application development method
ology to enable users to better manage their own devel
opment projects and to adhere to standards in develop
ment to facilitate maintenance of applications.

6. Organizing an electronic mail (EM) system and imple
menting it for anyone with communication-compatible
PCs as opposed to providing EM only to persons with
computer terminals.

Lack of a hard controls approach will not prevent compa
nies from moving to integrated end-user computing. On the
contrary, the soft controls are a more practical approach be
cause they permit individual creativity within an environment
of cooperative, mutual objectives.

PROVIDING EFFECfIVE TECHNICAL SUPPORT

Another factor in common among the progressive firms is
effective technical support. However, the key ingredient is not
the availability of technical know-how; it is motivating those
persons to help end-users. Some firms with adequate technical
expertise are not meeting objectives in integrated end-user
computing because of their approach to use of that expertise.

A major barrier is the attitude of most technical personnel
toward spending the major portion of their working hours
assisting users. Their terms for this activity are frequently
derisive, such as "handholding" and "nursemaiding."

It is not easy to find technical personnel who find such work
challenging. They would rather be back in the IS department
solving complicated hardware/software issues.

These findings are not confined to the end-user study; they
are also supported by other research in the behavior of com-

End-user Computing: A Grand Concept Running" Amuck" 299

puter professionals. A data base of more than 8,000 computer
personnel reveals that most of these personnel have low need
for social interaction and high need for challenging work.6

This situation need not be a deterrent. Only a small portion
of the IS department personnel is required to provide the
technical support for end-user computing. Those few persons
at the high end of the continuum of need for social interaction
will not be turned-off by the heavy interaction required to
support end-user computing. The progressive firms were suc
cessful in providing effective end-user technical support be
cause they were able to select these few personnel out of the
total IS workforce.

But the selection process alone was not sufficient to ensure
success. The end-user support departments of the progressive
firms had one other common characteristic. The head of that
support function had an ability to convince technical person
nel with strong need for challenging work that end-user com
puting provided some unique and substantive challenges.
They emphasized two things. First, the work is state-of-the-art
in terms of new technical advances. Second, the impact of the
work on the company is substantial because it is managerially
oriented.

In short, these successful managers of end-user computing
take great care in selecting employees ",ith the characteristics
appropriate for this activity and in identifying for these em
ployees the importance and challenge of the work.

TABLE III-Stage III: end-user computing
personal workstation functions

• Standalone computing
• Access to mainframe computing power
• Remote data access (downloading and uploading)
• Sort, search, and manipulation of data
• Memo and reporting writing
• Business graphics
• Electronic mail and filing
• Document sharing

SUMMARY

Integrated end-user computing is not a utopian concept. It is
a natural progression from the convergence of the three prior
paths of (1) interactive terminal access, (2) information cen
ters, and (3) micro computing. With integration, users can
utilize the computing power of mainframe computers in the
company as well as those external to the company which use
the same communication protocols. Access to internal and
external data bases is also possible. Users can also communi
cate with other users for electronic mail, data, and model
sharing. They can also use PC software in standalone mode.
With enhanced training and 4th generation tools, they can.
build their own tailor-made systems.

The imminent threat to end-user computing of high cost
and inefficient use of resources can be avoided through more
precise planning for the move to integrated end-user com
puting. Both effective and efficient use of computing re
sources is possible.

The planning process can be facilitated by analyzing the
experience of progressive organizations and avoiding some of
the inevitable mistakes that the frontrunners incur by being
innovators. Through this approach, it may be possible to leap
frog a part, or perhaps an entire stage, in the typical three
stage process of evolution of end-user computing, producing
a personal workstation with a variety of capabilities. (Table III
lists end-user computing workstation functions.)

REFERENCES

1. "Effective Use of Personal Computers in Large Organizations." Interna
tional Data Corporation, Framingham, MA, November, 1983.

2. "A Study of the Corporate Use of Personal Computers." Center for Infor
mation Systems Research, M.I.T., Cambridge, MA, December, 1983.

3. "Impacts of Office Automation." The Diebold Group, Inc., New York, NY,
May, 1984.

4. "Microcomputer Usage Trends in "FORTUNE" Corporations." Newton
Evans Research Co., Inc., Ellicott City, MD, 1984.

5. "The Information Center Survey." Crwth Computer Coursewares, Santa
Monica, CA, 1984.

6. Couger, Daniel J. and Robert A. Zawacki, Motivating and Managing Com
puter Personnel, New York: John Wiley and Sons, Inc., 1980.

The project unit costing method: Constructing
a financial justification for the knowledge-based system

by MICHAEL L. MORGAN and GAIL D. WOLF
Magnavox Electronic Systems Company
Fort Wayne, Indiana

ABSTRACT

Although knowledge-based and expert systems are becoming increasingly popular,
they are usually constructed incrementally and by ad hoc methods, rather than by
conventional software engineering methodologies. The development of such sys
tems often more closely resembles R&D than systems engineering, and the result
is often not completely specified until the program is implemented. This makes it
difficult to estimate costs and difficult to justify those costs in terms of an uncertain
benefit. This paper presents one method of cost justification, which allows a direct
comparison and tradeoff of costs and benefits.

301

INTRODUCTION

The recent media attention on artificial intelligence (AI) often
leaves the impression that AI is now a mature discipline,
capable of being used in a wide variety of applications and
organizations. In fact, AI is still a very new field. It is difficult
to find commercially viable examples of programs which equal
the complexity of even a modestly-sized conventional applica
tion. In part, this is due to the fact that well-trained AI pro
grammers and knowledge engineers are scarce, and that many
of the tools are expensive. Another factor is that the exact
performance of the program, and consequently its benefits,
are difficult to define or quantify until the program has been
written. The combination of initial high costs and uncertain
benefits has made it difficult to justify AI systems using tradi
tional cost-accounting methods, yet the corporate climate usu
ally dictates that these methods are the only ones which are
acceptable.

As part of its ongoing modernization program, Magnavox
Electronic Systems Company has prepared detailed cost and
technical proposals for 84 projects. Over half of these require
advanced information technology methods, including
knowledge-based systems, expert systems, and natural lan
guage interfaces to databases. Since Magnavox is a defense
contractor, and the modernization program is performed un
der Government supervision, the cost justifications for
projects such as these must conform to conventional cost ac
counting standards, while showing tangible, auditable results.
To achieve these goals, Magnavox developed the Project Unit
Costing Method. This method offers the following advantages
when compared to the ad hoc methods currently in use:

1. Direct comparison between projects, to decide where to
place the investment dollar.

2. Costs and benefits are explicit and tangible, allowing
tradeoffs to be computed to maximize profit.

3. The method is standardized and readily transferable, so
projects may be compared which were prepared by dif
ferent user groups or subcontractors.

Although this method was developed to evaluate candidate
projects for in-house use, it has additional applications in the
marketing of AI systems and in steering R&D investments.

The following sections address three areas of AI cost
justification:

1. The nature of AI costs, including initial costs, design and
development costs, and delivery costs

2. The nature of AI benefits, and
3. The Project Unit Costing Method, which integrates costs

and benefits

The Project Unit Costing Method 303

AI COSTS

Projects based on advanced information technology such as
AI differ from their conventional counterparts in five prin
cipal ways.

1. AI projects have a higher initial investment. AI projects
are frequently prototyped and developed by highly-trained
knowledge engineers, working in concert with some of the
company's scarcest experts. Usually, these knowledge en
gineers must be hired in at great cost, either as employees or
as subcontractors. For less complex applications, in-house
people may be trained, but training incurs the cost of time and
labor. Furthermore, AI work is often done on dedicated
workstations, which have a much higher cost per station than
the conventional programming terminal. While simpler
applications may be built in the conventional environment,
there is much to be said for the high-productivity tools avail
able on dedicated workstations.

These higher initial costs make it more important to do a
thorough benefits analysis before beginning an AI project.
They may also contribute to management's hesitation to fund
large-scale AI development work.

2. AI design a..l1d development tends to become a goal in
itself. Conventional projects are normally developed by exist
ing software development groups, such as a Data Processing
department. Their cost estimates include only the labor re
quired to build, test, and install the given application. AI
projects, on the other hand, are often costed as part of estab
lishing an AI department. If the first few projects must bear
the burden of the pigh initial costs mentioned above, they are
not economically justifiable. Therefore, management makes
an AI commitment. The company decides to support AI even
if immediate benefits are not forthcoming. Unfortunately,
this turns into a self-fulfilling prophecy. AI specialists are
hired with no immediate expectations of demonstrating
profitability and, often, with no immediate projects. These
individuals may be from an academic or research environ
ment, and have had little training in identifying or building
high-payback projects. They therefore spend many months
becoming familiar with their tools and developing small proto
types, but develop little or nothing that can be used in the
organization to offset their costs. After some time, manage
ment becomes disenchanted with AI, and starves the AI
organization of resources until it withers and dies.

3. AI costs are frequently underestimated. This is not un
like the problems which surrounded software development in
general during the early years of business computing. For
example, each new expert system requires a designer to
choose a knowledge representation and a control method. It
is usually impossible to determine if the choice is the correct
one until the knowledge engineer and the human expert have

304 National Computer Conference, 1987

jointly developed a prototype. Frequently the poor choice
does not become apparant until the system is almost com
plete, since some problems are functions of the size of the
knowledge base. If the initial choice of control strategy or
knowledge representation must be abandoned, much of the
work must be redone. In addition, many of the commercial
development tools, known as expert system shells, offer only
one means of knowledge representation (usually production
rules) and one to two control strategies (usually forward
and backward chaining, with blind, depth-first search). Fre
quently, the designer makes an initial choice of representation
and control, and buys a tool, only to be forced by the nature
of the application to another methodology and another tool.
Experience is of some help here, but even veteran knowledge
engineers speak of the "pancake principle;" build the first one
to be thrown away.

The most common defense against these redundant costs is
rapid prototyping, the development of an initial version of the
finished system within a few weeks. This offers the advantages
of keeping the expert's interest, and of allowing the knowl
edge engineer to get a feel for the domain and the problem
very quickly. It also allows management to see progress
quickly. Another defense against wasting money on tools, is
to choose the most general tool available. Unfortunately,
these tools are usually the most expensive, and often require
more sophistication and more work on the part of the knowl
edge engineer than a more tightly focused, but more power
ful, tool. Furthermore, many of the most general tools do not
lend themselves well for transitioning into the delivery envi
ronment.

4. AI programs are never completed. Unlike conventional
programs, which are usually tightly specified, many AI
application have such broad specifications that no one can
agree whether they are done. There are always cases on which
the human expert can outperform the machine. As those cases
are discovered, there is a temptation to add "just one more"
rule to improve the system. This often upsets some other,
previously satisfactory, part of the system, so a bit more fine
tuning is required. This process continues until money or pa
tience runs out.

5. Finally, the problems of transitioning an AI system into
the user's environment are not well understood. Many AI
systems have been built to run on specialized hardware and in
a special support environment. The transition onto machines
which are more accessible to the user has not been thought
through, so users are forced to come to the developers to use
their application. While this may have some serendipitous
value in keeping developers attuned to users needs, it is not a
suitable solution to the delivery problem in most domains. As
an alternative, several of the manufacturers of AI work
stations and tools are now offering "delivery machines" and
run-time environments. These are suitable for a large class of
problems. For still other problems, however, the system must
end up on the machines that users have on their desktops. This
may include personal computers, or access to departmental
minicomputers or company mainframes. The impact of recod
ing the application into a conventional programming lan
guage, or the cost of a run-time copy of an expert system shell,
have often been left out of the original estimate.

AI BENEFITS

AI benefits are frequently thought to be intangible. Fre
quently, the first expert systems are built by a company to
"keep up with the technology." Due to the fatal loop de
scribed above, the initial experience with AI often does
nothing to dispel the notion that AI's benefits are not readily
quantifiable.

AI-based systems are frequently used to augment functions
whose costs are presently captured as part of indirect and
overhead expenses. For many manufacturers, direct labor
represents less than 10% of total cost incurred, yet detailed
accounting of the labor dollar is kept only for direct labor.
This means that costs for the white-collar and non-touch func
tions which are reduced by AI are not visible to the accounting
system. Where the costs are not visible, the reduction of those
costs is not seen to be a benefit.

THE PROJECT UNIT COSTING METHOD

Based on the above observations, any method of estimating
the costs and benefits of AI-based systems must have the
following characteristics:

1. The in-house AI group must be run on a business basis.
That is, they must generate discernable products with
demonstrable benefit. While the company may serve as
the investment banker, they have a right to reap a rea
sonable return on investment. In the case of an indepen
dent business, these returns flow from tangible benefits
called sales. In any in-house business, an equally tan
gible measure of benefits must be found.

2. The system must be specified in terms of cost reduction.
Any new (To-Be) system will grow out of existing (As-is)
procedures and costs. By using the new system, those
costs may be reduced. If they are not, then the quality,
reliability, or timeliness of the output is increased. These
non-cost benefits contribute profitability by increased
market share, or by allowing the company to penetrate
new markets. They can usually be translated into cost
reduction terms by comparing the To-be costs with the
costs of achieving a similar increase in profitability by
As-is methods. This approach allows designers and man
agement to make tradeoffs between cash flow, capital
investments, and the ultimately reduced costs. This also
elevates the financial side of development from a "trust
me" basis to one in which benefits are clearly visible on
the bottom line.

Methods for evaluating investments based on cost reduction
are well-known in the production environment, where the
cost reduction is applied directly against the cost of goods sold
on a per-unit basis. In that environment these methods are
known as Unit Cost methods. Magnavox's adaptation is to
apply these methods to the indirect and white-collar functions
which do not directly contribute to product costs. The Mag
navox method is described below.

Cost Analysis

The cost analysis must capture all aspects of current (As-is)
costs. These may include: (1) labor, (2) burden, (3) subcon
tracts, (4) material, (5) capital, (6) travel, and (7) expenses
(e.g. software, furniture, office supplies).

Benefit Analysis

Savings and avoidances

For costlbenefit analysis purposes, savings and avoidances
are discriminated. Savings are a reduction in cost as a result of
the implementation of the project, given that the business
volume remains constant. Avoidances are attributable to an
increase in business volume. Cost reduction from savings and
avoidances come from two sources. First, there are those cost
elements, such as material costs, which are directly reduced.
The dollar savings of these cost elements may be captured
directly. Second, there is a reduction in current or anticipated
headcount attributed to the project. These are ultimately
translated into dollars using the labor grades and categories,
and the average cost of labor in those grades and categories
for each year of the analysis.

Project unit descriptions

To define the scope and benefits of the projects, it is neces
sary to define a unit of the project output. Units can be
defined for both touch and non-touch (i.e. process-oriented
and non-process-oriented) projects. A unit must be related to
the function of the project. Examples of project units include:

1. A printed wiring board
2. A work order
3. A purchase order
4. A bid

Examples of unacceptable unit definitions include:

1. Any time-related unit, such as a man-month (units must
be functionally oriented)

2. A decision

As-is versus To-be cost per unit

The As-is cost per unit is defined as the dollar amount
required to generate one project unit using current methods.
The To-be cost per unit is similarly defined as the cost to
generate one project unit, if the project were implemented
and on-line today. Several options for estimating the To-be
cost per unit are available: a percent reduction from the As-is
can be taken, or the actual dollar amounts using the proposed
techniques can be estimated.

The Project Unit Costing Method 305

Project volumes

Typically, there are costs which are volume dependent,
such as material and recurring labor, and costs which are
volume independent such as set-up costs. By reducing the
As-is and To-be costs to a per project unit basis, it is possible
to determine savings and avoidances based upon different
business volumes. For example, a projected business volume
of 200 units would have twice as much volume-dependent
savings as a projected business volume of 100 units.

Cost philosophies and assumptions

It is essential to capture the philosophies used in determin
ing cost and benefit baselines as well as any assumptions
made. For example, if it was assumed that the company would
continue to grow at an annual rate of 3%, it should be stated
in this section. If analyses are being prepared by several
different user groups, it is useful to publish a standard set of
assumptions to be used throughout the company.

Definition of terms

a cost per project unit = As-is cost per project unit - To-be
cost per project unit.

a labor cost per project unit = As-is labor cost per project
unit - To-be labor cost per project unit.

Savings = a cost per project unit x current volume.
Avoidances = a cost per project unit x (future volume

current volume).
Headcount savings = (a labor cost per project unit x

current volume) -:- time element, where time element re
lates to units for labor, such as manhours or manmonths.

Headcount avoidances = (a labor cost per project unit x
(future volume - current volume)) -:- time element,
where time element is as defined for headcount savings.

Project Unit Costing Forms

Following the conceptual design of a project, a detailed
costlbenefit analysis is performed to justify detailed design
and implementation. The sections of this analysis are de
scribed below.

Cost summary sheet

The "Cost Summary Sheet" is intended to summarize all of
the essential cost elements for easy analysis by accounting,
management, and auditors. These elements include As-is and
To-be costs, a-costs, savings, avoidances, and capital retired
or salvaged. The numbers for the summary sheet are aggre
gated from the following costlbenefit analyses:

306 National Computer Conference, 1987

Design-phase cost summary sheet and
implementation-phase cost summary sheet

Costs for both design and implementation are estimated
using conventional budgeting procedures, bearing in mind the
cautions about costing described earlier.

Expense account analyses form

This standard Magnavox form is used to estimate expenses,
by account code, for each quarter of a given year. Each user
group, when performing their annual budgeting function, in
cludes costs related to each project under their responsibility.
These budgets are prepared to capture project costs for a
five-year period beginning with the detailed design phase. The
project should stand alone with respect to funding. If the
project is approved, the monies associated with that project
will be included in the budget. If the project is not approved,
all of the monies associated with that project will not be
approved in the budget.

Budget manning chart, travel and transportation analyses

These standard Magnavox forms provide backup to ex
plain the labor and travel expenses budgeted in the Expense
Account Analyses Form.

Projected volume/units of output by product

By product and by year, for the five years beginning with
detailed design, the products are listed which will be affected
by the project. Where "nameless" products are used, such as
in the out years, this must be documented in the Cost Philo
sophies and Assumptions section. The Cost Philosophies and
Assumptions section should also contain the rationale which
links product volume with project unit volume. For example,
if the number of purchase orders is a function of product
complexity, and if each product today averages 200 purchase
orders, and product complexity is increasing, it may be appro
priate to multiply volume by 250 to estimate the number of
purchase orders required per product in the out years.

As-is cost per unit calculation

This sheet captures the current cost of producing a unit of
project output. Where costs are volume dependent, the calcu
lations should be based on the most likely volumes. The
backup documentation shows calculations based on other vol
umes. Again, the reasoning that led to the choice of a "most
likely" volume should be documented in the Cost Philosoph
ies and Assumptions section.

To-be cost per unit calculation

The TO-be, or anticipated, cost, of producing a single unit
of project output after project implementation are captured
using the same philosophies as were used to generate As-is

costs. Volumes must be the same in both the As-is and the
To-be calculations.

Capital project request form

This standard Magnavox form captures depreciation and
investment opportunities of interest to the accounting com
munity.

Headcount savings

Savings are defined as the reductions which result from the
project, given that the current volume of business remains
unchanged. This is the place to capture the number of posi
tions which would be eliminated if the project were imple
mented, and if the business volume did not increase. In order
to convert this headcount to dollars, savings here are identi
fied by labor grade and category.

Headcount avoidances

Avoidances are defined as those costs which would be in
curred, due to growth in business volume, if the project was
not implemented. Like savings, this list, of positions which
will not need to be created, is broken out by labor grade and
category.

Dollar savings

Using current and projected wage rates, the headcount sav
ings are converted to dollar savings. Additional savings, such
as material and equipment, are also captured here.

Dollar avoidances

This form is identical to the one above, except that head
count avoidances and anticipated cost reductions are cap
tured.

Capital retired or salvaged and back-up documentation

Any capital equipment which will be retired or salvaged
because of the implementation of this project is listed here. If
the schedule for replacement is dependent upon the projected
volumes of business, the volume assumptions must be docu
mented in the Cost Philosophies and Assumptions section.
Backup documentation shows the physical location of the
equipment, associated product lines which use the equipment,

. and other possible applications of the equipment.

The output of this analysis is a set of project costs and
product cost reductions, broken out by product, by year,
and by volume. In addition, the initial costs are distinguished

from delivery costs, and any capital equipment retired or
salvaged is shown. This set of figures is suitable for use as
input to conventional cost-accounting methods such as pay
back, rate-of-return, or discounted cash flow models. Follow
ing that analysis, projects may be chosen which offer the
highest profitability for the lowest risk. While the problems
of specifying and costing AI -based systems will not disappear
in the short term, this method allows the user and manage
ment to see tangible net benefits, even if bugetary estimates
are exceeded.

Implementation

The Project Unit Costing Method has been implemented as
a series of Microsoft® Multiplan® spreadsheets on the Apple®
Macintosh. ™ This allowed all computations, including links
between forms, to be performed automatically. A worksheet
was submitted to user groups which walked them through the
process of choosing a project unit and estimating costs and
savings. The results of this worksheet were entered in the
Multiplan model, allowing all projections and savings to be
computed automatically. Furthermore, the project model was
linked to a discounted cash-flow model, giving a single figure
of-merit for each project. Once the data was collected and
entered, the complete costlbenefit analysis of all 84 projects
was completed in less than a week.

The Project Unit Costing Method 307

SUMMARY

AI -based systems are difficult to cost-justify, given that they
are implemented incrementally, and their benefits are often
not specified before implementation. By identifying tangible
cost reduction targets as benefits, the Project Unit Costing
Method makes it possible to select projects with the most
attractive costlbenefit ratios. This encourages system de
signers to consider, before design begins, those aspects of the
project which offer the greatest savings. This can be used to
form a general specification which keeps design focused on
those aspects, and which brings the design "tuning" cycle to
halt when the most important cost-reducing features have
been implemented. This also allows the design team and man
agement to decide, if cost overruns occur, whether those over
runs are justifiable with respect to the benefits expected.

ACKNOWLEDGEMENTS

This work was performed as part of Magnavox Electronic
Systems Company's Industrial Modernization Incentives
Program (IMIP), part of its internally funded Modernization
Program. Magnavox's IMIP is performed under a business
agreement with the U.S. Department of Defense, and is su
pervised by Air Force Systems Command/Electronic Systems
Division.

Assessing IS organizational performance:
Problems and suggestions

by CONNIE E. WELLS
Georgia State University
Atlanta, Georgia

Assessing the information systems (IS) function within
organizations has been identified as one of the most critical
issues of information systems management. Although this
issue has been rated as one of the top 10 critical issues to IS
managers for many years, it also appears that assessing
IS performance is rated even higher in importance by non-IS
managers than by the IS managers. Assessment of the IS
organization is important for IS planning, and for identifying
and solving IS problems. Despite the importance of the sub
ject to both executive management and IS professionals, not
much progress has been made toward understanding how to
assess the contribution of the IS function to the enterprise. A
true financial or economic (e.g., return on investment) IS
evaluation is an illusive concept. Surrogate measures must
be used. A thorough IS assessment needs to consider many
factors and viewpoints, such as: attitudes of the various
"stakeholders," IS planning and priority setting, system de
velopment practice and project control, the applications port
folio, operations efficiency, the IS measurement and control
system, and IS organizational characteristics. We have devel
oped a sizable list of these factors and measures within factors
taken from IS literature and other sources.

Recent research indicates that the perceived performance
of an IS organization on particular measures is related to
whether or not IS performance on those measures are pub
lished in IS performance reports. Therefore, it is important

309

that the measures that are used to assess IS performance
accurately address the most important IS performance goals/
issues. Currently, there seems to be little agreement as to
which measures are appropriate to use to address the IS per
formance goals. In our first survey, conducted a year ago, IS
managers were asked to recommend five measures to use to
assess the performance of the IS organization. Approximately
170 different measures were suggested by the 94 respondents.
Only 10 of these measures were suggested by at least 10 per
cent of the respondents. Over 70 percent of the measures were
suggested by only one or two IS managers. Thus, we have
many measures to choose from, but little agreement as to
which measures to use.

There is, however, generally a high level of agreement be
tween the highest IS managers (CIOs) and their counterparts
in the other functional areas of the enterprise as to which
performance goals/issues are most important for the IS orga
nization. Our research indicates that the most important IS
performance goals include: 1) the accuracy and reliability of
data/information, 2) security of critical information resources,
3) backup and recovery planning, 4) user involvement in IS
planning and systems development, and 5) IS leadership's
understanding of the business. Current research is being per
formed to discover which of the recommended measures are
most appropriate to use to address the most important goals
for IS performance.

Executive information systems: Definitions and guidelines

by ALLAN PALLER
AUI Data GraphicsiComputer Associates, International
Arlington, Virginia

ABSTRACT

This paper attempts to define a class of computer application, called Executive
Information Systems (EIS), which has become a popular target of MIS departments
in large organizations. By the end of 1987, fully 50% of the 100 largest organizations
in the United States, and 33% of the largest 1,000, will have implemented informa
tion systems for use by their executives. A few of these systems will have substan
tially improved the productivity and profitability of their organizations, but the
majority will have had little impact.

Part of the explanation for the differences between success and failure can be
found in the definitions different organizations use for EIS and part can be found
in the approaches they take to implementing EIS. The objective of this paper is to
increase the chances of success by offering a firm definition and suggestions for
effective implementation of EIS.

311

Executive Information Systems: Definitions and Guidelines 313

INTRODUCTION

An Executive Information System is a computer-based system
that provides up-to-date answers to key questions raised by
managers without burying the manager in unneeded data. EIS
systems are action-oriented systems, because the answers lead
to action by the managers.

A modem airplane cockpit is an effective model for an EIS.
Key indicators are monitored constantly. When an indicator,
such as elevation, moves outside an acceptable range, a warn
ing sounds. The pilot can take immediate action to correct the
problem. Hundreds of indicators are monitored, yet most of
them become visible to the pilot only when a problem is
apparent. A smaller number, such as speed, attitude, ele
vation, and course are constantly visible, because they show
just how well the flight is going. These essential indicators are
the ones that the pilot must watch constantly in order to "stay
on course."

An EIS system has a similar hierarchy. Each executive must
watch a small number of key indicators to be certain that his
or her segment of the enterprise is "on course." In addition,
there are hundreds, or even thousands, of additional indi
cators that are important, but that need to become visible only
when their values go outside an acceptable range.

FINDING THE RIGHT BALANCE

An EIS system becomes more a burden than an asset when it
provides too much information or, rather, when it buries the
key indicators under the weight of hundreds of other pieces of
potentially interesting information. On the other hand, sys
tems that are thin on content are no more than toys. Answers
to one question often lead to additional questions. An EIS
must provide answers to that second level question, as well.

The problem facing designers is how to find the right bal
ance. Too much data makes an EIS hard to use; too little
makes it a toy. Yet executives do not maintain constant focus.
The information they want to monitor changes as business
problems ebb and flow.

A strategy that has proven effective in finding that correct
balance is to include the detail, but hide it. In this strategy,
you maintain data on every indicator of interest to the man
ager, but show only the critical success factors and other indi
cators that have exceeded acceptable ranges.

ON-LINE OR ON PAPER?

On-line data display does not appear to be an essential ingre
dient of successful executive information systems. On-line dis
play may be useful when it hides unnecessary data. It also may

offer a provocative "state of the art" management tool that
may draw executives into testing the system. However, the
excitement of on-line display should not blind EIS developers
to the real needs of executives. Many executives travel a great
deal and need data when they are out of the office. Others
want to show information to people who are not served by the
EIS. Still others want more comparative detail than can be
shown on a CRT screen.

Paper-based executive information systems offer the dual
advantages of portability and precision. Paper can be taken
out of the office more easily than can a display. A page of
charts can show ten to one-hundred times as much compara
tive information as a screen on a computer display. Further,
a well designed page of charts can emphasize the critical indi
cators while also showing comparisons of dozens of lower
level indicators.

WHAT TO SHOW IS THE MOST
IMPORTANT QUESTION

Whether paper or PCs are used to display the information is
a far less important question than the choice of what informa
tion to display.

An EIS reaches into the heart of an organization. What
indicators the executives monitor is closely watched by man
agers and workers throughout an organization. The most pow
erful impact of successful EIS systems has been the motivation
it has created within an organization. Thus, picking the right
indicators is the most important step toward making the sys
tem useful.

How can you find the right indicators? Two popular meth
ods do not work well:

1. Asking the senior executives what questions they would
ask when they got back from a three week vacation.
Although this leads to a few good indicators, it generally
misses important ones, because the senior executive's
attention is focused on a limited subset of business prob
lems.

2. Interviewing all senior managers to ask what data they
think is most important. This has the benefit of getting
managers involved in the process, but leads to too many
indicators, with no way to limit them.

Some organizations have found a better way. Many large
organizations have developed strategic and tactical plans for
one, two, or five years. In these plans, the organization has
laid out its objectives and how it plans to reach them. Whether
it is "on course" can be measured by comparing its perfor
mance against the objectives laid out in those plans. The right

314 National Computer Conference, 1987

indicators can be derived from a careful analysis of the plans
by a team consisting of a business analyst who understands the
organization and an EIS consultant who has analyzed enough
EIS implementations to be able to recommend good display
formats and effective hierarchies of indicators.

DATA INDEPENDENCE KEEPS
YOUR OPTIONS OPEN

Information for an EIS will come from several different
sources:

1. corporate data bases maintained in DB-2 or other
DBMS systems

2. departmental data bases maintained in FOCUS,
RAMIS, IFPS, or other planning and reporting systems

3. application programs such as MRP or financial manage
ment

4. personal data stored on minis or micros, and
5. external data bases such as Dow-Jones News Service.

In the rush to get a system operating, many EIS planners
develop direct links from each of the data sources to the
displays. They generate graphs or reports using programs ap
propriate to each data source and then combine the displays
in a library for instant viewing. The benefits of this approach
are quickly forgotten when the user begins to ask for changes.

Requests arise to compare data from multiple sources or to

use one chart design with data from another source. Every
request will create a substantial development task unless a
strategy of data and graphics independence is followed.

Data independence means that data to be used in the EIS
are transferred from their original source into a single holding
place. FOCUS, LOTUS, or any other reporting system will all
serve well. The value of data independence is created by
storing all appropriate data in a common format. When a user
requests comparisons or new formats, applying the display to
the data becomes a simple task.

Similarly, graphics independence means using a graphics
system that can chart data from any data source so that a chart
design can be used regardless of the source of data to be
charted.

VISIBILITY IN THE EXECUTIVE SUITE

Executive information systems offer a short-cut to informa
tion systems executives who want to participate in general
management. The person who puts together the right data
displays becomes an aide to the manager who uses those dis
plays and thereby becomes eligible for management oppor
tunities that arise. However, this visibility works two ways. If .
a system for executives is seen as a toy or as "too hard to use,"
then the visibility of its builder becomes a liability. Sticking
close to the definitions and suggestions in this paper can help
make certain that building an EIS system gives you the right
kind of visibility.

MICROCOMPUTERS
SANDRA REED

Northern Illinois Universiiy
DeKalb, Dlinois

and
HALBERGHEL

University of Arkansas
Fayetteville, Arkansas

The Microcomputers track covers several business applications and core areas of micro
computer technology. The sessions are intended to meet the needs of novice and experienced
users. Presenters provide the latest information on such major microcomputer topics as chip
architecture, operating systems, and integrated software. Given the significant penetration
of the business market by microcomputers, few managers and decision makers can afford to
ignore these recent developments.

Micros in the workplace-the 1990s

by BRUCE GJERTSEN and CECIL PRETTY
Technology Guidance Associates
Libertyville, Illinois

INTRODUCTION

To find a setting where mainframe computers are used which
has not felt the impact of the development and use of mini
and microcomputers is rare if not impossible. And while the
growing array of developments in the microcomputer field
can generate much excitement and enthusiasm for personal
computer "buffs," serious probelms can confront the data
processing professional who attempts to actively implement
strategies to accommodate mainframe-minicomputer-micro
computer links. This presentation will provide an overview
and explanation of the events, concepts, and issues related to
microcomputer applications which may provide some guid
ance in making the correct decisions related to the implemen
tation and integration of these technologies.

THE FIRST TEN YEARS

In the mid-1970's, as the microprocessor on a chip became a
reality, a handful of individuals dreamed of offering com
puters as kits. Few persons could ever have predicted the
potential of such a range of relatively inexpensive microchip
based products as we understand them today. Some of the
significant events to be briefly reviewed in the timeline are:

1. The development of early microprocessor chips: the
8080, the Z80, and the 6502

2. The heyday of single-tasking software
3. The Silicon Valley phenomenon
4. The emergence of significant concepts of computer de

sign and implementation
5. The impact of the shake-out of the computer industry in

the early '80s.

WHAT ARE THE CURRENT ISSUES?

As the pressure builds within organizations to attempt the
forging of productive links among the various levels of main
frame, minicomputer, and microcomputer applications, a
wide range of reactions and approaches result. In many cases,
the outcomes mirror the tensions commonly found when cul
tures clash: there is much suspicion between and among

317

advocacy and non-advocacy groups, and resistance to change
becomes a major impediment to objective discussion and
concrete action. More specifically, some of the user-related
issues are:

Misrepresentation of Software and Hardware

The results of a recent poll are typical of those which pro
vide fuel for the arguments of those who resent the intrusion
of desktop computers and continue to resist their use in the
work place. The poll of 526 businesses indicated that, in 70
percent of the cases, the software did not work as evisioned.
It was claimed by many respondents that appropriate software
was either unavailable or hard to find. Many charged that
advertisers and vendors misrepresented the software in order
to close a sale.

As for hardware: horror stories related to incompatibilities,
inadequate warranties and service policies, and poor and neg
ligent installations are countless.

Inappropriate Policies, Planning, and Training Strategies

The initial involvement with stand-alone microcomputer
systems with simple applications of word processing, spread
sheets, data bases, and other tools often appears to bring
quick gains in productivity. The effect may be deceptive and
often leads to the possession of a shallow perspective on pro
ductive implementations of the technology. This detracts from
serious long-range planning, appropriate policy making, and
the establishment of effective training programs. Compared
to the effort required to bring about the truly productive
implementation of a constantly evolving access to resources
and electronic tool-set, the initial commitment to spend
money to purchase the technology is usually trivial.

The Data Base Dilemma

Data base management systems (DBMSes) have long been
a major part of the mainframe and minicomputer landscape.
First came the simple hierarchial models, then made more
accessible by networking capabilities. But concurrent with the
introduction of the IBM-PC, a marketing strategy regarded as

318 National Computer Conference, 1987

unthinkable by some mainframe-using traditionalists, came
with IBM's DB2-the introduction of relational data bases.
And then, in the opinion of many MIS managers, far too little
time had elapsed before the Introduction of distributed data
base management systems (DDBMSes). The on-going debate
is punctuated with concerns for user-access, data integrity
and security, management policies, and implementation
strategies.

The data base dilemma is further complicated, for some
users and managers, by the continuing proliferation of on-line
data bases, resources which contrast with the increasingly
available laser-read optical storage media (now with 3 stan
dards of CD-ROM) with the potential for a combination of
text, audio, graphics, and animation. Any significant impact
of artificial intelligence applications has yet to be measured
but rumors of new developments, along with some ridiculous
claims, abound.

All this, with the greatest advantages of fibreoptics and
satellite transmission yet to come! One thing seems certain:
the concept of information as a utility has been well-accepted.

The Push for Connectivity and Expandability

Microcomputers have gained their popularity because of
low initial cost, portability, and ease of use. But many users
soon find that standalone PCs are inadequate for the kind and
number of tasks at hand. The dissatisfaction is often fueled by
an awareness of the power of file and data sharing, and elec
tronic communication.

With the appetite for the access to more data and increased
computing power whetted, many users seek, but find impos
sible, the use of mainframes and minicomputers: lease or
purchase, set-up, management and maintenance costs, are
too expensive.

For those who turn to local area networks (LANs), ques
tions of security and access arise. Many find the complexity of
networking, especially when troubleshooting, overwhelming.
And when a multitude of vendors supply a diversity of com
ponents, the excuses offered for non-performance of the net
work can take the form of endless loops.

So multiuser microcomputers, typically with up to 10 users
on a small system, become an alternative. With a multi
processing supermicro, a standard configuration usually in
cludes a "birdcage" for expansion boards, a hard drive, a tape
backup, all supervised by a special processor. A strong advan
tage in acquiring such a system is the confidence in the in
tegrity of the design as a complete operational system.

Many of the PC enhancements-new chipsets, expansion
boards and cards will permit the upgrading of existing models.
Such add-on and add-in devices allow PC users to preserve the
value of their investment of money and time. The brisk sales
of laptop computers and the shift to 31

/ 2 inch drives seems to
indicate that the next generation of pes wiil, in spite of being
packed with more features, have a smaller "footprint."

SIGNS OF A MATURING INDUSTRY

On the developer/vendor side of the story, much effort is
being expended to create products, operating-environments,
and vendor/client relationships considerably more profes-

sional, reliable, flexible, and cost-effective than those charac
teristic of the pre-1985 era. The following are current efforts
representative of a new level of maturity and commitment in
today's computing industry:

The Concern for Compatibility

Considerable activity is currently being devoted to defining
more-or-Iess precise specifications for hardware and software
standards across the mainframe-mini-micro range. Some
examples:

On the global level

Map (Manufacturing Automation Protocol) is a result of
a 1980 General Motors task force recommendation to stan
dardize communications specifications for factory floor opera
tions. Such an action was prompted by GM's need, as an
end-user to improve communication among various pieces of
factory equipment such as programmable controllers and
robots. GM's principal goal was to bring about a standardiza
tion of communication protocols among different vendors of
equipment thus creating new levels of computer-integrated
manufacturing. The original push has now evolved into the
establishment of a world-wide user's group comprised of sev
eral hundred users and vendors.

TOP (Technical and Office Protocol), from Boeing Com
puter Services, offers a parallel and compatible set of stan
dards applicable within office environments. Again, there is
world-wide interest with participation in a users group by
more than 100 companies with major data-processing depart
ments. The goal of the group is to establish and maintain
standard protocols related to office automation and resource
sharing.

MAP and TOP conform to subsets of specifications con
tained within OSI (open systems interconnection) standards,
a seven layer structure of protocols being defined by the Inter
national Standards Organization (ISO). It appears that this
comprehensive set of protocols will gain high levels of accept
ance thus leading to a guarantee of compatibility for manu
facturing and office automation tasks throughout the world.

At the individual cOrporation level

In the late 1970's, Digital Equipment Corporation (DEC)
made the decision (starting at that time) to build a new line of
computers that could readily be linked together. The accept
ance of the resulting VAX computer architecture has
added to DEC's popularity in science and engineering fields
and brought-during the mid-80's sales slump-new custo
mers in other fields, including Europe, formerly served by
IBM installations. IBM, with its proliferation of aging com
puter architectures, has been slow to follow DEC's example.

At the operating system level

Since the entry of IBM into the microcomputer market in
1981 with Micro-Soft's MS-DOS at the heart of its IBM-PC,

microcomputers have largely been called "personal com
puters" and MS-DOS has become the de facto industry stan
dard for 16-bit computers.

UNIX, an operating system originally developed for mini
computers by Bell Laboratories, has been rewritten for use
with microcomputers. To this date, Unix cannot be regarded
as a major commercial operation system. But considerable
effort is being made to provide software which bridges the two
operating systems-MS-DOS and Unix. Some experts insist
that Unix will become the standard operating system for the
32-bit machines.

Towards Friendlier User Interfaces

In response to criticisms that training costs are too high,
operating commands are too cryptic, operating systems are
too difficult for the would-be average user to interpret, and,
as a result, the transfer of skills from one software application
or operating system to another is limited, a considerable
amount of effort is being directed toward improving the
human interface. The following are some of the devices and
features that are now available, at relatively lost cost, for use
with many makes of microcomputers:

1. The mouse pointing device for cursor positioning
2. Icons as pictographic representations of important

objects and commands
3. Multiple windows that simultaneously display different

programs
4. High-resolution graphics with the use of sound and color

as a means of motivating the user and providing for
clarity of presentation

5. Applications permitting touch screen input, voice recog
nition and optical character recognition.

HUMAN RESOURCES-THE REAL CHALLENGE

To this point, we have been primarly concerned with technical
considerations. But the anwers to increased productivity
through correct implementation policies and strategies will
only come with a parallel consideration of issues related to
"people problems".

Not much experience in a computer-intensive environment
is required to bring out the realization that the most chal
lenging problems may not be with the technology itself, but
with attempting to change the ways people attempt to use it.
Effective computer applications usually require changes in the
"pre-computer" approaches to accomplishing specific objec
tives or tasks. A period of experimentation with the objective
application of the technology must be matched by a period of
"play" by the individual members of the human resource
group who must overcome their anxiety in finding the best
approach to making the application work.

A second level of increasing concern is based on some crit
ical issues that have arisen as the implementation of computer
technology in the workplace approaches the scale of a mass
movement in society. Here is a cross-section:

Micros in the Workplace-the 1990s 319

The Design of Physical Plant Structures

The planning, designing, and construction of "intelligent"
buildings and environments to accommodate computer-based
technologies will increasingly demand a knowledge of ergo
nomics, information, communication, security, climate con
trol, and energy systems monitored and controlled by
advanced computer systems already in existence. Worldwide,
there is a shortage of personnel, from architects to managers,
capable of providing services and performing the necessary
tasks.

The Location of Computer-intensive Businesses

The shift of the nation's economy to a service and knowl
edge base is a major factor in the rapid growth of urban
villages-the locating of office space and related amenities in
suburban communities. Computerized functions---especially
those based upon the telecommunication of data and
information-are essential to the operation of such services
and yet do not require physical proximity to traditional city
cores. Issues related to such rapid demographic change
include shortages of qualified clerical, light-assembly, and ser
vice personnel, the lack of locally-available appropriate high
density housing, day-care, and transportation services for low
paid workers.

The Redefinition of Social Institutions and Professions

The impact of computerization is touching virtually every
profession and occupation in society. Some of the more ob
vious changes:

Health care

A revolution in healthcare and delivery methods is strongly
affecting hospital operation and the deployment of medical
personnel. Due to competition for the provision of services
there is an increasing need to contain costs while meeting
the health-care related needs of a greying population. Fully
integrated health-care information networks are under devel
opment which eventually will link the patient's home with
doctors' offices, clinical personnel, hospitals, and sources of
medical information and education.

Education

In the face of increasing enrollments and demands for
higher educational and professional standards, the education
field is confronted with shortages of teachers. An increase in
the number of applications of computer-based and computer
assisted instructional delivery systems and a greater use of
teacher productivity applications is taking place.

Libraries

The use of on-line data bases and' optical storage media,
microcomputer-based methods of cataloging, and patron

320 National Computer Conference, 1987

access to information sources is changing the service and re
search missions of many libraries.

FINDING PATHWAYS THROUGH THE MAZE

The futurists and trend spotters continue to present argu
ments and provide evidence that the 1990's will be a time of
rapid change and mounting uncertainty in the workplace.
What are some key elements in learning to effectively imple
ment and integrate microcomputers within these workplaces
of the 1990s? Some vital strategies include:

1. Improving the flow of information throughout an organi
zation. The main operational goals should emphasize
achieving an acceptable level of productivity, strong
communication within the work group, and the sharing
of appropriate information throughout the organization.
Effective computer implementation can elevate individ
ual and group productivity, but only if appropriate atten
tion is paid to establishing the most appropriate "peo
ple" links between and among each level of operations.

2. Representative participants from every level of oper
ations and personnel clusters should be involved in as
sessing needs, determining objectives, and establishing
procedures and policies. A considerable effort also
needs to be made to implement effective assessment and
evaluation standards and procedures.

3. The actual short and long-range goals of the computer
using organization must be determined and logically
charted out as part of an organizational infrastructure.
In most cases, these goals remain relatively constant. In
the volatile world of information technology the physical
configurations appropriate to achieving those goals of
ten do not. With goals clearly defined, the comparison of
ways to achieve them with computer-based technology is
much easier.

4. Special attention must be paid to the strengths and
weaknesses of individuals within work groups or person
nel clusters. Each personnel cluster will have a unique
mix of technical, application, and problem-solving skills.
Attempting to mandate uniform operational strategies
for each group may rob an organization of some of its
richest resources: individual and group creativity, team
spirit, and constructive competitiveness.

5. The available technologies to be applied to the achieve
ment of specific objectives may also indicate the need to
create new work clusters. Adopting the "islands of auto
mation" approach may provide the best building blocks
or "springboards" for eventually creating a totally inte
grated operation. There are some tough decisions to be
made here in regard to predictability of performance vs.
flexibility of performance.

CONCLUSION

The easy availability of microcomputers has brought the most
important technological advance since Gutenberg'S printing
press to almost anyone who wishes to use it. Because of the
rapidity and vast scope of development of hardware and soft
ware, the resulting potential for productive applications is
enormous. The challenges of the 1990's will be to harness this
potential for the benefit of organizations while effectively
addressing high levels of anxiety and insecurity for personnel
because of rapid change in the workplace, and society in
general. To be successful will require establishing working
environments that place a premium on human capital by en
couraging the growth of individual responsibility and produc
tivity and, in embracing computer technology appropriately,
provide a sense of individual and group fulfilment and em
powerment.

Basic networking implementation
for the small computer environment

by P. TOBIN MAGINNIS
University of Mississippi
University, Mississippi

and

DONALD F. MILLER
Digital Equipment Corporation
Atlanta, Georgia

ABSTRACT

Development of a simple networking protocol which employs existing terminal line
hardware and operating system services has created a separate networking category
we refer to as basic networking. Basic networking provides the small computer user,
especially those in a diverse computing environment such as offices, schools, and
research institutes, with what appears to be a reasonable tradeoff between network
implementation complexity and network services.

321

Basic Networking Implementation for the Small Computer Environment 323

INTRODUCTION

Networking systems can be employed in one of four basic
ways: 1) As truly distributed operating systems 1 such as the
Cambridge Distributed Computing System/ 2) as networking
operating systems such as the National Bureau of Standards
Experimental Networking Operating System,3 3) as general
networking systems such as DEC's Digital Network Architec
ture,4 or IBM's Systems Network Architecture,5,6 or 4) as
basic networking systems where networking programs, like
any other application program, execute without operating sys
tem modification and employ existing terminal lines.

OSI COMPARISONS

The international standards organization has developed an
open systems interconnection (OSI) model for general net
working schemes. The OSI model consists of seven hier
archical functional layers which provide a solution framework
for many networking problems. Tanenbaum 7 provides a de
tailed discussion of the OSI model and contrasts it with three
general networks: ARPANet, SNA and DNA.

A functional comparison shows that the OSI physical and
data link layers are equivalent to the use of existing terminal
line interfaces and the use of error checking. Since error
free blocks are mapped directly into files, basic networking
makes no distinction between a frame, packet, or message.
There is no sense of the OSI network or transport layers
since connections are point-to-point, or through a neighbor
ing computer, and use existing operating system services.
Thus, networking and transport layer services such as routing,
congestion control, buffer deadlock prevention, addressing,
connection establishment, multiplexing, and delayed packet
synchronization are not issues in basic networking. At the OSI
presentation layer, basic networking maps operating system
specific character codes and file formats into a networking
format and back into another operating system format. Other
presentation layer functions such as data encryption and data
compression are basic networking possibilities.

CP/M"'-80 MS-DOS TY OS/8 TY

CP/M™-80 E E T
CMS"" T T T
RSTS/ETY E E T
RSX-llMTY E E T
RT-llTY E E T
TOPS-10"" E T E
UNIXTM E T E
VMS"" T T T

THRIFTNET IMPLEMENTATION

On the University of Mississippi campus a number of small
independent computer systems exist for a variety of research
and administrative purposes. These systems typically do not
have adequate mass storage, data (L.'1alysis programs, or spe
cialized peripherals such as plotters and line printers. As a
result, there was a need for a data transfer mechanism be
tween these small systems and larger systems which had the
desired services. 8,9,10

A typical Thriftnet session has two basic phases: a virtual
terminal phase and the file transfer phase. Initially a virtual
terminal link is established between the two communicating
computers during which time all characters typed on the user's
terminal are uninterpreted by the local system and sent di
rectly to the remote computer. Thus, the user's terminal
appears as any terminal directly connected to the remote com
puter system. The file transfer phase is initiated when the user
runs either the RECEIV or TRNSMT program on the remote
computer system.

Figure 1 shows 11 operating systems for which Thriftnet
programs are currently available. Each system may have up to
four separate programs: THRIFT, RECEIV, TRNSMT and
PASSON. The "T" in Figure 1 indicates that a version of
THRIFT exists for the top row of operating systems. The
controlling program, THRIFT, initiates a virtual terminal
with any operating system. The column of operating systems
on the left hand side of Figure 1 each have a version of the
RECEIV or TRNSMT programs which allow file transfer
with the "row" operating systems. The "E" in Figure 1 indi
cates that file transfer may be initiated from either operating
system and in either direction.

When a timesharing operating system initiates a transfer to
a single user operating system one of two configurations is
assumed. One is that the single user console terminal has been
directly connected to the timesharing system's output termi
nal port. This configuration has been helpful in laboratories
where a number of single user systems collect data. Any time
sharing user can use Thriftnet to control the single user ma
chine or initiate data transfer between the timesharing system
and any of the remote systems.

RSTS/ETY RSX-llMTY RT-ll ,.,. TRSDOS TY UNIX""

E E E T E
T T T T T
E E E T E
E E E T E
E E E T E
E E E T E
E E E T E
T T T T T

Figure 1-Thriftnet File Transfer Possibilities

324 National Computer Conference, 1987

A second configuration assumes that the THRIFT program
is executing on the controlling system. The RECEIV or
TRNSMT programs are then executed on the single user
system which continues the file transfer protocol over each
machine's extra serial port. This second configuration is
mainly used when transferring files between two microcom
puters which do not have a serial connection for the console
terminal.

When two timesharing systems are directly connected and
either may initiate file transfer, then an additional signal (ring
or carrier detect) may be employed to determine when the
terminal line will be used as a login or output port. Since this
strategy requires modems, we generally interconnect multiple
terminal lines between local timesharing systems. Thus, there
may be as many users as there are wires transferring files in
either direction.

Figure 2 shows an overview of intercomputer connections
and program relationships. The primary program, THRIFT,
is run on the user's local computer A and indicated as
"THRIFT A." The local system may be either a timesharing
or a single user system but, most often, is a stand alone single
user computer. The minimal configuration for a local com
puter system is a user terminal and an extra terminal port
which is then connected to a remote computer terminal port.
Remote computers may be either single user or timesharing
but, most often, are timesharing systems. Two additional pro
grams, RECEIV and TRNSMT, present on remote computer
systems, negotiate the file transfer to or from local computer
A and remote computer B. Executing THRIFT on remote
computer B invokes "THRIFT B" in Figure 2, which is de
tected by the first THRIFT program. The second THRIFT
program connects remote computer B to a third nonadjacent
system, remote computer C in Figure 2. A virtual terminal
connection then exists between local computer A and remote
computer C, however, when RECEIV or TRNSMT programs
are run on remote computer C, file transfer occurs between B
and C. The number of successive THRIFT programs which
may be executed is only limited by the number of physical
connections between computer systems. Users terminate a
virtual terminal session by typing an escape character, CAN
(control x), for each THRIFT program run.

A fourth program, PASSON, allows two computers that are
not directly connected to one another to communicate by
linking through a third computer system. Thus, executing
PASSON on remote computer B still allows the virtual

PASSON

Figure 2-Thriftnet interconnections

terminal session between A and C, and when RECEIV or
TRNSMT are executed, file transfer will also occur between
A and C. An infrequently occurring sequence of characters is
used to ,abort the PASSON program, three repetitions of DLE
(control p) and EOT (control d). Note that binary data can
assume any bit pattern, and that character stuffing would not
decrease the possibility of a premature escape from PASSON
since a binary file has the ability to contain any "special" data
link escape character.

Many times a Baud mismatch exists between the users ter
minal and the two communicating computers. When terminal
Baud is greater than the intercomputer Baud, it gives the
appearance of slower terminal speed; however, when the
user's terminal has a relatively slow speed, characters can be
lost when Thriftnet buffers are exceeded. Thriftnet uses a
circular buffer algorithm with a small buffer to show Baud
mismatches and to permit rapid escapes from lengthy type
outs. This is not a problem during file transfer since each
frame is buffered and acknowledged before the next frame is
sent.

Whenever possible, Thriftnet programs have been written
to be logical device oriented as opposed to physical device or
file device oriented. Therefore, in Figure 2, Thriftnet allows
the more convenient path of transferring a file from remote
computer C's tape drive directly to remote computer B's line
printer instead of from tape to disk, disk to disk, and disk to
printer. If remote computer B employs a spooling daemon,
then THRIFT submits the file to the spooler.

THRIFTNET USER INTERFACE

As shown in Figure 3, a Thriftnet user executes the THRIFT
program on the local computer system (line 1) and is placed
in relay mode (line 3) during which the user's terminal appears
to be directly connected to the remote computer system.
While in this virtual terminal mode, the user can execute any
program on the remote system. Thus, in lines 4 through 6, the
user executes the login program on the remote system to gain
access to the system's resources. In line 7 the user issues the
command to execute the RECEIV program on the remote
system. The RECEIV program will oversee the transfer of a
file from the user's local system to the remote system and will
cause the user's THRIFT program to initiate its comple
mentary transmitting subsection. The transmitting subsection
of THRIFT announces itself in line 8, and subsequently,
prompts the user first for the name of the file to be transmitted
from the local system (lines 9 and 10), and secondly for the
name the user wants assigned to that file on the remote system
(lines 11 and 12). If only the Carriage Return (CR) was typed,
then the local system file name would have been sent to the
remote system. Files are transferred by default in ASCII and
arranged'in an operating system compatible format. Four
other possible switches are,: "-b" indicating that the file
should be stored as a bitstream and not interpreted; "-I"
indicating that the user wishes to be auto-logoffed both sys
tems if they are multiuser systems; "-c" indicating that both
programs should recycle after file transfer for another file
specification; and" -r" indicating that the file should be re
moved after transfer.

Basic Networking Implementation for the Small Computer Environment 325

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)

R THRIFT<cr>
Thr~ftNet~ Version 3
Relay Mode
<cr>
login incorrect
name: harry<cr>
% receiv<cr>
Entering RT-ll TRANSMIT mode.
Enter local RT-11 file specs "DEV:FILNAM.EXT"
myfile . .!§.!<cr>
Enter remote UNIX target file specs.
ml~ile<cr>
< >
+++++B++++L+++++++++++++++++
File transmitted
Relay Mode i £din~ myfile<cr>

logIn: ~?E
Returning to RT-ll

Figure :>-Thriftnet user dialog

File transfer begins with the THRIFT program typing a plus
for each successfully transferred frame, (line 14). In line 15,
successful file transmission is indicated. When errors occur
during the transfer, an L or B is typed to indicate a longi
tudinal redundancy character error or byte count error. Five
consecutive errors would have caused the termination of the
transfer and the issuance of an appropriate message to the
user. Completion of the file transfer session is indicated by
the message, "relay mode" in line 16. The user can then
continue using the remote system via the virtual terminal
mechanism and must remember to logoff the remote system
when finished. Return to the local system is accomplished by
the user typing CAN (control x). Other available user options
are discussed below.

THRIFTNET FILE TRANSFER PROTOCOL

Figure 4 shows a schematic depicting the Thriftnet file transfer
protocol. The left half of the diagram shows responses to and
from a local THRIFT program while the right half shows the
corresponding actions of a remote TRNSMT program during
the transfer of a file from a remote to local system. Running
the RECEIV program on the remote system would result in
essentially the same protocol except that data frames would
be sent in the opposite direction. Either program establishes
what could be considered a virtual circuit without routing
tables.

Initially, when the THRIFT program is executed on a local
computer system, virtual terminal service or "relay mode" is
activated. All keystrokes are relayed to the remote computer
operating system or the currently running application pro
gram. Responses from the remote system are then displayed
on the local computer terminal. Six special characters are
not usually relayed to the remote computer. First, SOH (con
trol a) allows the user of a multitasking operating system to
return to the background leaving the remote connection in
tact. Second, ENQ (control e) enables local echoing of user
typed characters allowing interaction with half duplex sys
tems. Third, DLE (control p) terminates the PASSON pro
gram on the remote system by initiating three repetitions of

DLE-EOT. Fourth, SYN (control v) initiates a bootstrap pro
gram which reads a file and transmits sequential characters
from the file and waits for their echo. Fifth, ETB (control w)
initiates a "capture mode" which saves all transmitted and
received characters in a specified file. Sixth, CAN (control x)
terminates the virtual terminal session and returns the user to
the local operating system. Finally, Thriftnet includes an es
cape mechanism by which even these characters may be
passed to the remote system.

Ultimately, the user executes the TRNSMT program on
the remote system. TRNSMT responds with nine seven bit
unsigned integers (tokens). The first token, acknowledge
(ACK) , signals the local THRIFT program that a special
Thriftnet program has been run on the remote system. The
second token is the program's version number and indicates
the possibility of an incompatible earlier protocol. The third
token, tarflgs, contains five target flags which indicate if the
target node can or cannot perform timing, if the master
should wait for the echo of each character transmitted, if the
target node requires character stuffing, if ,the master node
should honor XON/XOFF characters, and if the target node
will collect file transfer statistics. The fourth token, slus, indi
cates the serial line unit bit size and is most often eight bits.
Parallel line units are planned for the future and the seven bit
integer would allow character lengths up to 128 bits. The fifth
token, lins, is the maximum operating system buffer size.
Thriftnet currently employs 128 or 64 byte data blocks which
may grow up to 256 or 128 bytes if each data byte requires

Local.,!. system Remote System

Execute THRIFT 1
Relay mode keystrokes ---- ~emote pr?gram

1 I< responses (..
~E or ~X Execute TRNS~IT
Enable Return to local
local operating system.
echo.

I .-----------rACK, vrsn, tarflgs, slus, lins, r LOSid, nidI, nidh, prgid

Prompt user for local file

Bad erne land ::eCk status.

status. Send CAN and
return to
relay mode. Wai t for response

Pr"ompt user for I
remote f i I e name.

ACK, oycnt, vrsn, masflgs, slus, linsL

.x osid, 'nidI, :~:h' filsts, filnam J Cr? ~~~;e

Send CAN and ACK arCheCk remote
return to NAK[AJ file status.
relay mode. F Collect prestats.

o Read file name and
NAK? L form ThnftNet
AIK? E frame. 1

"---- CAN?~rSTXllins data bytes rETXl LRrsend ThriftN~t
File. STX? LS01!l LEOTJ frame. 1

SOH? CAN
~

Collect
ThriftNet Wait for response.
frame. 1
Bad EIx or LRC? fNAK[~JJ ' NAK?

Sequence number j 1
missmatch? ACK a)ACK?

Save ~rame locally. j
Close .;

EOT in last frame?

file. I 1
Erase

~X typed?) CAN) CAN?
file. \.-.J

Figure 4-Thriftnet file transfer protocol

326 National Computer Conference, 1987

stuffing. The sixth token, osid, is the operating system type
identification, while nidI and nidh represent the low and high
order node identification. The ninth token, prgid, represents
one of four possible codes corresponding to the various
Thriftnet programs: RECEIV, TRNSMT, PASSON and
THRIFT.

Upon receipt of the nine tokens from the remote TRNSMT
program, the local THRIFT program prompts the user for the
local system file name. After determining that the specified
file can be created without overwriting an existing file, the
local THRIFT program prompts the user for the target file
specification. If a CAN (control x) is entered while the local
THRIFT program is prompting for either file name, a CAN
is transmitted to the remote system causing it to return to its
operating system, while the user is returned to relay mode.

The file specification for the remote system is packaged
along with ten other tokens. The first token, ACK, indicates
a Thriftnet response. If the remote TRNSMT or RECEIV
programs do not detect an ACK as the first response charac
ter, it is assumed the program was executed directly from a
terminal and not through the THRIFT master. The remote
program then exits to the remote operating system. This pre
vents naive or curious users from locking their terminals when
directly executing the protocol programs. The second token,
bycnt, indicates the length of the response packet. The third
token, vrsn, indicates the master's version number. The
fourth token, masflags, currently contains only one flag indi
cating that the master THRIFT program was run from a third
remote system and that PASSON is the local program. The
next four tokens, slus, lins, osid, nidI and nidh provide the
same function as described earlier. The ninth token, filsts,
contains four flags. The first flag indicates a binary mode
transfer where incoming characters are not interpreted, but
simply treated as a bitstream. The second flag indicates if the
user selected the auto-logoff option. A third flag indicates that
after file transfer, the remote node program should recycle for
new file specifications. A a fourth flag indicates that the re
mote system file is to be deleted upon successful completion
of file transfer.

Receipt of the file specification frame initiates the file
access. If the file was successfully accessed, an acknowledge
message is sent to the local THRIFT program. If the file could
not be accessed, negative acknowledgement, followed by an
error code indicating the type of access problem, is sent.
Possible error conditions are: 1) file specification syntax error
(NAKF), 2) nonexistent device error (NAKE), 3) improper
access privileges (NAKL), and 4) nonexistent file (NAKO).
Receipt of a negative acknowledgement code from the remote
system, results in THRIFT reprompting for a new remote file
name. Again, typing CAN (control x) returns the user to relay
mode.

A correct file specification causes the remote system to
form and transmit a Thriftnet frame which consists of a start
of text (STX) or start of header (SOH) character, 128 or 64
data bytes, an end of text (ETX) or end of transmission
(EOT) character, and a longitudinal redundancy character
(LRC). The LRC is formed from the exclusive ~Ring of the
preceding 66 to 260 characters. A character count of 260
occurs when all 128 data bytes and the two control characters

require character stuffing. If the LRC requires stuffing, then
maximum frame size would equal 262 characters. The local
THRIFT program has been waiting for one of three possible
characters. If the character was STX or SOH, a Thriftnet
frame is collected. If the character was a CAN, the incomplete
file is deleted on the local system and THRIFT returns to a
relay mode. Subsequent to receipt of a Thriftnet frame, the
local THRIFT program verifies the location of the ETX or
EOT character, and, if present, then compares the locally
calculated LRC with the received LRC. If the two LRCs
match, an acknowledge message is sent to the remote
TRNSMT program which initiates the transmission of the
next Thriftnet frame. If the ETX or EOT character was not
seen when expected, or if the local and remote LRCs did not
match, a negative acknowledge (NAK) message is sent to the
remote TRNSMT program which initiates retransmission of
the Thriftnet frame up to four additional times before file
transmission is aborted.

When the remote system reaches the end of the file being
transmitted, nulls are used to fill the remainder of the last
Thriftnet frame. If the pre-LRC character of the last frame
was EOT, the file just received is closed, and the THRIFT
program returns to relay mode. Upon acknowledgement of
the last Thriftnet frame the remote TRNSMT program re
turns to the remote operating system. If a CAN (control x) is
typed by the local system user, the THRIFT master sends a
CAN to the remote system, the incomplete file is erased, and
THRIFT returns to relay mode.

THRIFfNET USAGE DATA

Basic networking schemes such as Thriftnet test the ability of
an operating system to deal with high terminal data rates. If
three or more users of a multitasking operating system are
using the virtual terminal facilities, little effect is seen when
keystrokes are echoed between systems; however, other time
sharing users notice a longer system response interval when
several users transfer files simultaneously to/from an oper
ating system at a relatively high terminal line Baud. Experi
ence with a PDP-ll/34 based UNIX system with two DZ-ll
eight-channel terminal multiplexors has shown that operating
system bandwidth appears to be approximately 7,200 charac
ters per second, when character input and output are equal.
Assuming no input, the system seems to be capable of produc
ing 28,800 characters per second of output. These results
suggest that as the number of simultaneous networking users
increase above three, or as terminal speeds approach 9,600
Baud, a more general networking scheme employing a pro
cessor hierarchy should replace the basic networking scheme.

Upon completion of most Thriftnet file transfers, statistical
information is logged on the target operating system. Each
entry contains the date and time, the user's name, node
identification numbers for master and target systems, the tar
get system terminal line number and its Baud, the number
of byte count errors, the number of longitudinal redundancy
character errors, the number of successfully transferred
blocks, total file transfer duration, and data bytes transferred
per second.

Basic Networking Implementation for the Small Computer Environment 327

Over a two year period, more than 350 users transferred
16,474 files to or from 10 target systems. The three highest
were on the University of Mississippi campus and included
a DEC-1077 TOPS system with 41.6% of the transfers, a
PDP-11/34 UNIX system with 35.3% of the transfers, and
an IBM-4341 CMS system with 10.9% transfers. Thirty-nine
master systems, employing 10 different operating systems,
initiated transfers. The most frequent file transfer initiation
was from an RT-11 system with 29% transfers, next was the
UNIX system with 26.4% file transfers, the third most fre
quent was an off-campus RT-11 system with 21.8% transfers.
Target operating systems received 45.8% of the files and
transrr..itted 54.2%. Of all transfers, 42.5% were at 1,200
Baud, 31% at 300 Baud, 17.9% at 4,800 Baud, while the
remaining 8.6% ranged between 110 and 9,600 Baud. ASCII
mode was employed in 93.5% of all transfers and binary
mode for the remainder. Auto-logoff was selected in 5.4% of
the file transfers, while 7.2% were cancelled by the user once
file transfer was underway. File transfer time was highly
skewed, the most frequent duration was 7 seconds, the me
dian time was 44.76 seconds, while the average was 4.4
minutes.

Byte count errors occurred in 4.5% of file transfers and
LRC errors were observed in 2.7% of all file transfers. File
transfer was stopped when five cumulative byte count or LRC
errors occurred within a Thriftnet block, however, 0.4% of
file transfers succeeded with "random" byte count errors,
and 0.2% transfers succeeded with random LRC errors.
Thus, once a byte count or LRC error occurs, there appears
to be 92% to 93% chance that at least four more will quickly
occur. Excluding user cancelled transfers, 95.6% of all file
transfers attempted succeeded. Finally, it was noted that
approximately sixty percent of all transfers used 50% or less
of the terminal line bandwidth. Per character interrupt pro
cessing, in combination with operating system overhead, was
probably the primary reason for relatively poor line usage.
This possibility was supported by an informal investigation of
a serial DECnet connection which revealed similar terminal
line bandwidth usage.

CONCLUSION

In conclusion, basic networking disadvantages seem to be:
1) that the network implementer and user must have an
understanding of data communications fundamentals, 2) that
the user must also be aware of point-to-point computer con
nections and each operating system command set, and 3)
that basic networking offers relatively slow file transfer (be
tween 300 and 9,600 Baud). On the other hand, a basic net
working strategy such as Thriftnet seems to offer critical net
working services for little, or no, cost. These services assist in
the interconnection of small computers that otherwise could
not employ networking. The resource sharing allowed by
basic networking seems to enhance the utility of a small com
puter system. And basic networking may act as a gateway to
more sophisticated network architectures.

REFERENCES

1. Lampson, B. W., M. Paul and H. J. Siegert (eds.) Distributed Systems
Architecture and Implementation: An Advanced Course. New York:
Springer-Verlag, 1981.

2. Needham, R. M. and A. J. Herbert The Cambridge Distributed Computing
System. Reading, Massachusetts: Addison-Wesley, 1982.

3. Kimbleton, S. R., Wood, H. M. and Fitzgerald, M. L. "Network Operating
Systems-An Implementation Approach." AFIPS, Proceedings of the
National Computer Conference, (Vol. 47), 1978, pp. 773-782.

4. Wecker, S. "DNA: The Digital Network Architecture." IEEE Transactions
on Communications, COM-28 (1980) 4, pp. 510-526.

5. Atkins, J. D. "Path Control: The Transport Network of SNA." IEEE
Transactions on Communications, COM-28 (1980) 4, pp. 527-538.

6. Hoberecht, V. L. "SNA Function Management." IEEE Transactions on
Communications, COM-28 (1980) 4, pp. 594-603.

7. Tanenbaum, A. S. Computer Networks. Englewood Cliffs, New Jersey:
Prentice-Hall, 1981.

8. Ferguson, P. A., D. F. Miller and P. T. Maginnis "Thriftnet: An Eco
nomical Software Package for Interprocessor Communications." Behavior
Research Methods and Instrumentation, 13 (1981) 2, pp. 251-254.

9. Maginnis, P. T. "Thriftnet: A Simple Networking Strategy." 20th Annual
Southeast Regional ACM Conference Proceedings, 1982, pp. 5-8.

10. Miller, D. F. "Thriftnet: A Reliable Networking Strategy." 20th Annual
Southeast Regional ACM Conference Proceedings, 1982, pp. 9-13.

Microcomputer word processing software:
A functional perspective

by HAL BERGHEL
University of Arkansas
Fayetteville, Arkansas

ABSTRACT

We propose a taxonomy of features of word processing software which can be used
to summarize their functional characteristics. This taxonomy is then applied to
existing products in order to derive estimates of variation between products, and to
extract meaningful trends.

329

Microcomputer Word Processing Software: A Functional Perspective 331

INTRODucnON

One of the most important objectives of a data processing
manager is the selection of software which is appropriate for
hislher objectives. Appropriateness, of course, is a complex
objective. The manager must be sensitive to the cost
effectiveness of the product, its performance and ease of use,
compatibility with products already in use, conversion time,
error handling characteristics, quality of documentation, re
liability, and so forth. But first and foremost, the manager
must be able to determine whether the functionality of the
software is adequate with respect to present and future data
processing objectives. In plain terms: if the software fails to
provide the range of features required by the application, its
utility may be marginal.

In this paper, we propose an analysis of microcomputer
word processing software which we have found useful in evalu
ating current products. So that no confusion results, it is useful
to contrast an "analysis" with a "rating." Analyses, in our
view, separate the components of the software and examine
their properties and interrelationshipso Ratings, on the other
hand, assign values to products which purport to measure
their qUality. While ratings can be useful, they do have some
drawbacks.

First, their value is proportional to the degree of rigor and
thoroughness of the underlying methodology, which is usually
not described in detail. Second, in order for any overall rating
or ranking to be meaningful, the 'rater' and the user must
agree with respect to the weighting schemes used (e.g., that
feature 1 is as important as feature 2). Third, due to the
volatility of the software industry, the useful life of the rating
is very short. These first two weaknesses imply an uncertainty
regarding the confidence level to assign to the report. The
third weakness implies that most ratings will be obsolete be
fore they are read.

In our opinion, the easiest way to avoid these difficulties is
to provide the decision maker with the tools for analysis,
rather than the results. The classification scheme presented
here falls far short of perfection. However, we have found it
to be a satisfactory framework for evaluation of word process
ing systems.

While the statistical results below focus upon micro
computer word processing systems, the analysis itself applies
to word processing systems in general. We have chosen to
apply the analysis to microcomputers because of their promi
nence in the office automation market. A brief glance through
such trade publications as Data Sources 1 and datapro 2 will
reveal the number of microcomputer word processing pack
ages sold far exceeds the number of dedicated systems in use.

WORD PROCESSING ANALYSES

Our analysis works with a classification scheme for word pro
cessors which determines functionality by analyzing the com
mand structure of the product. Since this taxonomy is the key
to the analysis, some general remarks are in order.

We use the term "word processing software" to refer to a
class of application programs which allows the user to create,
display, edit, and store documents with a computer. No dis
tinction is made between hardware environments, whether
dedicated, stand-alone, microcomputer, or mainframe.

Word processing software, in our view, consists of five func
tionally distinct components: a text editor, a document man
ager, print, and display controllers, and a formatter. Each of
these is interrelated and may be directly accessed by the user
(see Figure 1). While we shall keep these components distinct
in our discussion, we recognize that they may not be indepen
dent in a particular product. For example, it is not uncommon
for modern products to merge the formatter and the text
editor.

Each of these individual components relates to a particular
class of activity involving an electronic document. By means
of the document manager, the user creates, deletes, and
stores such documents. Through the display and print control
lers, the user exercises control over the media of presentation
of the document. With the formatter, the user alters the form
or appearance of the document. The text editor, however, is
the kernel of the word processing software. Only the text
editor supports the change of content of the document.

In our model, there is an input device (keyboard) and three
peripherals (printer, display, and secondary storage). Input
information falls into two categories: command information
and text. Textual information is entered through the text edi
tor, alone, whereas command information may be accepted
by each subsystem. We seek to discover the functionality of a
word processing system by means of a taxonomy of the com
mands supported. We argue that this is both a reasonable and
concise description of the domain. It is a relatively objective,
user-oriented, and inexpensive alternative to more complex
analyses.

LEVELS OF ANALYSIS

There is no orthodoxy when it comes to the analysis of func
tionality of word processors. Even analyses which purport to
describe word processors from the user's point of view differ
significantly in terms of scope and detail. In fact, the level
sometimes varies within the analysis. For example, Riddle3

deals with such details as buffering techniques, command line

332 National Computer Conference, 1987

rn
~

r

1
m
~

Figure 1-Five functional components of word processor

structure, and how tabs are handled but subsumes all vari
ations of "locate" operations into one feature, and ignores the
display control altogether. In this case, the analysis ranges
from what Meyrowitz and van Dam4

,5 call the structural, or
architectural, level to a description at the level of complex
task.

Greater consistency is achieved by Roberts and Moran.6",~
In this case, the analysis is usually at the level of a core editing
task which is to be taken as the cross-product of a basic text
editing operation (e.g., insertion and deletion) applied to
basic text entities (e.g., characters, words, and sentences).
This sort of analysis explicates the functionality of a product
in terms of the range of core tasks supported. We have three
objections to the use of core editing tasks. First, we know of
no consensus regarding the appropriateness of certain core
tasks to word processing applications as a whole. Failing con
sensus, the relevance of the core tasks to a particular work
setting must be demonstrated before the reliability of the
measure may be determined. Second, all word processors, or
a Turing machine, for that matter, support the same range of
core tasks in one sense: it is simply a matter of how much work
is involved. Thus, the issue of functionality must be further
explained in terms of effort. This entails empirical study of a
fast-moving and volatile market. Third, core task analyses
ignore the manner of implementation of the task: generally,
factors which have nothing to do with effort, but may be
nonetheless, of considerable interest to the user.

For example, previewing a document with a continuous
formatting word processor is quite different than with
preview-mode editors. Text editors which store control infor
mation as printable characters, as opposed to control charac
ters not only behave differently but also generate electronic
documents with distinctive properties. Similarly, insertion by
split-screen might appeal to a different audience than in
sertion in a move-aside fashion. The point here is that the

design philosophy behind a word processor is likely to affect
its overall utility in ways which may not directly translate into
effort. We believe that for these three reasons, at least for
a first pass over the current products, the user would prefer a
simpler, and less formidable, analysis than one based upon
tasks.

Our study, then, attempts to extract the measure of func
tionality of a word processor from its command structure,
including the manner of implementation of the basic oper
ations involved, where important. We will list a feature as
supported if and only if there is a specific command sequence
which invokes it, or if it is a consequence of some other such
sequence (e.g., automatic reformatting after deletion). In
many ways, it is similar in approach to the analyses and ratings
found in the popular and trade books,9, 10, 11 with the exception
that our taxonomy is generally of greater detail and reflects an
attempt to hierarchically order the features.

PROBLEMS OF ANALYSIS

All taxonomies reflect the preferences and objectives of the
taxonomist. In order to avoid inundation by detail,' we have
reduced the range of commands and implementation charac
teristics to one which we feel is both manageable and appro
priate for acquisition strategies. Our selection of features is
not immune to criticisms of arbitrariness. The only justifica
tion we can offer is that we have found it to be more useful
than the known alternatives. Since the taxonomy serves as a
filter to separate the products which match applications re
quirements from those which don't, the validation of the
method is ultimately going to be the approbation of the user.

We specifically arranged the taxonomy to agree with what
we feel are typical perceptions of features. This strategy has
several implications:

1. The same underlying operation may appear as two or
more separate features. This occurs when two or more
commands are functionally identical, although not per
ceived as such. For example, some semantically simple
commands (e.g., grammatically oriented operations like
word and sentence deletion) are only approximated in
software as special cases of other types of operations
(delete-to-target). Since the user perceives the distinc
tion between these two types of commands, the features
are individuated.

2. Complex operations may be treated as simple features.
To illustrate, block movement may actually be a two
stage process involving movement to and from a save
buffer. In such situations, we try to orient the taxonomy
toward the task rather than the method of implementa
tion. In this case, it is our feeling that the user is more
interested in adding, deleting, and permuting blocks
than read/write operations on buffers.

3. A single feature may appear more than once in the tax
onomy. This arises whenever a single feature affects
several components of the word processor. Typo
graphical enhancements are a paradigm case. A word
processor may support boldfacing and underlining as

Microcomputer Word Processing Software: A Functional Perspective 333

f~rma~ting features yet not support them on the display.
Smce It makes sense to speak of typographical enhance
ments in both contexts, they are included twice.

While complete objectivity in classification would be de
sirable, the complexity of current products does not allow this
lUXUry. Our classification reflects our attitudes. Other in
vestigators would arrive at different conclusions.

TAXONOMY OF FEATURES

The taxonomy used in this analysis appears in Appendix A.
There are 168 f~atures which break down as follows: 34 for
screen control, 18 for document management, 60 for text
editor, 34 for formatter and 17 for print control. In addition,
there are 7 features of a more general nature (e.g., price,
whether the word processor is a member of an integrated
package, etc.).

Due to space considerations, we are not able to describe the
features here. We only mention that we have attempted to
standardize the nomenclature so that the name of the feature
is descriptive of its function, without resorting to jargon. As
an example, we prefer "restore text" to the often used
surrogates "yankback," "undelete," and "undo," and "con
textual navigation" to "find," "locate," and "search."

In addition, we provide descriptive phrases for as yet
unnamed implementation characteristics. For example, "un
restricted cursor movement" refers to the ability of a word
processor to move the cursor in any direction, regardless of
the layout of the document. This is to be distinguished from
the common restriction whereby the cursor is restricted to text
boundaries as displayed. Similarly, "derivative naming con
vention" refers to the fact that the word processor's document
manager adopts the file naming convention of the host oper
ating system. If we have been successful, the meanings of most
features are recoverable from context. Some of the concepts
and terminology are covered in standard reference works. 12,13

As we mentioned above, the taxonomy itself is the tool of
the analysis. It would be used in the following way. First, the
typical applications are identified. Second, the decision maker
extracts from these applications prioritized sets of desirable
features. Then, products are selected according to the degree
to which they possess these features. For example, a boiler
plating operation may find a full range of block operations
indispensable, while typographical enhancements are of min
imal interest. In contrast, a medical office may not need much
of a formatter but a strong editor, and so forth.

While it is not possible, or even worthwhile, to present the
details of the feature analysis with respect to current products,
we would be remiss if we failed to provide some understanding
of the current state-of-the-art. We do this in two ways. First,
we compare typical microcomputer products to their dedi
cated counterparts. Second, we provide descriptive statistics
which summarize the features of common microcomputer
software. The data used are taken from 22 microcomputer
word processing products marketed within the past few years.
We have intentionally included the older CP/M products so
that meaningful time trends can be determined. As far as

practicable, we sought to include the better selling products
according to Data Sources. 1 Products are limited to CP/M and
MS-DOS, for they represent the dominant operating systems
for business applications over the past decade.

MICROCOMPUTER VERSUS DEDICATED
SOFTWARE

In order to place the results that follow in perspective, we
conducted a comparative analysis between microcomputer
based and dedicated products. The three dedicated systems
wh~ch we used (Wang WP Plus, Decmate II, and Apple's Lisa
Wnte) were selected because of easy access and our belief that
they are typical examples.

There is no doubt that, in principle, greater power can be
obtained from dedicated systems than general purpose micro
computers. Dedicated systems may take advantage of all of
the hardware/software integration possible, for the details of
the environment are known in advance. However, we found
that the three dedicated packages which we studied failed to
realize this potential.

While the dedicated systems were, on average, superior in
terms of both display control and document manage~ent due
to the fact that the software is designed with both a specific
displa~ and operating system in mind, their advantage eroded
when It came to text editing, formatting, and print control.
In fact, when one considers the percentage of features sup
p~rted by the two groups of software (see Table I), the
mIcrocomputer-oriented products surpassed the dedicated
products overall. The mean percentages of both groups are
depicted graphically in Figure 2.

It is interesting to note that the dedicated systems fell be
hind the microcomputer word processors with respect to what
one might refer to as the more innovative features. We have
in mind such things as geometrical operations (e.g.,
column swap), bidirectional deletion of contextual unit (e.g.,
sentence deletion), searches for targets consisting of non
printable characters, complex searches (e.g., searches for
multiple strings), concurrent editing of multiple documents,
and so forth.

Similarly, many of the more advanced formatting features
(e:g., kerning, widow/orphan adjust, footnote tie-in) and
pnnt control features (e.g., chaining, merging, queuing) were
frequently unsupported. In general, the dedicated software

TABLE I-Percentage of features supported by product type
and functional component

MICROCOMPUTER DEDICATED

SYSTEMS SYSTEMS

LOW MEAN HIGH LOW MEAN HIGH

B B 393 5B 5 DISPLAY 470 529 559

222 445 722 DOC MAN 27 B 64 B BB 9

390 53 9 67 B EDITOR 390 435 45 B

342 63 I 771 FORMATTER 457 543 657

437 662 B I 2 PRI NT CTL 31 3 43 B 6B B

334 National Computer Conference, 1987

% FEATURES
SUPPORTED

70

60

50

40

30

20

10

o

Microcomputers

Dedicated Systems

66.2

DISPLAY
CONTROL

DOCUMENT TEXT FORMATTER PRINT
MANAGER EDITOR CONTROL

WORD PROCESSING COMPONENT

Figure 2-Mean percentage of features supported: microcomputer vs.
dedicated systems

showed clear superiority only when compared to the oldest of
microcomputer-based products.

One possible explanation is that the dedicated systems
are not subject to the same competitive pressures as the mi
crocomputer software. As a result, the manufacturer may be
less likely to continuously revise the product. Another con
tributing factor might be that manufacturers of the dedicated
products rely upon the advantages of convenience, power,
and speed of their system, rather than the functionality of the
software. Or perhaps, the prohibitive start-up costs and lim
ited audience discourage innovators from trying to penetrate
this market. In any case, we think that this comparison indi
cates that the results to follow may well extend beyond micro
computer software to word processing software, generally.

DATA ANALYSIS

The 22 products studied are listed atop Appendix A. For this
particular sample, 16 of the 168 variables were eliminated due
to lack of variance. These variables are marked {-V} in the
Appendix. Of the remaining 152 variables, 135 were dichot
omous, 6 were integer and 11 were nominal (categorical). The

TABLE II-Descriptive statistics for six composite variables

VARIABLE MEAN STD DEV SKEW RANGE

I Display Controller I 11.864 3.357 ·.751

I Document Manager I 5.455 2.857 .409

Text Editor 26.455 3.789 .507 14

Formatter 16.364 4.635 ·.694 17

Print Controller 9.727 2.142 ·.505 8

TOTAL 69.864 9.593 .020 40

TABLE III-Mean composite scores as percentages of features

VARIABLE MEAN STANDARD DEV

Display Controller 42.371% 11.989%

Document Manager 34.094%
17.856%

Text Editor 48.100% 6.889%

Formatter 52.787% 14.952%

Print Controller 60.794% 13.388%

TOTAL 47.852% 6.571%

integer and nominal variables are marked {I} and {N}. Of the
17 integer and nominal variables, all but two (date and price)
were dichotomized for the analysis. According to Nie, et al. 14

dichotomies can be treated as interval-level measures. Four
subordinate variables, marked {-v}, -had less than 22 values
because the values were dependent upon superordinate vari
ables.

Of the 152 variables used in this analysis, 147 represented
features of the five functional components of a word processor
described above, and 5 were general descriptors. The dichot
omous values were '0' and '1', indicating absence and pres
ence of features in a particular product, respectively. The
percentage of products which have a particular feature appear
within parentheses alongside the feature entry in the Appen
dix. In addition, we have added 6 composite variables, one for
each of the five functional components and a total, which
summarize the data for each product. The descriptive statis
tics for the composite variables, in terms of both raw scores
and percentages of possible features, appear in Tables II and
III.

Pearson correlations among the 6 composite variables
are given in Table IV. Since the directions of these correla
tions were not predicted, two-tailed tests of significance were

TABLE IV-Pearson correlations among composite variables

DC OM TE F PC TOT

Display Controller .21 .50* .25 .04 .73*

Document Manager -.20 .36 .11 .49 *

Text Editor .11 -.25 .50 *

Formatter .05 .is

Print Controller .20

Total

* = p < .05

Microcomputer Word Processing Software: A Functional Perspective 335

TABLE V-Pearson correlations among general variables

os CP IP D P

Operating System .39* .13 .44* .02

Copy Protection .33 .14 -.17

Integrated Package -.14 .17

-.57
Date

Price

= p < .05

used. Pearson correlations for the general variables appear in
Table V. Since the directions of three correlations (operating
systems and copy protection, operating systems and date,
and date and price) were predicted, one-tailed tests were
used. In addition, correlations between the general variables
and the composite variables were determined (see Table VI)
for two-tailed tests. The correlation matrix for all 22 products
appears in Table VII. For this analysis, the remaining two
integer variables (date and price) were dichotomized for
equal weighting. Since there is a question of whether standard
significance tests have any obvious meaning when cases are
correlated across variables,15 the probability values are not
reported,

A cluster analysis was performed for the 22 products in
order to determine similarities in functional capabilities. The
clustering method used was the hierarchical, agglomerative,
average-linkage between groups method provided by SPSSX,
Release 2.0. We sought to avoid the extremes of single linkage
clustering and complete linkage clustering. Squared Euclid
ean distance was employed as the proximity measure. The five
general variables were not included in the clustering. Missing
values for the dichotomous variables were encoded as 0.5, so
that they would not be excluded by the SPSSX procedure. The
dendrogram for this analysis appears as Figure 3.

os

CP

IP

DATE

PRICE

TABLE VI-Pearson correlations between general
and composite variables

DISP. DOC. ED. FORM. PRT. TOTAL
MAN.

.25 .17 .002 .006 .02 .15

.06 -.03 -.15 .12 .06 .02

-.08 -.10 -.23 .08 -.20 -.16

.17 .17 -.32 -.27 .44 -.05

.09 -.12 .17 .53 -.27 .26

* = P < .05

TABLE VII-Correlations among 22 products

1 11 12 1 14 1 1 17 1

.26 -.03 .11 .30 .32 .07 .20 .13 .02 .21 .21 .08 .12 .17 1

.33 .00 .17 .37 .40 .14 .14 .09 .06 .32 .35 .24 .07 .17 .19 2

.28 .10 .18 .40 .40 .30 .27 .03 .08 .18 .40 .24 .24 .25 .17 3

.27 .41 .32 .07 .34 .33 .27 .35 .41 .25 .28 .35 .23 .29 .35 4

.29 .17 .11 .23 .12 .23 .13 .21 .18 .09 .31 .20 .14 .28 .18 5

.46 .24 .38 .25 .46 .32 .34 .30 .35 .30 .68 .38 .35 .46 .44 6

.12 .42 .25 .06 .16 .24 .22 .55 .56 .21 .24 .24 .21 .27 .25 7

.30 .20 .21 .30 .27 .22 .23 .28 .33 .44 .17 .15 .22 .16 8
.27 .00 .11 .22 .17 .43 .55 .21 .28 .26 .08 .24 .24 9

.15 .41 .37 .19 .21 .28 .38 .42 .22 .32 .35 .53 10
.33 .18 .20 .05 .07 .16 .31 .19 .37 .28 .26 11

.29 .28 .27 .21 .46 .49 .24 .29 .27 .36 12
.20 .25 .25 .19 .23 .18 .41 .33 .30 13

.29 .22 .38 .46 .51 .30 .36 .24 14
.78 .30 .27 .38 .15 .38 .30 15

.21 .21 .24 .14 .38 .29 16
.38 .32 .21 .25 .37 17

.40 .32 .38 .39 18
.21 .36 .37 19

.36 .39 20

.471 ~~

DISCUSSION

Several observations can be made from the descriptive sta
tistics in Tables II and III. First, The document manager is
clearly the weakest part of these packages. This can be con
firmed by reference to the Appendix. Only 18.2% of the
products tested supported a document naming convention
which was independent of the host operating system. In a
CP/M and MS-DOS environment, this means that all file
names must conform to the 8 character name/3 character ex
tension format. Further, less than one third of the products
allowed the user to identify the document by author, owner,
and dates of creation and revision. Perhaps the most striking
weakness, however, is the fact the less than one fourth of the
products had document managers which were consistent with
the file management facilities of the host operating systems.
In most cases, this was a result of MS-DOS products failing to
support the tree-structured domain supported in versions 2.X
and above. This means that it is not possible to define multiple
directories according to type of document within the word
processor.

At the other extreme is the print controller. Its overall
strength might suggest that software houses are investing a

15

16
7

9
4
1

19
P
R
0 18
D 12
U 8

C
17

T 10

22
21

13

20

2
3

11

RESCALED DISTANCE

10
I

15 20 25

------------~--~~
Figure 3-Cluster dendrogram

336 National Computer Conference, 1987

great deal of time and effort in this direction. In fact, when
one looks at the correlations in Table IV, one sees that print
control is significantly and strongly correlated with date.
Apparently, print control is perceived to be an important
component, worthy of continued attention.

Another observation is that the standard deviation in
percentage of features of the "total" composite variable is less
than the standard deviations for each individual composite
variable (see Table III). It would appear that weaknesses in
one component are generally compensated for by other com
ponents. Perhaps, as an overall design philosophy, software
houses are trying to appeal to specific audiences by focusing
on their particular needs. Another possibility is that they
continue to refine those components with which they have the
most experience. A third possibility is that software houses
include features in a somewhat random fashion. This last
possibility is not inconsistent with the Pearson correlations
between the composite variables (Table IV). Generally, only
the total composite variable is strongly and significantly cor
related with the individual composite variables, which is
understandable since the latter make up the former. The lack
of correlation between the individual composite variables in
dicates that the five functional components of word processors
are largely independent of one another: strength in one area
says nothing of another. The exception to this rule is that the
quality of screen display tends to correlate with the quality of
the text editor.

Table V was created to determine the accuracy of our in
tuitions. It should be no surprise to anyone that copy protec
tion is primarily associated with MS-DOS products, that the
newer products tend to be designed for MS-DOS, and that the
price of products is decreasing over time. We suspect that if
this study had been conducted a few years ago, we would have
found a positive, statistically significant correlation between
date and copy protection, as well. However, this practice has
recently fallen into disrespect.

The correlation of the five general variables with the com
posite variables (see Table VI) is strongly suggestive of some
overall patterns. First, as we mentioned above, print con
trollers seem to be getting stronger over time. Further, price
seems to be a good indication of the quality of the formatter,
though little else. If one looks to the Pearson correlations
between price and the individual features (not shown), one
finds that it is positively correlated with only automatic hy
phenation (.48, p < .05), the presence of screen labelling of
function keys (.5, p < .05), whether page numbering can be
included in headers and footers (.49, p < .05), and the capa
bility of double striking (.49, p < .05). Specifically, price is
not shown to correlate well with such advanced features as
mUltiple windowing and integrated graphics. What this tells us
is that price is not a measure of the overall quality of the
product. Similarly, the lack of positive correlation between
copy protection and the composite vanahles suggests that it is
unlikely that there is any relation between the quality of a
product and copy protection. In terms of our sample, copy
protection seems to have had the unintended effect of dis
couraging piracy of the poorer products.

In addition, our experience indicates that the negative cor
relations between most of the composite variables and the

general feature, membership in an integrated package, seem
reasonable. Again, we predict that if a large enough sample is
taken, these negative correlations can be shown to be statisti
cally significant. We suspect that the integration comes at the
expense of the quality of the subcomponents.

Table VII and Figure 3 are useful in identifying relation
ships between products. For example, there are three pairs of
word processors which bear the same name: Perfect Writer,
Benchmark and Easywriter. In one case, Perfect Writer, the
CP/M and MS-DOS versions are seen to be functionally
similar. Slightly less similar, though related by philosophy, are
the Benchmarks. However, the Easywriters are essentially
two different products. In addition, one gets the feeling the
Freestyle and Select, and Newword and Wordstar have some
common ancestry. This information may be of use to decision
makers who would like to examine products with similar
orientations.

CONCLUSIONS

In this paper, we have presented a taxonomy of features of
word processing features which we have found to be useful in
determining the functionality of word processing software and
the relevance of software to particular applications. In addi
tion, we have provided summary statistics for 22 existing prod
ucts, when compared in terms of the taxonomy. It is our
intention to provide the reader with a means of identifying
distinctive and distinguishing features, as well as provide some
method of assessing the microcomputer word processing soft
ware market as a whole. We hope that this information is
useful in aiding decision makers who are interested in acquir
ing new software.

While space constraints dictate that we omit a general dis
cussion of the correlations between features, we would like
to conclude with some preliminary observations. First, the
correlations indicate that innovation in word processor design
is likely to be a random event. To illustrate, there is no corre
lation among our 22 products between multiple windowing,
unrestricted text entry, complex searches, concurrent editing,
and integrated graphics-features we believe are indicative of
sophistication. Further, one gets the feeling that most current
products suffer from a serious lack of forethought. For exam
ple, mUltiple windowing negatively correlates with the quality
of status line information concerning the position of the cursor
in the various documents in a statistically significant way. This
means that for most products that support multiple window
ing, the user is left in the dark concerning the location of the
window. Another example is the lack of correlation between
contextual deletion (delete sentence and paragraph) and
delete-to-target. Since the latter is the lower-level technique
used to implement the former, its absence at the command
level is strange j indeed, A third case involves the frequent
failure of unrestricted text entry to accompany unrestricted
cursor movement. The consequence of this is that while the
user may directly navigate the cursor to any position on the
screen, he may not be able to do any editing once it is there.
Hopefully, with further study we may better understand these
design philosophies.

Microcomputer Word Processing Software: A Functional Perspective 337

ACKNOWLEDGEMENT

We would like to thank D. Lavelle for assistance with the
statistical portions of this paper.

REFERENCES

1. Data Sources, New York: Ziff-Davis Publishing Co.
2. data pro directory of MICROCOMPUTER SOFTWARE, Delran, NJ:

McGraw-Hill.
3. Riddle, E. "Comparative Study of Various Text Editors and Formatting

Systems." Air Force DataServices Center Report #AD-A-29 050, 1976.
4. Meyrowitz, N. and A. van Dam. "Interactive Editing Systems." Computing

Surveys, 14 (1982) 3, pp. 321-415.
5. van Dam, A. and N. Meyrowitz. "Text Editing Systems." A. Ralston and

E. Reilly, J r. Encyclopedia of Computer Science and Engineering (2nd ed.).
New York: van Nostrand Reinhold, 1983.

6. Roberts, T. "Evaluation of Computer Text Editors." PhD Dissertation,
Stanford University, November, 1979

7. Roberts, T., and T. Moran. "Evaluation of Text Editors." Proceedings of
the Conference on Human Factors in Computer Systems, March 1982, pp.
136-141.

8. Roberts, T., and T. Moran. "The Evaluation of Text Editors: Methodology
and Empirical Results." Communications of the ACM, 26 (1983) 4, pp.
265-283.

9. Smith, B. and D. Austin. Word Processing: A Guide for Small Business,
Brattleboro: Lewis Publishing, 1983.

10. Naiman, A. Word Processing Buyers Guide. New York: McGraw-Hill,
1983.

11. Donahue, B. How to Buy an Office Computer or Word Processor.
Englewood Cliffs: Prentice-Hall, 1983.

12. Flores, I. Word Processing Handbook. New York: van Nostrand, 1983.
13. Sampath, G. An Introduction to Text Processing. Jeffersontown: River

Valley, 1985.
14. Nie, N., C. Hull, J. Steinbrenner and D. Bent. Statistical Package for the

Social Sciences (2nd ed.). New York: McGraw-pm, 1975.
15. Aldenderfer, M. and R. Blashfield. Cluster Analysis. Beverly Hills: Sage

Publications, 1984.

APPENDIX A: TAXONOMY OF WORD PROCESSING
FEATURES

Products Tested:

Product (1) Benchmark (CP/M), v. 3.0m
Product (2) Benchmark (DOS), v. exec III
Product (3) DisplayWrite 2 (DOS), v. 1.10
Product (4) Easywriter I (DOS), v. 1.40
Product (5) Easywriter II (DOS), v. 2.0
Product (6) Freestyle (DOS), v. 1.0
Product (7) Final Word (DOS), v. 1.17
Product (8) Leading Edge (DOS), v. 1.20
Product (9) Memoplan (CP/M), v. 1.2
Product (10) Newword (CP/M), v. 1.29
Product (11) Office Writer (DOS), v. 3.0
Product (12) Palantir (CP/M), v. 1.2
Product (13) pfs:Write (DOS), v. b
Product (14) Peachtext (CP/M), v. 2.01
Product (15) Perfect Writer (CP/M), v. 1.20
Product (16) Perfect Writer (DOS), v. 2.0
Product (17) Spellbinder (DOS), v. 5.30
Product (18) Select (CP/M), v. 3.00c
Product (19) Superwriter (CP/M), v. 1.02

Product (20) Visiword (DOS), v. 1.20
Product (21) Volkswriter (DOS), v. 2.10
Product (22) Wordstar (CP/M), v. 3.32

Taxonomy:

O. GENERAL INFORMATION
-Version
-Operating System
-Copy Protected
-Member of Integrated Package
-Date of Release {i}
-Price {I}

1. DISPLAY
A. Screen Imaging

1. Layout
-centering (100%) { - V}
-justification (68.2)
-line spacing (40.9)
-pagination (77.3)
-hyphenation (45.5)

2. Typography
-boldface (22.7)
-sub/superscripts (0.0) { - V}
-strikeouts (4.5)
-underlining (45.5)
-overprints (0.0) { - V}
-alternate fonts (0.0) { - V}
-alternate pitch (0.0) { - V}
-proportional spacing (9.1)

3. Control Suppression (50.0)
B. Highlighting

-block (63.6)
-character (59.1)

C. Column Ruler Display (77.3)
-on/off (18.2)
-multiple rulers (40.9)

D. Status Line Display
1. Document ID

-drive id (59.1)
-document name (77.3)

2. Cursor Location
-page number (59.1)
-line number (77.3)
-column number (63.6)

3. Editor Mode Toggles (90.9)
4. Systems Information

-document size (4.5)
-remaining space on disk (13.6)
-remaining space in RAM (18.2)
-time/date (9.1) {N}
-screen labelled function keys (22.7)

E. Multiple Windowing (31.8)
-number of windows (mean = 2) { - V}
-number of documents (mean = 4.5) {I} { -v}
-variable size (18.2) {-v}

338 National Computer Conference, 1987

II. DOCUMENT MANAGEMENT
A. Document Naming Convention

-derivative/independent (18.2% = independent)
-maximum character length (mean = 12) {I}
-'wild card' reference (40.9)

B. Backup
-manual/auto (63.6% = manual) {N}
-override (95.5) {-v}

C. Directory
-document size (50.0) {N}
-description (18.2)
-author (22.7)
--creator (22.7)
-date created (31.8)
-last revision (31.8)
-total worktime (0.0) { - V}
-archive reference (0.0) { - V}

D. Constraints and Security
-document size (77.3)
-access consistent with OS (22.7)
---edit-protect (9.1)
---exit protection (31.8) {N}
-disk overflow protection (77.3) {N}

III. TEXT EDITOR
A. ADD TEXT (Insert)

1. Move Aside (95.5)
-word wrap/cascading wraparound

(27.3% + cascading)
2. Split Screen (45.5)
3. Unrestricted Text Entry (27.3)

B. DELETE TEXT (Delete)
1. Units

a. Contextual
--character (95.5)
-word (63.6)
-sentence (27.3)
-paragraph (27.3)

b. Geometrical
--columns (27.3)
-lines (72.7)

c. Boundary
-delete to end (45.5)
-delete to target (22.7)
-delegate marked block (95.5)

2. Miscellaneous
-bidirectional deletion (27.3)
-deletion w/prompt (59.1)
-restore (68.2)
-variable save space (9.1)
-auto-reformat (63.6)

C. NAVIGATION (MovelFind)
1. Geometrical

a. Relative location
-Directional

-unrestricted cursor movement (50.0)
-screen advance (95.5)
-scrolling

-vertical/horizontal (54.5/18.2) {N}
-hard/soft (0.0 = soft) {-V}
-variable speed (18.2) { -v}

-Grammatical
-word (68.2)
-sentence (27.3)
-paragraph (22.7)

b. Absolute location
-top of document (77.3)
-bottom of document (77.3)
-page by number (36.4)
-marker (31.8)

2. Contextual (LocatelFind/Search)
a. restrictions on target

-length (mean = 58) {I}
--control characters allowed (81.8)
-ambiguous character strings (27.3)

b. restrictions on search
-auto-repeat (95.5)
--complex search (4.5)

c. search parameters
--complete words (45.5)
-reverse search (54.5)
-global search (22.7)
-ignore case (63.6)

C. SUBSTITUTE TEXT (SEARCH & REPLACE)
a. restrictions on target

-length (mean = 58) {I}
--control characters allowed (77.3)

b. restrictions on search
-auto-repeat (100) {-V}
--complex search (4.5)

c. search parameters
--complete words (45.5)
-reverse search (36.4)
-global search (31.8)
-ignore case (63.6)

E. PERMUTE TEXT (Block Move/Copy)
1. Contextual Permutation (95.5)
2. Geometrical Permutation (31.8)

--column swap (9.1)
3. Options

-block move (100) { - V}
-block copy (95.5)
-block delete (100) { - V}
-block file (77.3)

F. MISCELLANEOUS
1. Menu Type (90.9 = pass through,

remaining = pop up)
-variable help level (pass through only) (36.4)
-menu delay (pass through only) (18.2)
-menu bypass (pass through only) (36.4)

2. Concurrent Editing (31.8)
3. Integrated Graphics (9.1)

IV. FORMATTING
A. CONTINUOUS/PREVIEW MODE

(72.7 = continuous)

B. LAYOUT
1. Line Centering (100) {-V}
2. Variable Line Spacing (32) {N}
3. Proportional Spacing (72.7)
4. Kerning (9.1)
5. Justification (95.5)

Microcomputer Word Processing Software: A Functional Perspective 339

2. Miscellaneous
-sub/super scripts (90.0)
-multiple fonts (45.5)
-multiple character sets (36.4)
-print pause (90.9)
-print phantom character (31.8)

-fixed/variable spacing (31.8 = variable) {N} -multiple pitches (77.3)
-interword (100) {-V}
-intraword (13.6)

6. Hyphenation (63.6)
-concurrent (50.0)
-automatic (27.3)

7. Decimal Alignment (54.5)
8. Pagination

-pagination/repagination (95.5)
-page numbering (100) { - V}

-with initialization ~ 1 (81.8)
-widow/orphan adjust (63.6) {N}
-header/trailer insert (95.5)

-page-number merge (86.4)
-footnote tie-in (31.8)

C. TYPOGRAPHY
1. Character Enhancements

-boldface (95.5)
-complementary overprinting

-double-strike (45.5)
-underlining (100) {-V}

-destructive overprinting
-strikeout (59.1)
-typeover (13.6)

-ribbon color change (22.7)
-user-definable commands (22.7) {N}
-type through (4.5)

V. PRINT CONTROL
-multiple copies (90.9)
-selective output (95.5)

-multiple pages (22.7)
-first/last page (86.5) {N}

-draft quality only (45.5)
-dual column printing (13.6)
-printer select (72.7)
-paper change pause (100) { - V}
-form feeds (90.9)
-disk file output (59.1)
-chaining (45.5)
-merging (45.5)
-queuing (36.4)
-print from edit (40.9)
-print while editing (50.0)
-print-time commands

-print stop (90.9)
-print pause/resume (86.4)

Towards the integration of integrated software
within organizations

by JAMES A. CARTER, JR.
University of Saskatchewan
Saskatoon, SK, Canada

ABSTRACT

The widespread use of microcomputers is linked both to their low cost and to the
promise of their being a major productivity tool for various levels of workers
throughout an organization. This promise was largely supported by the introduction
of a new generation of integrated software packages. These software packages
typically stress their general purpose nature and their ease of use by the average
office worker. The packages promise to do a variety of tasks, for a variety of
individuals and to be able to combine the results produced by individuals for the
good of the overall organization. The integration of these packages within an
organization is assumed, but seldom planned for or achieved. This paper analyzes
the promises, the types, and the uses of integrated software. It then identifies the
problems with and proposes future directions towards better realizing of the prom
ises of integration within organizations.

341

Towards the Integration of Integrated Software Within Organizations 343

THE PROMISES OF INTEGRATED SOFTWARE

The range of potential users of computers in an organization
is as broad as the range of the individuals in an organization.
These users may range from senior management to technical
workers to clerical workers and even unskilled laborers. 1 This
range of individual responsibilities and skills poses a major
problem in designing systems that must meet the needs of a
number of individuals in an organization. The design is fur
ther complicated by the various levels of computing experi
ence that end users in today's society may possess. This vari
ation in experience results from the difference in the amounts
and the kinds of use each individual makes of computers both
within and outside the organization.

By providing an "all-in-one" solution made up of a few
general purpose applications that can be used to perform a
variety of fundamental business tasks, integrated software
packages promise to meet the majority of needs of this diverse
user body. The typical applications provided by an integrated
application package include: word processing, electronic
spreadsheet, business graphics, data base, and communica
tions. Managers can use these applications for planning, while
technical and clerical workers can use them for producing
various types of products on a day to day basis. Integrated
packages promise that their ease of use will allow each type
of worker to use these applications at whatever level of
sophistication best suited to them. All workers can exchange
information between applications and, ideally, with the help
of the communications application, between individuals in the
organization. This use of communications from within inte
grated packages promises to integrate the levels and functions
of personnel in an organization based on common sharing
of data.

THE TYPES OF INTEGRATED
SOFTWARE PRODUCTS

The new generation of integrated software packages is only a
new generation in terms of the promises it makes and not in
terms of the technology. This new generation is actually com
posed of three different technical approaches2

: program envi
ronments, families of integrated programs, and all-in-one
packages. Further analysis will show that these approaches are
not new ones but only refinements of existing technologies.

Software integration can be analyzed into a number of inte
grating features. These features have been grouped into six
levels of integration3 based on the structure of the tasks per
formed by and for the user. Tasks performed by a user are
based on FUNCTIONS of DATA that are obtained via an

INTERFACE to PROGRAMS or TASKS within a unifying
program. These capitalized words identify five types of possi
ble integration of user tasks above the level of total NON
INTEGRATION.

With NON-INTEGRATION, each application is devel
oped as a totally distinct program. Although the program may
grow in complexity, the lack of integration, in its original
design, limits its extent of use. Without integration of some
form, the user must re-enter data into programs to fulfill other
application needs. Further, similar functions may behave very
differently between the various programs used.

DATA INTEGRATED programs are separate programs
which share common data files or use some type of data base
management system. Information generated by one program
can be used by another in some manner. USER INTERFACE
INTEGRATION makes separate programs, with separate
data, interact with the user in the same way. The result of
combining both DATA INTEGRATION and USER INTER
FACE INTEGRATION is PROGRAM INTEGRATION.
The barriers of accessing only one application at a time and
of requiring the user to interface between programs with
the computer's operating system are overcome with TASK
INTEGRATION. TASK INTEGRATED systems include
the various applications as tasks within a single mUlti-purpose
program. FUNCTION INTEGRATION is a proposed level
of integration beyond TASK INTEGRATION in which a user
could define any number of applications as virtual tasks within
a single system of shared functions.

Program Environments

Program environments, such as IBM's Top View and Mi
crosoft's Windows, provide basic frameworks for potential
integration of other application programs. As such, they are
more like extensions to operating systems rather than actual
end user applications in their own right.

Program environments provide primarily data level integra
tion. They do this by providing translation services between
various sources of data and various applications wishing to
input that data. They allow blocks of data from one applica
tion to be used as input to other applications. In some in
stances, they may also provide the capabilities of reading var
ious types of formatted data files as input into an application
that would not otherwise be able to read the data.

Although program environments can provide a common
user interface for their super operating system like functions,
the primary interfaces between the user and the applications
are those provided by the application programs running under
the environment. These differences in application programs

344 National Computer Conference, 1987

leave the area of user interface integration largely a matter of
chance rather than design. To be able to utilize fully the fea
tures of a program environment, an application program must
be "well behaved" by following standards, which most cur
rently successful applications have found necessary to circum
vent in order to provide adequate performance for the end
user.

Families of Integratable Programs

Families of integratable programs have been around for
over a decade, primarily in the area of accounting applica
tions. The main contribution of the new families of integrated
applications, such as Innovative Software Inc. 's Smart Sys
tem, is their integration of general purpose applications. By
utilizing separate programs for each major application, fami
lies of integrated programs tend to concentrate on the quality
of the individual applications before the quality of the integra
tion, although they may provide high qualities of both.

Families of integratable programs provide primarily pro
gram level integration. They tend to maximize both data and
user interface integration while keeping individual applica
tions separate from one another. Thus, where windowing is
allowed, the multiple windows are only multiple views of data
from within a single application and do not provide the user
multiple applications.

All-in-one Packages

All-in-one packages, such as Ashton-Tate's Framework and
Lotus' Symphony, provide the greatest emphasis on integra
tion. All-in-one packages utilize task level integration to pro
vide the user a number of general purpose applications. Data
can be readily moved between applications or shared by them.
The user interface design and functions are highly consistent
throughout all applications. Multiple applications can be ac
cessed simultaneously through separate windows which can be
linked together, where necessary. To facilitate the high level
of interaction and of data processing possible with all-in-one
packages, they often allow the user a high level command
language for defining and storing particular combinations of
functions, applications, and data.

Although their aim is to provide a mUlti-purpose tool, all
in-one packages usually appear to be extensions of one focal
application that is more highly developed than the others.
This can be accomplished by adding other complementary
applications to a well developed central applic~tion.' such as. a
word processor or a spreadsheet. This focus IS eVIdenced 10

the user metaphor or conceptual model of the particular all
in-one package. Thus Framework's frames appears to be more
word oriented while Symphony's cells appears more number
oriented.

It has been suggested that while an all-in-one package may
meet most of the needs of one kind of worker, it may not meet
the needs of all kinds of workers. New releases of these pack
ages have emphasized both the continued advancement of
their focal application and the strengthening of the other
applications, thus expanding their potential markets.

THE USES OF INTEGRATED SOFTWARE
IN ORGANIZATIONS

The introduction of personal computers and integrated soft
ware packages into organizations has often been done by in
dividuals rather than by the organization's planners. These
individuals are often rebels or at least individualists. People
dissatisfied with the quality, the quantity, or the responsive
ness of corporate information processing activities, often
rebel against the data processing/information systems de
partment by obtaining a personal computer to do their own
information processing. Since personal computers often can
be justified as low cost word processors, they can be obtained
readily under misleading or false pretenses. Similarly, individ
ualists can often prove their need for specialized systems that
don't fit int0 :-ger organizational plan for immediate
systems devt •. Once a personal computer is obtained,
an integrated SOh ware package may logically follow. Since
most instances of obtaining personal computers and software
originate with individuals, a wide variety of systems and soft
ware packages may result.

Many organizations, faced with large numbers of personal
computers, are attempting to consolidate the use of these
computers to meet various objectives including: standardiza
tion of operations, synergy of benefits, and the ability to save
money via bulk purchasing. This requires a bottom-up organi
zation of individuals rather than the top-down centralized
design and deployment of systems that is typically used by the
data processing department. Consolidation, when it does take
place, generally takes the form of standardizing the hardware
and software being used. The actual uses of the systems sel
dom are expanded beyond those initiated by the individual
users. An increasing number of organizations are starting to
develop consolidated plans for the purchase and use of per
sonal computers so as to avoid future costly difficulties as the
number of personal computers in the organization grows.

The traditional uses of computers, the personal nature of
the relationship of individuals to personal computers, and the
available software all tend to limit the use of personal com
puters to processing formal, structured, verbal information in
largely written form. Other forms of information, such as
graphical and vocalized, are largely limited by current tech
nology, although rapid advances are being made in these
areas. 4 Informal information is generally excluded from these
systems due to difficulties in handling, evaluating, and utiliz
ing it within a highly structured system. The assumption that,
"If information can't be formalized that it isn't important" is
often mistakenly made in order to support the value of
computerization. This trend promotes individualism within
organizations and limits the role of other individuals to that of
reacting to the information obtained rather than of helping to
produce it initially. This, in tum, may change traditional rela
tionships within an organization.

THE PROBLEMS WITH CURRENT
INTEGRATED SOFTWARE USE

By the end of 1985, various software reviewers started to ask
what happened to the promises of integrated software pack-

Towards the Integration of Integrated Software Within Organizations 345

ages. Sales of packages had leveled off, as if the market were
saturated, long before everyone had converted to integrated
software. Recent new product announcements have been gen
erally only enhancements to existing products rather than
dramatic improvements such as experienced in the previous
few years. The promise, therefore, appears unfulfilled.

To analyze the causes of this disillusionment and to evaluate
whether or not they are well founded, it is necessary to ana
lyze how the products have, or have not, lived up to the needs
of the organizations which were to be their beneficiaries. If
integrated packages have failed to be all things to all people,
is it the fault of the applications, the technology, the people,
the organizations, or all of the above? Recent studies have
suggested the answer is all of these.2

,5 In addition to recog
nizing the problems, it should be considered if improvements
can be made to better meet the needs of organizations and to
better fulfill the promise.

Applications

The benefits of the integration of applications may be offset
by a variety of limitations they impose upon their adopters.
The more integrated the product, the more limitations that
must be accepted in order to use it. These limitations include
the number and types of applications, the state of the art of
the applications, and the extent of integration of the applica
tions. They may both restrict the flexibility of the user and
increase the complexity of learning and using the package.
Unfortunately in some cases they cause the work involved in
using the integration to be more than is involved in not using
it. 5

The set of applications integrated in all-in-one packages or
families of integrated programs has remained relatively lim
ited and fixed (generally: word processing, electronic spread
sheet, business graphics, data base, and communications).
While these applications may be very powerful tools, their
general purpose design (that makes them powerful) also re
quires the user to have a sophisticated understanding of how
to apply them to specific problems. While a data base or a
spreadsheet can be used to plan a schedule and then business
graphics can be used to illustrate it, a scheduling application
would do this for the user in a much simpler manner. Thus, in
order to set up a schedule within an integrated package where
no scheduling application exists, the user must become a de
veloper as well as a user.

A variety of solutions exist to the problem of having only
general purpose applications provided as the basics in an inte
grated system. There has developed a widespread availability
of books of "spreadsheet templates" which are basically pro
grams for the user to type into a general purpose program to
produce a specific purpose application. Unfortunately, the
results of using different "templates" to produce specific
applications also usually results in the loss of integration be
tween these applications. In these circumstances, using a
lower level of integration, such as a program environment to
integrate separate special purpose programs, may provide just
as good an integration with less trouble for the user. A com
promise solution is to provide a program environment within
an all-in-one package, such as Framework's DOS Window,

and a set of guidelines to the user as to when it is better to use
a specialty package rather than trying to develop your own.

Developers of integrated packages have the dual demands
of designing for integration as well as the various applications
contained in them. Often, the state of the art of individual
applications has progressed beyond that of comparable appli
cations in integrated packages, leaving the integrated pack
ages needing to catch up. Thus, the adopting of an integrated
package may be seen to tie the user to capabilities that may
always be trailing the leaders.

In word processing, the state of the art has grown to include
spelling checking, mail merging, outlining, variable styles and
sizes of print fonts, and primitive graphics. Only outlining was
available first from an integrated package (Framework).
Many of these other features are only starting to appear in
new releases of integrated packages. Specialized decision sup
port systems and knowledge based expert systems are being
marketed to meet needs, first met by spreadsheets and data
bases, in easier and more powerful manners. Distributed sys
tems and local area networks are superseding the style of
occasional communication supported by most integrated
packages, providing an additional dimension of data integra
tion. Fourth generation languages are gaining in popUlarity
over traditional command languages for the ease they provide
users in developing specific applications.

Along with each of the advances in the state of the art, there
comes a period of exploring the advantages and disadvantages
of the advances. Thus, working at the state of the art is most
advantageous for those users who are either very sophisti
cated or very much in need of the new features which it
provides. For the majority of users, working with slightly
older, but proven and tested, versions of applications may
provide the optimal level of fulfilling their needs while min
imizing their trauma. Thus, the lack of state of the art appli
cations may not be a major problem for most users. A com
promise solution again would be a feature similar to a DOS
Window, to be used only where absolutely necessary.

The amount of integration between each application in all
in-one integrated packages, although greater than in other
cases, has remained relatively low. 3 For example, few word
processors can comfortably incorporate graphics with text
without considerable effort because of the traditional differ
ences in the display handling of word processing and graphics
applications. Use of alternative sources of applications, such
as with program environments or DOS windows, often causes
even greater concerns in integration. Decisions regarding this
problem can only be made based on the need for integration
and the current state of the art.

Technology

The state-of-the-art of the technology also has limited the
promise of integrated packages. Hardware capacity, software
complexity and the costs associated with both have forced
developers to make tradeoffs between the level of integration
and the quality of applications within their packages. Con
flicting conceptual models and user metaphors, designed to
help the user, have added to the reluctance of users to adopt
integrated packages.

346 National Computer Conference, 1987

Many desirable integrating features require sophisticated
hardware capabilities only recently introduced to personal
computers. High processor speed and large main memory are
required to support high resolution bit mapped graphics and
the concurrency of multiple functions, applications, or users.
Local area networks with external communication capability
are necessary to support integration in the form of distributed
systems.

Further developments in software technology will also be
necessary to achieve the full promise of integrated applica
tions. The development of functionally integrated systems can
provide a technology which overcomes many of the current
limitations and also allows for easy addition of other applica
tions to an integrated package.6 The development of knowl
edge bases will allow customization of systems to individual
user's levels of expertise and need while maintaining com
patibility and consistency between users where necessary.

Cost acts as a limiting factor both in what is available and
in what the user is willing to pay. Hardware advances are
continually providing better computing power for the money
that users are willing to spend. Costs, however, will remain a
limitation in the area of software. Typical individual users will
only pay the equivalent price of two individual packages for an
integrated package, since in most cases they will only make an
equivalent amount of use. To be successful, developers must
include much more than the equivalent of two individual
packages. Thus, developers must rely on much higher volume
sales to make up for their greater development costs. Recent
sales trends have not justified this expectation. The similarly
greater amount of effort in developing updates to integrated
packages is reflected in the relatively high prices charged for
upgrades to some of the popular integrated packages. Further
complicating the cost situation is the expectation of organiza
tions to be able to buy site licenses or to get volume discounts
for software while the developers wish to sell only individual
copies at fixed unit prices. Unless the economics of software
costs can be worked out to the mutual satisfaction of users and
developers, advances in integrated packages may be few and
far between.

The complexities of design and marketing of integrated
packages have led to the introduction of a number of concep
tual models and user metaphors to explain them. Systems may
be called electronic desktops, outlines, slideshows and many
more names. Individual applications may reside in windows,
frames, libraries, spreadsheets, and many more structures.
Each of these models or metaphors is designed to show how
universal and easy to use the system is to at least a target
group of users. Each shows certain biases or viewpoints of the
developers and certain stereotypes of the intended users. Un
fortunately, familiar as all of these concepts are to most users,
they may be perceived differently both qualitatively and atti
tudinally. Either individually or in a small consistent group,
they do a good job in helping explain the purpose and work
ings of an integrated package. The confusion comes from the
users being exposed to conflicting terms and concepts from a
variety of sources besides the particular package being used.
Further confusion results in the importance placed on these
analogies in explaining the system to all users, even though
not all users are likely to be so intuitive as to think in terms of
metaphors.

People and Organizations

Difficulties with people and organizations realizing the
promise may be attributed largely to the concept of the per
sonal computer. In many cases, personal computers are
thought of only as a tool for an individual to use to accomplish
an individual task. Neither the power of the tool nor the value
of the information, which is really a major corporate asset, is
understood. Since it is individuals who are using personal
computers singularly, many organizations provide little or no
support to them, leaving everything to the individual's ini
tiative and discretion. Strong efforts at providing organiza
tional support, such as organizational information centers and
new methods of managing semi-independent workers, are
necessary to transform isolated individual users of integrated
software packages into an integrated team of information
workers.

The traditional departmental and functional specialization
and segregation of workers in organizations tends to separate
people who need to share information, and thus, to inhibit the
full integration of organizational data. Both functional areas
and individual workers often may choose whether or not to
use a computer and, if so, how to use it. This discretionary use
of computers by knowledge workers can lead to the lack of a
critical mass of users and organizational information without
which organizational level integration is incomplete and un
dervalued. 5 An awareness of the information structure within
an organization should be shared amongst all members in
order to encourage the integration of specialized work into
useful information.

The co-ordination and integration of personal computers
. into organizations requires more than just individual ini
tiatives. Although individual initiative is often the instigator,
once the number of users and uses grows, some centralized
organization is required to ensure that this growth is pro
ductive and efficient. One potential structure for providing
such an organization is the concept of an information center.

Information centers are often an outgrowth of an organiza
tion's data processing department trying to provide quality
user support for non-traditional data processing activities.
They encourage and assist the end user to learn about data
processing methodologies and to develop small or one time
applications for themselves. Information centers, therefore,
have a similar purpose to that of most personal computers in
allowing the development and use of applications that would
not otherwise have been undertaken by the data processing
department.

Information centers typically provide a pool of specialists,
centrally located, that support large numbers of users in dif
ferent departments. This support may include: educating
users in the various aspects of data processing; providing
on-site resolution of problems; providing access to reference
materials; providing access to hardw~re and software for eva1-
uation and development purposes; providing assistance in de
veloping small or one time applications; providing assistance
in selecting and purchasing hardware and software for end
user use; and providing and controlling access to corporate
networks and data bases.

The information center approach is desirable since it uses
"a carrot rather than a stick." It still leaves the user in control

Towards the Integration of Integrated Software Within Organizations 347

of applications and expenditures, while encouraging the user
to standardize and integrate in order to obtain the various
benefits of information center services. The types of hardware
and software that the information center supports and which
it may even make available at very attractive prices become
the de facto standards for the organization. Users not follow
ing these standards do so on their own and at potentially much
higher costs.

It must be recognized that integrated packages can only do
some things for some people. Since typical users are limited in
the number of applications they will use and since some indi
vidual packages are more powerful than their counterparts in
typical integrated packages, some users will choose to use one
or two specialized packages rather than one integrated pack
age. Various users within an organization, therefore, may
make individual cases for specific packages for their own use.
While such a choice may be in the interests of the individual,
it often overlooks the value of standardization and synergy
within an organization. To overcome this difficulty, integrated
packages need to not only improve the quality of their individ
ual applications, but also to allow for the easy addition of
other applications within the main integrated package.

As the use of personal computers grows, even within an
integrated manner, so also grows the potential independence
of the worker in the methods chosen to achieve the work. This
affects both sides of the worker-manager relationship. More
and more tasks can be performed directly by the worker on
the computer without going through any intermediary man
agement approval or supervision. With advances in communi
cations technology, it will even be possible for many workers
to perform their work on a personal computer at home, many
miles from the manager. This increasing autonomy of workers
gives rise to a number of potential problems involving the
co-ordination of tasks to ensure that their results integrate
appropriately without having missing parts or wasteful redun
dancies. It changes the emphasis of management from assign
ing work to be done in a certain way and supervising the work
to assigning work, where the results must interface in a certain
way, and synthesizing the results. This change parallels
changes in software technology by concentrating on what
needs to be done rather than on how it is to be done. Until
managers become more involved in goal setting, arbitrating,
and evaluating, and less involved with managing, the human
link in integrating computing within an organization will re
main weak and the integration of applications will not evolve
beyond the level at which it exists in the software being used
by a number of individuals in the organization.

THE FUTURE

To date, most integrated packages appear to be built around
meeting the perceived needs of one or more applications
rather than around meeting the actual needs of the user.
Software developers have improved the level of program inte
gration along with the current state of hardware technology,
while largely ignoring the user needs for task and function
integration. Advances have concentrated on increasing the
data and functions in applications, and providing a more so
phisticated user interface to these applications. The set of and

the structure of individual applications has remained rela
tively fixed, and only now is starting to slowly expand.

To change the focus to the needs of individual users, a new
approach to the basis of software integration is necessary,
such as that of function integration. The state-of-the-art, how
ever, has not yet reached function level integration. To do so
will require both a new understanding of the user and a new
state of technology to implement this understanding. To
change the focus further to the needs of individual users
within an organizational context requires both advances in
computing and advances in the organization of the workplace.
These organizational changes in the workplace are not just
due to the adoption of integrated software, but have been
developed and discussed in other settings. Where such meth
ods of organization exist already, higher levels of integration
may also exist.

RECOMMENDATIONS

The following are a set of recommendations for organizations
wishing to achieve the promise of integrated software:

1. The decision to adopt and standardize integrated soft
ware should be made at the organizational level. Once
such a decision is made, it should be communicated to
all individuals in the organization in such a manner as
to show them why it was a good decision and to encour
age them to comply with it.

2. All-in-one packages provide the highest current level of
integration and the greatest potential for achieving the
promise of integration. The adoption of an all-in-one
package as the basis for integration within an organiza
tion should only be made, however, if it is supported by
a suitable costlbenefit analysis that proves this generali
zation.

3. The need for additional application programs beyond
those contained in an integrated package should be
recognized and allowed for in any attempt to standard
ize on an integrated package. The use of such addi
tional packages, however, should be limited to those
cases where the benefits to the organization are greater
than the costs of deviating from the standard integrated
package.

4. Where possible, additional application programs
should be accessible and should be accessed from
within the standard integrated package.

5. The information structure within an organization
should be analyzed and then shared amongst all mem
bers of the organization in order to encourage the inte
gration of specialized work into useful information.

6. Consideration needs to be given to how the results of
integrated software packages can be integrated both
with each other and with the needs of the organization.

7. Where conceptual models and user metaphors of inte
grated systems are used, they must be pertinent to the
people in the organization who will use them if they are
going to be a benefit.

8. There is a need for information center support for indi
vidual users of integrated software in an organization in

348 National Computer Conference, 1987

order to educate the users and to assist them in achiev
ing the fullness of the benefits of the software.

9. There is a need for a goal oriented and integrating
management approach to the user of integrated soft
ware in an organization if the fullness of the promise of
integration is to be realized for the organization.

10. Since the state of the art of integrated software is evolv
ing due to advances in technology and understanding,
organizations should be prepared to change in order to
achieve new benefits as they become available, rather
than expecting to adopt a single package that will solve
all problems both now and in the future.

REFERENCES

1. Carter, J. A. "User-Oriented Structured Design of Data Processing Applica
tions." In H. W. Hendrick and O. Brown Jr. (eds.), Human Factors in

Organizational Design and Management, Amsterdam: Elsevier Publishers
B.V.,1984.

2. Carter, J. A., "Integrated Software: The Promise, the Product, and the
Problems." In O. Brown Jr. and H. W. Hendrick (eds.), Human Factors in
Organizational Design and Management II, Amsterdam: Elsevier Publishers
B.V., 1986.

3. Carter, J. A., and J. B. Tubman. "Integrated Software: Past, Present, and
Future." to appear in Future Computing Systems.

4. Chang, E. "Participant Systems: Group Human-Computer Interaction."
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, 1986, pp. 1337-1342.

5. Nielsen, J., R. Make, K. Bordendorff, and N. Grischkowsky. "Integrated
Software Usage in the Professional Work Environment: Evidence from
Questionnaires and Interviews." Human Factors in Computing Systems: CHI
'86 Conference Proceedings, 1986, pp. 162-167.

6. Carter, J. A. "An Integrated Model for Defining the Role of User Interface
and Other Management Systems." Proceedings of the 1986 IEEE Interna
tional Conference on Systems, Man and Cybernetics, 1986, pp. 32-37.

MC68030: The second generation 32-bit microprocessor

by MICHAEL RUHLAND
Motorola Microprocessor Products Division
Austin, Texas

ABSTRACT

The MC68030 is a virtual memory microprocessor based on an MC68020 core with
additional enhanced performance features. Increased internal parallelism is pro
vided by multiple internal data buses and address buses, and a versatile bus con
troller that supports synchronous burst cycle accesses in order to maximize per
formance with paged mode, nibble mode, and static column DRAM technology, or
even external SRAM caches. A 256-byte on-chip instruction cache in addition to a
256-byte on-chip data cache improves data flow to the execution unit and further
boosts performance regardless of the actual external memory configuration.
On-chip paged memory management reduces the minimum physical bus cycle time
to two clocks, and provides zero translation time to any bus cycle. The paged
memory management structure can be enabled/disabled by software for applica
tions not requiring the memory management feature. The rich instruction set and
addressing modes of the MC68020 have been maintained allowing a clear migration
path for M68000 systems.

349

MC68030: The Second Generation 32-bit Microprocessor 351

INTRODUCTION

The MC68030 incorporates the capabilities of the MC68020
microprocessor, a data cache, an instruction cache, an im
proved bus controller, and an integrated memory manage
ment structure defined by the MC68851 Paged Memory Man
agement Unit on one VLSI device. It maintains the 32-bit
registers available with the entire M68000 family as well as the
32-bit address and data paths, rich instruction set, versatile
addressing modes, and flexible coprocessor interface pro
vided with the MC68020. In addition, the internal operations
are designed to operate in parallel, allowing multiple in
structions to be executed concurrently. It also allows instruc
tion execution to proceed in parallel with accesses to the
internal caches, the on-chip memory management unit, and
the bus controller.

The MC68030 fully supports the non-multiplexed asyn
chronous bus of the MC68020 as well as a dynamic bus sizing
mechanism that allows the processor to transfer operands to
or from external devices while automatically determining de
vice port size on a cycle-by-cycle basis. In addition to the
asynchronous bus, the MC68030 also supports a fast and flex
ible synchronous bus. Using its synchronous bus capabilities,
the MC68030 is capable of fetching up to four long words of
data in a burst mode compatible with DRAM chips that have
burst capability or SRAM. Burst mode can reduce, by up to
70%, the time necessary to fetch the four long words from
physical memory. The four long words are used to prefill the
on-chip instruction and data caches so that the hit ratio of the
caches improves and the average access time is minimized.

The block diagram shown in Figure 1 depicts the major
sections of the MC68030 and illustrates the autonomous na
ture of these blocks. The bus controller consists of the address
and data pads, the multiplexors required to support dynamic
bus sizing, and a macro bus controller which schedules the bus

DATA INSTR
CACHE CACHE window -

I I
f l J ~

I
I

CPU Addr I PMMU ~~ rl
ATC III

r ;+1 i ... Data INSTR PIPE .. ~ r

I
w

r Control BUS
CONTROL

'---

Figure I-MC68030 block diagram

cycles on the basis of priority. The CPU contains the exe
cution unit and all related control logic.

The instruction and data cache blocks operate indepen
dently from the rest of the machine, storing information read
by the bus controller. Each cache resides on its own address
and data buses, allowing simultaneous access to both. Both
the caches are organized as 64 long word entries (256 bytes)
with a block size of four long words. The data caches uses a
write-through policy.

Finally, the memory management unit controls the map
ping of addresses for page sizes ranging from 256 bytes to 32K
bytes. Mapping information stored in descriptors resides in
translation tables in memory that are automatically searched
by the MC68030 on demand. Recently used descriptors are
maintained in a 22-entry fully associative cache called the
Address Translation Cache (ATC) allowing address trans
lation and other MC68030 functions to occur simultaneously.
Additionally, the MC68030 contains two transparent trans
lation registers that can be used to define a one-to-one map
ping for two segments ranging in size from 16M bytes to 4G
bytes each.

PROGRAMMING MODEL

As shown in the programming model (see Figure 2) the
MC68030 has sixteen 32-bit general purpose registers, a 32-bit
program counter, two 32-bit supervisor stack pointers, a
16-bit status register, a 32-bit vector base register, two 3-bit
alternate function code registers, two 32-bit cache handling
(address and control) registers, two 64-bit root pointer regis
ters used by the MMU, a 32-bit translation control register,
two 32-bit transparent translation registers, and a 16-bit
MMU status register. Registers DO-D7 are used as data reg
isters for bit and bit field (1 to 32 bit), byte (8 bit), word (16
bit), long word (32 bit), and quad word (64 bit) operations.
Registers AO-A6 and the user, interrupt, and master stack
pointers are address registers that may be used as software
stack pointers or base address registers. In addition, the ad
dress registers may be used for word and long word oper
ations. All of the 16 (DO-D7, AO-A 7) registers may be used
as index registers. The status register contains the interrupt
priority mask as well as the condition codes. Additional con
trol bits indicate that the processor is in a trace mode,
supervisor/user state, and master/interrupt state.

The vector base register is used to determine the run-time
location of the exception vector table in memory, hence it
supports multiple vector tables so each process or task can
properly manage exceptions independently of each other.

The M68000 Family processors distinguish address spaces
as supervisor/user, program/data, and CPU space. These five

352 National Computer Conference, 1987

I

I

3\

DATA REGISTERS

31

ADDRESS REGISTER

3\ 1615 0

L..I ________ ..L.1 _______ --I1 A7 (USP) USER STACK POIfo.'TEP.

L..1 _______________ ~I~p~Rm~R

15 7 0

~ : : : : ~ : : = = = ,-I ___ ...J1 CCR CONDITION cooe REGIS7ER

3\ 1615

~I ________ ~ ______ __...JI~~
31 16 15 0

tlTERRUPT
STACK POINTER

~I ________ ~ ______ __...JIAT~P) ~~~
15 .7 0

I (CCR) 1 SR STATUS REGISTER

31

.... 1 _______________ ----', V8R YECTORBASE REGlSTER

31 0

I 1 CACR

31 0

I 1 CMR

31

I 1 TC

31 0

I I CRP

31

I I SRP

31 0

I ITTO

31 0

I 1 m
15 0

I I PSR

Figure 2-MC68030 programming model

AlTERNATE FUNC'TlCJ;

cooe REGISTERS

CACI£ CONTRa.
REGISTER

CACI£ AllORESS
REGISTER

TRANSlATION CC.iTJD.

CPU ROOTPOM"ER

SUPERVISOR
ROOT POINTER

TRANSPARENT
TRANSlATION 0

TRANSPARENT
TRANSLATION 1

I.M.I STATUS

combinations are specified by the function code pins,
FCOIFC1IFC2, during bus cycles, indicating the particular ad
dress space. Using the function codes, the memory subsystem
(hardware) can distinguish between supervisor mode accesses
and user accesses as well as program accesses, data accesses,
and CPU space accesses. Additionally, the system software
can configure the on~chip ~1~.1U so that supervisor/user pri\7-
ilege checking is performed by the address translation mech
anism and the look-up of translation descriptors can be differ
entiated on the basis of function code. To support the full
privileges of the supervisor, the alternate function code regis
ters allow the supervisor to specify the function code for an
access by pre loading the SFCIDFC registers appropriately.

The cache registers (control-CACR, address-CAAR) allow
supervisor software manipulation of the on-chip instruction
and data caches. Control and status accesses to the caches are
provided by the cache control register (CACR), while the
cache address register (CAAR) specifies the address for those
cache control functions that require an address.

All of the MMU registers (CRP, SRP, TC, TTO, TIl, and
PSR) are accessible by the supervisor only. The CPU root
pointer contains a descriptor for the first pointer to be used in
the translation table search for page descriptors pertaining to
the current task. If the SRE (Supervisor Root pointer Enable)
bit of the translation control register is set, the supervisor root
pointer is used as a pointer to the translation tables for all
supervisor accesses. If the SRE bit is clear, this register is
unused and the CPU root pointer is used for both supervisor
and user translations. The translation control register config
ures the table look-up mechanism to be used for all table
searches as well as the page size and any initial shift of logical
address required by the operating system. In addition, this
register has an enable bit that enables the MMU. The trans
parent translation registers can be used to define two trans
parent windows for transferring large blocks of data with un
translated addresses. Finally, the MMU status register (PSR)
contains status information related to a specific address trans
lation and the results generated by the PTEST instruction .
This information can be useful in locating the cause of an
MMU fault.

The MC68030 is upward source- and object-level code com
patible with the M68000 Family because it supports all of the
instructions that previous family members offer. Included in
this set are the bit field operations, binary coded decimal
support, bounds checking, additional trap conditions, and ad
ditional multi-processing support (CAS and CAS2 instruc
tions) offered by the MC68020. Each instruction, with few
exceptions, operates on bytes, words, and long words, and
most instructions can use any of the 18 addressing modes. The
new instructions supported by the MC68030 are a subset of
the instructions introduced by the MC68851 paged memory
management unit. The MMU instructions supported by the
MC68030 are the PMOVE, PTEST, PLOAD, PFLUSH, and
PFLUSHA instructions and they are completely compatible
with the corresponding instructions on the MC68851 PMMU.
Whereas the MC68851 required the coprocessor interface to
execute its instructions, the MC68030 MMU instructions exe
cute just like all other CPU instructions. All of the MMU
instructions are privileged (can be executed by the supervisor
only).

INSTRUCTION AND DATA CACHES

Studies have shown that typical programs spend most of their
execution time in a fe~'7 main routines or tight loops. This
phenomenon is known as locality of reference, and has an
impact on the performance of the program. The MC68010
takes limited advantage of this phenomenon with the loop
mode of operation that can be used with the DBcc instruction.
The MC68020 takes much more advantage of locality with its
256 byte on-chip instruction cache. The MC68030 takes fur-

MC68030: The Second Generation 32-bit Microprocessor 353

ther advantage of cache technology to provide the system with
two on-chip caches, one for instructions and one for data.

M C68030 Cache Goals

Similar to the MC68020, there were two primary goals for
the MC68030 microprocessor caches. The first design goal was
to reduce the processor external bus activity beyond what was
accomplished with the MC68020. The second design goal was
to increase effective CPU throughput as larger memory sizes
or slower memories increased average access time. By placing
a high speed cache between the processor and the rest of the
memory system, the effective memory access time becomes:

taee = h*teache + (1 - h)*text

where tace is the effective system access time, teaehe is the cache
access time, text is the access time of the rest of the system, and
h is the hit ratio or the percentage of time that the data is
found in the cache. Thus, for a given system design, two
MC68030 on-chip caches provide an even more substantial
CPU performance increase over that obtainable with the
MC68020 with its instruction cache. Alternately, slower and
less expensive memories can be used for the same processor
performance.

The throughput increase in the MC68030 is gained in three
ways. First, the MC68030 caches are accessed in less time than
is required for external accesses, providing improvement in
the access time for items residing in the cache. Secondly, the
burst filling of the caches allows instruction and data words to
be found in the on-chip caches the first time they are accessed
by the micromachine, with the time required to bring those
items into the cache minimized. This has the capability of
lowering the average access time for items found in the caches
even further.

Thirdly, and perhaps most importantly, the autonomous
nature of the caches allows instruction stream fetches, data
fetches, and a third external access to all occur simultaneously
with instruction execution. For example, if the MC68030 re
quires both an instruction stream access and an external pe
ripheral access, and the instruction is resident in the on-chip
cache, the peripheral access will proceed unimpeded rather
than being queued behind the instruction fetch. Additionally,
if a data operand was also required, and it was resident in the
data cache, it could also be accessed without hindering either
the instruction access from its cache or the peripheral access
external to the chip. The parallelism designed into the
MC68030 also allows multiple instructions to execute concur
rently so that several internal instructions (those that do not
require any external accesses) could execute while the pro
cessor is performing an external access for a previous in
struction. The end result is that an MC68030 operating out of
on-chip cache offers much better than "no wait state" perfor
mance regardless of the external memory system.

Instruction Cache

The instruction cache resident on the MC68030 is a
256-byte direct mapped cache organized as 16 blocks consist-

ing of four long words per block. Each long word is indepen
dently accessible yielding 64 possible entries, with Al select
ing the correct word during an access. Thus each block has a
tag field made up of the upper 24 address bits, the FC2
(supervisor/user) value, four valid bits (one for each long
word entry), and the four long word entries (see Figure 3).
The instruction cache is automatically filled by the MC68030
whenever a cache miss occurs and using the burst transfer
capability, up to four long words can be filled in one burst.
Neither the instruction or data caches can be manipulated
directly by the programmer except by the use of the CACR
register which provides cache clearing and cache entry clear
ing facilities. (The caches can also be independently enabled!
disabled through the use of this register.) Finally, the system
hardware can disable the on-chip caches at any time by the
assertion of the CDIS signal.

Data Cache

The organization of the data cache is similar to that of the
instruction cache as shown in Figure 4. However, the tag is
composed of the upper 24 address bits, the four valid bits, and
all three function code bits, explicitly specifying the address
space associated with each block. The data cache employs a
write-through policy with no write allocation for data writes.
In other words, if a cache hit occurs on a write cycle, both the
data cache and the external device are updated with the new
data. If a write cycle generates a miss in the data cache, only
the external device is updated and no data cache entry is
replaced or allocated for that address.

\\

ACCESS ADDRESS

AAAAAAAAAAAAAAAAAAAAAAAA

3 •.. 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 3210 g 8 7 6 543210 g 876543210

\- TAG

1-TI~
I

1

LONG WORD SELECT

----, I

TAG v v v v

--+

1 Of" 16
SELECT

I-- TAG ~ 111 1 I 1 I 1
REPl.N:E I I I ~(l

Y COMPARATOR

I
CACIE SIZE. 64 (lONG WORDS)
BlOCK SIZE • , (lONG WORDS)
SET SIZE. 1

... .".

I ~ ENTRY HIT

I "Q

Lt£HIT

DATA FROII tlSTRUCTION
CACIE DATA BUS

DATA TO tlSTRUCTION
CACIE OUTPUT REGISTER

CACHE CONTROl.
""'REGISTER

Figure 3-MC68030 on-chip instruction cache organization

354 National Computer Conference, 1987

ACCESS AOOIIESS

AAAAAAAAAAAAAAAAAAAAAAAA

222211111111110000000000

3 2 1 0 g • 7 6 5 4 3 2 1 0 g • 7 6 5 4 3 2 1 0

I I
I

LONGWOROSELECT

TAG y y y y

-1Of18
SELECT

_TAQ~ I 1t I 1 I 1
REPl.ACE

Y COMPARATOR

CH:>£ SIZE ... (lONG WORDS)
BlOCK SIZE •• (lONtI WOADSI
SETSIZE.1

I

_l>b
I Li'

I I I !:l<l
"Fl

ENTRY HIT

LtlEHIT

DATA FROM DATA CACI£
DATA BUS

DATA TO DATA CACHE
HOlDNGI'£GISTER

CACHE CONTROl.
OOFEGISTER

Figure 4--MC68030 on-chip data cache organization

OPERAND TRANSFER MECHANISMS

The MC68030 offers three different mechanisms by which
data can be transferred into and out of the chip.

(1) Asynchronous bus cycles, compatible with the asyn
chronous bus on the MC68020, can transfer data in a mini
mum of three clock cycles and the amount of data transferred
on each cycle is determined by the dynamic bus sizing mech
anism on a cycle by cycle basis with the DSACKx signals.

(2) Synchronous bus cycles are terminated with the STERM
(Synchronous Termination) signal and always transfer 32-bits
of data in a minimum of two clock cycles, increasing the bus
bandwidth available for other bus masters, therefore increas
ing possible performance.

(3) Burst mode transfers can be used to fill blocks of the
instruction and data caches when the MC68030 asserts
CBREQ (Cache Burst Request). After completing the first
cycle with STERM, subsequent cycles may accept data on
every clock where STERM is asserted until the burst is com
pleted. Use of this mode can further increase the available bus
bandwidth in systems that use DRAMs with page, nibble, or
static column mode operation or SRAM configurations.

Asynchronous Transjers

Though the MC68030 has a full 32-bit data bus, it offers the
ability to automatically and dynamically downsize its bus to 8
or 16 bits if peripheral devices are unable to accommodate the
entire 32 bits. This feature allows the programmer the ability

to write code that is not bus-width specific. For example, long
word (32 bit) accesses to peripherals may be used in the code,
yet the MC68030 will transfer only the amount of data that the
peripheral can manage at one time. This feature allows the
peripheral to define its port size as 8, 16, or 32 bits wide and
the MC68030 will dynamically size the data transfer accord
ingly, using multiple bus cycles when necessary. Hence, pro
grammers are not required to program for each device port
size or know the specific port size before coding; hardware
designers have flexibility to choose implementations in
dependent of software prejudices. The MC68030, like the
MC68020, offers a complete dynamic bus sizing mechanism
which aliows 8 or 16 bit ports or memory to be used without
wasting any address space.

The dynamic bus sizing is invoked with the use of the
DSACKx pins and occurs on a cycle by cycle basis. For exam
ple, if the processor is executing an instruction that requires
the reading of a long word operand, it will attempt to read 32
bits during the first bus cycle to a long word address boundary.
If the port responds that it is 32 bits wide, the MC68030
latches all 32 bits of data and continues. If the port responds
that it is 16 bits wide, the MC68030 latches the 16 valid bits of
data and runs another cycle to obtain the other 16 bits of data.
An 8 bit port is handled similarly but with four bus read cycles.
Each port is fixed in assignment to particular sections of the
data bus. However, the MC68030 has no restrictions concern
ing the alignment of operands in memory; long word operands
need not be aligned to long word address boundaries. When
misaligned data requires multiple bus cycles, the MC68030
automatically runs the minimum number of bus cycles. In
structions must still be aligned to word boundaries.

The timing of asynchronous bus cycles is also determined by
the assertion of the DSACKx signals on a cycle-by-cycle basis.
If the DSACKx signals are valid 1.5 clocks after the beginning
of the bus cycle (with the appropriate setup time), the cycle
terminates in its minimum amount of time corresponding to
three clock cycles total. The cycle can be lengthened by de
laying DSACKx (effectively inserting wait states in one clock
increments) until the device being accessed is able to termi
nate the cycle. This flexibility gives the processor the ability to
communicate with devices of varying speeds while operating
at the fastest rate possible for each device.

Use of the asynchronous transfer mechanism allows ex
ternal errors to abort cycle upon the assertion of BERR (Bus
Error), or individual bus cycles to be retried with the simulta
neous assertion of BEFF and HALT, after the DSACKx sig-
nals have been asserted. .

Synchronous Transfers

Synchronous bus cycles are terminated with the assertion of
the STERM signal which automatically indicates that the bus
transfer is for a 32 bit port. This input is not synchronized
internally, thereby allowing two clock cycle bus accesses to be
performed, if the signal is valid, one clock after the beginning
of the bus cycle with the appropriate setup time. However, the
bus cycle may be lengthened by delaying STERM (inserting
wait states in one clock increments) until the device being

MC68030: The Second Generation 32-bit Microprocessor 355

accessed is able to terminate the cycle as in the case of asyn
chronous transfers. Additionally, these cycles may be aborted
upon the assertion of BERR, or they may be retried with the
simultaneous assertion of BERR and HALT, after the asser
tion of STERM. For systems operating at high clock fre
quencies STERM is easier to use than DSACK, because while
DSACKx is asserted to the processor 1.5- clocks before the
end of a bus cycle, STERM is asserted only one clock before
the end of bus cycle (non-burst). This extra half clock allows
control logic to be that much slower (or the clock frequency
to be that much faster).

Burst Read Cycles

The MC68030 provides support for burst filling of its on
chip instruction and data caches, adding to the overall system
performance. The on-chip caches are organized with a block
size of four long words, so that there is only one tag for the
four long words in a block. Since locality of reference is
present to some degree in most programs, filling of all four
entries when a single entry misses can be advantageous, es
pecially if the time spent filling the additional entries is min
imal. When the caches are burst-filled, data can be latched by
the processor in as little as one clock for each 32 bits.

Burst read cycles can be performed when the MC68030
requests them with the assertion of CBREQ and only when
the first cycle is a synchronous cycle as described above. If the
CBACK (Cache Burst Acknowledge) input is valid at the
appropriate time in the synchronous bus cycle, the processor
will keep the original AS, DS, RIW, address, function code
and size outputs asserted and will iatch 32 bits from the data
bus at the end of each subsequent clock cycle that has STERM
asserted. This procedure continues until the burst is complete
(the entire block has been transferred), BERR is asserted in
lieu of STERM, or the CBACK input is negated. Figure 5
shows the minimum MC68030 burst cycle. To support slower
memory systems, any number of wait states can be inserted
before a unique long word of data is latched by negating
STERM with the proper setup time. When compared to an
MC68020/MC68851 system, the MC68030's burst mode pro
vides a 220% (3.2x) improvement in the data transfer rate,
assuming a four clock physical bus cycle (one long word of
data, four bytes) for the 020/851 pair and a five clock burst
cycle (four long words, 16 bytes) on the MC68030. This five

ClK

A(0:31) XXXXX X

CBREQ* \ \ / 7

STERM* \ ,-
CBACK* \ /
0(0:31) xxx XXX XXXXXX XXXXXX >-

Figure 5-MC68030 synchronous burst cycle

clock burst cycle provides an effective transfer rate of one
32-bit long word every 1.25 clocks. Hence, performance of the
MC68030 is better than "no wait states." In addition, the
MC68030 loads this data into its on-chip caches where it if is
needed again no external cycle may be required at all, im
proving further the better than "no wait state" performance.

Implementing an external memory system with burst capa
bility presents several architectural options. DRAMs with
page, nibble, or static column modes can be easily matched to
the MC68030's burst cycle. For higher performance systems,
SRAM banks can be configured in 32, 64, or 128 bit widths.
For banks that are 32 bits wide an external modulo-2 counter
is required to provide the addresses of the three long words
not directly addressed by the MC68030's address lines. If the
memory width is 128-bits, no additional addressing is neces
sary, but a counter will serve as a multiplexor control to gate
the proper 32-bit long word onto the data bus during the
burst. The 64 bit wide memory is a compromise between the
two previous configurations, in that some additional address
ing and multiplexor logic is required.

EXCEPTIONS

Exceptions can be generated by either internal or external
causes. The externally generated exceptions are the inter
rupts, the bus error, and reset requests. The interrupts are
requests from peripheral devices for processor action while
the bus error and reset pins are used for access control and
processor restart. The internally generated exceptions come
from instructions, address errors, tracing, or breakpoints. The
TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, and
D IV instructions can all generate exceptions as part of their
instruction execution. Tracing behaves like a very high pri
ority, internally generated interrupt whenever it is processed.
The other internally generated exceptions are caused by il
legal instructions, instruction fetches from odd addresses, and
privilege violations. Finally, the MMU can generate excep
tions when it detects an invalid translation in the Address
Translation Cache (ATC) and an access to the corresponding
address is attempted, or when it is unable to locate a valid
translation for an address in the translation tables.

Bus exceptions are an important class of the possible
M68000 exceptions. Included in this group are the bus error
and retry operations, which are absent from many architec
tures outside the M68000 Family. Bus error exceptions for
example, could be used to immediately indicate a parity error
on data in the current cycle. This permits faster error de
tection and recovery, and prevents the processor from exe
cuting on bad data.

The retry mechanism can be used with external caches to
repeat a particular bus cycle. With caches having high hit
rates, this technique allows cache control logic to be slower
than might be expected because hits are always assumed and
signaled as such to the microprocessor by STERM or
DSACK. If a miss does occur; a retry can be signaled within
half a clock after STERM or one clock after DSACK. Thus
with a 20 MHz MC68030, cache control logic must only be
5 ns faster than the cache data memory.

356 National Computer Conference, 1987

MC68030 ON-CHIP MEMORY MANAGEMENT UNIT

The full addressing range of the MC68030 is 4 gigabytes
(4,294,967,296 bytes). However, most MC68030 systems im
plement a smaller physical memory. Nonetheless, by using
virtual memory techniques, the system can be made to appear
to have a full 4 gigabytes of physical memory available to each
user program. In a similar fashion, a virtual system provides
user programs access to other devices that are not physically
present in the system such as tape drives, disk drives, printers,
or terminals. The memory management unit (MMU) on the
MC68030 provides the capability to easily support a virtual
system and virtual memory. In addition, it provides protection
of supervisor areas from accesses by user programs and also
provides write protection on a page basis. All this capability
is provided along with maximum performance as address
translations occur in parallel with other processor activities.

Demand Paged Implementation

A typical system with a large addressing range such as one
with the MC68030 provides a limited amount of high-speed
physical memory that can be accessed directly by the pro
cessor while maintaining an image of a much larger "virtual"
memory on secondary storage devices such as large capacity
disk drives. When the processor attempts to access a location
in the virtual memory map that is not resident in physical
memory, the access to that location is temporarily suspended
while the necessary data is fetched from secondary storage
and placed in physical memory; the suspended access is then
either restarted or continued.

A paged system is one in which the physical memory is
subdivided into equal sized blocks called page frames and the
logical (untranslated) address space of a task is divided into
pages which have the same size as the page frames. The
operating system controls the allocation of pages to page
frames so that when data is needed from the secondary stor
age device, it is brought in on a page basis. The memory
management scheme employed by the MC68030 is called a
"demand" implementation because a process does not need
to specify in advance what areas of its logical address space it
requires. An access to a logical address is interpreted by the
system as a request for the corresponding page.

The memory management unit on the MC68030 employs
the same address translation mechanism introduced by the
MC68851 Paged Memory Management Unit with possible
page sizes ranging from 256 bytes to 32K bytes.

Translation Mechanism

Logical-to-physical address translation is the most fre
quently executed operation of the MC68030 MMU, so this
task has been optimized and can function autonomously. The
MMU initiates address translation by searching for a de
scriptor with the address translation information (a page de
scriptor) in the on-chip ATe. The ATC is a very fast fully
associative cache memory that stores recently used page
descriptors. If the descriptor does not reside in the ATC then

the MMU requests external bus cycles of the bus controller to
search the translation tables in physical memory. After being
located, the page descriptor is loaded into the ATC and the
address is correctly translated for the access, provided no
exception conditions are encountered.

The status of the page in question is easily maintained in the
translation tables. When a page must be brought in from a
secondary storage device, the table entry can signal that this
descriptor is invalid so that the table search results in an
invalid descriptor being loaded into the ATC. In this way, the
access to the page is aborted and the processor initiates bus
error exception processing for this address. The operating
system can then control the allocation of a new page in phys
ical memory and can load the page all within the bus error
handling routine.

Address Translation Cache

An integral part of the translation function described above
is the cache memory that stores recently used logical-to
physical address translation information, or page descriptors.
This cache consists of 22 entries and is fully-associative. The
ATC compares the logical address and function code of the
incoming access against its entries. If one of the entries
matches, there is a hit and the ATC sends the physical address
to the bus controller, which then starts the external bus cycle
(provided there was no hit in the instruction or data caches for
the access).

The ATC is composed of three major components: the
content-addressable memory (CAM) containing the logical
address and function code information to be compared against
incoming logical addresses, the physical address store that
contains the physical address associated with a particular
CAM entry, and the control section containing the entry re
placement circuitry that implements the replacement algo
rithm (a variation of the least-recently-used algorithm).

Translation Tables

The translation tables supported by the MC68030 have a
tree structure, minimizing the amount of memory necessary to
set up the tables for most programs, since only a portion of the
complete tree needs to exist at anyone time. The root of a
translation table tree is pointed to by one of two root pointer
registers that are part of the MC68030 programmer's model;
the CPU and supervisor. Table entries at the higher levels of
the tree (pointer tables) contain pointers to other tables. En
tries at the leaf level (page tables) contain page descriptors.
The mechanism for performing table searches uses portions of
the logical address as indices for each level of the lookup. All
addresses contained in the translation table entries are phys=
ieal addresses.

Figure 6 illustrates the structure of the MC68030 translation
tables. Several determinants of the detailed table structure are
software selectable. The first level of lookup in the table nor
mally uses the function codes as an index but this may be
suppressed if desired. In addition, up to 15 of the logical
address lines can be ignored for the purposes of the table

MC68030: The Second Generation 32-bit Microprocessor 357

Figure 6--MMU translation table tree structure

POINTER
TABLES

searching. The number of levels in the table indexed by the
logical address can be set from one to four, and up to 15
logical address bits can be used as an index at each level. A
major advantage to using this tree structure for the translation
tables is the ability to deallocate large portions of the logical
address space with a single entry at the higher levels of the
tree. Additionally, portions of the tree itself may reside on a
secondary storage device or may not exist at all until they are
required by the system.

The entries in the translation tables contain status informa
tion pertaining to the pointers for the next level of lookup or
the pages themselves. These bits can be used to designate
certain pages or blocks of pages as supervisor-only, write
protected, or non-cacheable. If a page is marked as non
cacheable, accesses within the page will not be cached by the
MC68030 instruction or data caches and the ClOUT (cache
inhibit out) signal is asserted for those accesses. In addition,
the MMU automatically maintains history information for the
pointers and pages in the descriptors via the Used (U) and
Modified (M) bits. ClOUT is particularly useful in systems
accessing shared memory or I/O devices. ClOUT directly in
forms any external cache that current data should not be
cached. Historically, some microprocessor architects recom
mended dedicating an address line to indicate non-cacheable
areas, but the ClOUT signal provides more flexibility without
affecting the processor's addressing range.

Transparent Translation

Two transparent translation registers have been provided
on the MC68030 MMU to allow portions of the logical address
space to be transparently mapped and accessed without corre
sponding entries resident in the ATe. Each register can be
used to define a range of logical addresses from 16M bytes to
4G bytes with a base address and a mask. All addresses within
these ranges will not be mapped and protection is provided
only on a basis of read/write and function code. These regis
ters provide windows into memory that will never suffer from
page faults regardless of previous memory activity. For exam-

pIe in a real time graphics application, this means that line
drawing will be continuous and not jerk or step from delays
caused by page faults and table searches. Many other applica
tions will also benefit from the TT registers.

COPROCESSOR INTERFACE

The coprocessor interface is a mechanism for extending the
instruction set of the M68000 family. The interface provided
on the MC68030 is the same as that on the MC68020. Exam
ples of these extensions are the addition of specialized data
operands for the existing data types or, for the case of floating
point, the inclusion of new data types and operations for them
as implemented by the MC68881 and MC68882 floating-point
coprocessors.

The communication protocol between the main processor
and the coprocessor necessary to execute a coprocessor in
struction is based on a group of coprocessor interface registers
(CIRs) which have been defined for the M68000 family and
are implemented on the coprocessor. The MC68030 hardware
uses standard read and write cycles to access the registers.
Thus the coprocessor interface doesn't require any special bus
hardware: the bus interface implemented by a coprocessor for
its interface register set must only satisfy the MC68030 ad
dress, data, and control signal timing to guarantee proper
communication with the CPU. The MC68030 implements the
communication protocol with all coprocessors in hardware
(and microcode) and handles all operations automatically so
the programmer is only concerned with the instructions and
data types provided by the coprocessor as extensions to the
MC68030 instruction set and data types. Up to seven co
processors are supported in a single MC68030 system with
a system-unique coprocessor identifier encoded in the co
processor instruction. When accessing a coprocessor, the
MC68030 executes standard bus cycles in CPU address space,
as encoded by the function codes, and places the coprocessor
identifier on the address bus to be used by chip-select logic to
select the particular coprocessor.

SUMMARY

The MC68030 provides increased system performance and
reduced system costs through enhanced features not found on
any other commercial microprocessors. Increased perfor
mance is derived from the MC68030's on-chip caches, the
on-chip memory management unit, multiple internal address
and data buses, and a versatile bus controller. Reduced sys
tem cost is achieved by bringing all these features on-chip and
through the improved bus controller's interface to external
memory. The MC68030 does indeed represent the second
generation in 32-bit microprocessors.

ACKNOWLEDGEMENTS

The author wishes to thank Clara Serrano of Motorola's
M68000 Applications Group for her assistance in the prepara
tion of this paper.

Transaction processing systems on future workstations:
A feasibility study

by JACOB SLONIM, JOHN HENSHAW and AVI SCHONBACH
Geac Computers International
Ontario, Canada

and
MICHAEL BAUER
The University of Western Ontario
Ontario, Canada

ABSTRACT

An account of a benchmark test to evaluate the performance of a relational data
base management system, INGRES, in the context of a library circulation system.
The results suggest that, within a couple of years, relational database systems
running on microcomputers within distributed environments will be performance
and cost-effective in supporting transaction processing systems.

359

Transaction Processing Systems on Future Workstations 361

INTRODUCTION

Organizations such as banks, airlines, and libraries rely heav
ily on transaction processing systems in their day-to-day oper
ations. These systems provide rapid on-line access to infor
mation for the use of both customers and employees. The
emergence of powerful microcomputers and reliable commu
nication has created an opportunity to develop distributed
systems in which data locality reflects the locality of users.

The term "workstation" is used to represent a comprehen
sive set of tools tailored to a specific type of user-in Geac's
case, a librarian's workstation. The functions of these tools
are independent of the machine size. The purpose of this
research is to define a minimum standard configuration for
hardware and system software to cost-effectively support the
workstation toolset.

We at Geac are currently involved in a project which calls
for the development of a commercial transaction processing
(TP) system in a distributed environment for use in libraries.
Our goal is a TP system capable of operating in a large distrib
uted environment composed of microcomputers, minis, and
mainframes. This system, moreover, is to be based on exist
in.g, off-the-shelf hardware and software. These goals have
led us to consider several relational database systems as a
basis for the TP system, and to cpnsider UNIX as the base
operating system.

Historically, commercial transaction processing systems
have relied on specialized databases, such as Tandem's
ENCOMPASStrMF1 or Geac's GeacOS,z or on traditional
hierarchical and network databases such as IBM's IMSffPF. 3

These systems are commercially available, and a great deal is
known about their behavior and performance. In contrast,
little is known about the use of relational database systems in
TP environments.

Although relational database management systems offer a
number of advantages in distributed transaction processing
(discussed in detail below), a common argument against their
use has to do with performance. Two widely held opinions can
be summarized as follows: 4

Relational systems are all very fine. for ad hoc query, but they
will never achieve the performance needed for production sys
tems or transaction processing systems ...

Relational systems require a breakthrough in hardware tech
nology (e.g., hardware associative memory) before they will be
able to achieve acceptable performance.

In contrast, the opinion of the authors and many other re
searchers is that:

there is no intrinsic reason why a relational database system

should have worse performance than traditional database
systems.

The next two sections discuss UNIX and the advantages of
relational database systems. Thereafter follows a description
of our benchmark of a commercial relational database man
agement system in a transaction application.

WHY THE UNIX OPERATING SYSTEM?

As we have noted, one of the original aims of the project was
to rely as much as possible on existing commercial hardware
and software, and to take advantage of new technology as it
appears on the market. This aim, coupled with requirements
to support distributed systems with powerful microcomputers
and reduce the cost of developing new software, led us to
adopt AT&T UNIX as a logical choice for our operating
system.

In practice, the development of applications to operate on
multiple operating systems is a long, expensive process, and
one which often results in software of poor qUality. Servicing
user needs across hardware from various vendors and of vari
ous sizes becomes much easier when a single operating system
is used. A single operating system greatly simplifies the incor
poration of industry standards in networking, database man
agement and other software tools.

Why UNIX rather than some other operating system? We
have chosen UNIX because its design stresses backward com
patibility with previous versions of itself, and thereby protects
the investments of Geac and its customers. This feature allows
the Geac family of computers to communicate with a growing
installed base of UNIX applications within the industry. The
flexibility of this operating system allows Geac to add en
hancements to our existing system without compromising the
hardware or software investment of our customers. Since
UNIX is offered by an increasing number of vendors and used
at an increasing number of universities, the rate of product
innovation will continue to grow rapidly.

All UNIX operating systems are not alike, but efforts are
under way to find unity in this diversity. One approach is
that adopted by AT&T, which has issued the Full System V
Interface Definition, Issue 2, as well as a validation suite. 5

The IEEE's approach is more comprehensive: the P1003
Standard Committee is working on a single UNIX operating
system standard for worldwide use.6

UNIX is by no means without its difficulties. For example,
UNIX's i-node structure poses performance problems in the
handling of large databases, and a single file cannot span
multiple spindles. There is also a general concern about
known bugs and built-in overheads.

362 National Computer Conference, 1987

WHY A RELATIONAL DATABASE MANAGEMENT
SYSTEM?

A database management system is a large, complex collection
of software routines positioned between the user's application
program and the data to be processed. The DBMS controls
access to and manipulation of the data on behalf of the appli
cation programs. Data models, which organize data logically
according to genuine relationships in the data files, have been
developed out of either graph or set theory. 7 The three pri
mary models in use today are the hierarchical, network, and
relational.

All three have advantages and drawbacks. The network and
hierarchical models have reached commercial maturity, while
the relational model has received a great deal of commercial
attention in recent years. Unlike the traditional models, which
have been used in the computer industry for years, the rela
tional model has evolved along with the microcomputer. From
1983 through 1985, the number of commercially available re
lational database systems increased from 40 to more than 100.
It is clear now, with products like DB IIIIII and ORACLE on
microcomputers, and with companies like IBM announcing
DB2 (System R) and Cullinet announcing IDMIR, that many
vendors feel that relational databases represent a viable com
mercial technology.

The relational database model traces its roots to theories
developed in relational mathematics. 8 The artificial set con
structs, intrinsic to the hierarchical and network schemes, are
not relevant to the relational model. Instead, data relation
ships are reduced to simple components and represented di
rectly through views of data relationships. The database itself
is homogeneous, and this homogeneity makes it possible to
define any number of data relationships or logical views of
data, and to process it by performing logical operations on
attributes.

The relational model is a way of looking at data-a pre
scription for the representation and manipulation of data.
This prescription has three components:

1. structure, that is, tables (rows and columns of data)
2. integrity, that is, a means of ensuring, for example, that

every relation (table) has a unique key to identify table
entries or rows, and

3. manipulation, consisting of operators for processing
tables; these operators are straightforward: the select
operator picks out rows; the project operator picks out
columns; the join operator combines two tables.

These characteristics of the relational model provide real
advantages in a distributed transaction processing environ
ment. The relational model generally shields the application
designer from the complexity of storage structures, data defi
nitions and the design of access paths. The labor costs asso"
ciated with database implementation and maintenance are
thereby lowered.

Today, relatively high performance is offered in database
management systems founded on the traditional (hierarchical
and network) models. Nevertheless, the traditional models do
have their drawbacks. The most notable is that they require a
high level of effort on the part of the application designer;

invariably the application designer must specify complex stor
age structures, data access paths, and data definitions. The
network model is also inflexible, in that access paths that are
not predefined when the database is loaded cannot be intro
duced without major restructuring of the database.

One criticism of relational systems is that they are primarily
aimed at supporting query requirements, and consequently
are not well suited for full-scale production and/or transaction
processing. It is true that no existing commercial relational
product can perform as well as, for example, IMS Fast Path.
The reason for that could well be that IMS Fast Path runs on
very large machines, like the Sierra 400. There are, however,
no inherent theoretical or practical reasons why relational
systems cannot ultimately match the top performance of tradi
tional database systems.9

An advantage of the relational model is that it prevents the
application developer from seeing explicit connections or
links between tables (that is, physical pointers), and thereby
avoiding traversal between tuples on the basis of such links. It
also precludes user-visible indices on attributes, and removes
the physical storage structures from the concern of users. The
relational tables are a logical abstraction of what is physically
stored.

The tables in a relational DBMS are a normalized structure.
In systems like IMS and IDMS the physical structure is biased
toward certain applications and machine architectures by the
inclusion of built-in access paths. Consequently, for those
particular applications, the network and hierarchical models
can be very powerful. The relational model, on the other
hand, permits the dynamic creation of access paths through
the use of the manipUlative operators. Since the application is
no longer limited to predetermined access paths, data inde
pendence of the system is enhanced.

In relational systems, in contrast to traditional database
management systems, the theory preceded any implementa
tion. If a relational implementation conforms to this theory,
its behavior in any given situation is completely predictable.

Under traditional database management systems, some
actions may result in unpredictable events. For example, one
application might delete a record which is linked to other
records, with the result that none of these records are acces
sible to other applications.

A standard query language is an important issue because it
renders database definitions and application programs por
table among implementations conforming to the standard.
Both ISO and ANSI have established committees to develop
standard query languages, for both the network and relational
models. The ANSI X3H2 committee is at the draft proposal
stage for the network model. 10 The same committee has al
ready reached agreement on a standard for the relational
model based upon SQL. 11 ISO has also approved this stan
dard. 12

The standard for the relational querj1 language applies to
implementations in an environment that may include applica
tion programming languages, end-user query languages, re
port generator systems, data dictionary systems, program
library systems, and distributed communications systems, as
well as various tools for database design, data administration,
and performance optimization.

The SQL language was developed in 1974 at IBM.13 The .

Transaction Processing Systems on Future Workstations 363

technology explored and developed in System R 14 was sub
sequently exploited by IBM in both SQLIDS15 and DB2.16
Recently, ORACLE and Fujitsu have announced an SQL
product. Last year, INGRES17 introduced their version of
SQL in conjunction with supporting QUEL. QUEL was orig
inally developed in 1974 by M. Stonebraker and others at the
University of California at Berkeley as part of the INGRES
system. Of the 100 or so relational products on the market, at
least 30 have an SQL flavor. 18

In distributed database systems, one important require
ment is that communication traffic be minimized. Relational
database systems have a number of characteristics which make
them an excellent choice in distributed systems. First, the set
handling capabilities within the relational data manipulation
language lead to a more effective use of communication lines;
the system receives one request for each set of tuples re
quired, rather than one per tuple. Under the network model
application programs operate entirely in a one record-at-a
time mode.

Second, the relational model makes it straightforward to
partition tables either vertically (columns) or horizontally
(rows); these partitioned tables can then be easily distributed
across the network. The standard relational operators, join
and union, can be used to reassemble the partitioned tables.
Both these areas present considerable difficulties for systems
based on traditional models.

Third, relational operators are high-level, and for that rea
son they can be optimized in ways essential for distributed
access plan (System R *19).

Fourthly, the relational model provides data independence
for applications. An application program is data independent
if it does not require modification when the database is re
structured or reorganized. Program data independence is pro
vided by hiding from the application program the physical
placement and organization of data in the database. This is
particularly important for location transparency within dis
tributed databases. In traditional systems the application must
use predefined physical pointers to access the data.

An important implication for application development is
that relational systems simplify prototyping. Using a rela
tional database management system it is easy (2-3 weeks) to
design and create a database, build some application (e.g., a
library circulation system), and then run a prototype featuring
actual screens and reports.

THE QUESTION OF PERFORMANCE

We have outlined a number of reasons why relational data
bases and UNIX are good tools for building distributed sys
tems and applications. These tools will allow us to take advan
tage of future developments in hardware technology because
of their independence from any particular hardware.

Developments in large-scale, very large-scale integration
(LSIIVLSI) and integrated circuit (IC) chip technology have
led to package miniaturization, minimal interconnections,
economy of scale, and increased functions on an IC chip. As
a result, more powerful microcomputers are continually ap
pearing. Microcomputers are now available which provide
large main memories (e.g., up to 16MB on a MicroVax II),

support large mass storage devices (e.g., 420 MB drives on a
Micro Vax II), and provide hardware support for memory
management (e.g., the INTEL 80386 and Motorola 68030).
Enhanced communication capabilities, such as Ethernet, are
already readily available. As hardware technology becomes
more sophisticated, more software functions can be em
bedded within the hardware (e.g., memory management and
communication protocols). This provides an opportunity to
increase overall system performance, and in particular, trans
action processing performance.

However, these advantages and trends do not in themselves
guarantee that one can build commercially viable transaction
processing systems, There remains the unresolved question of
performance. To address this concern, we decided to bench
mark a commercial relational database management system
under UNIX in a transaction processing environment.

THE LIBRARY CIRCULATION BENCHMARK

Market requirements for our project dictate a performance of
one transaction per second per $25,000. In today's market,
this corresponds to the cost of a microcomputer with the
performance of a Vax 8650. The purpose of our benchmark
was to determine whether commercial relational database
products would be capable of this level of performance on
microcomputers likely to emerge within the next two years.
INGRES release 4.02 was the relational database manage
ment system tested. INGRES is now marketed by Relational
Technology Inc. and runs on a variety of computers. Since we
were interested in the performance of "standard" commercial
database systems, no tailoring of the INGRES software was
made with respect to the requirements of the benchmark, in
which, by the way, Relational Technology Inc. played no role.

The benchmark chosen was a library circulation system. On
the basis of marketing requirements for a typical library sys
tem, a performance requirement of 5 transactions per second
had been established. This is comparable to the Debit-Credit
transaction benchmark20 in terms of the number of reads and
writes per transaction. The relationship to other transaction
systems is illustrated in Table 1. The Debit-Credit system is
used as a basis for the comparison of transaction processing
systems. Table I lists several different systems, presents their
requirements in transactions per second, and gives a weight
based upon the Debit-Credit system.

TABLE I-Transaction weights

Application Transaction Rate/Sec. Weight

lottery 400.0 tps/cpu 0.01 D-C
800-number 50.0 tps/cpu 0.10 D-C
video text 20.0 tps/cpu 0.20 D-C
credit authorization 10.0 tps/cpu 0.40 D-C
debit-credit 4.0 tps/cpu 1.00 D-C
"real" debit credit 2.0 tps/cpu 2.00 D-C
electronic mail 0.2 tps/cpu 20.00 D-C
phone store 0.1 tps/cpu 40.00 D-C

364 National Computer Conference, 1987

Environment

The benchmark was run on a VAX 8650 (8 MIPS), config
ured with 16 megabytes of memory, and using 120 megabytes
of a 420 megabyte disk spindle. The host operating system was
Ultrix 1.2 (BSD4.2). This configuration reflects our predic
tion of the performance of microcomputers available within a
very few years. Benchmark runs were executed when there
were no other active users.

An INGRES page is 2K bytes, representing four Ultrix
virtual memory pages. During the course of the benchmark
INGRES process cache size varied from 9 to 250 INGRES
pages (18K to 500K bytes).

Ultrix imposed a number of limitations on the benchmark.
In our configuration the available Ultrix lock table resources
and virtual memory are exhausted when ten concurrent pro
cesses using the maximum page allocation per process are
running. When this happens, INGRES cannot proceed and
shuts down gracefully; INGRES processes that have sufficient
resources continue to execute. Lock table size and available
virtual memory size are system parameters; a system recon
figuration is necessary to set different values. Another con
straint on the benchmark imposed by Ultrix is that a max
imum of 24 processes are permitted for each login session; this
is also an operating system parameter. Since each INGRES
invocation requires a "front end" and a "back end" process,
a maximum of twelve process-pairs could be run at once. In
practice, this number is actually a bit lower because of the
Ultrix process required to maintain a user session.

Methodology

The benchmark library circulation system involves three
types of transaction: charge a book, discharge a book, and put
a hold on a book. A skeleton of the current Geac library
circulation system was used in the design of the benchmark.
This skeleton was implemented on facilities provided by
INGRES.

The benchmark data was taken from a medium size public
library in British Columbia, Canada. This data was chosen
because it is used internally at Geac for quality assurance
testing of the current circulation system. The original data
base consisted of 56,000 library patron records and 222,000
library item records. Because of restrictions on space, the
database size was reduced to 20,000 patron records and
120,000 library item records. A smaller database of 1000
patron records and 2100 library item records was used for
prototyping and validation.

Five tables were used in the benchmark database: patron,
item, statistics, library events and requests. These are sum
marized in Table II. As noted, three types of transactions
were used within the circulation system. A Charge transaction
is iliustrated in Figure 1; input-output operations for the dif
ferent transaction types are summarized in Table III.

Results

A summary of the benchmark results appears in Table IV.
Each table entry represents one run of the benchmark, which

TABLE II-5ummary of table design parameters

Size
Table Primary Key (bytes)

patron patron barcode 451
item item barcode 123
statistics type 25
events item barcode 94
requests patron barcode 75

Get patron tuple via patron barcode.
Get item tuple via item barcode.

Number of
Attributes

28
19
6

13
8

If item is reserved for another patron, reject charge.
Review patron's outstanding holds. If conflict, reject charge.
Update patron tuple.
Update item tuple.
Append statistics tuple.
Append event tuple.

Figure 1---8ample transaction: Charge

TABLE III-Input/output operations for transaction types

Transaction

Charge
Discharge
Hold

Retrieve

2-3
6

2-3

Replace

2
2-3
1-2

Delete

o
1-2
o

Append

2
1
2

TABLE IV-Benchmark results

Cache i Cache Number! Total i Elapsed Cache Cache I Cache

!'11~: Pro<: r£P":':t';:: I/Os request read write TPS
18265- --26007- -2i693T6~t -2.4
18657 26103 21746 I 6266 2.5

9 8 3 ! 215.9 I 515 17847 26097 21807 I 6208 3.6 .
, 9 8 ' 4 ! 216.7 I 518 18376 26242 21920 i 6222 3.6

23 23 ' 11 194.9 I 700 16499 26017 13905 I 6281 2.7
23 23 i 2 i 215.6 i 560 17355 26070 17661 I 6235 3.3 '
23 22 ! 3 I 211.91 511 17750 26197 18814 6259 3.7
23 22 I 4 i 219.6 i 485 17484 26201 19166 6217 3.8

125 124 i 1 ;~~:; !

607 16778 26007 104361 6276 3.0
125 124 2 489 15820 26066 14412 6247 3.8
125 124 3 203.9 I 470 16420 26221 158291 6276 4.0
125 124 4 216.1 I 441 16445 26298 16355 ! 6242 4.2 '
250 249 1 "', I 565 14562 26007 8035

1

6276 3..3
250 249 2 214.8 476 15424 26095 12777 6255 3.9
250 204 : 3 209.1 427 15495 26100 14688

1

6210 4.3
250 175 I 4 224.2 452 16286 26354 16024 6277 4.1

consisted of running the same 2000 transactions to comple
tion. The columns indicate the cache sizes available to and
used by each INGRES process, the number of INGRES
processes executing concurrently, the total CPU time, the
elapsed time, the number of direct I/O requests (i.e., to the
operating system to access the disk), cache request-the num
ber of times the cache is accessed to read a data page, cache

Transaction Processing Systems on Future Workstations 365

read-the number of times the cache must read a page from
the disk, cache write-the number of times the cache writes a
page to disk, and the number of transactions per second. The
number of transactions per second is the number of trans
actions divided by the elapsed time. The following obser
vations can be made regarding these results:

1. The best performance achieved was 4.3 transactions per
second. The worst result observed was 2.4 TPS.

2. The number of direct IIOs is of primary importance.
Performance decreases with an increase in the number
of direct IIOs.

3. As the size of the INGRES process cache increases, the
number of direct IIOs and the number of cache reads
decreases.

4. The numbers of cache requests and the number of cache
writes remain relatively constant, independent of IN
GRES process cache size.

5. The ratio of cache reads to direct IIOs is significant. An
increase in the ratio decreases elapsed time. This is,
however, of secondary importance to the number of
direct IIOs. An increase in the number of concurrent
processes causes an increase in this ratio.

6. When the number of direct IIOs is constant and the
number of concurrent processes is increased, perfor
mance improves.

7. There is a strong correlation between the number of
concurrent INGRES processes and the use of the avail
able cache per process. Too many concurrent processes,
however, create overhead as a result of competition for
access to the data. Best performance is achieved at the
point where the addition of another concurrent process
causes a less than maximum use of available cache.

Experiments varying the item and patron table structures
were performed on the small database with a cache size of 23
pages per INGRES process. These two tables are modified by
every transaction. Table V presents these results. The IS AM
access method provided the best results for our data. The
hashing based storage structure failed to provide reasonable
performance, since the keys in the tables were unsuitable for
the INGRES hashing algorithm. The B-tree access method,
used by the current Geac circulation system, is available with
INGRES 5.0. This access method could offer an additional
improvement in performance.

TABLE V-Benchmarks with varying file structures

10 cache
Item Patron procs reqs reqs read write TPS

hash hash 1 71783 145888 144174 5203 0.4
hash hash 2 76134 151522 144123 5204 0.4
ISAM hash 1 29736 76033 70307 4197 0.9
ISAM hash 2 35122 82937 71144 4198 0.8
ISAM ISAM 1 10002 13543 7133 4034 2.8
ISAM ISAM 2 10471 13576 7732 4036 2.9

SUMMARY AND CONCLUSIONS

Relational database management systems are a viable option
in commercial transaction processing. The combination of a
relational database management system and the UNIX. oper
ating system offers savings in development cost, portability
among vendors and computer architectures, and the ability to
take advantage of future technological innovations. UNIX is
a solid platform for distributed database management sys
tems.

UNIX and relational database management systems were
first implemented, and first achieved commercial success, on
small computers. They are now becoming commonly available
on large and very large computer systems.

The benchmark experiment demonstrated to our satis
faction that a relational database management system can
provide sufficient performance to meet market demands. In
order to achieve commercial success in our market area, we
must reduce the cost of a TPS. This reduction can be achieved
only when the performance of the VAX 8650 is made available
on a small computer like the Micro Vax II. Both computers use
the 32-bit word size required to run a large database manage
ment system efficiently. The benchmark results indicate that
the critical performance factors are the disk access time and
the size of main memory. The minimum main memory size
of the Vax 8650 is already available on the Micro Vax II.

We limited the benchmark to a single disk spindle, in order
to match as closely as possible the hardware configuration of
existing microcomputers.

Since direct IIO is the most critical factor in the perfor
mance of the system, in situations in which more than one disk
is available, the tables could be stored in such a way as to allow
parallel disk IIO. In our system, for example, patron and item
tables would then reside on different disks.

Having started with the hypothesis that the relational model
is capable of sufficient performance, we have reached the
conclusion that by using one of several commercially available
relational database management systems we can build a com
mercially successful library transaction processing system.

REFERENCES

1. Nauman, John, "ENCOMPASS: Evaluation of a Distributed Database/
Transaction System." Database Engineering Newsletter, 5 (1982) 4,
pp.37-41.

2. Information on the Geac operating system is available from Geac Com
puters International, 350 Steelcase Road West, Markham, Ontario,
Canada, L3R-1B3.

3. mM Corporation. Information Management System/Transaction Processing
Information Manual, mM Form no. GH20-1260.

4. Date, C.J. Relational Database-Selected Writings, Reading, Massachu
setts: Addison-Wesley, 1986, p. 66.

5. AT&T System V Interface Definition, Spring, 1985, Issue 2.
6. IEEE Computer Society. "IEEE P1003, Working Group on Portable Oper

ating System for Computer Environment," IEEE, 1987.
7. Rustin, R., ed. "Data Models: Structure Set vs. Relational," Proc. ACM

SIGMOD Workshop on DatlJ Description, Access and Control, (vol. 11),
May, 1974.

8. Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, 13 (1970) 6.

9. Date, C.J., and Codd, E.F. "The Relational and Network Approaches:
Comparison of the Application Programming Interface," Proc. 1974 ACM

366 National Computer Conference, 1987

SIGMOD Workshop on Data Description, Access and Control, (vol. 11),
May, 1974.

to. X3H2 (American National Standards Database Committee) Draft Pro
posed Network Database Language, Document X3H2-84-1 , 1anuary, 1984.

11. X3H2 (American National Standards Database Committee) Draft Pro
posed Relational Database Language, Document X3H2-84-2, January,
1984.

12. ISO TC97/SC21IWG3 N147 and ANSI X3H2-86-27, "Database Language
Extended SQL," October, 1986.

13. Codd, E.F. "A Database Sublanguage Founded on the Relational
Calculus," Proc. 1971, ACM SIGFIDET Workshop on Data Description,
Access and Control, November, 1971.

14. Blasgen, M.W., et. al. "System R: An Architectural Overview," IBM
System Journal, 20 (1981) 1.

15. IBM Corporation. SQLlData System General Information, IBM Form no.
GH24-5012.

16. IBM Corporation. IBM Database 2 General Information, IBM Form no.
GC26-4082.

17. Information on INGRES is available from Relational Technology Inc.,
Alameda, California.

18. Date, C.J. "Interview Part 1," Data Base Newsletter, II (1983) 5.
Date, c.J. "Interview Part 2," Data Base Newsletter, II (1983) 6.

19. Mohan, c., B. Lindsay, and R. Obermurk. "Transaction Management in
the R * Distributed Database Management System," IBM Research Report
RJ 5037, IBM Research Laboratory, San Jose, California, February, 1986.

20. Dewitt, D.J. "Benchmarking Database Systems: A Systematic Approach,"
Proc. 9th International Conference on Very Large Databases, Florence,
Italy, November, 1983;

SURF: A semantic update and retrieval facility

by FRED MARYANSKI and DARRELL STOCK
University of Connecticut
Storrs, Connecticut

ABSTRACT

The definition and design of a query language based on a semantic data model and
targeted for personal workstations with color graphics is presented. The language,
SURF, contains a browsing facility which permits the user to learn the structure of
the database schema by exploring diagrams used in the database design phase. By
using the browser, the user can create forms upon which the database operations are
expressed. SURF queries are formulated by traversing diagrams and filling forms
thus minimizing the keyboard input required of the user. Color is also utilized in the
composition of complex Boolean expressions. The integration of a graphical inter
face with a semantic data model is intended to simplify database access for the
nonprogramming workstation user.

367

INTRODUCTION

Motivation and Problem Solution Overview

The nature of interfaces to database systems is fundamen
tally dependent upon the functionality of the computing
system and the conceptual model offered by the database
package. Many of the current generation of database query
languages provided keyboard directed interfaces to a tabular
relational model. The shortcoming of conceptual models such
as the relational model is that they present a limited set of
descriptive options to the end user. The user is forced to map
a mental image of the problem space into a collection of flat
tables. Recently, a number of researchers have embarked on
studies of a new generation of semantically rich conceptual
data models which would permit the description of data in a
manner closer to the user's perception. This class of data
models is generally known as semantic data models. 1, 2

Concurrent with the evolution of semantic data models is
the growth of personal workstations from purely ASCII char
acter oriented devices to systems offering a variety of pointing
devices, powerful graphical capabilities, and bit map color
displays. It seems clear that the next generation of database
query facilities must exploit the functionality of modern per
sonal workstations and semantic data models to provide the
end user with a rich, yet simple, interface to databases. 3,4,5

The above observations have led to the definition and
implementation of the SURF query facility. 6 SURF is based
upon the semantic data model defined by Peckham7 as part
of the Data Model Compiler project at the University of
Connecticut.8 In order for a personal workstation to support
SURF, it must provide bit map graphics with color and a
mouse. The initial implementation of SURF utilized a Unix
workstation which offers extensive graphical facilities beyond
those required by the query facility. The software for the
DMC project of which SURF is a component is presently
being moved to a less powerful, Unix-based, personal work
station. While SURF is implemented in C under Unix, the
choice of both the language and the operating system are
independent of the basic principles of the query facility.

Design Objectives

The design of SURF was driven by the following parame
ters in order to produce a conceptually pleasing database
access facility.

1. The ability to tailor the conceptual data model to the
mind set of the end user:

SURF: A Semantic Update and Retrieval Facility 369

SURF is designed upon a semantic data model so that
the end user may interact with the database using the
concepts of hislher own discipline.

2. The provision of a graphical interface for query formu
lation:
Positional information and screen context are exploited
in order to simplify the task of the end user.

3. The ability to determine the structure of the database in
a straightforward manner:
A browsing facility supports the user's need to examine
high and low-level details of the schema.

4. Automation of the details of integrity and consistency
maintenance:
Semantic integrity constraints are enforced to avoid in
advertent creation of inconsistent results.

QUERY LANGUAGE CLASSIFICATION

In the classification scheme of Lochovsky and Tsichritzis,9
query languages are categorized as keyword, by-example,
natural language, graphic, or multimedia. SURF combines
features of by-example and graphic languages and is most
closely related to QBE/OBE10 and LID.ll

THE SEMANTIC DATA MODEL

The data model employed by SURF is an extended entity
relationship model with a subtype/supertype inheritance
structure for entities which are defined in terms of their prop
erties, operations, and constraints.7 A graphical application
design tool, DBDT, 12 assists the designer in the specification
of the entities, relationships, operations, and constraints of a
given application domain. SURF's role is to map queries ex
pressed using a combination of tables and DBDT diagrams
into transactions against the semantic database.

Relationships

In general, semantic data models2 can be distinguished by
their built-in relationships. The data model employed by
SURF7 directly supports four types of relationships: IS-A,
reference, nest, and association. The IS-A relationship is uti
lized to express generalization/specialization among entity
types. The form of IS-A employed here is a template-oriented
inheritance mechanism which is very strict in terms of inher
itance of properties but does provide for overriding defaults
and refining constraints at the subtypes.

The latter three fundamental relationship types are the
basis for all user-defined relationships. They have the func-

370 National Computer Conference, 1987

tionality shown below. The work of EI-Masri and Wieder
hold13 strongly influenced the definition of these relationship
types.

1. Reference-a mapping from one entity to another. A
reference is realized as an attribute of the referencing
entity.
EXAMPLE-a STUDENT entity references a PRO
FESSOR entity through the attribute ADVISOR which
is of type PROFESSOR.

2. Nest-a mapping from one entity, the Nest Owner, to a
set of entities, the Nest Members. A nest is a set-valued
attribute of the owner.
EXAMPLE-a STUDENT entity contains a nest of
the COURSE entities as its COURSE_REQUEST
attribute.

3. Association-a many-to-many mapping between two or
more entity types. Associations are represented as inde
pendent components of the model with their own prop
erties, operations, and constraints.
EXAMPLE-TAKE is an association between the
STUDENT and COURSE entities that has GRADE as
an attribute.

Semantic Integrity

Rules are included to preserve the semantic integrity and
consistency of the database. Integrity constraints must be
evaluated each time an operation is executed. This involves
determining which (if any) relationships an entity participates
in and then evaluating the appropriate rules for those relation
ships over the specified operation. The following constraints
are automatically enforced by SURF.

1. If an object is to be inserted as a nest member, that
member must exist as an entity object.

2. An object instance cannot be deleted if it is being used
as a nest member.

3. The deletion of a nest owner instance implies the dele
tion of all nest objects owned by it.

DATABASE
DESIGNER

,,\. -~~/
)~ /.'-

SURF
USER

/---.,

SURF

.""Ol/',~Ial (RETRIEVAL i I SEMANTIC 'I I
" -- r-J N ~ UPDATE ~ DATARASF J & ~ PROCESSOK) L-I ____ I I

/" " F
/, A I

~ I
Figure l-Organization of semantic database system

Th. fo neYin, is ~ diction~,.g of it.ms for- th. UN IVERS lTV d~t~bas.,

ASSOCIATION
DIAGRAMS

Comput.r C.nt.,.

Alumni

IS-A
DIAGRAMS

Administr ~tion

Bui1diniJs

IS-A DIAGRAMS

ISOLATED
EIITlTIES

Sponso,.

ASSOCIATION DIAGRAMS fOto:t- _AID> "'ITO'"

Figure 2-Diagram menus

4. If an object instance is to be inserted as a reference that
reference instance must exist as an entity object.

5. An object instance cannot be deleted if it is being used
as a reference.

6. The deletion of a referencing instance implies the dele
tion of all reference objects owned by it.

7. An object instance cannot be deleted if it is being used
as an association participant.

8. All association participant instances must exist as entity
objects before an association instance can be inserted.

9. Insertion of a subtype instance implies the insertion of
one instance of each related supertype.

10. Deletion of a supertype instance implies the deletion
of the corresponding subtype instances related to the
supertype instance.

THE SURF QUERY FACILITY

A high-level view of the overall semantic database system is
illustrated in Figure 1. A database designer (database admin
istrator) applies the DBDT tool to specify the structure of the
semantic database. SURF is driven by the metadata generated
by DBDT. The major elements of SURF are:

SCHEMAMtNU

SCROLL

BROVSER

CREATE FORMS

SYITCH DI~GRAM

I. QUIT
i lJM)ERGR liD I I GRA~ I I P~OFESSOR I I SECRET IIRY I

';;.,./
I fIIISTRUCTOR I

Figure 3--IS-A diagram

1. A browser program which permits database structure
analysis

2. A retrieval/update processor which supplies the re
sources to interact with the semantic database and the
SURF user

Browsing a Semantic Database

When the design phase is complete, the nonprogramming
user can activate the Browser which provides a visual
representation of the database structure. A SURF browsing
session consists of selection, navigation, and tailoring.

Selection

In the SURF environment, a semantic database consists of
a collection of diagrams. When a session is initiated, the user
is presented with lists of the diagrams of the database as in
Figure 2. Note that isolated entities are those which have not
been included in any diagrams. The mouse icon at the bottom
of the screen provides the user with a reminder of the actions
associated with each button. Figure 3 illustrates the contents
of the screen following the selection of an IS-A diagram.

Navigation

The navigation facility permits the user to examine the de
tail of database objects while retaining an overall perspective
of the schema. When the user selects an object, a window
describing one level of detail appears. Successive levels can
be obtained by selecting complex attributes of the selected
entities as in Figure 4. In the navigation facility, the system
indicates the relationship among entities and attributes by
lining up the top portion of a window with the entity from
which it is generated. Shading is employed to indicate the
most recently activated object.

SENATORS

NAME

AGE

CABINET ID

SPOUSE NAME

A6E

SPOUSE

Figure 4-Navigation

SURF: A Semantic Update and Retrieval Facility 371

I DElETE I MODIFV I
stude-nt advisor re-gcar-d

SCHEMA MENU

id id title I SCROLL

seo!:tion i
credits I

BRO ... SER
ag~

gpa office

credits salar,

~----~~~----~~=-----;.----~ ~~T-RA-~~AC-T1-0N-M~[-NU~
Q

to
r~~ Djahbase Opentien

Activat./lnactivat .. Attribut.. 0 u-r- Quit

- SCROLL

nCPAND ... INDO ...

~~~~ij 
EXECUTE TRHSACTH 

CLE loR TRHS ACTN 

I QUIT 

Figure 5-Transaction formulation environment 

Tailoring 

Tailoring involves selecting the attributes of the entities to 
appear on the query forms. If no tailoring is performed, all 
attributes of the selected entities will be available at query 
formulation time. Tailoring is mouse-selectable and is visual
ized by changing the color (highlighting) of database objects 
and attributes from gray to orange. 

The Retrieval! Update Processor 

Forms are used to represent the entities and relationships of 
the semantic data model. Query transactions are expressed by 
form filling and mouse maneuvering. Figure 5 presents an 
example of the screen immediately after browsing and before 
transaction formulation. The steps in the specification of a 
query are: 

1. Select the operation (RETRIEVE, INSERT, DELETE, 
MODIFY) 

2. Specify the selection criteria (or fill in data on insertion) 
on the forms 

3. Select the attributes for output (default is output all) 

Figure 6 expresses the query "Retrieve the names of all 
students with GPA greater than 3.8." The output of a SURF 
retrieval appears in tabular form, listing values for mouse
selected attributes. 

One of the more difficult problems facing developers of 
query languages is the expression of disjunctive and conjunc-

E~D~ INSERT I DELETE I MODIFY I 
student 

id 

age 

gp. ) 3.8 

credits 

Figure 6-SURF retrieval 



372 National Computer Conference, 1987 

tive queries. The typical end user who has not been schooled 
in Boolean or Aristotlean logic may tend to use "AND" and 
"OR" interchangeably in the verbal expression of queries. 
SURF attempts to solve this dilemma through the use of 
colors. Using the function keys, terms of the selection expres
sion can be entered in any of four colors. A boolean AND is 
undertaken on entries appearing in the same color. A boolean 
OR is undertaken on entries appearing in different colors. 
The use of colors provides the user with a straightforward 
visual representation of complex queries. 

Insertions involve filling in attribute values on the forms 
identified in the browsing process. Key attributes require val
ues while non-key attributes will receive a null value if the user 
does not elect to supply information at that time. Null values 
may be later assigned values by using the Modify operation. 
Figure 7 illustrates the insertion of the ID, NAME, AGE, and 
ADVISOR for the student James. Null values will be stored 
in the GPA and CREDITS attributes. 

SURF deletions are expressed by placing selection criteria 
next to the appropriate attributes. The same rules as for 
retrievals are followed. For example, Figure 8 presents the 
query which deletes all students whose advisor is Brown. The 
highlighting of the STUDENT entity indicated that students 
are to be deleted. 

A modification operation entails first identifying the ob
jects to be altered and then specifying the replacement values 
for the appropriate attributes. Attributes to receive new val
ues are identified by selecting the attribute name which results 
in the name being shaded. If an attribute is to be used for both 
identification and value replacement, then entries are made 
on multiple lines within the field for that attribute. SURF 
permits multiple lines per attribute for the expression of this 
and more advanced operations.6 The rule for interpreting 
modification operations is that the value on the last line of a 
shaded attribute is used as the replacement value. This feature 
is illustrated in Figure 9 in which all students with grade point 
averages greater than 4.0 and with less than 60 credits, have 
their grade point average set to 4.0. 

A design goal for SURF was to provide straightforward 
expression for the most common operations. As demon
strated above, the context provided by the diagrams and 
forms permits the statement of queries expected of the typical 
end user in a rather simple fashion. For a discussion of the 
handling of more complex operations, see the work by Stock.6 

The Experienced SURF User 

One of the more serious problems facing the designer of 
database query facility is that of user maturity. Features de-

I RETRIEVE I ·n~<1 DELETE MODIFY 
" 

student advisor 

id 007-11 id 1 444- 1"1 

name james name brown 

age 20 age 

vpa office 

credits salary 

Figure 7-8URF insertion 

I RETRIEVE INSERT i ~ MODIFY I 
:~Oimit advisor 

id Id 

name name brown 

age age 

gpa office 

credits salary 

Figure 8-SURF deletion 

signed to guide the first time user through a query session can 
become annoying to the person who has worked with the 
language for six months. SURF addresses this issue in two 
ways: 

1. Macros--The experienced user who has repetitive tasks 
to perform may define a sequence of screens as a macro 
and call this operation when required. 

2. Defaults--The user who is familiar with the structure 
and contents of the database can shortcut the browsing 
process by merely selecting the entities from a diagram 
and then moving to the transaction menu without select
ing specific attributes. As a default, the system will gen
erate a form containing all the attributes of the entity. At 
worst, the user will obtain a superset of the attributes 
required as the response to the query. However, it is a 
simple matter for an individual familiar with the data to 
visually select the attributes of interest from the screen. 

CONCLUSION 

Summary 

SURF is a database query facility for the new generation 
of personal workstations and semantic data models. By ex
ploiting current workstation and database technology it offers 
end users straightforward access to data which is represented 
in a clear conceptual model. The semantic richness of the data 
model allows the representation of information in a manner 
that is close to that of the end user's perception of the en
vironment. Thus, the end user is not forced to learn the termi
nology and internal organization of the database system. 
Through the use of diagrams, forms, color, and a pointing 
device, a context is established for each operation. Therefore, 
the user enters simple selection expressions and data values in 
order to specify database operations. The end user does not 
use the keyboard to input keywords or any other form of 
descriptive text. 

RETRIEVE I !NSERT DELETE 

student 

id I 

age 

credits 

) 4.0 
4.0 
( 60 

Figure 9-SURF modification 



Status and Future Plans 

The initial implementation of SURF has been completed 
recently.6 Plans are to exercise and enhance SURF as the 
Data Model Compiler project continues to investigate the 
production of semantically rich database management sys
tems. All components of the overall system are being moved 
to a smaller, Unix-based personal workstation. 

As personal workstations continue to grow in functionality 
and the quality of their interfaces increases, database query 
facilities will take advantage of these features to offer the end 
user more options for the expression of database operations. 
With similar advancements in the data modeling area, the 
possibility of productive database manipulation by the true 
casual user could be realized. 

ACKNOWLEDGEMENT 

The research was supported in part by a grant from the 
National Science Foundation, ECS-8401487. 

REFERENCES 

1. Brodie, M., J. Mylopoulous, and J. Schmidt (eds.). On Conceptual Mod
eling, Springer Verlag, 1984. 

SURF: A Semantic Update and Retrieval Facility 373 

2. Peckham, J. and F. Maryanski. "Semantic Data Models." TR CS-86-15, 
Computer Science and Engineering Dept., University of Connecticut, 
November, 1986. 

3. Herot, C. "Graphical User Interfaces." in Y. Vassilou (ed.), Human Fac
tors and Interactive Computer Systems, Ablex Publishers, 1984, pp. 83-103. 

4. Larson, J.A. "A Visual Approach to Browsing in a Database Environ
ment." Computer, 8 (1986) 6, pp. 62-71. 

5. McDonald, N. "A Multi Media Approach to the User Interface." in Y. 
Vassilou (ed.), Human Factors and Interactive Computer Systems, Ablex 
Publishers, 1984, pp. 105-116. 

6. Stock, D. "SURF: A Graphical Language for Semantic Database Inter
action." M.S. Thesis, Computer Science and Engineering Dept., Univer
sity of Connecticut, December, 1986. 

7. Peckham, J. "A Formal Model for the Design of Semantic Databases." 
M.S. Thesis, Electrical Engineering Computer Science Dept., University of 
Connecticut, June, 1985. 

8. Maryanski, F., J. Bedell, S. Hoelscher, S. Hong, L. McDonald, J. Peck
ham, and D. Stock. "The Data Model Compiler: A Tool for Generating 
Object-Oriented Database Systems." International Workshop on Object
Oriented Database Systems, September, 1986, pp. 73-84. 

9. Lochovsky, F.H. and D.C. Tsichritzis. "On Evaluating Interactive Query 
Languages." Information Sciences, 29 (1983), pp. 93-113. 

10. Zloof, M.M. "QBE/OBE: A Language for Office and Business Auto
mation." Computer, 14 (1981) 5, pp. 13-22. 

11. Fogg, D. "Lessons from a 'Living in a Database' Graphical Query Inter
face." ACM SIGMOD Conference, June 1984, pp. 100-106. 

12. Maryanski, F. and S. Hong. "A Tool for Generating Semantic Database 
Applications." IEEE COMPSAC, October, 1984, pp. 36&-375. 

13. EI-Masri, R. and G. Wiederhold. "Properties of Relationships and 
their Representation." AFIPS, Proceedings of the National Computer 
Conference, (Vol. 49), 1980, pp. 319-326. 





Text database systems 

by F.J. SMITH 
The Queen's University of Belfast 
Belfast, Northern Ireland 

ABSTRACT 

A text database system, often called an information retrieval system, is designed to 
process a text model of the data, viewed as an ordered sequence of documents, 
paragraphs, sentences, words (i.e., as a list structure). Although relations are sets 
of tuples, and therefore unordered, the relational model can still be used success
fully for text, but surprisingly it is shown that at the physical level the two apparently 
different approaches are likely to be identical. However, since the human view of 
text is much closer to a list than to a relation, the text model is more appropriate 
for document handling. In addition, when tuples include a large amount of free text 
(as in the "soft" sciences), and when queries involve text processing more often 
than the eight operations of relational algebra, then also the text model is more 
appropriate. 

375 





INTRODUCTION 

Data in the form of free text, produced on word processors, 
are rapidly growing in quantity and importance, and within a 
few years will probably outweigh the type of conventional 
computer data which are stored in relational, hierarchical or 
network databases. Text can also be stored in these con
ventional databases, but it is generally more straightforward 
and efficient to store text using database structures specifically 
designed for text. These text database systems have often 
been called information retrieval systems/ and perhaps for 
this reason, in spite of their obvious importance and wide use 
in industry, commerce, and information services, they are 
often still not mentioned in books on database systems. 

A text database is a system for the storage, manipulation 
and retrieval of data stored in the form of free text, that is, 
stored as an ordered sequence (i.e., as a list) of alphabetic, 
numeric and control characters which normally can be printed 
directly onto paper. Any text prepared on a word processor 
can therefore be considered as the basic data of a text data
base, and generally word processors are now the means of 
data input and editing. 

A text database will also have a facility for retrieving infor
mation from the data (hence the name Information Retrieval 
System); this is usually achieved by finding documents or parts 
of documents which match a search on a combination of words 
(equivalent to the operations of selection and projection in a 
relational database). For example, the search: 

"Find all Documents containing Word Processor and Data
base" 

should find this paper amongst others. 

However, there is one fundamental difference between a 
text database and a relational database. A relational database 
is able to answer directly a limited number of queries put to 
it about the entities and attributes described by the database, 
but in a text database a human must read the retrieved docu
ments, and possibly use a great deal of inferred knowledge 
about the entities mentioned in the documents, before obtain
ing the answer to some query. So the query 

Which database can I use with my wordprocessor? 

cannot be answered directly by a text database although it can 
find this paper, which provides one possible answer to the 
query. A long term aim is to design a text database system 
which can answer such a question, but we are many years away 
from this. 

At best, for now, we can use some linguistic features such 

Text Database Systems 377 

as synonyms, lemmas, or homographs to add to the "intelli
gence" of a search. We have built such a system in Belfast, 
called QUILL, running on a VAX.2 It has an inverted file 
structure, based on an index to all of the \"I/ords of the text. 
Although such an inverted file structure is most common in 
text databases, there are other possibilities (e.g., serial 
searching with special fast processors3 or clustering l

), but 
these need not concern us in this paper. 

Just as we define a "relational model" based on a relational 
structure, so we can define a "text model" based on a free text 
structure. The "text model" can be defined as a data model of 
an enterprise or of part of the real world, where the data of the 
model takes the form of free text. Thus a report by a manage
ment consultant on a company, including text and tables, is a 
text model for the company, a model more appropriate for a 
Director's meeting than a relational model on their main
frame. 

Text does not have to be stored in a text database. In the 
next section, we first discuss how text can be stored in a 
relational database and alternatively how a relation can be 
stored in a text database, after noting that neither model is 
entirely appropriate in many real examples, particularly in 
science and engineering. We then show that these two appar
ently different ways of storing text are almost identical in their 
implementations, so that the two are, in fact, similar. 

STORING TEXT IN A RELATION 

In the literature, a number of authors have discussed the 
storage of text within the relational mode1.4,5,6 At first sight, 
this seems difficult because of the fundamental difference 
between the basic structure of free text and a relation. Text is 
essentially an ordered sequence of the basic units of data, 
words, and delimiters such as punctuation marks, spaces, and 
linefeeds (i.e., it is a list structure).4 The order is obviously 
vital and it is rare that any two words or sequence of words, 
even in the largest text, can be exchanged without affecting 
the meaning or information content of the whole. 

On the other hand, a relation is a set of tuples defined over 
a set of attributes. So, by the definition of a set, the basic units, 
tuples and attributes, are not ordered, quite different from 
text. It would therefore not be surprising if it was very difficult 
to use a relational data model, completely unordered, to store 
text data, completely ordered. 

However, each item of a list has associated with it an im
plied number, giving the position of the item in the list. For 
example, the implied number for the 2nd item is the number 
2. If we form a tuple of the implied number and the corre
sponding item we can turn the list into a relation. So, noting 
that text is a sequence of characters we could number each 



378 National Computer Conference, 1987 

character and produce a valid relational model for the text, 
based on the relation: 

CHAR( character#, character) (1) 

However, it would be more realistic, noting that text is made 
up of a sequence of documents, made up of sentences, made 
up of words, to create a relation6 

WORD-SENT-DOC 
(doc#, sentence#, word#, word) (2) 

in which each word is stored in one tuple and the ordering is 
recorded using the doc#, sentence# and word#. Both of 
these relations are obviously wasteful of storage space, partic
ularly when the text is large. Alternatively, less space is 
wasted by storing a whole sentence, with a variable length, as 
a component of each tuple of a relation: 

SENT-DOC (doc#, sent#, sentence) (3) 

The "sentence" component is now a piece of free text, and 
this relation has the advantage that a sentence is arguably the 
basic semantic unit of text. . 

However, the relations CHAR, WORD-SENT-DOC, and 
SENT-DOC are unusual because none of the attributes con
tains any semantic information, as we normally expect in a 
relation. For example, consider the relation for the city where 
each employee of a company lives. It might be: 

HOME (Employee#, Employee-surname, City) 

then for Mr. Denver living in Denver we would need the tuple 

1372, Denver, Denver. 

Note that the semantic information of each component 
"Denver" is incomplete without adding the semantic informa
tion in the attribute. 

But in the above 3 relations the last attributes, "character," 
"word" and "sentence" are really types rather than attributes 
and add no semantic information to the components. The 
entities to which they refer are linguistic entities (e.g., a 
"word") not the entities described by the text model, given by 
the meaning of the words: they are at a different level of 
abstraction. They do not model the real world, but rather the 
language describing the real world. 

REPRESENTATION OF A RELATION 
IN THE TEXT MODEL 

It is always possible to store the data in a relation in the 
form of free text. For example, consider the simple relation in 
Table I on Atomic Masses. 

In the unlikely event of a free text structure being used for 
the information in Table I, it could be stored as in Table II. 
Table II has exactly the same information content as the re-

TABLE I-Atomic mass relation 

Typical example of a simple relation where the components of each 
tuple belong to a well defined domain (e.g., the atomic numbers are 
all integers between 1 and 104). 

Atomic Atomic Atomic 
Name of Atom Symbol Number weight 

Hydrogen H 1 1.008 
Helium He 2 4.003 
Beryllium Be 4 9.015 
Oxygen ° 8 16.000 

lation in Table I and the software to perform the operations of 
selection and projection, for example, 

"Find the atomic mass of Lithium" 

can be performed just about as easily with a relational struc
ture as with the free text structure. However, a join with 
another relation, such as the relation, 

Atomic-Resistivity (Atomic Symbol, Resistivity) 

to answer a query such as 

"Find atoms with highest resistivity and with atomic mass 
<16" 

is more difficult to perform with the text structure (although 
not inordinately so if the syntax of the text is restricted to 
structure and forms similar to those above) and, of course, the 
text takes substantially more storage space. Therefore, al
though it poses an interesting academic project for a student, 
no one would seriously consider the storage of the data in the 
relation in Table I in a text structure. Similarly, I contend that 
no one should seriously consider the storage of the content of 
this paper in a relational database rather than in a text data
base. 

However, often when we want to store data in a computer 
system, as we will show, the situation is not as clearcut as it is 
in the above two examples. These grey areas are apparently 
more common in science and engineering than in business or 
commerce, because much scientific data are not exact, partic
ularly but not only in the "soft" sciences. In business, how-

TABLE II-Atomic mass information as free text 

The atom Hydrogen, with atomic symbol H, has an atomic mass of 
1.008 atomic units. The atom Helium, symbol He, has atomic mass 
4.003 units. The atom Beryllium, symbol Be, has atomic mass 9.015 
units and the atom with symbol 0, Oxygen, has atomic mass 16.000 
units. 



ever, data are usually precise. A bank balance and account 
number have precise values and can therefore be represented 
perfectly in a relation in which the attributes are: 

Account# Balance 

and all of the information on balances corresponding to ac
count numbers can be suitably represented in a relation: 

Account-Balance (Account#, Balance) 

But this is not always so. Take, for example, the attribute 
"telephone number." We could easily define a precise domain 
for such an attribute, and with a little more difficulty, allow 
telephone numbers in foreign countries. But consider the fol
lowing example. If you were to call me and ask for my tele
phone number, so that you could contact me at any time, this 
is the information I would give you: 

Telephone number 
"Office: in the morning, 232-245133 Ext. 3229, 

in the afternoon, 232-661111 Ext. 3234. 
Home: weekdays, 232-703235 

but I spend most of the Summer, Christmas and Easter 
vacations and many weekends at an address which has the 
number, 396-86684." 

So, to communicate all of this information to the end user 
of a database, this whole text would have to be made the 
component corresponding to the attribute "telephone num
ber" and the processing of this component would now involve 
"intelligent" text processing, not available in databases out
side University research systems. 

In spite of the above example, this kind of qualification or 
enlargement of data items is probably not often necessary in 
commercial databases. It is more common in science and en
gineering. An examination of any handbook of engineering 
data or source of scientific data will normally show the data 
displayed in tables, which appear to be exactly in the form 
suitable for a relational database. But on closer examination, 
almost invariably there are qualifications added to many data 
items in each table. This is true even in the physical sciences 
where data is known most precisely. For example, consider 
the data in Table III (obtained by the author by selecting one 
physics book,9 opening it at random, and turning a few pages). 
An example of engineering data is shown in Table III where 
one component of the last tuple has extra information added. 
In both these cases, however, the relational model is still 
certainly the appropriate model, with some modification to 
allow for the comments, for errors, for alternative values (as 
in Table IV) and for ranges (e.g., "<0.27" in Table IV). 

However, in the "soft" sciences it becomes less clear and in 
an example such as the ornithological record in Table V, so 
many of the components are expressed in the form of free text 
and, therefore, so many queries will involve text processing 
rather than the eight operations of relational algebra8 that a 
text model and a text database seem more appropriate. The 
same is true of the Bibliographic record in Table VI. 

Text Database Systems 379 

TABLE III-Ferrous alloy properties 

Example of engineering data on Ferrous Alloys with 7 attributes. This 
shows that, just as in Science, tuples in Engineering often need 
extended fields to record additional information, as in Tuple 5. 

Sigma Test Creep Time Stress 
Alloy 

3105 
3105 
3105 
3105 
3105 

Condition % Temp. % hr 

2000°F. Ih hr AC 0 1200 10 24 
2000°F. Ih hr AC 0 1200 100 22 
2000°F. Ih hr AC 0 1200 1000 20 
2000oP. Ih hr AC 0 1800 10 5.3 
2000°F. Ih hr AC, 2.5 1600 10 10 

after a delay of 
200 hrs at 16oo°F 

TABLE IV-Molecular quadrupole moments obtained 
from microwave collision diameters 

ksi 

1 
1 
1 
1 
1 

The following table illustrates that even in the Physical Sciences some 
components, such as those in the last column, need extended fields 
containing free text, to represent all of the information available. 
Note that two columns are used to represent the uncertainty in the 
diameter, d. 

Molecule 

N2 
O2 

NO 
CO 
CO2 

COS 
CS2 

N2 0 
HCN 
CICN 
CzH2 
Cz~ 
CzfL; 
H2 

d X 108 (cm) 
Kinetic 
Theory 

4.09 
4.02 
3.90 
3.96 
4.46 

4.35 

4.79 
4.86 

d X 108 (cm) 
from NH3 3, 

3 Line 
Broadening 

5.54 
3.86 
5.64 
5.97 
7.59 
7.56 
7.72 
7.32 

10.0 
11.9 
8.79 
6.67 
5.64 

a Average of experimental values is used here to calculate qrot. 

0.31a 
<0.11 b, O.04c 

0.29 
0.33 
0.64 
0.60 
0.64 
0.91a 
1.60 
2.39 
1.10 
0.48 

<0.27 
0.261d 

bThe value d=4.18xlO-S ern, which is considered to be most reliable, is used to obtain the 
upper limit for qrot. 

cR.S. Anderson, w.v. Smith, and W. Gordy, Phys. Rev., 82, 264 (1951), obtained this value 
from measurements of the line widths of the fine structure of the microwave spectrum of 
oxygen. The accuracy of this number is still questionable. 

dThe value q for H2 is the value relative to the internuclear axis rather than the value for 
rotating molecules. 

COMPARISON OF TEXT AND RELATIONAL 
DATABASE IMPLEMENTATIONS 

In the text model, the text is represented by a continuous list 
of characters, including control characters which give the text 
its structure (i.e., pages, sentences, paragraphs, sections, 



380 National Computer Conference, 1987 

TABLE V 

Example of a record in an Ornithological Database where almost 
every field needs free text to represent the information content. Such 
records are more suitably stored in a text database than using a 
relational database. 

SPECIES: 
HABITAT: 
RANGE: 

LENGTH: 
WING SPAN: 
DESCRIPTION: 

ALARM CALL: 
FOOD: 

Great Blue Heron (Ardea herodias) 
Common on fresh and salt water. 
Summer and Winter in South U.S. and in 
Summer in North U.S., Quebec and Nova 
Scotia. 
38". 
70". 
Head is largely white, underparts dark and 
speckled, beak rich brown, back slate blue and 
brown. Flies with neck folded. 
Series of 4 hoarse squawks. 
Fish, frogs. 

TABLE VI-CODATA referral database record 

Example of a record in the CODATA Referral Database on Sources 
in Science and Technology which is being stored in a Text Database. 
There would be no advantage in using a relational model for such 
records. 

TITLE: 

SERIAL: 
COUNTRY: 
MAIN CATEGORY: 
TELEPHONE: 
INSTITUTION TYPE: 
DIRECfOR: 
COVERAGE: 

KEYWORDS: 

OUTPUT: 

SERVICES: 

AVAILABILITY : 
LANGUAGE: 

Solar Informations Centrum e.V.(SIC), 
Solar Information Centre, 
Riedlstrasse 3,D-8000 Munchen 22 
(Germany FR). 
(e) de 001. 
Germany FR. 
Renewable Energy Resources. 
(089) 22-57-55. 
Information centre. 
Hegenbart, R. 
Provision of information on solar energy 
and energy conservation: energy 
conSUlting, public information, setting up 
data bases. 
climatology; energy conservation; energy 
economics; solar energy. 
Publication of printed compilcttions; 
Magnetic tapes containing data. 
Provision of specific data upon request; 
Referral to institutions or published data 
sources. 
Open to all users; Fees charged. 
German; English. 

chapters, documents), However; to find any part of a large 
text quickly (e.g., a sentence or paragraph), it is necessary, in 
the inverted file structure, to provide an address for each unit 
of the text. The physical address of the start of the unit on the 
disk can be used; but to facilitate edits and changes in the 
physical storage of the text, as in any other database, a logical 
address is used at the conceptual level. This might consist of 

"word#" measured from the beginning of the text or, as in 
our QUILL system, Doc#, sentence#, word#. 

There needs also to be a mapping from the logical addresses 
to the physical addresses. This is performed using a table, 
which has columns such as-

doc#, sentence#, address of start of sentence (4) 

But this is almost the same as the SENT-DOC relation men
tioned in (3). 

SENT-DOC(doc#, sent#, sentence) (5) 

But the similarity is even closer if the implementation of the 
relational database is examined. To obtain rapid access to any 
tuple (i.e., to any sentence) it would be necessary to produce 
an index on the key doc#, sent#. This would take the form of 
a table with columns: 

doc#, sent#, address of start of tuple (6) 

which is almost identical to the table (4) used in the text 
database structure. In addition, the doc#, sent# values are 
clearly redundant if stored in the relation as well as in the 
index table. So for an efficient implementation they would be 
removed from the stored relation and the stored relation 
would become a set of variable length sentences, exactly as in 
our QUILL text database system. Also the index table in the 
text database, (4), becomes identical to the index table for the 
relation, (6). The implementations would thus be identical. 

When additional software is added to the relational data
base to carry out the text processing functions of the text 
database, the responses of the two systems would be the same. 
The only advantage to the text database would be that, un
encumbered by the eight operations of relational algebra, it 
would be smaller but then it would also be more limited in 
application. 

More important is the human interface advantage, that a 
text model for text is much closer to a human view of text than 
a relational model. 

REFERENCES 

1. G. Salton and M.J. McGill. "Introduction to Modern Information Re
trieval," New York: McGraw-Hill, 1983. 

2. K. Devine and F.J. Smith. "Direct file organization for lemmatized text 
retrieval," Information Retrieval, 3 (1984), pp. 25-32. 

3. L.A Hollaar. "Text retrieval computers," IEEE Computer 12 (1979) 3, 
pp.40-50. 

4. I.A. Macleod. "The relational model as a basis for document retrieval sys
tem design," The Computer Journal, 24 (1981) 4, pp. 312-315. 

5. I.A. Macleod and R.G. Crawford. "Document retrieval as a database 
application," Information Technology: Research and Development (Vol 2), 
1983, pp. 43-60. 

6. M. Stonebraker, Heidi Stettner, Nadene Lynn, J. Kalash and A. Guttman. 
"Document processing in a relational database system," ACM Transactions 
on Office information Systems, 1 (1983) 2, pp. 143-158. 

7. A.J.H.M. Peels, N.J.M. Janssen and W. Nawijn. "Document architecture 
and processing," AMC Transactions on Office Information Systems, 3 (1985) 
4, pp. 347-369. 

8. E.F. Codd. "Extending the database relational model to capture more 
meaning," ACM Transactions on Database Systems 4 (1979) 4, pp. 397-434. 

9. J.O. Hirschfelder, C.F. Curtis, and R.B. Bird. "Molecular Theory of Gases 
and Liquids," New York: John Wiley & Sons, 1966, p. 1028. 



NETWORKING AND CONNECTIVITY 
ROBERT VONDEROHE 

The University of Chicago 
Chicago, Illinois 

and 
RICHARD BARNIER 

Digital Equipment Corporation 
Rolling Meadows, Illinois 

and 
EVELYN MARSH 

Sears 
Chicago, Illinois 

Harnessing the power of information and making it available to a growing audience of 
information users is the focus of the Networking and Connectivity track at NCC '87. 

In the beginning, there were large computers; punched cards initiated work. Soon these 
were replaced by terminals through which jobs could be submitted. It wasn't long before 
these devices could do interactive tasks. The demand for remote computing power was met 
by connecting terminals to the mainframe via teiephone iines. And thus were two giant 
technologies brought together. From this marriage has sprung a myriad of new innovations 
to tie them together more effectively as well as enable them to exist independently of each 
other. 

As computers have become smaller and processing has become a desktop affair, con
necting systems together within a building or campus using wide-area telephone facilities 
made less sense. Hence the demand for local area networks. What is a LAN? What commer
cial products are on the market, and how are they different? How can LANs connect with 
each other and with the mainframe? Finally, what has been the response to this new technol
ogy? Has it been embraced or is there some skepticism concerning its business value? The 
Networking and Connectivity track addresses these issues in five sessions on LANs. 

Wide-area communication has expanded as new technologies have developed. Traditional 
cable connections are being replaced by high speed, reliable fiber optic cable as well as 
non-cable solutions such as satellite and microwave. Telephone switches are becoming digi
tized, and frontiers are being conquered in providing the capability to transmit voice and data 
on the same media. Major PBX vendors discuss their products in one session and WAN 
technologies is the topic of another session. How networks should be managed is the subject 
of yet another session. Clearly, the trend is toward reduction of unnecessary and costly 
connections where possible and standardization of interfaces. On a large scale, this is what 
ISDN is all about. The ISDN session covers the ISDN specification and its implementation 
to date. Speakers are drawn from the vendor community as well as business and academia. 





Mobile data communications 

by HOWARD J. GUNN 
Gandalf Technologies, Inc. 
Wheeling, Illinois 

Gandalf is currently involved in the design and manufacturing 
of wide-area mobile data communications systems. We have 
currently targeted the computer dispatching market. By wide
area, we typically think of communication within a metro
politan range. However, wide-area mobile data communica
tions could be expanded to include state and nation-wide 
interconnection through the deployment of the same kinds of 
techniques. 

Gandalf provides mobile data communication systems as 
opposed to just equipment in that we provide application 
software for the end user along with the minicomputers, video 
display terminals, tape and hard disk storage, and a variety of 
printers. 

This equipment is typically located in the dispatch . office. 
The communications subsystem includes the mobile and base 
radio equipment, and a base signaling unit at the base radio 
site. The computer subsystem may also require modem links 
between the computer and the base signaling unit. The mobile 
data terminals are connected to the mobile radios in the ve
hicle. Mobile computer data terminals are now being used by 
businesses and large fleet operators in an effort to increase 
productivity but also to help keep costs down and aid manage
ment in running a fleet. 

In Anaheim, California, for example, Yellow Cab Co. has 
installed the nation's first fully computerized taxi dispatch 
system. The system relies on our computers for dispatching 
taxi cabs on call. Voice communications are virtually elimi
nated. Those tuning in Yellow Cab's channels in Anaheim will 
hear computer whines and tones on the air-hardly inter
esting for most scanner listeners. It may also help stop other 
outlaw taxis from stealing fares. 

Our system in Anaheim is being used in 85 taxis. Mobile 
data terminals are installed in the cabs and the cab company's 
dispatch center is equipped with computer hardware and soft
ware for dispatching and fleet management. Those who call 
for a cab in Anaheim don't have to wait as long as before the 
system was installed because the computerized system speeds 
up the dispatching process, which traditionally depends On the 
individual skill of the dispatcher on duty. At this time, they 

383 

TAXI DISPATCH SYSTEM DIAGRAM 

Figure I-The communication system for Gandalfs taxi dispatch system 

are handling nearly 30 percent more volume with the same 
fleet of cars and drivers. 

The system also can automatically dispatch standard fares, 
calls for a particular time, regular runs, and priority calls. 
Further, the system can verify street names and numbers. The 
system typically includes call-taker terminals, the dispatch 
computer system, the communications subsystem, mainte
nance test equipment, and the mobile data terminals. Each 
communications subsystem channel can service more than 400 
taxis. 

In the future, we intend to continue use of radio frequency 
(RF) transport technologies for specific terminal to computer 
interconnections. We have researched the employment of RF 
technologies in actual LAN-type office configurations as well 
as wide-area monitoring via satellite systems. In the wide-area 
applications, data devices, modems, and radio transceivers in 
a vehicle would be polled periodically to determine distance 
related factors. Such information could be used to estimate 
when a truck shipment would arrive at the dock and aid in the 
scheduling of loads. 

Overall we see continued growth in the RF delivery of data 
over distances. This growth will be driven by the economics of 
the transport medium plus the applications software that can 
provide efficiency and productivity in the monitoring and con
trol of vehicles. 





ISDN for MIS applications 

by J.A. NEWELL and L.D. LANDY 
AT&T Information Systems 
Lincroft, New Jersey 

ABSTRACT 

This paper illustrates how existing and imminent ISDN technology can be usefully 
applied to the business environment. First, the ISDN interface:) and available ISDN 
network building blocks are reviewed. This includes the Basic and Primary Rate 
interfaces, telephones, work stations, personal computers, distribution media, 
premises switching machines, LANs, host computers, transmission facilities, and 
network switches. Next, useful applications with specific configurations of these 
building blocks are described. These applications are partitioned according to those 
which can be implemented within a single business customer premises and those 
which take advantage of the wide area netw<?rking capabilities of ISDN. 

385 





INTRODUCTION 

Several major trends are apparent today which accompany the 
growing need to integrate the technologies of processing and 
communications. These trends include the increasing use of 
personal computers in communications networks, the use of 
Local Area Networks (LAN's) for local data distribution in 
office and factory environments, and the growing importance 
of distributed processing. Perhaps the most fascinating trend 
of all is the growing interest in the Integrated Services Digital 
Network (ISDN), that is the only technology on the immedi
ate horizon which promises to bind the various communica
tions and processing technologies into a coherent whole. No
where is the interest greater than in the business community 
that has accrued enormous commercial benefit from both 
communications and processing technologies while, at the 
same time, has suffered substantially from the incompat
ibilities among the various business systems and networks. 

Since the definition of the first ISDN standards by the 
CCnT in 1984, much has happened within semiconductor, 
telecommunications, and processing vendor communities to 
bring ISDN to the threshold of deployment. The reader is 
referred to References 1 through 7 on ISDN for a better 
understanding of the ISDN interfaces and how they may be 
applied. For the purposes of this paper, it is sufficient to 
review the most important characteristics of ISDN: 

1. All digital connectivity from one ISDN endpoint to the 
other. 

2. The definition of the basic user information channel at 
64 kbps (B channel) which supports voice, data, and 
other digital information types. 

3. The definition of a common channel signaling path (D 
channel) between all endpoints and switching nodes of 
an ISDN. 

4. The definition of a protocol (LAPD) and messaging 
structure (Q. 931) for the common channel which allows 
intelligent endpoints and switching nodes to communi
cate with a common language to achieve high func
tionality in a multivendor environment. 

5. The definition of the 2B + D structure for the Basic 
Rate Interface (BRI) which supports integrated voice/ 
data and high functionality to intelligent endpoints. 

6. The definition of the 23B + D and 30B + D structure 
for the high-bandwidth Primary Rate Interface (PRI) at 
1.544 and 2.048 Mbps. 

7. The applicability of the BRI ranging from simple digital 
telephones to sophisticated integrated voice/data per
sonal computers with advanced communications capa
bilities. 

8. The definition of the 4-wire S-interface for the BRI 

ISDN for MIS Applications 387 

which supports 2B + D full-duplex transmission be
tween a switch and end user terminal to distances of up 
to 1 kilometer. Detailed physical and electrical charac
teristics of the S-interface are included in this defini
tion. 

9. The definition of the 2-wire U-interface for the BRI. 
Although the physical and electrical characteristics of 
the U-interface have not yet been standardized, this 
interface is intended to provide full duplex 2B + D 
transmission like the S-interface, but over 2 wires at 
much longer distances (e.g., 6-8 kilometers). 

10. The applicability of the PRI to high-bandwidth host 
computer access as well as presently-available digital 
carrier systems for high-bandwidth interpremises net
working. 

11. The applicability of ISDN interfaces to a variety of 
communications technologies such as circuit switching, 
packet switching, synchronous wide area data net
works, and transparent digital carrier systems at 1.544 
and 2.048 Mbps. 

12. The pragmatic use of existing technology for ISDN, 
including twisted pair data distribution, stored program 
controlled circuit and packet switctJng, digital tele
phony at 64 kbps, and existing digital carrier systems. 
Moreover, VLSI devices which support the cost effec
tive implementation of ISDN are becoming available. 

Based on these characteristics, the remainder of the paper 
focuses on the equipment types to which the ISDN interfaces 
apply, followed by the local and wide area business applica
tions which can be achieved in the next several years. 

ISDN BUILDING BLOCKS 

To position us to discuss ISDN applications, it is first neces
sary to discuss the components or building blocks from which 
ISDN networks can be established. One of the more remark
able achievements of ISDN is the wide array of product types 
to which the ISDN interfaces apply. 

End User Equipment 

In this section, we will briefly discuss those equipment types 
which can support ISDN interfaces and, at the same time, 
interface directly with end users. 

Simple telephone 

At the lowest end of the functional scale, a simple tele
phone can be supported with the ISDN Basic Rate Interface. 



388 National Computer Conference, 1987 

Using the BRI 2B + D structure, 64 kbps voice can be carried 
over a B-channel, and control information like addressing 
(dialing), and telephone status (on-hook/off-hook) carried 
over the 16 kbps D channel. The other BRI B channel remains 
unused. Using the BRI, such an instrument can be located 
up to 1 kilometer from a supporting switch using the ISDN 
S-interface for PBX applications or at 5-10 kilometer dis
tances using the U-interface for central office applications. 
Powering of the telephone from the switch over the BRI can 
also be accommodated. Available VLSI which supports the 
BRI will allow the cost of a basic digital telephone to approach 
that which has already been achieved for the standard analog 
tip/ring set. 

High function telephone 

Simply by taking advantage of more functionality in the 
D-channel, a telephone which performs many more useful 
functions than simple dialing can be constructed. For exam
ple, a multi-line telephone which provides functions like 
transfer, hold, and conference with simple button pushes can 
and is being built for ISDN. Repertory dialing functions in 
which the most complicated dialing procedures are accom
plished with a single button push will be commonplace in 
ISDN. Even more interesting, telephones with displays are 
achievable to identify a caller by name before the called party 
answers. With displays in ISDN, it becomes easy to keep track 
of the status of each line in a multiline station. 

Integrated voice/data station 

For this station, we extend the concepts introduced above to 
incorporate a high speed data terminal using the other 64 kbps 
B channel in the BRI. Now we have a high speed terminal in 
addition to a high function telephone, all combined in a single 
instrument and communicating over a single interface. The 
display messages described for the high function telephone 
can now use the data terminal display, allowing cost effective 
utilization at the station for both data and high function voice. 

Intelligent voice/data station 

Think of this as a personal computer (PC) with local proces
sing capabilities and, at the same time, having an integrated 
telephone, all communicating over the BRI. For this type of 
workstation, the functional possibilities are enormous. Some 
of the applications of this workstation will be described later. 

Time share computer 

Using the 2B&D structure of the BRI, a small minicom
puter can support two remote users through an associated 
switch. If the switch contains a packet capability as well, many 
more remote terminals or PCs can be supported (e.g., 16 
terminalslB-channel). Again the reader is reminded that this 
occurs over two twisted wire pairs up to 1 kilometer from the 
switch. 

Host computer 

Using the 23B + D and 30B + D structure of the Primary 
Data Interface (PRI), many more terminals can be supported; 
23 or 30 for an associated circuit switch and hundreds for a 
packet switch. Host computers using this interface are already 
available using AT&T's openly-licensed Digital Multiplexed 
Interface (DMI). DMI was defined in 1984 to conform to the 
PRI and, when its evolution is completed in 1987, is the ISDN 
PRI for host computer applications. 

Combination workstations 

Customized workstations beyond those mentioned here can 
also be created using both the BRI and PRI. For example, the 
BRI will also support intelligent VoicelData Stations de
scribed above with a full array of peripherals like printers, 
plotters, and facsimile devices. The BRI also has aD-channel 
multiplexing scheme and a local bus arrangement (called the 
passive bus) to give all such devices independent communica
tion access over the BRI. The PRI may be used for end user 
workstations as well. For example, the available bandwidth 
within the PRI allows excellent performance for high resolu
tion graphics, video, and large file transfers. 

Terminal adapters 

Not to neglect existing data devices and to demonstrate the 
power of ISDN for system integration, ISDN provides for a 
wide array of terminal adapters. Simply stated, terminal 
adapters are digital modems; they allow the connection of 
existing devices like RS-232 terminals or personal computers 
to the ISDN BRI. Even coaxial interfaces like those found on 
3270-type terminals and cluster controllers can be adapted to 
the BRI, thereby allowing much greater flexibility in the use 
of such devices in ISDN than was ever possible in the older 
hardwired environment. 

Local Premises Distribution 

To establish ISDN networks, the business customer prem
ises distribution media and local switching vehicles are as 
important as the end-user stations. 

Physical media 

The advantages of twisted pair wiring for local data distri
bution are well understood. Originally used for analog tip/ring 
telephone distribution, twisted pair wiring has become a ubiq
uitous resource in most existing business premises. Equally 
important, straightforward wiring schemes for twisted pair 
have evolved over the years which allow convenient rear
rangement and change from centralized cross-connect points. 
In short, twisted pair wiring allows cost-effective and con
venient signal distribution within a business premises, pri
marily because of its long evolution in standard telephony 
applications. 



Perhaps one of the least glamorous but most important 
aspects of ISDN is its utilization of unshielded telephone 
twisted pair wiring. Specifically, both the BRI and PRI are 
defined to work over normal twisted pair, which has reliably 
demonstrated since the early 1960s the ability to support dig
ital signal distribution well beyond the Mbps range. To com
plement twisted pair, modem wiring systems like AT&T's 
Premises Distribution System (PDS) also incorporate fiber
based distribution media which will support high bandwidth 
data distribution into the 100 Mbps range and beyond. 
Finally, fiber cross-connect technology has matured to the 
point where rearrangement and change techniques for fiber 
distribution now rival twisted pair for convenience ~nd cost 
effectiveness. 

The pragmatic use of existing twisted pair by ISDN com
bined with the migration path to fiber provides the business 
user with cost-effective flexibility and a growth path well into 
the next century for signal distribution. Also, the technology 
of terminal adapters has matured to the point at which we 
can confidently state that most existing data distribution 
interfaces like RS-232, V.35, and 3270-coaxial cable can be 
adapted to the B-channels to take advantage of the power 
and convenience of ISDN nvisted pair and fiber distribution. 

Digital PBXs 

Historically, Private Branch Exchanges (PBXs) have pro
vided the functions of connection of local telephones to each 
other and concentration of the local phones to a much smaller 
number of trunks which, in tum, access wide area public 
or private voice networks. Modern PBXs, such as AT&T's 
System 75 and system 85, will playa pivotal role in ISDN 
evolution. Right now, System 75 and 85 use a totally digital 
technology and can bring two 64 kbps B-channels directly 
to the end user equipment along with a common signaling 
channel. A wide array of high function telephones, integrated 
and intelligent voice/data stations, and terminal adapters 
(data modules) for existing data equipment are already avail
able on these PBX products. DMI, targeted to become the 
PRI in 1987, is also available providing high bandwidth access 
to local host computers. The advantage that ISDN will bring 
to this digital PBX environment is not necessarily the high 
functionality, high bandwidth, and convenient signal distribu
tion described earlier, since these already exist. The main 
value of ISDN here will be the coordination, compatibility, 
and evolution of this functionality into multivendor networks. 

Local packet switches 

Packet switching products, such as AT&T's Information 
Systems Network (ISN), are now providing convenient, or
ganized, and cost effective premises switching of data in much 
the same way PBXs have historically done for voice. Packet 
switches are also starting to appear in central offices. For 
example, several Bell Operating Companies are offering cen
tral office-based data switching using AT&T's Datakit packet 
switching system. A powerful feature of packet switches is 

, their ability to statistically multiplex local end user data chan-

ISDN for MIS Applications 389 

nels together on high-bandwidth facilities for efficient wide 
area interpremises transmission. It is important to note that 
ISDN interfaces are compatible with and will be supported by 
data packet switches. For example, ISN is committed to sup
port the PRI using DMI. This allows the intimate coupling 
of PBX circuit and data packet switches on the business 
customer premises, combining the advantages of PBX circuit 
switching and network access with the cost effectiveness of 
packet switching of data. Viewing the PBX now as the ISDN 
Wide Area Network gateway, the packet switch may be used 
to statistically multiplex local data for efficient ISDN packet 
transmission on wide area networks using the PBX as an 
access gateway, This combined PBX/packet switch approach 
is an important step in the total integration of circuit and 
packet switching for ISDN networks. 

Local Area Networks (LANs) 

Numerous local data networks have emerged lately which 
fall under the category of "connectionless LANs." These net
works provide communications by means of protocols 
implemented on plug-in boards of end user processing equip
ment and typically do not require a centralized switching 
device like a PBX or data packet switch to provide the com
munication paths. Such networks have names like Ethernet, 
Token/Ring, MAP, and STARLAN. Communication stan
dards for such networks have been defined within the IEEE 
802 committee. While not directly compatible with ISDN, it 
is becoming increasingly clear that these networks must be 
integrated with ISDN for the following functions: 

1. Bridging. ISDN-compatible system like PBXs, packet 
switches, and wide area networks must provide inter
connection services for such LANs. Specifically, they 
need to bridge a multiplicity of isolated LANs and make 
them appear as an integrated network. AT&T's ISN 
packet switch already provides such a bridging capability 
for IEEE 802.3 LANs including both coaxial cable
based (Ethernet) and twisted pair-based (STARLAN) 
varieties. 

2. Gateways. It is necessary that processors attached to 
these LANs be able to communicate with ISDN
attached processors which use BRI and PRI interfaces, 
and protocols such as X.25, SNA, and LAPD. There
fore, ISDN gateways must be available which allow 
connection of individual LAN-attached processors with 
processors directly associated with ISDN networks. 

3. Integrated Voice/Data. None of the LAN connection 
schemes provide for voice transport, although many 
LAN-attached PC users will want integrated voice capa
bilities with their PCs. Therefore, control gateways 
must be supported in LAN environments which allow 
D-channel control messages to be conveyed to individual 
LAN endpoints along with some form of associated 
voice. 

With these capabilities, the ISDN-compatible LAN, indi
vidually or integrated with an associated PBX, can extend the 



390 National Computer Conference, 1987 

LAN environment to national and global networks using the 
universal connectivity of ISDN. 

Wide Area Networks 

Wide Area Networks (WANs) are defined as communica
tion networks capable of transporting information between a 
number of endpoints which are separated by large distances. 
The public telephone network is the most widely known ex
ample of a WAN. The concept of ISDN has, at its very core, 
the notion of universal connection of all endpoints by means 
of a high function, high bandwidth, digital international 
network. The basic building blocks of WAN's are longhaul 
carrier systems and switching nodes within the network so 
information can reliably find its way from one endpoint to any 
other by proper routing through the various carrier systems. 

Interface definitions based on existing WAN technology 
and products are the most pragmatic aspects of ISDN. No 
technological breakthroughs are required to implement an 
ISDN WAN. Virtually all of the required networking products 
are already available from AT&T as well as many other 
companies. 

Carrier systems 

Digital carrier systems based on the 64 kbps digital B 
channel already exist in many forms and are deployed allover 
the world. They range from systems using twisted pair (like 
AT&T's popular T1 carrier system at 1.544 Mbps) to systems 
using higher bandwidths on more specialized. me~ia. Th~se 
media include coaxial cable, microwave radIo, fiber gUide 
systems, and space transmission via satellites. The sp~eds of 
these systems now extend into the hundreds of megabIts. For 
example, the AT&T DS4 rate of 274 Mb~s supports .over 
4,000 B-channels over a single link. The growmg populanty of 
fiber for such carrier systems, both for buried land routes 
and underseas applications, promises a virtually unbounded 
deployment of digital bandwidth which is secure, e~~logically 
sound, and with minimal roundtrip delays for cntlcal data 
applications. 

Switching systems 

Virtually all new switching systems being deployed for 
wide area applications within a telephone company or for 
international applications use 64 kbps B-channel switching. 
AT&T's 5ESS switch for central office applications and 
4ESS for toll office applications are excellent examples of 
modern ISDN switches. ISDN functionality for WAN's is 
complemented by a set of CCITT recommendations for a 
h'(Th functi"n "ont.,.,,1 tnessa2:im! structure between switching ......... ,t, ... .a.L~.IL "''''V.l.J. '"' "- ... ".&.",,,..1. .L.a.... (,J 4.J 

nodes called Common Channel Signaling System 7 (CCS7). 
CCS7 is the equivalent of the ISDN D channel between 
the switching nodes in the wide area exchange network. As 
an important feature, CCS7 supports the transport of 0.931 
messages from one end user to another through the ISDN. 

To further strengthen the data transport capabilities of 

ISDN, access to wide area packet switched networks will 
soon be available by means of the ISDN B channel using both 
the BRI and PRI into the network. Typically, the packet 
switching protocol used in these networks is X.25. Such data 
packet switching will come in two basic forms: 

1. Integrated with voice over the same interface. This form 
of packet switching will be accomplished by an inte
grated packet capability within the switch itself. Such 
capabilities are being provided by the 5ESS switch from 
AT&T. 

2. Data only. This form of packet switching builds on the 
data packet WANs available today, especially for X.25 
protocols. These networks are presently available for 
both public and private applications; ISDN utilization of 
these networks simply means providing access to these 
networks by means of ISDN B-channels over both the 
BRI and PRJ. AT&T's Accunet Packet Service is an 
example of a widely available public packet WAN which 
will support ISDN interfaces. 

Overall ISDN Networks 

Given the wide array of ISDN building blocks for both the 
business premises and wide area networks, hopefully the 
reader can now envision the ISDN end-to-end network de
picted in Figure 1. 

Basically, the network is formed by the union of the ISDN 
interpremises network (both intra- and inter-LATA) and 
the customer premises equipment described earlier. End 
user equipment, like telephones and intelligent voice/data 
stations, can be attached directly to the network by ISDN 
central offices or by means of a customer premises ISDN 
switch. In addition to its classical concentration function to 
the wide area network as described for the PBX, the ISDN 
switch has two other major functions: 

1. The connection and, where necessary, the protocol con
versions necessary to establish communications among 
the various endpoints or to the interpremises network 
through the common BRI and PRI B-channel links. 

2. The unified management and control of the various end 
points and the inter-premises network by means of the 
ISDN D-channel. 

BUSINESS PREMISES 

• VOICE 
• DATA 
• IMAGE 
• VOICE 

AND 
I DATA 

• LAN 
• HOST 
• OTHER 

• · BRI 
PRI · · 

DIRECT ISDN 
NETWORK 

ATIACHMENT 
(e.g .• CENTREX) 

• DIGITAL 
- 64 kbps AND 

HIGHER 
• INTRALATA • PRIVATE 
• INTERLATA • PUBLIC 

• DEDICATED 
• SWITCHED 

-CIRCUIT 
- PACKET 

• CUSTOMER 
CONTROL 

Figure 1-ISDN network 

\ 



The importance of these functions within the overall ISDN 
should become apparent as we discuss the various business 
applications which ISDN makes possible. 

ISDN APPLICATIONS 

Now that we have discussed the framework of ISDN and the 
available building blocks for ISDN implementation, we can 
examine the wealth of business applications which ISDN per
mits in the international multivendor environment. We begin 
with those applications which apply locally, within a single 
business premises. 

Local Applications 

Integrated voice and data 

Opportunities for integration of voice and data generally 
fall into two major categories. The first is physical integration, 
usually driven by the economics of sharing, flexibility for 
growth, and ease of management. In the ISDN local environ
ment, these advantages are provided via a common distribu
tion media and a single plug on the wall. For the typical end 
user the BRI will support simultaneous voice and data, while 
PRI will provide multi-channel access to more powerful 
shared resources. 

The second area of voice and data integration involves the 
sharing and interaction of capabilities between the two infor
mation types. In general, integrated voice and data applica
tions attempt to draw on the strengths of one information 
type to enhance the other. 

Starting with primarily voice applications, there has been a 
trend in recent years to apply data communications technol
ogy to increase the information exchange between the user 
and the phone system. One set of applications is built around 
the use of alphanumeric displays driven by D channel infor
mation (high function telephone). Time, date, call duration, 
and dialed digit displays can be generated locally within the 
instrument, but system information is required for incoming 
caller identification and call coverage information (e.g., 
whose phone is being covered and why the call went to cov
erage). With an internal directory database, the system can 
provide names in addition to extension numbers. The combi
nation of message storage in the system and workstation dis
plays is particularly helpful as a means to automate short 
standard messages. For example, a standard "please return 
my call" message can be handled by the end users themselves, 
not requiring the involvement of attendants and secretaries. 

Additional capabilities can be added with the integrated 
voice/data station. These include all of the features of a dis
play phone, enhanced by the ability to simultaneously display 
information about multiple calls. It also allows function keys 
and indicators to be mapped into screen displays. These dis
plays may be a straightforward representation of the buttons 
on a telephone, or they could use dynamic forms, prompting, 
help functions, or graphics to lead the user through complex 
interactions. It becomes possible to support large local direc
tories and speed calling lists. These can include complex call 

ISDN for MIS Applications 391 

setup procedures as well as logon and applications access 
scripts (e.g., electronic mail retrieval) for data calls, all avail
able with a single user input. The full array of data capture 
capabilities including keyboard, mouse, touchscreen, and, ul
timately, voice recognition is available to build a flexible, 
convenient communications interface for both voice and data 
calls. 

In the area of voice capabilities used to enhance traditional 
data services, most applications build on the widespread avail
ability of phone service. In the area of messaging, voice
synthesized retrieval of text messages allows for universal 
access. Voice mail systems are an alternative supporting both 
entry and retrieval from a..1lY phone. Whatever the medium, 
the use of a simple message waiting lamp. on a subscriber's 
phone assures that the subscriber will know when messages 
arrive without having to remain logged on to a mail system or 
access multiple systems to check for messages. The key pad 
can be used as a simple, ubiquitous data entry device. To
gether with voice synthesized responses, Touch-Tone® entry 
can be used for a variety of database inquiry applications such 
as directory, stock quotes, and product price and availability 
as well as simple transactions for purchases and reservations. 

Resource sharing 

ISDN provides convenient high speed connectivity for iso
lated pockets of data functionality. The ISDN switch can be 
used as a local area network or to bridge local area networks. 
A common application is to provide access for multiple termi
nals for sharing a departmental minicomputer which provides 
local processing, file space, printing, and communications ac
cess for mail as well as network and host gateways. The ISDN 
switch provides call setup features such as keyboard dialing, 
speed calling, or hotline for direct off-hook access. Economic 
advantages are realized by sharing of resources as well as 
contention for processor ports. The ISDN switch also pro
vides wide area connectivity through its network interfaces 
and can interface to non-ISDN analog facilities using modem 
pooling (another shared resource). With additional terminal
based intelligence, the process of accessing common resources 
can be made more convenient with the local directories and 
scripts described earlier. When these capabilities are used to 
facilitate access, logon, and data retrieval, it becomes im
portant to provide options for security screening at the termi
nal which is facilitated by the D-channel. 

In configurations where the ISDN switch is used to inter
connect PCs, there is still a need for shared file servers, 
printers, and gateways. With some or all of the applications 
processing done locally on the PCs, communication functions 
can be handled by the local software as appropriate. This 
concept applies to connectionless LANs, ISDN switches and, 
where appropriate, both. The user gets the appearance of 
full-time connections even though the PC software may be 
establishing and disconnecting circuit or packet channels as 
required. Messaging and file transfer may be done through a 
shared server or by direct PC-to-PC connection. In either 
case, a major benefit is the speed. A file that would take a half 
hour to transfer over a 1200 baud modem can be handled in 



392 National Computer Conference, 1987 

less than 40 seconds using the full B channel bandwidth avail
able within the BRI interface. 

In summary, the ISDN switch can provide an effective local 
area network environment. Coupled with connectionless 
LAN techniques, ISDN switches allow an optimum blend of 
local high speed data capabilities with wide area access for 
direct host attachment, gateways, and bridges. 

Integrated host and switch functions 

Connection of a processor to the ISDN switch may be by 
means of the BRI or the PRI, depending on the number of 
channels required. In either case, the user advantages associ
ated with high speed access and enhanced signaling are sup
ported. The host also has the ability to use the signaling chan
nel to the switch to establish calls or activate features. In the 
past, such capabilities would normally have required an auto
matic calling unit. Since incoming caller identity is passed 
from the switch on demand, it is possible to enhance the 
normal logon/password security without resorting to a call
back procedure. In environments where ease of communica
tions is valued as much as security, the identity passed from 
the switch may be used in lieu of a logon or password. In 
this example, security of access is largely dependent on the 
security of switch administration and local terminal access. 

In addition to general capabilities which apply to any termi
nal to host access, there are a number of applications which 
provide a shared resource for integrated voice and data ser
vices. In recent years, adjunct processors have been used to 
provide increasingly sophisticated management and support 
capabilities for switches. These include administration of 
switch system data bases like directories, cost allocation re
ports, traffic analysis, maintenance capabilities, and various 
data base services such as inventory, and trouble ticket and 
service order tracking. User access to the adjunct processor 
may be done locally or remotely via the standard ISDN inter
faces. Equally important, access between the support pro
cessors and the switch common control may be accomplished 
over the common signaling D-channel. 

Large directories, resident in an adjunct processor, also 
provide an opportunity for integrated applications. These di
rectories may contain organizational information, as well as 
related equipment inventory or other customer definable in
formation. A common directory can provide the basis for 
messaging services, telecommunications cost accounting, and 
other applications. When accessed by an attendant or end 
user, it can be searched for various field matches or near 
matches for call set-up purposes. When the appropriate entry 
is found, the call can be established via D channel messages 
from the host to the switch. 

A variety of messaging services can be supported from the 
adjunct processor. A pool of agents can provide personalized 
phone cuverage based un per can data passed over the signai
ing link from the switch. In this case, when a call goes un
answered, the switch routes it to the next available agent. The 
identity of the calling and called party as well as the reason for 
forwarding the call (busy, not answered, or a "please handle 
this call for me" feature activated by the user) is passed to the 
processor via the D channel. The processor can then retrieve 

any associated data about the called party (e.g., a previously 
left message) and display the information for the agent. The 
agent can key in any received messages to be stored in an 
electronic mailbox. As with any regular electronic mail service 
or voice mail service, the signaling link to the processor is used 
to tell the switch to light the message waiting lamp. In all of 
these applications, the adjunct processor has the opportunity 
to provide consistency and commonality in terms of human 
interface, mailbox integration, and message preparation and 
retrieval. System integration is enhanced in the ISDN envi
ronment by use of switch-provided information when the ser
vice is accessed, and by the ability to light the message waiting 
lamp on the phone or terminal. 

Customized local applications 

One of the most exciting aspects of ISDN is the opportunity 
it provides for custom applications. If ISDN control functions 
are made accessible through a command interface to the stan
dard programming environment on a host, PC, or switch 
common control, it is possible to create a wide range of new 
applications. 

As an end user, you may wish to customize the way your 
phone calls are handled. By looking at the incoming caller 
identification, linking into a personal directory, and using 
standard transfer or alerting features, it is possible to specify 
special ringing for calls from some people, forwarding to a 
secretary or coverage agent for others, and a recorded an
nouncement with a promise to call back for a third group. 
There's no need to worry about callers who are reluctant to 
leave recorded messages since the PC has already logged the 
time, date, and identity of all callers. If an important call is 
expected after working hours it can be transferred to your 
home phone, based on the calling party's identity without 
having to give out your home number. If you prefer, your PC 
can call you at home with a voice synthesized message (per
haps using a shared resource) leaving you the option to return 
the call. 

Another area of end user applications can be built around 
data retrieval keyed to the calling party identity. If you are the 
manager of a large organization, you may wish to file re
minders of expected work items or upcoming deadlines for 
each of your employees. Whenever they call, your PC can 
display specific information relating to that employee so you 
don't forget to bring up an important topic. In dealing with 
clients and customers, this could be an important tool to dis
play status of past or expected orders, scheduled deliveries, or 
even personal reminders such as names of spouse and chil
dren, birthdays, or hobbies. 

Similar applications exist for a host providing a shared ser
vice for a number of corporate users. A database in the host 
can be searched for customer accounts requiring special atten
tion. For mass cailing applications based on directory data, a 
call could be placed and transferred to the calling agent only 
if answered. The agent would have relevant information about 
the account (e.g., the criteria for placing the call in the first 
place) displayed on their terminal so that they could handle 
the call. Normal Automatic Call Distribution (ACD) applica
tions often involve a pool of agents handling calls with 



the support of host-based data retrieval and entry. By using 
the incoming call identification, a link could be made into the 
relevant database to speed up the transaction and reduce 
errors. For airline reservations, for example, the host can 
search for any reservations under the customer's name and 
display them to the answering agent. The database could be 
searched for past repeated flights. The agent response could 
resemble "Thank you for calling Mr. Jones. Are you going to 
Chicago again? Do you want the same flights and hotel?" If 
there is no existing reservations or recent data, an entry can 
be started with the customer's name and telephone number, 
as well as any other information deemed relevant by the air
line. Such information could be displayed along with outgoing 
schedules from the customer's home town to assist the agent. 

Wide Area Applications 

As a short, but extremely important, introduction to wide 
area ISDN applications, the reader should note that the capa
bilities described in the previous section can be extended to 
wide area networks. As a simple model, envision a nationwide 
array of ISDN locations with some of the local capabilities 
just described. By joining these locations with ISDN net
working, you can immediately conclude that the functionality 
described earlier can be extended to this nationwide network. 
The reasons are straightforward: 

1. End user B-channel voice or data information is simply 
conveyed by the carriers to the proper location, either by 
direct links betweeen locations or through tandem nodes 
in the network depending on the network configuration. 

2. The D-channels carry a hierarchy of control information 
in a uniform messaging format which: 

a. Provides routing information for the B-channels so 
they always find their proper destination. The ISDN 
addressing structure provides for a global network of 
this type. 

b. Provides end user control information which allows 
the higher order functionality of enhanced ISDN 
services. For example, calling party identification 
messages; hold, transfer, conference messages, tex
tual end user messages, host security queries, etc. 
will all be conveyed to the proper location over the 
D-channel and properly dispatched by the common 
control at the switching equipment at the destination 
location. 

c. Provides communications path for network infor
mation and control directly to the end user. For ex
ample, a centralized directory data base within the 
network can be accessed and distributed to end users 
on demand by means of the D-channel. 

d. Provides a communications path between each node 
of the network spanning all possible end-to-end 
routes which can be used to provide overall network 
management controls and maintenance. The power 
of this approach is the fact that faults can be quickly 
isolated down to specific links, paths and/or nodes. 
Moreover, the network can then be reconfigured 

ISDN for MIS Applications 393 

dynamically by an overall network management in
telligence until the fault is repaired. 

These capabilities apply to both public ISDN intra- and 
inter-LATA networks, and ISDN private networks. 

We will now discuss specific ISDN applications for wide 
area configurations: 

SNA networking 

Many of the existing wide area data networks use SNA and 
are composed of private analog links using modems for data 
transport at rates of 4.8 or 9.6 kbps which terminate on cluster 
controllers at terminal locations and Front-End Processor 
(FEP's) at host locations. It is important to note that entire 
SNA networks can be brought into the ISDN environment 
today using the existing terminal, cluster controller, FEP and 
host equipment while, at the same time, accruing an enor
mous increase in end user flexibility and convenience. 

1. 3270-type Terminal Switching. SNA is a communication 
architecture which extends between the cluster con
troller and FEP. ISDN concepts allow the extension of 
this architecture to the end user 3270 terminals. In this 
case, terminal adapters are provided which translate the 
3270 coaxial signal to a standard 64 kbps B-channel 
using the ISDN LAPD protocol. Through this con
version, the world of ISDN is now opened to the ter
minal, including twisted pair distribution and switching 
to a variety of cluster controllers for applications on 
demand. As an added benefit of ISDN, a 3270 teITPinal, 
once relieved of the hardwired coax restriction, can then 
be made to function as an asynchronous terminal in the 
non-SNA multivendor asynchronous environment. This 
functionality is made possible through a simple terminal 
adapter option. 

2. 19.2 kbps Transmission. The availability of PRI B chan
nels for end-to-end links in ISDN allows the standard 
usage of 19.2 kbps for all SNA links between cluster 
controller and FEP. Again, this is accomplished through 
terminal adapters which condition the SNA synchronous 
signals for B-channel transmission. Looking to the fu
ture, 64 kbps direct B-channel transmission between the 
cluster controller and FEP will become commonplace as 
this equipment migrates to support ISDN BRI and PRI 
interfaces. An important step has already been taken by 
the NCR-Comten Corporation with their announced 
support of DMI on their FEP equipment. 

3. Remote Channel Attachment. The power of ISDN is 
vividly brought out by this application with a capability 
undreamed of in previous environments. By trans
porting the B-channel 3270 signals directly to a remote 
location by an ISDN carrier system, the local cluster 
controller can be totally eliminated. By terminating the 
3270 signal on a remote channel-attached controller, the 
local 3270 terminal performs from the remote location as 
if it is locally channel attached. Through the techniques 
of ISDN, channel-attached performance, previously re
served for those lucky enough to be co-located with the 



394 National Computer Conference, 1987 

host, can now be extended to 3270 terminals any place in 
the country. Equally important, intelligent voice/data 
workstations and PC's can be made to function as locally 
or remotely channel attached 3270's in the ISDN envi
ronment. 

All of the functionality described above is available 
from AT&T today. Again, the main advantage of ISDN 
is bringing this functionality into the multivendor mar
ketplace. 

Dynamic bandwidth allocation 

An historic stumbling block in achieving truly high function 
wide area networks has been the cost of long distance high 
bandwidth facilities. Dedicated T1 routes at 1.544 Mbps are 
starting to be used with T1-multiplexers (Tmux's) between 
two endpoints to gain efficiencies in the use of the digital 
T-carrier bandwidth. The more advanced of these Tmux's 
allow the integration of voice, synchronous data, and asyn
chronous data for very efficient utilization of the carrier facil
ities. However, dedicated T1 routes at 1.544 Mbps are some
times hard to justify when they must be paid for 24 hours a 
day, 7 days a week. ISDN is changing all that and, as a result, 
will drastically reduce the cost profile of high bandwidth dig
ital services. 

The Software-Defined Network, available from AT&T to
day, allows the customer access to very flexible digital private 
networks. With ISDN, all endpoints of an SDN may be 
accessed by means of the PRI. Within the SDN, individual 
B-channels can be routed to any endpoint according to the 
time of day. This allows the user to concentrate bandwidth 
where it is needed, when it is needed, for either voice or data 
or both. A specific B-channel route can be accessed for either 
voice or data by the end-point switching equipment or Tmux. 
This allows the first order of customer flexibility. With SDN, 
the route can be changed as a function of time-of-day. With 
these combined capabilities, the user can now devote a large 
portion of his network to voice during normal business hours. 
In the evening or on weekends, the network can be devoted to 
data and the bandwidth concentrated between data centers, 
allowing bulk file transfers for centralized maintenance, up
dates, and restoral. Again, the powerful D-channel allows this 
unprecedented flexibility. 

Going one step further, AT&T and other carriers will 
be offering switched ISDN services in 1987 with access 
through the PRI. Switching is accomplished on the individual 
B-channels. End-to-end control information can be passed 
through the same D-channel which is used to establish the 
initial connection. With switched ISDN services, the customer 
gains enormous flexibility. Stated simply, high function ISDN 
wide area networks for either voice or data can be established, 
changed, or torn down within seconds on customer demand. 
Tne customer win be biiied for switched connections oniy 
when they are established. Using this service, the concept of 
Virtual Private Networks is useful. The customer can simply 
construct the network he needs, for only as long as he needs 
it and pay accordingly. 

For data applications, the above services of SDN and 
Switched ISDN can be integrated with packet data services, 

again through the PRI. The customer will have the option of 
accessing AT&T packet data networks using X-25 on a recon
figurable or switched basis. Since Accunet Packet Service is 
priced to be distance independent, substantial savings for 
ISDN data transport can be obtained, especially for long 
distances. 

Customized wide area applications 

The true value of ISDN will ultimately be demonstrated by 
customized wide area business applications. They will repre
sent a breakthrough in business opportunity; not because of a 
technological breakthrough of communications or processing, 
but because of the integrated application of existing technol
ogy on a worldwide basis. 

Envision the customized local applications of section 3.1.4 
extended on· a world-wide basis. For example, consider an 
international airline reservation service extended in multiple 
dimensions by ISDN. National data bases for the airline can 
be linked by worldwide B-channel connectivity. International 
reservations can be handled with all of the benefits of the local 
ISDN capabilities described earlier. The customer data base 
can simply be forwarded to the customers destination, for as 
long as he or she is there, and returned updated, with perhaps 
new reservations should the customer book them in the for
eign country. Even language difficulties can be surmounted 
with ISDN. Translation of computer-based text for simple 
transactions will become commonplace as the market de
velops. ISDN allows and encourages more people-oriented 
solutions as well. Within a global ISDN, the following sce
narios are likely: 

1. A caller in the United States to a German airline at 6:00 
am will be routed via international 800 service to a reser
vation service in Germany. Why? It will be more cost 
effective to route the call to the home office which will 
be more centralized and operating during standard busi
ness hours. Customer records are in the United States? 
No problem. By customization of the international 800 
service, the customer records can arrive in Germany 
as the phone is ringing. Language difficulties are not 
likely. With ISDN, the network will know the originat
ing country of the call and route the call to an English
speaking agent. 

2. An Oriental caller who speaks no English calls an Amer
ican airline. No communication takes place; neither the 
caller nor the agent understands the other. However, the 
agent immediately refers the caller to the single agent 
who is an Oriental language specialist. ISDN can find 
that agent instantly by means of the customized network 
directory, thereby retaining the caller. Although the 
special agent understands oriental1anguages, the agent 
is most comfortable in Japanese and is not fiuent in the 
uncommon Chinese dialect used by the caller. Rudi
mentary communication does take place. The caller is 
instructed to be patient and that help is on the way. The 
call is then referred to a Janguage specialist whose ser
vices are available to a number of reservation systems. 
Such a person is rare, trained in the gamut of oriental 



languages and given access to a number of corporate 
reservation services and order entry systems by ISDN. 

Real communication now takes place. The caller is a 
first time traveler from China to the United States. The 
caller became hopelessly lost and stranded because of 
communication difficulties. The language specialist now 
has facts and, through ISDN, the caller data base from 
a Chinese airline. By now, the reader can envision the 
recovery scenario. 

CONCLUSION 

ISDN offers the ability to extend existing applications and 
develop new ones based on an open standard that can provide 
services locally, nationally, and globally. ISDN does nothing 
fundamental to alter the traditional tradeoffs between net
work and premises-based capabilities. Even so, the tech
nological advances which accompany ISDN encourage the use 
of distributed premises-based processing in combination with 
network intelligence. The unprecedented integration of pro
cessing and communications made possible with ISDN on a 
global basis promises a steady stream of new and creative 
business services well into the next century. 

REFERENCES 

1. CCITT Study Group XVIII I Series Recommendations, October 1984. 
2. Roca, R.T. "ISDN Architecture." AT&T Technicallournal, 65 (1986) 1, pp. 

4-17. 
3. Aldermeshian, H. "ISDN Standards Evolution." AT&T Technical Journal, 

65 (1986), 1, pp. 19-25. 
4. Higdon, M., J.T. Page, and P. Stuntebeck. "AT&T Communications ISDN 

Architecture." AT&T Technical Journal, 65 (1986) 1, pp. 27-33. 
5. Neigh, J.L. and L.A. Spindel. "ISDN Evolution in Information Systems 

Architecture." AT&T Technical Journal, 65 (1986) 1, pp. 45-55. 
6. Newell, J.A. "ISDN Networks for Business Applications." Proceedings of 

ISCAS, 1985, IEEE, June 1985, pp. 711-714. 
7. Morgan, K.B., P.K. Verma, H. Ibrahim, and P. Taylor. "Multivendor Net

work Realization Through ISDN." Proceedings of the 8th International Con
ference on Computer Communications, September 1986. 

APPENDIX-ISDN INTERFACE DEFINITIONS 

Bearer Channel. The ISDN channel which conveys customer 
information from one endpoint to another is called a bearer 
channel. Examples of bearer channels include a channel con
veying data information from a terminal to a host computer or 
a channel conveying digitized voice from one telephone to 
another. The basic ISDN bearer channel rate is 64 kbps which 
can support either data or voice. The 64 kbps bearer channel 
is referred to as a "B" channel. Additional bearer channel 
rates have been defined by the CCITT as multiples of 64 kbps. 
These are: 

HO 384 kbps (6 x 64 kbps) 
HI 1536 kbps (24 x 64 kbps) 

or 
1920 kbps (30 x 64 kbps) 

Signaling Channel. The ISDN channel which conveys con
trol information from one system to the other within an ISDN 

ISDN for MIS Applications 395 

network is called the signaling channel. An example of a 
signaling channel is a channel which conveys information from 
a host computer or data terminal to a switching machine which 
indicates the host or data terminal is ready to transmit data 
information. Another example of a signaling channel is a 
channel which conveys dialing information from a telephone 
to a switching machine at the initiation of a call. A signaling 
channel in ISDN is referred to as a "D" channel, independent 
of the speed of that channel. Note that, in ISDN, the signaling 
and control functions take place over a channel which is log
ically separated from the bearer channels. This provides a 
powerful vehicle for providing enhancements for intersystem 
control and maintenance without interfering with end user 
information (data or voice). 

The capabilities for enhanced control and maintenance 
of ISDN systems is greatly facilitated by the provision of 
message-oriented signaling (MOS) defined for the D channel. 
The CCITT has defined a general message format for a variety 
of control and maintenance message types in the Q.931 rec
ommendation. Moreover, a robust HDLC-based protocol to 
convey these messages between systems is defined in the 
Q.921 recommendation. This protocol provides flow control, 
error correction, and multiple simultaneous message types. 
Note that the efficiency of this protocol is paramount since it 
is intended to be cost effectively implemented in terminal 
equipment, including digital telephones. 

Basic Rate Interface (BRI). The basic rate interface for 
ISDN is defined to support integrated voice and data at a 
customer endpoint as well as to provide economical network 
access. The channel structure of the basic rate interface is 
"2B + D" which, according to the chan.nel definitions above, 
allows access to two 64 kbps bearer channels as well as a 
signaling channel. 64 kbps voice can be supported on one of 
the B channels; 64 kbps data on the other. Moreover the 16 
kbps D channel can be used to multiplex low speed packet 
data and control information with the signaling. Using the 
Q.931 message structure, the D channel can be used for ad
dressing (dialing) information for voice and data connections 
as well as enhanced communications features. An example of 
such an enhanced feature which can be supported using the D 
channel is "Calling Party Identification." With this feature, 
the user of an integrated voice/data terminal sees the name of 
the calling party displayed as the telephone is ringing, thereby 
allowing much greater user flexibility in the disposition of the 
call. 

The CCITT has already recommended a physical interface 
for the basic rate called the "S" interface with the following 
attributes: 

1. Full duplex transmission over 2 twisted-wire pairs. 
2. Two optional pairs for the explicit purpose of powering 

the work station. 
3. 192 kbps transmission rate: 

-Two 64 kbps B channels 
-One 16 kbps D channel 
-48 kbps for framing and control 

4. One kilometer transmission distance using "Alternate 
Mark Inversion" (AMI) coding common in the digital 
telephony plant. 



396 National Computer Conference, 1987 

A basic rate interface for 1 twisted-wire pair called the "U" 
interface is presently being defined. This interface is very 
important in bringing ISDN to the public switched telephone 
marketplace. 

The basic interface also supports a "Passive Bus" at the 
endpoint which allows the interconnection of up to 8 data 
terminals or peripherals using connectionless LAN techniques 
and D-channel contention resolution for access of these 8 
devices to a single basic rate interface. Through the con
tention resolution process and the higher layers of the signal
ing protocol, each of the 8 devices can gain exclusive access to 
a B channel. 

Primary Rate Interface (PRI). The primary rate interface 
has the major advantage of compatibility of digital network 
carrier systems presently deployed in North America, Japan 
and Europe. Again, the physical primary rate access is over 
2 twisted wire pairs using Alternate Mark Inversion for full 
duplex transmission. However, the speed and channel capac
ity at the primary rate interface is much greater than the basic 
rate. 

For 1.544 Mbps transmission used in North America and 

Japan, the primary rate interfaces supports a 23B + D struc
ture in which the D channel is 64 kbps. Also, ISDN supports 
the HO and HI (384 and 1536 kbps) channels for the primary 
rate interface in this environment. For 2.084 Mbps trans
mission used in Europe, the primary rate interface supports a 
30B + D structure in which the D channel again is 64 kbps. 
In this environment the HO and HI channels (384 and 1920 
kbps) are also supported. 

It is important to note that the primary rate interface has 
three important advantages in the business environment: 

1. The primary rate interface can be used as a very high 
speed multiplexed interface between colocated systems 
using the convenient medium of simple twisted wire 
pairs. 

2. The primary rate interface can also be used as a high 
speed multiplexed access point from business premises 
to public or private digital networks. 

3. The primary rate interface can be used to create public 
switched networks in which the basic switched channel is 
the 64 kbps B channel carrying end-user information. 



ISDN MIS applications 

by DANIEL G. DeBUSSCHERE 
EDS 
Oakland, California 

One of the most significant values of ISDN is the ability to 
provide network intelligence to the data processing world via 
the out of band "D" signalling channel. One of the most 
significant ~etwork data elements is the telephone number of 
the terminal that originated the call. This number is called the 
Subscriber Identification (SID). There are a variety of MIS 
applications that can be developed that would key off the SID 
such as a customer record look-up to support the service of an 
incoming call. This may even be integrated with the Auto
matic Call Distribution (ACD) in order to properly assign the 
call to a specific agent. These applications are normally classi
fied as telemarketing applications. A generic ISDN MIS ar
chitecture is presented that will describe an integrated ISDN 
network to a premise based call distribution capability and 
access to a large remotely located host processor(s) containing 

Figure I-The architecture starts with the ISDN network and the availability 
of the Subscriber Identification (SID) to the end user 

ISDN Premise Controller 

Figure 2-The next element of consideration is the termination of the ISDN 
primary rate interface by the ISDN premise controller. Large scale 

telemarketing applications, require that the incoming calls are distributed to 
a pool of available agents according to various algorithms. This Automatic 

Call Distribution (ACD) function will be, generally, a functional part of the 
ISDN Premise Controller 

397 

Figure 3--The call is transported utilizing the ISDN Basic Rate (2B + D) to 
intelligent work stations (IWS) utilizing one of the "B" channels and 

providing the SID on the "D" signalling channel. The other "B" channel is 
utilized to maintain an open session with a data base on a large remote host 

that is connected via the ISDN network. 

ISDN 
Premise 

Controller 

ISDN (SID/ANI) 
Automatic Customer Record Lookup 

.. :P.:' ... 9.~.~.~r.~.I .................. ,....-- .......... l· .. · .. · .. · .. · .. · .. 
I 
N 

f "8" Voice 64Kbps T 
To/From WATS E 

R 
"8" Data 64Kbps F 
To/From IBM Host A ............ , 

C 
E 

'---

(Opt) Displa y 
Digital 
Voice 

Terminal 

Intelligent 
Work Station 

Data 
Terminal 

Figure 4--The SID is reformatted by the intelligent work station and an 
inquiry is immediately sent to the host. The voice terminal receives the call 

and optionally displays the SID on a small screen. Depending on the 
performance of the host, the completed customer record is displayed on the 
screen of the IWS. ISDN will provide 64Kbps data rate on the "B" channel 

and thus is able to provide sub-second response time if required. 
Generically, the intelligence of the network is passed over to the host 

application at the IWS location. 



398 National Computer Conference, 1987 

a large data base of customer information. Thereafter, sche
matics containing pre-ISDN elements are described that 
provide limited but functionally equivalent capability in 
anticipation of full deployment of ISDN. 

Figure ~ome of these capabilities may be available prior to the full 
deployment of ISDN. For example, AT&T may soon provide an Advanced 

800 WATS service providing SID/ANI as an additional tariffed service. 

AT&T ACe Processing 

Figure 6-Large scale premise PBX's such as the AT&T Systernl85 can 
provide primary rate interface to the network and provide sophisticated 

ACD processing. 

Figure 7-The AT&T PBX can distribute the call via a DCP (2B + D) 
interface to an IWS. Further, it is possible to maintain concurrent host 

sessions via a primary rate interface to the host utilizing the EDS DMII370 
interface device without the requirement for multiplexing Tl to a traditional 

front end processor (FEP). 

ISDN (SIDI ANI) 
Automatic Customer Record Lookup 

(Opt) Display 

SYstem 
75/85 

DCP 

,.:'P :',. ,9.~,~.~~,~.I,. ,.,. ,.,. ,. ,.,.,. ~ 
P 

"B" Voice 64Kbps C 

To/From WATS P 
B 

"B" Data 64KbDs X 
To/From IBM Host '--

i' .................. 

Digital 
Voice 

-( Terminal 

PC Bus : ............. 
PC6300 

Data 
Terminal 

Figure 8-An AT&T product called the PCIPBX card will terminate the 
DCP (2B + D Like) protocol with the Voice channel terminating on one 

"B" channel and maintaining an open session with the host on the 
other "B" channel. 

ISDN (SIDI ANI) 
Automatic Customer Record Lookup 

e SID/ANI supplied to PC Program 

o PC Program has open session with Host application (CICS) 

o PC uses SID/ANI to retrieve customer record from Host 
and display to Agent 

o Digital Voice Terminal operates normally and 
independently of PC-Host session 

o Depending on speed of Host retrieval, customer 
record should appear just after caller presents 
identification in response to agent reauest 

In Summary, ISDN MIS applications are just around the 
comer. Implementation planning can begin today with imple
mentation inplace tomorrow well in advance of the 1990's. 



ISDN-A new high performance platform for distributed 
computer systems 

by R. F. HOFFMANN 
The SORON Company 
Sunnyvale, California 

INTRODUCTION 

ISDN provides distributed computer system designers new 
opportunities for improvement in the performance, flexibility, 
and cost of complex distributed applications. 

This presentation will provide an overview of ISDN con
structs and performance capabilities that open up these op
portunities. A hypothetical real-time, distributed financial 
management system is described, providing as a paradigm to 
illuminate use and benefits of these new features. 

Some of the ISDN features in this presentation are based on 
ISDN network attributes that are not presently available. The 
purpose here is to graphically illustrate distributed application 
possibilities from both presently defined and anticipated new 
service offerings expected from ISDN. 

NEW DISTRIBUTED SYSTEM OPPORTUNITIES 

When viewed from the perspective of higher layer networking 
software, and the distributed applications that this software 
supports, these new ISDN features represent an improved 
transport network "platform" for the designer. Benefits from 
these improved transport network capabilities, that will result 
from ISDNs, can be passed up through the higher layer soft
ware to aid implementation of more sophisticated and re
sponsive distributed applications. 

These improvements can be identified as benefits of: 

1. more flexible and responsive system designs 
2. higher performance (Error rate, throughput, delay) 
3. improved network management and control 
4. reduced network management artifacts imposed on in

formation bandwidths 
5. lower total system cost 

The focus of the presentation is on a dynamic, interactive, 
distributed application. It illustrates that new and anticipated 
ISDN capabilities can support distributed applications with a 
more flexible, reliable, and responsive set of services. 

399 

A DISTRIBUTED FINANCIAL 
MANAGEMENT APPLICATION 

A multi-node network model is assumed. Distributed 
throughout these nodes are mainframes, minicomputers, 
databases, PBXs, LANs, workstations, and personal com
puters. Voice is also integrated into the same system. 

What will be illustrated is how a distributed application, 
overlaid on these disjoint heterogeneous resources, can be 
efficiently implemented through new ISDN services and fea
tures, and achieve a higher performance, more flexible, eco
nomical implementation than through present-day net
working methodologies. 

This hypothetical distributed financial application provides 
its users with real-time, dynamically updated graphics-based 
presentations. These presentations aid complex, real-time, 
financial decisions. Information from geographically distrib
uted databases is required. These databases are updated in 
real-time from "sensors" that continuously acquire various 
financial and event data. Also, the databases are updated 
periodically from batch runs by the company's mainframes, 
and aperiodically from manual workstation inputs that result 
from user-initiated actions. Automatically generated system 
requests, triggered by adaptively determined conditions from 
sensor, processor and database sources, result in additional 
information transfer between the system databases. 

The notion behind this real-time financial management sys
tem is that many decisions for transactions of financial instru
ments rely on multiple data sources. These data are changing 
constantly. Further, some of these decisions rely on human 
input from one or several "experts," but it is indeterminate 
when this will occur, which particular experts will be "asked" 
for input, and what queries must be made of these experts. 
AI-based applications software adaptively establishes these 
queries, based on real-time data from the multiple remote 
data and event information sources of the system. Finally, 
manual input of certain data is also required aperiodically 
from financial professionals. The interfaces that provide the 
end users the input/output they need to make these real-time 



400 National Computer Conference, 1987 

financial transaction decisions are high-performance graphics 
workstations and personal computers. 

The scenario then, is a setting of several locations, phys
ically separated across distances ranging from the next desk, 
to next room, to near-by buildings, to locations separated over 
wide geographical distances. The system is highly adaptive, 
and both transaction- and stream-oriented in its connection 
requirements. A priori determination of connection attributes 
(e.g., throughput) cannot be made. Therefore, bandwidths 
and type of channel are selected adaptively, on a call-by-call 
basis, as determined by the application state at the time of 
connection. This has the benefit of closely tailoring the trans
mission resources of each individual physical and logical call 
to what is actually needed, greatly reducing networking costs. 

DYNAMIC SELECTION OR 
TRANSPORT RESOURCES 

The system described will provide a wide spectrum of voice 
and data link capabilities between these different locations, 
will dynamically select the type and quantity of bandwidth 
needed, and will adaptively change distributed network man
agement algorithms and resources as a function of system 
traffic loads and network faults. 

Multiple logical channels, of dynamically adaptable band
widths, are available from each PC, workstation, mini
computer, database, PBX, and LAN. A given session will 
involve multiple logical connections, established to different 
end-points from the origination end-point. This assumes a 
workstation that provides multitasking capabilities. These log
ical channels will be established and disconnected indepen
dently from each other and will select varying bandwidths on 
a call-by-call basis. The attributes of each connection are se
lected based on the type of transaction, and its performance 
needs, that must be supported by the specific applications 
process it is interconnecting. 

USER-TO-USER INFORMATION 

Database, and other processing element queries, can result in 
unnecessary commitment of resources due to unavailable pro
cesses, for example, or data that has not been updated since 
the last query. Accordingly, this hypothetical distributed sys
tem makes extensive use of a new feature of ISDNs: The 
User-to-User Information (UUI) field in the call establish
ment and disconnection primitives. 

This construct allows a process to conduct a quick, low 
overhead status query or control input to the remote process 

without proceeding with the resource commitments of a com
plete connection. It is felt that in a large distributed system, 
this mechanism alone can provide for substantial reductions in 
unnecessary resource commitments. 

Also, information received back from the remote end in 
this UUI field, during transmission of call establishment prim
itives, could help determine the exact level of connection and 
processing resources that should be committed to the associ
ation. 

IMPROVED NETWORK MANAGEMENT 
RESOURCES 

ISDN offers a high-performance signaling channel separate 
from the information bandwidth. This signaling channel is 
available at all end points and nodes interconnected with 
ISDN services. The presentation will illustrate some advanced 
network management uses of this new signaling capability. 

The original purpose of the new signaling channel, as de
fined by telephone administrations, was for the establishment, 
addressing, control, and disconnection of voice and data calls. 
By expanding on the definition of "control" to include man
agement of an end users network, overlaid across the ISDN 
facilities, improvements in performance and efficiency of cus
tomer networks are possible. 

For example, a customer's private packet network, imple
mented on top of the public ISDNs, could use the D-channel's 
UUI facilities for short, low-cost status and control updates 
between packet nodes. This could be used, for instance, to 
dynamically update flow control and congestion algorithms, 
and buffer resources, based on knowledge of network loads 
and faults. 

The notion is that network signaling systems are separate 
resources to those used for information transmission and 
switching. This offers benefits in areas of functionality, re
liability, and efficiency. Network management communica
tions to the end user's system could make effective use of this 
resource. 

SECURITY SUPPORT 

Use of the D-channel facilities for passing encryption keys, 
separate from the information channel, can provide a much 
more robust security strategy. These keys could be passed 
around the network dynamically, making a network security 
compromise extremely difficult. The presentation will discuss 
some applications in this area. 



Northern Telecom PBX LANSTAR data services 

by ROBERT KELSCH 
Northern Telecom 
Richardson, Texas 

The design and architecture of the Meridian SL-1 were specifi
cally developed to accommodate the rapidly expanding re
quirements for data and voice communications. LANSTAR is 
the umbrella name that describes the local area networking 
capability of the Meridian SL-l. LANSTAR designates an 
entire family of data connectivity products and services. A 
single system can serve both voice and data communications 
needs by integrating the functions of a LAN and a PBX. 

The most obvious benefit of using a single system for voice 
and data communications is the inherent efficiency of manag
ing resources as part of one system. Cabling, transmission 
lines, host computer ports, terminals, personal computers, 
and peripherals can be administered better within a single 
network and a single cabling arrangement. LANSTAR also 
provides access to Meridian SL-1's own information services, 
''lith new capabilities such as integrated voice and text 
messaging. 

All connections to the Meridian SL-1 are made with stan
dard twisted pair telephone wire, already required for voice 
communications. By using the Meridian SL-1 for integrated 

401 

voice and data connectivity, duplicate wiring is avoided. Port 
contention allows many users to share scarce computer 
ports on an as needed basis. Concentration allows multiple 
data devices to share a common communication line, such as 
a T-1 line or a modern link to a packet-switched network. 
Domain switching allows the connection of a single data ter
minal to different host computers without rewiring or manual 
switching. 

For IBM personal computers, there is the personal com
puter interface card that fits inside the PC, and for the 
Macintosh, an inexpensive cable provides connectivity with 
no extra hardware. IBM personal computers may also be 
networked with LANSTAR-PC, which provides 2.56 megabit 
per second distribution to each desktop and access to a 40 
megabit per second local area network. LANSTAR-PC is 
supported by an interface card and Microsoft Network 
software. 

Each of these products provides a simple, economical con
nection to the Meridian SL-1: the standard RJ-ll jack. 





Beyond ISO: The extended network 

by JOSEPH B. RICKERT 
Sytek, Inc. 
Mountain View, California 

ABSTRACT 

Large organizations are faced with the problem of connecting equipment that not 
only represents a number of manufacturers, but a variety of disparate media, 
protocols, and interfaces as well. While these technologies are coexistent, their 
interconnectivity and communicability is desired in order to optimize use of these 
important corporate resources. In the short-run, one may run the transport layer 
throughout the entire network; however, this requires conversion of each network 
to the same transport layer protocol. In the long-run, ISO is projected to provide 
near-universal connectivity. However, ISO is not without its drawbacks. A more 
effective solution may be the development of the extended network, a means to join 
networks of different protocol families. 

403 





THE CAUSE 

The local area network (LAN) industry, which is barely seven 
years old, grew up very quickly in a technology-rich environ
ment where vendors were caught up in an exhilarating rush to 
satisfy a basic market need. Every large organization had 
millions of dollars of computing equipment, host machines, 
peripheral devices, and terminals capable of processing 
much more information than could be effectively acquired or 
distributed. 

Because the environment was technology-rich, and because 
LAN vendors were not governed by any existing standards, 
several different incompatible solutions to the problem of 
interconnecting computer equipment developed in parallel. 
Ethernets, slotted rings, and many other approaches to shar
ing a common data communications structure in a logical and 
cost effective manner emerged from the laboratories and 
garages almost overnight. Almost all of those technological 
approaches worked. Many of them fit the price/performance 
profile to achieve some success, and nearly all were realized 
in mutually incompatible implementations: different media, 
different protocols, different interfaces. 

Because the need was real, these different technologies 
proliferated at breakneck speed. At first, LAN companies 
enjoyed a nearly competition-free environment. In a large 
customer company, a product that filled a need was likely to 
be purchased without a thought as to what else was occurring 
in the organization. The result of all this explosive growth has 
been a large installed base of several different LAN tech
nologies, with many of these technologies coexisting in differ
ent departments within the same large organization. 

THE FUNDAMENTAL PROBLEM 

The fundamental problem confronting those who must inte
grate LAN technologies within their organizations is the inter
connection of multiple subnetworks, which are based in dif
ferent types of physical media and which are designed around 
incompatible protocol architectures. Since multiple LANs are 
already in place, within most large organizations, the new 
challenge is to increase the effectiveness of corporate commu
nications by integrating these LANs into a single, manageable 
whole. Moreover, integration implies more than physical con
nectivity. Since each LAN is presumably eff~ctive in provid
ing a particular application, the need for inter-LAN communi
cation is really being driven by the need for interapplication 
communication. Hence, the fundamental problem of inter
LAN communications hinges on the ability of higher layer 
network protocols to provide general services across sub
network boundaries. 

Beyond ISO: The Extended Network 405 

THE SHORT TERM SOLUTION 

A viable solution to the problem of providing physical inter
connectivity among several different LANs witbin an organi
zation is to attach each LAN to a common backbone network 
through a standard interface. Each LAN, no matter how geo
graphically pervasive it may be, then becomes a logical sub
network communicating through the backbone. With today's 
technology, an ideal candidate for the backbone interface is 
the IEEE 802.3 interface. It is a common international stan
dard that performs with adequate throughput and is available 
from several manufacturers. 

However, the task of providing application-level con
nectivity among the devices residing on the various sub
networks attached to the backbone is not trival. The problem 
is the lack of standards in application software, as well as an 
absence of standardization in the high-level protocol services 
that support these network applications. 

The short term solution to this problem is to run the same 
transport layer protocol throughout the entire network: all of 
the subnetworks as well as the backbone. The advantage of 
this approach is that every user is guaranteed access to any 
application running anywhere on any subnetwork. Its major 
shortcoming is that it is necessary to convert every subnetwork 
to the selected transport layer protocol or deny that sub
network any meaningful connectivity. Since this was the orig
inal problem to be solved, it is a major shortcoming indeed. 
Nevertheless, for the present, this is the best that can be done. 
The situation may be somewhat mitigated by selecting a com
mon protocol, such as TCPIIP, that has been around long 
enough to have implementations running on a variety of host 
machines and network interface units. 

ISO: SCENARIO FOR THE FUTURE 

But what about ISO? The dismal picture painted above ap
pears to ignore the promised scenario of global connectivity in 
the all-ISO world that everyone knows is coming. The all-ISO 
world may indeed provide global connectivity for some very 
large LANs, perhaps even for some large LANs connected to 
other large LAN s through a wide area network (WAN). How
ever, it is unlikely that this will prove to be the universal 
solution to the inter-LAN connectivity problem for at least 
three reasons: 

1. A considerable amount of money and effort has gone 
into constructing the present installed base of local area 
networks. It is likely that these networks will continue to 
operate for some time-well into the 1990s. 

2. The promise of an all-ISO world based on a single, 



406 National Computer Conference, 1987 

homogeneous protocol suite is unlikely to ever com
pletely materialize. The MAP community, the first 
group actually attempting to implement ISO protocols in 
a LAN environment, has already run into some trouble. 
Because the most robust ISO transport protocol-TP4-
cannot perform quickly enough to be useful in the real
time factory cell environment, a subset of this protocol 
is being specified for factory cells. If such performance 
considerations cause transport protocols to propagate as 
prolifically as the ISOIIEEE 802 link layer protocols, the 
promised scenario will not have a chance. 

3. It is unlikely that any set of standard protocols that are 
complete enough to be working their way through the 
standard organizations at the present time will be rich 
enough to accommodate the technical innovations that 
are on the drawing boards. It is not clear, for instance, 
that the present set of ISO protocols that are under 
consideration will be able to effectively handle the 
integrated voice/imaging applications that are on the 
horizon. 

THE EXTENDED NETWORK 

Beyond waiting for ISO, what can be done to solve the multi
subnet, multiprotocol problem? One possible answer is a kind 
of "protocol glue" that is capable of binding incompatible 
layered protocol architectures. 

In concept, this glue would provide a number of capabilities 
that extend local services across the backbone. For example, 
one capability would allow a host computer on a network of 
one type to participate in the activity of a remote network of 
another type. Another capability would allow full or partial 
interoperation of similar, but not identical, applications 
operating on networks of different types. 

The principal goal of the Extended Network (EN) would be 
to allow a customer to conserve and extend the useful life of 
existing network investments. With EN, the customer would 
control when and how fast he migrates to uniform network 
strategy. 

EXTENDED NETWORK CONCEPTS 

Underlying the EN solution are certain concepts of how net
works of different types may be beneficially joined. The ex
tended network does not attempt to perform protocol trans
action or concatenation below the application layer (see 
Extended Network protocols). 

EXTENSION OF NETWORK SERVICES 

EN recognizes that the service offered by a layer to its clients 
is separate from the protocols used to mechanize that service. 
One of EN capabilities is based on the concept that the inter
face through which the service is provided may be stretched 
across one or more intervening networks (or backbones). 

The service extension concept can allow a remote host to be 
a full participant on a remote network with no loss of func
tionality. 

The service extension mechanisms must, however, be built 
into the host. This can be a problem where it is not possible 
to separate the client application from its underlying commu
nications subsystem. 

The service extension concept would be, for example, a 
useful means of enabling a Unix™ host speaking TCP on an 
Ethernet ™ to use ISO FTAM services found on a distant 
MAP/TOP network. 

GATEWAYS AT THE APPLICATION LEVEL 

Another concept used within EN is that of application level 
gateways. Such gateways translate between the services of
fered by similar applications which exist on different types of 
networks. Of course, the applications must be sufficiently 
similar so that translation between the two is possible. 

An application level gateway enables a remote application 
to appear to be local to the client's own network. The client 
interacts with the gateway and the gateway, in turn, interacts 
with the remote application over the remote network. 

Application level gateways avoid the need for any change to 
the client or server. 

FULL GATEWAYS 

Full gateways provide the entire translation within a single 
device. Full gateways can be relatively efficient and can often 
perform a very good translation. However, a full gateway, 
specially designed for its role, is required for every pairing of 
application types. In addition, a full gateway may exist only at 
a point where the two networks join; there may be no 
intermediate backbone. 

One instance where a full gateway could be used is between 
x .400 on a MAP/TOP network and IBM's PROFS on an 
RSCS network. 

HALF-GATEWAYS AT APPLICATION LEVEL 

In contrast to full gateways, a half-gateway is a gateway in 
which the translation occurs in two steps. First, the services of 
a specific application are converted to a common representa
tion. Second, the common representation is converted back to 
a specific form. The common representation may be trans
mitted over a backbone. 

The half-gateway approach makes the problem of providing 
full connectivity to each new subnetwork a manageable en
gineering effort. With full gateways, it is necessary to develop 
one full gateway for each subnetwork that must be connected. 
Using the half-gateway approach, it is only necessary to 
develop one half-gateway for full N by N connectivity. 

Half-gateways are particularly useful where there are many 
different, but basically very similar, applications on different 
network types. Terminal access protocols are one instance of 
applications of this nature. Half-gateways could be used in 
join Telnet (from TCPIIP), Sytek's V2, ISO VTP, and 
x .25/ x .3/ x .28/ x .29 PADs. 



COMBINED METHODS 

For utilities' sake, the service extension and gateway concepts 
of EN might be combined. One combination is the application 
forwarder. 

An application forwarder is a cross between a full applica
tion gateway and a protocol service extension. From the per
spective of a client, the forwarder is a full gateway. This means 
that the client operates with no change. However, the for
warder uses the protocol extension facilities of the EN to 
logically place itself on the remote network. This allows the 
functionality and efficiency of a full gateway to be used even 
when one or more intermediate networks or backbones 
intervene between the client and the true server. 

EXTENDED NETWORK PROTOCOLS 

To be effective, EN must be more than a collection of con
cepts. Among the specific protocols that EN might contain 
would be the following: 

1. A concatenation protocol would provide reliable 
connection-oriented and reliable datagram services 
spanning a collection of networks and backbones. This 
protocol would provide the foundation upon which the 
service extension protocol would be constructed. 

Beyond ISO: The Extended Network 407 

2. A service extension protocol might be developed to pro
vide an umbrella for each of the specific protocol ser
vices being extended. For example, a specific variation 
of the service extension protocol might be developed to 
extended NetBIOS services to a remote client while an
other variation would be developed to do the same for 
ISO x .125 session services. 

3. A common terminal protocol might be developed to 
provide a standard method for the transport of terminal 
traffic between the halves of terminal half-gateways. 
Each half-gateway would map between the local termi
nal protocol and TP. These mappings would be defined 
for various local terminal protocols, such as Telnet (from 
the TCPIIP family) and Sytek's V2 protocols. 

CONCLUSION 

As has often been declared for LAN technology, the develop
ment of new solutions is an evolution, revolution. Since the 
short and long-term solutions offered by conversion to a single 
protocol (transport layer) or set of protocols (OSI) have their 
own inherent drawbacks, it is likely that the only truly effec
tive solution will be the development of a suite of applica
tions-level protocols to glue together the different protocol 
architectures that are available today and will persist into the 
future. 





IBM's LU6.2: Implications for the future 
of corporate distributed processing 

by BONNIE M. WEISS 
Systems Strategies, Inc. 
New York, New York 

ABSTRACT 

Logical Unit 6.2, along with the related Physical Unit 2.1, are enhancements to 
IBM's Systems Network Architecture (SNA) that promise to revolutionize data 
communications in distributed processing environments. IBM is positioning LU6.2 
as a converged solution for corporate distributed processing, and is gradually incor
porating LU6.2 support into virtually all of its major products. This paper examines 
the phenomenon of LU6.2 and some of its likely effects on office information 
system communications and configurations. In light of the de facto standard nature 
of SNA and the fact that most IBM competitors have announced or pledged LU6.2 
support, LU6.2 is viewed as not only an IBM communications architecture, but as 
the basis for integrated multi-vendor networks. 

409 





IBM's LU6.2: Implications for the Future of Corporate Distributed Processing 411 

INTRODUCTION 

Until recently, corporate communications networks have 
relied upon a mainframe-based central control structure to 
manage all data distribution functions throughout the net
work. However, the tremendous influx in recent years of 
departmental minicomputers and desktop microcomputers 
into office information systems has created a distributed 
processing environment, often consisting of widely disparate 
systems. 

Since it involves communication between multiple pro
cessors, distributed processing is intimately related to con
nectivity; the ability to connect systems to each other to satisfy 
application processing requirements. Ease of connectivity is 

. therefore the paramount concern of communications manage
ment when configuring a distributed processing environment. 
Related concerns include the ability to obtain maximum func
tionality, ease of use, and ease of expandibility and recon
figuration. 

In the ideal distributed processing environment, the effort 
involved in achieving connectivity should be limited to the 
design and implementation of the applications to perform the 
required functions. The underlying communications architec
ture should be automatically compatible for interconnection 
purposes. 

One approach to achieving this connectivity goal has 
been taken by IBM Corporation through enhancements to its 
proprietary communications architecture, Systems Network 
Architecture (SNA). These enhancements are provided by 
the strategic Logical Unit (LU) type known as LU6.2. The 
marketing term given to LU6.2 by IBM is Advanced Program
to-Program Communications (APPC). 

BACKGROUND: OVERVIEW OF SYSTEMS 
NETWORK ARCHITECTURE 

As all readers may not be familiar with SNA, it is pertinent at 
this point to provide a brief overview in order to give the 
proper historical perspective, as well as to elucidate the con
cepts needed for a basic understanding of LU6.2 before de
scribing its features, benefits and implications. 

SNA: Theory and Structure 

IBM's master plan 

SNA is IBM's master plan for communications among its 
products. It defines the structure, formats, rules, and controls 
for transmitting data through networks, and for managing and 
operating the networks. SNA was originally conceived in 1974 

to provide resource-shared communications functions be
tween mainframe computers and peripherals. Resource shar
ing was designed to reduce the cost of dedicated devices, 
transmission lines, and other equipment, by allowing different 
program applications to use the same facilities at different 
times. SNA continues to be a single strategic architecture that 
is constantly evolving to accommodate new technology and 
market demands. 

De facto standard 

IBM and IBM plug-compatible systems currently account 
for over 90 percent of the U.S. mainframe computer market, 
as well as large and growing shares of most other information 
processing markets. It is estimated that between 70 and 80 
percent of major U.S. corporations implement SNA; this base 
is growing. SNA is currently regarded as a de facto standard 
for data communications in the United States. This situation 
is unlikely to change in the near future. 

Seven-layer definition 

SNA is structured as a seven-layer architecture. The layers 
and their functions are depicted in Figure 1. A layered archi
tecture divides the communications process functionally; each 
layer performs specific functions to pass a message between 
two end points in the network. A message passes through all 
the layers from the top down in the sending device or node and 
then back up the layers in the reverse order on the receiving 
end. In certain cases a message may pass through some of the 
lower layers in both directions, each time it encounters an 
intermediate node. 

The layered nature of SNA allows a great deal of flexi
bility and has facilitated SNA's evolution over the years as 
technology advances. For instance, it is possible to alter the 
communications process at one layer without affecting the 
others, as long as the way information is passed to and from 
the altered layer and its adjacent layers remains intact. 

This flexibility has allowed IBM to slowly advance stan
dardizations from the bottom layers upward. Upon its intro
duction, SNA immediately standardized the level just above 
Physical (Data Link) with its SDLC (Synchronous Data Link 
Control) protocol. LU6.2 is now standardizing the upper 
layers. 

Relevant SNA Concepts 

Network addressable units 

In an SNA implementation, special program code segments 
called Network Addressable Units (NAUs) are used to repre-



412 National Computer Conference, 1987 

SNA LAYERS FUNCTIONS PERFORMED AT EACH LAYER 

I NETWORK 

USER 

(APPLICA TION) 

TRANSACTION APPLICA TIONS SUCH AS DIA/DCA, 

SERVICES DDM, AND SNADS 

PRESENT A TION PROVIDES INTERFACE TO SNA 

SERVICES AND USER APPLICATIONS; 

FORMA TS DATA; TURN CONTROL 

DATA FLOW CORRELA TES RESPONSES TO REQUESTS; 

CONTROL GROUPS RELATED MESSAGES 

TRANSMISSION END-TO-END FLOW CONTROL 

CONTROL AND ENCRYPTION, IF NEEDED 

PATH PACKET ROUTING FROM SOURCE TO 

CONTROL DESTINA TION; GLOBAL CONGESTION 

CONTROL 

DATA LINK I RELIABLE TRANSFER OF DATA 

CONTROL BETWEEN ADJACENT NODES 

PHYSICAL PHYSICAL AND ELECTRICAL INTERFACE 

Figure l-SNA's seven layers and the functions performed at each 

sent programs and devices to a network, and provide services 
to those programs and devices. Two types of NAU, the Phys
ical Unit (PU) and the Logical Unit (LU), are important in a 
discussion of LU6.2. 

Physical units 

Physical Units represent devices or nodes to a network; 
each participating device in a network has one PU. In pro
grammable devices, the PU is usually implemented in soft
ware; it resides in microcode or firmware in less intelligent 
devices. PUs provide network and resource control services 
for the LUs residing in their nodes. 

There are four specific PU types currently defined within 
SNA. Each is defined by the services it provides its associated 
LUs. Under the initial SNA definition each PU type corre
sponded to a specific type of device. All the PUs and the 
devices they correspond to will not be reviewed here. It is 
sufficient to note the PU Type 2, usuallj7 \vritten as PU2.0, 
represents a terminal cluster controller such as the 3274 or 
3174, or a batch terminal such as the 3770, and that PU1.0 
represents an individual display terminal or teleprinter. Intel
ligent devices such as PCs are typically linked to an SNA 
network through PU1.0 or PU2.0; this necessitates emulation 
of a 3270-type device and limits their efficiency. 

Logical units 

Logical Units represent end users to the network. An end 
user may be either an operator at a device or an application 
program. Multiple LUs may reside in one node; quantity de
pends on the type and function of the Physical Unit. LUs 
provide the interface through which end users gain access to 
network resources and manage information transmission be
tween end users. 

LU-LU sessions 

LUs allow end users to communicate by establishing ses
sions. A session is a logical, two-way connection between two 
NAUs over a specific link for a specific period of time. Several 
types of sessions occur within SNA. This discussion is limited 
to LU-LU sessions. 

There are currently seven LU-LU session types, and 
seven corresponding LU types, defined within SNA. LU and 
LU-LU session types are defined by the nature of the services 
they provide to their programs. Until recently, the definition 
of an LU type was also intimately related to where (i.e., in 
which type of device) it resided. 

Two LUs may communicate with one another via an 
LU-LU session only if they are of the same type. This point 
is important to note here, as is the definition of LU Type 6 
(LU6.0), a session between two application programs. 

OVERVIEW OF LU6.2 

LU6.2 is the strategic LU type designed by IBM as the basis 
for a converged solution for corporate distributed processing. 
LU6.2 and the related Physical Unit Type 2.1 (PU2.1) are 
designed to standardize all the SNA levels of a system below 
the application (user) level, thereby providing complete com
patibility for inter-connection purposes at those levels. 

A derivative of LU6.0, LU6.2 differs from the former and 
all other prior LU types in that it is conceived as a single, 
product-independent LU type. It provides a direct program
to-program interface between application programs residing 
on different processors. It therefore provides a base for imple
menting communications across a broad range of product 
types. 

LU6.2 is supported by several PU types. Among them is 
the new type known as PU2.1. As LU6.2 is a derivative of 
LU6.0, PU2.1 is an extension of PU2.0. PU2.1 is designed 
to support the enhanced capabilities of LU6.2. It possesses 
superior capabilities over PU2.0, which give it extended con
nectivity ability. There are two aspects to this extended 
connectivity. 

First, PU2.1 can connect a node to other network nodes in 
t"w-o ways. It can link to a mainfra...lie in a hierarchical manner. 
Also, most significantly, it can connect to another PU2.1 node 
in a peer-to-peer relationship. The significance of this is that 
remote intelligent nodes, or peripheral nodes, can use PU2.1 
to connect to one another directly, without mainframe inter
vention. 

Second, PU2.1 allows multiple links, as well as parallel 



IBM's LU6.2: Implications for the Future of Corporate Distributed Processing 413 

session support, an improvement in resource sharing and effi
ciency. 

MAJOR LU6.2 FEATURES 

The salient features of the LU6.2 architecture and their major 
benefits are: 

Conversations 

LU6.2 provides a significant improvement in resource 
sharing through the use of conversations. Two transaction 
programs communicate via a conversation, using a session 
between their associated Type 6.2 LUs to exchange data. 
Conversations use time-sliced session segments to share the 
communications link, creating a very efficient use of the ses
sion resource (see Figure 2). 

LU6.2 provides for two types of conversations: basic and 
mapped. Basic conversations are implemented on all LU6.2 
products, providing a basic universal interface for communi
cations among them. 

Mapped conversations are optional; they are intended for 
use by products that provide an interface for user-written 
application programs to communicate with one another. 
Mapped conversations provide a simpler interface for such 
programs than basic conversations. 

The Protocol Boundary 

LU6.2 provides a standardized interface to the SNA net
work for use by application programs, called the Protocol 
Boundary. The Protocol Boundary is rigidly defined and 
specified by the LU6.2 verbs. The LU6.2 verbs constitute a 
generic Application Program Interface (API) that facilitates 
a programmer's task when designing distributed transactions 
involving different product types. This API also provides a 
common specification for hardware designers who want to 
implement LU6.2 on their products. Through use of this ap
proach, LU6.2's product-independent nature is supported. 

Parallel Sessions 

LU6.2 provides parallel session capability to allow many 
pairs of transaction programs in a distributed processing sys-

Conver
sation 

Start 
SeSSIOn 

Session 

Conver-: Conver-: Conver-: Conver-: Conver-
sation sation sation sation sation 

End 
SessIon 

TIME 

Figure 2-Conversations use an LV-LV session in a serial fashion over time 
(each conversation maps to an SNA bracket). In this way, logical 
connections can be established without the overhead of creating 

a new session for each connection. 

tem to connect simultaneously. Parallel sessions allow multi
ple sessions to exist concurrently between LUs, facilitating 
more efficient use of network resources and increasing system 
throughput. 

Primary LU Capability 

In order for application programs to communicate without 
mainframe intervention, both ends of the session must be 
capable of initiation. In SNA this responsibility lies with the 
primary LU; every LU6.2 implementation can assume either 
the primary or secondary role in any given session. This sup
ports the peer-to-peer nature of LU6.2 communications. 

Commitment Control 

Commitment control involves the ability to synchronize 
transactions across a network (i.e., to insure that changes are 
committed to all appropriate resources). In LU6.2 termi
nology, this capability is called syncpoint. Syncpoint is the 
highest level of resource synchronization defined by LU6.2; it 
also provides error-protection recovery services, or rollback 
support. 

ARCHITECTED APPLICATIONS 

LU6.2 is the keystone in IBM's long-term office systems 
communication strategy. It has built-in support for a series 
of architected applications to be implemented at the trans
action services level. These currently include Document Inter- . 
change Architecture (DIA), Document Content Architecture 
(DCA), SNA Distribution Services (SNADS) and Distrib
uted Data Management (DDM). New developments from 
IBM in this area can also be expected. 

Document Interchange Architecture/Document 
Content Architecture 

DIA and DCA have been developed to overcome the dif
fering commands among diverse operating systems. DIA al
lows the interchange of documents and other information 
across a network. Transmitted documents can be in final or 
revisable form, and can be directed to multiple destinations. 
DIA also provides access to the processing and distribution 
services of the Distributed Office Support System (DISOSS). 

DCA defines uniform formatting of documents to be inter
changed in an office environment, providing document com
patibility across the products that support DCA. Formatting 
controls are included in DCA, including such functions as 
pagination, highlighting, heading, and centering. As with 
DIA, documents can be either in draft or final form. 

Distributed Office Support System 

DISOSS is an application subset residing in the host that 
stores, retrieves, and distributes documents created by mM 



414 National Computer Conference, 1987 

products that support LU6.2. Examples of these include 
the 5520 Administrative System, Scanmaster 1, and Display
writer. DISOSS allows remote users to access host services, 
such as the host library. 

SNA Distribution Services 

SNADS is an architecture for asynchronous distribution of 
information between users. SNADS provides delayed delivery 
services, allowing information to be forwarded through the 
network as paths between intermediate nodes become avail
able. This eliminates the need for a complete end-to-end ses
sion between the origin and the destination of a transmission. 

Distributed Data Management 

DDM is the most recently announced architected LU6.2 
application. It provides data connectivity for record-oriented 
files residing on systems that support it. With DDM, System/ 
36 and Systeml38 users can access such files remotely. The 
files may reside on a remote Systeml36 or Systeml38, or in 
CICSNS on the host. Some examples of DDM functions 
include copying a remote file onto a local file, accessing a 
remote keyed file as if it were local to read, write, update, or 
delete records, and reading a remote sequential file. 

Low-Entry Networking 

Before proceeding to a discussion of the implications of 
LU6.2, it is highly pertinent at this point to mention a most 
significant extension to PU2.1, formally unveiled by IBM in 
mid-June 1986, amidst a flurry of announcements. This ex
tension, given the marketing term Low-Entry Networking 
(LEN), exploits LU6.2 by enhancing PU2.1's capabilities. 
Under its original definition, PU2.1 allows an intelligent 
peripheral node to connect directly to an adjacent intelligent 
node, without mainframe intervention. The limitation is that 
the peer-to-peer connectivity does not extend beyond the ad
jacent link stations. 

LEN extends PU2.1's capabilities to allow PU2.1 nodes to 
handle intermediate routing of sessions not intended for 
themselves. LEN allows the configuration of LU6.2 networks 
consisting of interconnected systems of widely differing sizes 
in an arbitrary topology. True peer-to-peer networking is now 
possible. LEN also provides for dynamic routing within the 
network, as well as dynamic reconfiguration. 

LU6.2: USER'S PERSPECTIVE 

True Distributed Processing 

LU6.2 promises many benefits to users, both in the short 
and long term. It will rid intelligent workstations of their 
current SNA identity crisis; they will no longer need to imper
sonate 3270 terminals to communicate on the network. There
fore, users can begin to realize the full processing power of 
their ubiquitous PCs. LU6.2 will allow microcomputers to 

conduct work sessions in real-time with the host, as well as 
with all other network systems, while retaining full stand
alone processing capabilities. When the session involves a link 
between two intelligent devices other than the mainframe, no 
host intervention is required. The result will be a net gain in 
overall system efficiency: improved throughput, more usable 
computing power, no dormant excess processing power, and 
more effective handling of peaks. In short, true distributed 
processing. 

Programmability 

The definition of the SNA upper layers and the standard 
program-to-program interface provided by the LU6.2 verbs 
will result in the "decoupling" of programs and devices. 
Program-to-program communications become independent 
of the environments (i.e., operating system, programming 
language, hardware type) of the individual programs. For ex
ample, a "C" language program running on a UNIX-based 
system can communicate with a COBOL program on an IBM 
MVS machine. The language, operating system, and physical 
location of the program are all transparent to the programmer 
and user. The verbs and syntax specified by LU6.2 will pro
vide a universal "language" for user-written programs. It will 
be much easier for users to configure and maintain large net
works and to write distributed application programs for those 
networks. 

Expandibility 

LU6.2 will offer the same lasting use of distributed trans
action processing programs that IBM's 360 operating system 
environment provided for batch processing programs. A capi
tal investment in software, therefore, will be protected longer, 
and the cost of software maintenance support reduced. 

LU6.2 will provide increased flexibility in distributing work 
across networks. Applications can be written for single or 
multi-machine environments, and value-added utility pro
grams can be generated for many configurations. This will 
make expandable solutions easier to come by, and less costly. 

Lower Design Costs 

LU6.2 will eventually formalize the rules for creating new 
distributed systems. This will make everyone's life simpler, as 
every system designer will not have to try to "reinvent the 
wheel." This will lead to a decrease in cost for designing 
highly specialized systems, as less expertise will be required. 

Configurability 

The proliferation of PU2.1 nodes will greatly reduce the 
amount of host communications software required in LU6.2 
network implementations. This is because many previously 
centralized control functions will be offloaded to the remote 
intelligent nodes, thus relieving the mainframe of some of the 
responsibility for communications control. 



IBM's LU6.2: Implications for the Future of Corporate Distributed Processing 415 

For example, in a traditional hierarchical network, central
ized network control programs operating under ACFINCP 
(Advanced Communication FunctionlNetwork Control Pro
gram) keep tabs on the actual physical location of every LU on 
the network. Therefore, if a user moves his terminal, an NCP 
regeneration is necessary. In an LU6.2 implementation such 
as a token-ring LAN, the NCP sees the virtual Logical Units 
but is transparent to their physical placement on the LAN. In 
such configuration, users will be able to move PC's as easily 
as one moves modular-plug telephones today. Eventually such 
LANs will have extremely powerful distributed processing 
capabilities. Figure 3 depicts just a few of the concurrent 
sessions which rulY PC on such a LAN may one day pick and 
choose from. Bridges between major data bases such as 
Cullinet's IDMSIDB and ffiM's IMSIDB are possible within 
the same node in this context. The possibilities are many 
orders of magnitude more than was previously feasible (see 
Figure 3). 

CURRENT STATUS AND LIMITATIONS 

The LU6.2 future holds a great deal of promise. However, at 
the present time, LU6.2 is a technology in its infancy. Much 
development and implementation will be necessary before 
LU6.2 networks become a working reality in user sites. There 
is, however, much evidence that IBM is devoting a fair-sized 
chunk of its massive resources to get LU6.2 into the market
place. 

Hardware Support 

As of this writing, IBM has announced LU6.2 support for 
CICSNS, the Systeml36 and Systeml38, the Systeml88, Series 
1, the 8100, and the IBM PC family, and has issued a state
ment of direction indicating future LU6.2 support for the 

TSO 
CMS 
CICS 
DISOSS 
IMS 
IDMS 

MAINFRAME 

TSO 

1--__ .f:CICS (DISOSS) 

With Token-Ring 
Adapter to Systemj36 

= Time-Sharing Option 
= Conversational Monitor System 
= Customer Information and Control System 
= Distributed Office Support System 
= Information Management System 
= Integrated Data Management System (Cullinet Inc.) 

Figure 3--The remote 3725 controller acts as a gateway server to allow 
sessions between microcomputers on the LAN and programs running 

on the mainframe. Without an NCP regeneration, incremental physical 
units can be added to the LAN, as well as additional LANs 

via PC AT gateways. 

4700. IBM has also announced support for the 5520, Scan
master 1, and Displaywriter under its DISOSS architecture. 

In mid-April, IBM announced a direct link for the token
ring network to the Systeml370 through the 3725 communica
tions controller, a token-ring-to-Systeml36 connection via a 
PC/AT gateway, and a token-ring-to-token-ring bridge. IBM 
also announced software for the SerieslI that implements 
links to DISOSS, Systeml36 and Systeml38 for its PCs, pro
viding document distribution and library services. 

In mid-June, IBM announced the 3174 family of cluster 
controllers that directly links the token-ring network to IBM 
mainframes. The new controllers, which replace the 3274 
models, provide att~chment of 3270 system displays, printers, 
and workstations to IBM host processors via a local channel, 
remote link, IBM token-ring LAN gateway and IBM token
ring LAN. At the same time, IBM also announced a physical 
token-ring connection for the RT, and remote PC access to 
the token-ring and PC Network through NetBIOS. 

The announcements state a range of availability dates 
stretching from the present out to mid-1987. Given the appar
ent level of activity, more announcements can be presumed to 
be imminent, and may even occur between the final edit of 
this paper and its publication. 

Software Support 

Quite aside from the issue of support in hardware, there is 
the matter of LU6.2 applications software. IBM has published 
the LU6.2 specifications, and is relying heavily on third-party 
vendors to fill the applications software gap. Third-party de
velopment is already ll..l1derway, but there is a long way to 
go. 3270 applications software-literally millions of lines of 
mainframe source code-will have to be largely rewritten to 
take advantage of a distributed processing environment. 

Some of the 3270 applications will likely never be upgraded, 
because the cost in time, risk, and dollars is unwarranted. The 
fact that IBM has made new 3270 emulation products an
nouncements concurrent with LU6.2 announcements is evi
dence of its recognition that the hierarchical environment 
will exist for quite some time into the future. The first LU6.2 
implementations will most likely be side-by-side with 3270 
technology . 

Network Management 

Finally, there are the issues of network management and 
diagnostics. As corporate processing moves away from a cen
tral control structure, these matters become increasingly 
complex. IBM has taken some steps toward solving these 
problems with recent announcements, particularly that of 
LEN, but it still has quite a long way to go. 

LU6.2 AS AN INTERNETWORKING STRATEGY 

As it provides an environment-independent, program-to
program communications technology, LU6.2 is well-suited as 
the basis of an internetworking strategy. The LU6.2 specifica
tions are public, and most of IBM's competitors have already 



416 National Computer Conference, 1987 

announced that they will support LU6.2. Third-party commu
nications software vendors already have portable LU6.2 soft
ware packages on the market. 

With a portable software package, the SNA and LU6.2 
programming is pre-packaged in machine- and operating 
system-independent modules that need only to be compiled 
and linked. Implementation in hardware consists of a porta
tion. The design of such packages simplifies porting to diverse 
operating environments. 

The availability of such pre-packaged LU6.2 capability 
greatly reduces the development cost and time-to-market of 
LU6.2 products for the hardware vendor. This means that 
even smaller and special-purpose hardware vendors will be 
able to offer LU6.2 products within a fairly short period. 
Integrated LU6.2 networks composed of a wide variety of 
equipment from many different vendors is a very real scenario 
of the not-too-distant future. 

BIBLIOGRAPHY 

1. IBM Distributed Data Management Architecture: General Information 
(GC21-95270-0). 

2. IBM Distributed Office Support Systeml370 Version 3 Release 3: Inter
change Architecture Reference (SC30-376-4). 

3. An Introduction to Advanced Program-to-Program Communication 
(APPC) (GG24-1584-O). 

4. Systems Network Architecture: Concepts and Products (GC30-3072-2). 
5. Document Interchange Architecture: Technical Reference (SC23-0781-0). 
6. Systems Network Architecture Format and Protocol Reference Manual: 

Distribution Services (SC30-3098-2). 
7. Document Content Architecture: Final-Form-Text Reference 

(SC23-0757-1). 
8. cSNAlLU6.2 Advanced Program-to-Program Interface User Manual, Pre

liminary Release 4.0. 
9. Networks and Architectures: IBM Systems Network Architecture (SNA), 

Datapro Research Corp., 1984. 
10. A. E. Baratz, V. P. Gray, P. E. Green,Jr., U. M. JaffeandD. P. Pozefsky, 

"SNA Networks of Small Systems." IEEE Journal on Selected Areas In 
Communications, SAC-3 (1985) 3. 



Evolution of a hierarchical ring bus network 

by MARK G. LARSEN 
Emerson Electronic Company 
St. Louis, Missouri 

ABSTRACT 

In this paper we discuss the evolution of a hierarchical ring bus network for use in 
military digital signal processing systems. Current signal processing techniques are 
unable to meet future requirements for speed, expandability, flexibility, and fault 
tolerance. After determining an MIMD architecture is required, several inter
connect schemes are reviewed and evaluated. Selection of a ring bus is supported 
and enhancements are suggested that enable the architecture to meet required 
system metrics. The result is a hierarchical, segmented, multi-ring network that is 
ideal for use in advanced digital signal processing systems. 

417 





INTRODUCTION 

Increased digital signal processor requirements for military 
systems have led to the realization that current programmable 
signai processors and pipeiined processor techniques are not 
capable of meeting future system needs. Increased demands 
for system expandability, flexibility, and fault tolerance have 
also led to the decision to evaluate a new approach for future 
digital signal processing systems. The variety of processing 
algorithms required in applications, as well as the need for 
multisensor capability, have indicated that a Multiple In
struction Multiple Data (MIMD) architecture is called for. 

A wide variety of interconnect schemes are available for an 
MIMD processing environment which includes linear, regu
lar, crossbar, ring, and star networks. An evaluation was per
formed to determine which approach best answered the list of 
requirements for future processing applications. This paper 
summarizes the selection process implemented and supports 
the decision to use a hierarchical segmented ring bus as the 
target network architecture for high performance digital sig
nal processors. 

CURRENT DEFICIENCIES 

Table I shows a list of near and far term requirements for 
digital signal processing applications. Along with require
ments for increased processor performance, there is an ever 
increasing demand for processor flexibility, expandability, 
and fault tolerance. Current techniques for signal processor 
implementation include Single Instruction Multiple Data 
(SIMD) processors and pipelined arrays of high performance 
processors. These techniques, while being capable of meeting 
some near term processing power requirements, are not able 
to comply with long term performance, configurability, and 
reliability requirements. 

It became clear very early on in the investigation that an 
MIMD architecture was required. An MIMD organization 
allows for concurrent execution of multiple algorithms on dif
ferent sets of data that allows for processing in multiple sensor 
systems and for reconfiguration of a processor for multiple 

Table I-Advanced signal processing requirements 

PROCESSING REQUIRED PROCESSING POWER 

FUNCTION ~ 1 ·5 YEARS 5 ·10 YEARS 

RADAR PROCESSING 50·100 MOPS 100·500 MOPS 500 . 1000 MOPS 

IMAGE PROCESSING 100 MOPS BOO· 1000 MOPS 1000 . 10000 MOPS 

AUTO TRACKING 1·2 MIPS 5·10MIPS 10·15 MIPS 

FIRE CONTROL 1·5 MIPS 5·10 MIPS 10 MIPS 

ATE 1 MIP 1·5 MIPS 10 ·15 MIPS 

Evolution of a Hierarchical Ring Bus Network 419 

tasks. Spare processing power can be built in for fault toler
ance, or processors capable of performing mUltiple tasks can 
be used to provide graceful degradation. The key concern of 
implementing an MIMD signal processing system is the selec
tion of an interconnection scheme. 

OBJECTIVES 

The goal of the processor architecture investigation was to 
define a state-of-the-art busing network that will not be out
grown by future signal processing requirements. Investigation 
of several MIMD architectures, including linear, regular, 
crossbar, ring, and star networks, was undertaken to deter
mine the most viable solution. 

Whichever organization was selected must allow for: 
(1) massive parallelism, for required performance im
provements, (2) flexibility to allow the control scheme to 
route data to an available processor when the primary choice 
is occupied, (3) ease of expandability for minimal redesign 
effort when increasing capability, and (4) fault tolerance for 
increased system reliability. 

NETWORK METRICS 

Each of the five network configurations was evaluated and 
graded in four categories: expandability, capacity, flexibility, 
and fault tolerance.! Grading of each category consisted of 
three possible values, high, medium and low. 

Expandability is a measure of the ability to match a pro
cessor organization to a processing requirement. Each new 
application of the signal processing architecture should not 
involve a complete redesign effort in either hardware or com
munication software. A system should be able to be expanded 
incrementally with only a linear increase in interface hard
ware. Also, addition of processing elements to a network 
should not require a change in the system communication 
software. If a network configuration met these requirements, 
it received a high grade for expand ability . 

Capacity is a measure of the networks ability to increase 
communication bandwidth as more processors are added. If 
an organization did not exhibit this feature, a communication 
bottleneck would form as each of the processors attempted to 
communicate with each other. A network organization which 
naturally gave a communication bandwidth increase as pro
cessors were added was assigned a high grade for capacity. 

Flexibility of a network is indicated by the ability to adapt 
to changes in the data or processor communication flow. Data 
should be capable of being dynamically routed to an available 
processor if the primary candidate is occupied. This process 



420 National Computer Conference, 1987 

should require minimal overhead in rerouting the data flow. 
Maximum flexibility received a high score. 

Fault tolerance involves the ability of a network to detect 
system failures and dynamically compensate for them. This 
would involve rerouting information around failed processors 
or communication links. The ability to dynamically compen
sate for faults and to do so with a minimal amount of overhead 
received a high grade. 

One other concern in the selection of a processor organiza
tion dealt with whether the network configuration utilized a 
centralized or distributed control scheme. 2 A centralized con
troller requires less hardware to implement, but its use can 
limit communication bandwidth as all nodes are arbitrated 
sequentially by the controller. Another disadvantage of a cen
tralized control scheme is low reliability. If the controller fails, 
the entire system may cease to function. This problem could 
be relieved by adding the overhead of a backup controller and 
redundant control links to the processors. 

A distributed controller requires hardware consisting of a 
control mechanism for each node in the network. It also re
quires that a portion of the data direction scheme be resident 
in each control element. Distributed control is much more 
fault tolerant and allows maximum communication bandwidth 
between the processors in the network. 

Therefore, the ideal network architecture would utilize a 
distributed control scheme, and have high grades for expand
ability, capacity, flexibility, and fault tolerance. 

NETWORK EVALUATION 

Illustrations of network interconnect topologies are shown in 
Figure 1. A review of each of the organizations with respect 
to the four grading catagories follows. 3 Table II summarizes 
the grading results of each network architecture. 

REGULAR STAR RING 

-+--\----+----10 

LINEAR BUS ---+--+----+----10 

CROSSBAR 

Figure I-Network interconnect topologies 

Table II-Network topology evaluation summary 

~ ~ EXPANDABllITY ~ ~ ffi!:!.!:I..!Qb ~ 

REGULAR DISTRIBUTED MEDIUM HIGH MEDIUM HIGH 

STAR CENTRAL HIGH LOW LOW MEDIUM 1.5 

RING CENTRAL MEDIUM HIGH MEDIUM LOW 

DISTRIBUTED HIGH HIGH HIGH LOW 

LINEAR CENTRAL HIGH LOW LOW LOW 

DISTRIBUTED MEDIUM LOW HIGH LOW 1.5 

CROSSBAR CENTRAL LOW HIGH MEDIUM HIGH 2.5 

DISTRIBUTED LOW HIGH MEDIUM HIGH 2.5 

IDEAL DISTRIBUTED HIGH HIGH HIGH HIGH 

Regular Networks 

Regular networks typically consist of an array of identical 
processors connected so that each processor performs direct 
communication with its adjacent neighbors. Examples of reg
ular networks include systolic arrays, cubes, and hypercubes. 
Control is usually distributed throughout the network allow
ing the system to adapt to changing conditions. Expansion is 
performed by adding processors to the perimeter of the con
nected array. As processors are added the communication 
bandwidth also increases due to the fact that there is an in
crease in the number of communication channels. Faults are 
handled by routing around the failed processor or communi
cation link. 

Grading for regular arrays went as follows. Expandability 
was assigned a medium grade due to the fact that it is difficult 
to add one or two processors at a time. Also, the distributed 
control program for regular arrays usually needs to be re
compiled for a reconfiguration. Capacity received a high score 
due to the increase in communication bandwidth as processors 
are added. Flexibility was graded only at medium because 
algorithms that are sequential in nature are not easily mapped 
onto regular arrays. Fault tolerance was rated high since a 
small increase in hardware can allow routing around failed 
processors or communication links. 

Star Networks 

Star networks, by nature, are centrally controlled architec
tures with any number of peripheral slave processors. The 
central control, or communication point, limits the amount of 
communication between nodes as the controller has a limited 
bandwidth. Expanding a star network is simple, but, increases 
the load on the controller and reduces the communication 
capability. The star network is not a likely candidate for 
systems where frequent interprocessor communication is 
Jequiled. 

A star network is limited to central control, but, had a high 
score for ease of expandability. Capacity was inherently low 
due to the central controller having a fixed upper bound on 
communication bandwidth. Flexibility was low due to the fact 



that slave processors could not easily share a processing task 
due to low interface communication bandwidth. Fault toler
ance was given a medium score. Redundant processors could 
be added to the network, however, the central controller is a 
single point failure. Implementation of a spare controller 
would require a significantly large amount of hardware 
for bypassing the communication bundles entering the main 
controller. 

Ring Networks 

Ring buses are used in many distributed systems including 
various proposed IEEE 802 standards. Usually a token pass
ing scheme is used to allow a processor to add data or mes
sages to the ring whenever it receives a token. With sufficient 
control, each segment of the ring may be allowed to transfer 
information simultaneously, which increases the system com
munication bandwidth. With a segmented ring network, sys
tem bandwidth is increased as processors are added. Use of a 
centralized controller reduces expandability and flexibility 
due to the limitation of a single controller scheduling all pro
cessor transfers. A distributed controller allows each pro
cessor to assume the transfer responsibilities. Ring buses are 
not inherently fault tolerant due to their architecture which 
includes a critical failure point, namely, the communication 
channel. 

The ring network received a high score for capacity and a 
low score for fault tolerance. Expandability and flexibility 
depended on whether the controller was centralized or distrib
uted. Centralized controllers required reconfiguration and be
came overutilized as the system was expanded. The expand
ability and flexibility metrics of a centralized control ring 
network were assigned medium grades. A distributed con
trol ring network received high grades for expandability and 
flexibility. 

Linear Networks 

Linear networks are commonly used in microprocessor sys
tems. All devices share a common bus and either a centralized 
or distributed control scheme is used to arbitrate access to the 
bus. As nodes are added to the linear bus, the maximum 
network bandwidth does not increase and more communica
tion must take place using the same hardware. Since there is 
only one bus for communication, linear buses have poor fault 
tolerance. 

The linear bus was assigned low scores for both capacity and 
fault tolerance. A centralized controller had a high expand
ability grade, but a low flexibility score. With a distributed 
control scheme, increased expandability requires modifica
tions to each communication element and then receives a 
medium grade. Since each node is capable of implementing 
retry requests, distributed linear networks were rated high for 
flexibility. Linear buses end up being a very poor choice for an 
advanced signal processing system. 

Evolution of a Hierarchical Ring Bus Network 421 

Crossbar Networks 

Crossbar networks allow the most direct and highest band
width connection between processors. They are, however, 
very hardware intensive and the addition of processors re
quires a geometric increase in interconnect circuitry. Flex
ibility is limited by the rate at which the entire matrix can be 
reconfigured. Also, as long as redundant controllers exist, 
crossbars have a very high fault tolerance. 

Fault tolerance and capacity received high marks while 
expandability received a low grade. Limitations to the cross
bar reconfiguration rate only allowed a medium grade for 
flexibility. 

EVALUATION RESULTS 

In Table II each network was graded and compared with the 
ideal desired system requirements. With a low grade scored at 
0, medium at 0.5 and high at 1, the grades for each network 
configuration were summed. Distributed regular and distrib
uted ring networks scored the highest with three points out of 
four possible. 

The distributed regular network showed weakness in the 
area of expandability and flexibility. These limitations are not 
easily overcome because they arise from the matrix organiza
tion of the architecture. Expansion by small incremental 
amounts is not easily accomplished and flexibility is somewhat 
limited to algorithms with specific characteristics. Much re
search is ongoing to resolve problems associated with regular 
arrays, but current application to a wide variety of signal 
processing applications does not seem feasible. 

The distributed ring network only scored low in one cate
gory, fault tolerance. This is due to the fact that if a portion 
of the ring fails, processors cannot communicate past the 
break. This can be overcome by the addition of a redundant 
ring with an increase in interface hardware. Although the 
interface hardware must be doubled to add a spare ring, the 
addition can be more than justified through increased fault 
tolerance and increased bandwidth when the system is fully 
functional. The ring bus is therefore a prime candidate for the 
proposed digital signal processing architecture. 

RING BUS ENHANCEMENTS 

Segmentation of the Ring 

Some basic enhancements to the basic ring network allow 
an even greater improvement in all of the evaluation catego
ries. To begin with, the interconnect should be implemented 
as a segmented ring. This allows for each ring section between 
processors to execute a transfer simultaneously and allows for 
a linear increase in system bandwidth as nodes are added to 
the network. 



422 National Computer Conference, 1987 

Dual Ring Configuration 

Although system messages and data can share a single ring, 
a redundant ring, intended primarily for improving fault toler
ance, can be used for message traffic while the primary bus is 
used for data transfers. Since messages are typically small and 
far between compared with the data transferred, dedicating a 
ring to message communication greatly reduces the latency in 
preparing for data transfers. The message ring could also be 
used for transmission of small, time critical data, such as time 
tag updates or system reconfiguration information. 

Variable Sized Packets 

Typically, the token passing scheme used in ring networks 
limits transmission of data and messages to fixed length pack
ets. In a dual ring system where messages are sent on one ring 
and data on the second, data packets can be made large and 
message packets small. This allows for more efficient transfers 
on both rings. The data packet header overhead is reduced 
because fewer packets are required to send larger data sets. 
Since messages are small, there are fewer empty elements to 
these packets. 

A method to reduce overhead all together is to remove the 
token and have the processors use a busy/ready handshake 
scheme to transfer packets between each other. This way, 
variabled sized packets can be sent with overhead kept to a 
minimum. The only limitation is the maximum packet size 
allowed which is a system hardware constraint. This method 
allows the small data packets and all message packets to use 
only the size of packet they require. Large data transfers can 
always use the maximum packet size allowed by the system. 

Hierarchical Rings 

For more efficient utilization of processors in a multi-sensor 
system, those required for a given sensor processing task can 
be grouped in a single ring. With the use of a gateway node, 
results computed by the sensor ring can be passed to a data 
fusion processing ring. This nesting of rings can continue until 
the system requirements are reached. A simple example of 
nested rings is shown in Figure 2. 

To reduce the possibility of a single point failure at the 
gateway node, a spare gateway path can be added. With the 
sensor processors grouped in a common ring, new sensors may 

Figure 2-Hierarchical ring network example 

be added or reconfigured by adding or deleting sensor rings 
from the fusion or integration rings. 

CONCLUSION 

After evaluating all five MIMD processor configurations, it 
was decided that the ring network was the most likely candi
date for advanced digital signal processing applications. The 
few limitations that were involved in implementing a ring bus 
have simple solutions if modifications to the basic ring config
uration are added. These modifications include; ring segmen
tation; dual, redundant rings;' separate message and data 
rings; variable sized packets; tokenless rings; and hierarchical 
nesting of rings. 

The result is a very powerful, dynamic signal processor 
which is capable of meeting and exceeding near and long term 
processing requirements and will not be outgrown as require
ments change. This ring network scheme allows for high per
formance, ease of expandability, flexibility, and high fault 
tolerance, that are all requirements for the system of the 
future. 

REFERENCES 

1. DeMuth, G., A. Dennis, and L. Gilbert. "Signal Processor Architectures." 
14th Southeastern Symposium on System Theory, April, 1982, pp. 197-201. 

2. Ezzat, A.K., and R. Agrawal. "Making Oneself Known in a Distributed 
World." Proceedings of the 1985 International Conference on Parallel Pro
cessing, August, 1985, pp. 139-146. 

3. Feng, T. "A Survey of Interconnection Networks." Computer, December, 
1981, pp. 12-27. 



Token-ring local area network management 

by BARBARA J. DON CARLOS 
IBM Corporation 
Research Triangle Park, North Carolina 

ABSTRACT 

This paper describes an architecture for managing a token-ring local area network, 
possibly consisting of several token rings joined by MAC-layer bridges in a network 
containing several communication subsystems. A four-tier network management 
hierarchy, consisting of stations, management servers, a token-ring LAN manager, 
and a communications network manager is presented. Stations participate in the 
management of the LAN by monitoring themselves and their neighboring stations. 
Management servers collect configuration and error reports from stations on a 
single ring segment. The LAN manager can coordinate the activities of the different 
management servers on its local ring and on rings other than its own, but within one 
local area network. If the token-ring local area network is part of a larger communi
cations network, possibly a wide-area network, another tier, the communications 
network manager, is required to provide network-wide management capabilities. 
An example network configuration is presented in this paper and various scenarios 
involving the management of that network are described. 

423 





INTRODUCTION 

The management of token-ring local area networks (LANs) 
involves informing management entities of errors and config
uration changes in the network, honoring requests for status, 
and changing the state of stations attached to the token ring. 
Information is collected and distributed from centralized enti
ties to allow for a single point of control from which a human 
operator could monitor and manage the network. A hier
archical management architecture is defined to manage sta
tions and connections in this distributed environment. This 
hierarchy consists of: token-ring LAN stations, token-ring 
management servers, a token-ring LAN manager, and, where 
the token-ring LAN is part of a larger network, a communica
tions network manager. Figure 1 summarizes the management 
hierarchy for the token ring. 

The token-ring LAN architecture, a specification of the 
physical layer and the lower half of the data-link control layer 
(called the medium access control sublayer) provides sophis
ticated network management functions. This architecture is 
defined in the IEEE 802.5 Standard. 1 

The token-ring medium-access-control protocol provides 
management messages to change the configuration of stations 
attached to the ring, change the state of those stations, and 
report errors from those stations. These management activ
ities are directed and coordinated by management servers. 
Three management servers are defined, each performing a 
different management activity for stations attached to a single 
token ring. In a local area network consisting of many token 
rings connected by bridges, each type of management server 
can be located on each ring to insure that all aspects of each 

Figure I-Token-ring management hierarchy 

Token-ring Local Area Network Management 425 

ring in the LAN are managed. Control and coordination of 
the activities of the management servers is provided by a 
token-ring LAN manager. A token-ring LAN manager's re
sponsibility extends across the token rings monitored by the 
management servers under its controL 

If the token-ring network exists as a part of a larger commu
nications network, possibly including other types of communi
cation subsystems, management of the token ring is included 
as part of the communications management hierarchy for the 
parent communications network. Management funcions spe
cific to the token ring can be provided by the token-ring LAN 
manager, while configuration and fault information critical to 
the connectivity within the entire network can be reported to 
a higher management entity called the communications net
work manager. The concept of a hierarchical management 
architecture is very useful when several communication sub
systems are to be managed from a central location. That is, 
each subsystem is managed to the extent possible by its sub
system manager; information about configuration and un
resolved errors is forwarded to a centralized management 
facility. The centralized management facility could provide 
further fault diagnosis, maintain configuration information, 
and supply information about the health of the network to an 
operator. 

TOKEN-RING LAN ARCHITECTURE OVERVIEW 

A token-ring LAN consists of stations connected sequentially 
by a series of point-to-point physical links to form a ring. Each 
station is provided fair access to the shared transmission 
media through the use of a special bit pattern, called a token. 
Only one token is present on the ring at any time and it is 
passed from station to station around the ring. When a station 
with data to transmit receives (captures) the token, it sends 
the data it is holding in a frame. The frame consists of a 
header, the data, and a trailer. The header of the frame con
tains control information, including the destination address 
for the information. All other stations on the ring (not using 
the token) listen to the traffic on the ring while repeating all 
frames to their downstream neighbors. When a station recog
nizes its address in the destination address field of a frame 
header, it copies the frame from the ring. The station also 
repeats the frame, which propagates around the ring. The 
sending station removes its frame from the ring. When it 
finishes transmitting the frame and receives the header of the 
frame it sent (from around the ring), the sending station trans
mits a new token on the ring for use by the first downstream 
station with data to transmit. In this way, each station obtains 
fair, deterministic access to the transmission media of the 
ring. 



426 National Computer Conference, 1987 

Attaching to the Ring 

When a station attaches to the token ring, it registers ad
dressing information and identifies the product it attaches to 
the token ring to a management server called the ring param
eter server ( described below). The ring parameter server, if 
present, responds by sending a frame containing the values for 
operational parameters in use by stations attached to the ring. 
If the ring parameter server is not attached to the ring, the 
attaching station uses the default values for its operational 
parameters. 

Active Monitor Function 

One station attached to each ring, called the active monitor, 
monitors the token on the ring. Any station attached to the 
token ring can provide the active monitor functions, though 
only one does so at a time. The token-monitoring functions of 
the active monitor are necessary to insure that a usable token 
is always present on the ring. If the active monitor does not 
recognize a token on the ring for a specified (relatively short) 
period of time, it purges the ring. During the purge process, 
all of the stations attached to the ring are reset. The other 
stations attached to the ring serve as standby monitors that 
watch the activities of the active monitor and take over in case 
of failure. Active monitor errors are reported to a manage
ment server called the ring error monitor (described below). 
When a station becomes the active monitor (at initialization 
time or after a monitor error has occurred), it registers with 
a management server called the configuration report server 
( described below). 

The active monitor also initiates a periodic poll, called the 
neighbor-notification process, in which stations identify them
selves to their (downstream) neighboring station. The 
neighbor-notification process enables stations to isolate faults 
by reporting errors between them and their nearest active 
upstream neighbor on the ring. It also serves to notify stations 
that an active monitor is present on the ring. During the 
neighbor-notification process, the active monitor transmits a 
special identification frame that identifies itself to its down
stream neighbor. The downstream neighbor then identifies 
itself to its downstream neighbor. This process continues 
around the ring until it reaches the active monitor again. 
Then, after a predetermined time, the active monitor initiates 
the process again. If a station detects a new upstream neigh
bor during the neighbor-notification process, it reports the 
new station address to the configuration report server (de
scribed below). Note that the upstream station could have 
changed because a new station attached to the ring or because 
the old upstream station left the ring. 

Error Detection and Reporting 

Two types of errors are detected by token-ring stations: 
hard errors and soft errors. Hard errors are faults that pre
clude the operation of a token ring within the normal token
ring LAN protocols. Hard errors detected by token-ring sta
tions include a broken ring and a continually transmitting 

station. If a station detects a hard error, it broadcasts a special 
frame, called a "Beacon" frame. The Beacon frame contains 
the address of the nearest active upstream neighbor of the 
frame transmitter. All stations attached to the ring receive 
the Beacon frame; its destination address is defined to be the 
all-station group address. Upon receiving the Beacon frame, 
the station identified as the sender's nearest active upstream 
neighbor removes itself from the ring and executes a test to 
determine whether it and its attachment to the ring (lobe) are 
functioning properly. If an error is detected, the station re
mains out of the ring, thereby bypassing the fault. Otherwise, 
it reattaches to the ring. 

After a predetermined amount of time, the Beacon frame 
transmitter removes itself from the ring and performs the 
same test that its upstream neighbor did. Again, if this station 
determines that it or its lobe is not operating correctly, it 
remains out of the ring and the error will have been bypassed. 
In this manner, many hard errors can be detected and auto
matically bypassed without interaction from users of stations 
attached to the token-ring. However, if the hard error is still 
present after both stations have had an opportunity to test 
themselves and their lobes, the token-ring LAN manager is 
notified and manual intervention is necessary to recover the 
token ring operation. 

Soft errors are faults that temporarily degrade the token
ring performance; they are tolerated by the use of error
recovery procedures. Soft errors detected by token-ring sta
tions include: cyclic redundancy check (CRC) errors in re
ceived and repeated frames, and station-congestion errors (a 
station recognized a frame as being addressed to it, but could 
not copy it due to insufficient resources). Soft errors are di
vided into two categories: isolating and non-isolating errors. 
Isolating errors isolate the location of a fault to a pair of 
adjacent stations and the transmission medium connecting 
those stations. Isolating errors detected by stations attached 
to the token-ring include: an error in a message detected by an 
error in the CRC appended to that message, a bit in the 
message that does not represent a zero or a one (see the IEEE 
802.5 Standard! for description of the differential Manchester 
encoding used on the token ring), and an early detection of 
signal loss on the transmission media. 

Non-isolating errors cannot isolate the fault on a token ring. 
The non-isolating errors detected by token-ring stations in
clude: lost frames, stations too congested to receive a frame, 
and two stations attached to a single token ring with the same 
address. Token-ring stations periodically report the counts of 
isolating and non-isolating- errors they detect to a manage
ment server called the ring error monitor (described below). 

TOKEN-RING LAN MANAGEMENT SERVERS 

Management servers collect information from, and distribute 
information to, stations attached to a token ring. Re
sponsibilities of the management servers may also include 
analyzing reports from stations on the ring and forwarding the 
results of that analysis to the token-ring LAN manager. Each 
management server's responsibility extends only to the sta
tions attached to its ring. The management servers defined for 



the token-ring LAN are: the ring error monitor (REM), the 
configuration report server (CRS), and the ring parameter 
server (RPS). 

Ring Error Monitor 

The ring error monitor (REM), collects, analyzes, and may 
log soft-error reports received from stations attached to its 
ring. All soft-error reports sent by stations are sent to a well
known functional address reserved for REM. Therefore, if 
multiple REMs are present on a ring, they all can receive 
soft-error reports generated by stations attached to that ring. 

The function of REM is to determine when a non-random 
or excessive soft-error condition is present on the ring on 
which it resides and, if possible, isolate the most probable 
source of the errors to a fault domain, consisting of two adja
cent active stations attached to the ring and the physical me
dium between them. REM detects excessive soft errors by 
analyzing soft-error reports sent by stations attached to its 
ring as they arrive and determining whether soft errors are 
occurring at a rate that degrades the performance of the token 
ring. When REM detects such a condition, it may notify the 
LAN manager, indicating the source of the error. 

REM maintains a table of weighted error counts for each 
station attached to its ring from which it has recently received 
a soft-error report. The weighted error count accumulated for 
a station is used as an indication of the likelihood that the 
station is causing excessive errors on the ring. When a soft
error report is received, the information contained in the iso
lating error counters is used to accumulate the weighted error 
count for the sending station and its nearest active upstream 
neighbor. 

When the accumulated error count for a station exceeds a 
threshold, REM may notify the LAN manager that excessive 
soft errors have been detected on its ring. REM can provide 
the addresses of the stations in the fault domain in which it has 
detected the errors in the notification, thus providing informa
tion to allow a human operator to reconfigure the token ring 
to bypass noisy sections of the ring. 

Since even random errors may cause the accumulated 
weighted error count for a station to exceed the threshold 
eventually, a fixed value is periodically subtracted from the 
weighted error count for each station for which REM is main
taining a count. As a result of this periodic decrementing of 
the weighted error counts, only the stations continuously ac
cumulating weighted error counts at a rate faster than the 
decrement rate will have error counts that grow with time. 

Configuration Report Server 

The configuration report server (CRS) collects reports of 
changes in the order of stations attached to the ring and 
notifications from a new active monitor on the ring. CRS may 
also receive commands from the LAN manager to query the 
stations attached to its ring for certain information, including 
addressing information, state information, and information 
about their attached software or hardware, or set the values 
for operational parameters in stations attached to its ring. The 

Token-ring Local Area Network Management 427 

LAN manager can instruct CRS to force a station to remove 
itself from the ring if, for example, the station were part of a 
fault domain in which excessive soft errors had been detected 
(by REM). The information collected and distributed by the 
configuration report server could be used to maintain a con
figuration database for the token-ring LAN. 

Ring Parameter Server 

The ring parameter server (RPS) is responsible for initial
izing and maintaining a consistent set of values for operational 
parameters in use by ring stations attached to its ring. When 
a station attaches to a ring, it requests the current set of values 
for the operational parameters being used by stations attached 
to that ring. The station's request is sent to the well-known 
functional address reserved for RPS. 

The request for initialization by an attaching station also 
contains some registration information pertaining to that sta
tion and the product it attaches to the ring. The RPS could 
forward this information to the LAN manager to notify it that 
a new station has attached to the ring and to report its charac
teristics. 

TOKEN-RING LAN MANAGER 

A token-ring LAN manager can provide centralized control 
for all of the management servers in a token-ring LAN. The 
management servers may be attached to different rings, con
nected by MAC-layer bridges (see "MAC Layer Inter
connection of IEEE of 802 Local Area Networks,,2). There
fore, a centralized LAN manager could provide management 
function, such as monitoring and controlling stations and 
physical media for different rings in a multi-ring LAN, from 
a single point. 

The token-ring LAN manager coordinates the activities of 
the management servers in a local area network. It could 
obtain information about the state of management servers 
and set the values for operational parameters used by those 
servers. Examples of operational parameters for which values 
could be set include counter and counter thresholds main
tained in the management servers. Also, for trouble shooting 
purposes, configuration information and version level infor
mation could be made available by management servers. The 
token-ring LAN manager could also receive unsolicited re
ports from management servers indicating state changes and 
errors. For example, when a management server's counter 
meets its threshold value or the management server detects a 
configuration change, the token-ring LAN manager would be 
notified. 

In this hierarchical management architecture, servers es
sentially act as surrogates for the token-ring LAN manager on 
rings other than the one to which the token-ring LAN man
ager is attached. When the token-ring LAN manager needs to 
retrieve the status of a station on a remote ring, for example, 
it would instruct a configuration report server on that ring to 
obtain the status from the station. The station would then 
respond to the configuration report server, which returns the 
requested information to the token-ring LAN manager. 



428 National Computer Conference, 1987 

Therefore, this architecture provides a framework for infor
mation to be exchanged between stations and management 
servers, and between management servers and a token-ring 
LAN manager. 

COMMUNICATIONS NETWORK MANAGER 

The communications network manager receives reports of 
anomalies in communications subsystems from the commu
nication subsystem managers. The token-ring LAN manager 
is the communication subsystem manager that is responsible 
for the token-ring LAN. The token-ring LAN manager noti
fies the communications network manager about error condi
tions resulting in a loss of availability of LAN resources to end 
users. These conditions include: excessive soft errors on a 
token ring, hard errors that are not automatically bypassed, 
and the automatic removal of stations to bypass a LAN error. 
Also, the token-ring LAN manager may report conditions 
that hinder its ability to detect errors on the token ring to 
which it is attached. For example, if the token-ring LAN 
manager detects an error in its attachment to the token-ring, 
it notifies the communications network manager. A single 
operator, using the communications network manager, can 
monitor all of the communications subsystems in the network, 
thus reducing the cost and increasing the reliability and avail
ability of the entire communications network. 

AN EXAMPLE 

The following example illustrates the use of this hierarchical 
management framework for the token-ring. The configuration 
on which these example interactions are based is shown below 
in Figure 2. The figure shows a local area network consisting 
of three token rings, connected by bridges (depicted by 
straight lines between the rings), another separate communi
cation subsystem, and a host containing a communications 
network manager. Stations attached to the token rings are 
shown as boxes and management servers residing in stations 
attached to the ring are lableled inside the boxes. Each ring 
has stations and the management servers described above 
attached to it, though only a few stations are shown on each 
ring. The arrow shown inside ring B indicates the direction of 

LEGEND: 
RPS: Rlnv Parameter Server 
CRS: Confipatlon ~ s....... 
REM: Ring Error Monitor 
RS: Ring Station 

Figure 2-An example configuration 

the token and message flows for this example. The token-ring 
LAN manager for the bridged LAN is shown attached to ring 
C. The communications network manager has links with both 
the token-ring LAN manager and the other communication 
subsystem manager. 

If a soft error occurs on ring B and is detected by ring 
station 3, then that station logs the error and will periodically 
send a soft-error report to the ring error monitor for ring B, 
REM (B). The isolating error counts in the soft error report 
are manipulated and added to the weighted error counts for 
ring stations 3 and 4, since the error may have occurred at 
either station or on the transmission medium between them. 
The non-isolating error counts in the soft error report are 
accumulated in a count of non-isolating errors on ring B. 

If soft error reports containing isolating error indications 
are received at a high enough frequency from station 3, then 
the isolating soft error count will exceed a predetermined 
threshold value in the ring error monitor. REM (B) could 
notify the token-ring LAN manager that excessive soft errors 
are occurring within fault domain of ring stations 3 and 4 and 
the connecting medium. Similarly, if REM (B)'s counter for 
non-isolating errors exceeds a threshold, then the token-ring 
LAN manager would be notified that a non-isolating error 
threshold has been exceeded. 

If the source of the error can be isolated, the token-ring 
LAN manager could take action to bypass or correct the fault. 
This action might involve re-configuring the ring on which the 
fault was detected. In the scenario above, the token-ring LAN 
manager could instruct CRS (B) to remove ring station 1 from 
the token ring in order to bypass the fault. Otherwise, the 
token-ring LAN manager could notify the communications 
network manager that excessive soft errors are occurring on 
ring B. 

The sequence of interactions involving the ring parameter 
server and the configuration report server are similar. For 
example, when a ring station attaches to ring B, it requests the 
values for parameters currently in use by the other stations 
attached to ring B. RPS (B) responds with the appropriate 
values. RPS (B), since it then has knowledge of a config
uration change on ring B, could notify the token-ring LAN 
manager of the change. The registration information con
tained in the original request for parameters could also be 
forwarded to the token-ring LAN manager. 

If ring station 4 in Figure 2 removes itself from ring B, a 
configuration change is detected by its nearest active down
stream neighbor: ring station 3. Ring station 3 reports this 
change to the configuration report server on ring B, CRS (B) 
and CRS (B) could forward the information to the token-ring 
LAN manager, which, in tum, may update a configuration 
database or display the information. 

The token-ring LAN manager may request information 
about a ring station on ring B, say ring station 1, by instructing 
CRS (B) to query that ring station. On receipt of such a 
request, CRS (B) would obtain the information about the ring 
station and send it to the token-ring LAN manager. Similarly; 
the token-ring LAN manager could set the values for oper
ational parameters in the ring station such as the ring number 
for ring B, by instructing CRS (B) to do so. 

If the station attaching the token-ring LAN manager to ring 



C detects signal loss, it may report this condition to the com
munications network manager. The communications network 
manager could then notify an operator that it cannot manage 
the token-ring LAN until the fault is corrected. NOTE: If a 
problem exists in the token-ring LAN manager's station or 
attachment to the ring, it may not affect the other stations in 
the network, because of the automatic bypass and recovery 
procedures built into the token-ring protocol. 

All of the servers in the multi-ring network report to the 
token-ring LAN manager on ring C. It is important to also 
note that servers on a ring may co-reside within a single station 
on that ring. This is shown on Ring A, where one node houses 
both the ring error monitor and configuration report server 
functions. Also, multiple instances of a management server 
can be attached to a single ring. This case is also shown on ring 
A, where two ring error monitors are present. 

CONCLUSION 

To efficiently manage a token-ring network, management 
functions are distributed throughout the token-ring local area 

Token-ring Local Area Network Management 429 

network (in each station). Stations participate in the manage
ment of the token-ring by monitoring the health of the ring 
and reporting error conditions to management servers at
tached to their ring. These distributed management functions 
are coordinated by management servers, which analyze the 
reports from stations and may forward the results of this 
analysis to the token-ring LAN manager. The token-ring 
LAN manager provides a centralized point of control for man
agement functions in a token ring local area network, and may 
report to a communications network manager which has re
sponsibility for the management of the entire communications 
network. 

REFERENCES 

1. IEEE Computer Society. Token Ring Access Method and Physical Layer 
Specifications, ANSIIIEEE Standard 802.5-1985 (ISOIDIS 8802/5). New 
York: IEEE, 1985. 

2. Bernsten, J. A, J. R. Davin, D. A Pitt, and N. G. Sullivan. "MAC Layer 
Interconnection of IEEE 802 Local Area Networks." Computer Networks, 
10(1985)5. 





The sub-LAN solution to office connectivity needs 

by CORNELIUS PETERSON 
Digital Products 
Watertown, Massachusetts 

ABSTRACT 

Theoretically, broadbandlbaseband and token ring LANs will perform all the func
tions of an AlB switch and the sub-LAN, as well as database and software sharing. 
In practice, however, LANs are subject to a number of constraints. Printer sharing 
is not a simple task with a LiO\N, that often requires several operations to accomplish 
the task. The number of printers that can be supported is limited to two or three, 
which is a significant limitation in an active office environment with a great deal of 
printing. Heavy printing also severely limits the LAN's overall performance. 

Digital Products has found that the sub-LAN will meet all the distributed printing 
needs of most PC users in work clusters who consider adopting a local area network, 
and more than those found in an AlB switch. This new market entry is based on the 
same technology as the data switch-a Z80 microprocessor and asynchronous 
RS232 communication. The sub-LAN also offers substantial improvements in soft
ware and features. 

431 





INTRODUCTION 

Local-area networks have been on the market for several 
years, but they haven't achieved broad success as the answer 
to office connectivity needs. These needs have grown rapidly, 
in parallel with the power and acceptance of the personal 
computer. 

There is a great deal of pent-up demand in PC work clusters 
for connectivity solutions. Full LANs are perceived as being 
complex, costly, and not focused on the most important user 
needs in these clusters-peripheral sharing (specifically, laser 
printing) and file transfer. Instead, LANs have focused on file 
sharing (serving) and common software applications. While 
such applications will probably become more widespread, 
most larger users already have a host computer to perform 
common database applications. Peripheral/printer sharing 
and file transfer have become the major immediate con
nectivity needs in large organization departmental PC clus
ters. 

Users are becoming aware that a single type of LAN cannot 
satisfy all their requirements. They are developing strategies 
for multiple-level LAN standards based on a range of price/ 
performance options. A typical multi-level strategy includes a 
full LAN, such as a token ring or Ethernet, pius severai iow
cost or sub-LAN offerings. Some departments need only to 
share a printer; others need simple networking but not the 
complexity or commitment required for a full LAN. 

The sub-LAN offers the ideal solution in these cases, and it 
can be used as a server later in a larger full-LAN program. 

These simpler, less expensive solutions are based on asyn
chronous communication, which is the dominant networking 
medium today. More important, Digital Products' customer 
surveys show that asynchronous communication will remain 
dominant for the next five years in most PC, printer, terminal, 
and modem environments. 

Asynchronous communication satisfies most of the fore
seeable needs of these PC clusters, including applications that 
are just beginning to penetrate the office, such as de
partmental desktop publishing. Desktop publishing calls for a 
PC, a good laser printer, effective software, and a reliable 
printer-sharing device. 

The sub-LAN focuses on today's connectivity needs
printer/peripheral sharing and file transfer. It can be used 
later as a server in a full-LAN. Digital Products' experience is 
that the sub-LAN can provide 90 percent of today's con
nectivity requirements in PC clusters at 20 percent of the cost 
of a full LAN. In organizations where this scenario applies, 
the sub-LAN deserves consideration as an integral part of the 
organization's networking standards. Having sub-LAN and 
full-LAN products available enables a PC support organiza
tion to provide a full spectrum of price/performance alterna
tives for satisfying user requirements. 

The Sub-LAN Solution to Office Connectivity Needs 433 

OFFICE NEEDS: PERIPHERAL SHARING AND 
FILE TRANSFER 

Today's users of personal computers in office work clusters 
have a more pressing need to share expensive peripherals and 
establish data connectivity than they do for the capabilities of 
a full LAN. That fact is borne out repeatedly in the feedback 
Digital Products gets from its customers, and in results of 
independent studies. More than 10 million PCs are working in 
U.S. businesses today, along with 175,000 minicomputers and 
30,000 mainframes. Some 30 percent of the PCs are used in 
clusters with just one PC plus peripherals, while 65 percent 
are in office clusters of two to 10 PCs. Approximately 5 per
cent of the PCs are found in clusters of more than 10. 

The 65 percent of the PC users in the clusters of two to 10 
repre~ent a large potential market for some form of net
working or office connectivity. This group to date has done 
little to interconnect computer resources-other than to use 
simple AlB switches-because LAN costs and complexity are 
substantially out of line with user's needs. Surveys of Digital 
Products customers and prospective customers show that 
users in these local clusters have three common needs: to 
share a few peripherals (lasers, plotters, modems); to perform 
simpie fiie transfers among pes, and to communicate with a 
minicomputer or mainframe; to provide gateways to future 
LAN developments such as 3-Com, Ethernet, or token ring. 

While full LAN s are focusing on high speeds and common 
databases, certain primary needs for most users, such as 
printer and peripheral sharing, are being given secondary 
treatment. 

Organizations are looking for a solution based on existing 
hardware and cabling that supports their local computing, 
typically within a 400-foot radius. The sub-LAN has evolved 
in response to these needs. 

WHAT IS THE SUB-LAN? 

The sub-LAN consists of the N etCommander hardware-an 
intelligent asynchronous data exchange-EasyLANTM and 
BLAST™ communication software, and a floppy-based auto
matic installation program for hassle-free installation and 
operation. EasyLANTM uses DOS-like commands to enable 
printer and disk drive sharing between MS-DOS/PC-DOS 
PCs, while allowing them to perform applications concur
rently, such as word processing and spreadsheets. BLAST™ 
allows the sub-LAN to get beyond the PC work cluster to 
communicate with every major minicomputer and mainframe 
with guaranteed error-free file-transfer compatibility. 

Digital Products recommends a multi-level LAN strategy to 
ensure that both today's and future needs are met. Digital 
Products believes that the simple network solution technology 



434 National Computer Conference, 1987 

embodied in its sub-LAN products provides the benefits that 
users need today and integrates well with future LAN direc
tions. Standardizing on a Digital Products Print Director or 
NetCommander sub-LAN will meet immediate demands. Us
ing that sub-LAN as a server to a token ring or other large 
LAN later will meet future needs while maintaining the func
tionality provided by the existing sub-LAN. No single solution 
meets everybody's needs, but an off-the-shelf solution such as 
the sub-LAN enables users to focus on the most important 
needs today-distributed printing and file transfer-without 
compromising long-term technological evolution within an 
organization. 

LAN FUNCTIONALITIES AND NEEDS 

Table I presents the LAN functions that PC users have identi
fied as capabilities needed to improve office connectivity, and 
the priorities they assign to each of those needs. Almost all (80 
percent) PC users want to improve their ability to share 
printers and other peripheral devices, and especially to share 
expensive laser printers. The cost per workstation of a $3,000 
laser printer is s~bstantially reduced when the printer is 
shared by several PCs, and the productivity of the group can 
be enhanced at the same time. Sharing the laser printer allows 
the cluster to graduate from slower dot-matrix printers. Print 
jobs are assigned to a high-speed buffer, freeing the PC for 
other work instead of having its user wait for the print job 
to be completed. High-speed buffering can cut PC printing 
time by as much as one hour per day, boosting work cluster 
productivity. 

As application software becomes more powerful, a typical 
PC is called upon to run a wide variety of programs, such as 
spreadsheets, word processing, electronic mail and more. 
Various hard-copy outputs are required, including different 
kinds of printers and plotters. A single user cannot access 
multiple printers without some kind of networking or 
distributed-printing device. 

FILE TRANSFER: EASE OF USE VS. SPEED 

Table I shows that the second most important LAN function 
in the PC work cluster is file transfer and disk sharing-the 
ability to upload/download spreadsheets and word-processing 
files to each other, to minicomputers and mainframes, and 
to be able to access common disk drives on a server basis. 
The biggest challenge in selecting a LAN is finding a solution 
based on ease of use by the average user, and not speed 

TABLE I-LAN functions sought by office work clusters 
(2-10 PCs) 

1. Printer/peripheral sharing 
(especially laser printers) 

2. File transfer--disk sharing 
3. Database and software sharing 

Top Priority Today 

80% 
15% 
5% 

of transfer, which seems to be the current focus of LAN 
development. 

File transfer is the key function to fulfill the potential for 
PC-based distributed processing that will significantly impact 
office white collar labor costs and diminish management re
sponse and decision-making time. Until user-friendly file 
transfers are routine, operating in the background while PC 
users run foreground applications, local-area networking will 
not deliver its full promise to clustered PC users. While 
printer sharing is an immediate need of some 80 percent of 
those users, they say that file transfer and disk sharing will be 
major future requirements. The sub-LAN offers a user
friendly method of performing file transfer, and provides 
more gateways and interfaces to other LANs and CPUs than 
other products currently on the market. The sub-LAN's gate
ways and interfaces include convenient growth paths for 
future integration into a token ring or Ethernet LAN. 

FILE SERVERS: NOW PROVIDED BY HOSTS 

There are far fewer PC users who need full database file 
sharing and common software sharing today than there are 
who need to establish more basic forms of connectivity. In 
most large organizations, mainframes and minicomputers al
ready provide integrated database functions: These are not 
immediate networking needs, but printer/peripheral sharing 
and file transfer are. Most corporate databases are already 
accessible through the Pc. 

BENEFITS SOUGHT THROUGH LAN 
FUNCTIONALITY 

Today's PC users cite three principal benefits they want to 
realize from a LAN: reduced peripheral costs, increased data 
connectivity and increased user productivity (see Table II). 
Substantial cost reduction is possible in PC work clusters if 
expensive peripheral devices can be easily shared. This in
cludes laser printers, other high-performance printers that 
will reach the market in the next year, plotters, hard disks, 

TABLE II-Major LAN benefits sought by local 
work cluster users 

1. Reduced cost of peripherals: 
a. Printers/terminals 
b. Plotters 
c. Modems 
d. Protocol converters 
e. Disk drives 

2. Increased data connectivity: 
a. File transfer 
b. Host/mini access 
c. Local database sharing 

3. Increased user productivity: 
a. Less wait for print time 
b. Direct access to wide variety of printers 

(including lasers) 
c. Less hassle time using PCs, printers and networks 



The Sub-LAN Solution to Office Connectivity Needs 435 

modems, and other input-output devices. Studies show, for 
example, that modems are in use only about 10% of the time. 
A modem can be incorporated into the work cluster network 
and driven on a distributed basis, as a printer is. The same is 
true for protocol converters. Users often buy expensive 
built-in boards to perform IBM 3270 protocol conversion. If 
conversion functions are required only a small percentage of 
the time, a stand-alone protocol converter used on a distrib
uted basis is highly cost effective. 

Increased data connectivity is a major management goal in 
distributed processing. Each PC today is much like an island 
in the CPU sea; users are essentially "stranded" on their 
isiands. Networks connecting these isiands connect iocal users 
in an organization with each other, allow access to a mini or 
host computer, and eventually provide local database sharing. 

Studies show that the data connectivity needs of these PC 
users primarily require file transfer plus host and mini
computer access. They must be able to make these con
nections simply and afford ably , without learning new com
puter languages or requiring a Ph.D. in computer science. 
Data connectivity is the leverage pin that must be provided 
before the substantial organization change arid reduction in 
decision-making time promised by distributed processing can 
be realized. Data connectivity will be the vehicle for manage
ment to substantially improve information transfer between 
organization levels, increasing the ability of an organization to 
respond to change. 

Improving the productivity of PC users goes hand-in-hand 
with effective achievement of the first two LAN benefits
reduced peripheral cost and increased data connectivity. The . 
most effective LAN products will substantially reduce CPU 
and peripheral access time and the "hassle factor" involved 
for PC users to use a simple network. 

ALTERNATIVE LOCAL NETWORKING 
APPROACHES 

Four basic approaches to local networking are presented in 
Table III in order of increasing cost and complexity. 

Switches 

Low-cost AlB mechanical and simple data switches have 
been available for many years, but there are practical limits to 
the number of users and functions they can support in a work 
cluster. They become impractical and ineffective for more 
than three users, especially at high switching rates. Most 
medium-to-heavy office workloads run into these limitations. 
AlB and code-activated data switches are acceptable solutions 

TABLE III-Local networking technical alternatives 

1. Switches 
2. Sub-LAN 
3. Broadbandlbaseband LAN 
4. Multi-user minicomputer 

Typical CostJPort 

$ 100 
200 

1,000 
1,500 (includes CPU cost) 

in clusters of two or three PCs with a low work load, but they 
are not a viable choice for users who need to share active 
peripherals to perform file transfer. Data switches are ideally 
suited for computer-controlled environments or very sophis
ticated users-two to five users-seeking access to periph
erals. They do not offer buffering and are not easily operated 
by unsophisticated users. 

The Sub-LAN 

Digital Products has found that the sub-LAN, the second 
alternative in Table III will meet more than 90 percent of the 
needs of most PC users in work clusters who are considering 
adopting a local-area network. This new market entry is based 
on the same technology as the data switch-a microprocessor 
and asynchronous RS232 communication. The sub-LAN also 
offers substantial hardware buffering, and compared to data 
switches, substantial improvements in software and features, 
enabling it to support all required LAN functions. (See 
Figure 1 for typical applications and a comparison of LAN 
architecture differences.) 

The typical sub-LAN offers 4-, 8-, 16- and 30-port models, 
which support essentially all local work cluster needs by con
necting through the serial PC communication port instead of 
requiring complex plug-in boards. The sub-LAN also includes 
PC-based software to perform automatic installation, and to 
provide user selection menus for performing device and net
work function selection. The sub-LAN can also support 
modem sharing, simple file transfer, and micro-to-mainframe 
communications. The sub-LAN's asynchronous communica
tion technoiogy is today's dominant technoiogy in most PC, 
printer, terminal and modem environments. Furthermore, 
Digital Products' customer surveys indicate that asynchronous 
communication will remain dominant for the next five years 
because of its low cost, ease of use and ability to support all 
practical levels of office connectivity. 

The sub-LAN operates reliably at 9.6K to 19.2K bits per 
second at each port concurrently. The sub-LAN does not, 
however, support database sharing, which requires substan
tially higher speeds, more sophisticated PC-based software, 
and special hardware for performing file and record locking. 

LAN 

ASYNCHRONOUS 
NETCOMMANDER SUBLAN 

Figure I-NetCommander sub-LAN approach versus 
broadbandlbaseband LAN approach 



436 National Computer Conference, 1987 

But users who can succeed with file-transfer speeds of 9.6K to 
19.2K bps will find the sub-LAN equal or superior to a 
broadbandfbaseband LAN in all other respects. A major ben
efit of the sub-LAN is its ability to be operated as a server to 
a larger LAN. Sub-LAN flexibility allows users to meet to
day's distributed printing and data connectivity needs and 
easily interface into a broadbandfbaseband or token ring LAN 
later. 

Another major benefit of the sub-LAN is that its asyn
chronous character means that gateway software packages, 
such as BLAST, can be used to enable the sub-LAN to 
directly interface to all popular minicomputers and main
frames as well as to other PC environments, such as UNIX 
and CP/M for compatible, error-free file transfer. 

Broadband! Baseband LANs 

Theoretically, broadbandfbaseband LANs will perform all 
the functions that are possible with AlB switches, data 
switches, and the sub-LAN, and will also support database 
and software sharing. In practice, however, LANs are subject 
to a number of constraints. Printer sharing, for example, isn't 
a simple task with a LAN, which often requires several oper
ations to accomplish. The number of printers that can be 
supported is limited to two or three, which is a significant 
limitation in medium to heavy workload environments. Heavy 
printing also severely limits the LAN's overall performance. 
Since LANs do not easily support modem operation, their 
ability is severely limited. Aside from the foregoing, the major 
obstacles to more widespread use of these large LANs are 
cost, complexity, vulnerability to failure, and long installation 
and training time. 

Multiuser Minicomputers 

Given good software, multi-user minicomputers can per
form all the functions that are possible with AlB switches, 
data switches, the sub-LAN, and broadbandfbaseband LANs. 
Minicomputers also overcome many of the technical disad
vantages ofbroadbandfbaseband LANs, such as their inability 
to handle multi-user, multi-tasking common database applica
tions. Minicomputers, however, carry a minimum price of 
about $20,000 and aren't an economical approach in PC clus
ters of fewer than eight to 10 users. The PC!sub-LAN combi
nation can compete favorably with a multi-user minicomputer 
for up to 10 users. With more than 10 users, a multi-user 
minicomputer is the appropriate approach, both economically 
and operationally, although not all popular PC software is 
available for minis. 

CRITERIA FOR NETWORK SELECfION 

There are several important criteria which should be met 
when selecting the LAN that best meets organizational needs. 
An effective network solution should be both easy to install 
and simple to use. User-supplied installation aids, such as the 
Auto-Install program provided with the sub-LAN, should 
eliminate installation headaches and the need for expensive 
add-on boards and cabling. Fail-safe network operation 

should be adequately supported by a local vendor or in-house 
MIS management. Most important, day-to-day user oper
ations should be performed and controlled by simple user 
language through DOS menus or application software. 

Operationally, a network should provide excellent printer! 
peripheral sharing, adequate data connectivity, and a distrib
uted buffer memory to provide transaction buffering for 
timely CPU and peripheral access. Printer or peripheral shar
ing should not be a multiple-step process and should not affect 
the overall performance of the net. 

Finally, a network should provide multiple gateways and 
interfaces to other LANs, minis and host machines. Growth 
should be an important consideration in LAN selection. The 
important network investment should provide growth paths 
that accommodate LAN expansion or interfaces to larger 
LANs as they evolve-an important consideration when eval
uating a "throw-away" solution such as an NB or data switch, 
which has no growth potential, and a sub-LAN, which pro
vides more gateways and interfaces than any other con
nectivity product on the market today. 

ANTICIPATING TOMORROW'S TECHNOLOGY 

That final criterion-the need for multiple gateways-is es
pecially important so that an organization'S choice to meet 
today's networking needs doesn't freeze it out of tomorrow's 
technologies. This concern has been raised because of the fast 
pace of technology. New products are obsolete almost as soon 
as they're introduced, making it difficult for an organization 
to plan ahead. 

Digital Products recommends that an organization adopt a 
multi-level LAN strategy when considering immediate and 
long-term networking needs (see Table IV). Provide users 
with a solution to meet their immediate needs-printer shar
ing and simple file transfer-while leaving open growth paths 
by providing interfaces to larger, more long-term solutions. A 
Digital Products PrintDirector or NetCommander sub-LAN is 
a cost effective way to provide immediate connectivity. For 
users who can justify full LAN implementation later, sub
LAN capabilities can be maintained in a server role, working 
with the chosen large LAN standard. 

TABLE IV-How to have the best of all networks: Set 
multi-level standards 

Need 

• Printer sharing only 
lYPical work cluster 

(50 percent+) 

Standard 

• Sub-LAN PrintDirector 
Best printer sharing 
$200lPort 
Install in 1-2 hours without 
manual 

• Printer sharing plus file transfer • Sub-LAN NetCommander 
Disk sharing 

Cannot justify large LAN 
(30 percent) 

• Common database 
File serving 
Software sharing (20 percent) 

Best printer sharing 
Good file transfer 
Easily installed and operated 
Meets immediate needs 
Can be server in larger LAN 

• Full LAN 
Token ring 
Ethernet 



Connecting terminals to multiple LANs* 

by BRONSON HOKUF, PAUL D. AMER, and DANIEL GRIM 
University of Delaware 
Newark, Delaware 

ABSTRACT 

With computing facilities often distributed over sites that are both physically and 
administratively separate, many organizations find themselves with several uncon
nected Local Area Networks (LANs). Eventually it becomes desirable to enhance 
communication capabilities between these LANs so that users can access all hosts 
on all LANs. This paper describes a terminal gateway, a system that provides users 
having terminal access to hosts on one LAN with an ability to access all hosts on 
another LAN. Such a gateway solution is appropriate when: (1) separate terminal 
connections to each LAN are prohibitively expensive and (2) commercially avail
able bridges or gateways are unsuitable for use. A functional specification of the 
terminal gateway, the communication protocol it uses, and a specification of per
formance metrics maintained by the gateway are described. 

* This research was supported in part by the Office of Naval Research Department of Defense Contract Number 
83-K-0320 

437 





INTRODUCTION 

Local area networks (LANs) are clearly recognized as an 
economical means of connecting computing resources. With 
computing facilities often distributed over sites that are both 
physically and administratively separate, many organizations 
find themselves with several unconnected LANs. Eventually it 
becomes desirable to enhance communication capabilities be
tween these LAN s so that users can access all hosts on all 
LANs. Typical solutions to this problem include: combining 
the LANs into one LAN by using repeaters, attaching a bridge 
or gateway between pairs of networks, or providing separate 
terminal connections to hosts on the different networks. A 
terminal's physical connections may be extended by installing 
additional private lines, leasing lines, multiplexing many ter
minallines over leased, or private lines, or by providing some 
sort of internetwork connection to allow host access using 
existing terminal lines. 

Two LANs exist at the University of Delaware, one con
necting computing center machines, ACSnet, for instructional 
purposes, and one connecting machines in a joint EE and CIS 
Department laboratory, EE/CISnet, for research purposes. 
Terminal connections to the ACSnet are provided via leased 
serial lines to a port selector. (A port selector is an intelligent 
switching device which establishes a virtual connection be
tween a user's terminal line and the host computer for which 
they have requested a connection.) (See Figure 1.) Terminal 
connections to the EE/CISnet are provided by university 
owned lines to a terminal switch on the EE/CIS Ethernet. 1 

Users that needed a connection to both networks had two 
lines to their terminal and a locally developed switchbox 
which allowed them to switch between the two lines. With the 
recent tripling of costs for leased lines, an alternative con
nection to the ACS hosts supported by the port selector pro
cess was needed to eliminate the leased lines while still provid
ing satisfactory access to hosts on both networks. Several 
solutions were considered; the one selected and discussed in 
this paper was the development of a terminal gateway. 

A terminal gateway permits users connected to the 
EE/CISnet terminal switch to connect to the ACSnet's port 
selector. The terminal switch provides users with a menu of 
the hosts on the EE/CIS network; one host is selected, and 
from then on, the user appears to be communicating directly 
with that host. For connections to the ACSnet, the user selects 
an option labeled ACS which provides a connection to the 
ACS port selector. The port selector then allows the user to 
attach to any of the ACSnet hosts; after making that con
nection, the user appears to be communicating directly with 
the ACS host just as if they had a direct serial line to the port 
selector. 

Connecting Terminals to Multiple LANs 439 

ACS Ethernet 

Figure I-University of Delaware computing environment 

A terminal gateway is not a general solution to inter
networking multiple LANs such as one may obtain with 
bridges for homogeneous LANS2

,3 or general gateways for 
heterogeneous LANs.4 A terminal gateway provides more 
economical terminal connections to other LANs for users 
already connected to one LAN. More general interLAN 
problems such as file transfer and distributed computing (e.g., 
load sharing) require higher level protocols for host-to-host 
communication and are outside the scope of this solution. 

The solution presented, as it was implemented at the Uni
versity of Delaware, should be applicable to other sites that 
seek to provide terminal connections to hosts on a distant 
LAN when they already have connections to an existing LAN 
and physically joining the LANs into one is not feasible. The 
computing environment serviced is discussed in the Back
ground and Overview of the Problem section, along with the 
motivation for considering a terminal gateway solution. The 
section on the terminal gateway presents the hardware config
uration, and reviews the operation and performance of the 
terminal gateway. This includes the gateway's functional 
specification, communication protocol and self-monitoring 
capability. Finally, the last section, concludes that a terminal 
gateway is a technically feasible and economically attractive 
solution to providing terminal access to multiple LANs. 



440 National Computer Conference, 1987 

BACKGROUND AND OVERVIEW 
OF THE PROBLEM 

University of Delaware Computing Environment 

Local networking efforts at the University of Delaware are 
typical of a campus with growing communication capabilities. 
Together, the Electrical Engineering (EE) and Computer and 
Information Sciences (CIS) Departments maintain a joint 
computing laboratory for research purposes consisting of 
several Vaxes and other machines linked together by an 
Ethernet (EE/CISnet). (See Figure 1.) In addition, the Uni
versity'S Academic Computing Service maintains a similar 
Ethernet (ACSnet) interconnecting Vaxes, a Pyramid 98XE, 
and an IBM 3081D for general instructional computing and 
non-EE/CIS faculty research. 5

,6 

The main hardware on the EE/CISnet are seven Vax-l1s, 
four running 4.2 BSD UNIX, and three running VMS. Two 
Vaxes are connected to the ARPAnet via IMP* * 96 providing 
a major ARPAnet connection point in the northeast corridor. 
Two Bridge Communication GS-3 half-gateways directly con
nect the EE/CISnet to the ACSnet over a 64 Kbit/s leased line. 
This provides a functional LAN-LAN interconnection for file 
transfer (e.g., ftp) and remote login (e.g., telnet or rlogin). 
User connections to the Vax systems are accomplished by a 
PDP-11/45 acting as an intelligent terminal switch. Derived 
from software originally developed at Cornell University, 7 the 
switch physically connects up to 112 terminals and provides 
multiple, simultaneous virtual terminal connections to one or 
more hosts for each terminal. The gateway that is the subject 
of this paper resides on the EE/CISnet and allows terminals 
attached to the EE/CISnet terminal switch to access the port 
selector of the ACSnet. 

Motivation for a Terminal Gateway 

The desire to implement a gateway for terminal traffic came 
as a direct result of the divestiture of AT&T and the resulting 
increases in communication costs. The CIS Department main
tains approximately 31 leased public telephone network lines 
for terminal connections to the ACSnet. The cost of these 
connections has multiplied dramatically over a short period of 
time. The Department had to find a way to reduce, if not 
eliminate, the prohibitive leased line costs while still providing 
access to all hosts on both LANs. In addition, having users 
deal with two physical lines to their terminal was undesirable 
for at least the following reasons. First, switching between the 
two networks, by means of a locally developed switchbox, 
usually meant reconfiguring the terminal for a different baud 
rate. Second, they could not maintain the first connection and 
simultaneouslv set uo a connection to the other network. 
Third, the ext~a hard~are involved meant extra maintenance 
costs. 

** IMPs (Interface Message Processors) are now called PSNs (Packet Switching 
Nodes). 

Alternative solutions 

Several alternatives, other than the terminal gateway 
(TGW) that was chosen, were discussed and considered. One 
option was to combine the existing Ethernets into a single 
Ethernet connecting the two sites. This option was compli
cated by the legalities of not owning a right-of-way for such a 
connection. In general, even if a right-of-way exists, one may 
not be able to extend the LAN due to exceeding the maximum 
end-to-end length restriction. In Delaware's case, products 
existed, such as optical repeaters, DEC's LAN Bridge 100,8 
that appeared able to provide the desired service. *** As an 
added but not uncommon complication, the two LAN's are 
managed by separate organizations and any solution could not 
require major LAN changes. Repeaters were eliminated be
cause we could not expect the ACSnet to support the software 
from the Terminal Switch. In addition, because EE/CISnet is 
an experimental network, it was undesirable to risk corrupting 
the ACSnet with experimental traffic; this was a real problem 
since repeaters forward all traffic between nets. 

A related solution was to use the existing Bridge Communi
cation half-gateways**** not only for periodic host-to-host 
ftps or telnet connections, but for all terminal connections to 
the ACSnet. The gateways are intelligent enough to isolate 
the traffic on the two networks, but one still would need either 
to: (1) port the terminal switch (TS) software to the ACSnet 
hosts or (2) run a telnet (or rlogin) connection for every active 
user. The problem of porting the TS host software is compli
cated by the independent management of the two networks 
and the fact that one of the ACS hosts, the IBM 3081D, do not 
support UNIX; the TS host software makes extensive use of 
UNIX facilities. 

The problem, of using telnet connections over the gateways 
for all active ACSnet users, is this user level process consumes 
additional host resources at both source and destination, wast
ing a significant number of CPU cycles on the hosts which 
could be used for research purposes. Telnet connections re
quire more resources from the remote host than equivalent 
serial line connections do. Additionally, telnet requires a local 
host to support both a TS connection and a telnet connection 
since the terminal must attach to the local host using the TS 
and the local host communicates with the remote host using 
the telnet protocol, neither of these are required of a host for 
a simple serial connection as in the TGW solution. Also, telnet 
style connections do not always provide the same level of 
service that a serial line might be expected to provide, for 
example, normal telnet connections do not support full screen 
terminal service on the IBM machines. The IBM machine 

* * * Repeaters are devices used to interconnect cable segments within a single 
local area network. These devices operate at the physical layer and perform no 
filtering on the frames received; every received frame is forwarded. A bridge 
has added functionality and interconnects two distinct LAl"l"s. Bridges operate 
at the datalink iayer and are reiativeiy simpie, but intelligent, fillering devices 
whose function is to store-and-forward frames between two local area networks 
that use the same protocols. 3,9,11 

**** A gateway is a more complex device, which operates at the network layer 
and is designed for interconnecting heterogeneous networks. It has the ability 
to accommodate differences between the two networks being connected, for 
example: different addressing schemes, packet sizes, network speeds, as well as 
other differences. 4 



normally interfaces with terminals through a 7171 Protocol 
Converter (see Figure 1), which enables many terminals to 
emulate an IBM 3270 terminal. When the connection to the 
IBM occurs through the network interface this protocol con
version function is not available. The emulation provided by 
the protocol converter must be provided by from some other 
source, imposing an additional burden on one of the par
ticipating hosts. Additionally, using telnet would compete with 
mail and ftp for the resources of the GS-3 half-gateways, 
potentially degrading their performance. While telnet and 
rlogin are certainly usable on a small scale, they were elimi
nated as an option due to the expected large overhead they 
would incur and the unsatisfactory performance for con
nections to the IBM host. 

Another option was to place a local MUX in the areas 
where terminals are concentrated, run private lines from the 
terminals to the MUX, and connect the MUX to the remote 
site via fewer high-bandwidth leased lines. This solution 
would reduce communication costs, however it required ex
tensive rewiring, complicated by the wide and varying distri
bution of the terminals requiring service. 

Other options included setting up a satellite link, a micro
wave link or installing a wide area network interconnecting all 
university sites. However, these solutions appeared too ex
pensive and their realization too far in the future to be consid
ered as viable candidates for solving the present problem. 

The option decided upon was to build a terminal gateway 
from the EE/CISnet to the ACSnet. A TGW makes use of the 
existing private connections to attach terminals to the EEl CIS 
terminal switch and to use a 32 channel statistical MUX oper
ating over a 64 Kbit/s leased line for the link to the ACSnet 
port selector. By making use of existing, privately owned 
terminal lines to the EEl CIS net and providing a mechanism 
for each terminal to connect to the ACS Port Selector via 
these lines, the leased line costs could be eliminated and a 
serial connection to an ACS host could be provided. Some 
experience had been gained in this type of application through 
the construction of the TS. The TS handles multiple, serial 
connections directed onto the Ethernet and the TGW would 
handle multiple, serial connections going off the Ethernet (see 
Figure 1). 

The TGW solution seemed to hold the most promise for a 
fairly rapid solution with a minimal outlay of additional funds 
and labor. The hardware was available within existing de
partment resources and no rewiring was necessary. It also 
provided the additional benefit of giving users a uniform 
connection interface to all computer systems. 

Costlbenefit analysis 

The cost of communications for the CIS Department goes 
much beyond the costs listed in this section; only the portions 
relevant to this discussion are listed. One can see from 
Table I that there has nearly been a tripling in the monthly 
cost of leased phone lines in the past 3 years. In contrast to the 
cost of leased phone lines, the TGW presents a more stable 
and affordable approach to providing the same services. Be
cause the distribution of the available lines would be dynamic, 

Connecting Terminals to Multiple LANs 441 

TABLE I-Cost of communications---current approach 

Monthly # of Total 
Year Line Cost Linest Costlyr 

1983 $24 27 $7,776 
1984 $28 29 $9,744 
1985 $66 31 $24,552 
1986* $69 33 $27,324 
1987* $73 35 $30,660 
1988* $76 37 $33,744 
1989* $80 39 $37,440 
1990* $84 A 1 $41,328 "'t.L 

Total (1986-1990): $170,496 

* Costs projected @5% annual increases. 
t Projected to increase two lines per year. 

a smaller total number of connections are able to service a 
larger user group. The TGW solution could be implemented 
without a major outlay of funds and could be expected to 
produce substantial savings over the course of the next five 
years (see Table II). The cost of the TGW was arrived at by 
computing the replacement cost of the hardware involved in 
the building of the TGW. (See the hardware description later 
in the paper.) It also included the cost of the MUXes and 
modems which were purchased for the project. It did not 
include the cost of software development, which was funded 
through academic research, and did not include any amount 
for maintenance or replacement of the hardware. Mainte
nance is normally handled by the lab staff and spare hardware 
is available. 

One can see from Table II that the difference in cost be
tween the two approachesis significant. The rise in communi
cation costs was significant enough to motivate a variety of 
cost containment procedures in the university'S communica
tion services. The TGW is but one of the attempts to contain 
such costs. 

Problems Associated with a TGW 

The TGW solution is not without problems; one need only 
look at the data path to see the potential for communication 
bottlenecks (see Figure 2). The TGW must provide a reliable, 
real-time interface for the user. While the level of service 
provided cannot be expected to be the same as when each user 

TABLE II-Comparison of methods (1986...:.1990) 

Method 

Multiple leased lines 
Terminal gatewayt 
Projected savings 

5 Year (1986-1990) Total* 

$170,496 
$22,278 
$148,218 

t Includes cost of leased lines and replacement costs of hardware. 
Replacement costs from: Midwest Systems, Inc. Burnsville, MN 
55337 
* (@5% annual increases) 



442 National Computer Conference, 1987 

_/dh Unib... Unib... 3-Com 
u)'DChroaoua PDP 11/45 Etheme& 

IDw&IpI ... r 

TermiDal Switch (TS) 

Figure 2-Data path for a remote connection through the TGW 

has a dedicated 9600 baud line, the interactive nature of the 
traffic requires that a rapid response to user requests be given, 
for example, character echoes must appear to be nearly in
stantaneous. The TGW adds another TS-like device (which 
introduces delay) into the data path, plus it mUltiplexes 32 
connections over a 64 Kbit/s link instead of a 10 Mbit/s link. 
Because of this, the TGW performance is expected to be 
poorer than the service provided by a dedicated line. How
ever, because communication through the TGW is limited to 
user generated, interactive traffic, the performance is 
expected to be satisfactory. 

Another problem is the limited number of channels avail
able; if a thiry-third person attempts to use the link, that 
person is unable to do so. In contrast, when users own phys
ical connections to the port selector, they are guaranteed a 
connection whenever the port selector has one to give to 
them. 

THE TERMINAL GATEWAY 

How the TGW fits into the International Standards Organiza
tion's (ISO) Reference Model of Open Systems Inter
connection (OSI) is now discussed. Then the design require
ments of the TGW are presented followed by a description of 
the operation of the TGW and its associated hardware. 

One possible approach to providing gateway services is to 
use a standard protocol for all internetwork traffic regardless 
of the type of networks being connected. This is the approach 
taken by the ARPAnet Internet Protocol (IP) which defines 
the format of internet packets and the rules for performing 
internet protocol functions based on the information in the 
internet packet headers. IP provides a datagram service and 
fits between the network (routing) and transport (end-to-end 
delivery) layers of the ISO-OSI reference model. In addition 
to IP, ARPAnet gateways use a gateway-to-gateway protocol 
to exchange routing information. 10 

A second, special purpose, approach is to build a gateway 

that is essentially a protocol converter. The technique is to 
receive a packet, strip the control information from the 
packet, and retransmit the data using the protocol of the 
destination network. The principal disadvantage of this ap
proach is that a different gateway must be built for each differ
ent pair of networks interconnected. 11 The loss of generality 
in this approach tends to make the implementation easier 
because all of the assumptions are known beforehand. This 
type of gateway may potentially operate faster (or as fast as, 
but with less sophisticated hardware) than the more general 
type of gateway due to the less sophisticated nature of its 
duties. 

The terminal gateway, discussed herein, aligns most closely 
with the second approach. However, it is important to recall 
that the TGW is not a LAN-LAN gateway. The TGW does 
not establish a connection to a remote network, rather it 
establishes a connection to a port selector which, in tum, 
establishes a connection to a host on the remote network. It 
may be helpful to consider the TGW as two distinct parts 
(although in reality there is only one). The first part resides on 
the EE/CISnet and, from the point of view of the terminal 
switch, looks like a gateway to the ACSnet. The TS addresses 
packets destined for terminal connections on ACSnet to the 
TGW and receives packets back from the TGW just as if 
the TGW were the ACS host, the TS treats the TGW the same 
way it treats a host on its own LAN. The second part of the 
TGW is attached to a 32 channel, asynchronous, statistical 
multiplexer. This MUX is attached to an identical MUX at 
ACS (which is attached to the ACS port selector) over a 
64Kbit/s leased line (see Figure 2). From this side, the 
TGW appears to behave much like a Packet Assemblerl 
Disassembler, or PAD, taking the TS packets, disassembling 
them and sending each piece of data to the appropriate MUX 
line. The data received from the individual MUX lines is 
assembled into a packet and sent to the TS over the EE/CIS 
network. The TGW provides flow control and buffering be
tween the two different transmission media. It does not pro
vide for any acknowledgement or retransmission of packets 
received. 

This last characteristic leaves a possibility of failure. There 
is no guarantee that a data path is reliable unless there is some 
sort of end-to-end internetworking protocol with extended 
functions,12 usually implemented in the transport layer (e.g., 
the ARPAnet Transport Control Protocol-TCP).13 Because 
of the low bit error rate of the Ethernet,14 it was chosen 
to implement the TS-TGW communication protocol as a 
connection-oriented, sequenced, unreliable protocol. The re
liability of the MUX link from the TGW to the ACS port 
selector is a different matter and is handled by a reliable 
MUX-to-MUX protocol. 

In summary, the TGW functions in a manner analogous to 
a special purpose gateway which only serves the EE/CIS ter
mln~ 1 ~wltch - It makes use of the Ethernet as a backbone, 
providing virtual circuit connections***** to users attaching 
terminals to host computers resident on the remote network. 

* * * * * Virtual circuit connection implies that the connection behaves as if it were 
a single dedicated copper circuit, when it is actually implemented in software. 



TABLE III-Messages processed by the console 

Symbol Name Description 

?,h HELP Displays a list of legal console options. 
Displays a list of options with 

explanations. 
V VERBOSE 

S SHUTDOWN Sends a shutdown warning to all 
attached lines. 

A ALL Display all stats kept by the TGW. 
Display status for all MUX 

connections. 
L LINE 

M 
E 
H 
Z 

IN-USE 

MUX-STATS 
EN-STATS 
DH-STATS 
DZ-STATS 

Display line number and idle time for 
lines in use. 

Display character counts for each line. 
Display stats for the Ethernet packets 
Display stats for the DH-ll boards. 
Display stats for the DZ-ll boards. 

Requirements-What the TGW Will Do 

The following requirements were established for the initial 
design of the TGW and they describe the functionality that the 
TGW provides: 

1. The TGW will establish a connection with the ACS port 
selector upon request from a terminal attached to the 
TS. 

2. The TGW will not introduce unreasonable delay into the 
system response time (i.e., the delay for echoing a char
acter must remain non-noticeable). 

3. The TGW will provide an option to logout idle con
nections if no characters are transmitted during some 
fixed period of time. 

4. The TGW will accept messages from a console and act 
upon those messages. Options supported are listed in 
Table III. 

5. The TGW will print certain events on the console device. 
Those events are: reception of a bad Ethernet packet, 
with the reason for the packet being bad; disconnection 
of a physical line to the MUX; refusal of a request for a 
connection due to no available line; and automatic 
logout of a line along with the line number that was 
affected. 

6. The TGW will adapt to the failure of a TS, correctly 
terminating any affected connections. 

7. The TGW will dynamically detect and flag MUX lines 
that are not connected or that become disconnected. 

8. The TGW will (optionally) keep statistics on itself; these 
statistics are listed in Table IV. 

Y.?estrictions-What the TGW Will Not Do 

There were certain functions the TGW was not to provide. 
The following restrictions were accepted as part of the TGW 
specification: 

Connecting Terminals to Multiple LANs 443 

TABLE IV-Counts maintained by the TGW 

1) Characters received and transmitted on each DZ line. 
2) Characters received and transmitted on each DH line. 
3) Characters received and transmitted on each MUX line. 
4) Connections refused. 
5) Lines automatically logged out. 
6) Ethernet packets of length 1-10 data bytes received and 

transmitted. 
7) Ethernet packets received grouped by multiples of 10 bytes. 
8) Ethernet packets transmitted grouped by multiples of 100 bytes. 
9) Ethernet packets received and transmitted. 

1. The TGW will not introduce any error detection or cor
rection as part of the communication with the TS. No 
reliability will be added to the Ethernet. 

2. The TGW will not be designed to handle applications 
(e.g., telnet or ftp) other than terminal connections be
tween the two networks. 

3. The TGW will not support connections from devices 
other than a TS. 

TS- TGW Communication Protocol 

The TS and TGW exchange information between them
selves using a non-standard network layer protocol on top of 
Ethernet's link layer service (see Figures 3 and 4). It is the 
purpose of this section to describe the packet format used and 
the function of each of its parts. 

At the data link layer the packets follow the standard 
Ethernet packet definition. The only feature unique to this 
application is the value chosen for the Link Service Access 
Point (LSAP)-the TS uses a value of two in this field. While 
this value has a specific meaning in this context, it may have 
other meanings outside the EE/CISnet environment. 

All user data and control information exchanged between 
the TS and the TGW at the network layer have two com
ponents. The first part is the line number and the second part 
is the data destined for that line. If the high bit of the first byte 
containing the line number is set, this flags a control message 
for that line and the second byte is then interpreted as a 
control code for that line. Control messages include setting up 
and terminating connections, end-to-end flow control, status 
messages, auto logout requests and TS-TGW Ethernet flow 

" " " " " " 

Data By1_ 

(LiDe#/Char Pain) 
UnURdByteo 

" " " " 
Data 

(Variable Byw) 

I 
I 

I 
I 

Figure 3-TS--TGW Ethernet packet description 

I 
I 

I 



444 National Computer Conference, 1987 

T ..... iDaJ LID. 
klMUX 

PhyDcal ChaDDel 

U.er Termi ... J. 

Network 

Layer 

Data LiIlk 

Layer 

Ph)'SicaJ 

Layer 

Figure 4--Communication structure for TS-TGW 

control. Within a given packet, control and data pairs for the 
same or different lines may be multiplexed. Packets are disas
sembled two bytes at a time using the line number to direct 
each character to the correct destination. Between the TS and 
the TGW a lock-step flow control is observed. This prevents 
the TGW from ever overrunning the TS. 

TGW Operation 

The operation of the TGW can be best understood by first 
referring to Figure 2. When a user types a character at a 
terminal, that character is sent over serial lines to the EE/CIS 
terminal switch; the TS packetizes the character and sends it 
to the TGW. When the TGW receives the packet it disassem
bles the packet and forwards the character over the appropri
ate serial line to the MUX which sends the character to the 
remote MUX where it is then received by the ACS port selec
tor and forwarded to the appropriate host. The character echo 
follows the same path, only in reverse order. 

Figure 5 illustrates the internal operation of the TGW. The 
TGW buffers all data, both incoming and outgoing. When a 
message is received from the Ethernet, the message is stored 
in a buffer and the TGW begins to extract line number/ 
character pairs from that buffer. Those pairs that represent 
normal data are queued to the appropriate serial output 
buffer based on the line number present in the pair. For the 
data representing control messages, the effect can be in either 
of two directins: if the control message is requesting that a 
connection be established, then a message is forwarded back 
to the requester by queuing an appropriate message to the 
current Ethernet output buffer; if the control message is re
questing flow control for a particular serial line, then that 
request is queued to the appropriate serial line buffer. 

When a character is received over one of the serial lines, an 
interrupt signal is generated and as soon as the TGW pro
cessor is available the character is processed. Initially, the 
character is placed on an input queue associated with the 
particular serial line. The character handler removes the char-

acters from that queue, prepends a line number, then appends 
the line number/character pair to the current outgoing 
Ethernet buffer. 

Much of the software is interrupt driven; the device han
dlers all react to incoming data in this manner. The main 
program is an infinite loop that periodically polls devices and 
handles the flow of data in both directions. Packets are sent 
from the TGW over the Ethernet either as a result of filling 
with data or as a result of the current polling interval expiring. 
Because the PDP does not have a hardware clock built in, one 
was implemented in software based on interrupts supplied by 
a DLll-W board installed in the PDP. This clock is used to 
control device polling and to schedule events that are time 
based, such as the timing of events required to disconnect a 
line from the Port Selector. The clock also schedules the 
sending of statistics on a periodic basis when that option is 
configured into the software. 

Hardware Configuration 

The terminal gateway software executes on a dedicated 
DEC PDP-11134 minicomputer. The code development was 
done on a VAX 111780, cross-compiled for the PDP and 
downloaded via the Ethernet. The PDP is configured with 
128K of main memory, a 3Com 3C300 Unibus Ethernet 
Controller,15 1-DZ-llA Asynchronous 8-line Multiplexer, 
2-DH-llA Asynchronous 16-line Multiplexers, and a 
DL-llW Serial Line Unit/Real-time Clock Option. 16 

Communication- with the remote network is through a pair 
of Tellabs 330C Dataplexers, a statistical multiplexer with 32 
asynchronous channels.13 The Dataplexers communicate over 
public leased copper circuits using a pair of Amdahl 982 syn
chronous data sets which communicate at 64 Kbitls. The port 
selector, with which the multiplexer interfaces at the ACSnet, 
is a Deve1con Dataswitch (Model 9006/2000). As presently 
configured, the Dataswitch supports approximately 1440 
channels or 720 user connections to ASCnet hosts. 

The terminal switch software executes on a dedicated 
PDP-11145 minicomputer, configured with 192K of memory, 
a 3eom 3C300 Unibus Ethernet Controller, 7-DH-llA 

Cbarlder E,herne, Elhernel (EN) 

Packet B"lI'erl CoauoUer 

r------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 
I 
I 
I 

.----, I 

~ E,hemel I ~ 
i I X-milter Ii 
I I 
I I 
I I L. ______ .J 

(3Com) 

Figure 5-Block diagram of the TGW software 



Asynchronous 16-line Multiplexers or their equivalent, and a 
DL-llW Serial Line Unit/Real-time Clock Option. The TS 
provides for 112 terminal connections to the EE/CIS network 
(both hard wired and dial-in) and is the principal connect 
point to the EE/CISnet systems for all EE/CIS faculty and 
graduate student terminals. 

TGW PERFORMANCE METRICS 

The TGW has been designed with an option to maintain cer
tain statistics on itself. This was done to monitor the TGW's 
performance over time and to supplement statistics already 
gathered by an existing network measurement center. 1 A sam
ple of the counts kept by the TGWis summarized in Table IV. 
Certain special events are also counted: the number of con
nections refused by the TGW and the number of connections 
automatically logged out, provided that option has been se
lected within the TGW software. These counts accumulate for 
a period of one minute and are then reset to zero. Before they 
are reset the TGW sends a statistics packet to one of the Vax 
hosts via the Ethernet where the packet is stored for later 
processing. A daemon process running on the Vax captures 
each packet and appends it to an individual file. A separate 
file is created for each hour during which statistics are kept. 

From these counts a program running on the Vax can derive 
a variety of performance metrics. These metrics can be based 
on different intervals of time depending on how the data on 
file are interpreted and accumulated. Several possible metrics 
are listed below along with an example of how each metric is 
computed. 

Channel utilization of the 64 Kbit/s link: This metric is a 
percentage based on the maximum capacity of the channel 
being measured. 

(Total Char Sent)/min 
x 100 = % Utilization (1) 

(Max. Possible Char Sent)/min 

A histogram of the average channel utilization for each 
minute of the day over some period of time provides a com
pact way to characterize the level of use of the gateway. 

Mean number of lines in use: This metric is an absolute 
quantity and must be measured over a period of time. 

Linei = number of lines active during the ith minute 
N = number of minutes processed 

N 

2: Linei 
Mean = i=l N (2) 

Comparing a histogram of the mean number of lines in use 
during each minute of the day with the channel utilization 
histogram suggested above would estimate the relation be
tween number of users and the 64 Kbit/s channel utilization. 
Presenting this metric as a histogram showing the mean num
ber of lines in use for each hour of the day, as summarized 
over several weeks of observation, would provide an indica
tion of typical patterns of use of the TGW resource. Such a 

Connecting Terminals to Multiple LANs 445 

histogram would be computed in the same manner as is sug
gested for the mean number of connections refused, which is 
presented below. 

Correlate the mean number of users to the internet channel 
utilization: One might expect to find a linear correlation be
tween these two metrics. At some point, however, as the 
number of users increases, the internet channel utilization 
must level out (because it will be approaching 100%). If the 
channel utilization turns out too high when the number of 
users is significantly less than the maximum, this would be an 
indication that the service provided is probably less than satis
factory and that steps should be taken to increase the channel 
bandwidth. One step might be to assign 16 lines to each of two 
64 Kbit/s links instead of 32 lines to one link. 

Mean transmission (or reception) rate for a connection: This 
rate must be expressed as a unit quantity per unit time (e.g., 
characters per second). 

Chari = number of chars transmitted in the ith minute 
N = number of minutes processed 

N 

2: Chari 

Char/sec = i=~O. N (3) 

This rate can be compared to the possible data rate for a line 
(9600 baud) and if this comparison is done, it can be expressed 
as a line utilization rate (%). This metric provides a compact 
way to characterize the typical load that a single user presents 
to the system. 

Mean packet arrival rate: Since the number of Ethernet 
packets received, or sent, is counted each minute, it is possible 
to compute the mean number of packets arriving per minute 
and to approximate the mean number of packets arriving per 
second. For example, to compute the number of packets per 
second over N minutes of observation the following formula 
should be used: 

Packetsi = number of packets arriving in the ith minute 
N = number of minutes processed 

N 

2: Packetsi 
Packets/sec = i=1

60 
. N (4) 

It should be understood that this metric does not reflect an 
accurate measure of packet interarrival time. This metric does 
offer one measure of the amount of Ethernet bandwidth con
sumed by the TGW-TS traffic. 

Mean number of connections refused: This metric would be 
interesting to view as a histogram showing the mean for each 
hour of the day as summarized over several weeks of observa
tion. 

Numdays 60 

2: 2: # refused in mink of hri 
Mean (hri) = j=l k=l (5) 

Numdays 

A display of the total number of connections refused each 
hour of the day over an extended period compared with the 



446 National Computer Conference, 1987 

next metric would provide a means of estimating whether the 
TGW resource is being consumed by idle connections or by 
users actively working. This metric also gives some indication 
of user satisfaction with the TGW. If a large numbr of con
nections are refused on a regular basis, then the service pro
vided has to be expanded or the period of time before idle 
users are logged out needs to be shortened. 

Mean number of users automatically logged out per hour: 

Mean (hri) 

Numdays 60 

2: 2: # automatic logouts in mink of hri 
j =1 k=1 

Numdays 
(6) 

As with the previous measure, it would be interesting to have 
a histogram summarizing this metric for each hour of the day. 
This metric may provide some indication of the manner in 
which people use their terminals. Large numbers of auto
logouts would indicate a sporadic, intermittent kind of use. 

Overhead on the Ethernet: Because each data packet sent 
and received over the Ethernet is a fixed size and is also 
categorized according to the number of data bytes, it is possi
ble to make a rough approximation of the amount of Ethernet 
bandwidth wasted due to partially filled data packets. The 
measure is an approximation because the granularity of the 
data byte count kept as a statistic is only accurate to the 
nearest hundred bytes. For an individual packet the amount of 
overhead in bytes is given by: 

Overhead = Packet Size - Fixed Overhead - Data Bytes 
Sent 

where 
Fixed Overhead = Preamble + Source Address 

+ Destination Address + SAP + FCS 
= 26 bytes (See Figure 3 for sizes.) 

The Fixed Overhead is subtracted because it should not be 
counted as part of the wasted bandwidth. It is required that 
every packet have these components, therefore they are just 
as important as the data. For a given hour the estimated mean 
overhead would be computed as: 

Bi = Number of data bytes sent in the ith minute 
I>; = Number of packets sent in the ith minute 

Mean Overhead 

~ (1);·(Packet Size - 26» - Bi 
= ~ I>; bytes/packet (7) 

Analysis of the overhead could be useful in determining an 
optimal size for the packets used by the TG W. If the overhead 
is large and the mean number of users is near the maximum, 
then the packet size should be able to be reduced. 

CONCLUSIONS/SUMMARY 

Due to the increasing costs of leased communications facilities 
there was a need to consider an alternative means of providing 
terminal communications to geographically separate LANs. 
This search for alternatives led to the proposal that a TGW be 
built. The cost of communications affected by the TGW has 
been analyzed and the benefits of using the TGW have been 
demonstrated. The terminal gateway provides several advan
tages over other possible communication schemes: per line 
costs are significantly reduced, a standard user interface is 
provided, inactive terminals may be automatically discon
nected, malfunctioning lines may be isolated without dis
rupting other users, and more users can be serviced than with 
an equivalent number of dedicated lines. 

The TGW provides a path between the two networks that 
off-loads a host or dedicated general purpose gateway on each 
network from the tasks associated with providing an inter
active communications channel; thus the TGW allows a gen
eral purpose gateway to handle its other tasks of file transfer 
and message forwarding more efficiently. The TGW presents 
some disadvantages over dedicated lines: individual line per
formance is degraded in the face of heavy use, failure of the 
64 Kbit/s link or its associated hardware is catastrophic for all 
gateway users (although users may still attach to the remote 
hosts using rlogin or telnet from the EE/CISnet hosts), and the 
cost to add lines beyond the capacity of the MUX is a large, 
one-time expenditure. 

The TGW has been described in terms of the ISO-OSI 
reference model and has been characterized as a special pur
pose gateway. The design and operation of the TGW software 
and hardware necessary to make the system functional have 
been described. The special nature of the traffic handled by 
the TGW made it possible to remove some of the functionality 
normally found in a general purpose gateway. Tasks like rout
ing, address verification, fragmentation, and reassembly are 
not required. Because of this the TGW can more efficiently 
handle the data transfer assigned to it, allowing satisfactory 
real-time performance to be achieved. The requirements and 
restrictions placed upon the TGW have been presented. 

Several performance metrics are available for measuring 
the performance of the TGW. A mechanism for gathering the 
counts necessary for computing these metrics has been imple
mented. It is possible to obtain significant statistical results 
from the data maintained by the TGW; such an analysis could 
yield a characterization of the gateway usage and a picture of 
the requirements of the clients served by the TGW. 

The TGW has become a functional part of the computer 
communications facility of the EE/CIS computer lab and has 
been found to be a cost effective alternative to leasing commu
nications services. As the University expands its networking 
capacity, other alternatives will become available for inter-
connecting existing Li1lLNs. HO\'I[le\.rer, the TG'" vlill continue 
to serve a useful role in providing users on a local LAN with 
a uniform mechanism for terminal connections to hosts on a 
remote LAN. Until such time as the TS networking software 
is ported to the other types of machine"s available on the 
ACSnet (e.g., the IBM 3081), a general purpose gateway will 



not be sufficient for allowing the TS to communicate with 
those hosts. Because the TGW provides a transparent, asyn
chronous, serial communication channel (RS-232) for the ter
minal attached to it, the TGW does not depend on any propri
etary protocols. Therefore, the TGW can provide connections 
to any device that supports RS-232 connections. In our case, 
this is the ACSnet Port Selector. 

The TS provides a cost-effective way to allow users to make 
mUltiple virtual connections to machines on a LAN to which 
the TS is attached, and the TGW extends the TS's capacity by 
allowing connections to devices on another local network to 
occur in a manner that makes it appear as if the device were 
just another node on the local netv/ork. This connection is 
accomplished using leased communication facilities and rep
resents both a technically feasible and economical solution 
which could be implemented by other users with similar re
quirements. 

REFERENCES 

1. Amer, Paul, Ram Kumar, Ruey-bin Kao, Jeffrey Phillips, Lillian Cassel. 
"Local Area Broadcast Network Network Measurement: Traffic Charac
terization." Department of Computer and Information Sciences, Univer
sity of Delaware, January, 1986. Proceedings: CompCon Spring, 1987, San 
Francisco, IEEE Computer Society Press, 1987, pp. 64-70. 

2. Berntsen, Janet A., James R. Davin, Daniel A. Pitt, and Neil G. Sullivan. 
"MAC Layer Interconnection of IEEE 802 Local Area Networks." Com
puter Networks and ISDN Systems: The International Journal of Computer 
and Telecommunications Networking, 10 (1985) 5, pp. 259-273. 

Connecting Terminals to Multiple LANs 447 

3. Hawe, Bill and George Varghese. "Extended Local Area Network Man
agement Principles." IEEE 802 LAN Standards Committee Meeting, Octo
ber, 1984. 

4. Stallings, Williatn. "Beyond Local Networks." Datamation, August, 1983, 
pp. 167-176. 

5. Grim, DanielJ. "Description of the EE/CIS Computer Laboratory." Inter
Departmental Memorandum, University of Delaware, December, 1984. 

6. University of Delaware. "From the Director." Computer News, 13 (1986) 8. 
7. Cotton, Charles J. and N. Michael Minnich. "A Local Area Network Based 

Computing Laboratory at the University of Delaware: Development and 
Impact on Campus Area Computing." Proceedings: CompCon Fall 83, 
Washington, D.C.: IEEE Computer Society Press, 1983. 

8. Digital Equipment Corporation. "Digital's LAN Bridge 100 Extends 
Network and Improves Network Performance." Edu, no. 40, pp. 38-39, 
Winter, 1986. 

9. Hawe, Bill, Allen Kirby, and Bob Stewart. "Transparent Interconnection 
of Local Area Networks with Bridge." Journal of Telecommunication Net
works, 3(1984)2, Summer. 

10. Postel, Jonathan, Carl Sunshine, and Dan Cohen. "The ARPA Internet 
Protocol." Internet Protocol Implementation Guide. SRI International, 
Menlo Park, California, Network Information Center, 1982. 

11. Tutorial: Local Network Technology. Stallings, William (ed.), IEEE Com
puter Society Press, 1985. 

12. Wainwright, Paul F. "Internetworking and Addressing for Local Net
works." IEEE Project 802 Local Network Standards, Draft C, 1982, pp. 
DI-DI4. 

13. Tanenbaum, Andrew S. Computer Networks, Englewood Cliffs, New 
Jersey: Prentice-Hall, 1981. 

14. "The Ethernet, A Local Area Network: Data Link Layer and Physical 
Layer Specifications, Version 2.0." Stamford, Connecticut, Xerox Cor
poration. 

15. Unibus Ethernet Controller Reference Manual, Mountain View, California, 
3Com Corporation, 1982. 

16. Tellabs, Inc. Tellabs Technical Manual: 330 Dataplexer, Lisle, Illinois: Tell
abs, Inc., 1982. 





SECURITY, PRIVACY AND LAW 
GEORGE B. TRUBOW 

lohn Marshall Law School 
Chicago, Dlinois 

and 
JOSEPH E. COLLINS 

Data Processing Management Association 
Park Ridge, Dlinois 

The growth of technology has increased at a rapid rate in recent years. Undoubtedly, 
advancements in technology will continue to increase and change society as the United States 
moves into the Information Age. As with other areas, high technology has shed its effects on 
society before policymakers could come to grips with its societal implications. 

Is the Nation able to move into the Information Age and retain its beliefs in the principles 
of the U.S. Constitution? The opening session focuses on the increasing capability to dissem
inate information rapidly and efficiently and its impact on an individual's right to privacy. The 
intent and accomplishments of the Privacy Act of 1974 along with current developments in 
the area of information privacy are assessed, and the argument that information privacy is 
eroding as a result of new technologies is addressed. 

Is the Nation able to protect its citizens and businesses from new types of crimes derived 
from advancements in technology? Another area where the law has not kept up with the 
technology is in the Nation's criminal codes. Three sessions in the Security, Privacy and 
Law track will address computer crime legislation, law enforcement and prosecution, and 
corporate security measures. 

The U.S. Congress recently adopted the Computer Fraud and Abuse Act of 1986. Most 
states have passed computer crime legislation. However, the laws vary in their ability to 
effectively prosecute those involved in computer crime. Federal and state laws regarding 
computer crime are reviewed to identify what constitutes a computer crime. 

Security measures adopted by corporations have proved to be the best way to defend 
against computer crime. Security specialists explain how an organization can address the task 
of developing or assessing a program to protect computers and information systems. 

If a breach of security or a computer crime is suspected, what procedures should be 
implemented to investigate the matter and make a case? How should the matter be disposed 
of? Law enforcement agencies have only recently addressed the need for specialists in 
tracking down computer criminals. Experts in computer crime investigations describe the 
investigating team that should be assembled, the relationship between governmental and 
private police work, the rights of suspects, the identification of evidence, and prosecution 
policies. 

Software transactions and contracting for services has raised questions not easily identi
fiable in current law. One session focuses on the relationship between vendors and users
their respective needs and obligations to each other. The session will explore the legal and 
practical aspects of contracting for computer goods or services. Discussion covers protection 
and use of software, liability for delivery or systems failures, financing and payment, and tax 
implications. 

Is the Nation capable of maintaining its leadership position in the world economy? Can the 
workforce be prepared for new job requirements as the Nation moves from a manufacturing
oriented economy to a service-oriented economy? Two sessions in the track address the 
overall issues revolving around high technology and public policy. 



One session discusses options for the development and implementation of a national 
information policy. Questions raised involve the relationship among Federal, state and local 
governments in policy development; appropriate government mechanisms for policy over
sight; and the extent to which the private sector should be free from information regulation. 

The final session explores the role, if any, of Federal and state governments in encouraging 
the economic development of computer technology and research. The international implica
tions of market share and protection, technology transfer, intellectual property protection, 
investment tax benefits, and antitrust implications are also discussed. 

The Information Age and the growth of technology affect every segment of society. The 
Security, Privacy and Law track provides a better idea of the issues and concerns that impact 
all of us. 



Development and management 
of a national information policy 

by JOHN CLEMENT 
American Federation of Information Processing Systems 
Reston, Virginia 

Policymakers in the information field have been hollering for 
concerted action for years. "We need an information 
policy!"-you could quote leaders in bunches on that one, 
from the executive and legislative branches, or from university 
and corporate settings. In truth, everyone would admit that 
we have an information policy or, more accurately, many 
information policies. What we don't appear to have is agree
ment on a single set of guiding principles, or even on a com
mon pragmatic approach. This is not more than one might 
expect from our polyfacetic system, in dealing with an area 
with such rapid technological change. 

Not having a consensus on policy, a preliminary step is to 
set up some process for arriving at a consensus. 

The Information Age Commission bill-sponsored by 
Senators Sam Nunn (D-GA) and Frank Lautenberg (R-NJ)
was introduced in early 1985. It is not a new bill, nor is the 
Commission it creates a new idea. The idea of a national 
discussion of the changes wrought in our society stems from a 
call for a "Temporary National Information Committee"; 
akin to the Depression-era Temporary National Economic 
Committee. Its authors began expressing their concern in the 
late 1960's. 

How broadly should the mandate of such a Commission 
range? Prior proposals for a government information function 
have, I believe, gone in three policy directions: 

1. Aimed, alone or predominantly, at international issues. 
2. Aimed at one or more narrow policy areas, such as dis

semination of scientific and technical information. 
3. Spanning the entire range of information policy issues. 

The prospect of a very broad mandate raises fears of massive 
government regulation among some stakeholders; and yet the 
interrelatedness of information policy issues makes delimiting 
the mandate of such a group a difficult and perhaps self
defeating task. 

And what should such a Commission do? Conduct or con
tract research, commission papers, conduct hearings and pro
duce hearing transcripts, issue reports? And, if so, to whom 

451 

should these materials be directed? The bills that just died in 
Congress leave many of these issues open. Rather than debate 
these questions here, I will just stipulate that there are a 
number of groups that already conduct competent informa
tion policy research, and that the usual run of reports will 
generate the same enthusiasm and political action that the 
reports of other recent Commissions have-little or none. 

If we need a Commission on the Information Age-and I'll 
add my voice to the chorus and say we do indeed-it should 
do something different than the usual such group. 

What we need is to create a process by which we can reach 
a consensus. We don't have to get to a consensus in order to 
derive benefits from working at it; the process itself clarifies 
viewpoints, acquaints people with the insights of others, and 
gets the uninvolved interested. All of these are important 
things to have happen. 

Everyone who has ever wanted to kick their bank's auto
matic teller machine, everyone who has their paycheck di
rectly deposited or their house payments directly withdrawn 
from their bank account, everyone who spends hours at work 
or at home or in a college in front of a CRT screen and a 
keyboard--everyone who pays taxes, in fact, since their infor
mation can be used in computer-based matches for research, 
for determination of benefits, for evidence of fraud-is af
fected by new technology. All of these people are par
ticipating in a revolution, and they probably don't know it. 
They might have something to say about it if they were made 
aware. 

We need to create a consensus-reaching process. A Com
mission could do that, if it viewed its mandate as promoting 
dialogue-as synthesis, summary, and communication. A 
Commission should not necessarily do research, but might 
identify issues and opportunities. A Commission could hold 
hearings and entertain viewpoints from scientists, corporate 
heads, technicians, and the public at large. A Commission, 
finally, could report in different ways and at different tech
nicallevels to policymakers, to professionals, to the corporate 
world, and to the public at large. 





Corporate computer crime and abuse policy statement 

by RICHARD CASHION 
Tennessee Technological University 
Cookeville, Tennessee 

SURVEY 

In the Spring of 1986 the Data Processing Management Asso
ciation (DPMA) conducted a survey of its members and a 
random selection of corporate CEO's to determine the gen
eral attitude toward a Corporate Computer Crime and Abuse 
Policy Statement. DPMA conducted this survey as a starting 
point in developing a model policy statement. 

181 surveys were returned. Of those responding only 27 
percent of the organizations have a published policy state
ment; 10 percent were working on one. At the same time, only 
5 percent of the responses indicated that a policy statement 
was not needed. 

WHY HAVE A POLICY STATEMENT? 

DPMA feels that it is important for each organization to have 
a published Computer Crime and Abuse Policy Statement. 
Without a published statement, certain computer crimes will 
go unpunished even when the culprit is caught. Most com
puter crime legislation uses the term "unauthorized" in every 
area to describe the criminal act. The organization must take 
steps to ensure that everyone in the organization is aware of 
his/her authorization and responsibilities in respect to com
puterized information and the computer itself. If it does not, 
the only legal remedy that the organization may have is to fire 
the individual involved. 

WHO SHOULD DEVELOP THE POLICY 
STATEMENT? 

It is clear that the policy statement should be endorsed by top 
management. However, it may not be as clear that top man-

453 

agement must be involved in its development with guidance 
from the MIS, legal, and security staff. Top management must 
realize the full impact of the change in our resource base. 

America is moving from an industrially-based to an infor
mation-based society. Information has become a valuable 
resource in the same way that people, building, equipment, 
and money are considered valuable resources. It is becoming 
increasingly clear that the success of any institution is more 
and more dependent on its ability to create, store, retrieve, 
transfer, and protect vast amounts of information. 

WHAT SHOULD BE IN THE POLICY STATEMENT? 

The goal of the policy is to make a short concise statement 
about the organization's ,rl.ev/s of computer crime and abuse. 
The statement should not spell out the detail procedures. 
There should be several levels of detail in the overall policies 
and procedures for computer crime and abuse. 

Some large organizations start with a "policy statement" of 
one or two pages. Then the policy statement is broken down 
into "standards." The standards expand on the policy and 
provide more detail for the development of the "minimum 
requirements statement." The minimum requirements state
ment defines the minimum general procedures that must be 
followed to conform to the policy. The next level is the actual 
"procedure manuals." This many levels are needed in a very 
large multi-division organization. In most organizations only 
two levels are needed. 

The one or two page policy statement is. the focal point 
of the entire operation and must lay a foundation for the 
procedures. 





Access control-the key to information security in a remote 
user system 

by BRUCE E. SPIRO 
Advanced Information Management Inc. 
Woodbridge, Virginia 

We are moving to remote user systems with alarming speed 
and often with little thought for security. Market forces and 
operational necessity are the driving factors that make this 
movement necessary. We cannot obstruct this movement with 
overzealous protestations. On the other hand, we must not 
overlook the essential need for security in this expanding en
vironment. The proper people must have relatively easy and 
convenient access to the data and processing support to which 
they are authorized-and only to that which is authorized. 

Effective access control is not a simple matter of installing 
IDs and passwords, and trusting that things will work out. We 
start with a security analysis of the communications network 
to determine where there are weak points and what controls 
can be applied that decrease the likelihood that an un
authorized individual can use the communication capability of 
the system. 

We then proceed inward, looking at each level of the system 
to determine what protection is required and what controls 
are available. When a series of processors are coupled to
gether, each will have different requirements based on the 
criticality and sensitivity of the data and programs contained. 
Each will have different protective capabilities based on the 

455 

specific operating system and security features installed. The 
objective is to ensure separation and control of datasets and 
programs so that there is no opportunity to crossover from an 
authorized process to one that is not authorized. 

The integrity of the operating system is critical. What is 
possible may not be what is there. A close review by qualified 
people is essential. Often techniques to bypass security fea
tures are installed to make work a bit easier for test and 
development effort. Sometimes these bypasses remain in a 
production system and create openings that destroy the pro
tective barriers that have been built. 

Finally, the entire security process must be reviewed to 
ensure that it is consistent across the board. All too often we 
see technically accurate and well thoughtout security systems 
that in reality provide no protection at all because there is no 
administrative procedures to manage passwords or something 
else as seemingly innocuous. 

Effective security is the combination of network control, 
system integrity, identification, protection, and procedures 
brought together in a consistent access control package. 
Weakness in any area may mean that you have no security at 
all. 





SYSTEMS SOFTWARE AND LANGUAGES 
CARL K. CHANG 

University of Illinois at Chicago 
Chicago, Illinois 

and 
CONRAD WEISERT 

Information Disciplines 
Chicago, Illinois 

and 
SANDRA TAYLOR 

Britton Lee, Inc. 
Los Gatos, California 

Systems software and languages encompass the tools used to build, maintain, and operate 
application systems. While many of these tools are implemented in software, others are based 
on concepts and techniques (i.e., methodology). Recent explosive growth in the number and 
variety of vigorously acclaimed software and methodology components is generating uncer~ 
tainty and controversy over their value to a user organization, their impact on development 
organizations, and their relationship to one another. 

Among the specific topics in this area are: 

Computer languages, including specification languages, very-high level languages, data
base query languages, and distributed languages. 

Methodologies and tools for design and coding, including structured programming, librar
ies of reusable code, in-house standards, design reviews, workbench facilities, and design 
methods for distributed software systems. 

Data management tools, including data modeling, design, and analysis methods, entity
relationship approaches, relational technology, data dictionary and directory systems, infor
mation retrieval systems, and techniques of data administration. 

Tools for systems analysis, including structured analysis concepts, structured documenta
tion software, prototyping, generalized transaction processors, and methods for choosing 
packaged application software. 

Project management tools, including standardized life cycles, project planning techniques, 
project control techniques, project management software, productivity measurement 
methods, software maintenance strategies and tools, and quality assurance programs. 

Operational tools, including operating systems, storage management methods, sorting and 
searching techniques, resource scheduling algorithms, resource accounting methods, system 
performance measurement facilities, and teleprocessing monitors. 

Support structures, including methodology development, training, methodology integra
tion, and revised role and skill definitions. 





Software workbenches: The new 
software development environment 

by CARMA L. McCLURE 
Extended Intelligence, Inc. 
Chicago, Illinois 

ABSTRACT 

Software workbenches provide computerized assistance for the development, main
tenance, and management of software systems. They differ from earlier program
ming environments in their breadth of coverage of the software life cycle. They are 
general-purpose software development environments with powerful tools for 
specification, design, implementation, testing, and documentation. A complete 
software workbench must have these characteristics: 

1. A graphics interface for drawing structured diagrams 
2. A centrai information repository for storing and managing all software system 

information 
3. A highly integrated toolset sharing a common user interface 
4. Tools to assist every phase of the life cycle 
5. Prototyping tools 
6. Automatic code generation from design specifications 
7. Support of structured methodologies 

459 





INTRODUCTION 

As new advances in hardware and software technologies have 
occurred, the software development environment has 
changed from a standalone mode in the 1950s and early 1960s 
to a batch mode in the late 1960s and early 1970s, and then to 
a timesharing mode in the late 1970s and early 1980s. 1 In the 
late 1980s, a new mode based on personal workstations is 
becoming the preferred environment for developing software. 
Workstations have potentially far reaching implications for 
changing and improving software development. The intro
duction of powerful workstation tools and accompanying 
engineering-like structured methodologies transforms and au
tomates the software development process. 

A workstation is a complete environment including hard
ware and software. Its function is to provide computerized 
assistance for the production, maintenance, and project man
agement of software systems. It is a personal machine dedi
cated to providing the maximum possible support for the indi
vidual software developer. 

An extensive set of intelligent, integrated software tools 
called the workbench makes up the "soft part" of the worksta
tion environment. Workbenches are tailorable to each devel
oper's preferences and to specialized tasks such as project 
management, design, and maintenance; and replace tradi
tional tools that are bound to batch processing and third gen
eration languages of the 1960s and 1970s. 

Workbenches differ from early programming environments 
such as UNIX and Interlisp in their breadth of coverage of the 
software life cycle. UNIX is a time shared operating system in 
which a uniform file format is the primary means of integrat
ing a rich array of programming tools.2 UNIX is a general
purpose programming environment in that it does not support 
a particular programming language or software development 
methodology. Interlisp, on the other hand, is a programming 
environment that supports only the programming language 
LISP. This gives Interlisp the advantage of tailoring and opti
mizing its tools for a single programming language. 3 All Inter
lisp tools are written in LISP and provide tightly integrated 
operating systems, utility functions, editors, and debuggers. 

Whereas such programming environments as UNIX and 
Interlisp have concentrated on tools for the coding and im
plementation phases, software workbenches provide powerful 
tools for specification, design, implementation, testing, and 
documentation. Workbenches are general-purpose software 
development environments attempting to support the full 
range of the software job as well as its management. 

To meet its objectives of enhancing productivity and sim
plifying the process of software development, the software 
development workbench cannot simply consist of a collection 

Software Workbenches 461 

of even the best tools of the 1970s and 1980s. These tools were 
not designed to be used in a dedicated, personal computing 
environment allowing customization for individual worksta
tion owners. They were not designed to use powerful graphics 
capabilities to enhance the human interface. They were not 
designed to be used in cooperation with one another, linking 
together all aspects of the development process. They were 
not designed to capture information about an ongoing devel
opment process and evolution of a software product. Further, 
they were not designed as intelligent tools capable of per
forming many development tasks on their own. 

For these reasons, a workbench providing a complete soft
ware development environment must have at least the follow
ing characteristics: 

• Graphics capability 
• Central information repository 
• Tightly integrated tool set 
• Full life cycle coverage 
• Proto typing support 
• Automatic code generation 
• Development methodology support 

GRAPHICS 

When viewing a software development workstation, one is 
first impressed by the graphics. The ease with which objects 
can be made to appear, disappear, and move around the 
graphics screen with a mere click of a mouse button is 
amazing. More important, however, the better the graphics, 
the more productive the user interface can be. 

Most people prefer pictures over words because the 
human mind is pictorially oriented. Narrative text is one
dimensional, but pictures are multi-dimensional, borrowing 
such properties as size, shape, and color from the physical 
world. Because the language of pictures is richer than the 
language of text, more information can be represented in 
pictures than in text, and people can grasp their meanings 
more quickly. 4 

Graphical representations (or diagrams) have always played 
an important role in software development. Diagrams are 
used to define program specifications and to represent pro
gram designs. They provide the blueprint for implementing a 
design into code, and are an important form of software 
documentation. 

Diagrams are really the language of software modeling be
cause they offer a concise, unambiguous way of describing 
software. They are so fundamental to software analysis and 
design that different structured methodologies can be charac-



462 National Computer Conference, 1987 

terized in terms of the diagramming techniques they use to 
model a software system. 

Diagramming techniques have evolved along with pro
gramming methodologies. In the 1950s and 1960s, flowcharts 
were used to plan out detailed and complicated program logic. 
Flowcharts fell out of favor because they can give neither a 
high-level nor a structured view of a program. In the 1970s, 
structured techniques became widespread, and structured dia
gramming techniques such as data flow diagrams and struc
ture charts were introduced along with them. 

Although many different structured diagramming tech
niques are in use, an essential trio of diagramming types is 
needed for representing a software system:5 

1. Data flow diagram-a friendly and familiar diagram 
used during analysis to define the problem components 
and to sketch a first, rough cut of program components 
and the data that pass among them (see Figure 1). 

AMOUNT DUE 

INVOICE FILE 

SALES 
INFO 

2. Data model diagram-a diagram used during the data 
modeling processing to represent the data items and the 
logical associations among them. 

3. Tree structure diagram-a hierarchical diagram created 
during program design to define the overall architecture 
of a program by showing the program modules and their 
relationship to one another. 

Minimally, a software development workbench should pro
vide the capability of automatically drawing and updating 
each of the three types of diagrams. Other types of diagrams 
such as decision trees, finite state diagrams, and data naviga
tion diagrams also are useful for modeling software systems. 

Beyond Automatic Drafting 

Although important in increasing productivity, a graphics 
capability must go beyond automatic drawing functions. 

CUSTOMER 
ADDRESS 

DELIVERY 

SALES STATISTICS 

ACCOUNTS PAYABLE DELIVERY FILE 

Figure 1-A data flow diagram showing the four subprocedures in the sales distribution system 



There must be an underlying logical meaning associated with 
the graphics. This is important for several reasons. 

First, when there is a meaning associated with the graphics, 
the correctness and completeness of the diagrams can be 
checked more thoroughly. Some examples are included in the 
Error Checking section. Second, when the meaning of the 
graphics symbols is captured, the same information can be 
represented in different but equivalent forms. For example, a 
data flow diagram can be automatically converted into a tree 
structure diagram (e.g., a structure chart) after the root is 
identified. Or, a tree structure diagram can be automatically 
converted to an action diagram.6 In both cases, it is the same 
information; only the form in which the information is repre
sented has been changed. Thus, a workbench can accommo
date the preferences of different developers and can conform 
to the diagramming standards of different organizations. 
Third, when the meaning of the symbols is stored, informa
tion necessary for automatically generating code from the 
diagram is captured. 

Also, the logical meaning of the diagram must be stored 
when a diagram is drawn. Most workbench tools store the 
diagram or its logical meaning in some sort of dictionary or 
other kind of repository. This is essential to providing the 
capability of quickly changing and redrawing a diagram as well 
as automatically changing all of the affected associated dia
grams. We know from past experience that this is a tedious, 
almost impossible task when done manually. The storage ca
pability of a workbench is discussed further in the Central 
Information Repository section. 

Finally, error checking of the diagrams must be auto
matically performed. 

ERROR CHECKING 

Error checking is one of the most important capabilities of 
workbenches. There are four basic types of error checking for 
diagrams. 

The first type of checking is for syntax and type errors. As 
an example, consider the data flow diagram in Figure 1. One 
syntax rule for a data flow diagram is that each process bubble 
must have at least one data flow entering it and at least one 
data flow leaving it. Notice that ORDER ACCEPTANCE 
PROCEDURE is incorrect because there is no data flow 
arrow entering it. 

The second type of checking is completeness and consis
tency checking for a diagram. Again consider the data flow 
diagram in Figure 1. In a completed data flow diagram, all the 
data flow arrows between processes are labeled with the data 
that is passed between the processes. Notice that in Figure 1 
the data flow arrow between ORDER ACCEPTANCE PRO
CEDURE and FILL ORDER PROCEDURE is not labeled. 
A completeness check should identify this kind of missing . 
information. 

The first two types of error checking are concerned with 
errors in one diagram. Checking one diagram is the simplest 
type of error checking and the minimum expected from a 
software development workbench. The third type of error 
checking is concerned with not just one diagram but with a 

Software Workbenches 463 

family of diagrams. One example of a family of diagrams is a 
set of leveled or layered data flow diagrams in which suc
cessive levels describe processes in increasing detail. Figure 1 
identifies the ORDER ACCEPTANCE PROCEDURE and 
Figure 2 shows in detail what happens inside the ORDER 
ACCEPTANCE PROCEDURE. Consistency checking 
across a family of diagrams checks whether information is 
consistent from level to level. 

Notice that the data flow diagrams in Figures 1 and 2 are not 
consistent because they do not show the same number of data 
flows going into and out of the ORDER ACCEPTANCE 
PROCEDURE. 

The fourth type of error checking is concerned with tree 
structure diagrams in which functions or procedures are de
composed into more detailed subfunctions as one proceeds 
"down" the tree. Some structured methodologies provide 
guidelines for decomposing functions. For example, no func
tion should be decomposed into itself. Workbenches should 
incorporate these types of refinement rules into their error 
checking. 

CENTRAL INFORMATION REPOSITORY 

Although not as visually impressive as the graphics capabili
ties, the central information repository is the heart of a work
bench. It is the basis for integration, standardization, 
documentation, code generation, and reusability. No other 
workbench characteristic is more important. 

A central information repository is a mechanism for storing 
and organizing all components of a software system including 
data structures, architectural design, process logic, screen 
definitions, report layouts, system diagrams, source code, test 
data cases, project management forms, schedules, and user 
documentation. A key to high productivity is getting informa
tion to developers when it is needed and in a form that is 
directly usable. 

In some workbenches, a dictionary serves as the central 
information repository. However, a mere dictionary mech
anism is inadequate because it does not provide information 
management. In other workbenches a more sophisticated 
mechanism called an encyclopedia is the central information 
repository. An encyclopedia is more than a dictionary because 
it coordinates and analyzes information as well as stores it. An 
encyclopedia is more than a database and an accompanying 
management system because it is a knowledge base containing 
facts and rules about checking the completeness and consis
tency of the data stored. 7 Whereas a database and a dictionary 
are passive tools in which control lies with a user, the encyclo
pedia is an intelligent tool that can provide multiple views of 
information and can choose which information is to be shared. 
It performs a more active role in control to maintain data 
consistency and integrity. 

INTEGRATION 

Specification languages, diagramming tools, prototyping 
tools, dictionaries, database management systems, compilers, 
various types of generators, and so on are the high productiv-



464 National Computer Conference, 1987 

ORDER FILE 

CUSTOMER FILE 

CUSTOMER RECORD 

INVALID 
CUSTOMER 

PRODUCTS FILE 

/ 
PRODUCT 
RECORD 

NO 
AVAILABLE 

PRODUCT 
DELIVERY 
INFORMATION 

ERROR INFO 

PRODur 

r'\ 
BACKORDER ORDER RATE FILE 
PROCEDURE 

ACCEPTED ORDER FILE 

Figure 2-A data flow diagram for the order acceptance procedure 

ity tools of the early 1980s. However, a major obstacle to their 
ease of use is their tendency to be standalone tools capable of 
supporting only part of the software process. Usually they do 
not have standard interfaces to one another; and they are 
highly dependent upon a particular computer, operating sys
tem, and programming language. As a result, software devel-
epers must learn to use a different set of tools fer each en\r1-
ronment in which they work. Even within a single environ
ment, developers cannot apply their knowledge of one tool to 
another because each tool has its own command format, spe
cialized file structure, and range of available options. 

In spite of their power, many potentially powerful tools 
have failed to substantially improve software productivity and 

quality because they do not provide integrated, continuous 
support to software developers in day-to-day work. 8 

Tools integration lies at the very foundation of the software 
development workbench concept. It is the key to making pow
erful software tools practical to use. Workbench tools should 
interact with each other in a consistent, intuitive way and 
should conform to a set of \,tell-understood standards. ThCj7 

should appear to a user to be cooperating with each other and 
aware enough of each other not to duplicate functions or 
messages. 

There are five levels of integration. The first level, common 
user interface, is the minimum expected in a software devel
opment workbench. It reduces the learning curve associated 



with the workbench since experience acquired using one part 
of the workbench can then be applied to learning other parts. 
A common user interface is the bridge connecting various 
workbench tools. When third party tools are added, individ
ual tool differences are covered under the umbrella of a com
mon menu system. 

The second level of integration, transferability of data be
tween tools, is another kind of bridge connecting workbench 
tools. When necessary, conversion routines and file transfer 
routines are supplied to automatically convert data into an 
appropriate input format for a particular tool or software 
package. In a smoothly running workbench, it is easy for a 
user to pass data u{)m tool to tooL It is expected that the 
output of each tool will become the input to another. 9 

The first two levels of integration are concerned with inte
grating across tools-a way of linking tools together for ease 
of use and ease of learning. The third level of integration is 
concerned with linking the phases of the software life cycle
integrating across the process of developing and maintaining 
software systems. In this case, the bridge between the various 
life cycle phases is one common representation of the system 
(but which allows multiple user perspectives or views), stored 
in a central information repository and shared among project 
teammates. This level of integration unites teammates, users, 
and management and reduces communication problems by 
providing one easily updated source for all information about 
a system. 

The last two levels of integration are concerned with inte
grating across hardware environments-linking mainframe 
and micro levels, and in some cases a "middle" minicomputer 
level as well. The objective is to be able to perform develop
ment activities in whichever environment is most expedient. 
This is possible only if text, code, data, and graphics can be 
transferred easily between software packages and between 
hardware environments. In addition, some workbenches offer 
integration across functions-graphics, word processing, data 
processing, and office automation-by providing all these 
functions at the workstation level. 

LEVEL CYCLE COVERAGE 

Workbenches for general-purpose software development en
vironments provide tools for automating the entire software 
life cycle with a concentration on the early life cycle phases. 
This front-end emphasis, or "front-end loading," of the life 
cycle comes from recognizing analysis and design as the most 
critical life cycle phases. 

Specification errors can be very expensive if they are not 
detected and corrected in the early phases. Correcting a 
specification error during the maintenance phase may be 100 
times more expensive than if it is corrected during the analysis 
phase. lO The completeness and correctness of the system 
specification affect the success of the entire software develop
ment effort. Poorly understood system requirements cause 
software failures. The specification is the basis for project 
schedules and assignments, test plans, user documentation, 
and program design. 

Design errors often dominate software projects because of 
their number and the cost to correct them, especially when 

Software Workbenches 465 

they are not detected early. In large projects, design errors 
often exceed coding errors.ll 

More care given to design means lower-cost and more re
liable systems. A system design is the blueprint for system 
implementation. If the blueprint does not exist or is incorrect, 
the system produced is probably poorly organized, poorly 
documented, and a nightmare to maintain. 

PROTOTYPING 

Prototyping tools play an important part in automating the 
early software life cycle phases. They are used to determine 
system requirements and answer questions about the behavior 
of the emerging system. 

Screen generators, report generators, and menu builders 
are used mainly to prototype the user interface as a quick, 
friendly way of clarifying user requirements. The prototype 
provides users with a concrete model of how the system will 
look from the users' perspective. This is an effective method 
for identifying and correcting misunderstandings about user 
expectations for the system. 

Fourth generation languages can be used to develop a more 
complete model of a system. In such cases, the prototype 
includes the major functions of the system but does not check 
for exceptions or invalid input data and does not worry about 
execution performance. The purpose is to give a user experi
ence with the system by using a fairly complete model. Some
times the model is found to be adequate enough to serve as the 
actual system. 

Executable specification languages are the most soph
isticated prototyping tools. They change system development 
into an iterative process whereby the system is specified and 
the specifications are executed to determine if the system is 
complete and correct. Then, based on the experience of this 
prototype version, the specifications are refined and re
executed. The iterative process continues until the system is 
able to perform in a manner that meets all user requirements. 

DEVELOPMENT METHODOLOGY SUPPORT 

The software development workbench concept supports struc
tured techniques by providing tools to automate the tech
niques. There are two levels to automation: 

1. Automate documentation preparation 
2. Automate the steps of a structured methodology. 

Automating documentation preparation means providing 
graphics support for drawing structured diagrams such as data 
flow diagrams, entity relationship diagrams, state transition 
diagrams, and action diagrams. It also means automating the 
production of textual specifications such as mini-specs and 
pseudocode. The textual specifications are used to provide 
more detailed information about program procedures and 
data structures referenced in higher-level structured dia
grams. 

Since different structured techniques use different diagrams 
to model a software system, the types of structured techniques 
supported by a particular workbench will be determined by 
the types of structured diagrams and the notation conventions 



466 National Computer Conference, 1987 

that it offers. For example, the Yourdon Structured Design 
Methodology uses a structure chart derived from a data flow 
diagram to represent a program design; the Jackson Design 
Methodology uses tree structured diagrams; and the Warnier
Orr Design Methodology uses Warnier-Orr diagrams. One 
approach for standardizing program documentation is to re
strict the diagrams and the notation conventions offered in the 
workbench. 

The second level of methodology support, automating the 
process steps, means the workbench guides a user in correct 
use of a structured methodology. This requires that at least 
some level of understanding of the methodology is embedded 
in the tools. This could be as simple as embedded help panels 
that describe each step in the methodology or checklists that 
include the input required by and the output produced by each 
step. It also might include a checking mechanism to ensure 
that each output deliverable required by the methodology is 
present, correct, and complete before a user is allowed to go 
to the next step. In this case, a user is not simply guided 
through the methodology; rather, the user is forced to per
form the steps in a standardized order and way. The purpose 
is to standardize and systematize the process of developing 
software. 

There are two schools of thought on whether a development 
methodology should be embedded into the workbench. The 
argument for separating the methodology from the tools is 
that such separateness gives users flexibility in choosing the 
methodology or the part of a methodology that is appropriate 
for developing a particular system. The argument for em
bedding the methodology into the workbench tools is that it 
introduces control over the development process. 

KEY WORKBENCH CONCEPTS 

In summary, software development workstations differ from 
other powerful high-productivity tools because workstations: 

1. Provide a highly interactive, responsive, and dedicated 
environment in which to develop software 

2. Automate many software development tasks 
3. Provide a pictorial view of software by means of power

ful graphics 
4. Enable rapid proto typing for creating models of the sys

tem to help discover and clarify user requirements 
5. Collect the information necessary for automatic code 

generation from system analysis and design 
6. Perform automatic checking to get the errors out early 

These concepts enable workstations to dramatically change 
and improve programmer productivity. 

REFERENCES 

1. Gutz, S., Wasserman, A., and Spier, M. "Personal Development Systems 
for the Professional Programmer." Computer, 14 (1981) 4, pp. 45-53. 

2. Kernighan, B. and Mashey, J. "The UNIX Programming Environment." 
Computer, 14 (1981) 4, pp. 12-24. 

3. Teitelman, W. and Masinter, L. "The Interlisp Programming Environ
ment." Computer, 14 (1981) 4, pp. 25-34. 

4. Raeder, G. "A Survey of Current Graphical Programming Techniques." 
Computer, 18 (1985) 8, pp. 11-25. 

5. Martin, James and McOure, Carma. Diagramming Techniques for Analysts 
and Programmers. Prentice-Hall, 1985, pp. 1-22. 

6. Martin, James and McClure, Carma. Action Diagrams. Prentice-Hall, 
1985. 

7. Martin, James. "Information Engineering." Savant Technical Report, Sa
vant Institute, England, 1986. 

8. Osterweil, L. "Software Environment Research: Directions for the Next 
Five Years." Computer, 14 (1981) 4, pp. 35-44. 

9. Osterweil, L. "Software Environment Research: Directions for the Next 
Five Years." Computer, 14 (1981) 4, pp. 35-44. 

10. Haase, V. and Koch, G. "Developing the Connection Between User and 
Code." Computer, 15 (1982) 5, pp. 10-11. 

11. Boehm, B., McClearn, R., and Unfrig, D. "Some Experiences with Auto
mated Aids to the Design of Large-Scale Reliable Software." IEEE Trans
actions on Software Engineering, 1 (1975) 1, pp. 125-133. 



It's not the technical problems. 

by DONALD M. McNAMARA 
General Electric 
Bridgeport, Connecticut 

ABSTRACT 

• • 

The important issues concerning operating environments are 
not technical issues. They are managerial, business, market
ing, integration, and application issues that are shaped pri
marily by the changes in how we develop and implement 
software systems. Fortunately, hardware, software, and com
munications technology will keep advancing to meet these 
development needs. The big problem is for vendors to pack
age and deliver the operating environment technology in a 
way that business, academia, and government, can use it. The 
other problem is for those of us who are users to exploit it to 
the fullest. 

INTRODUCTION 

My perspective at General Electric (GE) is that of a Software 
Development Program Manager. My job is to understand and 
direct trends in the use of software developent methods, tools, 
and management approaches throughout GE. As a member 
of the Corporate Information Technology Staff and as a Soft
ware Engineer, I help GE's (very) independent businesses 
exploit the best computer hardware, software, and communi
cations to develop GE's products and support systems. 

With over 15,000 software developers at GE, even a five 
percent improvement in productivity means millions of dollars 
on the bottom line. For that reason, my perspective is also that 
of a businessperson. I see dramatically increasing demands for 
software and systems in every part of GE, as well as in many 
other United States businesses. Yet, neither GE nor most 
other United States businesses are going to be able to increase 
the number of software developers in proportion to the in
crease in demands. Developers of software systems simply 
must start using new approaches that increase productivity by 
orders of magnitude. Fortunately, new software tools, more 
disciplined methodologies, and new management approaches 
that can make dramatic improvements in productivity, are 
available and are being adopted. 

So, what do these software development trends have to do 
with operating environments? The answer is: everything! The 
approaches we use to develop and implement software are 
changing so fast (thank goodness) that they are the major 

467 

forces in shaping new needs for operating environments. In 
addition, these forces are too strong for anyone to change. 

Fortunately, hardware, software, and communications 
technology will keep advancing to meet these development 
needs. If there's a market, technology can meet its require
ments. In most cases, the technology already exists. I am not 
worried about it. Where it needs to advance, it will advance 
quickly. The big problem is for vendors to package and deliver 
the operating environment technology in a way that business, 
academia, and government, can use it. The other problem is 
for those of us who are users to exploit it to the fullest. 

My position is that the really important issues concerning 
operating environments are not technical issues. They are 
managerial, business, marketing, integration, and application 
issues that are shaped primarily by the changes in how we 
develop and implement software systems. The key issue is that 
both vendors and users need to focus on the forces of change 
in software development in order to understand how to deliver 
and use operating environment technology. 

The forces of change are rapid expansion of end user com
puting, development using individual PC workstations, and 
information resource development for distributed processing. 

Rapid Expansion of End User Computing 

End user computing, that is systems development and 
implementation by non-professional system developers, is the 
information systems success story of the 1980's. In many of 
GE's businesses and in other United States businesses, end 
users far outnumber professional system developers. End 
users use non-procedural Fourth Generation Languages to 
develop and implement rudimentary systems. Many end users 
use personal computers while others work solely on main
frames. A growing percentage work on both. 

GE now has 26 information centers. They are staffed by 
three to ten information systems professionals especially as
signed to support and promote end user computing. As end 
users become more experienced, they expand their horizons 
and frequently install local area networks so they can share 
data and programs. They quickly outgrow stand-alone appli
cations and want ready access to corporate databases and 
external databases. 



468 National Computer Conference, 1987 

Most of these end users do not know the meaning of the 
words "boot," "crash," "operating system," or "data flow 
diagram." They do not want to design systems. They want to 
start implementing systems immediately and to easily change 
them later. Since they are the people who originate the system 
requirements, they do not need "treacability" between re
quirements, design, and code. They do not want to have to 
refer to user manuals. They want easy access to corporate data 
bases and outside databases that are administered by others. 
They definitely do not want the system to crash and do not 
know what to do if one does. They want complete fault toler
ance. They want a seamless development, implementation, 
and operation environment in which the operation system is 
invisible and development can be accomplished using only 
screens, menus, screen pointers, and other non-procedural 
interfaces. 

Development Using Individual PC Workstations 

The hottest topic among software developers in GE these 
days concerns software development on Personal Computers 
(PCs). Managers want to use PCs to develop systems that will 
run on the mainframe. They want to offload as much main
frame development work as possible to take advantage of the 
significantly lower costs on the PC. They want to use the PC 
to develop systems for multiple types of mainframe com
puters. Developers of PC applications want to be able to have 
the functionality of mainframe tools available on PCs at PC 
software prices. 

A big disadvantage of systems development on PCs is the 
difficulty of defining and accessing common data from multi
ple PCs. In addition, integration test and systems test of main
frame applications is almost impossible in most PC operating 
environments. 

Developers want PC operating environments that provide 
all the comforts of a centralized mainframe at PC prices. 
Obviously developers want operating environments where 
linked PCs have common and concurrent access to databases 
under development. They want mainframe development tools 
that work on PCs to develop applications that can run on 
different target ·mainframes. They want operating environ
ments that enable systems integration and test on the PCs as 
well as easy transfer to mainframes. They want to be able to 
change database structures in a transparent mode without 
effecting the applications in any way. 

Information Resource Development 
for Distributed Processing 

The third force of change is the realization by many organi
zations that data and information need to be developed and 
managed as a distinct and integrated resource separate from 
the processing systems that support and use them. Organiza
tions encounter their Information Resource Management 
(IRM) problems as smaller subproblems such as data base 
integration needs or availability of distributed data for rela
tional access by end users. They quickly realize, though, that 
they need solutions that encompass the entire enterprise. 
Often, the data and information is controlled by distributed 
organizations using a mix of incompatible communication and 
processing facilities. 

IRM developers want enterprise-wide active data diction
aries and data repositories that can be used by developers 
operating in a distributed environment. They want an oper
ating environment that handles the communication and con
trol, making the data appear as if it resides locally. They want 
to be able to change the physical characteristics of the data 
without impacting the applications. In short, they want to be 
able to develop and manage information resources in a way 
that is transparent to developers and users. 

SUMMARY 

The operating environment characteristics that I have said 
we need are: invisibility, fault tolerance, non-procedural 
fourth generation interfaces, seamless interfaces between 
development and operation facilities, global information 
resource development and management, PC development 
for mainframes execution, application portability, and data 
independence. 

All of these technological capabilities exist today in one 
system or another. The three forces of change are demanding 
that they be integrated under one operating environment for 
each major computer and software system vendor. As soon as 
vendors understand this and see the market potential, they 
will provide the capabilities. We as users must understand how 
to exploit the new capabilities. Since the technology already 
exists, it is almost certain that the major operating environ
ments of the late 1980's will include them. 



Evolution of operating environments for 
new communication service control 

by SHUZO MORITA 
Fujitsu Laboratories Ltd. 
Kawasaki, Japan 

Traditionally, software in the communication field, especially 
switching software, has followed a specific path different from 
that in the information processing field. Individual process
ings in switching software are simple, but in multiplicity, 
"real-timeness," and reliability, it has unparalleled features. 
Communication software itself, which manages a huge 
amount of communication resources spread over a global 
scale and assigns them on a real-time basis according to enor
mous amounts of service orders, constructs a large operating 
system. 

However, telecommunication systems are now going to 
change significantly. With the advance of the information 
society, there is a large demand for new communication ser
vices using various communication media such as text, image, 
and video as well as voice. To respond to these demands, 
much effort has been devoted to evolving communication net
works to digital and broad-band networks, and new communi
cation networks such as Integrated Service Digital Network 
(ISDN) have just begun to be introduced. In the 1990s, mul
timedia information "pipelines" will be economically avail
able for the general public as well as business users. On the 
other hand, even if these broad and efficient information pipe
lines are provided, they are only a treasure left unused if there 
are no mechanisms for efficiently controlling information 
streams in the pipeline. In parallel with the advance of phys
ical capabilities of the network, the advance of operating envi
ronments for network and service control is necessary. The 
expectations for the advance of operating environments in 
communication systems are: 

1. Enhancement of user programmability of communica
tion services-the drastic allowance of users participa
tion in service customization. Conventionally, communi
cation services have been one-sidedly and uniformly 
provided by service providers such as common carriers 
and system vendors. However, considering diversifica
tion and personalization of future communication ser
vices, it is impossible to avoid feeling some limitation in 
the conventional mechanism of service provision. This is 
the time for us to introduce the idea of user pro
grammability into the communication world by which 
users themselves can customize services to meet their 
own requirements. 

2. Provision of communication services with much free
dom, independence of time, place, and media-the 

469 

basic subject of communication service control. Much 
effort has been devoted to achieving the subject so that 
everybody can freely communicate whenever, wherever, 
and using every media they want. However, a systematic 
approach is necessary now when new communication 
networks such as ISDN have just begun to be con
structed. The concept of virtual network control which is 
realized in AT&T advanced 800 service, for example, 
points the way we should follow. Service control on vir
tual networks, which are independent of physical net
works consisting of terminals, transmission lines, and so 
forth, makes it possible to realize communication ser
vices with much freedom without physical constraints. 

To provide these new services, the operating enVIronments 
of communication systems must be evolved. The basic point is 
to depart from the closed world of telecommunications to be 
in harmony with the information processing world. Communi
cation software should not only be system software but 
provide higher level operating environments for supporting 
advanced communication services. To realize user program
mable services, it is necessary to provide various utilities by 
which end users as well as some few specialists, who have been 
developing communication software as an operating system, 
can easily define their own services. Furthermore, in virtual 
network control, operating environments for complex pro
cessing using large amount of data are necessary. These basic 
features are similar to those of information processing, and 
commonality of various resources including man-power for 
the development of application packages will become more 
and more important. Thus, commonality with the operating 
environments of information processing resources is the basic 
direction of the evolution of the operating environments of 
communication software, but it should be done strictly consid
ering specific features of communication software: ultra multi
plicity, "real-timeness," and high reliability. RTR (Real Time 
Reliable) operating system of AT&T and HSOS (Hybrid 
Structured Operating System) of FUJITSU, which integrate 
UNIX and real-time operating systems, are examples of new 
operating environments meeting the above requirements. The 
operating system offering multi-environments for the control 
from real-time/ultra-multiprocessing to complex data pro
cessing will be the main stream of operating environments for 
future communication service control. 





An overview of the Pick Operating System 

by RICHARD PICK 
Pick Systems 
Irvine, California 

INTRODUCTION 

Information management is the heart of the Pick Operating 
System. This easily used, multi-user operating system with 
virtual memory has an English-like retrieval language in which 
a data base manager, an extremely efficient programming 
language, and system utilities are all integral. Because of this 
structure and capabilities, Pick is actually more than a tradi
tional operating system, it is an integrated decision support 
system. In addition to its use as a management decision tool, 
the Pick system has proved to be exceptionally efficient for 
applications development. As a result, the Pick approach has 
won converts from both professional and non-professional 
data processing ranks for nearly two decades. This software 
architecture remains technically very different from other 
operating systems with data storage and accessing concepts 
that are truly unique. 

THE PICK ARCHITECTURE: 
A SOFIWARE MACHINE 

The term architecture applies to software written free from 
hardware constraints in a virtual assembly language, or pseudo 
code. In mainframe and mini-computer implementations, the 
Pick architecture is interfaced to hardware at the micro
instruction level and much execution is at the firmware micro
instruction level. With microprocessor-based machines, the 
system is in software. This micro-instruction layer includes 
terminal lIO operations and a virtual memory manager that 
treats core memory as a scratchpad and addresses the entire 
disc. With assembly.1anguage executing in this high-level soft
ware, the Pick system provides a remarkable degree of trans
portability which contributes to its reputation for being 
machine, or hardware, independent. Some of the major sys
tem components incorporated in the Pick system's architec
tural construct are: 

An advanced VIRTUAL MEMORY MANAGER 
A versatile SYSTEM MONITOR 
A unique FILE STRUCTURE 
An efficient DICTIONARY SYSTEM 

471 

A sophisticated DATA BASE MANAGER 
An easily used INQUIRY LANGUAGE, (ACCESS*) 
An exceptionally powerful high-level PROGRAMMING 

language, (PicklBASIC) 
An efficient STORED PROCEDURE LANGUAGE 

INTERPRETER, (PRO C) 
A TEXT-PROCESSING PROGRAM with expanded 

capabilities, (EDITOR) 
A flexible, productivity-enhancing TERMINAL CON

TROL LANGUAGE, (TCL) 
In the Pick Operating System, all these major system com

ponents and several additional system utilities are integral 
parts. This is not the case with most traditional operating 
systems in which many of these features are technically 
add-ons. Although this may be transparent to the user, such 
add-on constructs are inefficient. 

VIRTUAL MEMORY MANAGER 

Embedded in the quick of the system, the virtual memory 
manager allows data and programs to move in and out of main 
memory as needed, dynamically. Disc is addressed as if it 
were an extension of main memory. It allows the active pro
cesses to use only the portion of a program, or data, needed 
at any particular instant. With the Pick system, users need not 
concern themselves with the memory requirements of pro
grams, files, or reports. In effect, main memory is as large as 
the available disc space. 

SYSTEM MONITOR 

The Pick system is a video display, or CRT, terminal-oriented 
multi-user system designed for interactive use to facilitate 
decision making from a shared data base. The system monitor 
provides the vital interrupt-driven multi-user scheduling re
quired. It ensures system users inter-active access to data 
resources and it allows simultaneous performance of such pro
cesses as program compilation, system utility functions, multi
ple application program construction, and data base back-up 
without conflict. 



472 National Computer Conference, 1987 

FILE STRUCTURE 

The Pick file structure is unquestionably unique. It features 
data strings of variable length in a structure that is considered 
mathematically "three dimensional." Although this concept 
may be difficult to grasp at first, the system is much easier to 
use than traditional structures, and a Pick system user can 
easily process data in a very real world environment. 

THE DICTIONARY SYSTEM 

For speed and ease-of-use, the Pick software incorporates a 
hierarchy of special files called "dictionaries." They are "road 
maps" for retrieving data from the various files using the 
inquiry language, ACCESS. They provide the mnemonic 
names for the various attributes (fields), describe their con
tents, and reveal how information is to be displayed when 
printed. 

FILE DICTIONARIES 

The Pick dictionaries contain file and attribute definition 
statements that describe the structure of the data files with 
which they are associated. They describe, on an attribute-by
attribute basis, the type of data within each, the conversion 
specifications, relationships between attributes, and similar 
information. The file dictionary's definitions assist substan
tially in the information retrieval process and are used with 
the English-like ACCESS inquiry language processor. 

DATA BASE MANAGEMENT AND THE 
ACCESS LANGUAGE 

The business orientation of the Pick system is most evident in 
the interactive inquiry processor and the high-level inquiry 
language, ACCESS, associated with it. A data base has been 
described as an accessible collection of separate information 
values and Pick, a data base management system, was de
signed to manage varied operational data, or information, in 
a coherent way using one set of standards. The Pick Operating 
System was created specifically to manage information prac
tically. It was purposely written in a pseudo code with logic 
free from the constraints of hardware and traditional pro
gramming approaches. Classified as a relational system by 
many, it actually includes desirable features from all three 
traditional structures and is, in fact, something entirely new
ideally suited to data base management. A special purpose 
inquiry language, ACCESS, provides a programming tool to 

enter the data base and generate reports with exceptional 
speed. In the hands of non-programmers it can be used to 
easily generate simple inquiries from a visual display terminal 
on an ad hoc basis, and programmers and trained personnel 
can use it to generate extremely complex reports, with relative 
ease. 

PICK/BASIC 

Pick/BASIC is a high-level, general purpose programming 
tool. When combined with the non-procedural ACCESS in
quiry language and the flexible Pick data structure, it enables 
programmers to bring new applications on-line in a remark
ably short time. A new language, Pick/BASIC, is specifically 
tailored for data base management in a multi-user environ
ment. BASIC was chosen because of universal appeal. It is an 
easy-to-use, flexible programming language adaptable to 
quickly solving specific business application needs. 

PROC 

A handy procedure language called PROC is provided to 
create a time-saving list of commands to ensure the proper 
execution of sequential processes. It permits the storage and 
execution of a lengthy series of commands or operations and 
the ability to customize data base input, inquiry, retrieval, and 
report generation. 

EDITOR 

The Pick Operating System's editor is used to examine and 
alter any attribute, item, or file. 

TERMINAL CONTROL LANGUAGE (TCL) 

The Pick Operating System is terminal oriented. Although 
hard-copy reports are generated, it is a multi-user interactive 
system activated through various video display terminals. As 
such, the Terminal Control Language, or TCL, plays a major 
role. With TCL, an unlimited number of user-defined proce
dures, and more than 200 system utilities, menus, and proce
dures can be initiated. TCL serves as a command processor 
where action is initiated and passed to other system modules. 

As new faster and smaller computers appear on the scene 
almost monthly, the need for a machine-independent oper
ating system becomes more and more necessary. The Pick 
system fulfills that requirement and will continue to do so in 
the coming decades. 



Concurrent phasing: When time means money 

by RICHARD G. LEFKON 
Citibank, N.A., and New York University 
New York, New York 

INTRODUCTION 

Those responsible for improving the efficiency of software 
generation and maintenance, sometimes overlook an obvious 
but nonetheless critical fact: If there were no users, there 
would be considerably fewer programmers to manage. 

One problem with large-scale programming efforts is that 
by the time the system is finished, the business it serves may 
have evolved into something distinctly different. Users will 
not stand by quietly without good cause if their key systems 
are frozen for a lengthy period to accommodate the pro
gramming department. 

EXTRA COSTS MEAN SAVINGS! 

When time means money, time frame acceleration can make 
a large-scale project more costly, but the extra expense may 
be more than justified by a much larger return on the invest
ment. Bringing a new system live significantly earlier means 
that the resulting benefits in savings, profit increment or 
marketplace leadership are cumulatively in effect for that 
much longer. Business users pay attention to this return on 
investment. 

Even from the programming department's standpoint, 
there are benefits: 

Employee salaries and consultant costs will be billed at 
today's rates rather than increase steadily over time; the new 
system can use state-of-the-art software rather than, for in
stance, a database package that has aged several additional 
years upon system delivery; the necessary freezing of present 
procedures will be shorter and cause correspondingly less dis
ruption to the conduct of business. 

INTRODUCTION TO CONCURRENT PHASING 

Concurrent phasing is a two-dimensional project management 
approach that integrates the management practices of task 
subdivision, subtask ganging, functionally distinct develop
ment teams, early completion of the common database, and 
extensive prototyping. This approach facilitates coordinated 
delivery of subsystems to the user as integral wholes. It makes 
testing, fixes, and user sign-off much less awkward. 

473 

The chief benefit of concurrent phasing is that it smooths 
and reduces the staff load required to complete a software 
development project in a greatly accelerated time frame. The 
final software products delivered are not necessarily any 
better than those produced with other approaches, and com
pleting a project in 11/2 years with this strategy will cost signifi
cantly more than permitting the same project to take five 
years to go live. But when time means money in its effect on 
the business, this more expensive project management strat
egy may be just the right one. 

HOW TO IMPLEMENT CONCURRENT PHASING 

Concurrent phasing is definitely not the place for laissez-faire 
managers. Because many tasks usually done in sequence will 
now be performed concurrently, the project management 
team must take an active role, meeting at least weekly to 
discuss problems and alternative solutions. 

Senior management may be unfamiliar with concurrent 
phasing and at first may have difficulty conceptualizing this 
management-intensive method. It is imperative that this ac
celerated approach be presold to those with systems influence 
in either the data processing or end-user departments and 
explained carefully as new individuals enter the management 
chain. Because it runs counter to the traditional linear 
schedule, concurrent phasing should periodically be discussed 
with those to whom it has already been explained. A loud 
"This method will never work!" can decelerate progress if left 
unanswered often enough. 

A simple memorandum format can be used to express the 
worth of the management processes involved here. Such a 
memo, circulated in one's own department and subsequently 
discussed with key users, can offer the following recommen
dations: 

1. A prerequisite starting point is a complete set of known 
data items. 

2. The first internal product delivered should be a compre
hensive database-thinly populated but logically com
plete. 

3. Before the conclusion of formal specifications, coders 
should construct a skeleton of the full system for tuning 
and hands-on feasibility studies. 



474 National Computer Conference, 1987 

4. Major subsystems should be planned, designed, and 
coded and tested with phased starting points. This will 
leave intact the three respective teams throughout the 
project, guarantee team-to-team handoffs, and min
imize misuse of staff such as coders interviewing users, 
CICS learners designing transmissions, or user contacts 
writing code. 

5. The management and staff of each team should work 
together to report progress based on the smallest compo
nents of each task and to gang labor on critical-path 
items. 

6. To facilitate phasing, a list of cumulative features for 
subsystems should be enclosed. 

LIMITATIONS 

Except for subtasking, the synthesis of techniques discussed 
here will not produce the projected acceleration with projects 
of less than four to six work-years. Not only do projects of 
shorter duration have insufficient resources to facilitate gang
ing; but also the complexity of the task is probably not great 
enough to reap a net time gain from prototyping. 

Software development projects managed by concurrent 
phasing still need the application of other accepted good 
programming management practices. Coding standards 
must be introduced and enforced/ and quality testing must 

be thoroughly and consistently applied. 3 Moreover, non
programming considerations affecting users4 cannot safely be 
ignored either. 

Even within this approach, common sense should be ap
plied. Coders should be discouraged from breaking up a pro
gram in circumstances where the time for component linkage 
coding and testing is comparable to the time to be gained by 
coding in parallel (ganging). And, too, subordinates must 
understand that the deadlines are real and that 80 percent 
completion is not good enough. 

Finally, if a new software technology is used, veteran prac
titioners of only the old technology should be kept off the 
project design team. Otherwise, their knowledge of the busi
ness, seniority, and self-confidence may converge so strongly 
that they lead the real software experts to come up with the 
wrong system architecture. 

REFERENCES 

1. Leikon, R. G. "Speeding Software Delivery." Computerworld 20(May 12, 
1986)19, pp. 97-108. 

2. Leikon, R. G. "Large-Scale Telecommunications and Data Base Standards." 
Data Management, 25(May, 1987)5, pp. 18-24. 

3. Leikon, R. G. "Maintenance manager: How to be a drill sergeant and a good 
guy, too." Computerworld, 21(February 9, 1987)5, pp. 61-75. 

4. Leikon, R. G. "Quantitative Evaluation of Networks." Selecting a Local 
Area Network, American Management Association, 1986, pp. 106-118. 

TABLE I-Five subsystems with phasing and balance loading 

Responsible 
Individual 
or Group: Period I: Period II: Period III: Period IV: Period V: Period VI: Period VII: Period VIII: Period IX: 

Business A B C DEtrain operators and clerical staff .............. . 
Analyst: functionals functionals functionals functionals functionals 

Systems Design A BCD E perform maintenance and small upgrades 
Analyst: database specifications specifications specifications specifications specifications 

Programmer! Create a Create the A coding B coding C coding D coding E coding Perform maintenance 
Analyst: Model System Database unit testing unit testing unit testing unit testing unit testing 

Quality Procedures Document Ensure A integration B integration C integration D integration E integration Maintenance 
Control: Database testing testing testing testing testing 

User: A B C D, E A acceptance B acceptance C acceptance D acceptance E acceptance 
functionals functionals functionals functional s testing testing testing testing testing 



Software engineering in the large 

by JOHN C. CHIANG 
Hayes Microcomputer Products, Inc. 
Norcross, Georgia 

Software engineering practices typically develop, first, from 
coding activities and then move to more global applications of 
tools and engineering practices that affect the entire develop
ment cycle. There is a growing recognition that successful 
software engineering depends upon factors beyond practices 
that apply to a single project. These factors encompass multi
ple projects, longer time frames, and affect many groups in 
the organization. Borrowing from DeRemer and Kron's 
"Programming in the Large," 1,2 we will refer to these broader 
factors as "Software Engineering in the Large". The five ex
amples below illustrate topics from this broader view software 
engineering. 

Software Development Environments Extend Over Time 

A series of related projects may be developed by an organi
zation over an extended period of time. Projects in the series 
might be elements in a family of products. The stability of the 
development environment across time and projects becomes 
an important factor in development productivity. UNIX, with 
its tool box approach, provides an opportunity to stabilize the 
development environment. 3 Gandalf is another example of a 
set of similar development environments that offer stability 
over projects. 

The Culture of Communication 

Desire alone does not fulfill the long recognized need for 
communication in software development. There should be a 
central system to archive documents, to make knowledge 
available to more personnel, and to serve as a future reference 
source. Individual project books or libraries tied to single 
projects do not support the larger family of projects over 
extended time periods. 

Early Prototypes 

One solution to rapidly changing project requirements and 
technology is to develop early prototypes that solidify require
ments a~d build up technical know-how before implementa-

475 

tion begins. The key to successful prototypes is to resist the 
temptation to patch the original prototype into a finished 
product. 2 

Life Cycle Model in Software 

The traditional life cycle models partitions the software life 
cycle into rigid steps, such as specification, design, and 
implementation. This model, also referred to as "The Water
fall Model," does not properly reflect the dynamic nature of 
software development. The newly formed "Spiral Model,,,6 
recognizing the dynamic nature of software development, em
phasizes risk analysis and discipline in planning. It is believed 
that this model will be widely accepted, and a host of support
ing tools and practices will emerge from it. 

Physical Environment and Organization 

The concept of a "software factory,,,7,8 addresses office 
arrangements, computing environments, project team struc
ture, and supporting organizations. The result of applying this 
approach can be finely tuned software development machine. 

REFERENCES 

1. DeRemer F. and H. Kron, "Programming-in-the-Large versus 
Programming-in-the-Small." IEEE Trans. Software Eng., (Vol. SE-2) June, 
1976, pp. 80-86. 

2. Ramamoorthy, C. V., V. Garg, and A. Prakash, "Programming in the 
Large." IEEE Trans. Software Eng., (Vol. SE-12), July, 1986, pp. 769-783. 

3. Kenighan B.W. and J.R. Mashey, "The Unix programming environment." 
Computer (Vol 14), April, 1981, pp. 25-34. 

4. Habermann A.N. and D. Notkin, "Gandalf: Software Development Envi
ronments." IEEE Trans. Software Eng., (Vol. SE-12) , December, 1986, 
pp. 1117-1127. 

5. Royce, W. W. "Managing the development of large software systems: con
cepts and techniques." Proc. WESCON, August, 1970. 

6. Boehm, B. M. "A spiral model of software development and enhancement." 
Proce. IEEE Second Process Workshop, 1986. 

7. Nakamura K. "Approach to a Software Factory in the Telecommunications 
Field." Proc. COMPSAC85, October, 1985. 

8. Matsumoto Y. et al, "SWB System: A Software Factory." Software 
Engineering Environments, North-Holland Publishing Company, 1981, 
pp. 305-318. 





Design methods for distributed software systems* 

by CARL K. CHANG, MIKIO AOYAMA,** AND TSANG MING JIANG 
University of Illinois at Chicago 
Chicago, Illinois 

ABSTRACT 

As modern software systems tend to be more and more distributed, the design for 
such systems becomes very complicated. Design validation for distributed software 
systems is particularly difficult. Not only must a suitable design representation first 
be obtained, but automatic analysis tools have to be developed to validate essential 
design decisions and their impact on the resulting software. In other words, a formal 
specification method based on a chosen representation at the design level of distrib
uted software systems is highly desirable. 

This paper first reviews various design methods for distributed software systems. 
A new approach to design specification based on the well known Petri nets model 
is then presented. Methods for design validation of distributed software systems are 
also discussed. 

*This work is currently supported by Fujitsu Anierica, Inc. under contract 
number 052-80136 
** Aoyama is with Fujitsu Limited in JAPAN and currently visiting University 
of lllinois at Chicago. 

477 





INTRODUCTION 

During the design phase, a computer system is normally speci
fied as a model. Based on its model specification, a system 
can be gradually implemented. If the specification is formal, 
meaning that automatic analyses can be performed to a satis
factory extent, certain design errors can be detected and cor
rected at the design stage and later implementation errors can 
be avoided. Greater software economy can thus be achieved. 1 

Specification of a computer system can be effectively used 
as a communication vehicle among all parties involved in the 
same development project, including both technical and non
technical personnel. Therefore, the system model should pro
vide a precise and complete description of the modeled system 
so that desirable analyses can be carried out earlier and easier. 
Moreover, the model should be flexible enough to facilitate 
different views at different levels by all parties developing the 
same system.2,3,4 

Distributed software systems, as opposed to conventional 
sequential software systems, become more and more popular. 
With the advent of fast advancing microprocessor technology 
as well as widely spread use of powerful workstations, soft
ware architects in various applications tend to adopt distrib
uted computing architecture to implement highly effective 
and efficient software as solutions to a wide spectrum of real
world problems. In parallel to the adoption of distributed 
architecture, the design of a system to realize such an architec
ture becomes highly sophisticated. 5 

A variety of design methods have been proposed for real
world applications exhibiting distributed properties. The se
lection criteria used to determine design methods for the 
underlying models depend on the nature of the world, the 
design support environment tailored to the chosen model, and 
the analysis tools available in a particular environment. 

This paper reviews two major classes of design methods. 
First, a number of representations based on the graph model 
are reviewed. Second, the one-dimensional specification lan
guage oriented design methods are surveyed. Pros and cons of 
different specification languages are discussed to address the 
suitability of applying them to distributed software design. 
The paper then proceeds to discuss design methodologies for 
distributed software systems from different perspectives per
taining to a number of distinguishable development parad
igms. Design approaches of a specific application, namely, the 
switching software, are scrutinized to examine and determine 
the generality and usefulness of these methods. 

A new design approach is then presented as a token of the 
new generation of design methods for distributed software 
systems. The approach integrates two forms of design repre
sentation: the graphical form and the language form. Advan
tages and applicability of this approach are then evaluated. 

Design Methods for Distributed Software Systems 479 

Finally, this paper addresses the design validation issue. In 
fact, design validation is very distinct, difficult, and important 
for distributed software systems. We point out future research 
directions in our conclusion. 

DESIGN METHODS FOR DISTRIBUTED 
SOFTWARE SYSTEMS 

Since the behavior of distributed software systems is very 
complicated, a desirable design method must be able to cap
ture such behavior completely and translate it faithfully into a 
specification. For that purpose, a number of methods have 
been proposed. In general, they can be classified into two 
major groups: graph based and language based. 

Graphical Approach 

A number of graphical modeling methods have been devel
oped.6 However, with the rapid advance of software technol
ogy, the architecture, requirements, and style of these graph
ical models have changed. Note that one of the original design 
representations is flow charts. The concept of structured pro
gramming introduces a number of standard structures into the 
topology of graphs. Meanwhile, hierarchical decomposition 
also has been playing a very important role in design mod
eling. Examples are SADT/ HIPO,8 R-Net of SREM,9 and 
various other graphical models. Another driving force sprang 
from real-time software such as process control systems, 
switching systems, and communication protocols. Such sys
tems require high performance and high reliability, hence 
precise descriptions of execution timing and process behavior 
are essential to modeling such systems. The State Transition 
Machine (STM) has been used widely for modeling real-time 
systems, especially switching systems. 10, 11 As a definite trend 
with the advancement of high-performance, systems are now 
evolving into (fully) distributed control. The introduction of 
distributed architecture requires significantly enhanced mod
eling capability due to the following reasons: 

1. Complex behaviors such as concurrency, non-determi
nancy and asynchronism. 

2. Needs of analytical capability, especially f<;>r real-time 
systems. 

As we mentioned before, to model distributed software 
systems graphically, a number of modeling methods have 
been proposed. They can be classified into two groups: 
control-flow model and data-flow model. Control-flow 
models include Petri Nets (PN) and some extended PN 
models. 12, 13, 14 The Data Flow Diagram (DFD)15 is an exam-



480 National Computer Conference, 1987 

pIe of the data-flow model. Since the original proposition 
by Petri in 1962, Petri nets have been the focus of many 
researchers because of not only their strong modeling cap
ability, but also their various analytical capabilities based on 
graph theory. Important characteristics of Petri nets are sum
marized below: 

1. Representation of concurrent execution of mUltiple 
processes. 

2. Representation of non-determinant and asynchronous 
executions. 

3. Modularity, that is, capability of various ways of decom
position and composition of multiple graphs. 

4. Various analytical capabilities of model structuredness 
and dynamics. 

However, Petri nets are a difficult tool to use to model 
systems involving timing requirements, data flow information, 
and stochastic information. Based on the generalized Petri 
nets, a number of extensions have been proposed as well as its 
subclasses. 13 The relationship among these models has been 
investigated. However, to describe the behavior of distributed 
software systems comprehensively, it is necessary to represent 
both control flow and data flow. Yau and Caglayan proposed 
Modified Petri Nets (MPN)16 which integrated Petri nets and 
a data flow representation. MPN supports hierarchical de
composition as well as reuse of software components. Since 
PN is an asynchronous network model, it does not provide a 
timing concept. Recall that Ramchandami introduced Timed 
Petri Net (TPN).17 TPN is further extended as Stochastic Petri 
Net (SPN) and both models are applied to performance evalu
ation of distributed systems. We extended the MPN model by 
using a timer mechanism and defining more concrete data 
flow information. Our new model is referred to as Extended 
Modified Petri Net (EMPN) hereafter. A recent survey re
vealed some formalization effort on graphical models as visual 
languages. 18,19 Moreover, the widely spread uses of graphical 
workstations make it easy to display graphical models and 
enhance the software development envi~onments a great deal. 

Language Approach 

A good specification language should meet the following 
requirements. 20 

1. What the system intends to do should be unambiguously 
described. 

2. The specification written in that language should be 
complete for implementation. 

3. Implementation errors should be precisely pinpointed 
based on the specification. 

Because distributed software systems are more complicated 
than sequential ones, a specification language for distributed 
software systems, in addition to these basic requirements, 
should have features to accommodate the complexity of such 
systems. These features include formal development, easy 
human comprehension, and levels of abstraction. 

Formal development refers to a set of well defined design 
processes to obtain the specification from informal and un
structured information. The Ina Jo specification language 
is an example as the formal specification language for the 
Formal Development Method (FDM).21 A specification lan
guage must be sufficiently precise so that a sequence of 
specification statements can be checked for consistency, non
redundancy, and completeness. This characteristic is normally 
in conflict with easy human comprehension. In fact, the dia
grammatic representation is one way to improve human com
prehension. As an example, in SREM, a graph representation 
(R-Net) is incorporated into the specifications to alleviate the 
problem. 9 

In addition to these two features, to provide formal devel
opment facilities (usually through implementation refine
ments or function refinements), a distributed software system 
specification language must support levels of abstraction. For 
example, Event-Base Specification language (EBS) considers 
the conceptual models of distributed software systems from 
different levels of abstraction.22 

Design Methodologies 

Much work has been done on actually designing software 
systems. However, the design methodology of real-time dis
tributed software is not well developed so far. 23,24 Designing 
such systems requires integrating more sophisticated tech
niques and procedures into the conventional" methodology. 
Key issues to be considered in a well integrated design meth
odology include: 

1. For real-time software, 
-rigorous timing design 
-performance design 
-quality design 

2. For distributed software, 
-partitioning 
-allocation 
-communication design 

3. For software productivity, 
-affirmity with modeling and testing methods 
-affirmity with software support and automation 

Due to space limitation, the authors concentrate on the de
sign methodology for telecommunications software systems, 
such as switching software and communication protocols, 
which widely adopt the real-time distributed architecture. 25, 26 

STM and its various extensions have been applied to the 
design of telecommunications software due to the fact that 
many telecommunications systems are actually finite state 
machines. 10 However, significant enhancements to the current 
STM based design techniques are necessary because STM 
provides very limited design capahi1ities for such systems. 27,28 

1. STM models force sequential thinking; concurrent 
computations are not expressed naturally. 

2. Certain computations, such as those involving a queue 
or stack of arbitrary length, cannot be completely speci
fied. 



3. The performance cannot be evaluated directly. 
4. The hierarchical structure or stepwise refinement are not 

supported naturally. Our model which will be discussed 
in the next section intends to provide some remedy to 
the limited specification power of most current design 
techniques especially for telecommunications software. 

A NEW APPROACH 

A basic model for distributed software systems is shown in 
Figure 1. An application world is normally divided into two 
sub-domains, namely, environment domain and system do
main. The environment consists of many ports. Ports are ab
stract data types which are the sources of triggering stimuli to 
a system and the sinks of responses from the system. Port can 
be global or local. Each kind of port can be further divided 
into two different types. Active ports can generate signals on 
their own demand, while passive ports never generate signals 
unless on the system's demand. A system is composed of 
views that are executed in the course of functional compo
nents. As far as the interface is concerned, there are two 
levels of communications among views and components. At 
the view level, different views use the procedure calls to com
municate. At the component level, components in different 
views use the message passing mechanism through ports for 
communication. 

The design methodology based on this basic model is shown 
in Figure 2, in which each transition between successive steps 
is detailed as follows: 

STEP 1 TO STEP 2: Each user's need is defined as a generic 
service. 

ENVIRONMENT 

APPLICATION WORLD 

c=J : Functional Component 

Figure 1-Basic model for distributed software systems 

Design Methods for Distributed Software Systems 481 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 

User Requirements 

Procedural Requirements 

Common States 

Common Functional 
Components 

Figure 2-Design methodology 

STEP 2 TO STEP 3: Based on procedural requirements, 
find common procedures among all generic services. We 
define these common procedures collectively as a service 
view. The criteria that we may use in defining service views 
are: 

1. number of processes 
2. process size 
3. hardware architecture 
4. etc. 

STEP 3 TO STEP 4: A functional component is the max
imal set of functions under the same state which includes 
system markings and an environment for each service view. 
STEP 4 TO STEP 5: Among all service views, find those 
common functional components, and define them as the 
kernel view. 

The basic model can be represented by an EMPN which 
includes the data information (signals), timing requirements 
(timer ports), and the hierarchic structure (views). The 
EMPN can be described by a logic oriented language to be 
discussed in the next section. 

EMPN DESCRIPTION LANGUAGE: EMPNDL 

Based on the EMPN, the EMPNDL is developed not only to 
extend the model but to provide certain analysis capabilities 
without a graphic editor. EMPNDL is the description lan
guage of the EMPN model with the basic system model in 
mind. For example, the structure of a component that is 



482 National Computer Conference, 1987 

responsible for message receiving and send back acknowl
edgement is shown as follows: 

Precondition: the component is enabled and receives mes
sage and check(message) = valid 
Postcondition: the component sends acknowledgement and 
enables nexccomponents 

In our model, a system interfaces with its environment by 
exchanging signals with the environment. For example, in a 
telephone switch, lifting the handset is a caller's signal to the 
system of the intention to dial a number. In response, the 
system sends a dial tone to the handset as a signal to the caller 
that dialing can now proceed. 

Just identifying signals exchanged between the system 
and its environment is insufficient in describing the interface 
completely. For example, a telephone switching system in
volves two parties in its environment, namely, the caller and 
the callee. The two parties can be represented as two ports 
through which signals enter or leave a system. 

By examining the nature of signals, two distinct signal types 
can be derived: impulse signals and level signals. An impulse 
signal is an infinitely short event, such as off-hook in the 
telephone switching system. An impulse signal can not only 
trigger system action but also carry data with it. For example, 
when the caller dials a number, the signal given to the switch 
is associated with a value, which is the number just dialed. On 
the other hand, a level signal represents a continuously mon
itored condition, such as the dial tone in the switching system, 
which lasts from the moment the caller goes off hook until 
the first digit of the number is dialed. A level signal may have 
several continuous conditions. As a real-world example, the 
colors of a traffic light signal have three levels: red, yellow, 
and green.29 

A signal can trigger a transition in the system. At some 
moment in time, the system is in a certain stable state, waiting 
for input. When the system receives a signal applicable to its 
current state, it performs a set of actions such as updating 
internal resources and sending messages to the environment. 
It then settles into another (not necessarily different) stable 
state, waiting for the next input. 

Sometimes system's behavior depends on whether an ex
pected input signal from the environment arrives in a finite 
period of time. Consider the following requirement: 

If the caller does not dial a number within 30 seconds, the 
switch shall send a howler tone to the caller. 

To express this kind of time-dependent system behavior, 
the model provides the timer mechanism. A timer is a port 
which interprets signals as operations and responds properly. 
A timer can be an alarm clock, with a fixed timing interval. It 
start running when it is explicitly started by the system. When 
the timer's interval expires, the timer issues an alarm. An 
alarm has the same effect as an impulse signal in triggering a 
transition in the system. For example, to impose the above 
timing constraint upon a telephone switch, we can have a 
timer port called digit-receiving-timer. The system starts the 
digit-receiving-timer with 30 seconds when an off-hook signal 

from a caller is detected. If the caller dials a number promptly 
enough, the system will cancel the digit-receiving-timer. Oth
erwise, the digit-receiving-timer raises an alarm and triggers 
the system to send a howler tone to the caller. 

In certain situations, system's behavior may depend on the 
history of previous signals. Consider the following behavior of 
a telephone switch: 

If the dialed number is inoperative, the user should receive 
a recorded message; if the dialed number is busy, the user 
should receive a busy tone. 

The status of a dialed number is not part of the behavior of 
the telephone switching system to be specified. But, the tele
phone switch's reaction to the status is and must be modeled. 

To handle this kind of hidden information, our model pro
vides a decision construct. A decision is associated with a 
finite set of results. For example, the decision to be made 
for checking on the status of the dialed number may have 
three results: inoperative, busy, available. Depending on the 
result of a decision, a certain transition in the system may be 
triggered. 

Our model provides the view mechanism to allow for the 
expression of the relationships among structural modules of a 
complex system. Systems in our model are specified mainly in 
terms of views. Each view is a subsystem that deals with a 
subset of the whole system's signals. For example, a telephone 
switching system can have views of plain old telephone service 
(POTS), call forwarding service (CFS) , automatic callback 
service (ACS). It is often the case that a specification is writ
ten by a team, rather than by a single author. The view mech
anism lends itself very well to this situation, because views are 
independent components and can be elaborated separately. 
However, the combined views present a complete picture of 
the whole system. In spirit, views resemble modules in pro
gramming methodology and subschema in database theory. 

DESIGN VALIDATION 

Distributed software systems are more difficult to analyze 
then conventional centralized software systems. Distributed 
systems are inherently concurrent, asynchronous and non
deterministic. 30 As an example, distributed switching systems 
can be verified by generating all reachable states and checking 
whether any of them is a nonprogressive state, such as dead
lock, overflow, and unspecified receipt. This technique is re
ferred to as state exploration. A major problem with state 
exploration is that it requires large execution time and stor
age. The problem is caused by the assumption that one needs 
to consider all possible progressive speeds for all parties con
tained in the distributed systems. 

An efficient variation of state exploration for distributed 
switching systems has been studied. 31-33 Briefly, in that study, 
the task of generating all reachable states is divided into N 
independent subtasks. In each subtask, only the states reach
able by forcing maximal progress for one party are generated. 
Since the N subtasks are completely independent and, in 
most instances, the time and storage requirements for each 



, subtask are fewer than those for the original task, the pro
posed method can save time and/or storage over conventional 
state exploration methods. Moreover, the method is also 
suitable for parallel processing. 

CONCLUSIONS 

This paper reviews several software design techniques with 
most of the discussion centering around distributed software 
systems which are inherently nondeterministic, hard to de
sign, and very difficult to analyze. 

A new model, EMPN, is presented for modeling distributed 
software systems. EMPN integrates representations of both 
control and data flow, and is extended primarily for real-time 
distributed software systems. The associated logic oriented 
language, EMPNDL, is also proposed for formal specifica
tion. For further research, there are three directions to be 
investigated. 

First, there are many analysis tools available for PN models. 
However, due to the complexity of distributed software sys
tems, the maximal progress technique should be utilized to 
reduce the complexity of analyzing the entire system. 

Second, since the EMPNDL is a logic oriented language, it 
is natural to use AI reasoning techniques to find inconsis
tency, incompleteness, and redundancy at the specification 
level. As a tradition, these flaws are normally detected by 
a state transition matrix which expresses the relationships 
between the stimuli and responses based upon compiler tech
niques. An evaluation is necessary to compare these two 
techniques. 

Finally, a testbed based on our new technique should be 
implemented to perform dynamic testing. Dynamic errors 
can thus be detected in this phase. 

REFERENCES 

1. Liskov, B. H. and V. Berzins. "An Appraisal of Program Specifications." 
Software Specification Techniques, edited by P. Wegner, Cambridge: MIT 
Press, 1979, pp. 276-301. 

2. Riddle, W. E., Wileden, J. c., Sayler, J. H., Segal, A. R. and Stavely, A. 
M. "Behavior Modeling During Software Design. IEEE Transactions on 
Software Engineering, SE-4 (1978) 3, pp. 283-292. 

3. Yau, S. S., C. C. Yang, and S. M. Shatz. "An Approach to Distributed 
Communicating System Software Design." IEEE Transactions on Software 
Engineering, SE-7 (1981) 4, pp. 427-436. 

4. Kleinrock, L. "Distributed Systems." Communications of the ACM, 28 
(1985) 11, pp. 1200-1213. 

5. Watson, R. W. "Distributed System Architecture Model." in B. W. 
Lampson, M. Paul, and H. J. Siegert (eds.) Distributed Systems: Architec
ture and Implementation, New York: Springer-Verlag, 1981, pp. 10-43. 

6. Alford, M. W., J. P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P. 
Mullery, and F. B. Schneider. Distributed Systems: Methods and Tools for 
Specification, New York: Springer-Verlag, 1985. 

7. Ross, D. "Structured Analysis(SA): A Language for Communicating 
Ideas." IEEE Transactions on Software Engineering, SE-3 (1977) 1, 
pp.16-34. 

8. Stay, J. F. "HIPO and Integrated Program Design." IBM Systems Journal, 
15 (1976) 2, pp. 143-154. 

Design Methods for Distributed Software Systems 483 

9. Alford, M. W. "A Requirements Engineering Methodology for Real-Time 
Processing Requirements." IEEE Transactions on Software Engineering, 
SE-3 (1977) 1, pp. 66-79. 

10. Kawashima H., K. Futami, and S. Kano. "Functional Specification of Call 
Processing by State Transition Diagram." IEEE Transactions on Communi
cation Technology, COM-19(1971)5, pp. 581-587. 

11. CCITT, Z101-104: Functional Specification and Description Language, 
Geneva: CCITT, 1980. 

12. Agerwala T. "Putting Petri Nets to Work." IEEE Computer, (1979) 12, 
pp.85-94. 

13. Peterson, J. L. Petri Net Theory and the Modeling of Systems, Englewood 
Cliffs: Prentice-Hall, 1981. 

14. Murata T. "Modeling and Analysis of Concurrent Systems. in C. R. Vick 
and C. V. Ramamoorthy (eds.), Handbook of Software Engineering, New 
York: Van Nostrand Reinhold, 1983, pp. 39-63. 

15. Cha.tnbers, F. R; D. A Duce; and G, p, Jones (eds.), Distributed Com
puting, Orlando: Academic Press, 1984. 

16. Yau, S. S. and M. U. Caglayan. "Distributed Software System Design 
Representation Using Modified Petri Nets." IEEE Transactions on Soft
ware Engineering, SE-9 (1986) 6, pp. 733-745. 

17. Ramchandani, C. "Analysis of Asynchronous Concurrent Systems by Petri 
Nets." Ph.D. dissertation, Department of Electrical Engineering, Cam
bridge: Massachusetts Institute of Technology, July, 1973. Also Technical 
Report 120, Project MAC. Cambridge: Massachusetts Institute of Tech
nology, February, 1974. 

18. Raeder G. "A Survey of Current Graphical Programming Techniques." 
IEEE Computer 18 (1985) 8, pp. 11-25. 

19. Chang, S. K., "Visual Languages: A Tutorial and Survey," IEEE Software 
4 (1987) 1, pp. 29-39. 

20. Levene, A. A. and G. P. Mullery. "An Investigation of Requirement 
Specification Languages: Theory and Practice." IEEE Computer, May, 
1982, pp. 50-59. 

21. Berry, D. M. "Towards a Formal Basis for the Formal Development 
Method and the Ina Jo Specification Language." IEEE Transactions on 
Software Engineering, SE-13 (1987) 2, pp. 184-201. 

22. Chen, B. and R. T. Yeh. "Formal Specification and Verification of Distrib
uted Systems." IEEE Transactions on Software Engineering, SE-9 (1983) 6, 
pp. 710-722. 

23. Yau, S. S. and J. J.-P. Tsai. "A survey of Software Design Techniques." 
IEEE Transactions on Software Engineering, SE-12 (1986) 6, pp. 713-721. 

24. Filman, R E. and D. P. Friedman. Coordinated Computing: Tools and 
Techniques for Distributed Software, New York: McGraw-Hill, 1984. 

25. Anderson, L. G., J. R. Gibbons, Y. W. Han, and E. C. Lee. "5ESS 
Switching System Software Architecture." Proceedings of the International 
Computer Symposium 1984, December 12-14, 1985, Taipei, pp. 517-523. 

26. Ogawa T., S. Kamioka, Y. Ogawa, and T. Koyano. "A New Generation 
PBX for Integrated Office Services." to appear in Proceedings of the Inter
national Switching Symposium 1987, March 15-20, 1987, Phoenix. 

27. Chandrasekharan, M., B. Dasarathy,and Z. Kishimoto. "Requirements
Based Testing of Real-Time Systems: Modeling for Testability." IEEE 
Transactions on Computer, April, 1985, pp. 71-80. 

28. Boute, R. T. "Towards System Specification Languages." Proceedings of 
the 4th International Conference on Software Engineering for Telecommuni
cation Switching Systems, July 20-24, 1981, Warwick, pp. 31-37. 

29. Wang, Y. "A Distributed Specification Model and its Prototyping." Pro
ceedings of COMPSAC 1986, October 8-10, 1986, Chicago, pp. 130-137. 

30. Eckhouse, R. H. and J. A. Stankovic, "Issues in Distributed Processing
An Overview of Two Workshops," IEEE Computer, 11 (1978) 1, pp. 22-26. 

31. Chang, C. K. and T. M. Jiang. "A Design Method for Recoverable Dis
tributed Communicating Systems." Proceedings of COMPSAC 1986, 
October 8-10, 1986, Chicago, pp. 427-431. 

32. West, C. H. "General Technique for Communications Protocol Vali
dation," IBM Journal of Research and Developments, 22 (1978) 4, 
pp. 394-404. 

33. Yu, Y. T. and M. G. Gouda, "Protocol Validation by Maximal Progress 
State Exploration." IEEE Transactions on Communications, COM-32 
(1984) 1, pp. 94-97. 





An analysis of the roll-back and blocking operations of three 
concurrency control mechanisms 

by VIJAY KUMAR 
University of Missouri at Kansas City 
Kansas City, Missouri 

ABSTRACT 

Transactions in database systems are run concurrently to achieve optimal resource 
utilization. Concurrent execution of transactions is managed by concurrency control 
mechanisms for maintaining the database consistency. These mechanisms use activ
ities like transaction roll-backs and transaction blockings for serializing the concur
rent execution, and they have significant effect on the performance of database 
systems; however, their relationship with throughput, workload, and other aspects 
of the system is unclear. Further it is not clear how the read: write ratio affects the 
performance. This paper attempts to show the effect of roll-back, blocking, and 
read: write ratio on the performance of database systems under several different 
types of workloads. We have used detailed and realistic simulation models to 
conduct our investigation; and, unlike other performance studies, we have avoided 
simplifying assumptions as far as possible to include most of the attributes of real 
database systems. In this study we show that neither a roll-back nor a blocking 
scheme is consistently better for all types of workloads; they are rather workload 
sensitive. We also show that it is not the write-only transactions but the read-only 
transactions that need special treatment for efficient processing. We report that 
transaction wait-time does not have significant effect on the throughput and the 
effect of read: write ratio is very short lived. We have introduced a new term 
Domain of Efficiency (DoE) to explain the behavior of these mechanisms. 

485 





An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 487 

INTRODUCTION 

Recent performance studies of concurrency control mech
anisms (CCMS)I,2,3 have shown that mechanisms based on 
two-phase strategy outperform others. However, CCMs based 
on two-phase locking suffer with the problem of dead
lock.3,4,5,6 A deadlock may involve several transactions and 
must be detected and resolved. A large number of algorithms 
are available for deadlock detection7,8,9,10,11,12,13,14 and for 
deadlock prevention. 15,16,17,18 Resolution of deadlocks is usu
ally done either by rolling-back or by blocking concurrent 
transactions. It is not clear which method is suitable for what 
kind of environment or how these activities (rolling-back and 
blocking) affect the system behavior. In this paper, we study 
in detail the effect of transaction blockings and transaction 
roll-backs on the performance of database systems. Although 
a great deal of work has been done in this area, we feel that 
performance models used in these works do not incorporate 
some important attributes of a real database system. We try to 
bridge this gap with our detailed study. 

We begin our study by constructing detailed simulation 
models which incorporate most of the attributes of a real 
database system such as transaction failure and database re
covery, deadlock detection and its resolution. We define the 
common terms used here, describe the CCMs studied in this 
paper, and provide their comparative study. Next we review 
previous work done in this area as well as our approach. Next 
we explain model parameters and the construction of trans
actions used in our work. We describe simulation models, and 
the statistical approach taken for data collection and their 
validation. Finally, we discuss the simulation results and con
clude our findings. 

TERMS 

In this section we define the common terms used in this paper. 

Entity: We consider a database as a set of entities of fixed 
size. An entity is a lockable unit. 

Read: A transaction reads an entity. The contents of the 
entity is not changed. It is an atomic action. 

Write: A transaction after reading an entity modifies its 
contents. It is an atomic action in the sense that the read and 
modify operations are not separable. 

Conflict: Operations of any two transactions Tl and T2 
accessing an entity conflicts if one of the following conditions 
is satisfied: 

1. Tl is performing a read (write) operation and T2 wants 
to perform a write (read) operation. This is read-write (RW) 
or write-read (WR) conflict. 

2. Tl is performing a write operation and T2 wants to 
perform a write operation. This is a write-write (WW) con
flict. 

Blocking: The execution of a transaction is suspended 
(blocked) temporarily upon encountering a conflict. 

Restart: A blocked transaction is rescheduled for execution. 
The point of restart of a blocked transaction depends upon the 
CCM. 

Roll-Back: A process in which all the write actions of a 
transaction are undone. There are two situations under which 
a transaction is rolled-back: 

1. a blocked transaction is rolled-back. 
2. an aborted transaction. 
Commit: A transaction is said to be committed if and only 

if it has unlocked all its locked entities. 
Degree of Concurrency (DoC): Total number of active 

transactions in the system at any instant. For two-phase lock
ing, an active transaction is a transaction with at least one of 
its lock requests granted, and which is in a state ready to be 
scheduled for execution. (The term degree of multi
programming has also been used in literatures for DoC.) 

Degree of Cycle: Total number of transactions involved in a 
deadlock. 

TRANSACTION PROCESSING AND CONCURRENCY 
CONTROL MECHANISMS 

We describe here in detail the mechanisms of the CCMs we 
have studied. We analyze their behavior to define the domain 
of our investigation and we use this domain to perform the 
simulation experiment. The entire processing of transactions 
can be divided into the following three phases: 

Locking Phase-The scheduled transactions lock the re
quired entities. Locks can be applied into two different 
modes: the share mode (read lock) and the exclusive mode 
(write lock). 

Execution Phase-The transaction processes the locked en
tities. 

Release Phase-The transaction unlocks the locked enti
ties. 

Execution of these phases by concurrent transactions de
pends on the CCM used. Next we explain, in terms of these 
three phases, how concurrent transactions are processed by 
the three concurrency control mechanisms we investigated in 
this work. 



488 National Computer Conference, 1987 

Incremental Locking and Simultaneous Release 

In this mechanism the first two phases (i.e., locking and 
execution) are interleaved and the end of the execution phase 
initiates the release phase. Entities are locked only when de
manded by the execution phase. Consequently, only those 
entities are locked which are actually processed by the trans
action, although the transaction might have referenced many 
more entities in its code. 

A conflict is resolved by blocking the transaction which is 
trying to lock the entity. A blocked transaction retains all the 
locks it obtained before getting blocked; it is unblocked and 
resumes its execution when the entity it required becomes 
free. We also refer to this activity as transaction restart. Re
solving conflicts by blocking a transaction may create dead
locks which must be resolved by rolling-back a transaction. A 
rolled-back transaction may be rerun or may be removed from 
the system. At the end of the execution phase all the entities 
locked by the transaction are released in one atomic action 
(simultaneously). In this report we refer to this mechanism as 
D1 protocol. 

Wait-Die (WD) and Wound-Wait (WW) Mechanisms 

Rosencrantz and others19 have discussed Wait-Die and 
Wound-Wait mechanisms which can be described as follows: 

Let 11 and 12 be two transactions and (11 -ts) and (12 -ts) 
their associated timestamps. Suppose that 11 makes a lock 
request (requester) for an entity E currently locked by 12 
(holder), thus generating a conflict over E. 

Such conflict is resolved by these techniques as follows: 

a. The Wait-Die System (WE Protocol) 
If (11 -ts) < (12 -ts) then wait else die. If the requester's 
timestamp is smaller, then it waits for the holder
otherwise, the requester dies (roll-backs). 

b. The Wound-Wait System (WW Protocol) 
If (11 -ts) < (12 -ts) then wound else wait. If the re
quester's timestamp is smaller, then wound the holder
otherwise, wait for the holder (11 wounds 12) to release 
the entity. 

Comparison of Protocols 

In this section we hypothesize the expected behavior of the 
three mechanisms and later we verify the hypotheses. As men
tioned earlier, the strict two-phase (D1) locking resolves con
flicts by blocking transactions. Blocking transactions does two 
things: increases transaction wait-time (amount of time trans
action remains blocked) and creates the possibility of dead
locks. A blocked transaction reduces the availability of enti
ties for other transactions; the higher the number of blockings 
the lower the availability of entities. Reduction in the avail
ability of entities would in turn increase transaction blockings 
which might increase the probability of deadlock occurrence. 
This increase, however, remains very low and becomes signifi-

cant only at very high transaction arrival rates. 20 An increase 
in deadlock increases transaction roll-backs. Thus we see that 
these activities are interdependent and a change in one affects 
in some way all the other activities. 

It seems that if transaction wait-time is reduced, some im
provements in system performance may be achieved. One of 
the ways this can be done is by rolling-back transactions in
stead of blocking them. This approach is taken in WD and 
WW, which assume that blocking a transaction is likely to 
create a deadlock and hence they roll-back the transaction 
when a conflict arises. On one hand this policy increases the 
availability of entities and minimizes transaction wait-time, 
but on the other hand it consumes, comparatively, more CPU 
and 10 resources and also rolls-back transactions which may 
never cause a deadlock. We refer to this type of roll-back as 
redundant roll-backs. 

It has been shown20 that even at very high arrival rates the 
degree of cycle (number of transactions in a cycle) remains 
low. In this situation it would seem that redundant roll-backs 
are expensive and might get worse for larger transactions. 
Another important factor which should be considered is the 
size of roll-back (number of entities to be restored in a roll
back). If the average roll-back size is small, then the process 
would not be expensive. Blocking a transaction which is hold
ing one entity for some length of time is certainly more ex
pensive than rolling it back. The latter is even less expensive 
if the entity happens to be in the main memory. 

Intuitively it seems that if the average transaction size is 
large then the average roll-back size may be large and may 
become expensive. We aim to verify if there is any relation
ship between the average transaction size and the size of roll
back. We aim to compute the Domain of Efficiency (DoE) of 
these mechanisms. We define the DoE of a CCM as the set of 
ranges of those parameter values inside which there exists a 
linear relationship among these parameters. For example, we 
might discover that in a CCM up to an average transaction size 
of N, the average roll-back size increases linearly. When the 
average transaction size becomes larger than N, this relation
ship may become unpredictable. The relationship among 
other parameters may be observed in a similar way to define 
the DoE of a CCM. We aim to establish the set of parameters 
and their acceptable ranges. 

In D1 a roll-back is not instantaneous. It can take place only 
when the deadlock is detected and resolved. There are several 
criteria for selecting a transaction to be rolled-back to resolve 
a deadlock;21 we have selected the youngest transaction for 
this purpose. A blocked transaction resumes its execution 
when other transactions are rolled-back or committed. Since 
these operations are not instantaneous in D 1, transaction 
wait-time will keep on increasing. In contrast, in WD and WW 
a roll-back may be instantaneous, and blocked transactions do 
not wait longer than they do in Dl. In WW the number of 
blocking is much higher and these blocked (waiting) trans
actions may get wounded. In WD mechanism, a blocked 
transaction never dies: either a transaction's waiting-time is 
increased or, in the case of its death, its recovery time is 
increased but never both. We aim to verify these points in this 
work. 



An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 489 

REVIEW OF PREVIOUS WORK 

The database literature is full of performance reports. Each 
report emphasizes certain aspects of some mechanisms. In 
Kiessling and Landherr22 the effect of roll-backs and trans
action blockings have been looked into in a limited way. They 
do not take into account the effect of deadlocks on throughput 
and they assume that the entire database is divided into 100 
granules, which is not very realistic. Also, a performance 
comparison of timestamping and strict two-phase locking has 
been done.23 They report that when average transaction size 
is small (4-8 entities), resolving conflicts by rolling-back is 
better than blocking transactions and for larger transactions 
rolling-back becomes too expensive. The report contains few 
details about the effect of varying transaction arrival rates and 
different types of workloads. Tay, Suri, and Goodman24

,25 

report that in all the situations, the no-waiting case performs 
better than the waiting case. Their studies show that trans
action blockings have a significant detrimental effect on the 
system throughput and concludes that locking with no waiting 
seems to be a practical approach, if the cost of transaction 
restarts is brought down to a minimum. They do not say how 
this can be achieved. Ries and Stonebraker26 reported that the 
optimistic method (conflicts are resolved by rolling-back 
transactions) always performed better. A possible reason for 
this result could be that they assumed the roll-back cost to be 
negligible. Further, a detailed study of deadlock has been 
done29 in which the authors have basically looked at the effect 
of transaction blocking and restarts on system performance 
and tried to find a deadlock treatment technique which is 
consistently better. They report that there is no such deadlock 
treatment strategy that performs consistently better and the 
performance of a strategy very much depends on the type of 
workload. They found that in a situation in which resources 
are fairly heavily utilized, continuous deadlock detection is 
preferable, but in Kumar20 it is reported that even at high 
transaction arrival rates deadlock occurrence is very low and 
a continuous deadlock detection does have some effect on the 
performance. 

Our Approach 

Our model has its origin in the model of Ries, 28 however, we 
have avoided simplifying assumptions as far as possible to 
simulate a real system as precisely as possible. In almost all 
the work we have reviewed, no one has included transaction 
failure and they have assumed that the 10 and CPU require
ments of transactions depend on their size. Also, in some 
reports they have simulated deadlocks, transaction blockings, 
and restarts simply by introducing estimated delays. Most of 
these works have used only one type of workload to drive their 
simulators except one3 in which three different types of work
loads have been simulated. 

It can be argued convincingly that these simplifying assump
tions do affect the simulation, and the results so obtained may 
fail to explain the behavior of CCMs correctly. In our in
vestigation we have included most of the attributes of a real 

system to study the behavior of these CCMs precisely. For this 
reason we feel that a direct comparison of our work with 
others would not be very meaningful. 

We have studied the performance of Dl, WD and WW 
under strictly identical environments. We selected Dl proto
col to avoid cascade roll-backs and the same locking policy 
(incremental locking) as Dl was used in WD and WW mech
anisms for a meaningful comparison of transaction roll-back 
and blocking. We have coded the deadlock detection and 
resolution, database recovery, transaction blocking, and 
transaction roll-back algorithms as they would exist in a real 
database system. In this respect our system, to a large extent, 
represents a real database system, On this basis we claim that 
our results may be more reliable and informative than the 
results obtained in other reports. 

The assumptions we have made to build our models follow: 

1. There is one 10 processor and one CPU. 
2. Transaction 10 requirements are partially and trans

action CPU requirements are totally independent of 
their size. This means that the probability that a large 
transaction would use more 10 than a small transaction 
is high, and two same size transactions may not use the 
same amount of 10. 

3. The CPU resource is shared between locking and pro
cessing activities. 

4. Recovery operation is required in the case of transaction 
failure and in deadlock resolution, and has been given 
the highest priority (i.e., a transaction to be rolled-back 
goes to the top of processing queues and is processed in 
the next event) #34. 

5. Our models are open-ended, i.e., a set of transactions 
does not cycle in the system for repeated execution. Also 
a rolled-back transaction is not rescheduled. We used 
open-ended models to study the worst case behavior of 
the CCMs we tested. 

6. Transaction failure is unpredictable. A transaction can 
be aborted by the user, it can fail due to disk fault or due 
to some other system problems. In [32] it is reported that 
transactions failures are not frequent and the failure 
percentage lies usually between 2-3%, so we assumed 
that 2% of transactions would fail in a simulation run. 

7. Lock table always resides in the main memory. 

MODEL PARAMETERS 

The system parameters for our models are: 

1. 10 processing time (time taken by 10 processor to trans
fer an entity from the disk) 

2. CPU processing time (time taken by the CPU to process 
an entity) 

3. CPU locking time (time taken by the CPU to lock an 
entity) 

4. CPU recovery time (time taken by the CPU to restore 
the last consistent state of an entity) 



490 National Computer Conference, 1987 

5. Node check time (time taken by the CPU to check one 
node in a wait-for graph) 

6. Deadlock detection cost (time taken by the CPU to de
tect a deadlock) 

7. Cycle detection frequency (defines after how many 
transaction blockings the deadlock detection is per
formed) 

Input Parameter 

To generate the three different transaction size mixes we 
have used the approach taken in Ries and Stonebraker:28 

1. All transactions are roughly the same size. This trans
action mix is generated by uniform distribution. 

2. About 35-40 percent of transactions are large and the 
rest are small (accessing about 25-30 percent of average 
transaction size). This transaction mix is generated by 
exponential distribution. 

3. About 95-97 percent of transactions are very small (ac
cessing about 3-4 percent of the average transaction 
size) and the rest are very large (accessing maximum 
number of entities). This transaction mix is generated by 
hyper-exponential distribution (it should be noted that 
the exponential distribution is a special case of hyper
exponential distribution). 

We have assumed that most of the real transaction proces
sing environment would fall into the defined domain. We do 
not claim that these transaction mixes completely represent 
the real transaction processing environment; however, they 
have some flavor of such an environment. 

Workload Parameters 

1. Total number of transactions to be processed. 
2. Database size. 
3. Read: Write ratio. We define the read: write ratio of a 

transaction as the ratio of the number of read actions and 
the number of write actions. Under this scenario, if a 
transaction size is 30 and its read: write ratio is 20: 10, 
then the transaction will perform 20 reads and 10 writes. 
The selection of entities for read and write operations 
are done randomly under a uniform distribution. Thus 
any entity out of 30 entities is equally likely to be se
lected for a read or write operation. To study the effect 
of this ratio, we start our simulator with read-only trans
actions (read: write ratio is m : 0, where m is transaction 
size and it also indicates the number of read operations 
in a transaction). We collect all the statistics for this run. 
The same set of transactions are then run, each with n 
number of ,vrite !ecks, such that the read: '.vrite ratio is 
m - n : n, where n = 1,2,3, ... ,m, and statistics are 
collected for all the runs. When m = n then all trans
actions of the set become write-only transactions. 

4. Percentage of transaction failure. We have modeled this 
kind of failure by parameterizing the failure percentage. 
A required failure percentage can be supplied and the 

system randomly selects so many transactions (victims) 
which will fail during execution. The failure points of 
these victims are selected randomly and represented in 
terms of sub-transactions which would be processed suc
cessfully before the transaction fails. For example, if the 
total number of sub-transactions in a transaction is 10, 
then the failure point may be any number between 1 and 
10. In this case the transaction will fail after processing 
so many sub-transactions and will then be scheduled for 
roll-back (recovery). 

Output Parameters 

1. Average number of transaction restarts. Transaction re
start means the resumption of the execution of blocked 
transactions. A blocking point may be anywhere in the 
transaction (i.e., a transaction may get blocked at its 
first lock request or it may get blocked after occupying 
some locks). 

2. Degree of cycle. 
3. Throughput. 
4. Average response time. 
5. Average Recovery Time. 
6. Degree of Concurrency (DoC). 
7. Average number of deadlocks. 
8. Average transaction roll-back size. 
9. Average transaction wait-time. 

10. Average wait-time of wounded/dead transactions. 

CONSTRUCTION AND SCHEDULING 
OF TRANSACTIONS 

A transaction for our simulation is viewed as an ordered set of 
several sub-transactions, each of which holds a certain num
ber of entities as shown below: 

where 
T = parent transaction, m = total number of entities re

quired by T, 
t1 , t2 , ... , tn = sub-transactions. en = number of entities re-

quired bY!n, and 

m = Lei 

During the locking and execution phases of T, t1 locks e1 
entities and processes them, then t2 locks e2 entities and pro
cesses them, and so on. When tn has successfully locked and 
processed en entities, m entities are released in one atomic 
action. 

SIMULA.TION ! .... 10DELS AND EXECUTION OF 
TRANSACTIONS 

The simulation models are shown in Figures 1 and 2. The 
dotted lines represent the use of CPU and 10 resources by the 
related activities. Thej10w of transaction (execution) through 
it is as follows: 



An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 491 

Figure 1-Simulation model of D1 protocol 

BlockE;ld T'"1: 
~ T~ra-n-sa-c~tio-n-s---------I-------~ 

L--J To be roiied-Back 

N 

Figure 2-Simulation model of WD and WW protocols 

1. A transaction arrives (poisson arrival) and joins the 
pending queue (PQ). 

2. A transaction is picked up from the top of PQ, the total 
number of entities required by this transaction is calcu
lated, and its sub-transactions are created by a random 
process. Another process randomly distributes the total 
entities of this transaction among its sub-transactions. A 
FIFO is used in processing the PQ. 

3. The first/next sub-transaction of the parent transaction 
requests the required locks one at a time. 

4. If any of the locks of that sub-transaction is denied, then, 
depending upon the CCM being simulated, a proper 
action (roll-back or blocking) is taken to resolve the 
conflict. A blocked transaction goes to blocked trans
action queue (BTQ). In the case of Dl, a deadlock 
detection is initiated after every conflict or after a pre
specified number (can be specified via a parameter) of 
transactions are blocked. If a deadlock is found, then the 
cycle is broken by rolling-back a transaction from the 
cycle. Several transaction selection criteria can be speci
fied by a parameter; we selected the youngest transac-

tion for this purpose. As mentioned earlier, a roll-back 
process is given the highest priority, so such a trans
action is put at the top of IOQ and is processed before 
all those transactions which joined IOQ before it. 

5. After a successful locking phase, a transaction goes 
through a random victim selection process. The parame
ters of this selection process are set so that it achieves a 
2% transaction failure. A transaction goes through this 
process only once. 

6. 10 request of a sub-transaction is processed. 
7. CPU request of a sub-transaction is processed. 
8. If more sub-transactions of a parent transaction are left 

to be processed, then the parent transaction is moved to 
the bottom of PQ. 

9. At the end of processing all the sub-transactions, the 
parent transaction is committed and all BTQ transaction 
are moved to PQ and resume their normal processing. 

Simulation Parameters Values 

All three simulators have been tested with the following 
parameter settings. One simulation time unit may be inter
preted as one millisecond. 

Transaction arrival rate range: 0.5-20 transactions/second. 
Read: write ratio range: m - n : n 

(n = 0, 1,2, ... ,m). 
Victim selection parameter: set to give 2% transaction 

failure. 
Database size: 3000 entities. 
(We selected this value after running our simulator with 

several different values. In the case of very large database size 
(9000-20000) and with uniform entity access probability the 
number of conflicts was too low to observe any difference in 
the performance of these CCMs. They gave nearly similar 
performance results.) 

CPU processing time: 2.50 time unit/entity. 
CPU locking time: 1.05 time unit/entity. 
CPU recovery time: 3.55 time unit/entity. 
Deadlock detection cost: 1.05 time unit. 
fO processing time: 25.15 time unit/entity. 
Cycle detection frequency: set to perform after 1, 10 and 15 

conflicts. 

The parameter values were chosen so as to be able to sim
ulate from lightly loaded system (one or less active transaction 
in the system) to heavily loaded system (more than25 active 
transactions in the system). Using the rule of thumb proposed 
in Tay, Goodman and Suri27 we expect our system to start 
thrashing at heavy workloads, which in our case is likely to 
occur when DoC is between 25 and 30. 

The Statistical Approach 

We describe in this section the statistical approach we took 
to discriminate between throughput differences owing simply 
to statistical variations and those actually owing to algorithm 
performance characteristics. 



492 National Computer Conference, 1987 

Several simulation analysis techniques are available (a sur
vey of these techniques may be found in31

,32,33). We selected 
the method of batch means from the options of batch means, 
regenerative method and the independent replications. In our 
test runs we found that following initial set-up, an idle state, 
where all transactions input sources (terminals) are in their 
stagger delay does not occur with sufficient frequency to allow 
the use of regenerative method. The batch means has the 
advantage over independent replication that initial transients 
do not bias each of the throughput observations.32 From the 
implementation view point, the batch means method is sim
pler than the method of replication since in the latter the 
simulator has a garbage collect and reinitialize simulation and 
the data structures between the observation periods. 

Under the selected method (batch means) a simulation run 
is divided into a set of batches. Each batch is a fixed simu
lation time-units long and each such batch provides one 
throughput observation. All individual throughput observa
tions are averaged to estimate the overall throughput. Stans
dard techniques with the assumption that the throughput ob
servations from the batches are independent and indentically 
distributed32 are used to compute the confidence intervals. In 
our simulation run we used the following values of batch-num 
and batch-time: 

BatclUlUm = 20; BatclLtime = 50000; Total simulation 
time units = 20 x 50000 

RESULTS AND DISCUSSION 

We present the results of only two types of transaction size 
distributions: uniform and hyper-exponential. The results of 
exponential distribution follow a similar pattern as the uni
form distribution except they have higher values of output 
parameters. We have taken the liberty of mentioning the re
sults of exponential distribution without providing graphs for 
them. 

Arrival Rate Versus Deaths, Restarts and Wounds 

The graphs in Figures 3 and 4 show the relationship be
tween average transaction arrival rate and number of deaths 
(WD), number of transactions wounded (WW) and the num
ber of transaction restarts (D1). Figure 5 shows the relation
ship between the arrival rate and transaction restarts for all 
the three mechanisms. 

The number of restarts in D1 increases comparatively rap
idly with arrival rate. In the hyper-exponential distribution 

. (Figure 4) the increase is even sharper. At lower arrival rates 
the number of restarts in all the CCMs is nearly the same and 
it widens after an arrival rate of 12 transactions per second on 
the averag~ A cOtllpari~on of n1 and WW mech:misms indi
cates that in WW only the younger transactions are blocked to 
resolve conflict, since the younger requesters never cause 
deadlocks to occur. At higher arrival rates D1 suffers with 
deadlock occurrences which increase the transaction block
ings and WW with wounded transactions which reduce the 
number of such blockings. The situation in WD is just the 

'1
w ow 

Transaction Size Distribution: Uniform. 

01,__ j wo,_ 
~:~ * 

,2 W 

0.006 .010 .015 .020 

Av. Arrival Rate (Log Scale) 

Figure 3 

.9 

Av. Arrival Rate (Log Scale) 

Figure 4 

opposite; all younger transactions are rolled-back to resolve 
conflicts and consequently the number of restarts remains 
quite low even at higher arrival rates. A low number of re
starts is bound to increase the number of roll-backs (deaths) 
and that is shown to happen (Figures 3, 4, and 5). The number 
of restarts is the highest in D1 and the lowest in WD, and the 
number of roll-backs is the highest in WD. 



An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 493 

0'.006 

Transaction Size Distribution: 

Uniform_ 
Hyper-Exponential _ 

D1 _________ 
WD __ 

WW ---6-

500W (Write-only Transactions. Hyper-Exp) 
30W (Write-only Transactions. Uniform) 

Av. Arrival Rate (Log Scale) 

Figure 5 

Transaction Wait-Time and Restarts 

500 W (HI 

00 W (HI 

To evaluate the effect of restarts we look at the average time 
a transaction has to wait (transaction wait-time) for the re
quired entity to become available. As stated earlier, one of 
the aims of CCMs is to minimize the wait-time. Figure 6 shows 
the relationship between average transaction wait-time and 
arrival rate. At very low arrival rates there is no significant 
difference in this parameter value for these CCMs. The differ
ence between Dl and the other two mechanisms widens after 
the arrival rate of 11 transactions per second on the average. 
One noticeable result in Figure 6 is the wait-time for read-only 
transactions under these CCMs. Under WD and WW, trans
actions with 0 or 2 write locks wait longer than transactions 
with higher values of write locks. 

400 
30 W 

10 W 
Transaction Size Distribution: Uniform 

WO. WWI 

lOL.,....l _-------'---::-;-::--_--'-:-::' __ ------:-:-:--__ 

.006 .010 .015 .020 

Av. Arrival Rate (Log Scale) 

Figure 6 

Read-only transactions experience wait only in 10 and CPU 
queues. Every transaction after lock requests joins 10 queue 
and waits there for its turn. How long a transaction would wait 
in 10 queue depends totally on the efficiency of 10 processor. 
In Dl, as the number of write locks increases so does the 
number restarts, and a transaction may experience wait at 
three places: in blocked queue, in 10 queue, and in CPU 
queue. The situation is different in WD and WW mechanisms. 
As the number of write locks increases, so does the number 
of conflicts. The increase in the number of conflicts increases 
transaction deaths or the number of wounded transactions 
where some transactions would never reach 10 queue, and 
these do not biock the 10 activity of other transactions. To 
verify this unexpected result we measured the average 
waiting-time experienced only by successfully completed 
transactions and found a further reduction in the waiting
time. We also looked at the waiting-time experienced by 
wounded and dead transactions (see Figure 7). As expected, 
on the average a wounded transaction experiences much 
higher waiting-time than a dead transaction, simply because a 
blocked transaction in WW is likely to get wounded. This 
implies that for lower values of the read: write ratio (higher 
number of write locks in a transaction) WD and WW mech
anisms minimize transaction waiting-time, but transaction 
waiting-time increases as the value of this ratio increases 
(higher number of read locks). 

Figure 7 shows the relationship between the arrival rate and 
average transaction wait-time of only wounded/dead trans
actions. The wait-time is higher in WW than it is in WD, which 
is expected since in WW a higher number of transactions are 
blocked than in WD (see Figure 4). A higher number of, 
restarts in WD keeps the transaction wait-time to a minimum. 

Since transaction restarts increase wait-time, and trans
action roll-backs reduce this time, we next look at the average 
transaction roll-back size. Intuitively, if this size is large then 
transaction roll-backs would gradually become expensive as 
the average transaction size increases. 

c 
o 

~ 200 

c 

'" ~ ... 
'" ~ 
'" c 
~ 
o-s: ~ 

"'''' 
'" U ~<Il 

" '" ,,",0 
0..0 

100 

50 

0.006 

Transaction Size Distribution: Uniform. 

WO: ----&-WW: ___ 

.0lO .015 

Av. Arrival Rate (Log Scale) 

Figure 7 

30 W 
16 W 

4 W 

30 W 

16 W 

4 W 



494 National Computer Conference, 1987 

Arrival Rate and Roll-Back Size 

As mentioned earlier, average roll-back size is the number 
of entities required to be restored to get the last consistent 
state of the database. Figures 8 and 9 show the relationship 
between the arrival rate and average roll-back size. In WD 
and WW the average roll-back size decreases with arrival rate. 
At higher arrival rates, on the average, fewer number of enti
ties are restored because at lower arrival rates a transaction 
manages to lock more number of entities before it conflicts 
with other transactions. The probability of conflict increases 
with the arrival rate, consequently, transactions begin to con
flict with other transactions sooner and the average roll-back 
size begins to shrink. 

In the hyper-exponential distribution (Figure 9), the region 
of higher roll-back size for the WW mechanism begins from 
the arrival rate of 10 transactions per second on the average. 
This size begins to decline slowly after the arrival rate of 18 
tansactions per second on the average. The situation is slightly 

WD: ----e---
WW: -6---

30 W (Wr1te-only Transactions) 

~~,;;". 
2 W6 W 

30 W 

I 

14 W 

0'-:-:::----.006 ---------::':-:--------:!:-;--~~ 

Av. Arrival Rate (Log Scale) 

Figure 8 

20 

Transaction Size Distribution: Hyper-Exp. 

11 

I ~; ;~2W 
I, .-----=::;; ~ ... ~l~= 

__ ~3;~-----=-~-~ ~50~: r ~,::: 
01~.0~06-------------.0~10---------.~01-6------------~~--

Av. Arrival Rate (Log Scale) 

Figure 9 

different in the WD mechanism, where the average roll-back 
size shows a slight increase after the arrival rate of 17 trans
actions per second. It seems that under WD between the 
arrival rate of 10 through 17 transactions, almost all very large 
transactions go through successfully, keeping the roll-back 
size to a minimum. After this arrival rate, however, large 
transactions get rolled-back and the roll-back size increases. 

In WW, it seems that most of these large transactions face 
roll-back between the arrival rate of 10 through 18 trans
actions per second on the average. This is possible since in 
WW a blocked transaction can also be rolled-back at any time. 

Deadlocks and Degree of Cycle 

Deadlocks do not reduce the DoE drastically. Table I lists 
the number of deadlocks at various transaction arrival rates 
for different read: write ratios. We observe that the number 
of deadlocks is affected more by the type of workload than by 
the arrival rate. In hyper-exponential distribution, the fre
quency of deadlock occurrence is higher; and they also occur 
at lower arrival rates. 

The problem of deadlock would have stronger effect, if the 
degree of cycle is large. We observe in Figure 10 that the 
degree of cycle at all arrival rates remains low. In fact in our 
investigation, in uniform distribution, it never exceeded three 
transactions. At an arrival rate of 20 transactions per second 
with write-only transactions we observed 8 deadlocks when 
about 500 to 600 transactions are run. The average degree of 
cycle never exceeded 2 transactions. This is low when we 
consider the transaction processing environment. However, 
its effect on throughput is noticeable. The picture is somewhat 

Average 
Arrival 
Rate 

TABLE I 

Transaction Size 
Distribution 
Uniform 

(No. of Write Locks) 

Transaction Size 
Distribution 
Hyper-Exponential 
(No. of Write Locks) 

2W 6W 10W 14W 18W 22W 26W 30W 2W 6W 10W 500W 

------------------------------------------------------------------
.006 2 2 3 

.007 

.008 

.009 

.010 

.011 

.012 

,013 

.014 

.015 

.016 

.017 

.018 

.019 10 

.020 13 

.021 10 10 15 

.022 10 6 10 12 18 



An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 495 

Transaction Size Distribution 
Uniform: --
Hyper-Exp: --------

Av. Arrival Rate (Log Scale) 

Figure 10 

different in hyper-exponential distribution. The degree of cy
cle here shows sudden increase between the arrival rates of 10 
to 16 transactions per second. We believe these peaks are 
caused mainly by the very large transactions. It seems that 
within this range of arrival rates, large transactions acquire a 
large number of entities, raising the probability of conflict 
among transactions. At higher rates outside this range, a 
higher number of very small transactions manage to acquire 
their locks without conflicting with large transactions. 

Read: Write Ratio 

One common observation is that the behavior of read-only 
transactions is more noticeable than transactions with some 
write locks. When the number of write locks varies from 10 
onward, the behavior of transactions does not change signifi
cantly. Our results show that write-only transactions and read
only transactions show distinct behavior, and transactions 
with all intermediate values of this ratio exhibit nearly the 
same behavior. We do not think the read: write ratio plays a 
significant role in shaping the performance of a CCM. 

Arrival Rate, System Throughput, and Boundary 
of Efficiency 

Figures 11 and 12 show the relationship between the system 
throughput and the arrival rate for uniform and hyper
exponential distributions respectively. At higher arrival rates, 
the throughput of Dl compared to WD and WW declines 
rapidly. As noted earlier, Dl's performance suffers with high 
transaction wait-time due to transaction blockings. At lower 
arrival rates, the probability of deadlock occurrence is nil (see 
Table I) and the number of restarts is high (see Figure 5). As 
the arrival rate increases, the throughput begins to decline 
because of the higher restarts and deadlocks. Eventually, 
after the arrival rate of 20 transactions per second on the 
average (Figure 11), its throughput becomes the lowest. In the 
case of hyper-exponential distribution, the decline begins to 
take place after 18 transactions per second on the average. A 

01: ----+
wo: --&-
WW: ----.....-

Av. Arrival Rate (Log Scale) 

Figure 11 

Transaction Size DistrJ.butl.on: Hyper-Exp. 

500W (Write-only Transactions). 

ow (Read-only Transactions) 

Av. Arrival Rate (Log Scale) 

Figure 12 

OW (Dl.WD.WW) 

aia 

o W (Dl.WD.W~1') 

glance at Figure 12 shows that at that rate the average number 
of deadlocks and the degree of cycle are higher than they are 
in the uniform distribution (Figure 11). To see the effect of 
larger size transactions, we repeated the same experiment 
with exponential size distribution of transactions. We found 
that as the transaction size increases the throughput declines 
more rapidly due to the increased number of restarts and 
deadlocks. However, at lower transaction arrival rates (lower 
than 20 transactions per second on the average (Figure 11), 
and 18 transactions per second (Figure 12), Dl performs bet
ter than WW and WD. It seems then that the domain of 
efficiency (DoE) of Dl is narrow compared to WW and WD, 
and Dl should be used for smaller size transactions under 
certain arrival rates. 



496 National Computer Conference, 1987 

The throughput of WD is between WW and D1. The main 
factor affecting the throughput of WD is the higher number of 
deaths (Figures 3 and 4). Although the average roll-back size 
remains low (Figures 8 and 9) its effect predominates from 15 
to 16 transactions per second onward. It is interesting to note 
that a large reduction in transaction wait-time (Figure 6) does 
not seem as effective as we expected. It should also be noted 
that the effect of deaths begins to show as early as an arrival 
rate of 10 transactions per second on the average. The 
throughput of WW is the highest in the two transaction size 
distributions. The strategy of WW can be said to be a compro
mise between excessive transaction roll-backs and transaction 
wait-time. Similar results have been reported.29 The average 
number of wounds is smaller than the number of deaths in 
WD, but the transaction wait-time is higher due to higher 
transaction blocking. A combination of these two seems to be 
more effective in enlarging the domain of efficiency of WW. 

To test the consistency of DoEs of D 1, WD, and WW, we 
tested these mechanisms under extreme cases, that is, large 
transaction sizes (100 entities on the average) and very high 
transaction arrival rates (100 transactions per second). In 
these cases we discovered that WW is comparatively more 
sensitive to these variations than the other two. In particular, 
the rate of decline of throughput was much sharper in WW 
compared to D1 and WD. The reason seems to be the slow 
increase in the average roll-back size and the frequency of 
deadlock occurrence. 

The last point we would like to mention is that the degree 
of concurrency (level of mUltiprogramming) does not have 
any direct relationship with the DoE. The larger the degree of 
concurrency does not necessarily mean wider DoE, because 
after a certain value of degree of concurrency the system starts 
thrashing and the throughput begins to decline rapidly. 

CONCLUSIONS 

We have investigated the effect of transaction roll-backs and 
transaction restarts on the performance of the system. Our 
aim was to define in some clear terms the DoE of two-phase 
concurrency control mechanisms under varied transaction 
processing environments. We observed that the DoE is sensi
tive to a number of parameters. The degree of sensitivity 
varies among CCMs, which makes us unable to claim one 
CCM to be uniformly superior to others. In the case of D 1, we 
found that the effect of deadlock is negligible up to a certain 
transaction arrival rate and after this rate the efficiency of D1 
declines, making it inferior to WD and WW. The largest DoE 
is offered by WW; however, in extreme cases it appears to be 
more sensitive to transaction size than D1 and WD. The DoE 
declines more rapidly here when the average transaction size 
is increased. We conclude that under the worst transaction 
processing environment performance of WW is the worst. 

The DoE of \VD can be pi aced between D1 and VV-W and 
we found it to be the least sensitive. It does not vary signifi
cantly when other parameters such as transaction size and 
arrival rates are varied. However, the performance of WD is 
superior to D1 only at higher arrival rates. 

Read-only transactions have the same performance results 
under all the CCMs. We notice that read-only transactions 

experience longest transaction wait-time in WW and WD. 
The situation is just the opposite in D1, where read-only 
transactions experience the least amount of wait. 

We contradict our earlier observation that a reduction in 
transaction wait-time would considerably improve the perfor
mance of CCMs. A balance between the wait-time and the 
number of restarts seems to be more suitable for improving 
performance. 

We notice that deadlocks are not so harmful and their de
tection and resolution are not so damaging to the resource 
utilization. In our opinion D1 should be preferred for a lightly 
loaded system and WD for a heavily loaded system. 

REFERENCES 

1. Eswaran, K.P., J.N. Gray, RA. Lorie, and I.L. Traiger. "The Notions of 
Consistency and Predicate Locks in a Database System." Comm. ACM, 19 
(1976) 11, pp. 623-633. 

2. Bernstein, P.A., D.W. Shipman, and W.S. Wong. "Fonnal Aspect of 
Serializability in Database Concurrency Control." Technical Report CCA-
79-14, Computer Corporation of America, February 28, 1979. 

3. Coffman, E.G., M.J. Elphic, and A. Shoshani. "System Deadlocks." ACM 
Computing Surveys 3 (1971) 2, pp. 67-78. 

4. Gray, J.N. "Notes on Database Operating Systems." in R. Bayer, R.M. 
Graham, and G. Seegmuller (eds.), Lecture Notes in Computer Science 60, 
Operating Systems: An Advanced Course, Springer-Verlag, New York, 
1979. 

5. Bernstein, P.A. and N. Goodman. "Concurrency Control in Distributed 
Database Systems." ACM Computing Surveys, 13 (1981) 2, pp. 185-221. 

6. Bernstein, P.A. and N. Goodman. "A Sophisticate's Introduction to Dis
tributed Database Concurrency Control." Proc. 8th Int'l. Conf on Very 
Large Data Bases, September 1982, pp. 62-76. 

7. King, P.A. and A.J. CoUmeyer. "Database Sharing-An Efficient Method 
for Supporting Concurrent Processes." AFIPS, Proceedings of the National 
Computer Conference (Vol. 42), pp. 271-275. 

8. Macri, P.P. "Deadlock Detection and Resolution in a CODASYL Based 
Data Management System." Proc. ACM-SIGMOD 1976 Int'l Conf on 
Management of Data, June 1976, pp. 45-49. 

9. Menasce, D.A. and RR Muntz. "Locking and Deadlock Detection in 
Distributed Databases." Proc. 3rd Berkeley Workshop on Distributed Data 
Management and Computer Networks, August 1978. 

10. Newton, G. "Deadlock Prevention, Detection and Resolution: An An
notated Bibliography." ACM-SIGOPS Operating Systems Review, 13 
(1979) 4, pp. 33-44. 

11. Glogor, V.D. and S.H. Shattuk. "On Deadlock Detection in Distributed 
Systems." IEEE Trans. Software Eng., SE-6 (1980) 5. 

12. Beeri, C. and R Obennarck. "A Resource Class Independent Deadlock 
Detection Algorithm." Proc. 7th Int'l. Conf. on Very Large Data Bases, 
September 1981. 

13. Obennarck, R "Distributed Deadlock Detection Algorithm." ACM 
Trans. Database System, 7 (1982) 2. 

14. Mitchell, D. and M.J. Merritt. "Distributed Algorithm for Deadlock De
tection and Resolution." Proc. ACM-SIGACT-SIGMOD Conf on Prin
ciples of Distributed Computing, August 1984. 

15. Lomet, D.B. "Deadlock Avoidance in Distributed Systems." IEEE Trans. 
Software Eng., SE-6 (1980) 3. 

16. Lomet, D.B. "A Practical Deadlock Avoidance Algorithm for Data Base 
System." Proc. ACM-SIGMOD 1977 Int'l Conf on Management of Data, 
August 1977, pp. 122-127. 

17. Korth, H.F. "Edge Locks and Deadlock Avoidance in Distributed Sys
tems." Proc. ACM-SIGACT-SIGPOS Symp. on Principles of Distributed 
Computing, August 1982, pp. 173-182. 

18. Chamberlain, RF., R.F. Boyce, and Traiger. "A Deadlock-Free Scheme 
for Resource Locking in Database Environment." Proc. IFIP 1974, pp. 
340-343. 

19. Rosencrantz, D.J., et al. "System Level Concurrency Control for Distrib
uted Database Systems." ACM Trans. on Database Systems, Vol. 3 (1978) I 

2, pp. 178-198. 



An Analysis of Roll-back and Blocking Operations of Three Concurrency Control Mechanisms 497 

20. Kumar, V. "Performance Evaluation of Concurrency Control Techniques 
for Database Management Systems." Ph.D. Thesis, University of South
ampton, England, 1983. 

21. Munz, R. and G. Krenz. "Concurrency in Database Systems-A Simu
lation Study." Proc. Int'1. Cant on MOD., August 1977, pp. 111-120. 

22. Kiessling, W. and G. Landherr. "A Quantitative Comparison of Lock 
Protocols for Centralized Database." 9th Int'1. Conf. on VLDB, Florence, 
Italy, October 1983, pp. 120-130. 

23. Lin, W.K. and J. Nolte. "Basic Timestamp, Multiple Version Timestamp, 
and Two-Phase Locking." 9th Int'l. Cant on VLDB, Florence, Italy, Octo
ber 1983, pp. 109-119. 

24. Tay, Y.c., R. Suri, and N. Goodman. "A Mean Value Performance Model 
for Locking in Databases: No Waiting Case." Aiken Computational Labo
ratory, TR-16-83, Cambridge, Massachusetts, May 1983. 

25. Tay, Y.c., R. Suri, and N. Goodman. "A Mean Value Performance Model 
for Locking in Databases: Tne Waiting Case." Proc. 3rd ACM SIGACT
SIGMOD Symposium on Principles of Database Systems, Waterloo, Can
ada, April 1984, pp. 311-322. 

26. Kung, H.R. and J. Robinson. "On Optimistic Methods for Concurrency 
Control." ACM Trans. on Database Sys., 6 (1981) 2, pp. 213-226. 

27. Tay, Y.c., N. Goodman, and R. Suri. "Performance Evaluation of Locking 
in Databases: A Survey." Aiken Computational Laboratory, TR-17-84, 
Cambridge, Massachusetts, 1984. 

28. Ries, D.R. and M. Stonebraker. "Effect of Granularity in a Database 
Management System." ACM TODS, 2 (1977) 3, pp. 233-246. 

29. Agrawal, R., M.J. Carey, and L.W. McVoy. "The Performance of Alterna
tive Strategies for Dealing with Deadlocks in Database Management Sys
tems." UW-CS-TR #590. 

30. Gray, et al. "The Recovery Manager of System R Database Manager." 
ACM Computing Surveys, 13 (1981) 2, pp. 223-242. 

31. Sargent, R. "Statistical Analysis of Simulation Output Data." Proc. of the 
Fourth Annual Symposium on the Simulation of Camp. Sys., August 1976. 

32. Ferrai, D. "Computer System Performance Evaluation." Englewood Cliffs: 
Prentice-Hall, 1978. 

33. Saur, c., and M. Chandy. "Computer System Modeling." Englewood 
Cliffs: Prentice-Hall, 1981. 





Implementing distributed algorithms 
using remote procedure calls* 

by HENRI E. BAL, ROBBERT VAN RENESSE, and ANDREW S. TANENBAUM 
Free University 
Amsterdam, The Netherlands 

ABSTRACT 

Remote procedure call (RPC) is a simple yet powerful primitiv~ for communication 
and synchronization between distributed processes. A problem with RPC is that it 
tends to decrease the amount of parallelism in an application due to its synchronous 
nature. This paper shows how light-weight processes can be used to circumvent this 
problem. The combination of blocking RPC calls and light-weight processes pro
vides both simple semantics and efficient exploitation of parallelism. 

The communication primitive of the Amoeba Distributed Operating System is 
based on this combination. We describe how two important classes of algorithms, 
branch-and-bound and alpha-beta search, can be run in a parallel way using this 
primitive. The results of some experiments comparing these algorithms on a single 
processor and on Amoeba are also discussed. 

* This research was sponsored in part by the Netherlands Organization for Pure Scientific Research (Z.W.O.) under 
project number 125-30-10 

499 





Implementing Distributed Algorithms Using Remote Procedure Calls 501 

INTRODucnON 

As computing technology advances, it becomes increasingly 
difficult and expensive to make computers faster by only in
creasing the speed of the chips. Electrical signals in copper 
wire travel at ¥3 the speed of light, or about 20 cm/nano
second, so very fast computers must be very small, which 
leads to severe heat dissipation problems among other things. 
The obvious solution is to harness together a large number of 
moderately fast computers to achieve the same computing 
power as one very fast computer, but at a fraction of the cost. 

Many ways of organizing multiple processors into distrib
uted systems have been proposed. At one end of the spectrum 
are the loosely-coupled systems consisting of a number of 
independent computers, each with its own operating system 
and users, exchanging files and mail over a public data net
work. At the other end of the spectrum are tightly-coupled 
systems with multiple processors on the same bus and sharing 
a common memory. In between are systems consisting of 
minicomputers or microcomputers communicating over a fast 
local network and all running a single, system-wide operating 
system. We have used a system in the latter category as a 
testbed for the implementation of some distributed algo
rithms. 

In this paper we briefly describe this system, called 
Amoeba, and its communication primitive, which is essen
tially a remote procedure call (RPC). The main intent of the 
paper is to describe how some fairly complex distributed algo
rithms can be implemented on such a system using RPC. 
Measurements on the performances of these algorithms are 
presented in the last section. 

THE AMOEBA SYSTEM 

The Amoeba Distributed Operating System 1,2,3,4,5 consists of 
a collection of (possibly different) processors, each with its 
own local memory, which communicate over a local network. 
Currently, we mainly use Motorola 68010 processors con
nected by a 10 Mbps token ring (Pronet), although Amoeba 
also runs on the VAX, NS16032, PDP-ll, and IBM-PC. 
Amoeba is based on the client -server model. 6 The system is 
composed of four basic components. First, each user has a 
personal workstation, to be used for editing on a bit-map 
graphics terminal and other activities that require dedicated 
computing power for interactive work. Second, there is a pool 
of processors that can be dynamically allocated to users as 
needed. For example, a user who wants to run a 5-pass com
piler might be allocated 5 pool processors for the duration of 
the compilation to allow the passes to run largely in parallel. 
Third, there are specialized servers including: file servers, 

directory servers, process servers, and bank servers (for ac
counting). Fourth, there_are gateways that connect the system 
to similar systems elsewhere. 

The Amoeba communication primitive is based on remote 
procedure call (RPC).7,8 RPC is ~ mechanism for communica
tion across a network. It resembles a normal procedure call. 
Amoeba uses a simple form of RPC: the client sends a request 
to any server that is willing to offer a certain service and some 
server sends a response back. RPC has the advantage of sim
ple semantics, similar to the procedure calls with which every 
programmer is familiar. Because it is a higher lever construct 
than asynchronous message passing it is potentially easier to 
use. 

One problem with RPC is that the caller (client) is blocked 
during the call, so a separate mechanism is needed to obtain 
parallelism. In Amoeba, a process (or cluster) consists of one 
or more light-weight processes called tasks. Tasks share a 
common address space and run in parallel. While a task is 
blocked in an RPC other tasks in its cluster may run if they 
have work to do. The combination of blocking RPC calls and 
light-weight processes provides both simple semantics and ef
ficient exploitation of parallelism. In the following sections we 
describe how they can be used together to implement parallel 
algorithms for branch-and-bound and alpha-beta search. 

PARALLEL BRANCH-AND-BOUND USING RPC 

The branch-and-bound method is a technique for solving a 
large class of combinatorial optimization problems. It has 
been applied to integer programming, machine scheduling 
problems, the Traveling Salesman Problem, and many oth
ers.9 We have chosen to implement the Traveling Salesman 
Problem (TSP), in which it is desired to find the shortest route 
for a salesman to visit each of the n cities in his !erritory 
exactly once. 

Abstractly, the branch-and-bound method uses a tree to 
structure the space of possible solutions. A branching rule 
tells how the tree is built. For the TSP,. a node of the tree 
represents a partial tour. Each node has a branch for every 
city that is not on this partial tour. Figure 1 shows a tree for 
a 4-city problem. Note that a leaf represents a full tour (a 
solution). For example, the leftmost branch represents the 
tour London-Amsterdam-Paris-Washington. 

A bounding rule avoids searching the whole tree. For TSP, 
the bounding rule is simple. If the length of a partial tour 
exceeds the length of any already known solution, the partial 
tour will never lead to a solution better than what is already 
known. 

Parallelism in a branch-and-bound algorithm is obtained by 
searching parts of the tree in parallel. If enough processors are 



502 National Computer Conference, 1987 

Figure 1-Tree for a 4-city Traveling Salesman Problem for London, 
Amsterdam, Paris, and Washington. 

available, a new processor could be allocated to every node of 
the tree. Every processor would select the best partial path 
from its children and report the result back to its parent. If 
there are N cities, this approach would require 0 (N!) pro
cessors. More realistically, the work has to be divided among 
the available processors. In our model, each processor starts 
at the node given to it and generates the complete partial tree 
reachable from that node down to depth levels. Each time the 
processor generates a node at level depth it hands out this 
node to a subcontractor for further evaluation. These evalu
ations and the generation of the partial tree occur in parallel. 
Figure 2 shows how the tree of Figure 1 can be searched using 
a 2-level processor hierarchy (i.e., a subcontractor has no 
subcontractors itself). 

In Figure 2, the processor that traverses the top part of the 
tree (the root processor) searches one level. It splits off three 
subtrees, each of depth two, which are traversed in parallel by 
the subcontractors. This algorithm is shown in Figure 3. The 
algorithm sets the global variable "minimum" to the length of 
the shortest path. This variable is initialized with a very high 
value. 

A processor only blocks if it tries to hand out a subtree 
while there are no free subcontractors. Each subcontractor 
executes the same traversal process, with a different initial 
node and probably with a different initial depth. In general, 
a subcontractor may split up the work over even more pro
cessors, so a subcontractor may also play the role of a root 
processor. 

1 1 1 

Figure 2-Example of a distributed tree search 

TREE OF ROOT 

PROCESSOR 

The Traveling Salesman Problem has been implemented 
under Amoeba using the algorithm described above. A pro
cessor playing the role of a subcontractor can be viewed as an 
Amoeba server. The service it offers is the evaluation of a TSP 
subtree. Each server repeatedly waits for some work, per
forms the work, and returns the result. A processor playing 
the role of a root processor is a client. 

The "handing out of work" is implemented using RPCs. As 
stated before, a problem with RPC is the fact that the caller 
(client) is blocked during the call. Therefore, the client cluster 
is split into several tasks (see Figure 4). A cluster Cp running 
on processor p contains one manager task Mp that performs 
the tree traversal. If the cluster has N subcontractors, it also 
contains N agent tasks Ap, l' •• Ap, N • An agent Ap, j controls the 
communication with subcontractor j. 

After the manager task Mp receives a subtree Tto evaluate, 
it starts the tree traversal of Figure 3. When it finds a subtree 
that has to be subcontracted out, it tries to find a free agent, 
say Ap,j' The agent Ap,j sends the work to be done to the 

procedure traverse(node,depth,length); 
begin 

{ 'node' is a node of the search tree. It contains 
a list of the cities on the current partial tour. 
'length' is the length of the partial path so far. 
'depth' is the number of levels to be searched 
before the rest of the tree should be handed 
out to a subcontractor } 

if length < minimum then 
begin {if length > = minimum skip this node } 

if 'node' is a leaf then 
minimum : = length; 

else if depth = 0 then 

else 

r1anager 

"t:ask 

hand out subtree rooted at 'node' 
to a subcontractor; 

for each child c of 'node' do 
traverse( c,depth -1 ,length +dist(node,c»; 

Figure 3--Tree traversal algorithm 

CLIENT CLUSTER 

EJEl El 
r r i 

Figure 4-Process structure of the TSP program 



Implementing Distributed Algorithms Using Remote Procedure Calls 503 

Manager Mj of subcontractor j, using an RPC with a partial 
path and the current best solution as parameters. This man
ager Mj starts executing the process we describe here on pro
cessor j. When Mj finishes the evaluation of the subtree, it 
returns the result to Ap,j. This agent checks if the current best 
solution has to be updated, and then becomes available again 
for the next request from Mp. In the meantime, the manager 
Mp continues its tree traversal and eagerly tries to find new 
work to distribute. The entire client cluster only blocks if the 
manager tries to deal out work while all agents (and thus all 
subcontractors) are engaged. 

This implementation fully utilizes the parallelism present in 
the algorithm. Furthermore, the implementation is highly 
flexible. It uses depth-first search, but it can easily be adapted 
to other strategies, such as breadth-first or best-first. 

PARALLEL ALPHA-BETA SEARCH USING RPC 

Alpha-beta search is an efficient method for searching game 
trees for two-person, zero-sum games. A node in such a game 
tree corresponds to a position in the game. Each node has one 
branch for every possible move in that position. A value asso
ciated with the node indicates how good that position is for the 
player who is about to move (let's assume this player is 
"white"). At even levels of the tree, this value is the maximum 
of the values of its children; at odd levels it is the minimum, 
as the search algorithm assumes black will choose the move 
that is least profitable for white. Most implementations negate 
the values of the odd level nodes, so the values are maximized 
at all levels. 

The alpha-beta algorithm finds the best move in the current 
position, searching only part of a tree. It uses a search window 
(alpha,beta) and prunes positions whose values fall outside 
this window. The algorithm is shown in Figure 5. 

Alpha-beta search differs significantly from branch-and
bound in the way the best solution is constructed. A branch
and-bound program (potentially) updates its solution every 

function AlphaBeta(node,depth,alpha,beta): integer; 
begin 

if depth = 0 then 
alpha: = evaluation(node) 

else 
for each child c of 'node' do 
begin 

end 

r : = - AlphaBeta( c ,depth -1, - beta, - alpha) 
if r > alpha then 
begin 

alpha := r; 
if alpha> = beta then 

exit loop; {pruning} 
end 

AlphaBeta : = alpha 
Figure 5---Sequential alpha-beta algorithm 

time a processor visits a leaf node (see Figure 3). That pro
cessor only needs to know the current best solution and the 
value associated with the leaf. An alpha-beta program, on the 
other hand, has to combine the values of the leaves and the 
interior nodes, using the structure of the tree. Some parallel 
alpha-beta programs realize this by having a dedicated pro
cessor for every node (up to a certain level) that collects the 
results of the child processors. 10 A disadvantage of this ap
proach is that processors associated with high level interior 
nodes spend most of their time waiting for their children to 
finish. 

Our solution avoids this problem by working the other way 
round; the child processors compute the values for their par
ent nodes, so there is no need for their parent processors to 
wait. To do this, an explicit tree structure is built, containing 
the alpha and beta bounds at each node. The search tree is no 
longer just a concept, it is actually built as a data structure. 
This tree is distributed over all processors, each processor 
containing that part of the tree on which it is working. 

The process structure of alpha-beta is somewhat simpler 
than that of TSP because the shared tree can be used for 
synchronization within the client cluster. Hence there is no· 
need for a manager task. The client cluster contains as many 
tasks as there are subcontractors (see Figure 6). 

Each task essentially executes the sequential alpha-beta 
algorithm of Figure 5. To keep other tasks from evaluating the 
same positions, each task leaves a trace of what it has done 
already by building the tree. Each task does a depth-first 
search in the tree until it either finds an unvisited node or it 
decides that the subtree rooted at the current node should be 
evaluated by another processor. In the first case, it generates 
all children of the unvisited node and continues with the first 
child node. In the second case, it sends the node to a subcon
tractor using RPC and waits for the result. 

After a subtree has been evaluated (whether local or re
mote) its result should be used to update the alpha and beta 
values of other nodes in the tree. This is illustrated in Figure 
7. In Figure 7(a), the subtrees rooted at nodes 3, 4, 6, and 7 

CLIENT CLUSTER 

Sh .. red 1:ree 

Figure 6--Process structure of the alpha-beta program 



504 National Computer Conference, 1987 

1 38 1 28 

(a) (b) 

Figure 7-Example of alpha-beta search 

have been evaluated. After the subtree rooted at node 8 has 
been evaluated the value of the parent of node 8 (node 5) is 
updated (as 20> 15). This is shown in Figure 7(b). Further
more, the evaluation of the subtree rooted at 5 has now been 
completed. As its final value ( - 20) is the highest value of level 
1, the value of node 1 is updated too. 

After the value of a node has been improved this new value 
can be used as a tighter alpha bound for its children. Each 
child can use this new alpha value as a tighter beta bound for 
its own children, and so on. Thus, new values are propagated 
down the tree to ensure each node uses the smallest possible 
alpha-beta window. In principle, new bounds can even be 
propagated across processor boundaries. However, this would 
also increase the communication overhead. We have not yet 
experimented with this kind of propagation. 

DISCUSSION 

We have done some measurements on the TSP and the alpha
beta programs. The hardware used was a collection of 10 MHz 
68010 CPUs connected by a 10 Mpbs token ring. For each 
program, we ran both a sequential (single processor) version 
and a parallel (multi-processor) version. For simplicity, the 
parallel versions use only a 2-level processor hierarchy. They 
use one processor for the client process and a varying number 
of processors for the servers. 

The depths of the subtrees are important parameters of the 
TSP algorithm. If the client processor distributes work at a too 
high level, the effectiveness of pruning will be severely weak
ened. For example, if it traverses just one level, then the best 
solution in the leftmost branch of the tree cannot be used as 
a bound in its neighbor branch, as these branches are searched 
simultaneously. Increasing the depth of the root subtree will 
decrease this effect, at the cost of more communication be
tween the root processor and its subcontractors. To achieve 
high performance, a good compromise has to be found. For an 
II-city problem we found the optimal search depth of the 
client to be three levels. The results for an ll-city problem 
using this search depth are shown in Table 1. The last entry in 
the table shows the speedup over the I-server version. With 7 
processors (1 client and 6 servers) a 5-fold speedup over the 
sequential program is achieved. Note that with only one ser
ver, there is still some parallelism; the client can find the next 
subtree to hand out while the server is working on the pre
vious subtree. 

TABLE I-Results for II-city traveling salesman problem 

version time(secs) speedup 
sequential 637.2 
1 server 548.1 1 
2 servers 309.7 1.77 
3 servers 218.2 2.51 
4 servers 171.7 3.19 
5 servers 141.5 3.87 
6 servers 124.2 4.41 

TABLE II-Results for Othello implementation of alpha-beta 
search 

Table 2 Results for Othello implementation of alpha-beta search 

version time(secs) speedup #evaluations search overhead 

sequential 266.9 2670 1 
I server 324.6 1 2670 1 
2 servers 196.2 1.65 3925 1.47 
3 servers 153.3 2.12 4732 1.77 
4 servers 125.1 2.59 5676 2.13 
5 servers 114.0 2.84 6424 2.40 
6 servers 111.5 2.91 6719 2.51 

To measure the performance of the alpha-beta algorithm, 
we implemented the game Othello, using this algorithm. Table 
2 shows the time to evaluate a position, averaged over five 
different positions with a fan-out (number of moves) of ap
proximately fifteen. The depth of the search tree was four 
plies. As for TSP, the division of labour between the client 
and the servers is important. For the parallel versions the 
client searched three plies, the servers searched one ply. 

The results show that the speedup achieved is significantly 
worse for alpha-beta search than for TSP. The main reason is 
that alpha-beta search suffers more from the decrease in prun
ing efficiency than TSP. The third entry in Table 2 shows the 
number of leaves visited by alpha-beta (i.e., the number of 
static evaluations). This number is a yardstick for the total 
amount of work done. The last entry shows the search over
head over the sequential version. 

Initially, our implementations of TSP and alpha-beta search 
have been deliberately kept simple because we implemented 
them just to gain some experience with programming using 
RPC and light-weight processes. However, our results indi
cate that the primitives offered by Amoeba are sufficiently 
general for more advanced implementations. 

REFERENCES 

1. Mullender, S.J. and AS. Tanenbaum. "A Distributed File Service Based 
on Optimistic Concurrency Control." Proceedings of the 10th ACM Sym
posium on Operaiing Sysiems Principies, Orcas isiand, Washington, De
cember 1985, pp. 51-62. 

2. Tanenbaum, AS. and S.J. Mullender. "An Overview of the Amoeba Dis
tributed Operating System." Operating Systems Review, 15 (1981) 3, pp. 
51-64. 

3. Mullender, S.J. and AS. Tanenbaum. "Protection and Resource Control 
in Distributed Operating Systems." Computer Networks, 8 (1984) 5, pp. 
421-432. 



Implementing Distributed Algorithms Using Remote Procedure Calls 505 

4. Mullender, S.J. and A.S. Tanenbaum. "Design of a Capability-Based Dis
tributed Operating System." Computer Journal, 29 (1986) 4, pp. 289-299. 

5. Tanenbaum, A.S., S.J. Mullender, and R. Van Renesse. "Using Sparse 
Capabilities in a Distributed Operating System." Proceedings of the 6th 
International Conference on Distributed Computing Systems, Cambridge, 
Massachusetts, May 1986, pp. 558-563. 

6. Tanenbaum, A.S. and R. Van Renesse. "Distributed Operating Systems." 
Computing Surveys, 17 (1985) 4, pp. 419-470. 

7. Birrell, A.D. and B.J. Nelson. "Implementing Remote Procedure Calls." 
ACM Transactions on Computer Systems, 2 (1984) 1, pp. 39-59. 

8. Nelson, B.J. "Remote Procedure Call." CMU-CS-81-119, Carnegie
Mellon University, May 1981. 

9. Lawler, E.L. and D.E. Wood. "Branch-and-Bound Methods: A Survey." 
Operations Research, 14 (1966) 4, pp. 699-719. 

10. Finkel, R.A. and J.P. Fishburn. "Parallelism in Alpha-Beta Search." Arti
ficial Intelligence, 19 (1982), pp. 89-106. 





Hardware assists for relational database systems 

by PAULA HAWTHORN 
Britton Lee, Inc. 
Los Gatos, California 

ABSTRACT 

Hardware assists tackle problems that have long been associated with relational 
database management systems: namely, slow response time and heavy CPU con
sumption. This paper explores why these problems have surfaced on many rela
tional systems and how specialized hardware systems can improve relational data
base performance. It will also discuss how database machines fit within an overall 
database system and how the database machine itself operates. 

507 





INTRODUCTION 

Why do relational database management systems require 
hardware assists? Much has been written about slow response 
times and heavy CPU consumption of conventional relational 
DBMS. The paper discusses the motivation behind special
purpose hardware for RDBMS and the performance issues 
involved with this technology. 

IS RELATIONAL SLOWER? 

The question as to whether relational systems are slower than 
non-relational systems has puzzled researchers ever since the 
relational model was first proposed. The answer to that ques
tion, however, has much more to do with procedural vs. non
procedural than relationalvs. non-relational. 

In a procedural high-level interface system (such as a re
lational DBMS), one must depend on the computer to per
form the optimizations that the programmer performs in a 
low-level system. For instance, although assembly language 
programs generally operate faster than high-level language 
programs, writing assembly code is extremely labor-intensive. 
Therefore, most applications are written in the high-level lan
guage because people time is more expensive than computer 
time. The situation with respect to database systems is the 
exact same as that for high-level language compilers: the high
level relational DBMS can result in less efficient use of com
puting resources. 

While it is quite common for a user to implement an entire 
application using a relational DBMS in a fraction of the time 
that it would take using another method of managing data, it 
is also quite common for that user to then have problems with 
performance. Database machines were designed and are built 
to alleviate performance problems that are inherent in data
base systems. The performance problems existed before there 
were relational systems. These problems exist because the 
user is trying to access a large quantity of data (if there isn't 
a large quantity of data the user doesn't generally bother with 
a DBMS) and is trying to do some complicated action on the 
data (otherwise, a file system would serve the user just as 
well). 

What relational systems have brought into this situation is 
a well-defined, highly regular, high-level interface. Such an 
interface is ideal for designing a computer to off-load the data 
management task from a general-purpose computer. 

HARDWARE TO INCREASE PERFORMANCE 

Research on database machines began in academic environ
ments not long after the relational model was introduced. The 

Hardware Assists for Relational Database Systems 509 

University of Toronto system, RAP (1975), was the best
known of the research systems (several others are listed in the 
bibliography) . 

Figure 1 shows the database machine connected to a "host" 
(also called a "front-end") system that handles the interaction 
with the user. This separation of functionality allows the back
end database machine to be completely dedicated to the task 
of data management, so that the entire management of system 
resources is within the domain of the DBMS. The DBMS is 
then able to run in fully optimized mode, without affecting the 
user running on the general purpose system. 

The user interface is located on the general-purpose system 
because application code is generally site-dependent. Since 
the code in the database machine is not modifiable by ordi
nary users (if it were, the consistency and security of the data 
would be compromised), the application code needs to be in 
the front-end, where it can be modified by the users. 

Britton Lee's BL 700 performs its database functions as a 
back-end machine. A block diagram is shown in Figure 2. 

Local Area 
Network 

Britton 
Lee 

Database 
Machine 

Figure I-Illustration of the use of a database machine 

Disk 

Figure 2-Block diagram of the Britton Lee system 

Disk 



510 National Computer Conference, 1987 

Front-end systems-typically single-user personal comput
ers and/or more powerful multi-user systems-can accommo
date several users. The key requirement of the front-end is the 
ability to parse the user's database command and send it to the 
Britton Lee system. In Figure 2, the "host interface" program 
resides in the "host," or front-end box. This program trans
lates the commands to parse trees and sends those trees to the 
BL700. 

At this point, the BL 700 handles all transaction manage
ment, recovery, security and protection issues surrounding 
the command, as well as executing the command itself. This 
split (parsing in the front-end, executing in the back-end) was 
first used by De Witt on the Wisconsin database machine, 
DIRECT. 1 

Figure 2 shows that the data command enters the back-end 
system via a channel. Each channel has a dedicated processor 
that handles communication between the outside world and 
the database machine, providing the services for buffering, 
protocols, and so on. After a command has been received by 
a channel, it notifies the main processor that there is some
thing new to do. 

The BL 700 has two processors dedicated to command exe
cution: the general-purpose processor, and Britton Lee's 
Database Accelerator (DAC) processor. 2 The DAC is an 
eight MIPS reduced-instruction-set machine which executes 
data management instructions specifically. The DAC is called 
as a co-processor by the general purpose processor via sub
routine calls. 

The performance of the BL700 is a result of two sources: 
the hardware (as in the DAC) and the specialized operating 
system in a dedicated environment. In a dedicated machine, 
optimizations can be taken advantage of that would be diffi
cult in a general-purpose environment. 

The BL 700 performs one function only: data management. 
Therefore, at every possible point the data management! 
operating system is cognizant of the special environment in 
which it is acting. For instance, the buffers are managed ac
cording to a scheme that recognizes what type of buffer it is, 
thus deciding whether the buffer needs to stay in memory 
longer. Likewise, the process manager is aware that it is a data 
management process manager and doesn't schedule out a pro
cess before it is finished with its buffers. And the disk alloca
tion algorithm knows it is allocating space specifically for 
databases. 

Much has been written about the problems that general 
purpose operating systems give data management sys
tems. 3

,4,5 However, the point is not that general-purpose 
operating systems are so bad; it is that specialized systems can 
be very efficient. 

The BL 700's operating system and the data management 
system were written as a single entity. There are occasional 
attempts to put more specialized operations in operating sys
tems to make data management systems run more efficiently, 
but doing so would only make general-purpose operating 

systems more complex. In addition, discriminating in favor 
of the DBMS user could negatively affect the non-DBMS 
user. Therefore putting more specialized operations in gen
eral purpose operations in general-purpose operating systems 
will never be as effective as making a special-purpose database 
machine. 

THE RESULTS 

In G. Adams' article "VAXlDBMS Combination Requires 
Tuning For Maximum System Performance ,,,6 it is shown that 
a popular software-based VAX-resident DBMS has the fol
lowing characteristics: 

Processor 
725/730 
750 
J.Lvax II 
780 
785 

Amount of 
Memory Required 
3-5 Mbytes 

6-10 Mbytes 
8-12 Mbytes 

10-15 Mbytes 
15 Mbytes or more 

Number of Software 
DBMS Users 

2 
6-10 
8-12 

10-18 
15-25 

Adams does not state what the DBMS users are doing, and 
the application type would be very important to any such 
estimate, but the following has been observed at Britton Lee 
customer sites: 

Processor 
725/730 
750 
J.Lvax II 
780 
785 

Amount of 
Memory Required 

3 Mbytes 
4 Mbytes 
4 Mbytes 

12 Mbytes 
12 Mbytes 

Number of 
Britton Lee Users 

10 
40 
40 
70 
90 

The results are clear: specialized hardware and software 
result in more cost-effective use of computing resources. 

REFERENCES 

1. DeWitt, D.J. "DIRECf-A Multiprocessor Organization for Supporting 
Relational Database Systems," IEEE Trans. Computers, June, 1979, 
pp. 395-406. 

2. Ubel, M. "The Intelligent Database Machine (IDM)," in Won Kim (ed.), 
Query Processing in Database Systems, Springer-Verlag, 1985. 

3. Gray, J. "Notes on Database Operating Systems," in R. Bayer, R.M. 
Graham and G. Seegrnuller (eds.), Operating Systems: an Advanced Course, 
Springer-Verlag, 1979. 

4. Hawthorn, P. "Evaluation and Enhancement of the Performance of Rela
tional Database Management Systems," ERL Memo M79-70, Univ. of Cal
ifornia, Berkeley, 1979. 

5. Stonebraker, M.R. "Operating System Support for Database Manage
ment." Comm. of the ACM, 24 (1981) 7, pp. 412-418. 

6. Auams, G. "VAX/DBMS Combinaiion Require:. Tuning For Iviaximum 
System Performance." Hardcopy, November, 1986. 



Deployment strategies for new software technology 

by KENNETH C. LATOZA 
Digital Equipment Corporation 
Schaumburg, Illinois 

ABSTRACT 

Strategy selection for the deployment of software technology is a key part of putting 
software to work within organizations. Several different deployment strategies are 
examined in this paper-difiusion, test site, and edict. Also some of the key ele
ments in strategy selection are reviewed. Finally, three agents of strategy 
implementation are discussed-technology managers, information flow, and 
application centers. 

511 





INTRODUCTION 

The deployment of software is an integral part of the software 
life-cycle. In any organization, a strategy must be adopted for 
deploying that technology. In this paper, several different 
types of strategies are examined. 

Generally, any type of software technology that is signifi
cantly different from those an organization currently uses 
should be considered as new software technology. Typical 
examples are: significant new languages (e.g., Ada or OPS5) , 
new technology areas (e.g., artificial intelligence or distrib
uted computing), new software development methodologies 
(e.g., higher order software, object oriented design, or rapid 
proto typing) . 

Where the software technology is going to be used will 
affect the deployment strategy. Although one could examine 
the types of strategies that would be used if the technology 
would be deployed to customer organizations, this paper dis
cusses deployment of new software technology within a parent 
organization. Three strategies are examined, ways to deter
mine which strategy to use are presented, and general deploy
ment tools are described. 

STRATEGIES 

Of the many different strategies that can be identified, three 
are discussed here: diffusion, test site, and the blanket or edict 
strategy. 

Diffusion 

The diffusion strategy is used to introduce a new software 
technology in non-selected areas and allow the technology to 
permeate the organization through word of mouth. This strat
egy forces the technology to sell itself and asks the users of the 
technology to become the salespeople. The diffusion strategy 
allows an organization to accept the technology on its own 
time-scale and to make choices about local deployment. Dif
fusion of technology by area in large organizations can take a 
long time and can cause various levels of the deployment to be 
apparent in the organization for long periods of time. 

This strategy frequently is used when a small group of indi
viduals determines the need for some type of technology. The 
technology is then implemented and spread through the 
organization by word of mouth. As an example, the precur
sors to the electronic conferencing tool VAX Notes were de
ployed within Digital Equipment Corporation using this strat
egy. 

Deployment Strategies for New Software Technology 513 

Test Site 

The test site strategy is used to select a test location or test 
group to pilot a technology, Using this method, an experiment 
is run to see if the new technology is truly applicable within an 
organization. This strategy forces technology managers to de
cide on a test location and to enlist a test group as active 
participants. Test sites can later become showcases of the 
technology. By enforcing formal review procedures, valuable 
insights can be gained into the usefulness and problem areas 
of given technology. The test site strategy also consumes time 
and sometimes the results can be inconclusive. 

As an example, Digital Equipment Corporation has for
malized this deployment strategy through the field test meth
odology. Field test sites are carefully chosen and monitored to 
determine the effectiveness of the new technology. All Digital 
products must pass through this phase. 

Edict 

The edict strategy involves selecting a technology and then 
enforcing use of that technology across an organization. With 
this method, either a ramped or start date implementation 
plan is chosen and the technology is spread through the orga
nization. This strategy forces the technology managers to 
make an excellent guess on the needs of the organization for 
this technology and to develop a "well oiled" implementation 
strategy. This strategy removes the problems that result when 
dissimilar technologies coexist. 

This strategy can also be used "negatively." For example, 
the retirement of a particular product and subsequent discon
tinuation of its support is a form of the edict strategy. Digital 
uses a product life cycle methodology that contains a retire
ment phase for a given product. 

STRATEGY SELECTION 

Selection of a deployment strategy depends on a number of 
factors, some of which are discussed here. One element in 
strategy selection is how well original requirements are filled 
by the software technology selected. Another aspect is how 
the software was selected; that is, was it internally developed, 
externally developed, or purchased. The effect on the organi
zation and the problem to which the technology will be ap
plied must be examined. 

Technology impact information can be gathered in a num
ber of ways. One way is to survey targeted users of the tech
nology. When designing such a survey, it is important to en
sure that useful results will be obtained and that a majority of 



514 National Computer Conference, 1987 

users are questioned. Another way to gather information 
about how a new technology may affect a company is to form 
committees of technology managers and the target users. The 
composition of any committee should include the most vocal 
and most active members of the user community; however, 
typical members also should be included. 

The goal of information gathering using these techniques is 
to reveal the attitudes of the users about a new technology and 
how they feel about the possible ways the new technology can 
be used to solve a problem. Frequently, users will feel that a 
problem does not really exist even if the problem has been 
identified by business or technology managers. Therefore, 
part of the deployment strategy will be to gain a consensus 
that a problem exists and is amenable to a new technology. 
Differing opinions about whether a problem exists typically 
result when a user community is large but only a small portion 
of the user community is included in technology selection. 
This problem can also occur when a change in business direc
tion occurs and a new technology is needed to meet a business 
goal. For example, when companies with differing technology 
products merge, discrepancies in problem identification are 
likely to arise. 

Once the receptiveness of the user population is determined 
a risk analysis! should be performed to evaluate: 

• Whether the correct technology has been chosen 
• Time to deploy 
• Return on investment for cost of deployment 

The costs of deployment must include training, support, 
and distribution of user and reference manuals. The size of the 
user community will obviously affect this cost. Another aspect 
to study is if the organizational structure will change (or 
should change) with the deployment of the technology. Fur
ther, the complexity of the technology will affect training and 
support issues and may also affect the cost of the technology. 
For example, the complexity of the technology affects the 
length of training time and the amount of effort needed to 
complete the training. Also, the new technology could in
crease maintenance costs and payments to vendors and re
quire additional computer equipment. 

When the risk assessment is finished, the deployment strat
egy (or strategies) can be selected and a deployment plan 
developed. This plan should include the risk analysis, the 
deployment timetable, and a list of resources used to deploy 
the plan. A presentation can be developed and toured through 
the organization. This presentation should include the back
ground to the problem for which the software technology is 
being deployed, the background to the technology, some of 
the options considered, the resources available and used with
in the organization during deployment, and the highlights of 
the deployment plan. 

If the diffusion strategy is used to introduce a new technol
ogy, the deployment plan can become the formal recognition 
that a technology is in place and is meeting the solution to 
some problem within an organization. 

Replication of effort and use of different strategies can 
increase the chances of success. Often a problem exists but 

either no reasonable technological solution exists or equally 
valid multiple solutions exist. In such cases different groups 
can develop and deploy different technologies and time will 
determine which will be the most successful. 

OVERALL DEPLOYMENT TOOLS 

The role of a technology manager2 is key within an organiza
tion. As an example of using technology managers, Digital 
has a team that consists of a staff manager and consultants. 
They are responsible to respond to both business management 
and the user community with effective choices of technology 
and deployment strategies for the technology. The technology 
management team is used for deploying different types of 
technology, including software technology. These players play 
the lead role in ensuring successful deployment of technology 
within the organization. 

The benefits of having a technology manager are: 

• Technology leadership 
• Focus point for software technology issues and 

information 
• Organization responsibility to respond to technology 

change issues 
• Responsibility for long term technology plans 

Another key deployment tool within an organization is in
formation flow. Large amounts of current information must 
be moved within the organization. Adopting multiple lines of 
communication is necessary to service the needs. of all mem
bers. Digital, for example, has several types of communica
tion formats. Videotex databases are used for bulk delivery of 
current information on technologies. VAX Notes electronic 
conferencing is provided for both private and public dis
cussions of technical and non-technical issues. Scheduled re
view meetings between users and technology managers are 
used to provide face to face communication. 

Providing current information to the user community has 
many benefits. These include reduction in printed material, 
quick feedback on problems and questions, forums for timely 
discussions, and quick changes to rapidly changing informa
tion. 

Finally, software needs hardware on which to execute. To 
provide focus points for software technology tools, technology 
information centers should be provided. 3 For example, Digital 
has introduced Application Development Centers to provide 
common locations where software technology can be found. 
These centers are linked to facilities throughout the organiza
tion through Digital's internal computer communications net
work. 

Technology information centers are beneficial when used 
as: 

• Test sites for software technology introduction 
• Catalogue and inventory sources of available software 

technologies 
• Known software information interchange locations. 



CONCLUSION 

Successful introduction of software technology requires the 
selection of an appropriate deployment strategy. This strategy 
is embodied in a deployment plan that describes the risk 
analysis and deployment timetable. Finally, technology man
agers, good communication channels, and focused hardware 
resources are necessary to develop and implement effective 
deployment strategies. 

Deployment Strategies for New Software Technology 515 

REFERENCES 

1. Strassman, Paul A. Information Payoff New York: The Free Press, 1985. 
2. Kanter, Rosabeth Moss. "Technological Change-A Threat or An Oppor

tunity." The Consultant, May/June 1985, pp. 6-11. 
3. Boar, Bernard H. "The Prototyping Center." Application Prototyping. New 

York: John Wiley, 1984. 





Evidence on separately organizing for software maintenance 

by NED CHAPIN 
InfoSci Inc. 
Menlo Park, California 

ABSTRACT 

Software maintenance activities can be organizationally combined with or separated 
from software development. Proponents have argued advantages for each mode, 
but factual evidence on the respective results and conditions has been missing. This 
paper reports evidence gathered from sites organized in the two ways and contrasts 
their characteristics. Significant differences appear that give a better factual basis 
for selecting an appropriate organizational position for application software mainte
nance. 

517 





INTRODUCTION 

Our purpose in doing and reporting this work is to clear the 
air on the consequences and conditions associated with two 
alternative organizational modes. One mode is to keep appli
cation software maintenance activities organizationally com
bined with software development. The other mode is to keep 
a clear separation organizationally between application soft
ware maintenance and development. 

A survey reported in 1980,1 revealed that only about one
sixth of organizations kept those two activities separate. No 
survey reported since has profiled the characteristics and re
sults associated with each organizational mode. Publications 
that could reasonably be expected to have covered these 
matters have neglected or passed over them. For example, the 
Proceedings of the four Software Maintenance Conferences 
have not addressed this matter. 2,3,4,5 The Proceedings of the 
CSM-85 and of the Software Maintenance Workshop of 1983 
gave this matter no explicit attention. 6,7 Software Maintenance 
News has largely passed over this matter.s The National Com
puter Conference has not addressed this matter in its Pro
ceedings even though software maintenance is given some 
attention. 9 

Which mode to adopt and the pros and cons about each 
mode have received passing mention in several articles and 
papers. For example, Canning offers a summary of pros and 
cons.10 Reynolds can be interpreted as saying that organiza
tional separations also build walls affecting communication 
with users, and hence are bad. ll On the grounds that mainte
nance is a specialized task, Parikh favors a separate organiza
tional status. 12 Bronstein and Okamoto argue that a separate 
organizational position reduces conflicts in priorities. 13 Marks 
and Strowbridge advocate specializing the staff, but stop short 
of advocating a separate organizational status. 14 

What little has been reported on this matter has not had a 
strong or broad factual base. We did the study reported here 
because our discussions with management at computer sites 
detected a warm interest in evaluating the applicability of 
these two alternative modes. Some managers seem to seek 
reassurance that the mode they have chosen is a good selec
tion given their circumstances; other managers wonder if that 
other pasture is indeed as green as it looks and is touted to be. 
Opinions abound, but reliable facts are in short supply. We 
therefore decided to gather facts and report the evidence 
found. 

In the gathering and reporting process, we used a four-part 
definition of software application maintenance presented by 
Chapin since it matches the current reality of software mainte
nance work better than some earlier definitions. 1,15 In brief, 
the four parts can be termed enhancive, corrective, adaptive, 
and consultative maintenance. Application software mainte-

Separately Organizing for Software Maintenance 519 

nance itself is any servicing done to, on, or about existing 
application software. That servicing may result in: 1) mod
ifying the application software (usually to extend, alter, or to 
correct its functionality), 2) adapting the software to perform 
in a changed data processing environment, or 3) consulting 
with (e.g., by interpreting, guiding, or training) the user per
sonnel in securing the desired results from the use of the 
existing software. Packaged software in this definition is not 
distinguished from in-house developed software. Work re
lated to system software is conventionally excluded by the 
definition of software maintenance. 

DATA GATHERED 

We solicited data by means of a written questionnaire from 
persons with managerial roles in data processing sites sprin
kled all across the United States. We solicited information 
from sites with a data processing (DP) staff believed to num
ber more than nine. We did a vigorous follow-up to get the 
questionnaires back, although some were returned only par
tially completed. As expected, we found the common organi
zational position for software maintenance is that it is com
bined with software development. Since our sampling process 
was not designed to determine the current proportion of the 
various organizational modes for placing software mainte
nance, we report neither data nor conclusions on the relative 
frequency of the modes. 

For statistical confidence, we sought a sample of at least 
sixty organizations in each of the two modes, but attempted to 
draw a larger sample than that, anticipating some unusable 
returns. We attempted to secure responses from more than . 
one person at each organization since different people in an 
organization often view the organization differently. After 
discarding clearly questionable or seriously incomplete re
sponses, we had 232 responses spread over 130 organizations, 
and 684 statements of problems recognized by the re
spondents. The modal number of responses was one per orga
nization and the average number of responses per organiza
tion was two. 

In checking our data gathering, we found that one question 
on the questionnaire was interpreted variously by different 
responders. That question asked about the years of backlog of 
maintenance work. Some responders framed their responses 
for the full size (staffing) of the organization they represented, 
whereas others framed their responses in terms of years of 
backlog per person primarily doing maintenance work. This 
makes the total or overall magnitude of the gathered backlog 
data meaningless. Also, a few large responses pull up the 
averages. The medians for the backlog are 4.0 years for the 
separate mode of organization, and 2.5 years for the com-



520 National Computer Conference, 1987 

bined mode. However, we found only random differences in 
the varied responder interpretation with respect to the mode 
of organization. Hence, on a contrast basis, any comparison 
or difference can still be meaningful even though the absolute 
levels reported are not meaningful for this item. , 

ANALYSIS 

After making validation checks, we applied ordinary statisti
cal analysis techniques to the distributions of the data. Then 
we applied tests of statistical significance. Table I summarizes 
our analysis. 

CONFIGURATION 

The analysis points to distinctive configurations for the two 
modes of organization of application software maintenance. 
In the following paragraphs, we summarize the statistically 
significant aspects first and then some aspects showing no 
significant differences . 

. Organizations that organizationally combine software 
maintenance with software development display the following 
configuration of characteristics compared to the other mode: 
1) The respondents see their organizations as smaller. 2) They 
believe their organizations do more enhancement and less 
new development. 3) They see the maintenance backlog as 

TABLE I-Analysis of data gathered on software maintenance for 
different levels of significance by mode of organization for software 

maintenance 

1

---------------------------------------------------------------

ATTRIBU'l'ES 

Significant at one per cent level 
Size of organization, average staffing level 

Separate--95.1 persons; Combined--80.7 persons 
Enhancement effort, average as per cent of total 

Separate--42.5%; Combined--51.9% 

Significant at two per cent level 
None 

Significant at five per cent level 
New development effort, average as per cent of total 

Separate--37.3%; Combined--27.2% 
Backlog of maintenance work, average (see text) 

Separate--15.8 years; Combined--IO.5 years 

ATTITUDES 

Significant at one per cent level 
Negative attitude toward software maintenance 

Separate--18.1%; Combined--31.9% 

Significant at two per cent level 
positive attitude toward software maintenance 

Separate--15.5%; Combined--7.8% 

Significant at five per cent level 
None 

PROBLEMS RECOGNIZED as proportion mentioned in categories 

Significant at one per cent level 
Management problems in total 

Separate--6.7%; Combined--l3.5% 
Old software to maintain 

Separate--ll.O%; Combined--3.3% 

Significant at two per cent level 
Difficult to work with software characteristics 

Separate--2.3%; Combined--8.6% 

I Significant at five per cent level 

I 

Unstructuredness in the source code 
Separate--8.1%; Combined--15.2% 

1---------------------------------------------------------------

smaller but have a more negative attitude toward software 
maintenance. 4) They believe they have more management 
problems in maintaining software and that they have software 
that is generally harder to maintain, although old software is 
not seen as being as much of a problem. 

Organizations that organizationally separate software 
maintenance from software development display the following 
configuration of characteristics compared to the other mode: 
1) The respondents see their organizations as larger. 2) They 
believe their organizations do more new development but less 
enhancement. 3) They see the maintenance backlog as larger 
but have a more positive attitude toward software mainte
nance. 4) They believe that the age of the software makes 
software maintenance difficult. 5) They believe their software 
maintenance work suffers from fewer management problems. 

In a number of important ways, both organizational modes 
are alike. The experience level of the personnel doing the 
software maintenance is about the same for both groups. Per
sonnel turnover is seen about equally by both groups as a 
problem area, as is, to a lesser extent, a shortage of qualified 
staff. The groups show no significant difference in the extent 
to which they see documentation as a problem, and they do 
about equal proportions of corrective maintenance. The 
groups show no significant differences on such personnel
related matters as staff availability, motivation, morale, and 
turnover. Both groups regard maintaining good communica
tion with users and others as a problem area and regard user 
relationships as about equally difficult to keep satisfactory. 

DISCUSSION 

Statistical analysis does not tell what are the causes and what 
are the effects. Management personnel in organizations may 
be seeking some particular effect, such as "How to free some 
time for increasing effort on new development projects." 
They want to know likely causes. Also, the data presented 
here may be more representative and descriptive as a constel
lation or configuration of characteristics than are the charac
teristics individually. 

A perception of a difference in the size of the organization 
is noted in the configuration. The averages are far above the 
median sizes of 52 persons for the separate mode and 25 
persons for the combined mode. Many respondents in each 
group did not report the size of the entire data processing 
organization; rather, they reported the size of their own unit. 
Hence, size is rarely overstated but often reflects a esprit de 
corps view of personal identification-an attitude cultivated 
by some managements. The smaller size reported by the 
combined-organized group could reflect a measure of more 
success in such attitude cultivation. We verbally explored this 
possibility informally with personnel in a few organizations, 
and believe it contributed little to the size difference noted 
here. Generally, larger organizations are more likely to use a 
separate organizational mode for software maintenance than 
are smaller organizations, but the separate mode is still a 
minority for all sizes of organizations. This evidence is consis
tent with what has been reported elsewhere. 1 

The differences in the proportion of effort on enhance
ments and on new development are probably untrustworthy. 



We found no organizations other than software houses that 
systematically and consistently recognized and recorded con
sultative maintenance as a distinct entity, even though all 
respondents recognized the existence of the activity in their 
organizations and most indicated it was an increasing drain on 
personnel time. To a lesser extent, and not concentrated in 
software houses, the same observation applies to adaptive 
maintenance. In the data gathered, respondents spread effort 
in both categories over the categories of corrective and en
hancive maintenance, increasing both, with no detected dif
ferences by organizational mode. 

A more serious complication is the variability used in prac
tice in defining what effort is corrective maintenance, what is 
enhancive maintenance, and what is new development. 
Where maintenance is separately organized, these distinctions 
have more often been given some explicit attention than 
where the combined organization mode is used. Nonetheless, 
variation is rampant for both modes. A fairly common crite
rion is a set level of effort that "distinguishes" new develop
ment from maintenance. Such a criterion might be: Any 
application software work estimated at more than six person
months is classified as new development, irrespective of its 
other characteristics. Such criteria are pragmatically useful 
and not uncommon, since socially or politically unpopular 
(negative attitude) maintenance work can be made to disap
pear and new development appear at the stroke of a pen. For 
example, one could define any application software work of 
more than two person-months duration as new development, 
any work of more than one person-day (but less than two 
person-months) as enhancement (maintenance), and anything 
smaller as corrective (maintenance). It is our assessment that 
the differences noted above in enhancement and new develop
ment effort primarily reflect differences in definition, not dif
ferences in the amounts, character, or nature of the work 
being done. 

If the work is equivalent, then the real differences in the 
organizational modes are the differences seen in the manage
ment area. 16 Segregating the personnel doing the mainte
nance work into a separate organization unit weakens the 
lines of communication to those (few) personnel still around 
who did the development work on the software. With less of 
that knowledge to call upon, any impenetrability in the soft
ware looms larger. Concern with documentation is not signifi
cantly different between the two modes. Recognition of these 
factors appears to be an effect of selecting the separate
organized mode, but does not appear to be a cause of the 
mode selection. 

When a separate organization is put in place for any func
tion, securing enough qualified personnel to staff it is a com
mon management concern, along with securing other needed 
resources. Yet no significant differences appear between the 
two modes. In the absence of such a separate organization, 
development personnel get assigned to do the software main
tenance. This provides a staff (which may be qualified) but 
documentation deficiencies are still the number one com
plaint in both modes. In this regard, it must be remembered 
that no significant differences are seen by the respondents in 
the turnover, motivation, morale, qualifications, and experi
ence level of the personnel between the two organizational 
modes. 

Separately Organizing for Software Maintenance 521 

Attitudes are seen as significantly different too. Negative 
attitudes are associated with the respondents' greater fre
quency of mentions of management problems, and are signifi
cant for the combined-organized group. Positive attitudes 
are associated with the respondents' lesser frequency of men
tions of management problems, and are significant for the 
separately-organized group. This relationship is not surprising 
given the respondents' management responsibilities. It also 
points to what appears to be an effect of selecting the separate 
organization mode-a more positive attitude by those manag
ing the software maintenance. The significance of this has 
been noted before. 17 The specific causes of this attitude differ
ence are not seen in the work reported here. 

The differences between the two organizational modes with 
the greatest statistical significance are the differences in the 
proportion of enhancement effort (see prior qualification), in 
management problems, in groupings of software attributes, 
and in the size of the organizations (see prior qualification). 
One of the two main groups of significant software attributes 
consists of the fewer problems reported by the combined
mode respondents for old software, interactions among soft
ware, and poor implementations. The other consists of the 
fewer problems reported by the separate-mode respondents 
for source-code unstructuredness, difficult-to-work with 
source code, and large program and system size. From the 
evidence reported here, the causes and effects for these char
acteristics are not seen directly for most of them. 

CONCLUSIONS 

Given the qualifications presented in the discussion about the 
configuration of characteristics described here, some conclu
sions emerge. One is that we detected no differences in the 
nature or characteristics of the demand for or performance of 
the software maintenance work between the two organiza
tional modes. Hence, any motivation to adopt one or the 
other of the modes apparently arises from other sources. A 
hope to reduce the burden (cost or total amount) of software 
maintenance work in order to get more personnel time for 
new development appears to be a tempting motivation, but 
the achievement appears to be more a matter of definition 
rather than of any actual change in the work getting done. 

What those organizations adopting a separate organiza
tional place for software maintenance have achieved is fewer 
management problems and a more positive attitude toward 
software maintenance by those managing it. What adopting 
the separate organizational mode has required is an explicit 
definition and recognition of what is to be encompassed as 
software maintenance. This sharper definition may contribute 
to the larger backlog recognized in the organizations that 
organize separately for software maintenance. 

Larger organizations are more receptive to a separate 
organizational place for software maintenance. Maintenance 
management personnel in the separately-organized mode re
port fewer problems with maintaining poorly structured and 
poorly implemented source code but more problems with old 
programs and systems. It is not known whether a recognition 
of these is a predisposition to or a consequence of adopting 
the separate-organized mode. 



522 National Computer Conference, 1987 

In summary, management's use of a separate organiza
tional position for application software maintenance appears 
to have little effect upon the maintenance work, its cost, and 
its quantity. It does appear to reduce management-oriented 
problems with getting software maintenance done and to im
prove attitudes. From this survey, the evidence appears to us 
that an old management dictum-if you want something man
aged better, then make the managing of it be someone's prime 
responsibility-also applies to managing application software 
maintenance. 

REFERENCES 

1. Lientz, Bennet P. and E. Burton Swanson. Software Maintenance Manage
ment. Reading, Massachusetts: Addison-Wesley, 1980. 

2. Proceedings of the First National Conference on EDP Software Mainte
nance. Silver Spring, Maryland: U.S. Professional Development Institute, 
1983. 

3. Proceedings of the Second National Conference on EDP Software Mainte
nance. Silver Spring, Maryland: U.S. Professional Development Institute, 
1984. 

4. Proceedings of the Third National Conference on EDP Software Mainte
nance. Silver Spring, Maryland: U.S. Professional Development Institute, 
1985. 

5. Proceedings of the Fourth National Conference on EDP Software Mainte
nance. Silver Spring, Maryland: U.S. Professional Development Institute, 
1986. 

6. Arnold, Robert S. and Roger Martin (eds.). Proceedings of the Conference 
on Software Maintenance-1985. Long Beach, California: IEEE, 1985. 

7. Arnold, Robert S. (ed.). Proceedings of the Software Maintenance Work
shop. Long Beach, California: IEEE, 1984. 

8. Software Maintenance News. 1984 through 1987. 
9. AFIPS, Proceedings of the National Computer Conference. (Vols. 48 

through 55), 1979 through 1986. 
10. Canning, Richard G. (ed.). "Easing the Maintenance Burden." EDP Ana

lyzer, 19 (1981) 8, pp. 1-6. 
11. Reynolds, Carl H. "Issues in Centralization." Datamation, 23 (1977) 3, pp. 

91-94. 
12. Parikh, Girish. There Is a Fortune to be Made in Software Maintenance. 

Chicago, IL: Shetal Enterprises, 1985. 
13. Bronstein, Gary M. and Robert I. Okamoto. "I'm OK, You're OK, Main

tenance is OK." Computerworld, 15 (1981) 2, pp. In-depth 19-20. 
14. Marks, William W. and William D. Strowbridge. "Dedicated Maintenance 

Staff Key to Smooth Operation." Computerworld, 19 (1985) 34, pp. SRl45. 
15. Chapin, Ned. "Software Maintenance---A Different View." AFIPS, Pro

ceedings of the National Computer Conference (Vol. 54), 1985, pp. 507-513. 
16. Perry, William E. "A Plan of Action for Software Maintenance." Data 

Management, 23 (1985) 3, pp. 44-45. 
17. Chapin, Ned. "Supervisory Attitudes Toward Software Maintenance." 

AFIPS, Proceedings of the National Computer Conference (Vol. 55), 1986. 
pp.61-68. 



PC proliferation: Minimizing corporate risk through 
planning for application maintenance 

by LINDA SHAFER 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

and 
JOHN CONNELL 
Martin Marietta Denver Aerospace 
Denver, Colorado 

ABSTRACT 

The rapid proliferation of personal computers, offering tremendous productivity 
gains for knowledge workers, often creates new application maintenance tasks. 
Specific concerns include security, data integrity, and access authorization. Distrib
uted networks require security and communication systems. Distributed data entry 
requires file servers, network support personnel, and synchronization methods to 
preserve the integrity of corporate data. Much personal computing software which 
must be maintained is developed outside of standard-imposing environments and 
without benefit of formal training. A recommended method for limiting future 
maintenance problems is the formation of a staff possessing skills specific to prob
lem solving in the areas mentioned and functioning as personal computing consul
tants for the area of the knowledge worker. 

523 





PC Proliferation: Planning for Application Maintenance 525 

INTRODUCTION 

There is better than a 100 to 1 ratio of personal computers 
(PCs) to mainframes in this country and more than 100,000 
commercial application packages available to support those 
PCs. Management and knowledge workers have embraced the 
use of PCs and generic software, gaining degrees of freedom 
from data processing departments. No longer do users have to 
wait months or years for the delivery of a new application 
system-they choose from packaged software or write their 
own. 

Knowledge workers are using PCs for the following kinds of 
tasks: 

• Word processing: specifications, documentation, agen
das, memos, and reports 

• Graphics: view-graphs, diagrams, design concepts, plan
ning charts, graphs, layouts, and artwork for documents 

• Database management: inventory, action status, compen
sation analysis, task analysis, design decomposition, new 
application rapid prototyping, and problem tracking 

• Spreadsheet: estimates, financial analysis, expenditure 
tracking, trade-off analysis, and criticality analysis 

• Outline processing: to-do lists, presentation outlines, 
agendas, and document outlines 

• Project management: task planning, cost estimating, and 
critical path analysis 

• Telecommunications: mainframe access, rapid remote 
data transfer, and electronic mail 

No doubt many other types of applications could be cited, 
but the list is sufficient to illustrate that a good PC offers great 
assistance with everyday work tasks. Increased use of comput
ers by the average knowledge worker is the obvious result 
even though productivity gains are difficult to measure since 
PC users accomplish tasks that they would not have attempted 
before. 

Despite well-documented advantages of using micro
computers, accelerated and unmanaged growth of networks 
has left a vacuum in support services. Software maintenance, 
presumed to be a non-issue with respect to personal comput
ers, is still a required task. 

The PC and Data Maintenance Issues 

Many companies download data into applications running 
on PCs, realizing that micro users' direct access to corporate 
data saves re-keying and gives all users the same· up-to-date 
information. Sophisticated links download only selected por
tions of voluminous mainframe files, a procedure that may 

soon become the norm. This and other uses for the PC are 
growing daily-their real potential has only begun to be ex
ploited. Yet the personal computer has not been a common
place fi.xture in organizational settings long enough for sur
rounding maintenance issues to be documented. 

In a centralized computing environment, software mainte
nance consists of making changes to production programs
modifying, adding, and deleting lines of code. A catalyst for 
software maintenance is user dissatisfaction with the func
tionality of current systems. A system may not be functioning 
properly, not be functioning at all, or functioning perfectly 
but not solving the desired set of current information manage
ment problems. To correct such situations in actual practice, 
maintenance programmers perform a wide range of activities 
in addition to code modification. 

When a production problem occurs with code that has been 
functioning properly, the problem may not be with the pro
gram logic. The most common cause for such problems is 
imperfect data. Problems may occur when someone accesses 
the wrong file, when inaccurate information is entered into a 
file, or when a file update is executed at the wrong time or not 
at all. There are so many opportunities for such mishaps to 
occur in most information systems that maintenance pro
grammers spend a great deal of time tracking down and cor
recting data problems. 

Relating these traditional production problems to PCs, sup
pose that with increases in the number of operators of com
puter systems there are directly proportionate increases in 
mishaps causing imperfect data. If all computing was done on 
PCs and all knowledge workers had personal computers on 
their desks, the resulting increase in data problems would be 
significant. 

Such a scenario already is in the making. The number of 
centralized data entry operations and the proportion of MIS/ 
dp staffers devoted full time to data entry has declined while 
PCs have added to the number of remote data entry sources. 
In addition, the "linear approach" of many jobs, in which one 
person must wait for another to finish before beginning a task, 
has changed. Rigid procedures have given way to broader job 
functions; few workers are strictly dedicated to data entry 
anymore. For example, a financial analyst may now concen
trate on all aspects of one client and enter data for all aspects 
instead of entering the data for one narrow category of all 
clients. Data entry has become distributed-often with no 
central, controlling, responsible, organizational entity. 

The PC and Software Maintenance Issues 

Software departments, hesitant to take responsibility for 
modifications to PC software, are becoming concerned that 



526 National Computer Conference, 1987 

desktop computing may be creating future maintenance prob
lems. Undocumented and unstructured code developed for 
mainframes before the days of structured analysis and design 
causes many of today's maintenance nightmares. An anal
ogous situation with micros may be in the formative stages 
today. 

Personal computers are proliferating because they are ex
tremely useful. Organizations wholeheartedly endorsing the 
personal computer revolution need adequate software main
tenance personnel dedicated to PC application support. Such 
specialists, perhaps referred to as microcomputer support an
alysts, could reduce corporate risk by consulting with PC users 
as well as performing PC-specific application maintenance. 

PERSONAL COMPUTING AND 
MAINTENANCE RISKS 

Potential maintenance problems are abruptly different with 
PCs than with traditional centralized computing environ
ments. Emerging technology, protocols, standards, and ac
cepted practice are not yet well-defined for PC environments. 
Personal computers present a potential for adding new dimen
sions to the software maintenance task. 

Potential Security Problems 

Early distributed networks allowed users inter-depart
mental access to data on private minicomputers distributed 
among separate departments. These networks allowed users 
to move freely from node to node using menu choices or 
different log-on commands as long as they had authorized 
access to the desired node. Physical barriers and access con
trols, used as security measures during the era of centralized 
computing, often are not as effective when applied to distrib
uted processing in complex PC networks. Connections to re
mote sites allow intruders into systems and possible insertion 
of malicious programs known as "trojan horses," "logic 
bombs," and "trap doors." Students ranging from the univer
sity level to grade school have been known to access comput
ers using information present in electronic bulletin boards, 
spread by word of mouth, or appearing in underground 
publications. 1 Every networked system allowing telephone 
dial-in has three built-in security weaknesses: the telephone 
lines and modems, the log-on procedures, and the passwords. 2 

Security software, such as encryption/decryption and log-on 
controls are often developed in-house and must be main
tained. 

In addition to security issues posed by the intrusion oppor
tunities naturally present in PC networks, communication 
protocols between machines must be considered. Some net
works have approximately one personal computer per user 
with shared peripherals and no large central mainframe in the 
loop. Often, the PCs on such networks are made by a variety 
of companies. Networks including PCs from multiple vendors 
frequently are practical because different micros have capabil
ities to match different user needs. The trend toward multiple 
hardware vendors can only be expected to increase. 

Figure 1 illustrates a distributed network containing many 

makes and sizes of computers, from mainframes to micros, in 
which personal computers are the dominant workstation. In 
this environment, it can be imagined that there are some 
communication complexities. Many organizations in which 
similar configurations exist have no clearly identified team of 
specialists assigned to solve communication problems. In such 
situations, software specialists must increase their scope of 
knowledge to span multiple machines. 

To help solve networking problems, many users under
standably are turning to their central software department and 
requesting custom built security and communication software 
involving passwords, log-ons, encryption, transmission de
gradation, and file transfer. These custom solutions then be
come additions to the inventory of software applications that 
require maintenance effort when users' needs or vendors 
change. 

Potential Unreliable Information Problems 

Much of the PC application maintenance job consists of 
tracking causes of imperfect data. Most often, the origin is 
with the operator or user, not in software correctness. The job 
of controlling the flow of data in an automated and secure 
fashion typically falls on a software maintenance professional. 
Commercially developed software applications are just as vul
nerable to imperfect data as custom built software, and users 
probably will always demand professional help in solving the 
resulting anomalies. 

Consider a PC desktop publishing package used to produce 
a complex contract proposal. This package will be used to 
receive and integrate information from many sources. The 
data flow interfaces for such a system are shown in Figure 2. 
It can be seen that when figures and text in the proposal draft 
require revision the source of these elements must be isolated 
from within a maze of programs and entry points. 

Classic maintenance problems will not disappear by moving 
an application from custom software running on a central 
computer to commercial software running on a network of 
personal computers. However, personal computing has added 
a new dimension to the problem of data integrity-the prolif
eration of decentralized data storage devices. Newer PC net
works may have information scattered over many floppy disks 
on the desks of many users or on hard disk file servers at 
several locations. Such files may have differeent backup ver
sions, which means that users unaccustomed to file manage
ment tasks are now expected to be responsible data librarians. 

Floppy disks can be a menace where data integrity is con
cerned. They do not hold much data, compared to the disk 
drives of larger computers, so they tend to proliferate in abun
dance at each user location. Cataloging the data storage of a 
large computer is typically an automated feature of the oper
ating system and often is augmented by application software. 
Floppy disks, on the other hand, are usually cataloged manu
ally by listing the contents on a paper label affixed to the disk 
and storing the disks in a small desktop filing cabinet with 
index labels. 

As data storage spreads outward to points of origin, data 
responsibility no longer rests with a professional file clerk in 



PC Proliferation: Planning for Application Maintenance 527 

" " , , , 
... , 

... ... . 

Location A 

A ., ... , ....... , ... ,. 

, ....................... ::::~~~.~.~.~:~:~!~~2 .............. , ........... ' 
......................................... 

....... , .... , ... 

Location C 

/ 

, , 

, , 

, 

, 

f 

... , 

/ 

, 

... 
... 

, 

... ... ... 

... ... ... 

... ... 
... 

Figure l--Complex distributed network 

,/ , , , , , , 

/ 
" ,/ 

" 

.... , .............. . . . , ... 
"",. 

" " 

Location B 

SN A PROTOCOL 
... 

\ .. C_O.N_VE_R_T~ER.--.... 
... 

, , 
" 

. , ....... , .. 
.. , .......... , ... . ........... , ...................... . 

..................................... 



528 National Computer Conference, 1987 

Layout Concept Proposal Draft 

Figure 2-Desktop publishing system 

charge of centrally located corporate data. Each PC user has 
a personal filing system and style, ranging from efficient to 
sloppy. If every diskette were clearly and meaningfully la
beled and placed in a distinctive jacket in an easily accessible 
place, problems would be minimal. But in everyday practice 
there is no control over what is basically a manual filing sys
tem, and maintenance professionals are at the mercy of indi
vidual filing systems. The distribution of data on floppies 
should at least be considered in the context of the normal risk 
analysis procedure for computer security. 3 

Some file server approaches re-centralize data storage by 
providing a central file library on a hard disk. Other networks 
utilize a software-based approach, transparent to the users, 
whereby shareable files are not centralized but may reside at 
any node. These systems all provide services similar to a pub
lic library, allowing users to electronically check out files. 
Available files may be designated as originals or copies with 
read/write privileges or read-only access specified. Users may 
have private storage areas as well as limited access to public 
files. A personal computer network incorporating a file server 
scheme is illustrated in Figure 3. 

Some file servers have software that prevents concurrent 
access of files. However, this does not mean that the second 
user to access a file cannot undo the work of the first user by 
overwriting good data with corrupt data. The job of a network 
support person becomes complex in such environments, par
ticularly in environments of large networks with multiple file 

servers. When mistakes occur, software maintenance profes
sionals will be asked to provide solutions. 

Potential Access Authorization Problems 

Data access problems occur both when there are authorized 
persons without access to information and when there are 
unauthorized persons with access to information. When ac
cess is denied, information processing often stops because 
necessary data cannot be entered, updated, or used. When 
unauthorized access occurs, unknowledgeable persons may be 
entering data for which they have no official sources. 

These types of application maintenance difficulties are not 
new to the industry, but personal computers provide new ways 
in which such events may occur. A primary area of considera
tion is the floppy disk. If a user has a need for information that 
only exists on a floppy locked in the desk drawer of a co
worker who is on vacation, project progress may halt. In 
addition, floppy disks are not subject to a controlled backup 
system. If they become damaged, data recovery may be diffi
cult. 

Floppies are portable. They can be carried in a briefcase or 
even in pockets much more conveniently than magnetic tape 
reels or disk drives. Such portability makes floppy disks easy 
targets for damage, loss, or theft. Data files are usually not 
copy protected, so it is easy to move them from one disk to 
another. Thus, a potential exists for unauthorized access to 
data. One cannot discern from looking at printed output 
whether the data came from an authorized floppy or a bootleg 
copy. 

Central File storage 

Files 

Public 
Files 

Illllll!1111111 
11111111111 

Figure 3-Software-based file server approach 



PC Proliferation: Planning for Application Maintenance 529 

Some file server schemes attempt to prevent unauthorized 
data access by requiring a system administrator to be responsi
ble for user access to centralized data files. However, a system 
administrator can rarely be expected to know enough about 
every user's job to be able to make optimal decisions about 
which user should have access to what data. In addition, an 
authorized user with a personal computer still has the ability 
to copy an official file from the central library to a floppy disk 
and pass the floppy on to an unauthorized user. 

Potential User-developed Application Problems 

Software development practices including structured pro
gramming, structured analysis, system specification meth
odologies, structured design, and structured technical reviews 
have become accepted as standards for software engineering. 
These practices consist of techniques aimed at producing bet
ter products and reducing future maintenance effort. Colleges 
are teaching these techniques and software departments are 
enforcing their use. 

When users develop customized software applications using 
personal computers, accepted software engineering standard 
practices may not be applied. Most users have no formal 
training in such practices, nor are they bound by software 
department development standards. Few user-built applica
tions will be developed with ease of maintenance as a feature. 
Yet, user-developed PC software may sometimes become crit
ical to an organization's operations. The developers of such 
applications can be promoted, fired, transferred or they might 
quit, retire, or die. Modifications will then become someone 
else's responsibility and the ease of maintenance issue will 
surface. 

Personal computer users often develop their own software 
despite a rich variety of commercial applications from which 
to choose, simply because the opportunity to do so exists. In 
the days of centralized computing, end users typically were 
not permitted access to software development tools. With 
personal computers, vertical application development envi
ronments are available on users' desktops and managers do 
not often care to risk reduced motivation by enforcing dis
cipline typically associated with the duller aspects of com
puting. Commercial software provides generic functionality to 
broaden a vendor's market potential. However, users often 
want to tailor application systems to their unique needs. 

When user-written software becomes critical to business 
operations (e.g., because of success in providing unique solu
tions to unique problems) and when someone other than the 
original developer becomes responsible for maintenance, 
maintenance problems may be worse than in centralized envi
ronments. For example, user-developed programs may be 
written in a little-used programming language with which no 
one in the company is familiar, they may have been modified 
many times, or there may be no documentation and no com
ments in the programs. 

SOME PARTIAL SOLUTIONS 

Personal computer proliferation in the workplace will not de
crease application maintenance efforts as is sometimes pre-

dicted. This should not lead to a conclusion that personal 
computers should be banned from the workplace or that the 
proliferation should be controlled. Because PCs are such tre
mendous productivity aids for knowledge workers, intelligent 
management will wholeheartedly endorse PC acquisition de
spite incidental problems such as those cited here. However, 
"security ... cannot be delegated away; it must be closely inte
grated with the overall information resource management 
planning and control.,,4 

Anticipating Maintenance Effort 

New areas of application maintenance can be planned for 
and included in the cost of raising knowledge worker produc
tivity. A preliminary planning step would be to identify the 
new skills required of the software maintenance staff in order 
to solve problems arising from personal computing. 

Medium to large size organizations could take an "expert" 
approach. For example, the network shown in Figure 1 might 
be supported by a staff including IBM PC™ experts, 
Macintosh TM experts, network experts, file transfer experts, 
communications experts, and database experts. To qualify as 
an expert one would have to demonstrate unusual capabilities 
in an area of specialty. 

In addition to tracking data anomalies that may be passed 
to a central processor or network file server, a microcomputer 
support team assumes the maintenance function of tracking 
software versions passed out to PC users. Bookkeeping will be 
involved and physical distribution considerations will emerge. 
For example, the support team might require that previously 
distributed floppy disks must be returned before new applica
tion versions will be distributed. Further, new integrated soft
ware links that move files from mainframe applications or a 
database management system into micro applications require 
communications software at both the micro and mainframe 
level, often involving custom programming. Custom software 
will have to be maintained when any of the links is modified 
by a new version of the commercial micro software, a change 
in format of the mainframe data, or in some other way. 

Typically, today's maintenance programmers do not have 
PC problem-solving skills. There is a need for providing main
tenance staff with specialized PC training. Once a cadre of 
specialists in microcomputer software maintenance has been 
trained and provided with proper equipment (PCs included), 
a personal computer support group can be formed. The sup
port group could solve unique end user problems related to 
personal computing. Funding this new maintenance activity 
could be on a rechargeable basis; that is, funds would be 
transferred from users' departments to the support organiza
tion based on effort provided. 

Limiting Maintenance Problems 

Poor planning in anyone of the areas of maintenance men
tioned will result in data imperfections and user-developed 
applications that are difficult to modify. Personal computer 
proliferation within a problem-limiting framework could con
fine future maintenance problems to manageable propor
tions. 



530 National Computer Conference, 1987 

Network complexity can be limited. Every knowledge 
worker in an organization does not have a legitimate need to 
download the corporate general ledger to a spreadsheet on 
their personal computer. Further, network links to every per
sonal computer in an organization are not needed. Typically, 
information sharing occurs within the confines of a small de
partmental or project group (i.e., five to fifty workers) be
cause the information processed is of primary interest only to 
that group. 

The number of workers with responsibility and authority 
for entering and updating official data can be strictly limited, 
preferably to one user for one data file. Official data files 
should not be kept on floppy disks except in rare instances for 
backup purposes. Updating a hard disk file from a floppy 
should not be allowed without approval of knowledgeable 
management. 

With respect to user-developed software, end users should 
be required to abide by the same software engineering stan
dards in current use by the software department if that soft
ware might become part of the corporate application library. 
Advanced users developing custom applications need ade
quate training in modem software development techniques 
and their applications should be subject to the same pre-

implementation review procedures as those developed by soft
ware department staff. 

A micro support group will ease transition into a personal 
computing environment. Tasks of this group could include 
evaluating new products, helping to select equipment, pro
curing equipment, setting up equipment, assisting with soft
ware maintenance, assisting with the development of new 
system and application software, and providing users with 
technical assistance and training. 

Software managers must realize that application mainte
nance will not be eliminated by PC proliferation. Intelligent 
management of personal computing environments must rely 
on the experience and skill of software maintenance profes
sionals to make personal computing work effectively in a cor
porate setting. 

REFERENCES 

1. Edison, Tom A. TAP, January, 1983. 
2. "Ex-hacker Offers Supplemental Security Checklist." Computerworld, July 

8, 1985, p. 15. 
3. Fisher, Royal P. Information Systems Security. Englewood Cliffs, New Jer

sey: Prentice-Hall, 1984. 
4. Schweitzer, James A. Computer Crime and Business Information: A Prac

tical Guide for Managers. New York: Elsevier, 1986. 



A measure of program nesting complexity 

by ELDON Y. LI 
California Polytechnic State University 
San Luis Obispo, California 

ABSTRACT 

For more than a decade, metrics of software complexity has been an intriguing topic 
for discussion. Many metrics have been proposed. Among them, the cyc10matic 
complexity metric is the easiest to understand and compute. In this paper, the 
cyc10matic complexity metric and its extensions are reviewed. The strengths and 
weaknesses of the cyc10matic metric are identified. One of the major weaknesses of 
the cyc10matic metric as well as its extensions is that they are insensitive to the level 
of nesting within various constructs. To remove this shortcoming, a "nesting" com
plexity metric is proposed. The process of deriving this new metric is described in 
this paper. This new metric is proved to be superior to the cyc10matic metric in 
reflecting program complexity. 

531 





INTRODUCfION 

Since the emergence of structured programming concepts, 
program complexity has received tremendous attention from 
researchers in software engineering. "Program complexity" 
may be classified into two categories: computational complex
ity and psychological complexity. 1 Computational complexity 
refers to the difficulty of deriving expected output and of 
verifying an algorithm's correctness, and psychological com
plexity refers to the characteristics of software which make it 
difficult to understand and work with. Both types of complex
ity are not easily measured or described, and are often ignored 
during the system planning process. "But when this complex
ity exceeds certain unknown limits, frustration ensues. Com
puter programs capsize under their own logical weight, or 
become so crippled that maintenance is precarious and modi
fication is impossible.,,2 Based on Mills's observation, it seems 
wise to apply the "divide-and-conquer" principle to program 
design by decomposing the entire program into modules and 
submodules. Each module and submodule will have much less 
complexity and will, in turn, be much easier for programmers 
and users to comprehend and maintain. 

Numerous metrics have been proposed to measure program 
complexity. Excellent reviews of these measures are provided 
by Fitzsimmons and Love,3 Mohanty,4 and Berlinger.5 Several 
empirical studies have applied some selected metrics to 
measure program complexity and correlate such complexity 
with the number of errors occurring in the measured modules. 
It was found that the occurrence of program errors corre
lates significantly with the complexity of the target pro
gram.3,6, 7,8,9,10,11,12,13,14 This finding supports the popular hy-

pothesis that program complexity is a major factor influencing 
the quality of computer programming. 

Among various current complexity measures, the cyclo
matic metric 15 is the easiest to understand and calculate. It is 
also the only one that lends itself to determining a minimum 
test set for program testing. In this paper, we review the 
cyclomatic metric and its extensions. The strengths and weak
nesses of cyclomatic metric is identified as well. Further, a 
new metric to reflect the levels of nesting is proposed. 

THE CYCLOMATIC COMPLEXITY METRIC 

The cyclomatic complexity metric was proposed by McCabe. 15 
His metric is based on the decision structure of a program and 
the cyclomatic number16 (also called the cycle rank,17 or the 
nullity18) of the classical graph theory. The cyclomatic com
plexity metric, V(G), as defined by McCabe, is 

v (G) = E - N + 2P 

A Measure of Program Nesting Complexity 533 

where E is the number of edges (or arcs), N is the number of 
vertices (or nodes), and P is the number of connected compo
nents. A component is a subgraph representing an external 
module that either is calling or is being called by another 
module. For example, consider a main program M and two 
called subroutines A and B having a control structure shown 
in Figure l. 

The total graph in Figure 1 is said to have three connected 
components and each subgraph has only one connected com
ponent (itself). Therefore, the cyclomatic complexity num
bers are: 

and 

V(M) = 3 - 4 + 2(1) = 1, 
V(A)=2-2+2(1)=2, 
V(B) = 4 - 4 + 2(1) = 2, 

V(M + A + B) = 9 -10 + 2(3) = 5. 

It can be easily shown that V(M + A + B) = V(M) + 
yeA) + V(B). 

McCabe further demonstrates two alternate ways of finding 
the complexity number V. One is to count the number of both 
inner and outer regions on the plane control graph. Notice 
there should be one outer region for each subgraph. In fact, 
if we form a closed subgraph by drawing an imaginary arc 
from the exit node to the entry node for each sub graph in 
Figure 1, and count all the inner regions afterward, we would 
yield the same number. We believe that the latter approach is 
less confusing than the former. For example, Figure 2 shows 
the closed subgraphs derived from Figure 1. By counting the 
inner regions (II through Is), we get a V(G) of 5. 

M: 

M: 

0 A: 0 B: 

! ~ ~ 
0 

CD 
~ 
0 

Figure I-A graph with three connected components 

@, 
l '\ 

CD II) 
~ // 
0-....... 

A: 

Figure 2-A graph with three closed sub graphs 

0 , \ 
0 0 

\tI 
0 



534 National Computer Conference, 1987 

The other way of calculating V is to count the number of 
predicate conditions in the program. Then the cyclomatic 
complexity is: 

V(G) = Number of predicate conditions + 1. 

The attractive aspect of this method is that one can find the 
V ( G) directly from the program text without arduously con
structing a flow graph. For example, consider the following 
PL/l program: 19 

M: PROCEDURE(A,B,X); 
IF ((A> 1) & (B = 0)) THEN DO; 

X=XIA; 
END; 

IF ((A =2) I (X >1)) THEN DO; 

END; 

X=X+1; 
END; 

Notice that each "IF" statement in procedure M has two 
conditions in its predicate. This type of "IF" statement is 
called a compound "IF" construct. In contrast, an "IF" state
ment with only one condition is called a simple "IF" construct, 
hereafter. Since each condition in procedure M contributes 
one cyclomatic complexity count, the complexity number is 
thus V(M)=4+1=5. 

Figure 3(a) shows that the flow graph corresponds to pro
cedure M. Notice that it reflects the compound predicate by 
placing an extra exit edge for the second condition on each 
alternation node. For the convenience of counting, we substi
tute a traditional decision symbol for each alternation node 
and create Figure 3(b). It can be seen that Figure 3(b) is more 
readable and understandable than Figure 3(a). Therefore, we 
highly recommend adopting a decision symbol in flow-graph 
construction because it not only helps in counting the number 
of pre9icates but it also improves substantially the readability 
of the flow graph. 

THE ANOMALY AND THE EXTENSIONS OF THE 
CYCLOMATIC COMPLEXITY METRIC 

One of the anomalies of cyclomatic complexity measure is 
that it does not accurately reflect the complexity of various 
"IF" structures; namely, simple "IF," compound "IF," and 
nested "IF." Myers20 recommends an interval measure having 
one plus predicate counts as the lower bound, and one plus 
condition counts as the upper bound for the complexity level. 
Myers clearly demonstrates that this new metric can accu
rately reflect the complexity of various "IF" structures. How
ever, the measure does not lend itself to quantitative analysis 
due to its "interval" data representation. 

Hansen21 indicates that the cyclomatic complexity metric 
does not reflect "expression" complexity. In other words, "a 
program with more operators is simply bigger ... (and) ... 
more complex" and thus [has a] higher expression complex
ity.21 He proposes two measures in a pair to measure both 
control flow complexity and expression complexity. The 
former is measured by one plus predicate counts (including 

o .a 

tOl~ b d 0 

Ye 
NC~ f 9 0 

oX 
(a) (b) 

Figure 3-A control graph with compound predicates 

repetitive construct), the latter operator counts in the pro
gram. However, Hansen's metric suffers the same deficiency 
as Myers's; that is, it does not lend itself to quantitative analy
sis due to its "interval" data representation. Moreover, it is 
somewhat difficult to compute and can be applied only to 
program text. 

Another major weakness of the cyclomatic complexity met
ric is its insensitivity to the level of nesting within various 
constructs. For example, three "WHILE" loops in succession 
result in metric values similar to those for three nested 
"WHILE" loops. This anomaly was brought forward by Cur
tis, Sheppard, Milliman, Borst, and Love/ but they did not 
offer any solution to it. Inspired by this anomaly, we examine 
various structures and propose a new metric to accurately 
reflect their complexity levels. 

STRENGTHS AND WEAKNESSES OF THE 
CYCLOMATIC COMPLEXITY METRIC 

Although the cyclomatic complexity measure has many anom
alies, it has several strengths. We summarize its strengths and 
weaknesses in this section. 

Strengths 

1. It is easy to compute from the program text and the flow 
graph. 

2. It supports a top-down development process to control 
module complexity in the design phase, that is, before 
actual coding takes place. 

3. It lends itself to determining the maximum set of inde
pendent test paths. 

4. It can be used to control the complexity of program 
modules. (McCabe recommends that an upper bound of 
10 should be used as a guide to control the complexity of 
program modules. This recommendation is endorsed by 
Schneidewind and Hoffmann13 and Walsh.22) 

5. It can be used to evaluate alternate program design to 
find the simplest possible program structure. 



6. It serves to partition a program structure into high or low 
error occurrence according to its value. 

7. It serves to partition a program structure into high or low 
error finding and removing times according to its value. 

8. It can be used as a guide for allocating testing resources. 

Weaknesses 

1. It measures the psychological complexity, not the 
computational complexity. 

2. It views all predicates as contributing the same amount 
of complexity. 

3. It is insensitive to the level of nesting within various 
constructs. 

4. It is insensitive to the frequency and the types of input 
and output activity. 

5. It is insensitive to the size of purely sequential pro
grams. 

6. It is insensitive to the number of variables in the pro
gram. 

7. It is insensitive to the intensiveness of data operations 
(i.e., the number of operators an.d operands) in the 
program. 

8. It is insensitive to the dependency of control flows on 
foregoing data operations. (See, for example, the pro
gram listed on page 43 of Myers. 19) 

9. It is insensitive to a situation in which one condition is 
"masked" or "blocked" by another within a nesting 
construct. (See, for example, the program listed on 
page 43 of Myers. 19) 

10. It is insensitive to the program style and the use of 
"GOTO" statements. 

11. It measures neither the types and levels of module in
teraction, nor the levels of module invocation. 

DERIVATION OF THE NESTING 
COMPLEXITY METRIC 

The purpose of our new complexity metric is to reflect the 
level of nesting within various constructs while keeping the 
computation process as easy as possible. Bearing these two 
objectives in mind, a new metric called "nesting complexity 
metric," L(G), is formulated. 

Consider the six structured programming control flow 
constructs23 depicted in Figure 4. The "sequence" construct 
has a complexity V of unity while the "IF," the "WHILE," 
and the "UNTIL" constructs each has a V of 2, but the 
"CASE" construct of n branches has a V equal to n - 1 nested 
"IF" statements. That is, a "CASE" statement with two 
branches is equivalent to a simple "IF" statement. The rela
tionship of the complexities of various constructs is thus: 

sequence < (simple IF) = (simple WHILE) 
= (simple UNTIL) = (two-branch CASE). 

This relationship, along with our belief that nesting increases 
program complexity, are the premises of our metric to be 
derived subsequently. 

A Measure of Program Nesting Complexity 535 

0 <> <> 
~ {l I \ 
0 0 0 

• \ I 
0 0 0 

(a) Concatenation (b) IF-THEN (c) IF-THEN-ELSE 

<> 0 <> 
(i' t' , ~ \ 

0 0 0 

~ \ ~ I 
0 0 0 

(d) WHILE-DO (e) REPEAT-UNTIL (f) CASE-OF 

Figure 4---Structured programming control flow constructs 

Now, consider the following structured programming state-
ments: 

A: IF (X = 0) THEN a 
ELSEb 

B: IF (X =0) AND (Y=O) THEN a 
ELSEb 

C: IF (X = 0) THEN IF (Y = 0) THEN a 
ELSEb 

D: IF (X = 0) AND (Y = 0) AND (Z = 0) THEN a 
ELSEb 

E: IF (X = 0) THEN IF (Y = 0) THEN 
IF (Z =0) THEN a 

ELSEb 
F: WHILE (X = 0) DO a 
G: WHILE (X = 0) AND (Y = 0) DO a 
H: WHILE (X = 0) DO WHILE (Y = 0) DO a 
I: WHILE (X = 0) AND (Y = 0) AND (Z = 0) DO a 
J: WHILE (X = 0) DO WHILE (Y = 0) DO WHILE 

(Z =0) DO a 
K: REPEAT a UNTIL (X = 0) 
L: REPEAT a UNTIL (X = 0) AND (Y = 0) 
M: REPEAT REPEAT a UNTIL (Y = 0) UNTIL (X = 0) 
N: REPEAT a UNTIL (X = 0) AND (Y = 0) 

AND (Z =0) 
0: REPEAT REPEAT REPEAT a UNTIL (X = 0) 

UNTIL (Y=O) UNTIL (Z=O) 
P: CASEXOF 

O:a 
Q: CASEXOF 

0: CASE YOF 
O:a 

R: CASE XOF 
0: CASE YOF 

0: CASE Z OF 
0: a 

S: IF (X =0) THEN a 
IF (X =1) THEN b 

T: IF (X = 0) THEN a 
IF (X =1) THEN b 
IF (X =2) THEN c 

U: IF (X =0) THEN a 
ELSE IF (X = 1) THEN b 



536 National Computer Conference, 1987 

V: IF (X = 0) THEN a 
ELSE IF (X = I) THEN b 

W: CASE XOF 
0: a 
l.:b 

X: CASE X OF 
O:a 
l.:b 
~:c 

Y: CASEXOF 
O:a 
l.:b 
ELSE: c 

Z: CASE XOF 
O:a 
l.:b 
~:c 
ELSE: d 

ELSE IF (X =2) THEN c 

Based on the foregoing premise, we begin ranking the com
plexity of the constructs one pair at a time. Finally, the follow
ing complexity ordering is derived: 

A =F=K =P, 
B =G =L, 
C=H=M, 
D =1 =N, 
C=D, 
E =J = 0, 
H=I, 
M=N, 
Q=C, 
R=E, 
S=W=Y, 
T=X=Z, 
U=C, 
V=E, 

and 

A <B<D, 
B<C, 
D<E, 
C<E, 

F<G <I, 
G<H, 

I<J, 
H<J, 

K<L <N, 
L<M, 

N<O, 
M<O, 

P < Q <R, 
S<T, 

U<V, 
S<U, 

T<V, 
W<X, 
Y<Z, 

P<W, 
P<Y, 

W<Q, 
Y<Q, 

X<R, 
Z<R. 

Therefore, the final relationship is 

{A,F,K,P} < {B, G,L,S, W, Y} 
< {C,D,H,I,M,N, Q, T, U,X,Z} < {E,J, O,R, V}. 

In contrast, the relationship from McCabe's cyc10matic metric 
is 

{A,F, K,P} < {B, C, G,H,L,M, Q,S, U, W, Y} 
< {D,E,I,J,N,O,R, T, V,X,Z}, 

which does not reflect the proper complexity ordering de
picted above. 

After comparing both relationships illustrated above, ten 
constructs--C, E, H, J, M, 0, Q, R, U, V, which were ranked 
differently by the authors and McCabe's metric-are identi
fied. All of these constructs are nested. We decided to in
crease the complexity number of any nested construct by one 
less the number of its nested levels. This practice consequently 
allows us to derive the following process of calculating the 
nesting complexity metric. 

PROCESS OF CALCULATING THE NESTING 
COMPLEXITY METRIC 

The final relationship derived in the last section is the premise 
of our proposed metric. Since the purpose of our new com
plexity metric is to reflect the level of nesting within various 
constructs while keeping the computation process simple, we 
have formulated the process of calculating the "nesting com
plexity metric," L(G), from the program text as follows: 

1. Count and mark all the Boolean logical operators, 
"AND," "OR," and "XOR," in the program and assign 
one unit of complexity to each occurrence. However, do 
not count "NOT." 

2. Count and mark keywords "IF," "WHILE," "UNTIL," 
and "CASE" at the first level of nesting within each flow 
construct. Once again, assign each occurrence with one 
unit of complexity. Note that if a control statement has 
at least one branch which leads directly to the program 
exit, any immediately following control statement 
should be considered to be at the first level of a new 
nested construct. 

3. Count and mark all the remaining "IF," "WHILE," 
"UNTIL," and "CASE" keywords and assign two units 
of complexity to each occurrence. 

4. Count and mark all but the first and the "ELSE" condi
tions in each "CASE" statement, and assign each occur
rence with one unit of complexity. Remember to ignore 
the first and the "ELSE" conditions, otherwise each 



level of the construct will be unnecessarily inflated by 
two units of complexity. 

5. Sum up all the complexity units derived by the previous 
four steps and then add one into it. The total is our new 
complexity measure, L(G). 

Alternately, we can obtain L ( G) from the following two
step process: 

1. Find the cyclomatic complexity measure, V(G), using 
McCabe's approach. 

2. Identify the second, the third, the fourth, and subse
quent levels of nesting constructs and assign each occur
rence with one unit of complexity. Do not forget that if 
a control statement has at least one branch which leads 
directly to the program exit, any immediately following 
control statement should be considered to be at the first 
level of a new nested construct. 

Notice that the new nesting metric, L(G), possesses all but 
one of the strengths and weaknesses of the cyclomatic metric, 
V(G). It exchanges a weakness of V(G) for one of its own 
strengths; namely, the L(G) is now sensitive to the level of 
nesting but no longer is able to determine the maximum num
ber of independent test paths. Three characteristics of the 
L(G) metric are worth mentioning. First, the L(G) metric 
assumes that nested constructs are more complex than simple 
constructs, but a nested control statement having one branch 
directing to the end of the program does not contribute addi
tional complexity. Second, the L(G) penalizes the excessive 
use of nested constructs and encourages substituting the 
"CASE" statement for the nested "ELSE IF" construct. 
Third, the L (G) converges to the cyclomatic complexity met
ric if there is no nested construct in the program text. 

After applying the counting procedure to the constructs A 
through R of the previous section, we have four groups of 
complexity: 

1. Complexity of 2: {A,F,K,P}, 
2. Complexity of 3: {B,G,L}, 
3. Complexity of 4: {C,D,H,l, M, N, Q}, 

and 
4. Complexity of 6: {E,J,O,R}. 

The relationship established earlier is therefore preserved. 
In contrast, McCabe's V(G) gives the following three 

groups of complexity: 

1. Complexity of 2: {A,F,K,P}, 
2. Complexity of 3: {B,C,G,H,L,M,Q,S,U, W,Y}, 

and 
3. Complexity of 4: {D,E,I,J,N,O,R,T, V,X,Z}. 

Those constructs that have different metric values between 
L(G) and V(G) are shown in Table I. 

APPLICATIONS OF THE NESTING 
COMPLEXITY METRIC 

To validate the L ( G) metric, four algorithms from Kernighan 
and Plauger4 were measured. A comparison of the outcomes 

A Measure of Program Nesting Complexity 537 

TABLE I-Value of L(G) versus V(G) under the same construct 

Construct L(Gj V(G) 

C 4 3 

E 6 4 

H 4 3 

J 6 4 

M 4 3 

0 6 4 

Q 4 3 

R 6 4 

U 4 3 

V 6 4 

TABLE I1-Comparison of the outcomes of four complexity 
metrics 

A 1 gori thm from Kern i ghan 
and Pl auger [24] McCabe Myers Hansen L(G) 

A checkers move generator: 
([24], pp. 41-42) 

Original version 17 (17: 17) (15,60)* 25 

Improved vers i on 17 (10: 17) (10,46) 17 

Jul i an to Gregori an date 
convers i on: 
([24], pp. 43-46) 

Original version 19 (17: 19) (17,85) 30 

Improved version #1 10 (5: 10) (5,25) 11 

Improved version #2 11** (6: 11 )** (6,25)** 13 

Merge two 1 i sts: 
([24], pp. 18-19) 

Original version (5:5) (8,10)*** 

Improved vers i on (3:5) (3,16) 

Computer dating service: 
([24], pp. 21-22) 

Original version (7:7) (7,10) 

Improved version #1 (3:6) (3,12) 

Improved vers i on #2 (3:3) (3,6) 

* Computed GOTO construct is regarded as CASE construct in this case. 

** One unit of complexity is introduced by an additional DO-WHILE 
construct. 

*** Arithmet i c I F construct is counted as twi ce the complexity of log i ca 1 
IF's in this case. 

of applying four different complexity metrics is illustrated in 
Table II. After scrutinizing the outcomes of these metrics, 
four major findings are notable: 



538 National Computer Conference, 1987 

1. The difference between the two elements in Myers's 
metric indicates the number of logical compound oper
ators, that is, "AND," "OR," and ~'XOR." 

2. The first element of Hansen's and Myers's metrics are 
the same if the program contains no "CASE" construct. 

3. The only metric that does not reflect program improve
ment correctly is McCabe's metric. Although program 
improvement might introduce more operators, the con
trol flow complexity should definitely be reduced. 

4. The difference between L(G) and V(G) metrics indi
cates the number of nested levels. When L(G) equals 
V(G), the program contains no nested construct. 

CONCLUSION 

We have reviewed the cyclomatic complexity metric and its 
extensions, and have discussed strengths and weaknesses of 
the metric. An extension of the cyclomatic complexity metric, 
the "nesting complexity metric," has been proposed herein to 
remove the weakness of being insensitive to the level of nest
ing. Although the "nesting complexity metric," L(G), is no 
longer able to directly determine the. maximum number of 
independent test paths, it is superior to the cyclomatic com
plexity metric because it is now able to reflect the level of 
nesting structure and to penalize the excessive use of nested 
constructs thus encouraging the practice of substituting the 
"CASE" statement for the nested "ELSE IF" construct. 
Therefore, the nesting metric L(G) is better than the cyclo
matic metric V (G) in measuring program complexity. 
However, we highly recommend using a pair metric of 
(V(G),L(G)) because is supplies more information than the 
L(G) alone. Besides, the V(G) number is readily obtained 
since it is a by-product of finding the L(G) value. 

REFERENCES 

1. Curtis, B., S.B. Sheppard, P. Milliman, M.A. Borst. and T. Love. "Mea
suring the Psychological Complexity of Software Maintenance Tasks With 
the Halstead and McCabe Metrics." IEEE Transactions on Software En
gineering, SE-5 (1979) 2, pp. 96-104. 

2. Mills, H.D. "Mathematical Foundations for Structured Programming." 
FSC 72-6012, Gaithersburg, MD.: IBM Federal System Division, 1972. 

3. Fitzsimmons, A.B. and L.T. Love. "A Review and Evaluation of Software 
Science." ACM Computing Surveys, 10 (1978) 1, pp. 3-18. 

4. Mohanty, S.N. "Models and Measurements for Quality Assessment of 
Software." ACM Computing Surveys, 11 (1979) 3, pp. 251-275. 

5. Berlinger, E. "An Information Theory Based Complexity Measure." 
AFIPS Proceedings of the National Computer Conference, Vol. 49, 1980, 
pp. 773-779. 

6. Bulut, N. and M.H. Halstead. "Impurities Found in Algorithm 
Implementation." Technical Report CSD-TR-111, Computer Sciences De
partment, Purdue University, 1974. 

7. Cornell, L. and M.H. Halstead. "Predicting the Number of Bugs Expected 
in a Program Module." Technical Report CSD-TR-205, Computer Sciences 
Department, Purdue University, 1976. 

8. Elshoff, J.L. "Measuring Commercial PU1 Programs Using Halstead's 
Criteria." ACM SIGPLAN Notices, 11 (1976) 5, pp. 38-46. 

9. Fitzsimmons, AB. "Relating the Presence of Software Errors to the The
ory of Software Science." Presented to the 11th Hawaii International Con
ference of Systems Sciences, January 1978. 

10. Funami, Y. and M.H. Halstead. "A Software Physics Analysis of Akiya
ma's Debugging Data." Technical Report CSD-TR-l44, Computer Sci
ences Department, Purdue University, 1975. 

11. Halstead, M.H. "An Experimental Determination of the "Purity" of a 
Trivial Algorithm." Technical Report CSD-TR-73, Computer Sciences De
partment, Purdue University, 1972. 

12. Love, L.T. and A.B. Bowman. "An Independent Test of the Theory of 
Software Physics." ACM SIGPLAN Notices, 11 (1976) 11, pp. 42-49. 

13. Schneidewind, N.F. and H.-M. Hoffmann. "An Experiment in Software 
Error Data Collection and Analysis." IEEE Transactions on Software En
gineering, SE-5 (1979) 3, pp. 276-286. 

14. Sunohara, T., A Takano, K. Uehara, and T. Ohkawa. "Program Complex
ity Measure for Software Development Management." Proceedings of the 
Fifth Intematinal Software Engineering Conference, San Diego, California, 
1981, pp. 100-106. 

15. McCabe, T.J. "A Complexity Measure." IEEE Transactions on Software 
Engineering, SE-2 (1976) 4, pp. 308-320. 

16. Berge, C. Graphs and Hypergraphs, Amsterdam, The Netherlands: North
Holland,1973. 

17. Harary, F. Graph Theory, Reading, Massachusetts: Addison-Wesley, 1969. 
18. Chan, S.-P. Introductory Topological Analysis of Electrical Networks, New 

York: Holt, Rinehart and Winston, 1969. 
19. Myers, G.J. The Art of Software Testing, New York: Wiley-Interscience, 

1979. 
20. Myers, G.J. "An Extension to the Cyclomatic Measure of Program Com

plexity." ACM SIGPLAN Notices, 12 (1977) 10, pp. 61-64. 
21. Hansen, W.J. "Measurement of Program Complexity by the Pair (Cy

clomatic Number, Operator Count)." ACM SIGPLAN Notices, 13 (1978) 
3, pp. 29-33. 

22. Walsh, T.J. "A Software Reliability Study Using a Complexity Measure." 
AFIPS Proceedings of the National Computer Conference, Vol. 48, 1979, 
pp. 761-768. 

23. Ledgard, H.F. and M. Marcotty. "A Genealogy of Control Structures." 
Communications of the ACM, 18 (1975) 11, pp. 629-639. 

24. Kernighan, B.W. and P.J. Plauger. The Elements of Programming Style, 
New York: McGraw-Hill, 1974. 



Towards automatic software fault location through 
decision-to-decision path analysis 

byJ~ESS.COLLOFELLO 

Arizona State University 
Tempe, Arizona 

and 
LARRY COUSINS 
GTE Communications Systems 
Phoenix, Arizona 

ABSTRACT 

Software development is a complex and error prone process. As a result of this 
process, much time is spent debugging software. This debugging process actually 
consists of two activities, fault localization and repair. For most problems, much of 
the debugging effort is devoted to fault localization. In this paper, current fault 
localization techniques are surveyed and a new technique called relational path 
analysis is proposed. Relational path analysis suggests that there exists information 
associated with stored execution paths of programs that, when analyzed heuris
tically, can localize faults with statistical significance. This paper presents a set of 
candidate heuristics for relational path analysis and the results of an experiment 
utilizing the heuristics. Conclusions regarding the effectiveness and usability of this 
technique and future research in this area are also discussed. 

539 





INTRODUCTION 

Software development is a complex and error prone process. 
Although hardware costs during the last 30 years have consis
tently dropped, software costs have continued to climb. 1

,2,3,4 

One of the significant factors in these inereased costs is the 
expense incurred performing software fault (error) localiza
tion and repair. As the complexity and size of software sys
tems continues to increase dramatically, emphasis is needed 
on developing automated methods to help perform fault 
localization and repair activities. 

It is important to distinguish between the terms fault locali
zation, fault repair, and debugging. Myers defines debugging 
as: 

the activity that one performs after executing a successful 
test case [successful in the sense that it found a bug]. De
scribing it in more concrete terms, debugging is a two-part 
process; it begins with some indication of the existence of an 
error (e.g., the results of a successful test case), and it is the 
activity of (1) determining the exact nature and location of 
the suspected error within the program and (2) fixing or 
repairing the error. 5 

Thus, debugging entails both fault localization and repair. 
In the remainder of this paper, only the fault localization 
aspect of debugging is addressed. 

CURRENT FAULT LOCALIZATION METHODS 

Currently, many techniques and tools are used to perform 
fault localization. These methods can be classified either as 
knowledge-based or non-knowledge-based. Most of the exist
ing fault localization approaches can be classified as non
knowledge-based. Over 100 such approaches were cited by 
Myers5 in 1979. There are two common threads that most of 
these non-knowledge-based approaches possess. The first is 
that they usually provide powerful control over the program 
under test (e.g., symbolic execution of code). The second is 
that a user is required to provide all the intelligence necessary 
to guide and especially interpret the testing/debugging ses
sion. 

Knowledge-based fault localization systems can be identi
fied by their autonomous behavior. The systems themselves 
interpret the information they generate to localize faults; the 
information is not passed to a user for interpretation, as is the 
case in non-knowledge-based systems. 

An example of a knowledge-based fault localization system 
is PROUST.6 The goal of PROUST's designers was to create 
a framework sufficient to catch all possible errors in small 

Towards Automatic Software Fault Location 541 

programs. They also wanted the program to understand the 
nature of the bugs, state it, and suggest a form of solution. To 
accomplish these objectives, the system requires that the pro
gram be totally and correctly specified. The major practical 
limitation of this system is that it is extremely difficult to form 
such specifications even for small programs, and there is no 
way to guarantee the specifications are correct even after they 
have been stated. 

Another interesting system that approaches debugging 
through the avenue of a knowledge-base is the Program Test
ing Assistant developed by Chapman.7 The unique quality 
that Chapman's system possesses is that as programs are de
veloped and tested, a user can request that the system auto
matically store the test cases for future use. When a bug arises 
in a feature being tested, the system in coordination with the 
user can request that the appropriate saved test cases be rerun 
automatically-either before the system has been repaired to 
aid in identifying the problem or after the system has been 
repaired to ensure its correctness. In conjunction with this 
capability, the Programming Testing Assistant heuristically 
modifies the corresponding test cases when the source code is 
changed. This preserves the ability of the system to continue 
to use, if possible, previous test cases to perform a type of 
automated regression testing of the code. 

The major disadvantage of this system is that it only works 
with LISP code. Given the indistinguishability of LISP code 
and data, it may in fact only be practical with LISP. The major 
advantage is the way the system relieves users from having to 
manually save and execute test cases. 

RELATIONAL PATH ANALYSIS 

In this section a theory called relational path analysis is de
scribed that suggests that there exists information associated 
with the execution paths of programs which when analyzed 
heuristically can produce statistically significant fault loca
tions. 

The basis of this theory stems from analysis of DD-path 
(decision-to-decision-path) executions. A DD-path is a sec
tion of straight-line code that exists between predicates in a 
program. The theory suggests that a database of test cases that 
execute correctly can be utilized to locate DD-paths that con
tain faults in an incorrect program execution. To accomplish 
this objective, the database of test cases is supplemented to 
contain execution path information consisting of the DD
paths traversed for each test case. Various heuristics are then 
applied comparing the execution path for the incorrect pro
gram with those of correct program executions in an attempt 
to locate DD-paths on the incorrect program path which may 
be the source of the error. 



542 National Computer Conference, 1987 

In the remainder of this section, ten such heuristics based 
upon various strategies for program debugging are described. 
Each heuristic examines both the current execution path and 
the execution path database to identify DD-paths in the pro
gram which may contain the error. In the next section, experi
mental results utilzing these heuristics will be presented. 

Heuristic 1 

The first heuristic returns all of the DD-paths on the errone
ous path that are not executed in any of the correct execution 
paths in the database. This heuristic is based on the theory 
that if a DD-path is traversed by an error-producing test case 
that has never been traversed before, it is likely to contain the 
error. 

Heuristic 2 

Heuristic 2 returns all the DD-paths that are elements of the 
erroneous execution path whose sum of all executions in the 
correct execution paths is less than or equal to 50. The number 
50 was chosen as a possible lower bound for experimental 
purposes and certainly is not sacred. 

The rationale for this heuristic is similar to that for heuristic 
1 except that it was thought that the bound would allow flex
ibility in tuning the heuristic for finding different types of 
errors. Heuristic 2 recognizes that code paths may be exe
cuted several times correctly before some condition occurs 
that may create an error. 

Heuristic 3 

Heuristic 3 returns all the DD-paths that are elements of the 
erroneous execution path and whose sum of all executions, 
both correct and incorrect, is less than or equal to 50. Again, 
the number 50 is chosen for experimental reasons. Heuristic 
3 is the same as 2 except that the sum of all test case executions 
is utilized. 

The rationale for heuristic 3 is analogous to that for number 
2, and is based on the idea that the fewer times a DD-path is 
executed, the higher the probability that it contains an error. 

Heuristic 4 

Heuristic 4 returns DD-paths in the erroneous execution 
path with the maximum ratio of times executed in the er
roneous path to total number of executions in the correct 
execution path database. For example, if one DD-path is 
executed 500 times by the error producing test case and 100 
times by all other test cases, and another DD-path is executed 
3 times by the erroneous test case and once by all the others, 
the ratio values for each would be 5 and 3 respectively. Heu
ristic 4 would then choose the first as the likely candidate to 
contain the error. 

The rationale for heuristic 4 suggests that DD-paths exe
cuted with a higher relative frequency in the erroneous path 
than in the correct paths may be more likely to contain the 
error than those with fewer executions. 

Heuristic 5 

Heuristic 5 returns the DD-path on the erroneous execution 
path that has been executed a minimum number of times (but 
non-zero) in the execution path database. Heuristic 5 is based 
on the theory that the DD-path that has been exercised least 
by the nonerror producing test cases may be the source of the 
error. 

Heuristic 6 

Heuristic 6 returns the DD-path on the erroneous execution 
path that has the corresponding minimum localized sum. A 
localized sum for a particular DD-path is defined as the sum 
of all the execution counts from the execution path database 
of three contiguous DD-paths which contain the particular 
DD-path in the center. 

This heuristic attempts to locate a localized pocket of min
imum contiguous DD-path executions with the assumption 
that those areas least exercised are more likely to contain the 
error. 

Heuristic 7 

This heuristic is analogous to heuristic 5 but it identifes the 
DD-path with the minimum number of executions by all test 
cases, including the erroneous path, instead of trying to locate 
the DD-path in the erroneous execution path with a corre
sponding minimum number of executions in the execution 
path data base. 

The rationale for including the erroneous execution path in 
the minimum calculation is that traversals of aDD-path (even 
on an erroneous execution path) increase the likelihood that 
the DD-path does not contain the error. 

Heuristic 8 

This heuristic returns sets of pairs of contiguous DD-paths 
that have been executed in the erroneous execution path and 
that have never been executed as a pair in the execution path 
database. This heuristic is based on the theory that some types 
of errors are caused by the sequencing of contiguous DD
paths. If a sequence has never been tested, it may be a likely 
candidate for the error. 

Heuristic 9 

Heuristic 9 is analogous to heuristic 8 except that this heu
ristic examines sequences of three contiguous DD-paths in
stead of examining contiguous sequences of two DD-paths. 

A sequence length of three was chosen to increase the accum 

racy of heuristic 8. 

Heuristic 10 

This heuristic extends the rationale utilized in heuristics 8 
and 9 to examine all contiguous sequences of DD-paths that 



have been executed in the erroneous execution path that have 
never been executed as noted in the execution path data base. 

RELATIONAL PATH ANALYSIS EXPERIMENT 

This section describes the experimentation utilizing relational 
path analysis. The experimental design is presented first, fol
lowed by the actual results and their interpretation. 

Experimental Design 

The first step of the experiment was to develop a Pascal 
path analysis tool that could automatically calculate the ten 
heuristics currently utilized by relational path analysis for a set 
of sample programs. Ten small Pascal programs were chosen 
from Jensen and Wirth's Pascal: User Manual and Report8 

and Grogono's Programming in Pascal9 to provide a non
biased test set. The programs selected are summarized in 
Appendix l. 

The next step involved creating test cases for each of the 
programs using a black box testing approach. The path analy
sis tool was then invoked for each test case preserving a record 
of the test case execution. The result of this step is a test suite 
for each program as well as the information needed for re
lational path analysis. 

To actually determine the effectiveness of relational path 
analysis, errors then had to be inserted into each program. 
Ten different error types were chosen from Myers' book The 
Art of Software Testing 5 to seed into the programs. The error 
types are described in Appendix 2. To simplify testing, each 
program was associated with only one error type. 

After assigning the error types, one error was randomly 
seeded into the code of each of the ten programs. Then, each 
program was executed with the previously generated test 
suite, and an analysis was performed utilizing the relational 
path analysis heuristics. The results of each error analysis 
were saved, and the seeding of errors was repeated four more 
times providing a total of five error analysis results per pro
gram. 

Towards Automatic Software Fault Location 543 

There were ten null hypotheses to test during the experi
ment. Each null hypothesis corresponded to a heuristic and 
could be stated as: "The probability that the heuristic is capa
ble of finding errors is 0." Thus, if a heuristic was capable of 
finding errors, this experiment would have to reject the null 
hypothesis at a 90% confidence level. When calculating a 
heuristic's error localization ability, all ten error types were 
utilized. 

RESULTS 

The results of using the ten heuristics on the ten programs are 
shown in Table 1. Each entry in this matrix contains the frac
tion of time in which the heuristic corresponding to the col
umn found the DD-path(s) that were in error in the program 
corresponding to the row. The mean at the bottom of each 
column corresponds to each heuristic's ability to identify er
rors across all ten programs (i.e., all ten different error types). 
The standard deviation (SD) and half length (HL) of a 90% 
confidence interval using the t statistic are also shown. Also 
shown is the average fraction (MDD) of DD-paths returned 
by each heuristic over the total number of DD-paths. This 
number provides an indication of the precision of a heuristic. 
Finally, the mean number of times each error type was found 
by all of the heuristics is shown in the column labeled 
"MEAN." 

Table II contains the 90% confidence intervals for the ten 
heuristics tested along with the average percentage of DD
paths returned by each heuristic. The confidence intervals and 
the percentage of DD-paths returned provide the means of 
assessing the relative utility of each heuristic. 

INTERPRETATION 

An analysis of the confidence intervals in Table II shows the 
null hypotheses for all of the heuristics rejected at the 90% 
confidence level. Thus, all of the heuristics possess some error 
localization ability. Table I also illustrates that the heuristics 

TABLE I-Results of heuristics 

Heuristic 
2 3 4 5 6 7 8 9 10 MEAN 

1 .4 1 .6 .4 .2 .2 .4 .8 .8 .8 .56 
P2 .4 1 .6 0 0 .2 0 .6 .6 .8 .42 
R3 .6 1 1 1 .2 0 .2 .6 .6 .6 .58 
04 .8 1 1 .4 0 0 0 1 1 .8 .60 
G5 .2 1 1 .8 .4 .2 .4 .6 .6 .6 .58 
R6 .6 1 1 1 .4 0 0 .6 .6 .6 .58 
A7 .6 1 .4 1 .4 0 0 .6 .6 .6 .52 
M8 .4 .8 .8 .8 .2 .2 .2 .4 .4 .4 .46 

9 .4 1 1 .8 .2 0 0 .4 .6 .8 .52 
10 .2 1 .8 .6 .2 .4 .2 .2 .2 .2 .40 

MEAN .46 .98 .82 .68 .22 .12 .14 .58 .60 .62 
S.D. .19 .06 .22 .33 .15 .14 .16 .22 .21 .20 
H.L. .11 .03 .13 .19 .09 .08 .09 .13 .12 .11 
MDD .15 .95 .90 .09 .09 .09 .09 .45 .48 .42 



544 National Computer Conference, 1987 

TABLE I1-Confidence intervals and percent DD-paths returned 

Heuristic C.I Percent DD-paths 

1 (.35, .57) 15% 
2 (.95, 1) 95% 
3 (.69, .95) 90% 
4 (.49, .87) 9% 
5 (.13, .31) 9% 
6 (.04, .2) 9% 
7 (.05, .23) 9% 
8 (.45, .71) 45% 
9 (.48, .72) 48% 

10 (.51, .73) 42% 

are not very sensitive to the ten error types (as demonstrated 
by the mean number of times each error type was found by all 
of the heuristics). These results suggest there is some basis for 
relational path analysis as an error localization technique. 

The usability of a heuristic requires an examination of both 
the confidence interval and the percentage of DD-paths re
turned by the heuristic. Based on the results in Table II the 
most usable heuristics appear to be numbers 1 and 4. ' 

CONCLUSION AND FUTURE RESEARCH 

In this paper relational path analysis is presented as a new 
technique for software fault localization. An experiment is 
also described in which the heuristics comprising relational 
path analysis were tested and found to localize errors with 
statistical significance. Although this experiment was limited 
to small programs and a small number of error types, the 
results were promising and suggest additional research should 
be performed. The ultimate goal of this research into re
lational path analysis should be to develop a powerful fault 
localization tool. Such a tool could apply sophisticated heuris
tics to help isolate errors. Although such a tool would be 
applicable throughout a product's life cycle, its diagnostic ca
pabilities would be most powerful after some systematic test
ing has been performed. Thus, the fault localization tool 
would be most beneficial during the later stages of testing and 
during software maintenance. Considering the high cost of 
performing maintenance activities and the difficulty of iso
lating errors during this phase, this tool could be very cost 
effective. 

Several additional research areas must be explored before 
an effective fault localization tool based on relational path 
analysis can be developed. First, the current heuristics must 
be examined and experimented with for additional types of 
errors and bigger programs. Additional heuristics may also be 
needed for detecting errors in large programs. Another inter
esting area to explore is the combination of various heuristics. 
Although much research remains to be done in this area, the 
need for automated fault localization is high and the potential 
benefits are significant. 

REFERENCES 

1. Boehm, B.W. "Software Engineering." In Classics in Software Engineering, 
E.N. Yourdon (ed.), New York: Yourdon Press, 1979, p. 326. 

2. Boehm, B.W. Software Engineering Economics. Englewood Cliffs, New 
Jersey: Prentice-Hall, 1981. 

3. Booch, G. Software Engineering With Ada. Menlo Park, California: 
Benjamin/Cummings, 1983. 

4. Zelkowitz, M.V. "Large-scale Software Development." In Principles of 
Software Engineering and Design, Englewood Cliffs, New Jersey: Prentice
Hall, 1979, pp. 2-1l. 

5. Myers, G.J. The Art of Software Testing. New York: John Wiley, 1979. 
6. Johnson, W.L. and Soloway, E. "PROUST An Automatic Debugger for 

Pascal Programs." BYTE (April 1985), pp. 179-190. 
7. Chapman, D. "A Program Testing Assistant." Communications of the ACM, 

25 (1982) 9, pp. 625-634. 
8. Jensen, K. and Wirth, N. Pascal: User Manual and Report. New York: 

Springer-Verlag, 1974. 
9. Grogono, P. Programming in Pascal. Reading, Massachusetts: Addison

Wesley, 1980. 

APPENDIX I-PASCAL TEST PROGRAMS 

1. A simulation program that models passenger buses 
traveling between stops and shows the passenger 
throughput. 

2. A calculator program that evaluates arithmetic expres
sions in infix notation. 

3. A program that finds the circular radius and center of 
the circle that intersects three distinct points. 

4. A cosine program that arithmetically finds the cosine of 
a number through iteration. 

5. A program that produces a cross-reference for all dis
tinct words contained in a file. 

6. A square root program that arithmetically finds the 
square root of a number through iteration. 

7. A program that finds the matrix multiplication of two 
matrices. 

8. A program that changes an infix notation expression to 
postfix notation. 

9. A program that converts regular numbers to Roman 
numerals. 

10. A program that performs a shell sort on a list of num
bers. 

APPENDIX 2-SEEDED ERROR TYPES 

1. Unset or uninitialized data values (value is zero). 
2. Wrongly set data (values set randomly). 
3. Logic errors; that is, misuse of "and," "or ," and "not." 
4. Computation errors; that is, incorrect arithmetic pre

cedence, mixed mode problems, and integer division. 
5. Incorrect procedure or function output. 
6. Does not correctly handle all legal input; that is, 

boundary conditions not checked, no checks for valid 
input, and exhaustive decision are not made. 

7. Off-by-one arithmetic errors (not loops). 
8. Placing of program statements is incorrect; that is, 

placed external from or internal to the place they 
should be (e.g., incorrect begin/end grouping). 

9. Misuse of comparators; that is, =, <, >, >=, <=, 
<>. 

10. Incorrect looping; for example, wrong assumptions, 
off-by-one errors, etc. 



Tool integration in lifecycle support environments 

by JAYASHREE RAMANATHAN* 
Universal Energy Systems 
Columbus, Ohio 

and 
VASUDEVAN VENUGOPAL 
Ohio State University 
Columbus, Ohio 

ABSTRACT 

Two pragmatic requirements are placed on lifecycle support environments: (1) one 
must be able to integrate existing tools into the environment, and (2) the environ
ment must possess an open-ended architecture. The approach must therefore con
sider the large number of tools that support various phases of a lifecycle. The 
diversity of such tools makes them hard to integrate into an environment such that 
they can operate in a coordinated manner and can communicate with each other. 

This paper provides a possible approach to the tool integration problem in which 
the environment architecture and user interface issues are also taken into account. 
It is shown herein that such an approach leads to a very general and powerful 
technique of integrating tools. Apart from being able to handle evolution both in 
the environment and in tools, the approach allows the enforcement of policies on 
tool invocation and on tool operation. 

* The author currently is on leave of absence from Ohio State University. 

545 





INTRODUCTION 

This paper addresses the issue of integrating diverse tools into 
lifecycie support environments. The integration problem is 
examined in the context of the following architectural charac
teristics: 

• A logical database serves as the repository for all project 
information. 1, 2, 3 

• The database is object-oriented and its conceptual model 
allows the representation of all objects involved in the 
lifecycle (for example, objects representing people such 
as programmers, generated objects such as source code, 
and derived objects such as object code) and their inter
relationships (like the "owns" relationship between a pro
grammer and a code object or a "parLof" relationship 
between an object describing the project and another 
describing a programmer involved in the project).2 

• Tools that are integrated into this environment access 
existing objects (by means of views) and tool products are 
distributed into the database in a manner consistent with 
the conceptual model. 

• The environment allows diverse types of existing tools to 
be integrated regardless of the idiosyncrasies of their 
operation. It also allows new tools to be added without 
any major modifications to the tools. 

• The environment has at least a rudimentary notion of an 
activity and such relationships between activities as se
quencing and concurrency. 3,4,5 

The first two characteristics are widely accepted among 
software environment builders. The next two are unique to 
the environment described herein; however, they are essential 
pragmatic requirements for a real-world environment. Given 
the breadth of activities that such an environment supports 
and the diverse tools that are involved, it would be impossible 
to come up with a single representation for all tools or, for 
that matter, to predict all the tools that would be integrated 
into the environment. The emphasis on existing tools does not 
preclude the possibility of building tools for such an environ
ment. As for the last point, any software environment at
tempting to enforce policies on users must have a conception 
of software development as a set of related activities. Much of 
the policy enforcement at a macro level is done by permitting, 
denying, or constraining specific activities at specified times. 

"Loose integration" is proposed here as an appropriate, 
widely applicable paradigm for tool integration in lifecycle 
support environments. Broadly speaking, loose integration is 
a view-oriented mechanism for bidirectional communication 

Tool Integration in Lifecycle Support Environments 547 

between the tool and the database through input-extraction 
and output-distribution views. 

The distinctness of this approach stems from the fact that 
tool integration is treated as an issue to be examined in the 
larger context of modeling the software process. It does not 
treat tool integration as an issue of tool communication and 
therefore independent of the process model. 6,7 Further, it 
does not treat the process model as being, in some sense, a 
"merging" of tool views. 8 Such an approach would subsume 
the model aspect as one necessary for tool communication 
rather than as a separate issue. 

Listed below are some advantages of the loose integration 
scheme proposed here. Many of these advantages accrue be
cause of the unified treatment of tool integration with other 
environmental issues. 

• Encapsulation: When integrating a tool, you need not be 
aware of the other tools in the environment. 

• Tool communication: Communication between tools 
need not be set up. It happens automatically and indi
rectly if their input view specifications intersect (i.e., the 
two view specifications refer to the same object(s». 

• Tool coordination: Since tool invocation is an activity, the 
activity model can coordinate this tool's invocation with 
others in much the same way as it coordinates any other 
activities. Thus, tool coordination is merely a special case 
of activity coordination. 

• Enforcement of policies on tool invocation: Policies such 
as automatic invocation of tools, constraints on their 
invocation, and so on can be implemented using the same ' 
mechanism that is used to monitor activities (the activity 
model) and enforce system policies (using daemons de
scribed in the next section). 

• Increased tool versatility: Since the same tool can be asso
ciated with many views, it can be used in many ways. For 
example, one view specification may extract the view for 
compiling an entire project while another might be meant 
to let an individual programmer compile his or her mod
ule. Both views would be associated with the same com
piler tool. 

Some other advantages are better illustrated by specific 
examples presented in a later section. 

The next section briefly digresses to a description of the 
object model that is used for the software process. This de
scription is brief and is added only to facilitate an under
standing of the examples that follow. Later sections describe 
and illustrate loose integration of tools with examples and 
discuss the scope and limits of its applicability. Lastly, the 
status of our implementation is discussed. 



548 National Computer Conference, 1987 

THE OBJECT MODEL 

Information Frames (see Figure 1) are used to model all the 
data objects involved in the lifecycle. Information frames cor
respond to physical and logical entities in the software pro
cess. Slots of a frame describe properties of an object. Some 
slots link the parent frame to other frames or slots. The link 
type represents a particular relationship between participating 
frames. Slots and frames may possess attributes that serve as 
variables for recording local state and history information as 
well as protection and display information. 

The real difference between information frames and struc
tured objects of other object-oriented models9 lies in the at
tachment of procedures to slots or frames. These procedures 
(called daemons) are triggered (as against being explicitly in
voked) under a variety of environmental conditions. These 
conditions could be user and tool operations on slots and 
frames (such as Visit, Modify, Exit and so on), the occurrence 
of certain environment states (such as design in progress), or 
change in environment states (such as design completed), to 
name a few. The variety of triggering conditions allows dae
mons to help in a variety of activities such as assisting a user, 
maintaining data consistency in an object base and enforcing 
policies on users and tools. Most of the policy enforcement by 
daemons is of an "all or none" nature. An ongoing activity or 
sub activity could trigger a daemon. Successful execution of 
the daemon validates the activity. If the activity or sub activity 
violates some environment policy, an exception is raised dur
ing the execution of the daemon leading to a rollback of the 
errant activity. The environment is then reverted to the most 
recent consistent state. 

A frequently used display view for frames is called a form. 
Forms consist of panels which correspond to the underlying 
slots of a frame. A user navigates through the object base by 
moving between text panels and down links to other frames. 
Any daemons related to user focus are fired as the user navi
gates through the database. The comamnds that a user can 
issue when in a panel are controlled by a menu. Forms are, 
however, only one of many possible un parse schemes for a 
frame. 

CONCEPTUAL ISSUES IN TOOL INTEGRATION 

The decision to integrate a tool is not a mere data conversion 
issue. Integrating a tool involves resolving such issues as the 
nature of the user-tool interface, the tool's input and output 
views, and the policies one wants to enforce on tool usage. 
Provided here is a classification of the kinds of knowledge 
involved in integrating a tool. 

1. Interface-oriented knowledge: 
a. Commands involved in tool invocation. (That is, 

should the tool be invoked by users using menu selec
tion, control keys, or some other scheme. Should the 
user's focus be inferred from the cursor position, 
mouse position, or by some other mechanism?) 

b. Granularity of data. (That is, on what chunk of infor
mation should the tool be appiied, and how does this 
relate to the user focus when invoking the tool?) 

an 

IF (agent=user) AND 
(action = exit-panel) 
{check that the contents 
are of type string.lf not, 
make the user fill it 
again} declarations: 

IF (agent = user) AND 
(action = create) {remind 
user to set up traceability 
link with design frame} 

code: .......... . 

Figure I-An information frame 

c. Granularity of control. (That is, should the command 
provided to users constitute one tool command or 
should one design user commands that are imple
mented as combinations of underlying tool com
mands? Also, how and when should users get back 
control and how should users be notified of and made 
to look at tool outputs and diagnostics?) 

d. Interface-oriented daemons. (That is, is there a need 
to include consistency-checking daemons beyond 
whatever was implemented in the object-model? For 
example, completeness and validity of user-supplied 
data can be ensured by associating daemons with data 
panels that monitor the data even as it is being keyed 
in.) 

2. Tool-oriented knowledge: 
This comprises of knowledge needed to reconcile the 
tool and information-base disparity. To do this, it is 
necessary to specify the input-extraction and output
distribution views as well as parse-up and parse-down 
procedures between the tool and the information base. 
The view definition language must have primitives not 
only for specifying network traversal but also for speci
fying view modifications, view dependencies, and excep
tion handling primitives to handle exceptional situations 
that might occur during traversal. 

3. World-oriented knowledge: 
Concurrently with the integration of a tool, the system 
may need to enforce tool-related policies. For example, 
along with the integration of a compiler to allow compil
ation of modules, it may be desirable to enforce the 
protocol to automatically inform the project manager of 
a successful compilation. To do so requires knowledge 
about other objects in the "world-model" of the enter
prise such as the manager's frame. Implementing the 
protocol may also require knowledge about what the 
manager is to be informed and how. Much of this would 
depend on personnel hierarchy and system policy about 
protection and distribution of information. Generally 
some world-oriented knowledge is required about the 
tooi's roie in the enterprise as well as policies and proto
cols relating to tool application. 



EXAMPLES 

1. Tool: Editor 

Assumed tool characteristics: 
• Interactive nature of the tool. 
• Works on buffers. 

Desired interface behaviour: 
The user should be able to use the editor in a panel in much 
the same way as he edits a buffer. 
Steps in integrating such a tool: 

• Associate a buffer with each panel. 
• Intercept user commands and pass them on to the editor 

with the buffer context. 
• Redisplay the updated buffer on the affected panel. 

Policies that can be implemented: 
• Sense the language in which the user is coding (on any 

given coding panel) and put the editor in the appropriate 
model (e.g., C-mode in EMACS10 if the user is coding in 
C). This assumes that the editor provides language sensi
tive assistance. 

• Automatically save changes after every 10 commands. 

2. Tool: RCS (Revision Control System)l1 

Salient tool characteristics: 
• Batch tool 
• Not a data transformer but a repository for textual infor

mation. 
Some policies that can be implemented: 

a. Maintain "revisions" of any slot that contains more than 
500 lines of text. 
Implementation: 
• Associate a linecount attribute with any slot containing 

text that stores the number of lines in the slot (this 
could be computed every so often). 

• Have a daemon associated with each such slot that fires 
whenever the user exits the associated panel, and if the 
panel is larger than 500 lines, have checks in the slot 
text to RCS (the slot can be uniquely identified by the 
frame-id/slot-heading pair). 

RCS handles the versioning of slots, allowing us to imple
ment such environment policies as: 

b. Allow the owners of the participating frame to decide 
when they want to store a modified text as a new revision 
and to retrieve any particular version. 
Implementation: 

Tie the "check in a new version," "check out version," 
and "create a new version" commands to keystrokes and 
invoke in the context of the panel that is the user-focus. 

c. In a project, only the chief programmer has rights to 
create new revisions. Subprogrammers are not to be 
aware of the underlying versioning. 
Implementation: 
• Have a daemon that is triggered when the chief pro

grammer visits his frame. 
• This daemon should augment the displayed menu with 

"create a new revision" as an invocable command. 
• If the chief programmer issued this command, traverse 

each of the "subprogrammer" links out of this frame 

Tool Integration in Lifecycle Support Environments 549 

and check in the "source code" slots of these frames 
for a new revision. 

• The name of the RCS file associated with the "source 
code" slots of the subprogrammers is stored as an attri
bute of the subprogrammer frame. 

• Whenever any subprogrammer visits his frame, display 
it in the usual manner except to check the text associ
ated with the "source code" slot and display it in the 
corresponding panel. 

3. Tool: Compiler 

Salient tool characteristics: 
• Batch tool 
• Data transformer 

Mode of integration: 
Given that the coding frame has the form shown in Figure 2 
and that "uses" and "subprogrammer" links exist between 
such frames, it is desired that the chief programmer be pro
vided with a single command to compile the entire project's 
code. Any error messages are to be distributed to the appro
priate places. 
Some comments: 
Shown below are the input and output views for integrating a 
compiler in the manner mentioned above. The following as
pects of the problem and the working of the view-interpreter 
are worth noting: 

• There is only an implicit ordering among the subpro
grammer modules. The view specification includes excep
tion handlers that cause backtracking until the modules 
are incorporated into the view in the right order. 

• The contribution of any frame instance depends not only 
on the type of the frame but also on the contents of some 
panels in the frame instance. Each unique selection crite
rion forms and "instance_view. " Many such instance 
views combine to form the input view for the tool (com-

name: 
title: 

.--- suboroa rmore?l: 
suboroa rmore?l: 
suboroa rmore?l: I--

declarations: 
code: 

name: 
title: 
usesrmore?l: 
...................................... 
...................................... 

declarations: 
code: 

...Hq!'1;1j;~ hi" :!j,l~!~ 

name: 
title: 
usesrmore?l: 

...................................... 

declarations: 
code: 

name: 
title: 
usesrmore?l: 

...................................... 

declarations: 
code: 

Figure 2-The view for "compile_project" 



550 National Computer Conference, 1987 

bine is a scoping mechanism such that control passes out 
of the combined view only if the encountered frame does 
not conform to any of the selection criteria described 
within the combined view). 

• One of these instance views outlines the selection criteria 
for the root frame (i.e., the frame from which the 
traversal begins). This view also includes a "termination 
condition" whose fulfillment indicates that the view is 
complete. 

• The result of navigating through the database according 
to an input-view description is a sequence of slots (their 
headings and contents). It might need to be unparsed to 
suit the tool. 

• Frames and slots that have been visited are tagged to 
facilitate easy detection of view termination. 

Compiler view: 
combines 

chieLprogrammerJnstance_ view 
begin view 

frame instance selection: 
(heading(slot) = "title") and 
(contents(slot) = "chief programmer"); 

slot selection: 
(type(slot) = "LINK") and 
(heading( slot) = "subprogrammer") and 
( untraverseclJink( slot» ~ traverse..Jink( slot); 
heading(slot) = "declaration" 
or (heading(slot) = "code") 
~ add_to_ view( slot); 

exceptions: 
forall«(heading(slot) = "declaration") or 

(heading(slot) = "code"» and 
(contents(slot) = NIL» handled by foo; 

forall«type(slot) = "LINK") and 
(content(slot) = NIL)) handled by foo; 

terminate condition: 
forall(type(slot) = "LINK" ~ traversed(slot» 
end view 

subprogrammerJnstance_ view 
begin view 

frame instance selection: 
(heading(slot) = "Title") and 
(contents( slot) = "subprogrammer"); 

slot selection: 
(type(slot) = "LINK") and 
(heading( slot) = "subprogrammer") and 
( untraversed..Jink( slot» ~ traverse_link( slot); 
(heading(slot) = "declaration") or 
(heading(slot) = "code") 
~ ad<Lto_ view( slot); 

exceptions : 
forall«(heading(slot) = "declaration") or 

(heading(slot) = "code")) and 
(contents(slot) = NIL)) handled by foo; 

forall«type(slot) = "LINK") and (content 
(slot) = NIL» handled by foo; 

foral1«type(slot) = "LINK") and (heading 
(slot) = "uses") 

~ iL visited ( objecLpointed_by( contents( slot») 
handled by untraverse; 

end view 
end combine 

outpuLdistributioILview for compiler 
begin dist 

associate( errocmessage ,line_text) 
using assoc_procedure; 
insertJILslot( find_slotJIL view (line_text , 

sloLnum, location), 
errocmessage, location + 1); 

end dist 
4. Combinations of tools: 

Policies and activities requiring combinations of tools to be 
invoked in a coordinated manner is handled in one of two 
ways. In the case that the coordination is complex, it is han
dled in the activity model which treats each tool invocation as 
an activity and models the entire coordinated transaction as a 
petri net. Simple and hardwired interactions between tools 
can be implemented using daemons. 

SCOPE AND LIMITATIONS 

The ease of loose integration of any tool depends on the ease 
with which the environment can mediate and arbitrate be
tween the tool and the user. In almost all batch toois, the 
semantics of tool commands and the nature of input required 
by the tool are quite well defined. Normally, user commands 
correspond closely to single tool operations. It is therefore 
straightforward to integrate batch tools into the environment. 
The integration is more graceful if the underlying opera
ting system provides "virtual screen" or "pseudoterminal" 
(UNIX) facilities so that tool diagnostics and messages that 
are directed to the screen can be intercepted and the environ
ment can decide what it wants to do with them. In an oper
ating system devoid of these facilities, the environment cannot 
filter out these diagnostics but it can still restore the earlier 
screen status once the tool has finished executing. 

Interactive tools that interact through textual data and com
mands are integrated by using a pseudo-terminal interface to 
the tool. The environment arbitrates by isolating the inter
active tool from the physical screen. Each command during an 
interaction is treated like one invocation of a batch tool with 
that command. The results of the interactive command are 
captured by the pseudo-terminal interface and relevant parts 
presented to the user in the right context. 

For interactive tools in which the interaction involves both 
textual and graphical information as well as the use of pointing 
devices (e.g., mouse or light pen), the very advantage of such 
tools causes problems in integration. The fact that a user can 
point at any object on the screen makes it harder for the 
environment to control user actions than it was in the case 
where the system could track or control cursor motion. The 
fact that simple graphical figures can represent textual infor
mation in a greatly condensed form leads to the problem that 
for any graphical figure, the underlying frame representation 
(which is essentially textual) can be very complex. Moreover, 
incremental changes to the graphical representation may lead 



to major changes in the underlying frame representation due 
to the difficulty in translating the graphical context of the 
change into an underlying frame context and because we can
not guarantee that there exists a mapping between an arbi
trary set of graphical operations and underlying frame oper
ations that ensures consistency under composition. For exam
ple, the effect of adding a link between an SADT12 box A and 
another box B can be understood only in the context of other 
boxes in the diagram. 

IMPLEMENTATION 

The paradigm of loose integration has been examined and 
tested as part of the TRIAD project in progress at The Ohio 
State University and the KI shell being developed at Universal 
Energy Systems (see13 for a detailed description of the envi
ronment architecture). Some examples include the integra
tion of a C compiler and the dbx debugger as well as the 
integration of synthesized tools such as a tool for providing 
graphical views of project information. The TRIAD shell has 
also been used to bring up process support environments for 
non-software lifecycles allowing the opportunity of integrating 
a variety of design and simulation tools used in manufacturing 
an expert system as well as numerous other domain-specific 
tools. The language framework for describing views is under 
development. 

CONCLUSIONS 

Given the trend in software environments towards having a 
common database for storing project information, we exam
ine a view-oriented approach to tool integration for permit
ting bidirectional communication of information between a 
tool and the database. We also believe that a carefully de
signed object-oriented architecture suitable for lifecycle sup
port goes a long way in solving the problems that are typically 
encountered in integration. A common interface for database 
access and tool invocation as well as an active database in 

Tool Integration in Lifecycle Support Environments 551 

which user actions and changes to data are monitored as they 
go on eases policy enforcement and leads to significant en
hancements in the ways in which an already existing tool can 
be used on incorporation into the environment. 

REFERENCES 

1. Penedo, M.H. and Stuckle, D.E. "PMDB-A Project Master Database for 
Software Engineering Environments." Proceedings of the Eighth Interna
tional Conference on Software Engineering, 1985, pp. 150-157. 

2. Dittrich, K.R., Gothard, W. and Lockemann, P.e. "DAMOKLES-A 
Database System for Software Engineering Environments." IFlP WG2.4 
International Workshop on Advanced Programming Environments, 1986, 
pp. 345-364. 

3. Ramamoorthy, C.V., Usuda, Y., Tsai, W.T. and Prakash, A. "Genesis: 
An Integrated Environment for Development and Evolution of Software." 
Proceedings of COMPSAC, 1985, pp. 472-479. 

4. Ramamoorthy, e.V., Garg, V. and Aggarwal, R. "Environment Modeling 
and Activity Management in GENESIS." Proceedings of SOFTFAIR-II: 
2nd Conference on Software Development Tools, Techniques and Alterna
tives, 1985, pp. 2-9. 

5. Cheatham, T.E. "A Computer-Based Project Management Assistant." Di
gest of Papers, Fall COMPCON, 1984, pp. 156-160. 

6. Kaplan, S.M., Johnson, R.E., Campbell, R.H., Kamin, S.N., Purtilo, 
I.M., Harandi, M.T., and Liu, J.W.S. "An Architecture for Tool Integra
tion." IFlP WG2.4 International Workshop on Advanced Programming 
Environments, 1986, pp. 109-124. 

7. Osterweil, L.J. "Toolpack-An Experimental Software Development En
vironment Research Project." Proceedings of the Sixth International Con
ference on Software Engineering, 1982, pp. 166-175. 

8. Garlan, D. "Views for Tools in Integrated Environments." IFlP WG2.4 
International Workshop on Advanced Programming Environments, 1986, 
pp.317-340. 

9. Goldberg, A. and Robson, D. The Smalltalk-80 System: Its Implementation 
and Language. Reading, Massachusetts: Addison-Wesley, 1983. 

10. Stallman, R.M. "EMACS, The Extensible, Customizable, Self
Documenting Display Editor." Memo 529, Artificial Intelligence Laborato
ry, June 1979. 

11. Tichy, W.F. "Design, Implementation, and Evaluation of a Revision Con
trol System." 6th Conference on Software Engineering, 1982, pp. 58-67. 

12. Ross, D.T. and Schoman, K.E. "Structured Analysis for Requirements 
Definition." IEEE Transactions on Software Engineering, SE-3 (1977), pp. 
6-15. 

13. Ashok, V., Ramanathan, J. and Sarkar, S. "A Tightly Coupled Software 
Assistant." OSU Report OSU-CISRC-86TRITRIAD, September 1986. 





An interactive software maintenance environment* 

by STEPHEN s. YAU, SYING-SYANG LIU, and SHEAUSONG YANG 
Northwestern University 
Evanston, Illinois 

ABSTRACT 

In this paper, an interactive software maintenance environment is presented in 
which software maintenance tools, such as a syntax-directed editor, a pretty-printer, 
control and data flow analyzers, a data flow anomaly detector, a program slicer, and 
logical and performance ripple effect analyzers, are integrated together for effective 
software maintenance. The environment is based on a unified program representa
tion model which is constructed by a pair syntactic-semantic tree. The advantage of 
this environment is that it allows software maintenance tools to use the common 
information which is supported by the database manager for the environment. The 
communications among different software maintenance tools are high because each 
maintenance tool can retrieve data from the common database. An experimental 
system has been implemented to demonstrate this interactive software maintenance 
environment. 

* This work was supported by the Office of Naval Research under Contract NOOO14-80-C-0167. 

553 





INTRODUCTION 

It is well known that software maintenance has become the 
dominant factor of the high cost of software, and software. 
maintenance costs are still increasing. 1 Maintenance is fre
quently performed on a large-scale software system because 
of the existence of system errors, changes of operating envi
ronment, code optimization, functional enhancement, dele
tion of obsolete features, and improvement of efficiency. 2 

Because of lack of effective maintenance techniques, the re
liability of software systems likely deteriorates as more main
tenance activities are performed on the systems. Con
sequently, the systems soon become unmaintainable and 
hence unusable. An effective approach to reducing the high 
cost of software and increasing the useful life of many soft
ware systems is to establish a software maintenance environ
ment that would facilitate the proper use of various techniques 
and tools for effective maintenance. 

Traditionally, a maintenance tool included in a software 
maintenance environment operates on the basis that the nec
essary program information needed by the tool is extracted 
from the program. The disadvantage of this approach is that 
a large number of special software packages must be written 
to extract the necessary information from the program and 
organize it in various forms required by the maintenance 
tools. The information generated by some software mainte
nance tools is frequently used by other software maintenance 
tools. For example, the graphical program flow generator, 
data flow anomaly detector, and program slicer need control 
and data flow information which has already been generated 
by the control and data flow analyzers. The communications 
among software maintenance tools in this type of environment 
are usually very low because one translator is required be
tween each ordered pair of related maintenance tools. In this 
case, it is better to directly extract the information from the 
program under maintenance than to construct a translator 
between each ordered pair of related maintenance tools. 
Since maintenance tools are usually developed continuously 
and independently of the software maintenance environment, 
the total system for software maintenance would be huge, 
expensive, and difficult to control and maintain. 

In this paper, we present a software maintenance environ
ment based on a unified program representation model that 
facilitates the integration and interface of various software 
maintenance tools. The advantage of this environment is that 
it allows the software maintenance tools to use the common 
information that is supported by the database manager for the 
environment. The communications among different software 
maintenance tools are high because each maintenance tool 
can retrieve data from the common database. An experimen-

An Interactive Software Maintenance Environment 555 

tal system has been implemented to demonstrate this inter
active software maintenance environment, and has shown that 
the productivity for software maintenance using this environ
ment is improved by a significant order of magnitude. 

MAINTENANCE OF LARGE-SCALE 
SOFfWARE SYSTEMS 

Before we present our software maintenance environment, let 
us review the maintenance process for large-scale software, 
which involves several phases and can be illustrated as shown 
in Figure 1. 3 

The first phase determines the overall maintenance objec
tives. The second phase consists of analyzing a program to 
understand it. This phase is affected by the complexity, 
documentation, and self-descriptiveness of the program. The 
third phase consists of generating a partIcular modification 
proposal to accomplish the implementation of the mainte
nance objective. This phase is affected by the extensibility of 
the program. The fourth phase consists of accounting for the 
ripple effect. The primary attribute affecting ripple effect is 

Phase 1 • Correcting program errors 

Determining 
Maintenance 

Objectives 

• Adaptive to new operating environment 
• Functional enhancement 
• Adding new features 
• Deleting obsolete features 

1 Phase 2 

• Optimization 

Understanding 
Program 

• Complexity 
• Documentation 
• Self descriptiveness 

1 Phase 3 

Generating 
Maintenance • Extensibility 

Proposals 

1 Phase 4 

Accounting 
for • Stability 

Ripple Effect 

1 Phase 5 

I 
Re .. alidat;on I l • Testability 

Figure I-The software maintenance process 



556 National Computer Conference, 1987 

the stability of the program; the stability of a program is 
defined as the resistance to the amplification of changes in the 
program. The fifth phase consists of revalidating the modified 
program to ensure it has at least the same reliability as before. 
This phase is affected by the testability of the program. The 
whole or part of phases one through five is repeated until the 
modified software system passes the test. 

The tools in our maintenance environment are used for 
software maintenance as follows: At the beginning, a graph
ical program flow generator4 is invoked to generate a graph
ical view of the software system under maintenance so that the 
system hierarchical structure can easily be understood. At the 
Same time, a pretty-printer displays the structured program 
source code on the terminal. After locating the program infor
mation and deciding how to achieve the maintenance objec
tives, the user will use a syntax-directed editor to modify the 
program. During modification, other software maintenance 
tools may be invoked by pressing a function key to analyze 
program flow,5 detect data flow anomalies,6 slice the pro
gram/ and accommodate ripple effect8

•
9 revalidate modified 

program, and compute important metricslO whenever it is 
necessary. 

MAJOR FEATURES OF THE ENVIRONMENT 

Our interactive software maintenance environment is shown 
in Figure 2. The major features of the environment include a 
modified compiler, a syntax-directed editor, control and data 

Modified 
Database Program 

,---- Compiler Management Flow -
System Generator 

j I I 
I 

Syntax- Data Graphical I 
Pretty Flow Program Program 

Directed PI"inter Anomaly Slicer Flow I I Editor Detector Generator j 
i 
I 

Logical Tools for Performance 
Ripple Computing Ripple Tools for 
Effect Software Effect Revalidation 

Analyzer Metrics Analyzer 

Modification I 
Session J 

Manager 

I Graphics 
Terminal 

I 
User 

Figure 2-A software maintenance environment 

flow generators, a graphical program flow generator, a data 
flow anomaly detector and a program slicer. In addition, a 
database manager is used to provide the interface between 
software maintenance tools and the database. All these soft
ware maintenance tools can be used interactively. 

Database Manager 

To support a large-scale software maintenance system, we 
need a database to store the whole syntactic and semantic 
information of the program to be maintained. The database 
manager provides an effective way to access the database and 
supports the interface for various software maintenance tools. 

Modified Compiler 

The purpose of the modified compiler is to translate the 
program source code to the internal syntactic and semantic 
structures and store them in the database. Various software 
maintenance tools can access the database through the data
base manager. 

Modified Syntax-Directed Editor and Pretty-Printer 

The pretty-printer (PP) and syntax-directed editor (SDE) 
offer an enviornment for creating and manipulating V AX-ll 
PASCAL programs. (VAX-ll PASCAL is an extension of 
standard ANSI PASCAL with the separate compilation capa
bility.) The PP and SDE environment provides an easy-to-use 
editor that promotes step-wise refinement of PASCAL pro
grams by simulating the program conception at a high level of 
abstraction. All input is type-checked for syntactic and seman
tic correctness and the program is automatically indented to 
emphasize the program structure. 

The major features of SDE and PP include: 

• A menu-driven facility to make SDE and PP user
friendly. 

• A structured program representation facility for online 
modification and understanding. 

• Using program templates to enforce the user to type in a 
well-structured and syntax-correct program. 

Control and Data Flow Generators 

When a program is input, control and data flow generators 
generate control flow and data flow information which is used 
by the graphical program flow generator, data flow anomaly 
detector, and program slicer. 

Graphical Program Flow Generator 

The graphical program flow generator draws the system 
hierarchical structures including the relation between mod
ules, subprograms, and statements that are shown in Figure 3. 
With the aid of the graphical hierarchical structures, a user 



can take a graphical view at different levels of the program 
and understand its control and data flow information. Such 
information is helpful for understanding and modifying the 
program. Figure 4 shows the hierarchical view of the system
module level on a graphics terminal. 

Data Flow Anomaly Detector 

Data flow anomaly includes defined-undefined, undefined
referenced, and defined-defined anomalies which indicate pos
sible program errors. The data flow anomaly detector displays 
data flow anomaly on the terminal whenever it is invoked. 

Statements2 Statementsn 

Figure 3-A hierarchical system structure 

Hierarchical System Structure Diagram 
For 

Software Maintenance Environment 

Description Area 

Control flow II Data flow II Exit II Zoom in i I Zoom out I 
!Where are you: II Help II Color selection area I 

Figure 4-The hierarchical system structure diagram for the 
system-module level 

An Interactive Software Maintenance Environment 557 

Program Slicer 

The program slicer decomposes a program into a reduced 
program subset with respect to some statement and variables. 
Since a reduced program subset is greatly smaller than an 
entire program, modification and debugging are easier and 
more efficient to perform on reduced program subsets than on 
a whole program. 

SOFTWARE MAINTENANCE 
USING THE ENVIRONMENT 

A user may use the commands provided by the syntax
directed editor to create a new program or modify an existing 
program. Cursor movement can be node-oriented, line
oriented, or page-oriented depending on the user's request. 
Movement is controlled by moving terminal keys, such as, [I] , 
IT] , 8, B, or by specifying a line number to jump to a 
destinated line. To make any modification, a user first moves 
the cursor to a destinated program node and then types in the 
correct command and code. 

As shown in Table I, the whole program template is dis
played on the screen when a user creates a new program. To 
find the features of all keys, the user may press PF2 to invoke 
the help menu screen as shown in Table II. Starting from 

TABLE I-A program template 

program <Identifier> «External-File-List» 
{ Declaration Part} 
{ LABEL Declaration} 
{ CONST Declaration} 
{ TYPE Declaration} 
{ VAR Declaration } 
{ MODULE Declaration} 
begin 

{Statement-List} 
end. { Of program} 

TABLE II-A key feature menu 

[] : insert template 
lliJ : delete a node 
[ill : replace a node 
[I] : go to parent node 
lliJ : go to first child 
[I] : go to previous sibling 
[ill: go to next sibling 
I DELETE I: delete line feed 
I RETURN I : insert line feed 

IT]: to 'up' node 

W to 'down' node 
EJ: to 'left' node 
B to 'right' node 
[IJ : move by line number 
Press Any Key To Continue 

invoke 
command 

menu 
move 

section 
down 

anomaly 
checking 

on/off 
boldface 

! on/off 
i 

to 
help first 

move II 

section. 
I up 

line 

insert I syntax I 

after/I checking I 
before ion/off 

I show 

I
I li 

nU:~er 

to 
last 
line 

graphical 
flow 

generator 
program 

slicer 

enter/ 
leave 
edit 

mode 



558 National Computer Conference, 1987 

Table I, the following steps would allow the user to key in a 
program similar to the program shown in Table III. 

1. Move the cursor to the (identifier) by pressing[3. Press 
IENTERI to enter edit-mode and edit (identifier) to pro
gram name "Max" and then press I ENTER I to leave edit
mode. Repeat this step to edit (File-Identifier) to "(in
put, o~ut)." 

2. Press III to move the cursor to "{LABEL Dec1ara
tion}"-node and press@]to delete this node. Repeat this 
step to delete "{CONST Declaration}"-node and 
"{TYPE Declaration}" -node. 

3. Now, the cursor is positioned on "{VAR Dedaration}"
node. This node will be replaced by a new node "var 
(Identifier-list):(Type-Specification);" by pressing ~. 
Entering edit-mode by pressing IENTERI, the text "a,b,c: 
integer" is input. 

4. Repeating steps 1 to 3, the whole program will be input 
through the aid of screen online menu-driven features 
which provide all the possible selections. For example, 
when the cursor is positioned on "{Statement-List}"
node and ~ is pressed, then a menu, as shown in Table 
IV, is displayed. After selection, for example "D. If
Then-Else," this menu will disappear, and "{Statement
List}" will be replaced by an "if' -statement template. 

To perform program slicing, we need to specify the software 
module name, the starting statement, and variables. The 

TABLE III-A sample program for demonstrating SDE and PP 
features 

{I} program Max (input, output); 
{2} var a,b,c : integer; 
{3} begin 
{4} readln(a,b); 
{5} if a>b then c := a; 
{6} else c := b; 
{7} writeln( c ) 
{8} end. 

TABLE IV-A statement node insertion menu 

A. Module-Call 
B. Label 
C. Assignment 
D. If-Then- Else 
E. Repeat-Until 
F. While-Do 
X. Quit 

G. For-To 
H. For- Downto 
I. With-Do 
J. Case 
K. Goto 
L. Compound 

graphical program flow generator is used to improve program 
understanding and facilitate program analysis by displaying 
program flow information on a color graphics tel1I'inal. 

THE UNIFIED MODEL OF THE ENVIRONMENT 

In this section, the unified model for the environment is de
scribed. Hierarchical graph model (HGM)9 and Typed tree 
representation (TTR)lO are two unified program representa
tion models for incremental modification. HGM is based on 
the concepts of recursive graphs and Codd relations to repre
sent a program. The major disadvantage of HGM is that the 
internal program representation structure, which is in a re
lational form, is inconsistent with the program hierarchical 
structure, which is the interface between the user and the 
syntax-directed editor. Therefore, each movement on the pro
gram hierarchical tree needs several relational tables to recon
struct the program tree and display it on the screen. TTR is a 
program tree representation, but the tree also contains se
mantic information. The disadvantage of TTR is that the syn
tactic and semantic information of a program is combined 
together and associated with the nodes of the tree. In this 
case, the internal tree structure is still inconsistent with the 
program structure displayed on the screen. The syntax
directed editor and pretty-printer have to reformat the posi
tions of nodes on the screen. Obviously, the implementation 
of software maintenance tools based on HGM or TTR will be 
more difficult and complicated than on a model which is con
sistent between the internal program representation and the 
external representation from the user's view. 

The unified model used in our environment is a pair 
syntactic-semantic tree which consists of two parts: (1) a syn
tactic tree for incremental program modification and (2) a 
semantic tree for the storage and retrieval of semantic and 
flow information for various software maintenance tools. The 
syntactic information and semantic information are stored 
independently, but connected by several pointers for syntactic 
and semantic checking whenever it is necessary. To define a 
structure that is suitable for interactive modification, the pro
gram hierarchical structure should be maintained and should 
be consistent between system internal view for retrieval and 
external view for display. The syntactic and semantic struc
tures of our system can be described as follows: A program is 
composed of two parts: (1) declaration parts, including 
"label," "constant," "type," "variable," and "procedure and 
function" declaration and (2) statement parts, including as
signment statement, procedure statement, go-to statement, 
compound statement, conditional statement, repetitive state
ment, and with statement. Syntactic nodes are defined 
through the whole program, such as program header, type 
declaration, variable declaration, and statement in statement 
parts. Because the control and data flows exist in statement' 
parts only, flow information is only defined in semantic nodes 
for statement parts. For each statement, variables in the 
"assignment" and "for" statements and expressions in various 
statements, such as "conditional" statements and "for" state
ments, are considered as semantic nodes. A syntactic or 
semantic node can be a simple node, such as "expression" 
node and "go-to" node, or a structured node, such as "com-



Semantic Node 

Figure 5-The relation between a syntactic node and a semantic node 

pound" node, "conditional" node, "repetitive" node and 
"with" node. 

In order to have good system performance, semantic nodes 
and syntactic nodes are stored independently except that 
some pointers indicate their relations. The relation of each 
pair of a semantic node and a syntactic node is illustrated in 
Figure 5 and can be described as follows: (1) There are two 
pointers from the head and from the tail of a syntactic node 
referring back to its semantic node. (2) There is one pointer 
from a semantic node point to its syntactic node. Figure 6 

Classign menti) 
~emantlc assignment-nodE 

~I variable r C-...L..I_ex_p --L-D 

variable := <exp> Syntactic asslgnment-nodj 

(a) assignment-node 

Semantic It-node 

(I if I) 

I ....... J_ ex_ p
_...I/ I) Cl stmtl D (I stmt2 D 

if <exp> 
then <stmt1 > 
else <stmt2> 

(lcompoundD 

Syntactic It-node 

(b) if-node 

~emantlc compound-node 

I D ... Cl stmt,. D ( 1 stmt1 I) (I stmt2 
I 

begin 
<stmtl>; 
< stmt2>; 

<stmt,.> 
end 

~yntactlc compound-nodE 

(c) compound-node 

An Interactive Software Maintenance Environment 559 

shows the semantic node structures, syntactic node structures, 
and their relationship for six common statements-"assign
ment," "compound," "if," "while," "repeat," and "for" 
statements. 

The cursor is positioned on a syntactic node, which is ex
actly the same as the cursor on the program source code 
displayed on a terminal. If a user modifies a text; for example, 
(expression) in "while" -statement, then it can be done in syn
tactic structure by moving and editing key features. After 
modification, the updated information will be inherited to 
related semantic nodes for semantic checking and flow 
computation. The flow information will be associated with 
semantic nodes. If a user tries to add a new node, update or 
replace an old node, then the system will locate the semantic 
meaning from the semantic node, determine the necessary 
action, and then tell the user what to do by displaying a menu 
on the screen. Therefore, the syntactic and semantic informa
tion can be handled independently and be connected together 
whenever it is necessary. 

The following example explains the data set stored in 
semantic nodes, which is used in graphical program flow gen-

(I while i) 

b exp f) (I stmt I) 
I 

while <exp> do 
<stmt> 

(I repeat D 

repeat 
<stmtl>; 
< stmt2>; 

<stmt,.> 
until <exp> 

(I for i) 

(d) while-node 

CI stmt,. D (I 

(e) repeat-node 

r variable 1) C ....... I_e_xp_l---l,..D (I exP2 

Semantic wlille-noae 

Syntactic while-noae 

~emantlc repeat-noCIE 

exp i) 

Syntactic repeat-noae 

~emantlc for-noae 

I) (I stmt i) 

Syntactic for-nodE 
E' to 
lor <vanable> := <exPl> downto <exp2> do 

<stmt> 

(f) for-node 

Figure 6-The structure of semantic nodes and syntactic nodes 



560 National Computer Conference, 1987 

eration, data flow anomaly detection, program slicing, and 
logical and ripple effect analyses. Consider a statement "if 
a> b then c: = a else c: = b" and assume that Di(n) and Do(n) 
denote the input and output data sets of node n respectively. 
Then, we have the following equations: 

Di( 0 exp D) = {a, b} 
Di( 0 stmtj I)) = {a} 
Do( (I stmt1 I)) = {c} 
D i ( (I stmt2 I)) = {b} 
Do( (I stmt2 I)) = {c} 

D i ( (I It I») - {a, b} 
Do( <I If D) = {c} 

IMPLEMENTATION AND EXPERIMENTS 

So far, we have integrated the following tools in our environ
ment: a syntax-directed editor, a pretty-printer, control and 
data flow generators, a graphical program flow generator, a 
data flow anomaly detector, a program slicer, and part of a 
modified compiler. We have not yet integrated logical and 
performance ripple effect analyzers in the environment; how
ever, even with only the tools already integrated, we have 
experienced major improvement in productivity of per
forming software maintenance. Comparing our experimental 
results, shown in Table V, for maintaining a program of about 
2,000 lines with and without using the environment, we notice 
that the improvement is in a significant order of magnitude. 
Larger programs will also be experimented after we complete 
the modified compiler so that large programs can be auto
mated, input, and formatted in the environment. 

The current environment is being implemented in a DEC 
VAXlVMS 111785 using PASCAL. The necessary space used 
by our model is about eight times the space required for the 
program source code. The number of nodes is proportional to 
the number of lines of the program source code. In the worst 
case, the space occupied by data set in semantic nodes is 
o (cd), where c is the number of lines of the program source 
code, and d is the number of identifiers in the program. Since 
a program usually contains many subprograms and each sub
program has few identifiers, the space used by the data set is 
usually much less than O(cd). In practice, the space used by 
the data set is usually close to 0 ( c). However, the data set can 
be calculated dynamically instead of being stored in the se
mantic nodes if the size of the memory space causes any 
implementation problem. As usual, there is a tradeoff be
tween the amount of memory space used and the execution 
time. 

CONCLUSION 

Based on the unified model, various software maintenance 
tools can be integrated to form an effective software mainte
nance environment. The major advantage of this environment 
is that a user works with a two-dimensional, graphical 
representation of a program, instead of a linear text string 
representation. Specifying a program as a two-dimensional 
structure results in better understanding and easier modifica
tion of the program, which reduce the time and effort for 
software maintenance. At present, we have integrated several 
software maintenance tools in our environment including a 

TABLE V-Some experimental results for using the software maintenance environment 

without our tools (in minutes) wi th our tools 
Understanding system structure 60 15 
Algori thm analysis same same 
Adding new feature (assume the adding process 
(each local area) is compiling error, 

linking error, correct code) 

* Typing added text same same 
* Compiling, linking, 10 + 10 + 3 3 

and correcting errors (assume correct at 3rd time) 
Debugging run-time error (assume the correction process 

is guessing error, modifying, 
correct code) 

* locating error codes same same 
* understanding statements 60 + 60 + 30 = 150 (10 + 6) * 3 = 48 
* debugging error codes sa..rne sa..rne 
* recompiling and linking 0+ 13 + 3 = 16 0+0+3=3 



syntax-directed editor, a pretty-printer, a graphical program 
flow generator, control and data flow generators, a data flow 
anomaly detector, and a program slicer. We are integrating 
logical and performance ripple effect analyzers in the environ
ment. We plan to use artificial intelligence techniques to de
velop a software maintenance tools synthesizer to construct 
software maintenance tools automatically. 13 

REFERENCES 

1. Lientz, B.P. and E.B. Swanson. Software Maintenance Management, Read
ing, Massachusetts: Addison-Wesley, 1980. 

2. Swanson, E.B. "The Dimensions of Maintenance," Proceedings afthe 2nd 
International Conference on Software Engineering, 1976, pp. 492-497. 

3. Yau, S.S. and J .S. Collofello. "Some Stability Measures for Software Main
tenance." IEEE Transactions on Software Engineering, SE-6 (1980) 6, pp. 
545-552. 

4. Yau, S.S. and J.P. Tsai. "GQL: A Graphic Query Language for Software 
Maintenance Environment." Proceedings of COMPSAC 83, November 
1983, pp. 218-228. 

An Interactive Software Maintenance Environment 561 

5. Hecht, M.S. Flow Analysis of Computer Programs, New York: Elsevier 
North-Holland, 1977. 

6. Forman, I.R. "An Algebra for Data Flow Anomaly Detection." Pro
ceedings of the 7th International Conference on Software Engineering, 
March 1984, pp. 278-286. 

7. Weiser, M. "Program Slicing," IEEE Transactions on Software En
gineering, SE-1O (1984) 4, pp. 352-357. 

8. Yau, S.S., J.S. Collofello, and C.C. Hsieh. Self-Metric Software-A Hand
book: Part I, Logical Ripple Effect Analysis. Final Technical Report 
RADC-TR-80-138, Vol II (of 3), April 1980, NTIS AD-A086-291. 

9. Yau, S.S. and J.S. Collofello. Self-Metric Software-A Handbook: Part 
II, Performance Ripple Effect Analysis. Final Technical Report 
RADC-TR-80-139. Vol. III (of 3), April, 1980, NTIS AD-A086-292. 

10. Yau, S.S. Methodology for Software Maintenance. Final Technical Report 
RADC-TR-83-262, February, 1984, NTIS AD-A143-763/1. 

11. Yau, S.S. and P.C. Grabow. "A Model for Representing Programs Using 
Hierarchical Graphs." IEEE Transactions on Software Engineering, SE-7 
(1981) 6, pp. 556-574. 

12. Yau, S.S., C.K. Chang, and R.A. Nicholl. "An Approach to Incremental 
Program Modification." Proceedings of COMPSAC 83, November 1983, 
pp.588-597. 

13. Yau, S.S. and S.S. Liu. "A Knowledge-Based Software Maintenance Envi
ronment." Proceedings of COMPSAC 86, October 1986, pp. 72-78. 





The design of distributed databases with cost optimization 
and integration of space constraints 

by DALIA MOTZKIN and ELMO IVEY 
Western Michigan University 
Kalamazoo, Michigan 

ABSTRACT 

This paper presents methods for the logical design of distributed relational data
bases. The design procedure consists of fragmentation of global relations and 
allocation of fragments to sites. Fragments are allocated to sites in a way that 
optimizes local and global costs. Storage constraints are taken into consideration. 
The design algorithms are efficient. The algorithms have been implemented and 
tested. This design methodology integrates and extends previous work. 

563 





Distributed Database Design With Cost Optimization and Space Constraints Integration 565 

INTRODUCTION 

The problem of configuring optimal data distribution over a 
computer network is not a trivial one. Tradeoffs between the 
decreased cost of communications and increased speed and 
parallelism when multiple copies of data are available at local 
sites, and the increased cost of communication due to multiple 
updates of copies must be considered. The availability of 
space should also be taken into consideration. 

The data distribution problems have attracted a substan
tial amount of research. Significant results have been pub
lished by Ceri et al.,t-6 Chang et al.,7-9 Duta,lO Iran~ and 
Khabbaz, 11,12 Lin and Liu,13 Mazzarol et al., 14 Navathe et 
al. /5 Rakes/6 Reddy, 17 Yu/8 and others. Additional bibli
ography can be found in Yao et al.19 and in Dowdy and Fos
ter.20 

Current distribution schemes typically deal with subsets of 
the issues above. Some address complete file allocation rather 
than the allocation of fragments of files. Some ignore local 
storage limitations and some are too complex for practical 
use. 

The design method described here integrates and extends 
previous work. It especially builds on techniques developed 
by Ceri, Deen, Martella, Navathe, Negri, Pelagatti and 
Wiederhold.1-6 However, a new approach is presented for 
computing the costlbenefit of allocating fragments to sites. 
The global cost computations are configured in a way that 
provides cost optimization of each site individually. These 
provide for a simplified, yet considerably more accurate, cost 
optimization. In addition, storage requirements are incorpo
rated into the scheme. 

Thus, the overall distribution scheme achieves improved 
performance and reduced communication cost. In addition it 
can meet storage constraints. An initial version of the design 
method described here has appeared in Motzkin.21 The work 
described here provides an extension and revision of Motz
kin's work. 

TERMINOLOGY, NOTATIONS AND ASSUMPTIONS 

We are concerned with distributed relational databases. We 
assume that a global relational database is fully defined, and 
is composed of global relations denoted by r1, r2, ... ,rk. See 
Table I for an example of global relational database. The 
global database is to be distributed to sites denoted by 
St, S2, ... , Sn. See Figure 1 for an example of a network with 
three sites. At each site there are applications which need to 
use the DDBMS (distributed database management system). 
Each application is assumed to have a home site from where 
it is executed, and from where the DDBMS is used. An 

TABLE I 

Project Plant 
Employee Relation Relation Relation 

E# Skill Salary PR# PR# Skill PL# PR# 

EI SKI I 8000 PRI PRI SKI PLI PRI 
E2 SKI 20000 PRI PR2 SKI PLI PR2 
E3 SK3 20000 PR2 PR2 SK3 PL2 PR3 
E4 SKI I9000 PR2 PR3 SK2 PL3 PR4 
ES SKI 2S000 PR2 PR3 SK3 
E6 SK2 22000 PR3 PR4 SKI 
E7 SK2 22000 PR3 
E8 SK3 2S000 PR3 
E9 SK3 2 I 000 PR3 
ElO SKI 20000 PR4 

S2-S3 

Figure 1 

application j is denoted by aj. An example of applications 
associated with the database and sites of Table I and Figure 1 
is depicted in Table II. 

A portion of a global relation that is allocated to a site (or 
sites) is called afragment. During the design phase each global 
relation is broken into fragments in a way such that the frag
ments are pairwise disjoint and that the union of all fragments 
of each relation is equal to the relation. We deal here only 
with horizontal fragmentation. Horizontal fragmentation is 
defined as in Ceri and Pelagatti.6 A horizontal fragment con
sists of a subset of the records of.a file or, more formally, it 
consists of a subset of the tuples of a relation. We are not 
concerned here with vertical fragmentation. 

AN OVERVIEW OF THE DESIGN METHOD 

The data distribution to sites is achieved in two phases. The 
first phase is the fragment definition phase, and the second 
phase is the fragment allocation phase. 

During the fragment definition phase each relation is 
broken into horizontal fragments based on application re
quirements. The fragments defined during this phase meet the 
following conditions: 



566 National Computer Conference, 1987 

1. The fragments are pairwise disjoint. 
2. The union of all fragments of a given relation is equal to 

the relation. 
3. Given a fragment and an application, the fragment is 

either completely required by the application or not 
at all. 

During this phase, cost and storage requirements are not 
considered. However, this fragment definition technique 
greatly facilitates the optimization of data distribution. It in
sures that allocation can be accomplished without allocating 
fragments to sites where some records will be useless. 

During the fragment allocation phase, the fragments that 
were defined during the first phase are allocated to sites. 
During this second phase communication costs, processing 
costs and storage constraints along with statistics regarding 
the frequency and type of use of fragments by applications are 
utilized. The fragments are first allocated in a way that pro
vides optimal (minimal), local, and global cost. This initial 
allocation of some of the fragments is then revised, if needed, 
to meet storage constraints. 

FRAGMENT DEFINITION 

The fragment definition algorithms are achieved in two stages. 
During the first stage, the segment definition stage, subsets of 
relations, called here segments, are defined using application 
requirements. These segments have the property that each 
segment is required by some application, but the segments are 
not necessarily pairwise disjoint. During the second stage, the 
fragment determination stage, disjoint fragments that meet 
the conditions 1-3 are generated. 

TABLE II 

Site # Application # Application Requirement 

SI al Records of employees at plant PLI 

S1 a2 Records of employees having skills needed 
for projects at plant PLI 

S1 a3 Projects at plant PLI and required skills. 

SI a4 List of all plants and their projects. 

S2 as Records of employees of plant PL2 

S2 a6 Records of employees with skills needed 
for projects at plant PL2 

S2 a7 Projects at plant PL2 and required skills 

S2 a8 A list of all plants and their projects 

S3 a9 Records of employees at plant PL3 

S3 alD Records of employees with skills needed 
for projects at plant PL3 

S3 all Records of projects at plant PL3 and 
required skills 

S3 a12 A list of all plants 

Segment Definition 

Let aj be an application which requires data from the data
base. A segment w of relation rj denoted as SEGw(rjaj) is 
defined as a subset of the tuples of ri that meet the following 
conditions: 

1. All the tuples in the segment are required by the applica
tion aj. 

2. No tuple in rj - SEGw(rjaj) is required by aj. 

Informally a segment is the smallest subset of records of a 
given relation ri that are required by a given application aj. In 
the following sections we will often denote the segments 
simply as SEGw and omit the reference to the relation and 
application. 

The requirements of the applications* are provided as sets 
of relational operators. 

The following algorithm is used to define the segments: 

ALGORITHM DEFINE-SEG 
w~l 

FOR i = 1 TO number of sites DO 
FOR j = 1 TO number of applications DO 

k ~relation number of the relation 
required by aj 

SEGw~records of Rk required by aj 
w~w+1 

END FOR 
END FOR 

END of ALGORITHM 

The segments defined this way are associated with an 
application, a site, and a relation. 

To illustrate the results of the segment definition algorithm 
consider the global database of Table I, the network of Figure 
1 and the application requirements of Table II. The resulting 
segments of the relation EMPLOYEE are shown in Table III. 

The relational operators are used to formally describe the 
requirements of each application. For example, the relational 
operators associated with the applications that use data 
from the employee relation are shown in Table III. 

The following symbols are used in Table III for relational 
operators: 

a-select 
71"-Project 
lxi-Natural join 

Fragment Determination Algorithm 

Next, the second stage of the fragment definition is exe
cuted. During the second stage the disjoint fragments are 
defined. Disjoint fragments are achieved in the following way: 

*The assumption that an application is associated with one relation is not 
necessarily a restriction. If an application requires data from two relations it is 
simply broken into two sub-applications. 



Distributed Database Design With Cost Optimization and Space Constraints Integration 567 

TABLE III 

Application # Seg # Relational Operators Tuples 

al SEGl IIE#, SKILL, SALARY, PR#( <TPL#=PLl (EMPLOYEElxIPLANT» El SKI 18000 PRI 
E2 SKI 20000 PRI 
E3 SK3 20000 PR2 
E4 SKI 19000 PR2 
E5 SKI 25000 PR2 

a2 SEGz EMPLOYEElxl(IIsKILL (<TPL#=PLl (EMPLOYEElxIPLANT») El SKI 18000 PRI 
E2 SKI 20000 PRI 
E3 SK3 20000 PR2 
E4 SKI 19000 PR2 
E5 SKI 25000 PR2 
E8 SK3 25000 PR3 
E9 SK3 21000 PR3 
EI0 SKI 20000 PR4 

as SEGs IIE#, SKILL, SALARY, PR#(<TPL#=PLZ(EMPLOYEElxIPLANT» E6 SK2 22000 PR3 
E7 SK2 22000 PR3 
E8 SK3 25000 PR3 
E9 SK3 21000 PR3 

SEG6 EMPLOYEElxl(IIsKILL (<TPL#=PLz(EMPLOYEElxlpLANT») E3 SK3 20000 PR2 
E6 SK2 22000 PR3 
E7 SK2 22000 PR3 
E8 SK3 25000 PR3 
E9 SK3 21000 PR3 

a9 SEG9 IIE#, SKILL, SALARY, PR#(<TPL#=Pu(EMPLOYEElxIPLANT» EI0 SKI 20000 PR4 

alO SEGlO EMPLOYEElxl(IIsKILL (<TPL#=PL3(EMPLOYEElxIPLANT») El SKI 18000 PRI 

Each pair of segments v, w which are not disjoint are re
placed by three segments v', W I and t I where t I = V n w, 
v I = V - t I, w' = w - t I. If either v I or w', is empty, it is 
removed. The fragment definition algorithm is detailed be
low. 

Table IV contains the fragments of the relation EMPLOYEE 
of Table I which were generated from the segments in Table 
III using the algorithm DETERMINE-FRAGMENT. 

ALGORITHM DETERMINE-FRAGMENT 
(* A simplified notation of segments is used here; the ith 
segment of a relation in context is simply denoted by SEG j *) 

1 FOR k = 1 TO number of relations DO 
2 t ~ number of segments in relation rk 
3 u +-1 
4 w +- index of first segment of relation Rk 
6 WHILE w <t DO 

v ~w+l 
7 WHILE v ::s t DO 
8 IF SEGw n SEGA:O 

E2 SKI 20000 PRI 
E4 SKI 19000 PR2 
E5 SKI 25000 PR2 
EI0 SKI 20000 PR4 

9 THEN SEGt+l ~ SEGw n SEGv 

10 SEGw ~ SEGw - SEGt + 1 

11 SEGv +- SEGv -SEGt+ 1 

12 t ~ t + 1 
13 ENDIF 
14 v ~ v + 1 
15 END WHILE (* At the end of each pass of this 

while loop the ith SEGMENT is disjoint from all 
other segments *) 

16 Define fragment fu +- SEGw 

17 w ~ index of next segment of relation Rk 
18 U ~ U + 1 
19 END WHILE 
20 fu ~ SEGw 

21 IF rk=F U fu THEN output error message: 
u=l 

"rk- U fu is not defined by any application". 
u=l 

22 END IF 
23 END FOR 
24 Remove all empty segments 
25 (* Note that when SEGi ::s SEGj an empty SEGMENT 

will be generated *) 
26 END OF ALGORITHM 



568 National Computer Conference, 1987 

TABLE IV 

Fragment # Used by Applications/Sites Tuples 

F1 aSS2, a&52 E6 SK2 22000 PR3 
E7 SK2 22000 PR3 

F2 a1S}, a2S}, a&52 E3 SK3 20000 PR3 

F3 a2S1, aSS2, a&52 E8 SK3 25000 PR3 
E9 SK3 21000 PR3 

F4 a1S}, a2S}, alOS3 E1 SK1 18000 PR1 
E2 SK1 20000 PR1 
E4 SK1 19000 PR2 
E5 SK1 25000 PR2 

F5 a2S}, a9S3, alOS3 E10 SK1 20000 PR4 

FRAGMENT ALLOCATION 

Cost computation 

We use the following notation: 

CA (j,Si) = Local cost at site Si of allocating fragment / 
to site Si 

CN(j,si) = Local cost to site Si of not allocating fragment / 
to site Sj 

B (j,Si) = benefit of allocating fragment / to site Sj 

CA is computed as the sum of the following quantities: 
Cost of the space occupied by the fragment 
Cost of local retrievals 
Cost of local updates 
Cost of updates sent from other sites 

CN is the sum of the following quantities: 
Cost of local retrievals from remote sites 

We are assuming that the site who owns a copy of a frag
ment is "paying" for all updates of its copy of the fragment. 
Also, obviously each site is paying for all retrievals issued by 
local applications. 

The cost of a remote retrieval issued from site Si to site Sj is 
composed of the cost of communication between site Si and 
site Sj, plus the cost of retrieval at site Sj. 

The cost of an update issued from site Sj to site Sj is similarly 
composed of the cost of communication between site Sj and 
site Sj, plus the cost of updating at site Sj. 

In the computation of communication costs, we assumed an 
average communication cost which is the same for all pairs of 
sites. This approach is suitable for distributed databases 
where the costs of communicating between two sites are close. 
This approach is applicable to local area networks, or to net
works within small geographic regions and other networks 
where the cost of communications between pairs of sites is 
nearly equal. 

Similarly, an average retrieval cost and an average update 
cost are assumed. This approach is especially appropriate 
when the database is distributed over a network of similar 
computers such as a network of V AXes or a network of micro
computers. 

Using the averages provides considerable simplification to 

the computations, and at the same time reasonably accurate 
values are obtained. An extension of the cost computation 
into the general case is being developed. See the section 
"Concluding Remarks." 

Now the benefit of allocating fragment/to site Sj is defined 
as: 

Note that if an application aj at site Sj issues an update to 
fragment /, then this update is not a function of the fragment 
allocations, it is simply a function of the nature of the applica
tion, Thus whether fragment / is allocated to site Sj or not, the 
update will be issued, and each site which owns a copy of/will 
accrue the communication cost and its own local update cost. 

Thus, we achieved a fragment allocation benefit computa
tion which can be computed for each site independently, that 
is, the cost benefit of allocating a fragment to a given site is 
independent of what is allocated to other sites. 

This approach is a major departure from previous work. A 
similar approach in computing benefit of access structure was 
introduced in Motzkin. 22,23 

Note also that the sum of all local DBMS's costs is equal to 
the global DDBMS cost, since all retrievals, updates and com
munication costs are included and are not duplicated. 

Thus, maximizing the benefit of each local site will result in 
overall maximal benefit of the global DDBMS~ 

Furthermore, if it costs a site more to own a copy of a 
fragment than it costs if the site does not own a copy, a 
negative value for the benefit of allocating a fragment to a site 
will result. 

Therefore, a maximum benefit results when allocating all 
fragments to sites where B(j,sj) are positive, and not allo
cating otherwise. However, storage constraints may affect the 
allocation. 

The problem of guaranteeing optimal global benefit while 
meeting storage requirements is NP complete. In the worst 
case all permutations of ordering of sites must be tried. A 
heuristic approach is taken. 

The Space Constraints 

Each site Sj provides input concerning maximum available 
space, denoted ASP(sj). If space is not limited 00 can be 
provided as an input. Space constraints are more likely to exist 
in DDBMS of microcomputers. 

Now all the sites are checked to see if they have sufficient 
storage space to store all the fragments allocated to them. If 
a site Sj is found with insufficient storage space all the frag
ments of site Sj are sorted on their benefit to this site. Starting 
with the fragment of least benefit and continuing until there 
is sufficient space or all fragments have been checked, the 
following is done: If the fragment is allocated elsewhere, its 
allocation to site Sj is cancelled. If the fragment is not allocated 
elsewhere the sites are checked in the order of the benefit of 
allocation, for this fragment, and the fragment is allocated to 
the first site, Sj, with enough space, and then removed from Sj. 

At the end of this process a message is issued if space con
straints were not met. See part 2 of the algorithm ALLO
CATE in the section "Fragment Allocation Algorithm." 



Distributed Database Design With Cost Optimization and Space Constraints Integration 569 

Fragment Allocation Algorithm 

From the discussion of costs above; it follows that the bene
fit of allocating a fragment to a site can be computed for each 
site individually, regardless of what happens at other sites. 
The benefit value is obviously either positive, negative or 
zero, and is a function of local applications' queries and re
mote applications' updates. 

The algorithm has two parts. 

1. Allocate fragments to all sites where B (f,s) > 0 
2. Adjust to meet space requirements 

The algorithm is as follows: 

ALGORITHM ALLOCATE 
(Part 1: allocate fragments to sites with positive benefit value) 

FOR m = 1 to number of fragments DO 
ALLOCATED ~ FALSE 
FOR each site Si which uses fragment fm DO 

Compute B(fm, Si) 
IF B(fm, Si) > 0 
THEN allocate fm to site Si 

ALLOCATED ~ TRUE 
ENDIF 

END FOR 
IF ALLOCATED = FALSE 
THEN issue an error message 'fragment f m was not 
allocated' 
ENDIF 

END FOR 
(Part 2: adjust to meet space requirements) 

FOR i = 1 TO number of sites DO 
SP(Si) ~ total space used by fragments allocated to site 
Si 
ASP(Si) ~ available space at site Si 

IF ASP(Si) < SP(Si) 
THEN sort fragments at Si in ascending order on B (f m ,Si) 

ENDIF 
Denote sorted fragments by fl' f2' ... ,ft 
Denote the space used by fragment fm as SP(fm) 
m~1 

REPEAT 
IF f m is allocated elsewhere 

THEN cancel allocation of fm to Si 
SP(Si) ~ SP(Si) - SP(fm) 

ELSE sort the sites in descending order on the 
benefit of allocating fm to each site. 

j ~ index of site with greatest benefit 
DONE ~FALSE 
REPEAT 

IF SP(Sj) + SP(fm) :5 ASP (Sj) 
THEN allocate f m to Sj. 

SP(sJ ~ SP(Sj) + SP(fm) 
DONE~TRUE 

END IF 
j ~ index of next site in the sorted list 
UNTIL DONE = TRUE for all sites have been 
checked 

END IF 
m~m+1 

UNTIL SP(Si) :5 ASP(Si) or all fragments have been 
checked 
IF ASP(Si) < SP(Si) THEN OUTPUT message 

'insufficient storage at site S;' 
END FOR 

END of part 2 

Assume input data for the database of Table I as shown in 
the Appendix. All resulting fragments are shown also in the 
Appendix. The benefits calculated from this input is shown in 
Table V. The allocation of fragments based on optimizing cost 
alone is shown in Table VI. After executing part 2 output as 
in Table VII, results. 

TABLE V-Benefit of allocating fragments to sites 

S1 S2 S3 

F1 -5.47 28.53 -5.47 

F2 15.16 31.16 -10.84 

F3 35.83 33.83 -8.17 

F4 6.96 -19.04 8.96 

Fs 27.76 -16.24 11.76 

F6 27.83 -8.17 -8.17 

F7 -13.55 46.45 -13.55 

Fs -5.42 -5.42 38.58 

F9 3.60 -0.40 11.60 

TABLE VI-Optimal fragment allocation based on benefit only 

Fragment Relation Records Sites 

1 1 6 7 2 
2 1 3 1 2 
3 1 8 9 1 2 
4 1 124 5 1 3 
5 1 10 1 3 
6 2 123 1 
7 2 4 5 2 
8 2 6 3 
9 3 123 4 1 3 

TABLE VII-Reallocation of fragment subject to space constraints 

Fragment Relation Records Sites 

1 1 6 7 3 
2 1 3 1 
3 1 8 9 1 
4 1 124 5 1 3 
5 1 10 1 3 
6 2 123 1 
7 2 4 5 2 
8 2 6 3 
9 3 123 4 1 3 



570 National Computer Conference, 1987 

Note that the allocation of fragments 1,2 to site 2 have been 
cancelled. Fragment 1 was not allocated anywhere in the net
work, so the algorithm reallocated it to site 3. The space 
situation before and after adjusting to space constraints is 
shown in Tables VIII and IX. The corresponding costs and 
benefits are shown in Tables X and XI. 

COMPLEXITY OF COMPUTATION 

The complexity of DEFINE-SEG is O(A . N) Where A is the 
number of applications and N is the average number of 
records per relation. 

The nested WHILE loop lines 6-19 of the DETERMINE 
FRAGMENT algorithm has time complexity of 0(F2) where 
F is the average number of fragments generated for a relation. 
The worst case occurs when each fragment consists of a 
single tuple. Therefore the worst case for this nested loop is 
0(N2). Lines 21 through 22 have complexity O(N) where N is 
the average number of records per relation. The outer FOR 

Site 

Sl 
S2 
S3 

TABLE VIII-Space situation following 
optimal allocation of fragments 

SP 

456 
228 
300 

Free Space 

44 

200 

ASP 

500 
100 
500 

TABLE IX-Space situation following allocation constrained 
by available space at site 2 

Site 

Sl 
S2 
S3 

Site 

1 
2 
3 

SP 

456 
48 

372 

Free Space 

44 
52 

128 

TABLE X-Optimal costs and benefits 
with unconstrained allocation 

ASP 

500 
100 
500 

Cost Benefit 

148.86 117.14 
118.02 139.98 
82.60 70.90 

349.48 328.02 

TABLE XI--Costs and benefits after space constrained allocation 

Site Cost Benefit 

1 148.86 117.14 
2 211.55 46.45 
3 88.07 65.43 

448.48 229.02 

loop deliminated by lines 1-23 has OCR) time complexity, 
where R is the number of global relations, DETERMINE
FRAGMENT algorithm has the time complexity O(RF2). 
The worst case is O( RN2) where N is the average number of 
tuples per relation. 

Part 1 of algorithm ALLOCATE is bounded by S . N . R 
where S is the number of sites while the time of executing part 
2 is bounded by the time needed to sort the fragments at each 
site. The worst case occurs when all sites have insufficient 
space and none of the fragments are allocated elsewhere. In 
such a situation all fragments at all sites are \checked for 
reallocation. The time complexity of this process is 
O(N . R . S . LOG(N . RIS) . LOG(S)). 

Therefore the entire set of design algorithms has time 
complexity that is bounded by O(R· N 2 + R . N· S . 
LOG(R . NIS)· LOG(S) + A . N). 

CONCLUDING REMARKS 

A method for logical design of distributed relational database 
management systems has been developed. The scheme is an 
extension of previous work. It uses a new approach for calcu
lation of cost benefit. This approach provides the computation 
of maximum cost benefit of each site independently. It is 
shown that optimal local sites benefits yield optimal global 
benefit for the entire distributed database. It was shown that 
the optimal local and global cost benefit is achieved by allo
cating fragments to all benefiting sites. The ability to compute 
the optimal costs independently for each site contributes 
considerably to the efficiency of the design algorithm. It 
eliminates the need to compare a large number of design 
configurations. 

The algorithms can utilize parallel processing. Fragmenta
tion of each global relation can be computed in parallel, dur
ing the definition phase. During the allocation phase, the 
benefits fragment assignments of each site can be done in 
parallel. 

The model also incorporates storage constraints. When 
storage space is not sufficient at some site S;, then the alloca
tion of some of the benefiting fragments is cancelled. 
Reallocation is done if needed. This process guarantees that 
if space is available elsewhere on the network the fragments of 
lower benefit to s; will be available on other sites. When 
reallocation is needed the sites of highest benefit values are 
chosen. The space adjustment algorithm is heuristic and pro
vides reasonable but not necessarily optimal allocation. 

The model uses average figures for retrieval costs, update 
costs and communication costs. Thus it is appropriate for a 
network where communication costs are nearly equal, and the 
computers in the network have similar processing costs. Thus 
the model will work well in situations such as local.area net
works of microcomputers, or local area network of VAXes 
etc. This is often the case when there are distributed databases 
within a company or an institution. 

An extension to the general case is being developed, and 
will be submitted for publication at a later date. The general 
idea behind the extension is the clustering of similar com
puters, with similar communication cost between them. Frag
ments will be assigned to a cluster based on actual communi-



Distributed Database Design With Cost Optimization and Space Constraints Integration 571 

cation costs between clusters and also based on the average 
processing cost of computers in the cluster. Within a cluster, 
the method that was described here will be used. The design 
algorithms described here have been implemented with a 
PASCAL program and tested. 

Additional details concerning the cost computations, the 
details of the algorithms, implementation, and simulation 
runs will be published at a later date. 

ACKNOWLEDGEMENT 

The authors wish to thank Dr. Kenneth Williams for very 
valuable comments and suggestions. 

REFERENCES 

1. Ceri, S., G. Martella, G. Pelagatti, S.M. Deen, and P. Hammersley. "Op
timal file allocation for a distributed data base on a network of mini
computers." Proceedings of the International Conference on Data Bases, 
Aberdeen, Scotland, 1980, pp. 216-237. 

2. Ceri, S., G. Martella, G. Pelagatti. "Optimal file allocation in a computer 
network: a solution method based on knapsack problem." Computer Net
works, 6 (1982) 5, pp. 345-357. 

3. Ceri, S., M. Negri, and G. Pelagatti. "Horizontal partitioning in database 
design." ACM-SIGMOD, 1982. 

4. Ceri, S., and S.B. Navathe. "A methodology for the distribution design of 
database." Proceedings of Comcon '83, San Francisco, California, 1983. 

5. Ceri, S., S.B. Navathe, and G. Wiederhold. "Distribution design of logical 
database schemas." IEEE-TSE, 1983. 

6. Ceri, S., and G. Pelagatti. "Distributed database principles and systems." 
McGraw-Hill, 1984. 

7. Chang, S.K., and W.H. Cheng. "A methodology for structured databases 
decomposition." IEEE-TSE, 1980. 

8. Chang, S.K. and A.C. Liu. "A database file allocation problem." Pro
ceedings of COMPSAC '81. IEEE Computer Society, 1981, pp. 18-23. 

9. Chang, S.K., and A.c. Liu. "File allocation in a distributed database." 
International Journal of Computer and Information Science, II (1982) 5, 
pp. 325-340. 

10. Duta, A. "Modeling of multiple copy updates for file allocation in distrib
uted database." International Journal of Computer and Information 
Science; 14 (1985) 1, pp. 29-34. 

11. Irani, K.B., and N.G. Khabbaz. "A model for a combined communication 
network design and file allocation for distributed database." Proceedings of 
the First International Conference on Distributed Computer Systems, Hunts
ville, AL, 1979, pp. 15-21. 

12. Irani, K.B., and N.G. Khabbaz. "A combined communication network 
design and file allocation for distributed databases." Proceedings of Second 
International Conference on Distributed Computing Systems, Paris, France, 
1981, pp. 197-210. 

13. Lin, J., and M.T. Liu. "A distributed double-loop data network for very 
large on line distributed databases." Proceedings of a symposium on reli
ability in distributed software and database systems, IEEE, 1981, pp. 83-88. 

14. Mazzarol, G., E. Tomasin, and J. Stoer. "Optimal file allocation problem 
and relational distributed databases." Proceedings of the Eighth IFIP 
Conference on Optimization Techniques, Wurzburg, Germany, 1977, 
pp. 484-494. 

15. Navathe, S., S. Ceri, G. Wiederhold, and J. Dou. "Vertical partitioning 
algorithms for database design." ACM Transactions on Database Systems, 
9 (1984) 4, pp. 680-710. 

16. Rakes, T.R., L.S. Franz, and A. Se. "A heuristic approximation for reduc
ing problem size in network file alloction models." Computers and Oper
ations Research, 11 (1984) 4, pp. 387-395. 

17. Reddy, C.N. "Distributed data base systems." Electro-Technol, 25 (1981) 
1, pp.15-22. 

18. Yu, C.T., M.K. Siu, K. Lam and F. Tai. "Adaptive clustering schemes: 
general framework." Proceedings of COMPSAC '81 IEEE Computer 
Society, 1981, pp. 16-20. 

19. Yao, S., S.B. Navathe, J.L. Weldon, and T.L. Kunii. "Database design 
techniques." Proceedings of NYU Symposium on Database Design, 1982. 

20. Dowdy, L.W., and D.V. Foster. "Comparative models of the file assign
ment problem." ACM Computing Survey, 14 (1984) 2. 

21. Motzkin, D. "Horizontal fragment allocation in distributed databases with 
optimal integration of cost reliability and storage constraints." Technical 
Report TR-01 Computer Science department Western Michigan University, 
1986. 

22. Motzkin, D. "An optimal physical database model." Proceedings of Fifth 
International Conference on Mathematical Modelling, 1985. 

23. Motzkin, D. "Database performance optimization." AFIPS, Proceedings 
of the National Computer Conference, (Vol. 54), 1985, pp. 555-565. 

APPENDIX-STATISTICAL INPUT 
WITH SPACE CONSTRAINTS 

NUMBER OF SITES: 3 

NUMBER OF RELATIONS: 3 

Relation 

1 
2 
3 

Cost of 
Space Unit 

0.001 

Relation Input 

Number of Bytes per 
Records Records 

10 36 
6 24 
4 24 

Cost Input 

Cost of 
Unit Retrieval 

0.30 

Cost of 
Update 

0.70 

Workload Input 

Site Input 

Available 

Site Space 

1 
2 
3 

500 
100 
500 

Cost of 
Communication 

2.00 

Frequency of Frequency of Average 
Site Application Retrieval Update Retrieval Size 

1 10 3 3 
2 20 2 5 
3 15 3 2 
4 10 4 3 

2 5 15 2 4 
6 20 1 3 
7 25 5 2 
8 10 2 3 

3 9 15 3 1 
10 10 4 4 
11 20 2 1 
12 15 3 3 



572 National Computer Conference, 1987 

The Fragments 

Relations Records Fragments 

EMPLOYEE E# Skill Salary PR# 
E6 SK2 22000 PR3 Fl 
E7 SK2 22000 PR3 

E# Skill Salary PR# F2 
E3 SK3 20000 PR2 

E# Skill Salary PR# 
E8 SK3 25000 PR3 F3 
E9 SK3 21000 PR3 

E# Skill Salary PR# 
El SKI 18000 PRI 
E2 SKI 20000 PRI F4 
E4 SKI 19000 PR2 
E5 SKI 25000 PR2 

E# Skill Salary PR# F5 
EI0 SKI 20000 PR4 

PROJECT PR# Skill 
PRI SKI F6 
PR2 SKI 
PR2 SK3 

PR# Skill 
PR3 SK2 F7 
PR3 SK3 

PR# Skill F8 
PR4 SKI 

PLANT PL# PR# 
PLI PRI 
PLI PR2 F9 
PL2 PR3 
PL3 PR4 



How sensitive is the physical database design? 
Results of experimental investigation 

by PRASHANT PAL VIA 
Memphis State University 
Memphis, Tennessee 

ABSTRACT 

The structure and efficiency of a physical database design depends on the logical 
data structure, the activities to take place in the database, the computer system 
characteristics, and the physical characteristics of the computer system. This paper 
identifies specific underlying factors within the broad general categories that may 
potentially influence the physical database design. In an effort to conduct a detailed 
sensitivity analysis of the underlying factors, an experimental design is developed. 
Sensitivity experiments are conducted as per the experimental design, and, finally, 
the experimental results are reported. 

573 





INTRODUCTION 

The database literature has reported several research studies 
on selecting an optimal physical design given a set of underly
ing independent factors. 1,2,3,4,5 However, reports of research 
and experience on the sensitivity of a physical database design 
to the same underlying factors are practically non-existent. 
Such research has significant practical value to designers, who 
are constantly faced with restructuring databases because of 
changing user and technical requirements. Such findings will 
help designers assess the effects of major changes in the influ
encing factors on physical design. 

This paper reports the results of sensitivity analysis based 
on several controlled experiments conducted in a laboratory 
setting. This paper includes a discussion of the objectives for 
physical database design and the general categories of inde
pendent factors. One of the factors is the physical design 
model itself, and the abstract model used for this study is 
described. Also, the specific factors, the factor levels and, in 
some cases, methods to quantify factor values are described. 
The experimental design is also described. The major section 
of the paper presents and discusses the sensitivity results from 
the experiments. Finally, some conclusions are presented. 

PHYSICAL DESIGN OBJECTIVES 
AND DESIGN DETERMINANTS 

Among the objectives for designing a physical database, the 
over-riding criterion is to minimize the operational costs of 
using the database (the studies referred to earlier largely use 
this criterion). In this study, two operational costs are consid
ered: the cost of storing the data and the cost of accessing the 
data. Access costs are estimated in this paper by the surrogate 
measure of the total number of pages accessed from second
ary memory. 

The operational costs of a physical database design are 
influenced by four major factors: (1) the logical data struc
ture, (2) the activities to take place on the database, (3) the 
computer system characteristics, and (4) the physical design 
model. Each category is briefly reviewed here. 

The logical data structure (LDS) is designed using a logical 
design model, which is provided on the basis of prior design 
activity. The LDS for a particular design problem contains 
several entities and relationships joining the entities. For ex
ample, Figure 1 is the LDS of an organization's employee 
database. The LDS can be directly obtained using data struc
ture diagrams6 or by converting from entity-relationship 
diagrams.? 

The activities on the database may be either retrieval or 
update. This work primarily focuses on retrievals. A retrieval 

How Sensitive is the Physical Database Design? 575 

may require selected instances of only one entity (e.g., data 
about certain employees only), or may require data across 
several entities and their instances (e.g., data about certain 
departments and data about employees who work in those 
departments). The second type of retrieval is more complex 
and requires "traversing" several entities. 

The physical design also depends on the computer system 
characteristics. In a high contention multi-user environment, 
each access may be considered a random access, and then the 
total number of pages accessed can be used as a measure of 
access costs. The relevant computer system characteristics are 
the page size, the cost per page access, the storage cost, and 
the direct pointer size. 

Finally, such physical factors as the access paths available 
and the data access/navigation strategy also influence the 
physical database design. Foremost among physical factors is 
the physical design model itself. The physical design model 
describes the permissible alternative physical designs. Differ
ent commercial DBMSs use different physical design models 
for the physical representation of a database. This work uses 
an abstract design model, which is described next. 

The Physical Design Model: Record Structuring 

Whereas the LDS is represented by entities and relation
ships between entities, the physical design is comprised of 
various record types, their instances, and pointer linkages 
between records. Additionally, access paths (e.g., indexes) 
may be created to permit rapid access of records. 

Record structuring should be so done so as to represent the 
entities as well as the relationships between entities. Record 
structuring strategies in a file and database environment have 
been proposed in the literature. 1, 4, 5, 8, 9, 10, 11, 12 A common 

DEPARTMENT 
1 

EMPLOYEE 
2 

ADDRESS 
3 

EDUCATION 
4 

PROJECT 
6 

ASSIGNMENT 
5 

Figure I-Example of a logical data structure 



576 National Computer Conference, 1987 

theme emerges from these works; that is, two principles are 
used for representing a relationship between two entities. The 
first principle is basic: indicate a relationship between two 
entities by storing appropriate pointers in the entities' in
stances. The pointers may be in the form of linked lists or 
inverted lists or some combination. The second principle for 
indicating a relationship is the concept of clustering/aggrega
tion, in which all instances of one entity that are related to an 
instance of a second entity are clustered near the second entity 
instance. 

The two concepts yield substantially different designs. The 
present abstract model captures the spirit of the two concepts; 
more variations and details will be included in future experi
ments. The abstract physical design model allows for five ways 
of representing a relationship between two entities X and Y: 
X points to Y, Y points to X, they both point to each other, 
X aggregates (clusters) Y, and Y aggregates X. Further, the 
pointers may be direct or symbolic. Aggregation of Y into X 
in the abstract model is actualized by making the related Y 
instances part of the X record. 

Hierarchical and CODASYL systems incorporate the con
cepts of pointers and aggregations. For example, aggregation 
is supported in IMS by permitting hierarchical segments in the 
same data set, and in CODASYL systems by storing MEM
BER records near the OWNER using VIA SET and NEAR 
OWNER. Relational systems prohibit aggregation at a logical 
level; however, substantial efficiencies may be achieved by 
its use. 13, 14 

The physical options start mUltiplying and become more 
complex to evaluate as the number of entities in the LDS 
become large. An evaluator/simulator reported in PalvialO is 
used to evaluate the storage and access costs of any given 
physical database design as per the specifications of the phys
ical design model. The evaluator is used in an exhaustive
search manner to find the optimal physical design for a given 
problem. 

In the experiments conducted, it was soon realized that one 
of the three pointer options could be fairly easily selected 
without significantly affecting the optimal physical design. For 
this paper, the physical design model is simplified by permit
ting only one pointer option of the three options described. 
This option will be either mandatory two-way pointers or 
one-way pointers selected by the designer or by the software. 
With only one pointer option, a physical design can be fully 
specified simply by indicating the aggregations. A short-form 
notation devised by the author to represent a physical design 
is to name the "aggregator" or "absorber" (also called "par
ent") entity of each entity. A root entity does not have a 
physical parent; so its parent is numbered O. Designs for the 
6-entity problem of Figure 1 expressed in short-form include: 

o 0 0 0 0 O ... (unclustered flat-file design) 
o 1 0 2 2 0 ... (1 clusters 2; 2 clusters 4 and 5; 1, 3 and 6 

are rooted) 
o 0 0 0 6 O ... (only 6 clusters 5; except 5, all entities 

rooted) 

With this background, the experimental factors are described 
in full detail. 

THE EXPERIMENTAL FACTORS 

Since no assumptions are made about the sensitivity of the 
factors, a priori, the factors considered are comprehensive in 
that they make the problem character vary in most ways. The 
experimental factors are developed along the four exogenous 
dimensions; namely, the logical data structure, the activities 
on the database, the computer system characteristics, and the 
implementation characteristics. It is believed that the factors 
discussed in this section capture the most important features, 
in the spirit of the 80-20 rule, in which a relatively few number 
of factors tend to be the most significant. 

LDS Related Factors 

A. Number of entities in the logical data structure 

A measure of logical data structure size aD.d complexity is 
the number of entities and/or relationships in the LDS. The 
number of entities and the number of activities in an LDS are 
highly correlated, so only the number of entities is considered. 
Since this is the most important factor representing the LDS, 
four levels are chosen for this factor; that is, LDS with four, 
six, eight, and ten entities. The ability to generate an optimal 
physical design (by enumeration) prevented us from consid
ering higher sized problems. 

Activities Related Factors 

The number of activities and the "structure" of activities 
can significantly affect the optimal physical design. Four fac
tors relating to the structure of activities have been used. The 
activities related factors are: (1) the number of activities on 
the database, (2) the number of contexts per activity, (3) the 
proportion of entity instances addressed, (4) the distribution 
of activities on the LDS, and (5) the degree of conflict be
tween activities. 

B. Number of activities on the database 

Three levels have been chosen for this factor. For the six
entity problem, the three levels are three, six, and nine activ
ities on the database. 

C. Number of contexts per activity 

The number of contexts for an activity refers to the number 
of entities the activity traverses. The average number of con
texts per activity is used as an indication of this characteristic. 
The three levels used are 1.67, 3.17, and 4.5 average number 
of contexts per activity. 

D. Proportion of entity instances addressed 

The proportion of entity instances addressed by an activity 
depends on the operating environment. For example, a 



productionibatch environment is characterized by activities 
addressing a large proportion of entity instances whereas an 
executive environment has activities addressing only a small 
proportion of entity instances. Three levels have been 
selected, one for which 100 percent of the instances are re
quired, one for which a medium proportion of instances are 
required, and one for which a very small proportion of in
stances are required. Call these high, medium, and low pro
portions. 

E. Distribution of activities on the LDS 

The activities on the LDS may concentrate on one or a few 
entities of the LDS, or may be distributed uniformly over the 
entire LDS. Again, use three levels: high, medium, and low 
concentration over the LDS. This is achieved by changing the 
frequencies of the various activities. 

F. Degree of conflict between activities 

If all activities traversed in the same direction in the LDS, 
there would be no conflict between activities, and it would be 
relatively easy to obtain the optimal physical design. In fact, 
it may be argued that it is the conflict among the activities 
which makes the design problem hard. Since a measure for the 
degree of conflict is not readily found in the current literature, 
the author developed a method to measure the degree of 
conflict. 

In this method (see Figure 2), focus on the number of 
activities along each relationship. Split these activities into 
two categories, one for each direction along the relationship. 
Let Fl be the sum of the frequencies of all activities in one 
direction along a given relationship, and F2 be the sum of 
frequencies of the activities along the other direction. The 
greater of Fl and F2 is called FR and the smaller of the two 
is called FL. FR and FL are computed for each relationship 
in the LDS. Let FRS be the sum of all FRs and FLS be the 
sum of all FL s. The ratio of FLS to FRS is termed the degree 
of conflict. Note that this ratio varies between zero and one. 
A higher value represents higher conflict, while a zero value 
represents minimum conflict. Figure 2 also illustrates the 
computation of the measure of conflict. 

Based on this measure, sets of activities were constructed 
for the six-entity problem to provide high, medium, and low 
degrees of conflict among activities. 

Computer System Related Factors 

G. Access and storage 

The relevant factor is the cost of access and storage. Three 
cases have been considered: only access costs, only storage 
costs, and a realistic case of both access and storage costs. 
Generally, the access costs alone are of primary importance. 

, 

H. Page size 

Two levels have been used for this factor; a page size of 2000 
and a page size of 4000 characters. 

How Sensitive is the Physical Database Design? 577 

Activity 4 

Activity 6 

Relationship 
1-2 
1-3 
2-3 
2-4 
2-5 
2-6 
5-6 

FH 
2 
o 
2 
1 
3 
1 
2 

Activity 5 

FL 
1 
o 
o 
o 
o 
o 
1 

Total 11 2 

Conflict = 2111 = .182 

Figure 2-Measure of degree of conflict 

Implementation Factors 

1. Method of accessing data 

Activity 3 

The normal mode of accessing records is to bring the 
records into the main memory as needed while navigating 
through the database. Here, this method is called AMl. A 
second method, called AM2, was considered for which max
imum batching was assumed. AM2 requires extremely large 
buffer sizes so that all required records from each file are 
brought in all at once and the files need not be re-accessed. 
Unless queries are simple or main memory is very large, real 
systems provide a certain limit on look-foward and the extent 
of batching. Thus, the AM2 results should be interpreted as 
the asymptotic case, while the AMI results are more realistic. 

J. Random versus sequential access path 

Random access paths are more suitable for today's multi
user databases requiring fast on-line retrieval speeds. Se
quential access paths are also evaluated for the sake of com
pleteness and because batch-oriented systems use sequential 
access paths. Thus, there are two levels. 

K. Symbolic versus direct pointers 

These are two levels. The mixing of pointer types is not 
allowed. 



578 National Computer Conference, 1987 

L. Mandatory versus non-mandatory two-way pointers 

In the mandatory case, only two-way pointers are consid
ered. In the non-mandatory case, selection among the three 
pointer options is made based on pair-wise consideration of 
entities. Thus, there are two levels. 

THE EXPERIMENTAL DESIGN 

For the twelve experimental factors, the total exhaustive 
number of cases to evaluate for a full factorial design are 
A(4).B(3).C(3).D(3).E(3).F(3).G(2).H(2).I(2).J(2).K(2).L 
(2) or 62,208 cases. For the first six factors, a new problem 
also has to be generated, for a total of 972 cases. 

Clearly, the large number of cases precludes considering 
the full factorial design; the number of cases has to be reduced 
to a realistic proportion. Since the experiments on the evalu
ator are deterministic (and not stochastic), statistical methods 
cannot be used in developing a partial factorial design. In
stead, the methodology used is to intelligently select the most 
important cases for experimentation. This was accomplished 
by first defining a "reasonable case," called the base case. The 
base case has each of the problem factors set at a specified 
value. To keep the case reasonable and average, the value of 
each quantitative factor is set at the middle value, and the 
value of each qualitative factor is set largely to reflect the 
current practice in database design. Table I describes the pa
rameter values of this "average and reasonable" base case. 
The base case has six entities, as shown in Figure 1. (It may 
be noted that although six entities is not a very large number, 
many organizational databases can be represented by that 
many entities). 

The next step is to change each factor, one at a time, to all 
of their possible values without changing the other factors. 
Thus, the sensitivity of each factor is tested individually with-

TABLE I-Experimental factors and their levels, and parameters 
of the base case 

Factor 

A. Number of entities in the LDS 
B. Number of activities 
C. Number of contexts per activity 
D. Proportion of entity instances 

addressed 
E. Distribution of activities on LDS 
F. Degree of conflict between 

activities 
G. Access and storage 
H. Page size 
I. Method of accessing data 

J. Access Path 
K. Pointer type 
L. Mandatory vs non-mandatory 

two-way pointers 

Levels 

4 
3 
3 
3 

3 
3 

3 
2 
2 

2 
2 
2 

Base Case 
Value 

6 entities 
6 activities 
Medium (3.17) 
Medium 

Low concentration 
Medium 

Access costs 
2000 characters 
AMI for base case 1 
AM2 for base case 2 
Random 
Direct 
Mandatory 

out regard to each factor's interaction with other factors. If a 
solution is extremely sensitive to different values of a factor, 
then another base problem is defined by altering the value of 
the factor to the new value. The process is then repeated for 
the new base problem. In fact, Table I also lists the second 
base case generated in this manner. The two base cases are 
based on the method of accessing data, i.e., AM1 and AM2. 
In all, there were twenty cases for each base case, or a total 
of forty cases. 

The philosophy of this experimental design is to evaluate 
the effects of each factor near the base problems. The base 
problems are created and recreated to assure that all signifi
cantly different experimental regions are examined. 

SENSITIVITY ANALYSIS 

Sensitivity analysis refers to the extent to which the final 
optimum design changes because of changes in the values of 
the experimental factors. The cost of the final design almost 
invariably changes with changes in the experimental factors. 
However, the change in the optimum design is the sensitivity 
issue and not the change in the cost of the optimum design. 

The assessment of the extent of change in the optimum 
design remains subjective and its measurement is not readily 
available in the literature. To quantify this change, a measure 
was developed to capture the relative difference between two 
alternate designs. The measure determines the physical par
ent of each entity in the two designs and counts the number of 
entities with different parents. Let this number be D. D is 
divided by the total number of entities, N to obtain the phys
ical design difference measure (PDDM). To illustrate, consid
er the following two physical designs: 

000260 
o 1 022 0 

In these two designs, entities 2 and 5 have different physical 
parents; thus D = 2. Since N = 6; PDDM = 2/6 = .33. 

The optimal designs for the forty cases, found by exhaustive 
enumeration, are reported in Table II. Note that cases 1 to 20 
are the AM1 cases and the first case is the base case for AM1; 
cases 21-40 are AM2 cases and the twenty-first case is the 
base case for AM2. As suggested earlier, the access costs are 
the more important costs to consider; the optimum designs 
minimize the access costs unless otherwise stated. In Table II, 
each experimental case is described by its difference from the 
base case. The case description is followed by the optimal 
design listed in its short form, followed by the operational cost 
of the design and the number of total designs required to be 
evaluated for exhaustive enumeration. To appreciate the im
provement obtained by using the abstract physical design 
model, the commonly used operational cost of the flat-file 
(expressed as all zeroes in short form) design is also listed. 
Finally, the ratio of optimal to flat-file costs indicates the 
relative inefficiency of the flat-file design. 

The sensitivity analysis results for the forty experimental 
cases are reported in Table III. Each case is compared with 
the base case and the PDDM value is computed. The PDDM 



How Sensitive is the Physical Database Design? 579 

TABLE II-Optimal and naive design characteristics 

Optimal Design 
Flat-

Diff. from File Ratio 
Base Case 1 Operational Designs Oper. Optimal! 

Case (AMI cases) Design Cost Evaluated cost flat-file 

1. None o 1 0 2 2 0 4717 176 18869 .25 
2. 4 Entities o 122 102 20 2944 .03 
3. 8 Entities o 1 0 2 2 0 6 0 5025 956 19164 .26 
4. 10 Entities o 1 0 2 206 004 5842 5773 46656 .13 
5. 3 Activities o 0 0 0 6 0 250 176 708 .35 
6. 9 Activities o 1 0 2 2 0 5912 176 20710 .29 
7. Lo cntxlactv 000200 443 176 623 .71 
8. Hi cntxlactv 2 3 022 0 5332 176 21499 .25 
9. Hi proportn o 102 2 5 9658 176 53448 .18 

10. Lo proportn o 0 0 2 6 0 543 176 858 .63 
11. Med concentr o 1 0 2 2 0 6429 176 19337 .33 
12. Hi concentr o 1 0 2 2 0 6634 176 19877 .33 
13. Lo conflict o 5 0 0 6 0 9011 176 17347 .52 
14. Hi conflict o 1 0 220 6642 176 22072 .30 
15. Storage cost o 1 022 0 676800 176 796800 .85 
16. Acc & Strg o 1 0 2 2 0 87.49 176 202.87 .43 
17. 4000 pg sz 2 3 0 2 2 0 3407 176 18684 .18 
18. Seq acc path 230220 38799 176 715857 .05 
19. Symbolic ptr 2 0 0 2 2 5 6739 176 18912 .36 
20. Flexible ptr o 1 0 2 2 0 4687 176 18843 .25 

Diff. from 
Base Case 2 
(AM2 cases) 

21. None o 0 0 2 6 0 593 176 642 .92 
22. 4 Entities o 1 0 2 89 20 105 .85 
23. 8 Entities 00026060 682 956 790 .86 
24. 10 Entities 000 2 606 004 1025 5773 1428 .72 
25. 3 Activities o 0 0 0 6 0 222 176 249 .89 
26. 9 Activities 000260 1264 176 1362 .93 
27. Lo cntxlactv o 0 0 2 0 0 385 176 388 .99 
28. Hi cntxlactv 000260 1238 176 1354 .91 
29. Hi proprtn o 0 0 0 6 0 1193 176 1265 .94 
30. Lo proprtn o 0 0 2 6 0 410 176 469 .87 
31. Med concentr o 0 0 2 6 0 1009 176 1050 .96 
32. Hi concentr o 0 0 0 6 0 1486 176 1515 .98 
33. Lo conflict 000000 1090 176 1090 1.00 
34. Hi conflict 000 0 6 0 1275 176 1278 .998 
35. Storage cost 010220 676800 176 796800 .85 
36. Ace & Strg 000 2 6 0 98.44 176 109.51 .90 
37. 4000 pg sz 000260 345 
38. Seq Acc Path o 0 0 0 6 0 1298 
39. Symbolic ptrs o 0 0 2 0 0 
40. Flexible ptrs 000260 

reflects the sensitivity of a particular case. Since there are 
multiple cases for each factor, the combination of the multiple 
cases' PDDM values projects the sensitivity of the factor. 
Because the base case is the "middle" case of the multiple 
cases, the higher PDDM of the multiple cases is used as a 
measure of the sensitivity of the factor (this reflects the max
imum change in the physical design that can occur due to 
change in the factor level). Note that the sensitivity rating 
(and PDDM) can vary between 0 and 1; where 0 means no 

696 
530 

176 369 .93 
176 1370 .95 
176 723 .96 
176 552 .96 

sensitivity and i means maximum sensitivity. The sensitivity 
ratings have been classified as "high" if the rating is greater 
than or equal to .50, as "medium" if the rating is between .25 
and .50, and as "low" otherwise. 

As suggested in the experimental design section, the most 
sensitive factor has been the method of accessing data (i.e., 
AMI vs AM2), so much so that two separate base cases were 
used for the two methods. For this reason, this factor's effect 
is explored first. 



580 National Computer Conference, 1987 

TABLE III-Sensitivity analysis results 

Factor values AMI Results AM2 Results 

Factor (differences from Sensitivity Sensitivity 
Name base case) PDDM Rating PDDM Rating 

Number of entities 4 Entities 
in the LDS 8 Entities 0 Low 0 Low 

10 Entities 0 0 
Number of 3 Activities .50 High .17 Low 

activities 9 Activities 0 0 
Number of contexts Lo context/actv .33 Medium .17 Low 

per activity Hi cntxiactv .33 0 
Proportion of entity Hi proportn .17 Medium .17 Low 

instances addressed Lo proportn .33 0 
Distribution of acti- Med concentr 0 Low 0 Low 

vities on the LDS Hi concentr 0 .17 
Degree of conflict Lo conflict .50 High .33 Medium 

in activities Hi conflict 0 .17 
Access and Storage cost max High max High 

Storage Acc & Strg of .67 of .50 
Page size 4000 pg sz .33 Medium 0 Low 
Access path Seq acc path .33 Medium .17 Low 
Pointer type Symbolic ptr .50 High .17 Low 
Mandatory 2-way Flexible ptrs 0 Low 0 Low 

vs flexible ptrs 

'" The four-entity LDS was structurally different from the six-entity LDS, so PDDM was not calculated. 

Method of Accessing Data 

The method of accessing data, AM1 versus AM2, is an 
extremely sensitive factor. The PDDM values between corre
sponding cases of AM1 and AM2 (not shown here) were as 
high as .67. As the number of activities and the contexts per 
activity begin to increase, the differences between the AM1 
optimal design and AM2 optimal design begin to be substan
tial. With few and simple activities, the AM1 and AM2 solu
tions are not much different. (Table II shows that the AM1 
and AM2 solutions for three activities and low contexts per 
activity are identical.) The AM2 designs are not much sensi
tive to the activities on the database, but the AM1 designs are. 
The AM2 argument is to access each required file only once. 
Thus, if the file sizes are small, there will be few accesses on 
the file. Therefore, it may be stated that: 

Assertion: The objective of minimizing accesses in the AM2 
(batching) case is strongly correlated to the objective of 
minimizing storage. 

This is not so in the AM1 case where each file may be searched 
multiple times depending on the characteristics of the activ
ities. 

As observed earlier, a physical design technique commonly 
used by many designers is to store each entity independently 
in its own file with proper pointers to reflect relationships 
(e.g., in relational implementations). This design is called the 
flat-file design. Table II shows that, in the AM2 cases, the 
flat-file design is a very good design. Of the twenty AM2 
cases, one flat-file design turned out to be optimal, and in 

fourteen cases, the cost difference between the optimal and 
the flat-file design was less than 10 percent. This observation 
is a direct corollary of the above assertion because the flat-file 
design is a good design from the standpoint of minimizing 
storage requirements (the only storage overhead is due to the 
pointers and no data redundancy is caused due to absorp
tions). 

On the other hand, the flat-file design is not always good for 
the more commonly used access strategy as in the AM1 cases. 
In all of the twenty AM1 cases, the cost difference between 
the optimal and the flat-file design was more than 10 percent 
and in only one case was less than 20 percent. Further, it was 
found that some designs are extremely poor, costing far more 
than the flat-file design (on the order of 5 to 10 times more). 
The AM1 strategy in combination with activity factors be
comes extremely sensitive and one has to be very careful in 
laying out the physical design. Again the reason is that in 
AM1, the first file is searched once, while subsequent files are 
searched many times. Since the flat-file calls for the maximum 
number of files possible, the total searches are also multiplied 
accordingly. This results in the flat-file being a poor design 
choice. The physical design selected has to minimize the total 
number of accesses, which is a combination of the number of 
searches of the files as well as the accesses at each search. This 
is a much more difficult design goal. 

One final word on this factor. Although we have only dis
cussed the two extremes AM1 and AM2, there are other data 
access strategies which fall between the two extremes (e.g., 
limited batching may be applied). The sensitivity of the factor 
is then diiuted accordingly. As stated earlier, AM1 strategy is 
more commonly applied in most DBMSs, and the sensitivity 



of the underlying factors in AMI is much higher; therefore, 
the remaining sensitivity results generally focus on the AMI 
cases. 

LDS Related Factors 

The LDS related factors (i.e., the number of entities in the 
LDS) alter the total character of the problem. Thus, the opti
mal design changes to the extent the problem description 
changes. In a sense, it may be unfair to conduct sensitivity 
analysis if the changes in LDS alter the problem definition 
drastically. However, it does make sense to conduct sensitivity 
analysis by changing the LDS size without changing its basic 
structure (e.g., entities are merely dropped from or added to 
an existing LDS). 

When such changes were made to the LDS of the base 
problem and minimal changes were made in the activities on 
the LDS, it was found that the optimal physical design was 
only moderately affected. When we experimented with add
ing entities to the LDS, only the physical storage of the added 
entities was affected with no or minimal effect on the entities 
previously stored. As in Table II, in both AMI and AM2 
cases, when entities 7 and 8 were added to the six-entity LDS, 
7 was absorbed into 6, and 8 was stored independently. Enti
ties 1 through 5 were stored unchanged. 

LDS-based guidelines have been proposed for physical de
sign.1,6 The guidelines in Carlis1 suggest that (a) a 1: 1 rela
tionship should be represented by pointers and (b) a 1: M 
relationship should not be represented by the "M" entity 
absorbing the "I" entity. Evidence of the applicability of 
these guidelines is found in all AM2's batching cases, but not 
in all of the more realistic AMI cases. For example, cases 8 
and 9 violate these guidelines. Further, the experiments show 
that these guidelines remain valid when the activities on the 
database are very few and are relatively simple (e.g., each 
activity focusing on a very few number of entities). However, 
this is not the case in large multi-user databases, where there 
are many activities on the database and the activities may be 
fairly complex. It is therefore inferred that pure LDS based 
guidelines have limited applicability; they are applicable only 
when the activities on the database are few and relatively 
simple. 

Activities Related Factors 

The sensitivity experiments findings are again summarized 
in Table III. One of the important conclusions of the experi
mentation is that not only the number of activities, but also 
the "structure" of the activities, affect the choice of the opti
mal design. The amount of change in the activities related 
factors is a continuum, from very low to very high. The 
amount of change induced in the optimal design also varies 
similarly. 

It might be said at the outset that the activity effects are 
more pronounced in the AMI case than in the AM2 case. In 
the AM2 case, all of the activity factors had low· sensitivity 
with one exception, and the optimal designs differed in, at 
most, one clustering. However, in the realistic AMI cases, the 

How Sensitive is the Physical Database Design? 581 

findings were different. As expected, the sensitivity was high 
as the number of activities on the database increased. It is 
important that even when the number of activities on the 
database remains the same, the optimal design can change 
considerably with "structural" changes in the activities. These 
structural changes in the activities include the number of con
texts per activity, the degree of conflict between entities, the 
proportion of entity instances addressed, and the distribution 
of activities on the LDS. The design changes caused by these 
factors are shown in Table II, and the factor sensitivity ratings 
are shown in Table III. As can be seen, all have a medium-to
high sensitivity to the optimal design, with the possible excep
tion of the factor: distribution of activities on the LDS. 

The sensitivity of the activity factors can be explained in an 
intuitive manner. Since the activities are the cause of accesses 
on the database, it is natural for them to be a critical factor. 
Clearly, when there are few activities on the database, the 
LDS characteristics dominate. As the number of activities 
increases, different design choices start to be more appealing. 
But, more important than the number of activities is the struc
ture of activities. If each activity focused on one entity alone 
(i.e., one context activities), then a flat-file design in which 
each entity is placed in its own file will be a good design. 
However, as the contexts per activity increase, certain 
clusterings become desirable. For example, if an activity ad
dresses entity B instances only via entity A instances, then it 
is best to cluster entity B into entity A. The proportion of 
entity instances addressed has the "volume" effect in that the 
differences due to absorption and non-absorption are multi
plied according to the proportion of entity instances ad
dressed. Finally, the effect of distribution of activities is to 
localize or spread the considerations of absorptionlnon
absorption over the LDS, thus generating different physical 
design choices. Perhaps the low sensitivity indicated due to 
this factor may be because the factor levels are not signifi
cantly apart or are not able to properly capture the factor 
meaning. 

The last activity related factor of degree of conflict between 
activities makes the physical design problem especially com
plex. For example, consider two conflicting activities, one 
going from entity A to entity B and the other going from entity 
B to entity A. For the first activity, clustering B near A will be 
advantageous, while. the reverse will be true for the second 
activity. The design choices become very sensitive as shown by 
the "high" sensitivity rating for the AMI cases and the "me
dium" rating for the AM2 cases. 

As stated earlier, designers have developed intuitive guide
lines for physical design based on the logical data structure 
alone. In the author's opinion, this view offers a microscopic 
perspective on the design problem. For example, consider two 
LDS based guidelines suggested in Palvia.10 The first guide
line is that in a related entity pair, the entity with the higher 
outdegree should absorb the entity with the lower outdegree. 
This guideline works in most common cases, but does not 
work well when the activity is directed predominantly through 
the entity with the lower outdegree. Another guideline sug
gested is: if the length of an instance of the entity related to 
another entity is quite small in comparison, then the larger 
instance entity should absorb the smaller instance entity. This 



582 National Computer Conference, 1987 

guideline also does not perform very well if the activity is 
predominantly from the smaller instance entity. Thus, as a 
result of these experiments, the author concludes that any 
physical database design guidelines or heuristics should be 
based both on the logical data structure and the activities to 
take place on the database. 

Computer System Related Factors 

Storage cost or access cost is a critical sensitivity factor in 
optimizing the physical design. This is apparent as these two 
are different dimensions. The storage cost for a given physical 
design depends only on the physical design itself; while the 
access cost depends both on the physical design and the activ
ities on the database. For this reason, the "minimizing storage 
cost" objective function yields the same optimal solution irre
spective of the other problem-related factors as long as the 
LDS contents and structure remain the same. On the other 
hand, the "minimizing access cost" objective function yields a 
different optimal solution based on the activity character
istics. In the AMI cases, the PDDM values between "min
imizing storage" designs and "minimizing accesses" designs 
ranged as high as .67. 

Another factor, page size, had a medium level of sensitivity 
in the AMI cases (and low in the AM2 cases). Page size has 
an effect on clusterings because it dictates the amount of data 
that can be brought into memory at once; thus, it affects the 
size of clusterings. 

Physical Factors 

The most important physical factor is the method of access
ing data (discussed in a previous section). Of the remaining 
physical factors, mandatory versus non-mandatory two-way 
pointers has low sensitivity to the optimal design. Of course, 
the non-mandatory two-way pointers option costs less because 
it allows more flexibility in the direction of pointers. The low 
sensitivity can be easily explained because the mandatory two
way pointers automatically include the one-way pointers of 
the non-mandatory option. 

The symbolic versus direct pointers factor had high sensi
tivity in the AMI cases (and low sensitivity in the AM2 cases). 
As can be expected, direct pointers yield fewer page accesses 
because they can directly retrieve records, as opposed to going 
via an access path with symbolic pointers. Since direct 
pointers give direct address of the related record, the effect of 
clustering becomes largely irrelevant. 

The random access path versus sequential access path factor 
had medium sensitivity in the AMI cases (and again low in the 
AM2 cases). One would expect that absorptions would be less 
desirable in the sequential access paths because one would 
have to scan through much unnecessary data to get to the 
required data. 

This completes the discussion of the sensitivity analysis re
sults. As said earlier, Table III summarizes the experimental 

results of sensitivity analysis and may be used as a quick 
reference. 

CONCLUSIONS 

The relatively unexplored area of sensitivity of the physical 
database design is addressed in this paper, and contributing 
factors that may influence the physical database design have 
been identified. To study the effect of these experimental 
factors, a practical experimental design was developed. Based 
on this design, forty experimental cases, with different combi
nations of factor levels, were created. For each experiment, 
optimal physical database design was obtained using a simula
tion based software. Based on the experiments, the sensitivity 
of the optimal physical design due to changes in the factor 
values was analyzed. 

The results of the sensitivity analysis have been reported 
here. An important conclusion is that activity related factors 
are as important in physical database design as are the logical 
data structure factors. The activity related factors include 
both the number of activities on the database as well as the 
structure of the activities. Several activity structural factors 
have been identified as sensitive factors. 

Conducting sensitivity analysis of the physical database de
sign is important, especially when restructuring the physical 
database. It is hoped that this exploratory study will trigger 
future studies as well as reports of current experience, which 
will validate and extend the findings of this paper. 

REFERENCES 

1. Cadis, J.V. "An Investigation into the Modeling and Design of Large 
Multi-User Databases." Ph.D. Thesis, University of Minnesota, 1980. 

2. Gambino, T.J. and R.A. Gerritsen. "A Data Base Decision Support Sys
tem." in Proceedings of the VLDB, Association for Computing Machinery, 
1m. 

3. Hoffer, J.A. and A. Kovacevic. "Optimal Performance of Inverted Files." 
Operations Research, 30 (1982) 2. 

4. Katz, R.H. and E. Wong. "Resolving Conflicts in Global Storage Design 
Through Replication." ACM Transactions on Database Systems, 8 (1983) 1. 

5. Schkolnick, M. "A Clustering Algorithm for Hierarchical Structures." 
ACM Transactions on Database Systems, 2 (1977) 1. 

6. Bachman, C.W. "Data Structure Diagrams." Data Base, 1 (1969) 2. 
7. Chen, P.P.S. "The Entity-Relationship Model-Towards a Unified View of 

Data." ACM Transactions on Database Systems, 1 (1976) 1. 
8. Batory, D.S. and C.C. Gotlieb. "A Unifying Model of Physical Data

bases." ACM Transactions on Database Systems, 7 (1982) 4. 
9. Maech, S.T. "Techniques for Structuring Database Records." Computing 

Surveys, 15 (1983) 1. 
10. Palvia, P. "An Analytical Investigation into Record Structuring and Phys

ical Database Design of Generalized Logical Data Structures." Ph.D. The
sis, University of Minnesota, 1984. 

11. Severance, D.G. "Some Generalized Modeling Structures for Use in De
sign of File Organizations." Information Systems, 1 (1975) 2. 

12. Yao, S.B. "An Attribute Based Model for Database Access Cost Analy
sis." ACM Transactions on Database Systems, 2 (1977) 1. 

13. Chamberlin, D.D., et al. "History and Evaluation of System R" Commu
nications of the ACM, October 1981. 

14. Guttman, A. and M. Stonebraker. "Using a Relational DBMS for Com
puter Aided Design of Data." IEEE Bulletin on Database Engineering, 
June 1982. 



Design of a distributed data dictionary system 

by HONGJUN LU; KRISHNA MIKKILINENI, and BHAVANI THURAISINGHAM 
Honeywell 
Golden Valley, Minnesota 

ABSTRACT 

To function effectively, every organization requires a dictionary or directory as an 
informant of the metadata on databases, users, applications, and systems within the 
organization. To date, the current use of data dictionaries within the organizations 
is limited owing to the failure of bringing about their full capital capacity. Two 
important factors are responsible for this deficiency of current systems. First is the 
complexity and cost and second, the absence of any integration of organizational 
information. Our primary focus of attention is on developing interface services 
between the existing and the new dictionary systems which will permit the distribu
tion of metadata across various functional domains in the organization by providing 
users with a mechanism to gain access from any of the dictionary systems. The work 
presented here provides a sound foundation upon which practical solutions to the 
problems encountered in the design of distributed data dictionary systems can be 
developed. 

583 





INTRODUCTION 

To function effectively, every organization requires a diction
ary or directory as an informant of the metadata on databases, 
users, applications and systems within the organization. It 
would provide a logical catalogue of general and specific ques
tions concerning the organizational informational resources 
and can also be a useful managerial implement by providing 
a more efficient documenting, controlling, and managing sys
tem which will ultimately lead to an improvement of the over
all productivity. 1,2 

Another more important role that such a dictionary will 
fulfill within the organization would be that of support mech
anism for system life cycle methodology. 1 This would involve 
several functions including: 

1. Verifying the internal consistency of dictionary data 
2. Analyzing the impact of changes 
3. Ensuring naming standards for the data elements 
4. Maintaining the data management policies, procedures 

and statistics 
5. Audit records 
6. Providing access to multiple configuration of database 

schemas 
7. Indicating the value and quantity of information 

To date, the current use of data dictionaries within the 
organizations is limited owing to the failure of bringing about 
their full capital capacity. Two important factors are respon
sible for this deficiency of current systems. First is the com
plexity and cost and second, the absence of any integration of 
organizational information. We are of the opinion that this 
situation can be remedied by providing cheaper and more 
simple, but, nonetheless, highly functional dictionary systems 
as well as integratory services between new and existing sys
tems. 

Our primary focus of attention is on developing interface 
services between the existing and the new dictionary systems. 
They will permit distribution of metadata across various func
tional domains in the organization by providing users with a 
mechanism to gain access from any of the dictionary systems. 

We define in this paper an architecture of a distributed 
dictionary system and present a design for the interfaces with
in the architecture. The specific objective is as follows: De
velop the specification for the canonical interface which, when 
coupled with each dictionary system, allows integration with 
others within the architecture. The interface overcomes the 
differences in different dictionary systems and their various 
data representations so that the metadata may pass between 
them. It provides an elegant and uniform medium for transfer 

Design of a Distributed Data Dictionary System 585 

and also complements the functionality which may be lacking 
in the different domain dictionaries. 

In the remaining sections, we describe the organizational 
dictionary system architecture and the essential features of the 
object based canonical interfaces in the architecture. Finally, 
we conclude the paper by outlining our future considerations. 

ORGANIZATIONAL DICTIONARYIDIRECTORY 
SYSTEM ARCHITECTURE 

The purpose of this section is to provide a comprehensive 
description of an architectural framework which integrates 
distributed dictionary systems. The framework is comprised 
of: 

1. A collection of domain dictionaries meeting the specific 
needs of the various domains in the organization 

2. A hierarchy of dictionaries providing relevant informa
tion at the different levels 

3. A system of interfaces among both the distributed do
mains and hierarchical dictionaries 

The proposed architecture of the dictionary system, as 
illustrated in Figure 1, consists of a Central Organizational 
DictionarylDirectory System (CODS), together with an un
specified number of Domain Dictionary/Directory Systems 
(DDS), all of which are incorporated within a hierarchical 
structure. The central and domain systems are interconnected 
through a canonical object based and distributed metadata 
interfaces. Together, these provide an effective system for the 
transfer of metadata between the various domain dictionaries 
and make access to them readily available. 

The architecture has been flexibly designed to allow for 
extensions both horizontally and vertically, so that the num
ber of domains or levels can be increased should they be 
demanded by the functional needs of the organizations. With 
reference to Figure 1, we concentrate primarily on discussing 
both the central and domain dictionaries and secondly on 
presenting an overall view of the system and its operations. 

Central Organization-wide Dictionary/Directory System 

Some of the major functions of the CODS within the archi
tecture are described below. 

1. Initially, it provides an extensive resource information 
center and permits ready access to that information 
which is essential. It would be possible to distribute 
some of the metadata among the various DDS. 



586 National Computer Conference, 1987 

r----------- , 
I 

DPProl"";onals 
01118 Bue Adminia1no1ora 

Users 

SoItwe .. Development 
Progrwnmer 

,- - - ----- - -- - -

._------------, , , 

, , , , , , , 
- - - - - - - - - - - - -' 

C6035Q-1584MOl 

Figure I-An organizational dictionary/directory system architecture 

2. Such a system would enable a centralization of the meta 
information with the main control being held by the 
CODS. 

3. Consistency and integrity of the meta information 
throughout the distributed domain dictionary systems 
would be maintained. 

4. An impact analysis would be available should changes 
occur in any of the domains. 

5. Different types of user interfaces would be provided and 
may include input/output facilities for non-procedural 
languages, menu systems, high level programming lan
guage interfaces, report generators and graphic displays. 

Domain Dictionary/Directory Systems 

The DDSs are specifically designed as support facilities to 
be advantageous to the various users in their particular do
mains and therefore their functionality depends largely on 
each particular domain. In accordance with some of the prin-

cipal domains of a typical manufacturing organization, we 
have briefly listed below a series of their possible functions. 

Data processing domain dictionary 

The data processing domain dictionary manages the general 
requirements of the data processing department of the organi
zation. The information within this domain, if it is to be effec
tive, has to be well organized. 

As illustrated in Figure 1, there are two separate sections 
to the main domain, respectively containing the office auto
mation dictionary and the DBMS dictionary systems. The 
former controls the meta information pertaining to the busi
ness management while the latter combines meta informa
tion, for example, the various schemas and constraints origi
nating from the dictionaries of many database management 
systems. The database design and support facility provides 
the opportunity for schema manipulation and metadata de
sign and loading. It also provides tools that aid in the daily 
maintenance of the data resources. 



Application software development domain dictionary 

The application development domain dictionary is a cul
mination of metadata information concerning software docu
ments and packages, reference manuals, on line help pro
grams, library routines and user specific menus and forms. 
Its primary function is to be a repository for the generation, 
development, maintenance, and sharing of software and 
documentation for various applications in the organizations. 
It also provides a facility for the retrieval of library of software 
routines, documentation, and for version and configuration 
controls of these packages. 

Engineering/design domain dictionary 

Design and engineering specifications are incorporated into 
the engineering/design domain dictionary, together with ver
sion and configuration information on the results on design 
analysis and simulation experiments. Its users would include 
design engineers, and technicians. Its primary concern is to 
provide for the version control of the design documents, but 
it also extends to information exchange among various design 
groups as well as location of designs and drawings. 

Manufacturing automation domain dictionary 

This particular domain dictionary catalogues the informa
tion connected with the production operations on the shop 
floor, for example, manufacturing and assembly guidelines, 
quality control, and numerical control program specifications. 
Therefore it would benefit and be used by shopfloor managers 
and supervisors. The user support facility for this domain 
provides for the location for those guidelines, specifications, 
and for the verifications against the production databases as 
well as integrity control between the design and manufac
turing documents. 

·Project management domain dictionary 

Project management domain dictionary is used in particular 
by managers and project leaders for information on various 
projects, management and administrative policies, plans and 
schedules. The support facility provides for the global view of 
the resources, projects, plans and schedules. It also assists in 
the automation of daily management activities. 

Operational domain dictionary 

The operational domain dictionary assists in the daily con
cerns of an organization, and it is chiefly used by the support 
staff. It is an informant of the organization's operational infor
mation including available resources, equipment and future 
requirements. The support facility provides for the easy access 
of personnel, inventory, and bulletin board information. 
Office automation systems may use the information contained 
in this dictionary. 

Design of a Distributed Data Dictionary System 587 

Basic Functions Provided by the Dictionary System 
Interfaces 

As shown in Figure 1, each domain dictionary system has its 
own distributed metadata access interface attached. This in
terface can be complemented with a canonical object inter
face. An alternative solution is to centralize this canonical 
interface. The choice depends on the ease of implementation 
and performance considerations. The main functions of these 
two interfaces are as follows. 

1. They provide metadata transfer between the various 
DDSs. 

2. They provide an intermediate logical metadata model, 
which can represent the information in the various DDSs 
and can also provide the transformation between the 
different metadata models used in these DDSs. 

3. They provide the routing capability for locating the in
formation not available in a particular domain. 

Overall flow of data among the various operations of the 
system is shown in Figure 2. In this figure it is assumed that the 
canonical interface is centralized, and some of the meta
metadata is distributed among the various distributed meta
data interfaces. When a user poses a query, it is first checked 
whether the required information is in the local DDS. If so, 
the necessary translation is performed between the interface 
and the DDS, and the query is processed. If the information 
is not present in the local DDS, then the CODS is queried via 
the canonical interface, and the result is returned to the user. 

DESIGN OF THE DISTRIBUTED DICTIONARY 
SYSTEM INTERFACES 

We present in this section a description of the canonical and 
distributed metadata interfaces, as illustrated in the architec
ture described in the previous section. We shall first present 
the metadata model used in the interface and then discuss its 
functionality. The various domain dictionary systems may uti
lize different models in accordance with the specific needs. As 
the interfaces to the domain dictionary data are meant to 
provide communication between the various domain dictio
nary systems, the model embedded in the canonical interface 
should be: 

User 
Query 

ResuH 

II Answer Not in DDS Query COOS 

~ H Answer in 
J-

DDS, Translate 
~ 

Translate to the Cl) to the III 

~ 
Modelo! DDS ~E 0 Model 01 COOS. CE 

§* 
III ~~ 't: 

-g$~ Cl) 

O~ :g~$ §~ E 
:s~~ O~ ca 5~ 

.~£ 0 ;0 ..... B::E C ·c .~~ ECl) 0 Translate Translate 0.: C ffic5 ResuH to 00 III ResuH to 
Object Model Q Object Model ~ 

0 

DDS T COOS 

ResuH 
C60382·'918M03 

Figure 2-Operational flow in the distributed dictionary system 



588 National Computer Conference, 1987 

1. Uniform and flexible in order to allow interfaces to var
ious domains 

2. Simple so as to avoid performance penalty 
3. Powerful to allow semantics of different metadata mod

els to be imposed upon it. 

The Information Resource Dictionary Systems (IRDS), as 
designed by the National Bureau of Standards, together with 
many commercial data dictionary systems, has made use of 
the Entity-Relationship-Attribute (ERA) model. 3 Figure 3 is 
representative of a meta-database schema taken from the 
IRDS, and therefore illustrates the ERA model. In this ex
ample, finance department, payroll system, personnel de
partment, personnel system, etcetera, represent dictionary 
"entities." As depicted, the finance department is responsible 
for the payroll system, and the personnel department is re
sponsible for the personnel system. The "relationship" be
tween these entities reflect these responsibilities. Both the 
payroll record and the personnel record data entities contain 
Social Security number and employee ID as attributes. The 
length of the Social Security number an that of employee ID 
represent dictionary "attributes" for the dictionary entities of 
payroll record and personnel record. 

Although the ERA model is simple and flexible, we believe 
that it is not powerful enough to store all the required meta
data information such as constraints, views, and version con
trols. Furthermore, since the interfaces should operate with 
diverse dictionary systems of the present and the future, the 
interface should be based on a more general model than the 
ERA model. After examining in depth many of the existing 

[::J -Entity <>- . Relationship 

<::) cAttribute 

Entity Type: 
User 

Relationship Type: 
User Responsible 

fcrSyatem 

entity Type: 
System 

Relationship Type: 
System Contains 

Ae 

Entity Type: 
File 

Relationship Type: 
FHeContains 

Record 

Figure 3-An example of a meta-database 

C60382-1917MD4 

models such as Frames4 and the Entity-Category-Relationship 
model5 we have chosen the object model for the logical de
sign of the interfaces. 6,7 The main reasons for this choice 
include its simplicity, flexibility, and generality. The concept 
of an "object" provides a powerful modeling paradigm sup
porting classification, generalization, aggregation, and the in
heritance properties. 

The essential features of the object model, that we have 
found useful, are the following: 

All conceptual entities are modeled as objects. The 
straightforward notion of an object is sufficient to repre
sent both simple and complex entities. 
Objects are abstract in the sense that the physical 
implementation of objects and their operations are sepa
rated from their specifications. The user need not be 
aware of physical representations and complex inter
object operations to understand and manipulate relation
ships. This property makes the object model an ideal 
candidate to model the interfaces, which are built on top 
of different dictionary systems. 
The notions of object class lattice, inheritance of proper
ties, and operations along the lattice facilitate top-down 
development of the definition of a metadata base. At 
higher levels of the class lattice, general properties and 
operations may be introduced. They are augmented and 
specialized at lower levels. This inheritance mechanism is 
a very powerful concept, which effectively captures the 
notion of generalization and abstraction of metadata. 

Description of the Object-based Interface Model 

The object model we have used to represent the interfaces 
follows closely to the model of the Object Data Base System 
(ODBS) designed by MCC. Although some significant differ
ences between the two models exist, the basic notions are 
common to both systems. Our model is different from the 
ODBS model mainly by eliminating the notion of instance 
variables present in the ODBS model mainly by eliminating 
the notion of instance variables present in the ODBS model 
and by including the concept of attributes associated with 
objects. 

Using the object model, all entities are modeled as objects. 
Similar objects may be grouped together to form a class. A 
collection of classes may form a hierarchy. The instances of a 
class are objects. Properties of an object are described by its 
attributes. An object consists of some private memory that 
holds its state. The private memory is made up of the values 
for its attributes. The behavior of an object is determined 
by its operations or methods. Methods consist of code that 
manipulate or return the state of an object. Objects communi
cate with each other through messages. 

Figure 4 illustrates an example of the object model which 
models the metadata in the FINANCE_DEPARTMENT, 
PERSONNEL_DEPARTMENT examples depicted in Fig
ure 3. The classes in this object model are USER, SYSTEM, 
FILE, RECORD, RELATIONSHIP, CONSTRAINT and 
VIEW. Some of these classes form a hierarchy as shown in the 



_-__ - Department 

,....-_....L...----"'S.t.;;s!ems 

GV 
~ 

Files 

Number 

~ 

Ef
~ Data Object 

us! 
View Name 

View 
Condition 

__ ~_Social

Security 
Number 

IC1 Number >.0 
Finance 
Department Ej
Department 

Personnel 
Department 

c::::J • Class 

~~Object 
• • Attribute 

C60382-1915M03 

Figure 4-An example of meta-database using object model 

Figure. For example, SYSTEM is a superclass of FILE and a 
subclass of USER. A class consists of many objects. For exam
ple, the class USER has objects FINANCEJ)EPARTMENT 
and PERSONNELJ)EPARTMENT and the class SYSTEM 
has objects PAYROLL and PERSONNEL. 

An object has associated attributes. The object 
FINANCEJ)EPARTMENT may have attributes depart
ment number, manager, and the subdivisions within the de
partment. 

A subclass inherits all the properties of its superclass. 
The class RELATIONSHIP consists of objects which are 
the relationships between entities. In this particular ex
ample, RELATIONSHIP consists of objects USER
RESPONSIBLEYOR-SYSTEM, SYSTE~CONTAINS_ 
FILE, FILE_CONTAINS_RECORD, and RECORD_ 
CONTAINS~LEMENT. 

The constraints associated with metadata objects are 
modeled by the class CONSTRAINTS. Different classes 
may be used for modeling different types of constraints such 
as mandatory security constraints, integrity constraints and 
discretionary constraints. 

The integrity constraint: 

ICI: The Department Number in Finance and Personnel 
Departments have to be a positive number 

is modeled as follows: 

An object of the class CONSTRAINT is ICl. The attributes 
of ICI are the condition in the constraint: Department 
Number > = 0, and the entities on which the constraint is 
applied: Finance Department and Personnel Department. 

Similarly, multiple views of different data objects are mod
eled by the class called VIEW. An object belonging to this 
class is the view name. The attributes of this object are the 
data objects described in the view definition and the condi
tions used to specify the view. As briefly illustrated here, it 
can be seen that the constraints associated with the ERA 
model of metadata can be easily mapped onto our object 

Design of a Distributed Data Dictionary System 589 

model. Furthermore, constraints and views can be modeled 
fairly simply with the object model. 

Functional Design of the Interfaces 

In this section, we present a high level design of the canon
ical object interface and the distributed metadata access inter
face. As shown in Figure 5, the canonical object interface 
consists of query translator, metadata translator and the 
remote meta-metadata repository. The distributed metadata 
access interface consists of the front-end user interface and 
the distributed metadata access controller. We first describe 
each of these components and then, discuss their functions. 

The query translator translates a user's query in a dialect 
familiar to the local domain ito a universal query language 
based on the object model. 

The metadata translator translates the metadata from a 
remote domain into the form familiar to the local domain. 

The remote meta-metadata repository consists of the direc
tory information for metadata in other domains. Each domain 
dictionary system may contain total or partial meta-metadata 
information concerning the remote domains. If a user's query 
to the dictionary involves metadata in remote domains, then 
the Remote meta-metadata repository associated with the 
local system is examined first. If an entry is found, then the 
query is routed directly to the appropriate system. Otherwise, 
it is routed to the central organization-dictionary where all 
metadata information is stored. 

The front-end user interface is the communication medium 
between the user and the local system. If the user's query can 
be solved by the local domain, the result is returned to the 
user. Otherwise, the Query translator is invoked. 

The distributed metadata access controller performs the 
following functions. First, if a query cannot be processed 
locally, the controller will invoke the query translator. Sec
ond, if a remote system has issued a request for metadata 
retrieval from the local system, the controller will invoke 
metadata translator to translate the metadata retrieved. The 
functions needed for the operation of our system fall into two 
categories. Functions in the first category are used to create, 
delete, and modify the classes and objects. Functions in the 

Users 
----- ..... ---- ..... -- .. -.. ----~ :---- .. --------- .. ---------- .. ----~ 

Metadata 
Retrieved from 

Remote Systems Distributed 
Metadata 
Access t+--=Re-m-o-te-=R-eq-Ue-s"';t M-I 

Controller ~-----.:.--~~ 
Remote Query 

Metadata for 
Other Systems 

Metadata Retrieved 
from Other Systems 

Remote Requests 
from Other Systems 

Remote Query to 
Other Systems 

, . .............. ......................................... "' ............................................................... ' 

Dictionary System 
C60382-1914MD3 

Figure 5-A functional breakdown of the combined distributed meta-data 
access and canonical interface 



590 National Computer Conference, 1987 

second category control the distributed metadata access. The 
essential functions belonging to these two categories are in
cluded in the following list. 

Functions that are defined on classes are: 
Define-Class( name, description) 
Modify-Class ( name, description) 
Delete-Class(name, description) 

Functions that are defined on objects are: 
Insert-Object(class, object, attributes) 
Modify-Object( class, object, attributes) 
Delete-Object( class, object, attributes) 
Insert-Attribute( class, object, attribute) 
Modify-Attribute( class, object, attribute) 
Delete-Attribute( class, object, attribute) 
Retrieve-Object( class, object) 
Retrieve-Attribute(class, object, attribute-name, 

qualification) 

Functions that control distributed metadata access are: 

10cal-cmd-obj(1ocal-id, local-cmd, obj-cmd) (This function 
translates a local query into the object form.) 

obj-cmd-Iocal(1ocal-id, obj-cmd, local-cmd) (This function 
translates a remote query based on the object form into 
a language familiar to the local system.) 

send-request(source, destination, request) (This function is 
called when a request has to be sent to a remote system.) 

10cal-data-obj(1ocal-id, local-data, obj-data) (This function 
translates a local metadata into the object form.) 

obj-cmd-Iocal(1ocal-id, obj-data, local-data) (This function 
translates remote metadata in object form into a lan
guage familiar to the local system.) 

send-data(source, destination, data) (This function is called 
when metadata has to be sent to a remote system.) 

receive-data(source, destination, data) (This function is 
called when a system has issued send-request and is 
waiting for metadata from the remote system.) 

We are currently investigating the mappings between the 
functions described and the functions associated with the 
other models such as the ERA model and the Relational 
model. These mappings could be achieved fairly easily due to 
the fact that any entity, relation or attribute could be consid
ered to be an object. We are also in the process of defining an 
implementation specification for our design. 

FUTURE CONSIDERATIONS 

In this work, we have proposed a distributed data dictionary 
system architecture that allows for integration of metadata in 
the organization. Since information integration technology 
has been widely accepted as a key ingredient to achieving 
manufacturing and office integration, the integration of meta
data through a common architecture is the first pragmatic step 
towards achieving a total organizational information integra
tion. Our immediate goal is to successfully implement our 
design. 

The proposed work can be extended in many directions. 
One direction is to extend the distributed dictionary system 
interfaces to manage distributed data as well as metadata. 
Another direction might be to incorporate knowlege into the 
meta data and to extend the dictionary system functionality 
with inferencing capability. We are of the opinion that the 
work presented in this paper provides a sound foundation 
upon which practical solutions to the problems encountered in 
the design of distributed database management systems and 
dictionary systems can be developed. 

ACKNOWLEDGEMENT 

We thank the following people: Dr. Alan Goldfine at NBS for 
the helpful discussions and Dr. Amit Sheth and Mr. Amrish 
Kumar at Honeywell Corporate Systems Development Divi
sion for their valuable suggestions. 

REFERENCES 

1. Lefkovitz, H., E. Sibley, and S. Lefkovitz. "Information ResourcelData 
Dictionary System." QED Information Sciences, Inc., 1983. 

2. Leong-Hong, B., and B. Plagman. "Data DictionarylDirectory Systems," 
John Wiley & Sons, 1982. 

3. "A Technical Overview of the Information Resource Dictionary System." 
U.S. Department of Commerce, National Bureau of Standards, April, 1985. 

4. Fikes, R., and T. Kehler, "The Role of Frame-Based Representation in 
Reasoning." Communications of the ACM, September, 1985, pp. 904-920. 

5. Elmasri, R., J. Weeldreyer, and A. Hevner. "The Category Concept: An 
Extension to the Entity-Relationship Model." Data and Knowledge 
Engineering, 1 (1985) 1, pp. 75--116. 

6. Derrett, N., W. Kent, and P. Lyngbaek. "Some Aspects of Operations in 
an Object Oriented Database." Database Engineering, December, 1985, 
pp.66-74. 

7. McLeod, D., and S. Widjojo. "Object Management and Sharing in Au
tonomous, Distributed Data/Knowledge Bases," Database Engineering, 
December 1985, pp. 83-89. 



Protecting statistical databases by combining 
memoryless table restrictions with randomization 

by ERNST L. LEISS and DAVE J. KO 
University of Houston-University Park 
Houston, Texas 

ABSTRACT 

Statistical databases are databases that provide access to statistics about groups of 
people (or organizations) while protecting the confidentiality of the individuals 
represented in the database. Unfortunately, protecting confidentiality is difficult to 
achieve, since the statistics contain vestiges of the original information. Hence, 
users of statistical databases have a host of inference techniques at their disposal for 
retrieving information about identifiable persons. 

This paper reports on simulations that combine simple restriction criteria such as 
order control, table size control, and minimum frequency control with unrestricted 
randomization techniques, and compares them with respect to their cost, accuracy, 
and security. Our simulations demonstrate that these methods provide an accept
able level of security for many applications without being overly restrictive or costly. 

591 





INTRODUCTION 

Starting in the late 1970s1 computer scientists began to look at 
the inference problem in on-line, general-purpose database 
systems that provide both statistical and nonstatistical access. 
Statistical databases contain sensitive information about indi
viduals or organizations and provide access to statistics about 
groups of persons or organizations such as sums and averages, 
while protecting the confidentiality of the individuals rep
resented in the database. In a hospital, for example, doctors 
may be given direct access to a database of patients' medical 
records, but researchers are only permitted access to statisti
cal summaries ofthe records. 2, 

3 Census Bureaus, for example, 
are responsible for collecting information about all citizens 
and reporting this information in a way that does not jeop
ardize individual privacy. 5,6 

Unfortunately, the confidentiality objective is difficult to 
achieve, since the statistics contain vestiges of the original 
information. By correlating different statistics, a clever user 
may be able to deduce confidential information about an indi
vidual.6

,7,8,9 The problem of protecting against such indirect 
disclosures of sensitive data is called the inference problem.4 

The objective of inference controls is to ensure that the statis
tics released by the database do not lead to the disclosure of 
confidential data.4 

Generally, the most efficient mechanisms for inference con
trol have the least security or greatest information loss. Re
cently, the results related to inferenc controls of on-line data
base systems have become more positive. This paper reports 
on simulations that combine memory-less table restriction 
criteria3

,4 with unrestricted randomization techniques ,8, 10, 11 

and compares them with respect to cost, accuracy, and se
curity. The results are attractive in that these hybrid methods 
can provide an acceptable level of security for many applica
tions without being overly restrictive or costly. 

We describe a statistical database in terms of an abstract 
model. The model describes neither the database schema nor 
its implementation; rather, it describes a conceptual view of 
the data in the database. 12 Its simplicity allows us to focus on 
the disclosure problem and to compare different controls. We 
also discuss the simulations and results of a prototype statisti
cal database system. Finally, some conclusions are drawn 
about the controls described. 

STATISTICAL DATABASE MODEL AND 
INFERENCE CONTROL TECHNIQUES 

Statistical Database Model 

We assume a statistical database, stipulate that no depen
dencies between attributes exist and ignore the problems 

Protecting Statistical Databases 593 

caused by insertions, deletions, and modifications. 8,13,14 Also, 
we restrict our attention to exact disclosure and consider only 
the queries for such additive statistics as COUNTs and SUMs, 
and statistics which can be easily computed from additive 
statistics (e.g., AVEs). These statistics computed over groups 
of records having m attribute values in common, correspond
ing to cells of m -dimensional tables in a lattice of tables. 

A database can be viewed as a collection of N logical 
records, each describing an individual data item. The ith 
record (1:5 i :5 N) contains values Xil, •.• ,xiM for M attributes 
A!, . .. ,AM. Each attribute (or variable) Ak has IAkl possible 
values in its domain. Statistics are computed for subsets of 
records having common attribute values. A set of records is 
specified by a characteristic formula C called the query set of 
C, and we use C to denote both a formula and its query set, 
and ALL to denote a formula whose query set is the entire 
database (the universe). A query set that can be specified 
using the values of m distinct attributes (but no fewer) is called 
an m-order query set or m-set for short. An elementary m-set 
is an m -set specified by a formula of the form. 

E = (A1 = ai1)& ... &(Am = ai,J, 

where A 1, ... ,Am are attributes and each ai is some value 
in the domain of A j • Note that all m-order query sets over 
A 1, ... ,Am can be expressed as unions of the elementary sets 
of the attributes. In our simulation, we shall consider ele
mentary sets only. Given A!, .. . ,Am, the total number of 
elementary m-sets is Sm = II;:l IAJ These Sm sets define an 
m-dimensional table or m-table Tm , where each attribute Aj 
corresponds to one dimension of the table. 

A database with M attributes has 2M such tables, corre
sponding to all possible subsets of the attributes, and each 
table partitions the database. The set of 2M tables Tl, ... ,T 2m 

is a subset of the set of all partitions of the database. The 
above subset forms a lattice of partitions under the partial 
ordering relation refinement. Thus, Ti:5 Tj implies that Ti is a 
refinement of 1j and each elementary set in table 1j corre
sponds to a union of elementary sets in the table Ti • An 
example is the lattice of tables defined over four attributes 
A,B,C,D 4,15 We have, for instance, ABCD :5ABD :5 
AB :5 B :5 ALL. An elementary 2-set (A = a)&(B = b) in 
table AB, for example, is a union of elementary 3-sets over all 
possible values of attribute D in table ABD. 

(A = a)&(B = b) = U (A = a)&(B = b)&(D = d) 
deD 

Statistics derived from the values of d attributes are called 
d-order statistics and it is customary to speak of tables of 
statistics, where the cells of an m-table contain d-order statis
tics f( C, D) for the m -sets C of the table. A statistic is sensitive 



594 National Computer Conference, 1987 

if confidential data could be deduced from the statistic alone. 
The exact criterion for sensitivity is determined by the policies 
of the system. In this paper, we shall assume that a sensitive 
statistic is one with a query set having only one record. Let S 
be a set of statistics released to some users. Statistical disclo
sure occurs when release of S allows a user to deduce some
thing about a restricted statistic q. Exact disclosure occurs 
when q is determined exactly. 2,16,17 If a disclosure occurs with
out supplementary knowledge, it is called resultant disclo
sure.2,18 The disclosure risk, or identification risk, of a table 
is given by the number or the percentage of sensitive cells in 
the table. 15 ,19 

Inference Control Techniques 

To control inference, information must be removed from 
tables with sensitive statistics. There are two broad categories 
of inference controls, namely, controls that place restrictions 
on the set of allowable queries, and controls that add noise to 
the released statistics. 4 

Restriction techniques can be classified according to 
whether they restrict at the table level or cell level, and ac
cording to whether they are a priori, audit based, or memory
less.4 Table-level controls restrict complete m-tables of statis
tics in the lattice, including the statistics for all m-sets over the 
associated attributes. Cell-level control aims to restrict only 
the sensitive cells of an m -table, and just enough nonsensitive 
statistics over the associated attributes to prevent inference. A 
priori controls determine in advance a fixed set of statistics 
that can be released without compromising any individual's 
privacy. Audit-based controls keep a history of queries to 
determine whether release of a statistic, when correlated with 
previously released statistics, could lead to compromise. 
Memory-less controls are potentially the most efficient be
cause they are applied at query processing time and do not 
require an audit trail. 

By adding noise to the statistics, perturbation techniques 
try to permit more statistics than can be permitted with re
striction techniques alone. Perturbation techniques can be 
classified according to whether they are record based or result 
based (rounding). Given a query q(C), record-based tech
niques perturb the input to the statistical function for q. Per
turbation is accomplished either by taking a sample of the 
records and estimating q ( C) from the sample or by perturbing 
the data used to compute q (C) from the sample or by per
turbing the data used to compute q (C) as they are extracted 
from the records satisfying C. The cost and variance of both 
approaches are proportional to the query set size.4 Rounding 
techniques perturb the result q (C) after it has been correctly 
computed. The perturbation typically involves some form of 
rounding. The cost is small, and the variance is usually a 
constant proportional to the square of the rounding base. 
Because errors are confined to a known interval, rounding is 
more acceptable to users. 

Inference controls are judged by three factors, namely cost, 
accuracy, and security. Cost is determined by the initial 
implementation requirements, including any computation, 
plus the overhead in query processing. Accuracy is measured 

by the number of nonsensitive statistics or tables of statistics 
that are unnecessarily restricted by the control, and by the 
amount of noise injected in permitted statistics. This measure 
does not account for the relative importance of a statistic for 
a particular study; however, the statistics in m-tables for small 
m values (i.e., those near the top of the lattice) are more 
correct than those further down. Security is measured by the 
relative number of sensitive statistics that can be inferred by 
circumventing the control and by the difficulty of doing so. 
Because higher levels of security usually imply higher levels of 
information loss and cost, the challenge is to find a control 
with the right balance for the given application and associated 
risks. 

SIMULATIONS AND RESULTS 

Simulation 

We chose the maximum order/,4,20 the maximum table 
size3,4,20 and the minimum frequency criterion ,3, 20 to combine 
with the randomization technique8, 10, 11 in our simulation. 
Randomization adds enough noise to the released statistics 
that most nonsensitive statistics can be released without en
dangering sensitive statistics, but not so much that the re
leased statistics become meaningless. The amount of noise 
introduced in our simulation comes from an uniform random 
number generator with SmlN as seed. The level of security 
provided by the three memoryless table restriction controls 
that we have chosen is determined by the control's thres
hold.3,4 The strategy used to set this threshold in our simu
lation is to adjust the threshold for a somewhat lower level of 
security and use the randomization technique to control the 
remaining risk. 4 Each combined scheme has been investigated 
by a simulation with query types of AYEs for a statistical 
database with SmlN = 1.8. We also applied the unrestricted 
randomization technique alone to the same database for com
parison. From the simulation results of these candidates, the 
relative table size criterion looks most promising. 

The flow chart of the main modules of this simulation pro
gram is shown in Figure 1; they are written in VAX extended 
PASCAL language compiled under the VAX optimizing 
PASCAL compiler and run on several VAX-111730 with VMS 
Version 4.1. A database has been chosen with SmlN equal 
to 1.8 and containing 606 records; this is appropriate for a 
detailed investigation. 

The input is generated by a program; it consists of all pos
sible queries of the same type and on the same m-table. 

Required input is as follows: 

N : Total number of records 
M : Total number of attributes 

IAll : Number of possible values in the domain of attri
bute Ai (1 :5 i :5 M) 

IAMI (assume the range of its domain is [0, IAil]) 
d : Parameter for order restriction 
k t : Parameter for table-size restriction 
kf : Parameter for mini-freq restriction 

order : Order of query set 



Stored in Stored in 
L-A_r_ra--=y ___ ,---____ -' Linked List 

Count the Records 
Satisfied by each Query 

no 

C1 = CLOCK 

Table Size 
Criterion 

permit 

Randomization 
seed = SmlN X3 = max{xS 1,XS 2} 

or min{xs 1, XS 2} 

c2=CLOCK 

no 

Protecting Statistical Databases 595 

next query 

C1 = CLOCK 

restrict 

c2=CLOCK 

Figure 1-F1ow chart of the simulation program 



596 National Computer Conference, 1987 

f(C,D) : All possible queries of type f on the m-table 

f(C',D') 

In our simulation procedure, cost is determined by the extra 
processing time for each security checking which we take to be 
the time of all required computations plus 1 msec seek time 
for each extra record retrieved for the security checking. Ac
curacy is measured by the number of nonsensitive statistics or 
tables of statistics that are unnecessarily restricted by the con
trol method, and by the amount of noise injected in permitted 
statistics by randomization. This measure does not account 
for the relative importance of a statistic for a particular study; 
however, the statistics in m-tables for small m values (i.e., 
those near the top of the lattice) are more correct than those 
further down.3 Security is measured by the relative number of 
sensitive statistics that can be inferred by circumventing the 
control. For simplicity, we restrict our attention to exact and 
resultant disclosure only; that is, no approximate disclosures 
and no supplementary knowledge are included. 

Produced output is as follows: 

order restriction: 
average processing time: msec 
(assume 1 msec for the accessing of each extra record) 
average % error introduced by randomization: % 
% of unnecessarily restricted queries: % 
% of permitted sensitive statistics: % 

table-size restriction: 
average of extra processing time: msec 
(assume 1 msec for the accessing of each extra record) 
average % error introduced by randomization: % 
% of unnecessarily restricted queries: % 
% of permitted sensitive statistics: % 

mini-freq restriction: 
average of extra processing time: msec 
(assume 1 msec for the accessing of each extra record) 
average % error introduced by randomization: % 
% of unnecessarily restricted queries: % 
% of permitted sensitive statistics: % 

Figure 2-The 2-dimensional array structure for the simulated 
statistical database 

+-----+---+---+---+---+---+---+---+---+---+ 
1 j 1112131415161718191 
+-----+---+---+---+---+---+---+---+---+---+ 
1 Aij 1 1 1 1 1 I 1 I 1 I 
+-----+---+---+---+---+---+---+---+---+---+ 

Figure 3-The I-dimensional array structure for the domain of attributes 

The simulator models our statistical database by a two di
mensional array of size 9 x 32767 stored in main memory via 
row-major. The first index is with respect to the attributes A 
through I and the second index is with respect to the record 
number. The data structure of the statistical database that we 
have chosen is illustrated in Figure 2. 

Since we assume that the range of the domain for each 
attribute is between 0 and IAjj I, only IAjj 1 needs to be stored. 
The data structure for storing IAijl is illustrated in Figure 3. 

The simulated data items stored in memory are created by 
a uniform random number generator provided by the VMS 
run time system library. The data are generated and stored 
row by row. The alphabetical order of each attribute has been 
used as the original seed to generate the data of each row. The 
random number generator generates a real number r between 
0.0 to 1.0. We multiply r by IAij I , then apply the VAX ex
tended PASCAL function UTRUNC to give an unsigned in
teger between 0 and IAij I. 

The input queries are interpreted by the procedure Query
Interpreter. For each query, the query type is put into a vari
able QueryType (a string of length three), the data attribute 
is put into an integer variable DataField, and the alphabetical 
order and its required value of each attribute in the character
istic formula are put into an element of a linked list. An 
example is shown in Figure 4. 

The procedure OutputStatistics will call the procedure 
DataRetrieve to find each record satisfying the formula and to 
retrieve the value of DataField. For the O-table ALL, it simply 
goes through all records to retrieve DataField. At the same 
time the procedure will count the number of records in each 
query set; if the count is greater than zero then the query is 
legitimate and it will call procedure Security to check each 
restriction to see whether to reject the query. If the count is 
less than or equal to the record number of a sensitive query set 
(we assume 1 here) and if the statistic has not been restricted, 
the counter variable sleak (for security leak) will be in
cremented by one. If sleak is greater than 1 and if the statistic 
has been restricted, the counter variable uresq (for unneces
sarily restricted query) will be incremented by one. The VAX 
extended PASCAL function CLOCK returns an integer value 
indicating the amount of CPU time in msec used by the cur
rent process. The processing time for each security checking 
is obtained by calculating the difference ?etween two process 

+----+---+ +----+---+ +----+---+ 
I *1 I 3 1--->1 *2 1 2 1--->1 *3 I 5 1---+ 
+----+---+ +----+---+ +----+---+ I 

v 
QueryType = 'AVE' DataField = *4 

* Alphabetical order of the attribute 
Figure 4--The linked list structure for store the input quere AVE 

«A = 3)&(B = 5)&c = 5,D) 



TABLE I-Number of queries for the O-table and the results of 
unrestricted randomization 

Table #0 ProcTime %Err 

ALL 5 8.00000 0.0832706 o 

CPU times (one before and the other after the security check
ing procedure), then one msec seek time is added if an extra 
. record accessed for the security checking is necessary. If the 
query has not been restricted then the procedure calculates 
the statistic and calls the procedure Randomization which 
uses a uniform random number generator with a seed equal to 
SmlN to get the noise that needs to be added to the statistic 
and finds out the average error introduced by the random
ization technique. 

Results 

We find that a control combining randomization with table 
restriction should be very difficult to circumvent. 15 Tables I 

Protecting Statistical Databases 597 

through VI show that the SmlN ratios range from 0.003300 to 
0.014851 for the I-tables, from 0.009901 to 0.074257 for the 
2-tables, from 0.039604 to 0.297029 for the 3-tables, and from 
0.198019 to 0.891089 for the 4-tables. The ratio for the 5-table 
is 1.78217. Using k = 10 with the SmlN criterion, for example, 
would restrict none of the 1- and 2-tables, five out of ten 
3-tables, all 4-tables, and the 5-table. 

The simulation results of applying only the unrestricted 
randomization technique for each m-table of the statistical 
database that we have chosen are given in Tables I through VI. 
The processing time for each security checking is obtained by 
calculating the difference between two process CPU times 
(one before and the other after the security checking proce
dure), then one msec seek time is added for each extra record 
accessed for the security checking. We count the number of 
identifications, sets with cardinality equal to one in each m
table, for each complete input query set. 19 The identification 
risk of a table is given by the number of sensitive cells in the 
table. Table VII summarizes the simulation results for un
restricted randomization. Tables VIII through X give the sim
ulation results for each restriction with randomization applied 
to the same database for each m -table. 

TABLE II-Number of queries for each 1-table and the results of unrestricted randomization 

Table Sm SmlN #01 #02 ProcTime % Err 1m 

A 2 0.003300 10 5 2.00000 0.180262 0 
B 9 0.014851 45 40 3.75000 1.82666 0 
C 5 0.008251 25 20 4.50000 0.593532 0 
D 4 0.006601 20 15 2.00000 0.430914 0 
E 3 0.004951 15 10 4.00000 0.311046 0 

#01 = number of queries tried 
#02 = number of legitimate queries (has at least one record in the statistical database) 

ProcTIme = The Average query processing time of a query in msec 
% Err = Average error in % introduced by randomization 

1m = Identification risk 

TABLE III-Number of queries for each 2-table and the results of unrestricted randomization 

Table IAII IA21 Sm SmlN #01 #02 ProcTime %Err 1m 

AB 2 9 18 0.029703 90 40 4.75000 2.22530 0 
AC 2 5 10 0.016501 50 20 5.50000 0.864639 0 
AD 2 4 8 0.013201 40 15 5.33333 3.92019 0 
AE 2 3 6 0.009900 30 10 2.00000 0.361694 0 
BC 9 5 45 0.074257 225 160 4.68750 5.37981 0 
BD 9 4 36 0.059406 180 120 4.33333 9.38679 0 
BE 9 3 27 0.044554 135 80 3.62500 11.9946 0 
CD 5 4 20 0.033003 100 60 4.16667 2.51948 0 
CE 5 3 15 0.024752 75 40 5.00000 1.88171 0 
DE 4 3 12 0.019802 60 30 5.00000 1.27045 0 

IAxI = number of values of attribute Ax 
Sm = number of elementary sets = IAII x IA21 x ... 

#01 = number of queries tried 
#02 = number of legitimate queries (has at least one record in the statistical database) 

ProcTIme = The Average query processing time of a query in msec 
%Err = Average error in % introduced by randomization 

1m = Identification risk 



598 National Computer Conference, 1987 

TABLE IV-Number of queries for each 3-table and the results of unrestricted randomization 

Table IAII IA21 IA31 Sm Sm lN #01 #02 ProcTime %Err 

ABC 2 9 5 90 0.148514 450 150 5.44828 5.46738 
ABD 2 9 4 72 0.118811 360 110 5.33333 10.0003 
ABE 2 9 3 54 0.089768 270 80 5.25000 7.14603 
ACD 2 5 4 40 0.066006 200 60 4.8333 1.91466 
ACE 2 5 3 30 0.049504 150 40 3.50000 3.11083 
ADE 2 4 3 24 0.039603 120 30 4.00000 1.38749 
BCD 9 5 4 180 0.297029 900 295 5.54717 11.1632 
BCE 9 5 3 135 0.222772 675 320 3.44332 11.5581 
BDE 9 4 3 108 0.178217 540 235 3.65217 11.2909 
CDE 5 4 3 60 0.099009 300 120 4.16667 6.39226 

IAxI = number of values of attribute Ax 
Sm = number of elementary sets = IAII x IA21 x ... 

#QI = number of queries tried 
#Q2 = number of legitimate queries (has at least one record in the statistical database) 

ProcTime = The Average query processing time of a query in msec 
%Err = Average error in % introduced by randomization 

1m = Identification risk 

TABLE V-Number of queries for each 4-table and the results of unrestricted randomization 

Table IAII IA21 IA31 IA41 Sm Sm lN #01 #Q2 ProcTime % Err 

ABCD 2 9 5 4 360 0.540594 1800 166 9.88123 9.51869 
ABCE 2 9 5 3 270 0.445544 1350 265 9.76744 11.7464 
ABDE 2 9 4 3 216 0.356435 1080 175 6.06897 7.36407 
ACDE 2 5 4 3 120 0.198019 600 120 6.00000 6.45210 
BCDE 9 5 4 3 540 0.891089 2700 439 14.3770 11.8939 

TABLE VI-Number of queries for each 5-table and the results of unrestricted randomization 

Table 

ABCDE 2 9 5 4 3 

IAxI = number of values of attribute Ax 
Sm = number of elementary sets = IAII x IA21 x ... 

#QI = number of queries tried 

1080 1.78217 5400 

#Q2 = number of legitimate queries (has at least one record in the statistical database) 
ProcTime = The Average query processing time of a query in msec 

%Err = Average error in % introduced by randomization 
1m = Identification risk 

#02 ProcTime 

280 8.83986 

TABLE VII--simulation results of applied unrestricted 
randomization technique only 

Table ProcTime % Err 

ALL 8.00000 0.0832706 

1- 3.55555 1.06013 

2- 4.45217 5.87829 

3- 4.49114 9.65619 

4- 8.27923 10.2809 

5- 8.83986 9.24305 

% Err 

9.24305 

1m 

5 
5 
0 
0 
0 
0 

30 
20 
5 
0 

1m 

25 
50 
30 
0 

134 

100 



Protecting Statistical Databases 599 

TABLE VIII-Simulation results of order restriction (d = 2) with randomization technique 

Table Rlt ProcTime %Err uresq sleak 

ALL All Permitted 6.00000 0.117099 0 0 

1- All Permitted 201.778 1.06014 0 0 

2- All Permitted 2728.10 5.87831 0 0 

3- All Restricted 4193.42 9.65622 0 65 

4- All Restricted 5495.56 0 926 0 

5- All Restricted 6894.45 0 180 0 

uresq = # of unnecessarily restricted query 
sleak = # of permitted sensitive statistics 

ProcTlIDe = Processing time in msec (no extra record accessed) 
%Err = Average error in % introduced by randomization 

TABLE IX-Simulation results of table-size restriction (k = 5) with randomization technique 

Table Rlt ProcTime %Err uresq sleak 

ALL All Permitted 6.00000 0.117099 0 0 

1- All Permitted 202.889 1.06014 0 0 

2- All Permitted 2728.95 5.87831 0 0 

3-
8 Permitted 

4196.67 9.19620 565 15 
2 Restricted 

4-
1 Permitted 

5457.89 0.664594 806 0 
4 Restricted 

5- All Restricted 6902.36 0 180 0 

ProcTlIDe = Processing time in msec (no extra record accessed) 

TABLE X-Simulation results of mini-freq restriction (k = 0.015) with randomization technique 

Table Rlt ProcTime %Err uresq sleak 

ALL All Permitted 30968.0 0.117099 0 0 

1- All Permitted 6389.11 1.06014 0 0 

2- All Permitted 15697.7 5.87831 0 0 

3- All Permitted 22113.4 9.15622 0 65 

4- All Permitted 31716.7 10.2813 0 239 

5- All Restricted 39645.8 0 180 0 

ProcTlIDe = Processing time in msec (includes 1 msec for each extra record accessed) 
%Err = Average error in % introduced by randomization 
uresq = # of unnecessarily restricted query 
sleak = # of permitted sensitive statistics 



600 National Computer Conference, 1987 

COMPARISON 

This section draws some conclusions about each of the con
trols. 

Order Control with Randomization 

Table VIII shows that for the order restriction, we conclude 
that order is probably not useful as a standalone control, 
but it appears to be a very simple and useful control when 
combined with the randomization technique. Because higher 
order tables have already been restricted, no noise is intro
duced to higher order tables. 

Relative Table-size Control with Randomization 

Table IX shows that the SmlN-criterion can control disclo
sure without falsely restricting too many tables. The most 
appropriate value for the parameter k, however, depends on 
the whole database. Moreover, from Table IX we see that 
considerable information will be lost if we restrict too many 
tables, such as restricting the descendents of every table hav
ing a nonzero identification risk. In our simulation of table
size control with randomization, only those tables with a high 
risk have been restricted, and we use randomization tech
niques to thwart attacks on the permitted tables. The 3-tables 
have a lower average relative error than with the randomiza
tion technique alone, because eight of them have already been 
restricted and so no noise has been introduced there. Also 
after order control, table-size control is the simplest of the 
controls to implement. 

Nevertheless, we suggest that dynamic strategies, for exam
ple those in which the amount of noise introduced increases 
with Sml N, could be even better in terms of minimizing infor
mation lost. 

Minimum Frequency Control with Randomization 

The 7lTmin-criterion is highly secure but overly costly and 
restrictive. It has the disadvantage over table-size control of 
requiring more CPU time and more information about the 
databases (i.e., their frequency distributions). Although the 
cost need not be prohibitive, if only I-dimensional frequency 
distributions are used, another way is to compute and store 
these frequency distributions periodically as needed to ac
count for the dynamics of the database. 

CONCLUSION 

In conclusion, our simulation results clearly indicate that 
the simple schemes-namely, order control and table-size 
control-when combined with randomizing are very attractive 
inference control methods, from both the point of view of 
security and that of associated cost. 

REFERENCES 

1. Hoffman, L. J. and W. F. Miller. "Getting a Personal Dossier from a 
Statistical Data Bank." Datamation, 16 (1970) 5, pp. 74-75. 

2. Denning, D. E. "Restricting Queries that Might Lead to Compromise." 
Proceedings of Symposium on Security and Privacy, 1981, pp. 33-40. 

3. Denning, D. E., J. Schlorer, E. Wehrle. "Memoryless Inference Controls 
for Statistical Databases." Computer Sciences Dept., Purdue University, 
West Lafayette, Indiana, 1982. 

4. Denning, D. E., J. Schlorer. "Inference Controls for Statistical Data
bases." IEEE Computer, July 1983, pp. 69-82. 

5. Cox, L. H. "Suppression Methodology and Statistical Disclosure Control." 
Journal of the American Statistical Association, 75 (1980) 370, pp. 377-385. 

6. Denning, D. E. Cryptography and Data Security, Reading, Massachusetts: 
Addison-Wesley, 1982. 

7. Dobkin, D., A. K. Jones, and R. J. Lipton, "Secure Databases: Protection 
Against User Inference." ACM Trans. on Database Syst. (1979) 1, pp. 
97-106. 

8. Leiss, Ernst L. Principles of Data Security. New York: Plenum Press, 1982 
9. Reiss, S. B. "Medians and Database Security." in Demillo, R. A. et al. 

(eds.) Foundations of Secure Computation, New York: Academic Press, 
1978. 

10. Leiss, Ernst L. "On the Security of Randomized Database: A Simulation." 
Tech. Report UH-CS-81-01, Dept. of Computer Science, Univ. of Hous
ton, Univ. Park, Houston, February 1981. 

11. Leiss, Ernst L. "Protecting Statistical Databases Through Randomizing." 
Tech. Report UH-CS-81-07, Dept. of Computer Science, Univ. of Hous
ton, Univ. Park, Houston, December 1981. 

12. Chin, F. Y. and G. Ozsoyoglu. "Update Handling Techniques in Statistical 
Databases." Proceedings of the First LBL Workshop Statistical Databases 
Management, Lawrence Berkeley Laboratory, December 1981. 

13. Ozsoyoglu, G. and M. Ozsoyoglu. "Update Handling Techniques in Statis
tical Databases." Technical Report 80-2, Dept. of Computer Science, 
Oeveland State University, May 1981. 

14. Yu, C. T. and F. Y. Chin. "Study on the Protection of Statistical Data
bases." Proceedings of ACM SIGMOD International Conference on Man
agement of Data, 1977. 

15. Denning, D. E. "A Security Model for Statistical Databases." Computer 
Sciences Dept., Purdue University, West Lafayette, Indiana, 1983. 

16. Friedman, A. D. and L. J. Hoffman. "Towards a Fail-Safe Approach to 
Secure Databases." Proc. Symp. Security and Privacy, April 1980, pp. 
18-21. 

17. Schlorer, J. "Identification and Retrieval of Personal Records from a Statis
tical Data Bank," Methods Inf Med. 14 (1975) 1, pp. 7-13. 

18. Haq, M. I. "Insuring Individual's Privacy from Statistical Data Base 
Users." AFIPS, Proceedings of the National Computer Conference (Vol. 44) 
1975, pp. 941-946. 

19. Schlorer, J. "Disclosure from Statistical Databases: Quantitative Aspects 
of Trackers." ACM Trans. on Database Syst. 5 (1982) 4, pp. 467-492. 

20. Schlorer, J. "Confidentiality of Statistical Records: A Threat Monitoring 
Scheme for On Line Dialogue." Methods Inf. Med. 15 (1976) 1, pp. 36-42. 



Some thoughts on intelligence in information retrieval 

by RA VI SHANKAR SHARMA 
St. Francis Xavier University 
Antigonish, Nova Scotia, Canada 

ABSTRACT 

Information retrieval is the process of selectively disseminating relevant information 
stored among a variety of information objects. A useful method of storing these 
objects adopts the notion of clustering, where similar objects are placed into ho
mogeneous groups with the expectation that objects within the same group are 
similar and likely to be relevant to the same queries. The search process during 
retrieval is thus expedited. Most currently used techniques in information retrieval 
systems are basically of a statistical nature. However, it is felt that they have reached 
their performance limits in terms of precision and recall, the common measures of 
user-satisfaction. New techniques are necessary to maintain the progress in efficient 
(in terms of computer resources used) and effective (in terms of user-satisfaction) 
retrieval. We propose a framework incorporating some artificial intelligence strate
gies for intelligent information retrieval. The experimental prototype of the pro
posed framework has yielded quite encouraging results. 

601 





AN OVERVIEW OF MODERN 
INFORMATION RETRIEVAL 

Information retrieval is the process of selectively disseminat
ing specific information that is stored among a great number 
of information items; a discipline involved with organization, 
structuring, retrieval, and display. While the most common 
use of these methods is in the referencing of bibliographic 
data, it can also playa vital role as an integral component of 
the all-encompassing management information system. In 
general, information retrieval applies methods that select 
from a given universe of information objects some informa
tion relevant to a user's query. By relevance, it is meant that 
the information is judged by the user to be of interest with 
respect to a given query. The efficiency and effectiveness of 
the retrieval are measured in terms of computer resources 
used (CPU time, memory space) and the degree of satisfac
tion of fulfilling a user's information needs in reasonable time. 
The two most commonly cited indicators of user-satisfaction 
are precision and recall, where precision is the proportion of 
the retrieved objects that are relevant and recall is the propor
tion of the relevant objects that are retrieved. 

The environments in which information retrieval may be 
applied are disparate and, consequently, so are the levels of 
sophistication of the techniques used. Information retrieval 
today is not limited to library and office applications alone; 
scientific uses have also been found in biology, chemistry, 
and engineering. From the bookstack-catalog reading room 
systems of second century B.C. Alexandrian libraries to the 
emerging North American "office-of-the-future," the trend 
has been a progression from systems that provide mere 
access (storage and retrieval) to those involving calculation 
(computing), deduction (rule-based instructions, such as, 
if - then - else), and now, induction (inference). 

About 10 percent to 12 percent of the typical workday 
of managers and executives is occupied by the filing and/or 
retrieval of information. 1 It is understandably higher for 
secretaries and library workers. Therefore, the motivation for 
"automatic" information retrieval is quite unequivocal. In the 
morass of information that surrounds "real-world" situations, 
there is an imperative requirement for a conscious, organized, 
and systematic effort to develop automated systems that will 
deliver the right information to the right person at the right 
time. In this day and age of information explosion, automatic 
and computerized information retrieval is necessary to com
bat existing and potential situations of information overload. 

A simplified concept of information retrieval is shown in 
Figure 1. An information retrieval system is, in essence, the 
interface between the document collection and the user. The 
main elements of such a system are: a finite set of documents, 
a finite number of user's queries, a document and query rep-

Intelligence in Information Retrieval 603 

resentation scheme, a matching function, and an output crite
rion. The document collection may be articles, books, serials, 
and other published work in a library, or electronic messages, . 
memos, reports, and organizational statements in an office, or 
even files and records in a distributed database. Users (library 
staff and patrons, office workers, management, application 
programmers) have specific information requirements ad
dressed to the information retrieval system in the form of 
queries. The system accesses the database of documents and 
returns to the user the documents that it considers to be what 
the user wants. This is also known as the response set and is 
determined according to some matching function and selec
tion criterion. The response set might not always exactly 
match the user's queries. It is this imprecise nature of the 
response set that differentiates document retrieval from the 
more specific data or fact retrieval which returns all and only 
relevant objects, thus achieving a precision and recall of unity. 

In the more sophisticated methods of information retrieval, 
the user is then given the option of providing relevance
feedback. That is, the user is allowed to pass judgement on the 
system's retrieval, indicating which of the retrieved items are 

DOCUMENT 
COLLECTION 

6 1 / ! ~ feedback 

[5J ~RT J ~~fiChe 
(batCh 

USER(S) 

Figure I-Information retrieval schema 



604 National Computer Conference, 1987 

also relevant. This examination of the response set involves 
the user's browsing through documents, extracting syntactic 
and semantic information from the text to deduce whether the 
documents meet the initial information requirements. The 
feedback provides the basis for correction and enhancement 
of future performance. 

For example, if a user had the query: 

What are the economic prospects in Nova Scotia for the next 
decade? 

in mind, the information retrieval system should ideally focus 
on "economic prospects." "Nova Scotia" and "decade" to 
initiate a search on the document collection and retrieve bud
get statements, portfolio management reports, economic 
forecasts, job market statistics, (at best, on agriculture, for
estry, fisheries, and oil), for the user's examination. Now, if 
the user strictly intended to query the prospect of seeking 
employment, only the job market information would be 
accepted (by the user) and all else would be returned as non
relevant, a form of feedback. It is this relevance-feedback 
feature that makes a system adaptive. The system then auto
matically senses the emphasis suggested via feedback and con
tinues the search on job market information. The scheme 
described is known as query reformulation, which addresses 
the problem of automatically modifying the user-query based 
on feedback information obtained about the relevance of the 
response set. In any event, the session terminates on meeting 
the user's satisfaction. The tradeoff between precision and 
recall that the user is prepared to be satisfied with depends of 
course on the application. A casual library patron using an 
online integrated library system might be content with the first 
batch of citations rather than wait for more similar docu
ments. On the other hand, a lawyer researching for a case 
would want all relevant citations (recall approaching unity). 

A wide variety of retrieval strategies for determining the 
relevance (from the system's point of view) of documents 
relative to a query can be found in the literature. 2, 3,4 Figure 
2 shows a simple method for this determination. In this 
scheme, documents and queries are represented by terms, 
keywords or descriptors. These words are used to describe the 
content of a document. The process of extracting these words 
is known as indexing which usually entails tasks such as the 
removal of non-content words (articles, prepositions, pro
nouns), suffix stripping, and detection of equivalent stems. 
Terms are often assigned weights indicating their frequency of 
occurrence or their discriminating power. There is a host of 
statistical techniques for exploiting relevance information to 
weight search terms, rationalized by the fact that they allow 
the user to state a preference. When a user submits a query to 
the system, it is in the form of a string of terms (weighted or 
otherwise). The system then matches the query with the doc
uments in the collection, using certain standard similarity 
functions, and determines an order of the documents in which 
the most similar document is first, then the next most similar 
and so on. The number of documents to be displayed can be 
controlled by a cutoff rank or threshold similarity value, until 
the user is satisfied. 

This computation of similarity for ranked selection is O(i*J) 
for i documents with j terms, if the search is sequential. To 

d/t ti t2 t3 t . 
J 

di WII WI2 WI3 WIj 

d2 W2I W22 W23 W2j 

d3 W3I W32 W33 W3j 

d. Wi, 1 wi,2 wi,3 w .. 
t tJ 

I 
I - R - S 

criterion 

retrieve d if f{Q,d } ~ T n n 

I 
Q: qi q2 q3 qj 

Figure 2-A simple mechanism for document selection 

enhance the response time for retrieval, the notion of classi
fication or clustering is adopted. Classification or clustering 
refers to the process in which similar documents (or their 
surrogates, such as abstracts, summaries) are placed into ho
mogenous groups (interchangeably called classes or clusters) 
with the expectation that documents relevant to the same 
queri~s will be in the same clusters. It is rationalized by the 
cluster hypothesis which states that "closely associated docu
ments tend to be relevant to the same requests.,,3 Thus, search
ing is limited to comparing the typical document from each 
cluster, known as the centroid, to the query and possibly 
retrieving the entire cluster if its centroid is deemed close 
enough. In this way the search space will be greatly reduced. 

Information retrieval systems can thus be seen as possessing 
the three levels of complexity of management information 
systems. The technical level includes the routine transactions 
such as storage and maintenance. The tactical level involves 
semi-structured decisions like query reformulation and output 
selection. The strategic level faces the long-term challenges 
of automatic indexing, clustering. But even these are not with
out certain problems. In the. following section, the short
comings of the general method of information retrieval out
lined above are discussed. 



LIMITATIONS OF THE TRADITIONAL APPROACH 

Several commercial information retrieval systems currently 
exist. Among the best known are: Dialog of Lockheed In
formation Systems; Orbit, a product of System Development 
Corporation; Medlars, from the National Library of Medi
cine; and IBM's Stairs.2

,4 These systems, however, go no 
further than to implement the rudimentary techniques of in
formation retrieval with flat or inverted file structures. 

These standard treatments have many shortcomings and 
limitations associated with them. For one, certain fundamen
tal problems stem from the terms themselves. Indexing is 
still in a primitive, unsophisticated state notwithstanding the 
progress made through basic research on the subject. 3 Often, 
important contextual and semantic considerations are ignored 
and it is difficult, if not impossible, to describe a hundred-page 
document with ten to twenty keywords. Furthermore, the 
assignment of weights to the terms that represent the docu
ments is, at best, a difficult task. Terms are subjective in 
importance and weights based on frequency of occurrence do 
not consider the con~ext and semantics. Keyword extraction 
on graphics-oriented documents (an important consideration 
given the emerging popularity of visual information systems) 
and text in, say, Kanji, is not yet possible. 

Second, the matching functions that define similarity and 
therefore relevance (as seen by the system), are computa
tionally tedious. For instance, if there are i documents using 
a vocabulary of j terms, then a query (similarly represented) 
would require O(i*j) comparisons to determine the simi
larities for a simple algorithm reading from a sequential file. 
Another pitfall is that the feedback in a simple system is 
performed in the context of a single user query. There is only 
a limited amount of gain that can be made with such small 
amounts of feedback. As well, what the system "learns" is 
quickly forgotten once the current user completes the query 
session. Finally, the methods of classifying the documents 
seem to be wanting in many respects. The standard approach 
is based on O(i2) associative measurements between the 
documents, and the clusters are judged against the cluster 
hypothesis almost as an afterthought! 

It has been felt that the traditional statistics-based methods 
have reached their performance limits in terms of precision 
and recall. 6 Despite considerable efforts in research, increases 
in precision and recall have been very small, and researchers 
have been looking elsewhere for improvement. Techniques 
from artificial intelligence have been suggested for in
corporation into the conventional methods. This has led 
to the production of some systems which are of the "question
answering" type, such as MYCIN, PROSPECTOR, DEN
DRAL, HEARSAY, PAM, TAXMAN andMECHO. In the 
following section, this strategy is outlined with a survey. 

INTELLIGENT INFORMATION RETRIEVAL 

The study of artificial intelligence primarily embodies the mo
tive of designing and developing more sophisticated systems. 
Its foundations (representation, problem solving, architec
ture, and knowledge) already have wide-spread applicability 
in the more futuristic management information systems. In-

Intelligence in Information Retrieval 605 

formation retrieval, which seems to have reached a limit on 
precision and recall with-existing techniques, must adapt and 
adopt new tools and techniques that, if done by humans, 
would be termed intelligent. 

Artificial intelligence is intuitive to, and has tremendous 
scope in, information retrieval applications. Much work has 
been done in attempting to overcome the limitations of the 
conventional approach with such novel, innovative methods. 
Knowledge representation techniques have been applied to 
automatic indexing (for example, semantic networks or 
frames in thesauri construction) to produce expert systems; 
natural language understanding aids in translating a simple 
vocabulary into predicate calculus for document representa
tion and query reformulation, heuristic state space searches 
have been used in attempting to optimize retrieval selection, 
and learning in clustering. This is in addition to hardware 
features such as associative and parallel processing in the 
search phase of retrieval. 

An intelligent system is one that is capable of acquiring 
knowledge so as to improve its performance. Central to this 
notion of intelligence is the process of learning as defined by 
Simon.8 Information retrieval systems depend on the knowl
edge of bibliographers for indexing and clustering, logico
linguists for text understanding, and, experienced users for 
search strategies. What is needed is an integrated approach 
that will acquire knowledge in these areas in a modular form. 
Several packages, commonly known as question-answering 
systems, such as MYCIN, PROSPECTOR, DEN-DRAL, 
Q&A, HEARSAY, PAM, TAXMAN, MECHO, already do 
this. Quite expectedly, their design architectures are a hybrid 
of expert/knowledge-based systems and information retrieval! 
database systems. In our opinion, the four main techniques 
of artificial intelligence (drawn among others) 7 that have po
tential applications in the information retrieval environment 
are: 

Knowledge Representation 9 

The common methods of using frames and scripts seem to 
be apt for indexing strategies. In a broad sense, signatures 
may be thought of as frames and abstracts (document sur
rogates) as scripts. Another promising scheme appears to be 
the use of semantic networks and conceptual dependencies 
that attempt to understand text. In all cases, a set of rules to 
extract meanings from phrases in documents to form thesauri 
before matching with the users' queries in a deductive fashion 
is clearly superior to straightforward indexing where the stems 
of the most frequent or discriminatory phrases are selected as 
representatives. A good declarative mechanism for the repre
sentation of structured knowledge from documents is an inte
gral part of the information retrieval problem. 

Heuristic Search Strategies 

There is considerable agreement in the literature that one 
of the functions of an expert intermediary is the choice of an 
appropriate search strategy. Knowledgeable users select a 
strategy based on their experience, their knowledge of the 



606 National Computer Conference, 1987 

database, and the query. This approach is relatively easy to 
conceptualize, but as there are several strategies available, 
determination of the heuristic will depend on the database 
and the a priori knowledge of the user. A range of problem
solving techniques9 including divide-and-conquer, dynamic 
programming, greedy, breadth- or depth-first, backtracking, 
seem successfully applicable. But the emerging trend is in the 
adoption of parallel or associative processing strategies for 
searching indexes and/or clusters. 

Logico-linguistics 

Natural language research has yet to come up with a unified 
theory that will neatly, upon input, transform user queries in 
natural language sentences into symbolic logical language to 
be used internally for searching and deductive purposes. Al
though it is already possible to translate English statements 
into first order predicate calculus or other logical formations, 
from which deductive searches could proceed according to 
well-known methods of theorem proving,5 it is limited to a 
subset of the natural language vocabulary making it yet an
other query language! 

Learning 7 

The greatest "proven" potential in applying artificial intel
ligence to information retrieval seems to be with learning. The 
notion of learning is intuitive to the classification of docu
ments so as to categorize what users co-access frequently. 
Probably because there is no dearth of experts-indexers, 
catalogers, casual users all have some form of contribution to 
make, either in keyword or document clustering or in re
trieval. Several combinations of learning strategies: rote 
learning (without processing); learning-by-being-told (by an 
expert); learning-from-examples (induction); learning-from
observation (without a teacher), have been used to improve 
the storage and retrieval process. In the following section, one 
instance of the application of learning which is intuitive to the 
information retrieval problem is outlined. 

A FRAMEWORK AND PROTOTYPE 

A fundamental problem in artificial intelligence is the auto
mation of inductive inference. Clustering can be viewed as an 
inductive process. Sharma10 has proposed a learning algo
rithm for document storage and retrieval as an alternative to 
designing an expert system with decision rules. It is an adap
tive algorithmll that, given training examples with expert 
decisions, can infer a classification of the document collection 
and also infer (-by-example) which cluster5 a user requires. A 
metric from the theory of Rough Sets12 guides the learning 
process. 

This work is an attempt to overcome the traditional limit a
tions. It is a novel, self-organizing procedure that provides a 
setting in which multi-expert-input into the information stor
age and retrieval is possible and does away with the usage of 
terms and their weights to describe documents and queries. 
No similarity computations are therefore required. Feedback 

is handled by dynamically incorporating user-input during 
clustering and retrieval. The work therefore advocates a 
classification-based retrieval-by-example schem~. The frame
work proposed incorporates learning as a means of attaining 
intelligent information retrieval. The major disadvantage of 
the traditional mode of feedback is that the performance ele
ment is single-step, indirect learning. There is also no attempt 
to reconcile inconsistencies and redundancies. All this is over
come. 

In the proposed framework, the way of introducing user
input from several experts into the clustering process makes it 
a sophisticated learning system capable of handling both the 
case of many experts and the case of an imperfect expert. The 
method draws from Rough Set theory and an adaptive clus
tering strategy in order to achieve some amount of self-organi
zation in the database. The relevance judgements of weighted 
queries are used as the basis for influencing the classification 
of documents, thus enabling user-input to direct clustering 
and allow the clustering sub-system to learn. An evaluation 
metric based on the theory of Rough Sets is used as the clus
tering criterion, which is enhanced in an iterative fashion. 

The clustering algorithm begins with an arbitrary placement 
of the documents in the collection on a one-dimensional linear 
space and, as each query arrives, uses the relevance judge
ments to generate movement along the line so that "similar" 
documents are moved closer together and "dissimilar" ones 
moved further apart from each other. The precise definitions 
of what is meant by similar and dissimilar are also based on 
ideas from Rough Set theory. After a number of queries are 
processed, the initial positions change as the system "learns" 
the users' profiles. The classification, however, is re-clustered 
only when this movement is deemed significant as defined by 
a variation of a common measure for determining the simi
larity between classifications. The general method of cluster
ing places boundaries on gaps so as to optimize the clustering 
criterion. Efficient and effective retrieval is sought by using a 
learning scheme known as retrieval-by-example. The proto
type experimental implementation of the scheme indicates 
remarkable potential, producing recall and precision results 
of between 40 percent to 80 percent. 

However, several enhancements to the prototype as it 
stands may be feasible. First and foremost, a heuristic strategy 
has been formalized to expedite the re-clustering process. In 
addition, associative processing13 seems appropriate for the 
examination of several clusters concurrently. Rough Set the
ory also allows for decision rules to be generated as descrip
tors of the clusters. Implementing such a module will help 
achieve expert-system capability so that new documents ad
ded to the collection can immediately be placed. And, finally, 
it is pointed out that since the framework does not require the 
representation of documents as terms, the method is not lim
ited to the traditional Information Retrieval environment 
alone. This potential for integrating (or including) database 
management with Information Retrieval must be exploited. 

CONCLUDING REMARKS 

Some artificial intelligence techniques that can overcome the 
shortcomings of the standard approach to information retrie-



val have been surveyed. It is felt strongly that although their 
application is not altogether new, more of such techniques are 
imperative if steady improvement in retrieval results are to be 
gained. Current literature in information retrieval shows that 
many researchers look beyond the standard statistical tech
niques and are willing to incorporate more complex artificial 
intelligence ideas into their work. Some groups have actual 
working systems (such as SMART, RESUDA, IFS) which 
possess some amount of inteiligence. Future directions in 
information retrieval can no longer bypass artificial intelli
gence techniques. 

ACKNOWLEDGEMENTS 

The clustering and retrieval scheme was supervised by Vijay 
Raghavan, with financial support from the Faculty of Gradu
ate Studies and Research, University of Regina, Canada. 
Many thanks are also due to my colleague, Ernst Schuegraf, 
for discussing with me the theme of the paper, and to St. 
Francix Xavier University for continuing to fund this project. 

REFERENCES 

1. Somberg, B. "Cognitive Processes in Information Storage and Retrieval." 
Proceedings of the ACM Conference, 1982, pp. 79-81. 

Intelligence in Information Retrieval 607 

2. Bartschi, M. "An Overview of Information Retrieval Subjects." IEEE 
Computer Magazine, 18 (1985) 5, pp. 67-84. 

3. van Rijsbergen, C. J. Information Retrieval, (2nd ed.), London: Butter
worths, 1979. 

4. Blair, D. C., & M. E. Maron. "An Evaluation of Retrieval Effectiveness 
for a Full Text Document Retrieval System." Communications of the ACM, 
28 (1985) 3, pp. 289-299. 

5. Cooper, W. S. "Bridging the gap between AI and IR." in C. J. van Rijs
bergen (ed.), Research and Development in Information Retrieval, Cam
bridge: Cambridge University Press, 1984. 

6. Croft, B. "Artificial Intelligence and Information Retrieval-Performance 
for a price." Invited presentation at the 8th Annual International Confer
ence on Research and Development in Information Retrieval, 1985, Mon
treal. 

7. Cohen, R. R., & E. A. Feigenbaum. The Handbook of Artificial Intel
ligence, (Vol. 1-3), Los Altos: William Kaufmann, 1982. 

8. Simon, H. "Why Should Machines Learn?" In R. R. Michalski et al. (eds.), 
Machine Learning: An Artificial Intelligence Approach, California: TIoga 
Publishing, 1983. 

9. Rich, E. Artificial Intelligence, New York: McGraw Hill, 1983. 
10. Sharma, R. "Adaptive Information Retrieval: A Framework and an 

Experimental Prototype." Computer Science Dissertation, University of 
Regina, July, 1986. 

11. Yu, C. T., Y. T. Wang, & c. H. Chen. "Adaptive Document Oustering." 
Invited presentation at the 8th Annual International Conference on 
Research and Development in Information Retrieval, 1985, Montreal, 
Canada. 

12. Pawlak, Z. "On Learning-A Rough Set Approach." In A. Skowron (ed.), 
Lecture Notes in Computer Science (208), Berlin: Springer-Verlag, 1986. 

13. Schuegraf, E. "Indexing for Associative Processing." Canadian Journal of 
Information Science, (Vol. 5) 1980, pp. 93-101. 





Beyond the command-response model for PC-based 
front-ends: Some design principles and their application 

by DAVID E. TOLIVER 
Institute for Scientific Information 
Philadelphia, Pennsylvania 

ABSTRACT 

Personal computers are often used for front-end software that 
mediates retrieval of information from databanks. The native 
information retrieval language of databank systems usually 
follows a command-response model of user interaction. PC 
front-end software has often conformed to this model. How
ever, this is neither necessary nor optimal, as more acceptable 
models for user interfaces on PCs can and should be used 
by front-ends. This paper states five practical principles for 
breaking away from the older to the newer models. Examples 
of the application of these principles are taken from the 
author's experience in developing a new software product, 
tentatively named CC-Mate, that assists with access to 
Current Contents Search, a new database from the Institute 
for Scientific Information. 

DEFINITIONS AND SCOPE 

A "databank" is a commercially accessible mainframe with a 
selection of databases. Users access the mainframe in order to 
search these databases. Databanks give access to biblio
graphic, full text, scientific, business, and econometric data
bases. Examples of databanks include Dialog, Mead, BRS, 
Dow Jones, and services of CompuServe. 1 

A "front-end" is any computer system placed between 
users and databanks with the intent of monitoring activities or 
assisting users with databank transactions. Some front-ends 
provide access to a broad range of databases and databanks 
while others focus on a small number of databases, often from 
one provider. Three places have proven to be practical for 
implementing front-ends: on the databank host itself (e.g., 
BRS AfterDark); on a shared access remote computer 
(e.g., EasyNet); and on distributed PCs, (e.g., the Sci-Mate 
Searcher).2 

Front-ends give easier, faster or more complete search 
results and improve the cost-performance of information re
trieval. Front-ends do some or all of the following: assist in 
preparing a strategy before the online session; automate log-

609 

ging on and off databanks; simplify use of the retrieval lan
guage; assist with syntactic details of particular databases; 
capture results in electronic form; and process the results after 
the session. 

THE COMMAND-RESPONSE USER INTERFACE 
MODEL FOR INFORMATION RETRIEVAL 

Databanks first became available when 300-baud telecommu
nication with TTY terminals was standard. The relatively slow 
rates of 300 to 2400 baud via packet-switching networks is still 
the standard link to databanks. On many databanks, the na
tive retrieval language has not evolved much since it was first 
designed: the databank prompts the user for some command 
and responds to the command with results. 

Most front-ends also follow this model of interaction. This 
is not necessary and underutilizes a PC's potential. Very little 
of a PC processor is needed to handle the arrival of asynchr~
nous characters. Most front-end packages, though, use the PC 
processor for much of the session only to serve characters to 
the screen. 

THE FULL-SCREEN USER INTERFACE MODEL 
ON PERSONAL COMPUTERS 

In contrast to the slow serial command-response model, the 
entire video display of a PC can be refreshed almost instantly. 
The screen can be divided into regions through which the user 
can navigate with the mouse or cursor. Windows imply addi
tional regions "hidden" behind the screens. Internal memory 
and external mass-storage accommodate programs, support
ing data, and even complete electronic transcripts of results. 

The principles below emphasize taking advantage of the 
full-screen user interface found in many PC application pack
ages. They have been applied at lSI in the development of a 
new front-end program, CC-Mate. This program assists users 
of a new lSI database, Current Contents Search, available on 
the BRS databank. 



610 National Computer Conference, 1987 

DESIGN PRINCIPLES FOR FRONT-ENDS 
AND APPLICATION EXAMPLES 

Principle 1: The front-end should support user activities be
fore and after the online search session itself. CC-Search's 
built-in full-screen editor allows users to prepare their search 
profile. Data tables with details about the structure and con
tent of the database can be recalled. The same edit commands 
can be used to clean up transcripts of search results, both 
during the session and after logging off. 

Principle 2: Front-ends should provide ongoing status and 
options as well as innovative features made possible by full
screen access to the profile and results. Detailed status is 
continually on display in CC-Mate; action and information 
options are continually available. Terms in the results can be 
selected as profile queries by "pointing and clicking"; the full 
text of referenced items can be ordered from lSI or from the 
reprint author by pressing a single function key, 

Principle 3: The user and database interfaces should be 
isolated from each other in their own modules of the computer 
program. These distinct interfaces are linked only in a main 
event loop. Code isolation simplifies maintenance and makes 
it easier to extend the product to support users of other data
banks and databases. 

Principle 4: Temporal interleaving of the user and database 
interface activities improves the cost-effectiveness of the 
front-end. As results continue to stream into buffers from the 
serial line, the user can examine and edit all results, sum
maries, status data, and options. Immediate information gives 
the user more control over the session, while not halting the 
incoming flow of results. 

Principle 5: The functions carried out by the user and data
base interfaces need not correspond one-for-one. For exam
ple, CC-Mate merges the Select, Limit, and Print functions of 
BRS under a single function called Display. This gives users 
results from a query in a single step. Also, when the user alters 
a query in the profile, the sequence of commands to the 
databank will be redirected without changing the profile's 
own sequence with which the user is familiar. 

REFERENCES 

1. Pemberton, J. "Databank." Online, (9) May, 1985, p. 95. 
2. Toliver, D.E. "Whither and Whether Micro-based Front-Ends." In Proceed

ings of the Second Conference on Computer Interfaces and Intermediaries for 
Information Retrieval. DTICffR-86/5, Alexandria, VA: Defense Technical 
Information Center, 1986, pp. 225-234. 



Expert front ends in the environment 
of multiple information sources 

by GABRIEL JAKOBSON 
GTE Laboratories, Inc. 
Waltham, Massachusetts 

Among many different aspects of information retrieval from 
a single source one may separate three major tasks performed 
by a database intermediary (either person or system): con
ceptual analysis of the request and formal specification of the 
query; planning and control of the search process; and 
representation of the results. The addition of at least one 
more information source creates one new obligatory task: 
data (or document) base selection, and two optional tasks: 
data integration from multiple sources and unification of the 
data (document) display formats. 

The multiple database environment poses challenging tasks 
to expert database front-ends. In many cases the database 
request may be decomposed into a set of isolated sub-requests 
and a particular independent database should be selected to 
satisfy each sub-request. The existence of alternative data
bases leads to the task of optimization of the selection pro
cedure, where criteria like user model, cost, level of data 
abstraction, may be taken into account. 

In a more complicated case, the request may be integrated 
(i.e., several dependent databases should be accessed simulta
neously in order to satisfy the request). This case brings us to 
the task, which may be called database navigation. Database 
navigation implies that a sequence of related databases should 
be planned: the result from one database in this sequence is 
used for specification of the data selection condition for the 
next database. The database navigation task is performed by 
joining cross-database files. It includes two optimization 
tasks: selection of the path of the cross-database join fields 
and selection of the file join methods. Both analytical and 
heuristic rule-based methods may be used for solving these 
problems. The database navigation task is most naturally as
sociated with relational and hierarchical databases. It is hard 
to justify the database navigation task for document retrieval 
systems, unless we know how to extract meaningful parts from 
the test, or read it by machines. 

There is one important aspect of a general nature in data 
retrieval: the user's understanding of the subject area and now 
the initial request is described are not necessarily directly 
related to the actual data files and fields. Many different views 
and interpretations may be built on top of the stored data. We 

611 

may consider these views as virtual databases. The end user 
communicates with the database intermediary using the terms 
of the Virtual database; the task of the intermediary is to map 
these terms into the real databases, files and fields. This task, 
as well as the database selection and navigation tasks, is 
knowledge extensive and needs expertise. 

Finally, there is a result representation task. The primitive 
solution is physical concatenation of records retrieved from 
different sources. However, in most applications the unifica
tion of the data display formats adopted by different data
bases is required. A more complicated solution evolves 
semantic data fusion with resolution of conflicting data, elim
inating duplicates, and extrapolating gaps. The response 
returned to the user may be aggregated and contain general 
meta-statements about the data. 

The solution of building front ends capable to perform 
the above mentioned tasks lies in the area of knowledge 
based expert systems. The examination of the behavior of 
human experts-database analysts or information retrieval 

, specialists-gives us a picture of what kind of knowledge and 
decision making procedures are required to perform the data 
(document) retrieval tasks. The knowledge may be classified 
as follows: (1) subject area knowledge, (2) user profile, 
(3) knowledge about database structures (data dictionaries), 
(4) knowledge about inter-database relations, (5) knowledge 
about network communication protocols, and (6) knowledge 
about database query languages and DBMSs. 

We will present general architectural principles and design 
solutions of a specific expert front end called Intelligent Data
base Assistant (IDA) developed at GTE Laboratories. 1 IDA 
is designed to retrieve data from multiple heterogeneous data
bases. IDA performs the tasks of automatic database selec
tion, database navigation, formal target database query gen
eration, and connection to different remote databases. The 
user may communicate with IDA, either formulating a natural 
language query or interacting through a menu interface. The 
process of converting the virtual query into the set of target 
database queries includes the steps of selecting the data
base(s), finding the optimum cross-database join fields, find
ing the best join algorithm, mapping from the subject area 



612 National Computer Conference, 1987 

objects and relations into the database files and fields, and 
shaping the query according to the syntactic constraints of the 
target database query languages. 

IDA is built in an expert fashion: it contains a generic 
procedural part and a compartmental knowledge base. The 
knowledge base has parts representing the subject area, 
database management, database, and communication knowl
edge. The experimental version of the system is implemented 
on XEROX 1186 Artificial Intelligence workstation, and it 

accesses databases residing on remote hosts. The current 
implementation accesses ORACLE, DB2, and FOCUS rela
tional databases, and also ASI-STable files. 

REFERENCE 

1. Jakobson, G., C. Lafond, E. Nyberg and G. Piatetsky-Shapiro. "An Intel
ligent Database Assistant." IEEE Expert, 1 (1986),2, pp. 65-79. 



Thoughts about intermediary systems in information retrieval 

by GERARD SALTON 
Cornell University 
Ithaca, New York 

In information retrieval, we must deal with many hundreds of 
different data bases, and with several dozen search and re
trieval services used to provide access to these databases. In 
view of the common operating requirements of all retrieval 
services, namely large file sizes, on-line operations conducted 
by end-users or search intermediaries, and system responses 
provided to users in real time, the normal sequential search 
methods cannot be used. Instead, it becomes necessary to use 
auxiliary indexes capable of providing access to specific sub
sections of the files. At the present time, all operating re
trieval sevices use large (inverted) index files to obtain fast 
search output with acceptable retrieval effectiveness. 

Even though the internal data organization and the search 
strategies are effectively identical, the access protocols and 
command structures used by the many retrieval services are 
very different, and generally incompatible with each other. To 
bridge the gap between the common internal operating char
acteristics and the multiple external access protocols, user 
accessing aids have been designed consisting of easy-to-use 
front-ends, expert advice systems for query formulation and 
submission, and gateways capable of reaching the proper re
trieval service and record files. The regrettable proliferation 
in noncompatible retrieval services is now matched by an 

613 

equally large number of noncompatible intermediary and 
gateway systems. 

The many different retrieval systems and intermediary ser
vices can effectively be replaced by a common query formu
lation and query submission system based on natural language 
manipulations. Such a system would provide the following 
facilities: 

1. Initial query analysis in terms of weighted attribute 
vectors 

2. Global collection matching facilities designed to identify 
the relevant document collections that must be searched 
in a particular instance 

3. Global document matching facilities designed to provide 
ranked output of retrieved documents in response to 
submitted queries 

4. Displays of expanded query vocabularies consisting of 
thesaurus contents and relevant phrases to be used in 
generating improved query formulations 

5. Relevance feedback facilities designed to construct im
proved query formulations by automatic methods. 

Such a common interface system could serve as a corner
stone for a highly effective and easily usable retrieval facility. 





Graphical query languages for semantic 
database models 

by BOGDAN CZEJDO, RAMEZ ELMASRI, and MAREK RUSINKIEWICZ 
University of Houston 
Houston, Texas 

and 
DAVID W. EMBLEY 
Brigham Young University 
Provo, Utah 

ABSTRACT 

Graphical representations of database schemas such as entity-relationship diagrams 
are commonly used to support database design. In this paper we discuss graphical 
representations of semantic data models and their application to interactive query 
languages. Operators that are appropriate for graphical query formulation are 
defined for several semantic data models. We also discuss a general method for 
implementing graphical interfaces to database systems that can be applied to a wide 
range of semantic data models. 

615 





Graphical Query Languages for Semantic Database Models 617 

INTRODUCTION 

Graphic display can frequently enhance user understanding of 
complex objects. Since database schemas have considerable 
complexity, it is not surprising that several graphic representa
tions, such as Bachman diagrams and entity-relationship (ER) 
diagrams, have emerged.1,2,3 These diagrams can conven
iently represent database schemas and have been used exten
sively to support database design activities. 

Graphic representations may also be used to support data
base query formulation. Rather than require a user to write a 
symbolic expression in a disciplined style using a formal query 
language, a graphical language could allow a user to formulate 
queries interactively, by working directly with some kind of 
diagram. This method of query formulation would take ad
vantage of available graphical interfaces and pointing devices 
to provide a friendlier user interface to a database system and 
benefit both novice and experienced users. Two of the earliest 
query languages specifically designed for use with an inter
active two-dimensional interface are QBE4 and CUPID. 5 
Graphical query interfaces are also discussed in several addi
tional papers. 6,7,8,9, 10, 11, 12, 13 

In this paper we present a method of query formulation for 
various semantic data models with natural graphical rep
resentations. For each data model, our approach is to define 
graphical operators that allow an end-user to manipulate a 
diagram until it represents a desired query. In the same way 
that a semantic-model diagram represents the schema of the 
database, a modified diagram (usually much smaller) can rep
resent the query. From the end user's point of view the data 
in a stored database is manipulated in a manner consistent 
with changes made to a graphic representation. 

We also describe the semantics for these operators and 
discuss ways of implementing them efficiently. We assume 
that an underlying database system exists that can be de
scribed by a relational schema and manipulated by relational 
operators. The graphical ~perators specified by a user are 
transformed into relational operators for processing. 

Three data models will be discussed as an example of our 
approach. The entity-relationship model3 has a natural graph
ical representation in the form of ER-diagrams. The second 
example is based on the entity-category-relationship (ECR) 
model. 14 This model constitutes an extension of the ER model 
by introducing the concept of a category. The third example 
is based on an extended relational model. 15 In addition to 
relations, this model also contains connectors, which allow a 
natural graphical representation of a database schema. 

The paper is organized as follows. First, a general approach 
to graphical query formulation for semantic data models is 
discussed. The application of our approach to interactive 
query formulation is illustrated for an ER model, for the ECR 

model, and for an extended relational model. We describe an 
implementation method applicable to these and other similar 
semantic data models and illustrate the approach by giving 
details for the ER model. Finally, conclusions are drawn. 

GRAPHICAL QUERY FORMULATION 

A graphical representation of a database using a particular 
semantic data model is an abstract description of the schema 
of the database. Views and queries can also be represented 
using this same abstract description, and thus, graphical query 
formulation can consist of manipUlating a schema diagram so 
that it represents the query. The general approach is to dis
card unneeded portions of the diagram and modify the re
mainder of the diagram such that it defines the desired query. 
Diagram manipulating operators are defined to perform 
these actions. The final result of a query is produced when the 
graphically formulated query is applied to the current data
base instance. 

A possible screen layout for a graphical interface would be 
to display a schema diagram together with the list of appli
cable operators and reserve an area on the screen for mes
sages between the system and user. Large diagrams can be 
viewed using a windowing mechanism. A user manipulates a 
diagram by pointing to an operator and then to its operands. 
Depending on the operator, the user may also enter text in the 
message area. After each operation, a new diagram is dis
played. The diagram displayed on the screen corresponds to 
the current view of the data and can always be interpreted as 
a query. 

This approach to query formulation has the following ad
vantages: 

1. The query language is two dimensional. Pictorial dia
grams that depict a view of the database schema are 
displayed and can be manipulated interactively. 

2. Query formulation is flexible. A query can be formu
lated in many different ways since the order in which the 
diagram manipulating operators are invoked is often im
material. 

3. The user always has a convenient frame of reference. 
The current diagram reflects the current status of query 
formulation and is always a valid query. 

4. The approach is applicable to a wide range of semantic 
data models, 

5. An undo operator, which reverses the last operation(s), 
can be easily implemented by keeping a copy of the 
model state, corresponding to the previous step(s), on a 
stack. 



618 National Computer Conference, 1987 

6. Immediate feedback is provided whenever an operator is 
invalid in the current context. Thus, a user is assisted by 
being immediately informed about possible errors. 

7. The intended query can be specified in several different 
ways corresponding to different levels of diagram reduc
tion. The strategy to be used can be selected by the user. 

We. now illustrate how queries are formulated graphically 
for an ER model, the ECR model, and an extended relational 
model. 

GRAPHICAL QUERY FORMULATION 
FOR AN ER MODEL 

Figure 1(a) shows an ER diagram corresponding to a simple 
database for a university. Queries can be formulated by 
manipulating ER diagrams with the following operators. 

Relationship-Set Delete (R1): This operator removes the 
relationship set R1 from the diagram. 

Entity-Set Delete (E1): This operator removes the entity set 
E1 from the diagram. All relationship sets associated with E1 
are also removed. 

Relationship-Set Project (R1, Z): This operator restricts the 
attributes of the relationship set R1 to the (possibly empty) set 
of attributes Z. Thus, attributes of relationship sets may be 
removed by invoking this operator. 

Entity-Set Project (E1, Z): Like relationship-set projection, 
this operator restricts the attributes of the entity set E1 to the 
(possibly empty) set of attributes Z. Entity sets with no attri
butes are useful for specifying indirect relationships, for ex
ample, the courses taught by a particular student's advisor. 

Relationship-Set Restrict (R1, e): This operator restricts a 
relationship set to the subset of relationship objects that sat
isfy a boolean restriction expression e. 

Entity-Set Restrict (E1, e): This operator restricts an entity 
set to the subset of entity objects that satisfies a boolean 
restriction expression e. This operator not only imposes a 
boolean restriction expression on entity set E1, it also alters 
the associated relationship sets to ensure that referential in
tegrity is maintained. Thus, the operator guarantees that 
when an entity e1 is removed from an instance of E1 by 
condition e, every relationship instance involving e1 is also 
removed. 

There are also operators for set union, set intersection, set 
difference, renaming attributes and entity and relationship 
sets, duplicating diagrams to formulate self-referencing que
ries, and creating new relationships among existing entities. A 
minimal set of operators has been identified and has been 
shown to have the expressive power of Codd's relational 
algebra. 16 

As an example of query formulation by manipulating ER 
diagrams, consider the following query: "Get names of all 
faculty members who are currently teaching the student 
whose Id# is '123456789'." We assume that the current ER 
diagram is the one shown in Figure 1 (a). 

This query can be specified in several phases. In the first 
phase, unnecessary entities and relationships are removed. 
This can be achieved by selecting the delete operator and 

pointing at ADVISES. This generates the following ER
algebraic operator: 

Relationship-Set Delete(ADVISES) 

In the second phase, the selection conditions are specified 
by choosing the restrict operator, pointing at the attribute Id# 
of STUDENT and entering the value '123456789'. This gener
ates the following operator: 

Entity-Set Restrict(STUDENT, Id# = '123456789') 

In the third phase, unnecessary attributes of entities and 
relationships are deleted by selecting the operator project and 
pointing at STUDENT, CLASS, and Name (of FACULTY). 
This generates: 

Entity-Set Project(STUDENT, <f» 

Entity-Set Project(CLASS, <f» 

Entity-Set Project(FACULTY, {Name}) 

At this point the schema diagram is as shown in Figure 1(b). 
This ER diagram specifies the query and can be interpreted as 
explained in the Implementation section. 

EXTENSIONS FOR THE ECR MODEL 

The ECR (Entity-Category-Relationship) model extends the 
basic ER model with the concept of category. An ECR dia
gram extends ER diagrams to graphically display categories. 
In the ECR model, there are two types of categories: subclass 
categories and generalization categories. 

The graphical representations of categories is shown in 
Figure 2(a). Subclass categories are used to model a subset of 
entities from an entity set. In Figure 2(a), GRAD-STUDENT 
is a subclass category of the entity set STUDENT. STUDENT 
is called the defining entity set of GRAD-STUDENT. A cate
gory can have additional specific attributes that apply only 
to entities that are members of the category. In addition, a 
category can have specific relationships in which only entities 
that are members of the category can participate. In Figure 
2(a) , a specific attribute, Undergrad-School, and a specific 
relationship, IS-THESIS-ADVISOR, are specified for the 
GRAD-STUDENT category. 

A subclass category specifies a restriction on the entities in 
the defining entity set. Hence, GRAD-STUDENT contains 
only the entities from STUDENT that are graduate students. 
The subclass category inherits all attributes and relationships 
of the defining entity set, since every entity of the category is 
also a member of the defining entity set. Hence, GRAD
STUDENT will also have all attributes of STUDENT. 

For graphical query formulation, we can include additional 
operators to deal with subclass categories. All the operators 
that apply to entity sets can also apply to categories. Deleting 
a defining entity set E results in automatic deletion of all 
subclass categories of E. Deleting a subclass category, how
ever, does not affect entities in the defining entity set. To 
ensure that entities in subclass categories are subsets of the 



Graphical Query Languages for Semantic Database Models 619 

FACULTY~------------------~ 

STUDENT~------------------~ 

STUDENT.ld# = '123456789' 

(a) A sample ER schema diagram (b) Transformed ER schema diagram 

Figure I-Example for the ER model 

entities in their defining entity set, restricting a defining entity 
set E results in automatic restriction of all subclass categories 
of E. Restricting a subclass category, however, does not affect 
entities in the defining entity set. 

In addition, we can include an operator subclass-category
combine that restricts a defining entity set to those entities 
that are members of a category. Hence, this operator is similar 
to an entity-set restrict without an explicit condition-the con
dition is that entities must be members of the category. 

Subclass-Category-Combine (E1, C1). The category C1 is 
combined with its defining entity set E1 to yield a new entity 
set E2 with the same name as C1. The entities in E2 are 
restricted to those in C1, and the attributes of E2 are the 
union of the attributes of E1 and C1. E2 will participate in 
any specific relationships in which C1 or E1 participated. To 
maintain referential integrity, all relationship instances in 
which any removed entity of E1 participated are removed. All 
other subclass categories of E1 are removed from the ECR 
diagram. 

The second type of category in the ECR model is the 
generalization category, which represents the union of entities 
from two or more disjoint entity sets that participate in some 
relationship in the same role. Figure 2(a) shows a generaliza
tion category VEHICLE-OWNER that is (a subset of) the 
union of the FACULTY and STUDENT entity sets. The enti
ties in the category VEHICLE-OWNER participate in the 
role of owners in the OWN relationship with the VEHICLE 
entity set. 

All the graphical operations that apply to entity sets can 
also be applied to generalization categories. However, a de
lete operation on one of the defining entity sets E automati
cally implies that entities in the generalization category that 
are members of E are automatically deleted. For example, a 
Entity-Set Delete(FACULTY) also deletes all FACULTY en
tities from the VEHICLE-OWNER category. This is neces
sary to maintain the category subset constraint. Similarly a 
restrict operation on one of the defining entity sets E implies 
that if entities removed from E are also in the generalization 
category, they are automatically removed. 

A generalization category can also be combined with one of 
its defining entity sets to restrict members of the category to 
those entities in the defining entity set. This operator is called 
Generalization-Category-Combine. 

Generalization-Category-Combine (E1, C1): The category 
C1 is combined with one of its defining entity sets E1 to yield 
a new entity set E2. The name of E2 is the concatenation of 
the names of E1 and C1. The entities in E2 are restricted to 
those in C1 that are members of the entity set E1, and the 
attributes of E2 are the union of the attributes of E1 and Cl. 
E2 will participate in any relationships in which E1 or C1 
participated. To maintain referential integrity, however, all 
relationship instances in which any removed entity par
ticipated are removed. All defining entity sets of C1 (including 
E1) are removed from the ECR diagram. 

The two category combine operations are used to restrict a 
set of entities, as well as to cause explicit attribute inheritance 



620 National Computer Conference, 1987 

VEHICLE 

GRAD-STUDENT-VEHICLE-OWNER 

(a) A sample ECR schema diagram (b) Transformed ECR schema diagram 

Figure 2-Example for the ECR model 

in the displayed ECR diagram. Hence, they are used for que
ries in which only some of the entities in an entity set or a 
generalization category are selected. For example, suppose 
we want to formulate the query to retrieve the names of all 
graduate students who have at least one parking ticket out
standing. Assume that the ECR diagram shown in Figure 2(a) 
represents the database schema. 

In the first phase, we remove all unneeded entity sets, cate
gories, and relationships. This is accomplished by pointing at 
the delete operator and then at FACULTY and CLASS, 
which generates the following operators: 

Entity-Set Delete(FACUL TY) 
Entity-Set Delete(CLASS) 

In the second phase, we graphically specify operators to 
combine GRAD-STUDENT with STUDENT and then to 
combine the resulting GRAD-STUDENT entity set with 
VEHICLE-OWNER. The operators generated are: 

Subclass-Category-Combine(STUDENT, 
GRAD-STUDENT) 

Generalization-Category-Combine( GRAD-STUD ENT, 
VEHICLE-OWNER) 

Finally, we use the graphical interface to restrict VEHICLE 
to those with at least one ticket outstanding, and then to 
project on the GRAD-STUDENT name. The operations gen
erated are the following: 

Entity-Set Restrict(VEHICLE, No-of-Tickets> 0) 
Entity-Set Project(VEHICLE, <1» 

Entity-Set Project( GRAD-STUD ENT-
VEHICLE-OWNER, {Name}) 

Figure 2(b) shows the final reduced diagram. Since this is a 
regular ER diagram, it can be interpreted as discussed in the 
Implementation section. 

GRAPHICAL QUERY FORMULATION FOR AN 
EXTENDED RELATIONAL MODEL 

Figure 3(a) shows a schema diagram for an extended rela
tional model. 15 Each relation of the database is represented 
on the schema diagram by a relation descriptor consisting of 
the relation name and the relation attributes. We extend the 
relational schema diagram by adding connectors. Pairs of at
tributes of relation descriptors can be connected and a 
boolean-valued operator over the connected attributes can be 
specified. (The model can also include connectors that relate 
more than two attributes.) We formulate queries by manipu
lating diagrams for the extended relational model with the 
following operators. 

Delete Connector (Cl): This operator deletes connector Cl 
from the diagram. 

Add Connector (Rl, Al, R2, A2, a): This operator creates 
a a-comparison connector between attribute Al of relation 
descriptor Rl and attribute A2 of relation descriptor R2. Al 
and A2 must, of course, be a-comparable attributes. 



Graphical Query Languages for Semantic Database Models 621 

Delete Relation (Rl): This operator removes relation de
scriptor Rl from the diagram and also removes any con
nectors associated with the removed relation descriptor. 

Add Relation (Nl, Z, T): This operator creates a constant 
relation named Nl whose attributes are given in the set Z and 
whose tuples are given in the set T, adds the relation to the 
stored database, and adds its relation descriptor to the model. 
We may use this operator along with add connector to restrict 
our query to particular constant values. 

Delete Attributes (Rl, Z): This operator removes the set of 
attributes Z from the descriptor of relation Rl. Any connec
tion descriptor that references a deleted attribute is also de
ieted. 

There are also operators for combining relations using set 
union and set difference, explicitly reducing diagrams by 
joins, renaming attributes and relation descriptors, and dupli
cating diagrams to formulate self-referencing queries. IS 

As an example of query formulation for the relational 
model extended by connectors, we show how to manipulate 
the diagram to specify the sample query: "Get names of all 
faculty members who are currently teaching the student 
whose Id# is '123456789'." We assume that the current dia
gram is the one shown in Figure 3( a). 

As before, the query can be specified in several phases. In 
the first phase, unnecessary relations and connectors are re
moved. For our example a user points at the delete-connector 
operator and then at the connector to be removed. This gen
erates the following algebraic operator: 

Delete Connector«STUDENT, Advisor, FACULTY, 
SS#,'=')) 

In the second phase, the selection conditions are specified. 
This can be done by pointing at a graphical select operation, 
pointing at the Id# attribute (of STUDENT) and entering 
'123456789'. This generates the following operators: 

Add Relation(Tl, {Id#}, {<Id#:'123456789'>}) 
Add Connector(STUDENT, Id#, Tl, Id#,'=') 

FACULTY (SS#, Name, Office) 

I ~ 
CLASS (Course#, Section#, Faculty#) 

I ~ 1= 
IS-TAKING (Student#, Course#, Sectionil) 

I ~ 
STU::lENT (Idil, Name, .1I.ddress, Advisor) 

(a) A sample extended relational schema diagram 

In the third phase, the attributes to be displayed are 
marked, resulting in the schema diagram of Figure 3(b) where 
marked attributes are underlined with stars. This diagram 
specifies the query and can be translated into executable code 
as explained next. 

IMPLEMENTATION MODEL 

The operators for the semantic data models can be imple
mented in several ways. If the underlying database manage
ment system supports a data manipulation language (DML) 
corresponding to the semantic data model (e.g., GORDAS17 

for the ER model), our operators can be directly translated 
into equivalent semantic DML queries. An alternative and 
more general solution is to map graphical operators into 
equivalent algebraic operations on a corresponding relational 
database schema. This approach will be presented below 
using the ER model as an example. 

A mapping from an ER diagram into an equivalent rela
tional schema can be defined as follows. For each entity set, 
we assume the existence of a relation scheme whose name is 
the name of the entity set and whose attribute set consists of 
the attributes of the entity set plus a surrogate key attribute. 18 

For each relationship set, we assume the existence of a rela
tion scheme whose name is the name of the relationship set 
and whose attribute set consists of the attributes of the rela
tionship set plus the surrogate key attributes of the associated 
entity sets. For Figure lea), the derived relational database 
schema is shown below. 

FACULTY(eFACULTY, SS#, Name, Office) 
CLASS(eCLASS, Course#, Section#) 
STUDENT(eSTUDENT, Id#, Name, Address) 
IS-TEACHING(eFACULTY, eCLASS) 
IS-TAKING( eCLASS, eSTUDENT) 
ADVISES(eFACULTY, eSTUDENT) 

The attributes prefixed with "e" are surrogate key attributes. 

FACULTY (SS#, Name, Office) 

CLASS (Course#, Section#, Faculty#) 

IS-TAKING (Student#, Coursei, Section#) 

STUDENT (Id#, Name, Address, Advisor) 

T1 ( Id# 

123456789 

(b) Transformed extended relational schema diagram 

Figure 3-Example for the extended relational model 



622 National Computer Conference, 1987 

Each graphical operator corresponds to an operation that 
maps a set of relation instances into another set of relation 
instances. The initial instance is the current database state. 
For our example the initial set of relations is {faculty, 
is-teaching, class, is-taking, student, advises}. The first oper
ator invoked for the query in the section on graphical query 
formulation for an ER model was relationship-set delete 
(ADVISES) which corresponds to removing the relation ad
vises from the set of relations. The second operator invoked 
was entity-set restrict(STUDENT, Id# = '123456789') which 
corresponds to replacing the relation student with 

(J'Id#='l23456789,student 

and, to maintain referential integrity, replacing is-taking with 

1TeSTUDENT,ecLAss(is-taking I x I (J'Id#='l23456789,student). 

The last three operators invoked were entity-set project 
(STUDENT, $), entity-set project(COURSE, $), and entity
set project(FACULTY, {Name}). These operators each corre
spond to appropriate projections. The final set of relations is 

1TeFACULTY,Namefaculty, 
is-teaching, 
1T eCLAssclass, 
1T eSTUDENT ,ecLAss(is-taking I x I (J'Id#='123456789,student), 
1TesTUDENI<Tld#='123456789,student. 

This set of relation instances is the database instance for the 
query in Figure l(b). To produce a single table for this query, 
we join the relations in the final set of relation instances and 
project on the attributes of interest shown on the diagram. 

Of course, actually manipulating the stored relation in
stances as the query is formulated, would be very inefficient. 
Instead, we can accumulate information about how to create 
the relation instances as the diagrams are manipulated, and 
thus obtain a relational algebra expression equivalent to the 
graphically specified query. For this example, the equivalent 
query is: 

1TName( 1TeFACULTY,Namefaculty I x I is-teaching I X l1TecLAssclass I x I 
1TesTUDENT,ecLAss(is--taking I x I (J'Id#='123456789,student) I x I 
1T eSTUDENI<Tld#= '123456789,student 

In such an implementation, the application of a graphical 
operator causes transformation of the diagram, and corre
sponding relational algebra expression(s), but does not affect 
the underlying stored database. This means that the proposed 
graphical interface can be treated as a front-end to an existing 
relational database. As a consequence, the relational algebra 
expression can be optimized before execution by the rela
tional query processor. 

This approach also has the significant advantage that the 
formal definition of the semantics of graphical operators can 
be described by providing translation rules to generate rela
tional algebra expressions. Entity-relationship diagrams can 
be described formally as a pair that includes a set of entity-set 

descriptors and a set of relationship-set descriptors. Each 
operator transforms a particular ER diagram into another 
diagram. Most operators are partial and are valid only if cer
tain enabling conditions are satisfied. 

We enhance the above model by associating a relational 
algebra expression with each descriptor (entity-set descriptor 
and relationship-set descriptor). This relational algebra ex
pression is referred to as the X-component and defines a set 
of tuples associated with the given set descriptor. Thus, when 
an operator is specified on an entity or relationship set, a 
corresponding relational-algebra operator is concatenated 
(using applicable syntax rules) with the X-component of the 
set descriptor. Hence, the state of the X-component for an 
entity or relationship set W defines the view generation for W 
as displayed on the diagram. 

The semantics for a basic set of operators for our ER model 
are formally defined. 16 Semantics for graphical operators for 
the ECR model,the extended relational model, and other 
semantic models can be defined in the similar manner. 

CONCLUSION 

A general approach to graphical query formulation for seman
tic data models has been discussed. Three data models-an 
ER model, the ECR model, and an extended relational 
model-have been used as examples. Our approach is to de
fine graphical manipulation operators that allow queries to be 
specified by manipulating schema diagrams. Diagrams are 
transformed until they represent a desired user query. The 
resulting diagram (as well as all intermediate diagrams) can be 
interpreted in terms of the graphical representation of the 
data model used. 

We have also explained how the operators can be defined 
and efficiently implemented. These graphical operators can 
be defined in terms of functions that operate on an abstract 
data model. Based on the definition of these operators, the 
result of formulating a query can be expressed as a relational 
algebra expression. Thus, it is unnecessary to manipulate 
the stored database while the schema diagrams are manipu
lated. This approach allows an efficient implementation of 
graphically-specified queries because the relational algebra 
expression can be optimized, using standard techniques, be
fore it is executed. 

Our method is general and is applicable to a wide range of 
semantic models. For each model, the graphical query inter
face provides a convenient and dynamically changing frame 
of reference. Immediate feedback is provided whenever an 
operator is invalid in the current context. Assistance in both 
formulating and understanding a query is provided at a higher 
level of abstraction, closer to the application domain of the 
end-user. 

These graphical query interfaces can be implemented as a 
front-end to an existing (relational) database system. Hence, 
multiple interfaces can be implemented over the same under
lying database system, so a user can select the interface that 
corresponds to hislher favorite data model. 



Graphical Query Languages for Semantic Database Models 623 

REFERENCES 

1. C. W. Bachman. "Data Structure Diagrams." Data Base, 1 (1969) 2, pp. 
4-10. 

2. C. W. Bachman. "The Programmer as a Navigator." Communications of 
the ACM, 16 (1973) 11, pp. 653-658. 

3. P. P. Chen. "The Entity-relationship Model-Toward a Unified View of 
Data," ACM Transactions on Database Systems, 1 (1976) 1, pp. 9-36. 

4. M. M. Zloof. "Query by Example." AFIPS, Proceedings of the National 
Computer Conference, (Vol. 44) 1975, pp. 431-438. 

5. N. H. McDonald. "CUPID: A Graphics Oriented Facility for Support of 
Non-programmer Interactions with a Database." Memo No. ERL-M563, 
Ph.D. Dissertation, University of California, Berkeley, 1975. 

6. Vassiliou, Y. and M. Jarke. "Query Languages-A Taxonomy." in Y. 
Vassiliou (ed.) Human Factors and Interactive Computer Systems, Nor
wood, New Jersey; Ablex, 1984. 

7. M. E. Senko. "DIAM II with FORAL LP: Making Pointed Queries with 
Light Pen." Information Processing, Amsterdam: North-Holland, 1977. 

8. Chang, N. S. and K. S. Fu. "Query-by-pictorial Example." Proceedings of 
IEEE COMPSAC, 1979. 

9. D. C. Tsichritzis. "LSL: A Link and Selector Language." Proceedings of 
ACM SIGMOD, Washington, DC, 1976. 

10. Zhang, z. Q. and A. O. Mendelzon. "A Graphical Query Language for 
Entity-relationship Databases." in C. Davis, S. Jajodia, P. Ng & R. Yeh 
(eds.) Entity-Relationship Approach to Software Engineering, Amsterdam; 
North-Holland 1983. 

11. Larson, J. and J. Wallick. "An Interface for Novice and Infrequent Data
base Management System Users." AFIPS, Proceedings of the National 
Computer Conference (Vol. 53) 1984. 

12. Elmasri, R. and J. Larson. "A Graphical Query Facility for ER Data
bases." Proceedings of the 4th International Conference on Entity-Relation
ship Approach, Chicago, Illinois, 1985, pp. 236-245. 

13. Bryce, D. and R. Hull. "SNAP: A Graphics-based Schema Manager." 
Proceedings of the IEEE International Conference on Data Engineering, 
Los Angeles California, 1986. 

14. Elmasri, R., A. Hevner, and J. Weeldreyer. "The Category Concept: An 
Extension to the Entity-relationship Model." Data & Knowledge Engi
neering, 1 (1985) 1, pp. 75-116. 

15. Czejdo, B., M. Rusinkiewicz, D. M. Campbell, and D. W. Embley. "A 
Graphical Query Language for the Relational Data Model." University of 
Houston Technical Report UH-CS-5, August 1985. 

16. Campbell, D. M., D. W. Embley, and B. Czejdo. "A Relationally Com
plete Query Language for an Entity-relationship Model." Proceedings of 
the 4th International Conference on Entity-Relationship Approach, Chicago, 
Illinois, 1985, pp. 90-97. 

17. Elmasri, R. and G. Wiederhold. "GORDAS: A Formal High-level Query 
Language for the Entity-relationship Model." Proceedings of the 2nd Inter
national Conference on Entity-Relationship Approach, Washington, DC, 
1981, pp. 49-72. 

18. Codd, E. F. "Extending the Database Relational Model to Capture More 
Meaning." ACM Transactions on Database Systems, 4 (1979) 4, pp. 
397-434. 





A network forms database management system 

by SHUHSHEN PAN 
Bell Communications Research 
Red Bank, New Jersey 

ABSTRACT 

This paper describes a network forms database management system (netfords). 
Netfords is a UNIX tool used to maintain a collection of forms which can be related 
in a network fashion. The basic concepts about forms are introduced. The entire 
database architecture is presented. A form editor has been developed to help edit 
the forms. A simple query capability was built into the editor to help retrieve forms. 
A manual page system has also been incorporated into netfords for documentation. 
Also discussed are the file structures of a netfords database, a library to access the 
database from C programs and the accommodations to traditional data models. 

625 





INTRODUCTION 

Many business systems have been using forms as input sheets 
and output reports. There have been a number of table ori
ented systems commercially available; for example, QBE.l 
The major reasons for adopting forms as a user interface are 
that office workers are familiar with business forms in their 
daily work, and most office work is carried out through forms. 
Even though office workers may be unfamiliar with program
ming and query languages, they still can perform operations 
on predefined forms through interactive interfaces provided 
by the computer technology. Netfords is a network forms 
database management system. The relationships among forms 
can be as complex as a network. The difference between a 
table and a form can be seen in Formanger. 2 In the context of 
ths paper, however, we assume that a form is a more general 
term than a table. Each form or table can be defined in terms 
of tbl commands.3 Henceforth, we are going to use the words 
table and form interchangeably. 

The goal of netfords is to provide an information system 
based on forms and with the following features: 

1. An interactive methodology for data entry, deletion, 
revision, and retrieval 

2. A mechanism to express the relationships among forms 
3. Formation of complicated forms 
4. Project-related documentation 
5. Accommodation of relational, hierarchical, and network 

models 
6. Batch processing of form manipulations 

Netfords mainly consists of a form editor, query mecha
nism, a manual page system,4 and a C library. The form editor 
(eform) is used either to build or revise a form. The query 
mechanism provides a simple query capability with which to 
retrieve forms. The manual page system helps document 
application-related executable files. The C library provides a 
mechanism to access the database from C programs. 

This paper is organized as follows: The first section provides 
an introduction and basic definitions. Next, an architecture 
for a netfords's database is presented and the form editor 
discussed. The operation and the implementation of netfords 
follows. Finally, a library for C programs is addressed, the 
accommodation of traditional data models is discussed, and 
the results and future extensions are summarized. 

Definition of Forms 

Associated with a form are a form type and a set of form 
instances. 5 A form type is a template that describes the format 

A Network Forms Database Management System 627 

of the form. It consists of a set of attributes which can be 
further divided into heading attributes and body attributes. 
Heading attributes appear as the headings of a form, and body 
attributes define the body of a form. A form instance is a form 
type with complete or partially complete attribute values. The 
term form will be used informally to refer to a form instance. 
Heading attributes can be used to uniquely identify forms. 
Normally a form type can be defined in terms of tbl com
mands. A command called mft is provided to define a form 
type. Consecutive question marks (?) are used to signal the 
heading attributes and asterisks (*) for the body attributes. 
The number of question marks or asterisks indicates the 
length of corresponding attributes. 

Figure lea) is the example for a form type ast1. Figure l(b) 
displays a blank form instance of form type astl. We can see 
from Figure 1 that form type astl has five heading attributes: 
feature code, side 1, side 2, signaling attributes, and trans
mission attributes; and six body attributes: FTC, &IOR, SIC, 
TFC, T&S REQD, and ARRAY#. Each field length is indi
cated by the number of ?s or *s. For the sake of illustration, 
Figure l(b) contains ?s and *s. However, in the actual editing, 

.in + 1.8i 

.PH-

.ce 2 
Array Selection Iable 
Complete and Partial Array Iypes 
.sp 2 "-
.IS 
ssssss. 

Feature Code:???????? Side 1:??"" Side 2:?????? 
Signaling Attributes:?????????????????????????????? 

Iransmission Attributes:?????????????????????????????? 
.1& 

.IE 

.IS H 
center, tab(;); 
c:c:c:ssss 
clrlssssl 
clrlssssl 
clc:cssssl 
clc:k:sssl 
1c:1c:1c:1c:1c:1c:1l 
1c:lc:k:lc:lc:lc:Il 
Illc:lllc:lc:lc:ll. 

;i;-;-'FTC "&" SIC --< FS-POI ARRAY 
;OR;: FTC --< Complete ARRAY "or" SIC --< TS-POT ARRAY 

FTC;;SIC;IFC;I &S;ARRA Y; 
;;;;REQD;#; ...... 
-'-'-'-'-'-' 
.IH 

.IE 

.in -2.01 

Figure l(a)-A form type astl defined by tbl commands 



628 National Computer Conference, 1987 

F 
1******** 

Array Selection Table 
Complete and Partial Array Types 

Feature Code:m?7m Side 1:???7?? Side 2:77???7 
Signaling Attrlbutes:???7?77m7771?7?77??mmm 
Transmission Attrlbutes:?????????????????????????????7 

&: : FTC "&:" SIC --< FS-POT ARRAY I 
OR : FTC --< Complete ARRAY "or" SIC --< TS-POT ARRAY 

SIC TFC T&S ARRAY 
REQD # 

" ********* "" .... " 
Figure l(b)-A blank form generated by the form type astl 

those ?s and *s will disappear and can be replaced by actual 
values. 

THE ARCHITECTURE OF A NETFORDS DATABASE 

A netfords database is comprised of the following sub
directories: admin, backup, bin, data, dict, doc, and temp. 
Figure 2 gives a simple structure for a typical netfords data
base where db is the database name. Admin is used for ad
ministrative information, for example, broadcasting message. 
Backup is a duplicate storage for all the forms. At the end 
of each interactive session of netfords, all the forms will be 
copied into backup. This provides an on-line backup storage 
capability. It will help users to retrieve the backup copies 
during the course of a netfords session. Bin is used to store the 
executable files which are specific to the database. Data is a 
regular store for all the forms' data. Dict is further divided 
into three subdirectories: data, forms, and sets. Data stores all 
of the files, each of which contains the allowable entries for a 
particular field defined in forms; forms stores all of the form 
type definitions; and sets stores all of the defined relationships 
among forms. Doc is used to keep the manual pages which 
document the commands stored in bin. The manual page 
system4 has been incorporated into netfords to facilitate the 
maintenance of project-related documentation. This will be 
discussed later. Temp is used as a temporary working space. 

FORM EDITOR 

One important feature about netfords is the provision of a 
form editor called eform. The form editor provides users an 
easy way to edit data. This avoids the traditional database 
management approach which requires users to learn data 
manipulation languages (DML) in order to enter or revise 

Figure 2-The architecture of a netfords database 

data. Eform was built to help users edit forms from the screen 
on a field-to-field basis. The editor commands mainly follow 
the conventions of the vi editor. Before the invocation of 
eform for a form, a screen file for the form type must have 
been defined. By using the msc command (which stands for 
making screen), we can generate a screen file from a form 
type. A screen file provides information for eform to create 
and edit a form instance. A screen file's name is the form 
type's name concatenated with ".scr." However, a form in
stance's name is form type's name followed by "." and a string 
of characters. For example, given a form type called astl 
which is defined in Figure 1, msc can generate a screen file 
called astl.scr. By using eform which utilizes astl.scr, we can 
create a form instance called ast1.LE4ENCC. Figure 3 expla
ins the relationships among form type, forms, screen file, and 
commands mft, eform, and msc. Eform can insert characters, 
delete characters, replace characters, open lines, and delete 
lines. 

Command Mode Verse Editing Mode 

Eform is similar to any regular editor which can have both 
command mode and editing mode. At the beginning of the 
invocation of eform, users are in the editing mode. In the 
editing mode, users can add, change, or delete entries in a 
form. However, in the command mode, users can escape to 
Shell, exchange forms, write into disk, or even query the 
database. Command mode can be entered by typing ":" which 
will bring the cursor down to the command line which is 
preceded by the character string "CMD = )". At the end of the 
execution for each command, users will be brought back to 
the editing mode. 

Query Capability 

A simple query capability has been built into eform to 
retrieve forms. This can be done by calling a blank form using 
eform, filling heading attributes' values, and typing ":query" 
which will access command mode and query the entire data
base. A set of retrieved form instances then will be displayed 
on the screen one after another in terms of eform, and users 
can edit them in the normal manner. At the time of writing, 
neither the AND/OR condition nor the more sophisticated 
query capabilities have been implemented. 

OPERATION OF NETFORDS 

Netfords is invoked as in the following command: 

netfords[/(name)[/(name) ... ]](database) 

where (name) is a directory name and (database) is the data
base name. To avoid misspelling the database names, netfords 
first checks if the database already exists. For a new database, 
netfords will ask users the following: 

Create a new database db, ermo = no? (y or n) 



Figure 3(a)-A generic description of the form operations 

where db is the database name, a "y" will enable netfords to 
create a new one, and errno = no is an indication about the 
error. Users can check the System V Programmer Reference 
Manual to find out the error message. After successfully get
ting into the specified database, users can create form types, 
edit forms, print forms, and even post some messages to notify 
other users. 

Netfords Commands 

In this section, we are going to discuss some of the netfords 
conLmands. 

Accessing other databases 

To access other databases easily without exiting from the 
ongoing netfords session, a command called attach is pro
vided. The original database is called the Master database, 
whereas the attached ones will be called alien databases. 
Several alien databases can be attached at any given time. 
Users can access both the attached forms and executable files. 
Command lisa which stands for lis t attached database will list 
the Master and attached databases. To unattach a database, 
there is another command called purge. Purge will not allow 
the Master database to be unattached. 

Making form types 

Command mft is provided to define a form type. Actually, 
mft creates a subdirectory underneath a netfords database 
subdirectory, data, and invokes the vi editor to edit a form 
type. Mft can also be used to revise an existing form type. 

Making screen files 

Since eform requires a screen file to aid in editing forms for 
any given form type, a command called msc is provided. Msc 
takes a form type and generates a screen file whose name is 
obtained by concatenating the form type name with" .scr." A 
screen file provides information about the locations and 
length of different attributes. To protect against accidentally 
overwriting, the mode of the screen file should be changed to 
666 after satisfying with the formating of the screen file. The 
formating can be done by using tbl commands. Familiarity 
with the tbl commands is necessary to efficiently create a form 
type. 

A Network Forms Database Management System 629 

Figure 3(b)-An instance of form operations 

Building relationships among forms 

As suggested by the name netfords which stands for net
workforms database management system, several commands 
are provided to build the relationships among forms. Adopt
ing the conventions from the DBTG report,6 we use the word 
"set" to represent a one-to-many relationship from one form 
type to another form type. The former is called the owner and 
the latter the member. Notice that both owner and member 
can be of the same type. The available commands are de
scribed as follows: 

1. defset setname ownertype membertype: will create a rela
tionship definition called setname whose owner is of type 
ownertype and has members of type membertype. 

2. delset setname ownertype membertype: will delete a rela
tionship definition called setname whose owner is of type 
ownertype and has members of type membertype. 

3. addmen -ssetname -oowner -mmem: will add a member 
mem into a set setname owned by owner. 

4. delmen -ssetname -sowner -mmem: will delete a member 
mem from a set setname owned by owner. 

S. addset -ssetname -oowner: will add a set owner owner 
into a set defined by setname. 

6. rmset -ssetname -oowner: will delete a set instance de
fined by setname and owned by owner. 

Broadcasting message 

Netfords is intended to be a multi-user database system. 
The communication among users is provided by a command 
called nbc which stands for netfords broadcasting. Nbc is 
simply an editor which allows users to post information which 
will post on the screen at the time of login. Command add
msgs will store the broadcasted information into a mailbox 
called "mbox" which is a file in the netfords database sub
directory admin. Command netsmsgs will display the stored 
information. 

Current users 

Command user will list the current users' login id, tty, and 
login time. 



630 National Computer Conference, 1987 

Printing forms 

In addition to viewing forms on the screen, users can print 
hard copies of the forms. A command called pform provides 
such a tool. 

Leaving netfords 

To leave netfords one can simply type logout. Logout will 
automatically trigger a command called backup to copy all the 
forms into the subdirectory "backup." This operation is be
hind the scene. It is suggested that, during any netfords' ses
sion, users use command backup to get a latest copies of all 
forms before issuing any doubtful command which may cor
rupt the regular database. 

Intrinsic Forms 

Every netfords database has one predefined form type. It is 
used to facilitate the communication among users. It will be 
interesting to add some other form types to every database. 

Message form 

A pre-defined form type called "_notice" is built into every 
netfords database. Users can use eform to edit message, and 
use pform to get hard copies. Command nbc provides a mech
anism to post on-line message, however, form type "_notice" 
provides another off-line message. 

Interactive Mode Versus Batch Mode 

Although netfords is initially designed to be an online, 
screen-oriented database management system, users can also 
run it in a batch mode. This can be done by simply writing 
netfords commands to a file and using that file as input to 
netfords. For example, 

netfords smetds40(cfile 

will let netfords read commands from cfile. It should be noted 
that command eform is prohibited in the batch mode. 

Documentation 

To ease the maintenance, a manual page system has been 
incorporated into netfords so that users can write applica
tion-related manuals and store them in the same database. 
These commands are: 

1. newman: write a new manual. 
2. upman: update a old manual. 
3. lman: list all the available manual names. 
4. hman: print manual on the screen. 
5. pman: print manual pages on the image printer. 
6. ptxm: print a permuted index for all manual pages. 

Current Applications of Netfords 

Netfords has been used to work for an engineering project. 
It also has been used to write the converting algorithms 7 to 
extract data from RAMIS database in TSO. 

DESIGN AND IMPLEMENTATION OF NETFORDS 

The purpose of this section is two-fold: first, to disclose the 
program structures of netfords in order to facilitate the main
tenance of the system, and second, to open the architecture of 
a netfords database to the sophisticated users. Netfords is 
implemented in the UNIX operating environment of System 
5.2. It uses the curses library8 in the design of the form editor 
eform. All the commands are written either in C program
ming language or UNIX Shell. 

System Administration 

Currently netfords resides in the VAX 111780. The entire 
system consists of the following files or subdirectories: 

• README: contains the general information about the 
whole directory. 

• aux: contains all the predefined form types and the asso
ciated screen files. 

• bin: contains the executable files to be invoked by general 
users. 

• doc: contains the general user's guide and this paper. 
• lib: contains the procedures to be called in C programs. 
• src: contains all the source codes and a makefile file. 
• system: contains all of the structures necessary for the 

procedures listed in the above lib subdirectory. 

Handling of Signals 

The current implementation considers three kinds of sig
nals. They are SIGHUP (hanghup), SIGINT (interrupt) 
and SIGILL (illegal instruction). Only SIGHUP is caught; 
SIGINT and SIGILL are ignored. 

Concurrent Control 

To make the entire database accessible to multiple users, a 
locking facility is added to take care of the concurrent up
dating. The locking facility provides a mechanism in such a 
way that at any particular time, only one user can revise a file, 
however, more than one user can read the same file. When 
invoked, eform will first check if the associated lock file exists. 
If it does, which means the actual file is being edited, netfords 
will notify the login id who is editing the file, and the user must 
try eform again. Otherwise, a lock file will be created and the 
user will gain the exclusive right to revise the file. The lock file 
is created in the system subdirectory /tmp and has the same 
name as the one to be edited. Such a lock file will be removed 
at the end of editing. If for some reason the lock files fail to 
be removed, users can remove the lock files themselves. 



The File Structures of a Netfords Database 

The storage of a netfords database was built upon the 
UNIX file system. Figure 2 gives the file structure for a typical 
netfords database. All the user-created form instances (or 
data files) reside in the netfords subdirectory data. The data 
files are organized as follows: for each form type there is a 
subdirectory under data. All of the data files of the same form 
type are stored in the same subdirectory. Each subdirectory 
under data has at least two files-the form type and the screen 
file. 

Manual pages 

All of the project-related manual pages are stored in the 
netfords database subdirectory doc. All of the manual pages 
are under the control of SCCS.9 Users can always retrieve 
different versions of manual pages. 

System catalog 

In addition to those regular data files, netfords also keep a 
system catalog for all the form definitions, set definitions, set 
instances, data definitions, and dictionary files. The purpose 
of this catalog is to facilitate system maintenance, auditing, 
and validation. C programs can also access those files. This 
will be discussed shortly. 

Form definitions 

Every time a screen file is produced by the msc command, 
a definition file for that form type is generated and stored in 
the subdirectory dict/forms. For the form type as defined in 
Figure ·1 (a) , Figure 4 shows the corresponding definition file. 
As we can see from Figure 4, the file contains the field num
bers; the types, which indieate the type of field, that is, h 
(heading) or b (body); the length, which indicates the field 
length; the datafiles, which give the file names containing the 
allowable data entries; and the definitions, which provide the 
verbal description for each field. Users can also use eform to 
edit such a definition file. In general, a definition file for form 
type xx is indicated by _form.xx which actually is the file 
dict/forms/xx. For example, users can type the command 
"eform_form.astl." to edit the definition fields for form type 
astl. 

Form: astl 

field type length dataiile de!lnltions 

1 h 8 feature code 
2 h 6 d.slde side! attributes 
3 h 6 d.slde slde2 attributes .. h 30 d.sigattr signaling attributes 
5 h 30 d.tranattr transmission attributes 
6 b 8 d.ftc ftc 
7 b 2 and/or 
8 b 9 d.sic sic 
9 b .. d.tfc tfc 
10 b 6 d.tsreqd t&s eqpt 
11 b 2 array number 

Figure 4--Form type definition 

A Network Forms Database Management System 631 

Sets Definitions 
set owner members 

ast 1 to array astl ary 
ast2 to array ast2 ary 

Figure 5--Set definition 

Set definitions 

A set definition file indicated as _setdefs is automatically 
produced whenever a database is created. Such a set defini
tion file is used to store all the user defined set definitions. A 
set definition defines the owner type and the member type of 
a set. To define a set, users can either use "eform_setsdef' or 
command "defset." In fact, _setsdef is the file dict/sets/ 
definitions. It is similar to a form in that a set consists of a set 
definition and a collection of set instances. Each set instance 
has at least one owner and one or more members. Every time 
a set, say S, is defined, a subdirectory dict/sets/S is created. 
For each set instance associated with S, a file whose name is 
the same as the owner is created under dict/sets/S which stores 
all the members associated with the particular owner with 
respect to the set S. Figure 5 shows two sets or relationships 
defined from form type astl and ast2 to form type ary. 

Data definitions 

Included in the subdirectory diet/data is a data definition 
file which provides the description of all the data dictionary 
files which contain all the allowable entries for the fields in 
form types. Figure 6 shows the data definition file. Users can 
use "eform_datadef" to edit the data definition file. Actually, 
_datadef is diet/data/definitions. 

Dictionary files 

Users can store the allowable data entries for different attri
butes defined in form types. Those files or data dictionary files 
are also sitting in the same subdirectory dict/data. Those files 
can edit and revise by using "eform_data.xx" where xx is the 
file name which, in fact, is dict/data/xx. 

Form instances 

All of the form instances are further classified and stored in 
different subdirectories under data according to their form 

lile definitions 

d.entid entry Id 
d.ftc FTC(Facillty Type Code) 
d.lds LDS(Location Data sheet) 
d.otr the Other field in ARRAY 
d.slc SIC(Smetds Interface codes) 
d.slde sldel and slde2 
d.slgattr signalling attributes 
d.tranattr transmission attributes 

Figure 6-Data definition 



632 National Computer Conference, 1987 

types. In other words, each subdirectory under data repre
sents a particular form type, and all of the form instances 
pertinent to the same form type are kept there. Each such 
subdirectory has at least two files: form definition file and the 
associated screen file. 

A screen file is an aid to eform which contains the left 
margin, the field type, field number, y-positions, lengths, and 
the a blank form. The blank form is going to be reflected on 
the screen. Figure 7 shows a screen file (whose path is datal 
astl/astl.scr) of form type astl. Although revising the screen 
file is not recommended, sometimes it is necessary to custom
ize the screen file for special application. This can be achieved 
by using regular editors. Upon the invocation of eform, the 
related data dictionary files sitting in the netfords subdirectory 
dict/data will also be loaded into the main memory for online 
validation. For each newly-entered or revised entry, eform 
will check against the data dictionary files, and produce error 
messages if violations happen. 

System Structures 

Figure 7 gives the process structures. It consists of three 
phases: initialization phase, command phase and finish phase. 

The initialization phase 

The initialization phase (indicated by box "init") is first 
to identify the presented database. If the database does not 
exist, then a new one will be created if users so desire. For a 
new database, seven subdirectories will be created. After rec
ognizing or creating a database, netfords checks if file descrip
tor 0 is a terminal. If it is, three windows will be created: the 
welcome window which will appear at the very beginning of a 
netfords session; the information window which is prepared 

Figure 7-Process structures 

for the command phase; and the finish window which will 
appear only at the end of a session. In the batch mode, net
fords reads commands from a regular file. 

The command phase 

During the command phase (indicated by box "procesL 
cmd") , netfords takes commands from users or files (indi
cated by box "geLcmd"), executes them and updates the 
information window (indicated by box "netcmd") when in the 
interactive mode. Netfords provides several generic com
mands which are embedded in the netfords system. However, 
users can also create project-related commands which are 
stored in the netfords database subdirectory bin. When the 
input string is received by netfords, it is first checked by net
fords to see if the string is a generic command. If it is not, then 
netfords checks to see if it is projected-related command. If it 
is not a project-related command either, then it will be treated 
as a Shell command and passed to the Shell. Indicated in the 
information window are the current database name, recently 
edited form, current owner, member, and time. A READ 
ONLY sign will also appear on the window if the user does not 
have the write privilege. All the Shell commands have to be 
proceeded by "!." 

The finish phase 

By typing "logout," users will be brought into the finish 
phase (indicated by box "finish") and ready to leave a net
fords session. During such a finish phase a command called 
backup will be triggered to copy all the regular files in the 
netfords subdirectory data into the netfords subdirectory 
backup. In interactive mode, a finish window also will appear 
on the screen showing some statistics including number of 
command being executed, number of files being updated, and 
number of newly-created files. 

A LIBRARY OF C FUNCfIONS 

To enable C programs to access the database, a library of C 
functions is also provided. User-provided C programs can be 
used either to print or validate the database. As we can recall, 
a C program has to reside in the netfords database sub
directory bin. In order to use the library, it is required to have 
a line 

#include "path" 

at the top of the program. The path is dependent on the 
installation. In the current version, the path is /h3/sjp/ 
Netfords/systemlnetfords.h. Two commands are also provided 
to facilitate the compilation and loading. They are nc and 
nload: 

• nc prog.c: will compile a C program prog.c in bin. 
• nload prog: will load both the object code prog.o in bin 

and the library and generate the executable file called 



prog which, again, will reside in the same subdirectory 
bin. 

Data Structures 

Several data structures have been defined in the "net
fords.h" file. They are FORM, FORMTYPE, SET, SET
DEF, SETSDEF. 

The Functions 

The library consists of several functions which are to be 
invoked from a C program to access the database. They are 
listed below: 

getf(F ,qle ) 
FORM *F; 
char *file; 

Getf will get a form instance, pointed by F, of file. 

getft(Ft, ftype) 
FORMTYPE *Ft; 
char *ftype; 

Getft will get a form type or form definition, pointed by Ft, 
of type [type. 

getset(S,r) 
SETDEF *S; 
char *r; 

Getset will get a set definition, pointed by S, defined by r. 

getsetins(S ,set ,owner) 
SET *S; 
char *set; 
char *owner; 

Getsetins will get a set instance, pointed by S, which is 
defined by set and owned by owner. 

getsetsdef(S) 
SETSDEF *S; 

Getsetdef will get all the defined set definitions pointed by 
S. 

ACCOMMODATION OF TRADITIONAL 
DATA MODELS 

Although netfords is intended to be a form-oriented system, 
it can also accommodate the traditional database models. In 
this section, we are going to show that netfords has the equiv
alent power as traditional database models. To do this, we are 
going to give some netfords representation for traditional 
database models. 

A Network Forms Database Management System 633 

Relational Model 

In the relational model, data is organized into tables. Let's 
look at the definition: 1o Given a collection of sets D 1 , D2 , 

... ,Dn (not necessarily distinct), R is a relation on these sets 
if it is a set of ordered n -tuples (d1 , d2 , ••• ,dn) such that d1 

belongs to D1 , d2 belongs to D2 , ••• dn belongs to Dn. 
Dl ,D2 , ••• ,Dn are the domains of R. The value n is the 
degree of R. Figure 8 shows a sample relation model from;lO 
it consists of three relations, S (the SUPPLIER relation), P 
(the PART relation), and SP (the QUANTITY relation). 
Each row of the table represents one n -tuple of the relation. 
An attribute represents the use of a domain within a relation. 
For example, the PART relation is defined with five attributes 
(PART#, PNAME, COLOR, WEIGHT, and CITY). It is 
not difficult to use the tbl commands to define a relation. 
Moreover, users can also utilize the library functions already 
discussed to define the standard relational operations such as 
join, projection, select, and so forth. 

Hierarchical Model 

In this model the data is organized as a tree structure. The 
record type at the top of the tree is usually known as the root. 
In general, a root may have any number of dependents, each 
of these may have any number of lower-level dependents, and 
so on, to any number of levels. A hierarchical data model is 
given in Figure 9. It represents the prerequisite courses and 
offerings for each course. Each offering may have several 

S# SNAME STATUS CITY 

SI Smith 20 London 

S2 Jones 10 Paris 

S3 Blake 30 Paris 

S4 Clark 20 London 

SS Adams 30 Athens 

P# PNAME COLOR WEIGHT CITY 

PI Nut Red 12 London 

P2 Bolt GREEN 17 Paris 

P3 Screw Blue 17 Rome 

P4 Screw Red 14 London 

PS Cam Blue 12 Paris 

P6 Cog Red 19 London 

S# P# QTY 

SI PI 300 

SI P2 200 

SI P3 400 

SI P4 200 

SI PS I 100 

SI P6 100 

S2 PI i 300 

S2 P2 400 

S3 P2 I 200 

S4 I P2 ! 200 

S4 P4 300 

S4 PS 400 

Figure 8-A relational data model 



634 National Computer Conference, 1987 

Figure 9(a)-A hierarchical schema 

teachers and students associated. Assuming that we have used 
tbl commands to define the four record types: COURSE, 
OFFERING, STUDENT and TEACHER, we can use the 
following commands to establish the hierarchical data model: 

1. defset -sprereq -oCOURSE -mCOURSE 
2. defset -soffering -oCOURSE -mOFFERING 
3. defset -sstudents -oOFFERING -mSTUDENT 
4. defset -steacher -oOFFERING -mTEACHER 

Set definition 1, prereq, defines the relationship between 
COURSE and pre-request COURSEs. Definition 2, offer
ing, defines the relationship between COURSE and 
OFFERINGs. Definition 3, students, defines the relation
ship between OFFERING and STUDENTs. Definition 4, 
teacher, defines the relationship between OFFERING and 
TEACHERs. 

Network Model 

The network model, as in the hierarchical approach, repre
sents data by records and links. However, a network is a more 
general structure than a hierarchical approach because a given 
record occurrence may have any number of immediate supe
riors as well as any number of immediate dependents. The 
network approach thus allows one to model a many-to-many 
correspondence more directly. A network model is given in 
Figure 10. An equipment array represented by an ARY table 
may consist of more than one piece of equipment, and each 
one may be represented by an ECT table. Similarly, a single 
piece of equipment can be used by more than one array. 
Therefore, an ECT table can have many ARY tables associ
ated with it. We can define these two relationships as follows: 

1. defset -sary_to_ect -oARY -mECT 
2. defset -secLto_ary -oECT -mARY 

where ARY is the table for arrays and ECT for equipment. 
"Ary_to_ect" defines the relationship from an ARY to ECTs. 
"EcLto_ary" defines the relationships from an ECT to the 
associated ARYs. 

CONCLUSION 

Netfords is a UNIX tool intended to maintain a collection of 
tables. Each table is treated as a file. Using eform, users can 

1-.. 

- ,.,... 1 !lUlU< 

-I 

........ LI __ IL-_-' I IoWA I 1 

..,.41 I 1nI>:1I. I 

Figure 9(b)-A hierarchical model 

edit forms on the screen. To enhance netfords, several exten
sions have been proposed: 

1. Undo command: This will enable users to undo the pre
vious command and restore the database. For the 
present, it is suggested that the backup command be 
used before issuing a command which may corrupt the 
database. 

2. An organized tree structure for forms: Currently, net
fords utilizes the UNIX file system. All the forms are 
treated as ordinary files. This approach is only good for 
a small database. For a large database, it is better to have 
a B-tree to organize all the forms. This will increase the 
efficiency. 

3. A more sophisticated query capability: Currently users 
can only make simple queries by specifying some head
ing attributes. As the database grows, more complicated 
query capabilities which involve AND/OR conditions 
will be possible. 

...j 'U4110S1!Ni - i 1_ ~ 

Figure lO-A network model 



4. A general screen form type: So far a form type is only 
allowed to have heading and body attributes. However, 
adding bottom attributes to a form type will generalize 
the style of a form type and increase the applicability of 
netfords. 

5. A more powerfUl form editor: The current form editor, 
eform, can only supply a small set of commands. In 
order to increase the ease of usage, more commands 
have to be added in the future. 

ACKNOWLEDGEMENT 

Many thanks to Mary Ward-Callan and Rob Fredericks. It 
would not have been possible to finish this project without 
their encouragement. Special appreciation also should be 
given to Charlie Salvaggione, Harvey Stowers, and Jack 
Hannan. They pointed out many early bugs and made judi
cious suggestions. 

A Network Forms Database Management System 635 

REFERENCES 

1. Zloof, M.M. "Query by Example: A Data Base Language." IBM System 
10umal16 (1977), pp. 324-343. 

2. Yao, S.B., A.R. Hevner, Z. Shi, and D. Luo. "FORMANGER: An Office 
Forms Management System." ACM Transactions on Office Information 
Systems, 2 (1984) 3, pp. 235-262. 

3. Lesk, M.E. "TBL-A Program to Format Tables." Bell Laboratories, 
1976. 

4. Pan, Shuhshen. "A Manual Page System." Bell Communications Research, 
TM-TSY-001210, 1985. 

5. Tsichritzis, D. "Form Management." Communications of the ACM, 25 
(1982) 7. 

6. Data Base Task Group of CODASYL Programming Languages Committee 
Report, April, 1971. 

7. Pan, Shuhshen. "The Software Support for SMETDS-40." Bell Communi
cations Research, TM-TAP-006015, August 1986. 

8. Arnold, Ken. "Screen Updating and Cursor Movement Optimation: A 
Library Package." Computer Science Division, University of California, 
Berkeley. 

9. Bonanni, L.E. and C.A. Salemi. "Source Code Control System User's 
Guide." Bell Telephone Laboratories. 

10. Date, C.J. "An Introduction to Database Systems." Addison Wesley, 1975. 





Translation of queries to account for direct communication 
between different DBMSs 

by MEHDI OWRANG 
American University 
Washington, D.C. 

and 
L.L. MILLER 
Iowa State University 
Ames, Iowa 

ABSTRACT 

A translation process designed to translate queries between data models is exam
ined. In particular, this paper concentrates on translating queries between the 
relational and network data models. Such a translation mechanism will enable the 
user to have access to the database resource in a distributed database for which 
different database management systems coexist. The translation process is de
scribed and examples illustrating the process are given. The discussion has been 
limited to operating in the environment where the source and target databases have 
the same semantics. Hypergraphs are used as the intermediate representation for
mat for the query during the translation process. The semantics of both the source 
and target databases are described in terms of hypergraphs. In addition, the hyper
graph is extended to incorporate the operations of the data manipulation language 
in order to define a general model for query translation. The quality of the trans
lated query is examined. 

637 





Translation of Queries to Account for Direct Communication Between Different DBMSs 639 

INTRODUCTION 

The problem of translation is not new. Each time a new gen
eration of computer systems evolves, data from the old data
base must be regenerated and the old query set must be trans
lated. In addition, there is a need for translation when we 
restructure the database. Such restructuring can be motivated 
by 

1. A change of the use environment of a database manage-
ment system (DBMS). 

2. A change in DBMS. 
3. Modification of the design for efficiency reasons. 
4. A change in database semantics. 

Su and Reynolds1 studied the problem of high-level sub
language query conversion using the relational modelz with 
SEQUEL3 as the sublanguage, DEFINE4 as the data descrip
tion language and CONVERT5 as the data translation lan
guage. They examined sublanguage query conversion where 
query modification is due to changes in the schema and sub
schemas. The changes they considered were 

1. A large relation split into several relations. 
2. Several relations combined into one. 
3. Changes of the mathematical mapping between/among 

entities. 
4. Adding or deleting entities and/or associations. 

Their conversion algorithm is specific to the environment they 
studied and serves pedagogically when an attempt is made to 
extend their work into the general translation problem. 

Other researchers, Katz and Wong,6 have studied the pro
gram conversion due to the changes in application programs 
that are caused by converting between database systems that 
support a different level of procedurality in the data sub
language. In particular, they present an algorithm for map
ping from the procedural operations of CODASYL DML7 
into the nonprocedural relational calculus.8 Their map
ping algorithm is restricted to only the conversion from 
CODASYL DML to relational calculus and therefore does 
not introduce a general model for translation. 

The advent of lower-cost computer systems has paved the 
way for decentralization of computing resources. Decentrali
zation has enabled designers to enhance local performance by 
allowing the freedom of design and software choice for each 
local system. Such freedom provides the necessary enhance
ment of local computing, but complicates the task of provid
ing access to the database resource on a system-wide basis. In 
particular, it either forces the user to be aware of the location 
and format of all of the data in the system, or the computer 

softwarelhardware must have the ability to provide access to 
the local databases through a single data manipulation lan
guage. Systems, such as MULTIBASE9 provide such access 
but force the user to use both the data manipulation language 
(DML) of MULTIBASE and the local system to get the en
hanced local performance. 

What is needed is a model that can provide both the dy
namic query translation necessary to allow the direct commu
nication. of different DBMS so the user only needs to be 
proficient in the DML of hislher local DBMS and the ability 
to provide general query translation to allow the extension of 
Su and Reynolds,1 work. In recent work on database design, 
a number of authors1

0-
14 have found the hypergraph to be a 

useful means of modeling relational database designs. When 
the hypergraph is extended to incorporate the DML oper
ations, it is helpful in defining a general model for query 
translation. 

In the present work, the space limitation forces us to exam
ine the topic in narrower terms. In particular, we will concen
trate on translating queries where the source hypergraph at
tempts to model the same semantics as the target hypergraph 
(as in dynamic query translation). We also restrict our dis
cussion to the relational and network data models, although 
similar results are available for the hierarchical model as 
well. 15, 16 

REPRESENTATION IN HYPERGRAPH 

This section examines the use of hypergraphs to model both 
the logical designs and the DML operations of the relational 
and network data models. A great deal has been written in 
recent years about the use of hypergraphs in representing the 
logical design of database schemes,1O-14 and we assume that 
the reader is familiar with hypergraph concepts to the level of 
Fagin, Mendelzon, and Ullman. 13 To be of use in translating 
queries, the hypergraph model has to be expanded to incorpo
rate the operations of the DML. In the remainder of this 
section, the hypergraph representations for the relational and 
network data models are described. 

Relational Data Model and Its Hypergraph Representation 

Fagin, Mendelzon, and Ullman 13 use the hypergraph 
to model the full join dependency which defines the uni
versal relation ( UR ). For example, the well known 
supplier-parts database is defined by the depen
dency set {t><l[R1 ,Rz ,R3 ], S#~C, C~S, S#P#~Q}, 
where R 1(S#, P#, Q), Rz(S#, C), and R3(C, S). The join 
dependency (jd) [><J [Rl' Rz , R3 ] can be represented by the 



640 National Computer Conference, 1987 

c----
e3 

SH - supplier number 

pH - part number 

Q - quantity 

C - city located in 

S - status of city 

Figure I-Hypergraph representation of the supplier parts database 

hypergraph of Figure 1, where the nodes of the hypergraph 
are the attributes of the relation schemes and the edges are the 
relation schemes. Fagin, Mendelzon, and Ullman13 have 
shown that the semantics of any database can always be repre
sented by such a full join dependency and a set of functional 
dependencies (fd). Ullman17 in his survey of universal re
lation assumptions denotes this as the URIJD assumption. 

In the following, we incorporate the DML commands of 
relational algebra into the model to fit the needs of the trans
lation process. The inclusion of the three fundamental oper
ators of relational algebra-join, project, and select-in the 
hypergraph model is described by the following set of actions. 

Join: The natural join is introduced into the model by the 
creation of a new edge containing the combined attribute set 
of the two joined relations. The new edge is labeled as a join 
edge. To consider the more general question of the theta join 
requires an extension of the edge labeling process to describe 
the restrictions on theta. 

Project: Projection is introduced into the hypergraph by 
inclusion of a new edge containing the projected attributes. 
The new edge is labeled as a projection edge. 

Select: A selection operation on a relation creates a new 
relation of tuples which have been defined by the given condi
tion. The condition involves a boolean combination of simple 
conditions. Simple conditions or combinations of conjunctive 
simple conditions can be indicated in the hypergraph by sim
ply labeling the appropriate attribute nodes with the condi
tion. Conditions formed by the disjunction of simple condi
tions requires the insertion of a new edge which is labeled as 
an "OR" edge and the appropriate condition. 

Figure 2 illustrates the inclusion of a relational algebra 
query into the hypergraph model of Figure 1. 

Query: Select e, where S# = SI or P# = PI giving TO 

Join TO and e2 giving T, 

Project T, over C. 

Resulting Hypergraph: S#=SI OR P#=Pl ""/------, 
J.J.U..I.J...I. .. OR .. edge / e, S # LJ..L.LU.U.p # , 

( ) 
- - - - join edge I ,.,./ 
.......-- project edge t c ,....- S 

\ / 
--- original (system) edge ,_.-/ 

Figure 2-Example of including relational algebra in the hypergraph model 

Network Data Model and Its Hypergraph Representation 

The network schema consists of a set of record types 
Rl ,R2 , ••• ,Rn and a set of set types in which a set type is an 
association between one owner and one or more member 
record types. 18 Figure 4 provides the hypergraph representa
tion of the network data model for the course offering data
base. Note that the fields of record types R(i = 1,2, ... ,n) 
are the nodes in the hypergraph and the record types R(i = 
1,2, ... ,n) are the edges of the hypergraph. In addition, the 
hypergraph model is expanded to include the owner-member 
relationship between the edges. To do this, we use the node 
Lrecord-name in each record to act as the identifier for the record. 
To indicate an owner-member relationship between the 
records "offering" and "student" in Figure 4, an arc is used to 
connect LOffering to LStudent. 

In the remainder of this subsection the DML operation of 
the network language (FIND) is incorporated into the hyper
graph model. As in the relational model, the selection criteria 
imposed on the network query contains a boolean combina
tion of simple conditions. Conjunctive simple conditions are 
indicated in the hypergraph by simply labeling the appropriate 
nodes with the restriction on its value. Conditions formed by 
the disjunction of simple conditions require the insertion of a 
new edge which is labeled as an "OR" edge. The concept of 
projection (choosing data values from a record) is included in 
the network language by using SELECT FROM record
name: list. The concept is introduced into the hypergraph by 
enclosing the relevant nodes in a projection edge. 

The inclusion of an OUT OF THE BLUE FIND and REL
ATIVE FIND in the hypergraph model is implied by two 
paths-the positioning path and the answering path. The pos
itioning path contains all of the selection criteria that is re
quired to establish a starting position in the network database. 
A positioning path implies an OUT OF THE BLUE FIND 
operation and possibly a RELATIVE FIND if there is more 
than one in the positioning path. 

An answering path contains all of the selection criteria and 
projection information required to generate the result of the 
query. To process the answering path, three paths are 
examined-the common path, the selection path, and the 
projection path. The common path consists of the nodes 
(owner or member) that are common to both the selection 
path and projection paths. This path is used to establish the 
initial position for processing the selection and projection 
paths. The common path will always imply a RELATIVE 
FIND operation. 

A selection path contains all of the selection criteria re
quired to satisfy the query. It implies a RELATIVE FIND 
operation. The projection path consists of all the projection 
fields and the required selection criteria for the records that 
make up the projection path. It implies a special RELATIVE 
FIND (FIND FIRST, an operation to allow backing up to the 
beginning of the named record type for the current path) and 
a RELATIVE FIND operation. (Example 2 illustrates the 
inclusion of a network DML query into the hypergraph 
model.) 

In the next section the hypergraph models are used as the 
basis of a translation process between the two database 
models. 



Translation of Queries to Account for Direct Communication Between Different DBMSs 641 

QUERY TRANSLATION 

We assume that we have two database designs. The source 
design attempts to retain the same semantics as the target 
design although they are supported by different database 
management systems and may be based on different data 
models. The data is stored in the format required by the target 
design, but the user views the data as though it were stored in 
the source design. As noted in the introduction, our mo
tivation for examining this problem is to provide a local user 
in a distributed database environment with the ability to work 
with only one query language and to allow him/her to access 
the local DBMS directly. 

The two designs are represented in the hypergraph format 
described in the previous section. To translate the query, we 
require three operations: 

1. Map the source query into the hypergraph space of the 
source design. 

2. Translate the resulting source query hypergraph into the 
hypergraph space of the target hypergraph. 

3. Map the target query hypergraph to the target data ma
nipulation language. 

In the first operation we have the task of creating a source 
query hypergraph that has sufficient information content to 
provide a basis for translation. We have found four types of 
information to be useful. Naturally, the set of attributes that 
represents the result of the source query and the attributes 
used in search conditions are essential. In addition, we include 
information used in the network model to establish a position 
in the database. The hierarchical model operates in a similar 
manner. 

The last type of information taken from the source query is 
navigational information, useful in navigating the target hy
pergraph. The path used in the source query is passed with the 
source query hypergraph. In target hypergraphs with ambigu
ous path selection, the source query path can be used to 
choose the correct path. For example, if the target database is 
relational and the hypergraph contains a cycle, we may have 
two paths connecting the relevant attributes. 14 The two paths 
have somewhat different semantics which can be resolved in 
the translation process by falling back and using the user's 
interpretation of the semantics from the source query path. A 
similar approach is taken for navigation in the network model. 

The format used to pass the four types of information to the 
translation process is a three edge hypergraph, and the path 
information passed as a set. The first edge of the source query 
hypergraph (P) is the set of attributes used to establish posi
tion. The second edge (C) is the set of attributes used in the 
search conditions, and the conditions are used to label the 
attributes in the manner described earlier. The final edge (R) 
is the set of attributes which represents the result of the source 
query. Examples 1 and 2 provide the source query hyper
graphs for the network and relational queries, respectively. 
Note that the position edge (P) is always empty for relational 
source queries. 

The translation process makes use of the source query hy
pergraph, the source path set, and the target hypergraph to 

EXAMPLE 1 

Translation of a source query written for the network design of 
Figure 4 to the target query for the relational design of Figure 3. 
Query: Get the names of all students who made a grade of A in 

all offerings of 1985 CS courses after 2500. 

Network Source Query: 
FIND Course Record Within SS-Course SET where 
Course# = '2500' 
Skip if fail 
Repeat 
FIND NEXT Course Record Within SS-Course SET where 
dept = 'cs' 
Exit if status-check 

Repeat 
FIND NEXT Offering Record Within HASOFFER SET 
where date = '1985' 
Exit if status-check 

Repeat 
FIND NEXT Student Record Within HAS STU SET 
where grade = 'A' 

Exit if status-check 
Select From Student: sname 

end 
end 

end. 

Source Query Hypergraph (Qs): 

P ~ 

C 

Join Sequence: 

A 
grade 

Course Offering Student 

Target Query Hypergraph (QT): 

PATH 
{Course ,Offering ,Student} 

Note: The value P:2500 denotes that the label (2500) is used in 
the position edge (P). 

Target Query: 
Select Course where dept = 'CS' giving To 
Select Offering where date = '1985' giving Ii 
Join To and Ii giving 12 
Select Student where grade = 'A' giving 13 
Join 12 and 13 giving 4 
Find partition of 4 where Course# ;::: 2500 giving t 
Project t over sname giving Result. 



642 National Computer Conference, 1987 

translate the source query into the target query hypergraph. 
When the source and target database designs have the same 
semantics (as in dynamic query processing), the source path 
set can be used directly to determine the path in the target 
hypergraph. For the case in which the target data model is 
relational, the source path is used to determine the join se
quence required to incorporate the attributes used in the se
lection conditions and the projection attributes in the same 
relation. We assume that the join sequence produced is 
lossless. There are several methods that exist in the literature 
of ensuring the generation of a lossless join sequence, for 
example, ,),-hypergraph,12 hinges,19 and maximal objects ,14 
and we will assume that one of the techniques is used in the 
remainder of this work. The edges forming the join set are 
used as the initial edges of the target query hypergraph. Join 
edges are added to the target query hypergraph to imply the 
order in which the join operations will take place. As a final 
step the labels from the nodes in the source query hypergraph 
are copied over to the nodes in the target query hypergraph. 
Labels from the position edge of the source query hypergraph 
(if any) are marked as position labels before they are copied 
to the target query hypergraph. The concept of positioning is 
handled in the relational environment in one of two ways. In 
cases where the positioning is such that it can be implemented 
by simply using the condition on a selection, relational algebra 
operators are sufficient to answer the query. In more complex 
cases, we may require a sort of the resulting tuples followed by 
a partition of the sorted set. 

Example 1 illustrates the process of translating a query from 
a network DML to the relational environment. The mapping 
of the target query hypergraph into the appropriate DML is 
naturally language dependent. The target query hypergraph 
for the relational environment uses relational algebra as its 
basis to allow the mapping algorithm to be basically a trans
lation from relational algebra to the appropriate DML. 

Translation from the source query hypergraph into the envi
ronment of a target database in the network format requires 
the creation of a target query hypergraph made up of a posi
tioning path and an answering path. The source query path set 
is used by the translation process to determine the segments 
required in the target query hypergraph. The position edge 
(P) is used in conjunction with the path information to create 
the positioning path. The selection and projection edges of 
the source query hypergraph, C and R respectively, are used 
by the translation algorithms to create the answering path 
required to generate the target query in the network DML. To 
enhance the process of generating the target query, the an
swering path is processed to create the common parent path, 
selection path, and projection path as described before. 

To simplify our discussion in this presentation we make two 
assumptions concerning the nature of the source query. First 
we assume that the translation process considers a class of 
queries which are tree queries (or acyclic queriesl°--queries 
which do not have a cycle. We also assume that network 
source queries look at the data from some starting point (pos
ition) in the database and continue until the end of the data
base is reached. Such an assumption can be removed in the 
general case but requires unnecessary complexity in this dis
cussion. 

EXAMPLE 2 

Example 2: 

Translation of a source query written for the relational design of 

Figure 3 to the target query for the network design of Figure 4. 

Query: Get the name of all students who made a grade of A in all 

offering 2 OR offered in Washington and taught by a male teacher 

for all CS courses. 

Relational Source Query: 

Join Course and Offering giving T I 

Join Teacher and T I giving T 2 

Join Student and T 2 giving T 3 

Select T 4 where dept='CS' and (offer#='2' OR loca tion='Washington') 

and sex='male' and grade=' A' giving T 4 

Project T4 over sname giving Result. 

Source Query Hypergraph (Qs ): 

P = ¢ R ~ PATH {Course,Offering, Teacher,Student 

CS 2 male 
dept offer# 

Target Query Hypergraph (QT ): 

A 
grade 

Washington 
loca tion 

Target Query Answering Path: Target Query Positioning Path: 

CS 
dept rale 

.~ 
grade 

Common Pa th: Selec tion Pa th: Projection Pa th: 

Target Query: 

FIND Course Record Within SS-Course SET 

Skip if fail 

Repeat /* process common path */ 

FIND NEXT Course Record Within SS-Course SET wher dept='CS' 

Exi t if s ta tus-check 

Repeat 

FIND NEXT Offering Record Within HASOFFER SET 

where offerll='2' OR location='Washington' 

Exit if s ta tus-check 

end 

end. 

/* process selection path */ 

FIND NEXT Teacher Record Within HASTEA SET where sex='male' 

Skip if fail 

FIND NEXT Student Record Within HASSTU SET where grade=' A' 

Skip if fail 

/* process projection path */ 

FIND FIRST S tuden t Record Wi thin HASSTU SET 

Repea t 

FIND NEXT S tuden t Record Wi thin HAS STU SET where grade=' A' 

Exi t if s ta tus-check 

Select From Student: sname 

end 



Translation of Queries to Account for Direct Communication Between Different DBMSs 643 

Course 

Offering 

Figure 3-Hypergraph representation of relational course offering database 

Example 2 illustrates the translation process, where the 
source query is written for the relational design of Figure 3, 
and the target design is the network design shown in Figure 4. 

CONCLUSION 

A process for translation of queries between the network and 
relational data models has been presented and shown to pro
duce valid queries. 16 The translation scheme uses the hyper
graph as an intermediate representation format between the 
two DMLs. The translation process requires three steps: 

1. Map the source query into the hypergraph space of the 
source design. 

2. Translate the resulting source query hypergraph into the 
hypergraph space of the target hypergraph. 

3. Map the target query hypergraph to the target manipu
lation language. 

The second step is the heart of the translation process and is 
model dependent, but not DML dependent. Steps one and 
three are language dependent, but based on the algorithms 
that we have developed to this point are not difficult to imple
ment. 

The work presented here represents the basic description of 
the translation process as it relates to the relational and net
work data models. Space limitations keep us from providing 
the algorithms used to create the structures given in Examples 
1 and 2 (see Owrang16 for details). Currently we are working 
on expansion of the system to handle the cyclic queries, and 
work has been started on implementing the translation sys
tem. Note that the discussion has been limited to operating in 
an environment in which the source and target databases have 
the same semantics. The algorithms used in this translation 
process can be easily expanded to handle the case in which 
some changes have been made in the semantics, such as is the 
case in the work by Su and Reynolds. 1 

loca tion offertl da te 

HASTEA 

Tname L tudent grade sname 

Figure 4--Hypergraph representation of network course offering database 

REFERENCES 

1. Su, S.Y.W. and M.J. Reynolds. "Conversion of High Level Sublanguage 
Queries to Account for Database Changes." Proceedings of the 2nd Interna
tional Conference on VLDB, Brussels, September 1976, pp. 143-157. 

2. Codd, E.F. "A Relational Model of Data for Large Shared Data Bank." 
CACM, 13 (1970) 6, pp. 377-387. 

3. Chamberlin, D. and R. Boyce. "SEQUEL: A Structured English Query 
Language." Proceedings ACM SIGMOD Workshop on Data Description, 
Access, and Control. Ann Arbor, Michigan, 1974. 

4. Housel, B., D. Smith, N. Shu, and V.Y. Lum. "DEFINE: A Non
procedural Data Description Language for Defining Information Easily." 
ACM Pacific Regional Conference, San Francisco, 1975, pp. 62-70. 

5. Shu, N., B. Housel, V.Y. Lum. "CONVERT: A Hig.1J Level Translation 
Definition Language for Data Conversion." CACM, 18 (1975) 10, pp. 
557-567. 

6. Katz, R.H. and E. Wong. "Decompiling CODASYL DML into Relational 
Queries." ACM TODS, 7 (1982) 1, pp. 1-23. 

7. CODASYL Cobol Committee. J. Dev., 1978. 
8. Codd, E.F. "Further Normalization of the Database Relational Model." 

Cu"ent Computer Science Symposia 6, Data Base Systems, New York: 
Prentice-Hall, 1971. 

9. Smith, J.M., P. Berstein, U. Dayal, N. Goodman, T. Landers, K. Lin, and 
W. Wong. "MULTIBASE: Integrating Heterogeneous Distributed Data
base Systems." AFIPS, Proceedings of the National Computer Conference 
(Vol. 50), 1981, pp. 487-499. 

10. Beeri, C., R. Fagin, D. Maier, and M. Yannakakis. "On the Desirability of 
Acyclic Database Schemes." JACM, 30 (1983) 3, pp. 479-513. 

11. Chase, K. "Join Graphs and Acyclic Database Schemes." Very Large Data
base Conference, 1980, pp. 95-100. 

12. Fagin, R. "Degrees of Acyclicity for Hypergraphs and Relational Database 
Schemes," JACM, 30 (1983) 3, pp. 514-550. 

13. Fagin, R., A.O. Mendelzon, J. Ullman. "A Simplified Universal Relation 
Assumption and Its Properties." ACM TODS, 7 (1982) 3, pp. 343-360. 

14. Maier, D. and J. Ullman. "Maximal Object and the Semantics of Universal 
Relation Databases." ACM TODS, 8 (1983) 1, pp. 1-14. 

15. Owrang O.M.M., and L.L. Miller. "Query Translation Between Data 
Models." Proceedings of Sixth Annual International IEEE Phoenix Confer
ence on Computers and Communications, Scottsdale, Arizona, February 
1987, pp. 308-314. 

16. Owrang O.M.M. Query Translation in a Heterogeneous Distributed Data
base Based on Hypergraph Models. Doctoral Dissertation, University of 
Oklahoma, Norman, Oklahoma, May 1986. 

17. Ullman, J. "The Universal Relation Strikes Back." Proceedings ACM Sym
posium on Principle of Database Systems, Los Angeles, March 1982, pp. 
10-22. 

18. Ullman, J., Principles of Database Systems, Second edition, Computer 
Science Press, Rockville, Maryland, 1982. 

19. Gyssens, M. and J. Paredaens. "A Decomposition Methodology for Cyclic 
Databases." Advances in Database Theory, 2 (1984), pp. 85-122. 

20. Bernstein, P.A. and N. Goodman. "Power of Natural Semijoin." SIAM 
Journal of Computing 10 (1981) 4, pp. 751-771. 





A new approach to version management for databases 

by VINIT VERMA and HVIZHV LV 
Oklahoma State University 
Stillwater, Oklahoma 

ABSTRACT 

Following an overview of version management databases, a new approach for 
implementing these databases by employing the use of persistence in height bal
anced trees is proposed. Persistence in a tree is obtained by path copying. In 
classical databases, version management is performed by checkpoints which require 
O(n) time, and O(n) space. This new methodology maintains historical data in 
O(lg n) space, and O(lg n) time for a binary search tree. The paper discusses how 
the concept of persistence is superimposed on B-trees, which are the primary 
storage structures utilized in present day databases. A search operation on this 
persistent B-tree of order 'm' is O(lg(k) 19mn(lg .80(m-l)), where 'k' is the number 
of nodes in an index time stamp tree, 'n' is the number of nodes in the B-tree, and 
the B-tree is assumed to have 80% node utilization. 

645 





A New Approach to Version Management for Databases 

INTRODUCTION 

Human memory essentially has a no deletion mechanism. 
Memory does exhibit a decay characteristic with time, but 
people simply do not delete. The concept of deletion was 
invented to reuse expensive computer storage. With the fall
ing computer storage costs, and new storage technologies 
(e.g., optical disks)/,2 this deletion policy will eventually give 
way to a non-deletion policy in database applications. 3 All 
accounting, financial, and legal databases require a non
deletion policy. This policy is usually required by law for good 
reasons. Once this policy comes into effect, then a version 
management strategy will need to be imposed on current data
bases. 

Conventional database management systems lack the 
ability to store and process time dependent data. 4,5,6 Without 
this temporal support the burden comes on the application 
programmer to build some temporal information manage
ment strategy. The reSUlting applications are inefficient in 
terms of data storage and processing costs. Most decision 
support systems require trend analysis and historical queries 
which are not readily supported by DBMSs of today. Even 
error corrections have been implemented in DBMSs via audit 
trails which require space intensive checkpoints to preserve 
past states.7

,8,9 

The initial part of this paper describes the four types of 
databases which support temporal information processing. 
The four database types are differentiated by their ability to 
support these time concepts and their temporal information 
processing capability. Snapshot, rollback, historical, and tem
poral databases are the four types of databases which are 
discussed.10 In the second section of this paper, the authors 
propose the use of persistent search trees to implement these 
version management databases. Persistent search trees pri
marily utilize path copying for maintaining historical informa
tion. ll The concept of path copying to save historical versions 
can be carried over to any height balanced tree-height
balanced trees, weight-balanced trees, or B-trees for exam
pie. 12, 13 The paper discusses persistence on an HB (1) tree 
using path copying. The persistence can be obtained without 
path copying and this is also shown for the same HB(l) tree. 
By far the most common file structure or access method uti
lized in databases today is VSAM (virtual storage access 
method). VSAM is implemented using B-trees. So if this ver
sion management can be superimposed on B-trees, we have 
an appropriate data structure to implement version manage
ment databases. The final section of this paper discusses how 
B-trees can be made persistent. 

647 

CLASSIFICATION OF DATABASES 
W1TH TEMPORAL SUPPORT 

The four types of version management databases are de
scribed below. The relational data model has been used for 
this discussion. In the mentioned data model the user views 
the data in the form of tables. The rows in the table form 
tuples and the columns form the attributes. Inserts, deletes, 
and updates occur instantaneously on these tables in a con
ventional system. The table below shows two attributes name 
and salary, and two tuples (rows). 

Snapshot Databases 

Name 
Jack 
Tim 

Salary 
$1000 
$1500 

A state, or instance, of a database is its current content, 
which does not necessarily reflect the current status of the 
enterprise. Dynamic changes in such an environment are pre
served by snapshots. Insert, delete, and update operations on 
the payroll table occur instantaneously and no historical infor
mation is recorded. Such a database is described as a snapshot 
database. A snapshot database cannot support the following 
types of temporal queries: (1) trend analysis (statistical infor
mation on the number of employees during the past three 
years), (2) historical query (What was Jack's pay two months 
ago?). Further, snapshot databases cannot support (1) retro
active change (Tim got a raise of $100 starting last month), or 
(2) a proactive change (Jerry is joining the company next 
month) information. 

These snapshot databases provide no historical retrievals or 
updates. The burden to preserve and maintain historical infor
mation falls on the application programmer. As the variation 
of data over time is not related to any application, so the 
DBMS, rather than the application programmer should take 
care of this version management. 

Rollback Databases 

A rollback database stores a sequence of snapshot states 
indexed by transaction time. Transaction time is defined as 
the time during which a database update is performed. An 
update refers to insert, delete, or update database operations. 
Historical queries can be supported by moving along this 



648 National Computer Conference, 1987 

transaction time axis and selecting a particular snapshot state. 
The operation of selecting a snapshot state is termed rollback, 
and a database supporting it is called a rollback database. 

For example, the relation in Figure 1 has three transactions. 
Starting from an empty relation, two tuples were added at 
time A, a third tuple was added at time B, and finally a tuple 
was deleted at time C. Modifications on a rollback database 
can only be made to the most recent snapshot state. As is 
evident from the above transaction, each transaction results in 
a new snapshot being appended on the transaction time axis. 
Since snapshot database stores only the most current state of 
the database, historical queries are not supported. But roll
back databases can back up on the transaction time axis and 
support an historical query. Note, rollback databases support 
historical queries, not historical updates, that is, insert, de
lete, update. Thus a rollback database can support the follow
ing query on the payroll database: "What was Tim's salary 
last month?" The database will roll back on the transaction 
time axis and display a snapshot of the needed relation. Roll
back databases record the history of database transactions. A 
tuple becomes effective as soon as it is entered into a roll
back database. Retroactive and proactive changes cannot be 
recorded. If it is discovered that Tim got a raise a month 
earlier than the month that is stored in the database, there is 
no way to resolve this in a rollback database. 

Historical Databases 

Historical databases record a single historical state per re
lation. They support valid time-the time during which the 
relationship being modeled was valid. Since previous states of 
the database are discarded, historical views are not supported. 
Historical databases have a resemblance to snapshot data
bases in that error corrections are not recorded. These types 
of databases need extra high-level language support to be 
able to support the complex semantics of valid time. They 
support the following types of historical queries: "What was 
Tim's salary when Jerry joined the company?" The result of 
the query will be an historical relation which can be used in 
further historical queries. These databases support arbitrary 
modifications, whereas rollback databases only allow snap
shots to be appended. This historical relation can show that a 
later transaction has changed the time when a tuple takes 

A B c 

B 
Transaction time ------------~.~ 

Figure 1 

effect in the relation. Thus historical DBMSs can represent 
correct information about the past, whereas rollback data
bases can back up to an incorrect previous snapshot. Histori
cal relations can be viewed as interval relations, in which a 
tuple is valid until the next tuple with the same key becomes 
effective. 

Temporal Databases 

The plus points of the rollback and historical databases are 
integrated to form temporal databases. These support both 
transaction time and valid time in the same relation; and both 
these times can be manipulated by a query. A rollback data
base views stored tuples, whether valid or not, as of a certain 
instant in time. An historical database views tuples valid at 
some instant as of now. Finally, a temporal database views 
tuples valid at some instant seen as of some other instant and 
thus can capture both retroactive and proactive changes. 

A temporal relation is a sequence of historical states, each 
a complete historical relation. A rollback on a temporal re
lation selects a particular historical state on which an historical 
query is executed. A new historical state is appended to each 
transaction. Temporal databases are capable of answering the 
following kinds of queries: According to the state of the data
base as of December 1985, "What was Tim's salary when Jack 
joined the company?" Notice that the query is manipulating 
both the valid time as well as the transaction time. 

The following analogy should prove helpful to an under
standing of the temporal classification of databases. A snap
shot relation can be compared to the latest payroll stub 
showing the current salary of the recipient. If the recipient 
gets a raise, the next stub shows the new salary, but the latest 
stub gives no information about the recipient's previous 
salary. The collection of all payroll stubs forms a rollback 
relation, a slice of which is a snapshot relation comparable to 
a payroll stub. No corrections are allowed on past stubs. An 
historical relation can be compared to a chart containing the 
salary history of a person until the instant of making the chart. 
If an error is found in the chart, or a person gets a raise, then 
a new chart reflecting the change is made. The current chart 
should always be up to date. A temporal relation is a file of 
all such payroll charts marked by the date when each was 
prepared. It is possible to refer to an old chart as it was known 
at some instant of time. An in-depth discussion on temporal 
databases has been presented in Snodgrass and Ilsoo.lO Hav
ing built the needed background for version management 
databases, we now consider methods for implementing these 
databases. 

A NEW APPROACH FOR VERSION MANAGEMENT 

Path copying can be utilized to maintain previous versions of 
a tree after insertions and deletions. 11 Basically, the path in a 
tree along which an update operation is performed is repli
cated to maintain the previous version. These trees which 
maintain previous versions are termed "persistent trees." A 
persistent tree differs from an ordinary search tree in that 
following an insert/delete operation the old version of the tree 



A New Approach to Version Management for Databases 649 

is still accessible. The old version of the tree needs to be 
maintained after a new version has been created during an 
update operation. If the entire tree is copied on each update 
operation, then the processing time is O(n) and the space 
utilized in O(n). Thomas14 addresses the concurrency prob
lem of these multicopy databases. Severance and Lohman15 

discuss the use of differential files to maintain versions in large 
databases. In path copying, only those nodes are copied in 
which a change is made. Thus any node which contains a 
pointer to a node that is copied, must, itself, be copied. If 
every node contains pointers only to its children, this means 
copying one node requires copying the entire path to the node 
from the root of the tree. Thus, in effect, a set of search trees 
is created, one per update, having different roots but sharing 
common subtrees. The processing in a path-copying search 
tree is O(1g(n)) since only one path in the tree is traversed. 
The space utilized is also O(1g(n)) since only one path will be 
copied. If there exist~ a large number of updates then the 
roots of these tree versions can reside in an array, or better 
still, in a search tree. If a search tree is utilized to hold roots 
for the different tree versions, then a search time of 0(1-
g(m)lg(n)) is obtained, where 'm' is the number of updates 
and 'n' is the number of nodes in the tree. This path copying 
works on any kind of balanced tree, for example, a height
balanced tree, or weight-balanced tree. In a balanced tree, the 
balance is maintained by storing certain balance information 
in each node and rebalancing after an insert/delete operation 
by performing a series of rotations along the access path. Aho, 
Hopcroft, and Ulmann16 and Knuth17 provide a good descrip
tion of height-balanced trees. 

The example below shows how a height-balanced(l) tree 
can be made persistent using path copying. The keys 
CD,AE,BG,QK,RR are inserted in that order into an HB(l) 
tree. The resulting HB(l) tree after balancing is shown in 
Figure 2. This is the state of the tree at time 0 in Figure 3. The 
numbers to the left of each node are the time stamps, and the 
numbers to the right reflect the balance information. At time 

Figure 2 

Time 0 Time 1 Time 2 

Insert SS Insert TT 

Figure 3 

1, suppose SS is inserted into the tree. The tree undergoes a 
rotation as BG becomes critical. The balanced tree with the 
path BG ~ QK ~ RR copied is shown under the time 1 root. 
The tree version under time 2 results after TT is inserted into 
the tree at time 1. Appropriate rotations have been performed 
to balance the tree. Note the path OK ~ RR ~ SS has been 
copied from the time 1 tree to result in the time 2 tree. Once 
a node is copied or a new node is inserted, the appropriate 
time stamp is placed on the node. A new index tree can be 
made which holds the pointers to the various time stamp 
roots. Figure 4 addresses the previous point. If the version 1 
tree needs to be accessed, the pointer with key equal to one 
in the index tree is taken to direct the search in the appropri
ate tree version. This time-index tree can be made height 
balanced too. 

A search tree can be made persistent without node copying. 
The nodes are allowed to grow arbitrarily large after updates, 
that is, each time we need to change a pointer, a new pointer 



650 National Computer Conference, 1987 

is stored in the node along with a time stamp indicating the 
time of the update. Thus the space requirement is 0(1) during 
an insertion as only one node is inserted and no copies are 
made. The pointer change also requires 0(1) space since only 
one pointer is inserted. The drawback of the method is the 
time spent deciding on the correct pointer in a node, as the 
node has an arbitrary number of left and right pointers. If a 
binary search on an index time stamp tree is performed, 
choosing the correct pointer takes O(1g(m», and an access, 
insert, or delete takes O(1g(n)lg(m», where "m" is the num
ber of time stamps and "n" is the number of nodes in the tree. 

Starting with the tree in Figure 2, a persistent HB(l) tree 
without node copying is obtained (see Figure 5). The tree in 
Figure 5 results after the insertion of SS and TT into the tree 
in Figure 1, at times 1 and 2 respectively. Again pointers to the 
different version of the tree need to be maintained in an index 
time stamp tree. The balance tags are overwritten each time, 
and the arcs reflect the time of creation. To traverse the tree 
at time 0, the appropriate pointer in the index tree is accessed. 

Time 0 root BG 

Time 1 root QK 

Time 2 root QK 

BG QK QK 

/\ /\ /\ 
/\ /\ R\ /B\ l\ 

CD RR AE CD SS AE CD RR TT 

AE 

Time 0 Time 1 Time 2 

Figure 5 

Time 0 
o 

KK inserted 

Figure 6 

Time 1 Time 2 

All 0 arcs are accessed once the correct tree version is located. 
To reveal the time 1 tree, the appropriate index tree pointer 
is taken again. Then from each node a 1 arc is taken. If a 1 arc 
doesn't exist, a 0 arc is taken. The same is done for the time 
2 tree. As a tree version is traversed, each visited node needs 
to be flagged to avoid cycles during the traversals. 

Path copying can be carried over to a B-tree also. Figure 6 
depicts an order 5 B-tree. At time 0 the B-tree has keys 
AB,CC,PQ,RR,SS,TT and XY. At time 1, AY is inserted 
into the B-tree. Notice that the nodes in the path are copied 
and a new root with time stamp 1 results. At time 2, LM is 
inserted-again with appropriate node copying. Finally at 
time 3, KK is inserted resulting in a node getting overfull. The 
condition is resolved with a 1-2 split. The nodes along the path 
are again copied, and a new root results. An index time stamp 
tree indexes this B-tree. It takes O(1g(k» to search the index 
tree for the appropriate time stamp. In a B-tree all leaves are 
at the same level. Therefore a search operation takes, on a 
average, O(1gmn) to locate the node of interest. Let us sup
pose that a node in the B-tree has 80% node utilization, and 
the number of keys in a node justify a binary search. Then the 
search operation gives a processing order of Igmn(1g .80(m-1), 
where (m-1) is the maximum number of keys in a node of a 
B-tree of order "m," and "n" is the number of nodes in the 
B-tree. Thus the total search time in this version management 
B-tree will be Ig(k)lgmn(1g .80(m-1». 

B-trees are by fat the most frequently utilized data struc
tures with which to implement databases. IBM's VSAM is 
based on B-trees. So the path copying on a B-tree will provide 
version management for VSAM databases. Figure 7 depicts 
the proposed version management support for VSAM. The 
index tree, which points to different tree versions, can be 
maintained in primary memory. Once the tree version to be 
queried is located in the index tree, the appropriate page can 
be retrieved from the VSAM file on disk. 



A New Approach to Version Management for Databases 651 

index time stamp tree 

I 
A 1 in primary 

memory 
, ' 

~ff'''"t ,,";0", 
VSAM fi~ th' """ B-t'" 

sequence set 

Figure 7 

CONCLUSION 

The paper provides an overview of version management data
bases. The version management systems are categorized as 
snapshot, rollback, historical, and temporal databases. The 
concept of persistence in balanced trees is utilized to create an 
efficient data structure with which to implement these tempo
ral databases. The classical method of checkpointing proves 
extremely expensive in both memory usage and processing 
time. Path copying in a tree provides the needed persistence 
of historical data. A height-balanced(1) tree depicted the 
persistence characteristic. A persistent B-tree is proposed as 
an appropriate data structure to support version manage
ment on databases. A search operation on this persistent B
tree of order "m" is O(1g(k) Igmn(1g .80(m-1)), where "k" 
is the number of nodes in an index time stamp tree, "n" 
is the number of nodes in the B-tree, and the B-tree is 
assumed to have 80% node utilization. The space utilized is 

0(1gmn(m-1)), as all nodes along one path of an "m" way 
B-tree need to be replicated. 

REFERENCES 

1. Rathman, P. "Dynamic Data Structures on Optical Disks." Proceedings 
of the IEEE International Conference on Data Engineering, April 1985, 
pp. 175-180. 

2. Hoagland, A. "Information Storage Technology: A Look at the Future." 
IEEE Computer, 18(1985)7, pp. 60-67. 

3. Copeland, G. "What if Mass Storage Was Free?" IEEE Computer, 
15(1982)7, pp. 22-35. 

4. Weiderhold, G. "Databases." IEEE Computer, 17(1985)10, pp. 211-233. 
5. Date, C,J. An Introduction to Database Systems. VoL I, 4th ed., Reading, 

Massachusetts: Addison-Wesley, 1986. 
6. Weiderhold, G. Database Design. 2nd ed., New York: McGraw-Hill, 1983. 
7. Chandy, K.M. "A Survey of Analytic Models for Rollback and Recovery 

Strategies in Database Systems." IEEE Computer, 8(1975)5, pp. 40-47. 
8. Verhofstad, J.S.M. "Recovery Techniques for Database Systems." ACM 

Computing Surveys, 10(1978)2, pp. 167-195. 
9. Chandy, K.M., J.e. Browne, C.W. Dissly, and W.R. Uhrig. "Analytic 

Model for Rollback and Recovery." IEEE Transactions on Software 
Engineering, SE-l(1975)1. 

10. Snodgrass, Richard and llsoo Ahn. "Temporal Databases." IEEE Com
puter, 19(1986)9, pp. 35-42. 

11. Sarnak, Neil and Robert E. Tarjan. "Planar Point Location Using Persis
tent Search Trees." Communications of the ACM, 29(1986)7, pp. 669-679. 

12. Comer, D. "The Ubiquitous B-tree." ACM Computing Surveys, 11(1979)2, 
pp. 121-137. 

13. Maier, D. and S.C. Salveter. "Hysterical B-trees." Information Processing 
Letter, 12(1981)4, pp. 199-202. 

14. Thomas, R.H. "A Solution to the Concurrency Control Problem for Mul
tiple Copy Databases." Proceedings, CompCon, Spring, 1978. 

15. Severance, D.e. and C.M. Lohman. "Differential Files: Their Application 
to the Maintenance of Large Databases." ACM Transactions on Database 
Systems, 1(1976)3, pp. 256-267. 

16. Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ulmann. Data Structures 
and Algorithms. Reading, Massachusetts: Addison-Wesley, 1985. 

17. Knuth, D.E. The Art of Computer Programming, Vol. I: Fundamental 
Algorithms. 2nd ed., Reading, Massachusetts: Addison-Wesley, 1973. 





The impact of data models on application 
development at Pacific Bell 

by RAY STRAKA 
Pacific Bell 
San Ramon, California 

INTRODUCTION 

The evolution of data models from reflections of physical 
database management systems to powerful conceptual tools 
has had a profound impact on the way systems have been 
developed at Pacific Bell over the past decade. We will focus 
on the impact data models have had on our System for Build
ing Systems, l will describe our migration from classical data 
models to more advanced models, and will consider the im
pact future classes of models may have on our capability to 
develop applications. 

STRATEGIC BUSINESS AND SYSTEMS PLANNING 

Pacific Bell came into being on January 1, 1984 with the 
divestiture of Pacific Telephone & Telegraph from AT&T 
along with the other Bell Operating companies. Pacific Bell 
found itself in the position of a 17 billion dollar new venture 
with a need to build strategic business plans reflecting its own 
destiny. Using an ensemble of strategic systems planning tech
niques, an application, data, and technology architecture 
were developed based on the identified future business direc
tion. In this way those groups of entities associated with the 
subject areas of data most leverageable by the business were 
identified. 

We found that 80 percent to 90 percent of our business 
functions, processes, and activities utilized the customer, 
product, and location data entities. Early implementation of 
these entities would have substantial leverage. The applica
tion model also indicates related entities which must be imple
mented early in order to support the implementation of the 
primary entities. In this way, a base of strategically significant 
data is developed upon which future applications can be built. 

Strategic systems planning indicates that the systems we 
need do not look anything like the systems we have currently. 
This does not come as a great surprise as the new architecture 
is based on an analysis of the needs of our business; former 
systems tended to reflect the capabilities and interests of 
the information systems community. The Entity-Relationship 
Modee,3 played a significant role in several of the method
ologies employed in the strategic systems planning effort. It is 

653 

unlikely that the complex interrelationships of the business' 
data could have been understood without such powerful 
modeling techniques. However, the use of data models has 
not always played such a central role in the systems develop
ment lifecycle. 

SYSTEMS DEVELOPMENT HISTORY 

Prior to divestiture, many of our operational systems were 
built by Bell Labs or AT&T. Many of these systems continue 
to this day and are either supported locally or through Bell 
Communications Research. Internally built systems tended to 
be in the business support arena including accounts payable, 
accounts receivable, general ledger, payroll, facilities track-
ing, and order distribution. . 

In the 1960s and early 1970s, formal data models played 
almost no part in the systems development lifecycle at Pacific 
Bell. Systems were developed independently around applica
tions areas with no emphasis on data sharing among applica
tions. These applications for the most part made no use of 
database technologies, or if they did it was only to use the 
DBMSs as if they were an access method. 

In the late 1970s and early 1980s the structured revolution, 
which began several years previously, was "discovered" at 
Pacific Bell. A small number of internal systems developers 
embraced the process-oriented structured approach as taught 
by Yourdon, DeMarco, and Gane & Sarson. 

One of Pacific Bell's most stable and well designed systems 
was built using the DeMarco approach.4 It was originally im
plemented using a network data model, but was subsequently 
rewritten as a relational design. As the DeMarco methodol- . 
ogy lacked support for logical database design at that time, the 
relational database was developed using James Martin's ap
proach: canonical synthesis and normalization. 5 The final 
database consisted of 32 tables in 3NF. 

Though the process-oriented methodologies were a great 
improvement over the previous chaos, as our applications 
became increasingly database and management information 
system oriented, the inability of the process-oriented metho
dologies to directly support database design became more 
troublesome. 



654 National Computer Conference, 1987 

As a result, we went looking for a more suitable approach 
when confronted with a large personnel application intended 
to activate our first subject database, employee. We adopted 
a methodology developed and marketed by Ken Orr & Asso
ciates. Known as the Data Structured Systems Development 
(DSSD) approach,s this methodology directly yields a tabular 
logical database design in at least 2NF and usually in 3NF. 
This approach uses a combination of top-down and bottom-up 
methods which combine aspects of both the Entity-Relation
ship Approach2

,3 and the Relational Approach.7 ,s 

We have found this methodology to work well; however, 
there is a danger that the logical database design will be too 
biased toward the single application's view of the data. There
fore, it is important for a company entity-relationship data 
model to provide guidance and context while applying the 
DSSD methodology. This mixture of models is the approach 
currently being used for new application development at 
Pacific Bell. 

In the future we hope to find even more support for our 
application development efforts from advanced data models 
and database management systems based on those models. 
Our research indicates that commercially feasible DBMSs 
based on the entity-relationship model or other models which 
express more of the business "semantics," such as the SDM 
model proposed by Hammer and McLeod,9 will be available 

in the near term. We look to the vendor community to develop 
robust systems development methodologies which will enable 
large corporations such as Pacific Bell to utilize these tools to 
their greatest advantage. 

REFERENCES 

1. Straka, R. "System for Building Systems at Pacific Bell." Data Base News
letter; Boston, Mass., Database Research Group, Inc., January-February, 
1987; pp. 11-12. 

2. Chen, P.P. "The Entity-Relationship Model: Toward a Unified View of 
Data." ACM Transactions on Database Systems, 1 (March , 1976)1. 

3. Chen, P.P. "The Entity-Relationship Model: A Basis for the Enterprise 
View of Data." AFIPS Conference Proceedings, Dallas, Texas, (Vol. 46) 
1977. 

4. DeMarco, T. Structured Analysis and System Specification, New York, New 
York. Yourdon Inc., 1978. 

5. Martin, J. Computer Data-Base Organization, Englewood Cliffs, New 
Jersey. Prentice-Hall, 1977. 

6. The Design Library, Topeka, Kansas. Ken Orr & Associates, 1981. 
7. Codd, E.F. "A Relational Model of Data for Large Shared Data 

Banks."Communications of the ACM, 13(June 1970)6, pp. 377-387. 
8. Codd, E.F. "Extending the Relational Database Model to Capture More 

Meaning." ACM Transactions on Database Systems, 4(Dec. 1979)4, 
pp. 397-434. 

9. Hammer, H. & D. McLeod, "Database Description with SDM: A Semantic 
Database Model." ACM Transactions on DatabaSe Systems, 6(Sept. 1981)3, 
pp. 351-386. 



The ER approach, relational technology 
and application development 

by MARTIN MODELL 
Merrill Lynch 
New York, New York 

Among the tasks facing many application development teams 
today are the development of a logical data model, and using 
that data model to choose a data base management product. 
In the past many applications were limited to a single DBMS, 
one which was either based upon the hierarchic or the net
work data structure model. Most firms used DBMS products 
which supported one or the other, but usually not both. 

The availability of a number of working relational imple
mentations either as separate software, or as relational ver
sions of existing DBMS products, and the high degree of 
visibility and favorable publicity attached to the relational 
model itself has persuaded an increasing number of firms to 
acquire them. Thus, many application teams now must make 
a choice of two supported, but substantially different data 
base structural architectures. 

In the past, the application data modeling process created 
designs which were oriented toward the available DBMS. The 
logical data model was often framed in the manner of the 
logical data structure model of the prevailing DBMS, that is 
either in hierarchic or network form. Because of the popu
larity of the relational products, and the comparative sim
plicity of the relational model, many designers today attempt 
to frame their data in tabular form. 

However, just as the analysis of the application processing 

655 

requirements must be objective and unbiased toward any par
ticular processing mode, the data modeling process must be 
objective and data structure independent, to avoid biasing the 
analysis toward one or the other of the products. Those 
designers who develop an ER model but do not take the 
additional step of evaluating the model against each DBMS's 
natural data structure will find that they have caused them
selves unnecessary problems when they force their data into 
an incompatible data structure model. 

Each application's data has a natural structure. The use of 
the Entity Relationship model can graphically illustrate this 
natural structure and can be a strong indicator of which 
DBMS will be most effective. Although most analysts assume 
that their application's data can be stored under any DBMS 
with equal effectiveness, in practice the natural structure of 
the data will make one DBMS more effective than another. 

The fully attributed ER model provides a wealth of infor
mation for the analyst to make a proper DBMS evaluation. A 
detailed evaluation not only of the entity structures, but also 
of the attributed relationships provides a sound guide to an 
appropriate DBMS choice. Thus a true logical data modeling 
step, using a structurally independent modeling technique has 
become indispensable to the application analysis and design 
process. 





A retargetable vector code generator 

by TOM C. REYES* 
Oklahoma State University 
Stillwater, Oklahoma 

ABSTRACT 

This paper describes the prototype implementation of a retargetable vector code 
generator which applies recent advances in automatic (scalar) code generation 
techniques to the task of generating code for a vector source language. The source 
language is a subset of Fortran 8X, the proposed successor to the Fortran 77 
standard. The target machine is an attached vector processor. This work extends 
Cattell's maximal munch method to vector code generation. Variants of TCOL are 
used for the intermediate representation of both the source program and the target 
machine description table. The prototype implementation demonstrates the fea
sibility of template-driven vector code generation and emphasizes the importance 
of code optimization in a vector compiler. 

* The author's present address is: Amoco Production Company Research Center, P.O. Box 3385, Tulsa, OK 74102 

657 





INTRODUCTION 

Most vector processors are programmed using either a low
level machine-specific language or a scalar high-level language 
(usually Fortran 77) with a vectorizing compiler. Code written 
in a low-level language is inherently nonportable. Writing 
good efficient code in a low-level language is also a difficult 
and often expensive task. Pure Fortran 77 code is portable but 
inherently sequential, obscuring the parallelism present in the 
application program and requiring a vectorizing compiler to 
rediscover vector operations in sequential loops. In practice, 
most Fortran programs which are run on vector machines are 
not completely portable either. It is not uncommon to main
tain multiple versions of Fortran programs l which are regu
larly run on different machine and compiler combinations. 

The recent development of compilable vector languages 
such as Fortran-8X,2 Vector-C,3 Actus,4 and modified APL5 

has made it possible to write scientific code using a more 
concise and higher level notation. The parallelism inherent in 
array operations can now be directly expressed in these lan
guages obviating the need for vectorization of scalar code. 

The implementation of these languages on vector machines 
presents some new, interesting problems. Besides generating 
good vector (and scalar) code, it is also important for a vector 
language compiler to be retargetable to other new and exist
ing vector processors. A family of retargetable vector com
pilers which implements the same language on different ma
chines and shares a common machine-independent core is 
more likely to enhance program portability than a collection 
of vectorizing compilers. Recent advances in compiler tech
nology, particularly in the automatic code generation area, 
have largely focused on scalar machines and scalar lan
guages. 6,7,8,9,10 Previous vector language implementers3, 4, 5 

have taken an approach to retargetable code generation simi
lar to that used in the Pascal P-compiler, producing code for 
an abstract machine and then expanding this virtual code into 
the real code appropriate for the target machine. A major 
problem with this approach is the fundamental conflict be
tween the need for a truly machine-independent abstract ma
chine model and the need to fully exploit the power of a 
particular target machine. 

A more promising approach, which allows the realization of 
the optimization goals of a vector compiler without sacrificing 
compiler retargetability, is pattern-matched vector code gen
eration. This paper describes the application of a template
driven code generation technique to the task of implementing 
a vector language on an attached vector processor. This work 
extends Cattell's tree-matching algorithmll to vector code 
generation. 

A Retargetable Vector Code Generator 659 

SOURCE LANGUAGE 

Our source language is a subset of Fortran-8X, the proposed 
successor to the Fortran-77 standard. Fortran-8X2 is a superset 
of Fortran-77 and has a rich array processing facility among its 
set of new features. 

Fortran-8X's Array Processing Facility 

Fortran-8X's array processing features are designed to al
low the programmer to implement numerical algorithms in a 
more concise and natural notation. For example, the follow
ing Fortran-8X code may be used to compute the variance of 
n sample points (n > 1) contained in a vector x (of size n): 

variance = SUM((x - SUM(x)/n)**2)/(n - 1) 

Note how clearly this single statement indicates what is being 
computed without the distraction of an extraneous loop 
and loop index variable which in Fortran-77, and in other 
scalar languages, would have been required to index thru the 
vector x. 

Fortran-8X carries even further the idea of allowing whole 
array operations by extending all scalar operations to apply 
element-wise to any conformable operands. An element-wise 
operation applies a scalar operation on the corresponding 
elements of its operands to produce the corresponding ele
ment of the result array. These element operations can be 
performed in any order simultaneously. 

Fortran-8X allows subsets of an array, called array sections, 
to be used as operands. An array section is an array itself and 
is the result of subscripting a parent array with one or more 
non-scalar subscripts and zero or more scalar subscripts. An 
array section is the set of elements from the parent array 
selected by the non-scalar and scalar subscripts. One way of 
specifying non-scalar subscripts is by triplet notation which 
consists of three scalar integer expressions separated by co
lons, namely: 

(array) (begin) : (end) : (stride» 

This triplet notation represents a sequence of integer subscript 
values starting from (begin) to (end) in increments of (stride). 

Fortran-8X provides many other array processing features 
including array constructors, dynamic a"Tays, and masked 
array assignments. However, we chose not to complicate our 
prototyping efforts with these features. 



660 National Computer Conference, 1987 

TARGET MACHINE 

Our target machine is the IBM 3838 attached vector pro
cessor. 12,13 Although the 3838 has been rendered largely obso
lete by more recent vector processors, it provided us almost 
unlimited and very inexpensive access to a real target machine 
with vector instructions. A vendor-supplied interface called 
the Vector Processing SubSystem (VPSS)12 provided 40 
memory-to-memory vector instructions, 21 scalar arithmetic 
and branching instructions, and 13 housekeeping operations 
for programming the 3838. 

COMPILER STRUCTURE 

Our compiler design and choice of intermediate representa
tion were heavily influenced by Intermetrics' compiler 
projects.9 ,14 The Intermetrics projects were, in turn, inspired 
by W. Wulfs Production Quality Compiler-Compiler project6 

at Carnegie-Mellon University. 
We greatly simplified our compiler design by deliberately 

deferring inclusion of any optimization phases until the fea
sibility of a retargetable vector code generator was estab
lished. Our compiler design is diagrammed in Figure 1. 

No attempt was made at implementing a compiler front-end 
to process Fortran-8X statements. We simply hypothesize the 
existence of a Fortran-8X scanner, parser, and semantic ana
lyzer. We also assume the existence of an array-to-vector 
transformation phase (labeled Vectorizer in the diagram) 
which unravels multi-dimensional array expressions and as
signments into one or more nested loops, bracketing the same 
expressions and assignments but operating only on vector and 
scalar operands. 

FRO N TEN D 

+----------+ machine- +------------+ 
Fortran I Syntax, I independent I 
ax --->1 Semantic I >1 Vectorizer 1 
Source I Analysis 1 TCOL-8X with I I 

+----------+ array opds +------------+ 
TCOL-8Xlwith only 

......----------' vector opds 

v 

Storage
Binding, 
Expansion 

F77 + VPSS 
Subroutine 

Skeleton 

TCOL- 3838 with 
storage addresses, 

low level semantics 

v 

Description Driven VPSS 

V 

B 
A 
C 
K 

E 
N 
D 

F77 + VPSS 
3838 Machine Table- r::l 
Table (in --> Code ---> Merge -----> 
TCOL-3838) L--G_en_e_T_at_i_o_n-J1 Calls I I Subroutine 

Figure l-Compiler structure 

The Compiler Back-End 

The compiler back-end consists of two major phases: a 
storage binding/expansion phase and a table-driven code gen
eration phase. The storage binding/expansion phase performs 
the following operations: 

1. Takes the high-level TCOL-8X form of the source pro
gram and generates the low-level TCOL-3838 input to 
the code generation phase 

2. Binds variables to target machine storage locations 
3. Expands all implicit computations into explicit arith

metic operations (e.g., exposes all address arithmetic 
implied by vector subscripting) 

4. Outputs a Fortran-77 subroutine skeleton 

This subroutine skeleton consists of a subroutine heading, 
declaration statements, and Vector Processing SubSystem 
CALL statements to do housekeeping operations. The sub
routine skeleton is given to a subsequent MERGE step which 
combines the skeleton with the subroutine body from the code 
generation phase. 

The table-driven code generation phase performs the fol-
lowing functions: . 

1. Reads in the target machine instruction templates, and 
2. Performs pattern matching operations on the TCOL-

3838 program trees and the instruction templates to de
termine which instructions should be generated to im
plement the low level semantics of the source program 

The output of the code generation phase is a sequence of 
properly formatted CALL statements to the Vector Pro
cessing SubSystem. These VPSS CALL statements constitute 
the body of a subroutine which can be compiled with a Fortran 
compiler and linked with the Vector Processing SubSystem to 
create an executable module. 

INTERMEDIATE REPRESENTATION 

Two intermediate languages, both variants of TCOL,6, 15 are 
used in our compiler design: 

1. TCOL-8X is the output of a Fortran-8X compiler front
end and the input to the back-end. 

2. TCOL-3838 is the intermediate representation used in 
the back -end. 

TCOL-8X 

TCOL-8X is the high-level Fortran-8X-specific and 
machine-independent notation used in the output of the com
piler front-end. TCOL-8X closely reflects the structure and 
the semantics of Fortran-8X constructs. A TCOL-8X VEC
TOR node reflects the structure and the attributes of a 
Fortran-8X array reference which it represents. It references 



a parent ARRAY node and a sequence of SCALAR, TREE, 
or SECTION nodes representing the subscripts. It does not 
expose implicit machine-dependent address computations. 
Similarly, a TCOL-8X SCALAR node models the attributes 
of the Fortran-8X scalar variable it represents. It has no stor
age location attribute because storage binding is a machine
dependent operation which is deferred to the Storage
Binding/Expansion phase. Fortran-8X control constructs re
tain their basic structure in TCOL-8X. A Fortran DO-loop is 
represented in TCOL-8X as a loop-control part and a loop
body. It is not decomposed into conditional and unconditional 
branches which are often machine-dependent (e.g., some ma
chines have a "do-loop" instruction). 

TCOL-3838 

In contrast to the machine-independence of TCOL-8X, 
TCOL-3838 closely reflects the data types, operations, ad
dressing modes, and instruction formats available on our tar
get machine. 

The main motivation for the low-level nature of TCOL-
3838 notation is the need to represent the low-level semantics 
of both program constructs and machine instructions in the 
same notation. The low-level semantics of program constructs 
are represented as TCOL-3838 program trees. The effects of 
executing a target machine instruction are represented as a 
TCOL-3838 pattern tree. This uniform representation of pro
gram trees and pattern trees allows the instruction selection 
problem of code generation to be recast into a pattern match
ing problem. If the TCOL-3838 program tree representing the 
low-level semantics of a particular program construct matches 
the TCOL-3838 pattern tree representing the effects of exe
cuting a particular 3838 machine instruction, then the corre
sponding target machine instruction can be emitted to imple
ment the program construct. 
. The TCOL-3838 VECTOR node type closely models the 

target machine representation of vector operands. A TCOL-
3838 VECTOR node has four attributes: a base, a count, a 
stride, and an operand class. The base attribute references 
another TCOL-3838 structure which represents the computa
tion of the address of the first vector element. The count 
attribute references another TCOL-3838 structure which rep
resents the computation of the number of elements in the 
vector operand. The stride attribute references another 
TCOL-3838 structure which represents the distance between 
consecutive elements of the vector operand. The operand 
class attribute represents the vector operand access modes of 
the target machine. TCOL-3838 completely exposes all oper
ations that are implicit in the TCOL-8X notation including the 
arithmetic operations involved in determining the number of 
iterations in a general Fortran DO-loop. 

To completely specify a target machine instruction for code 
generation purposes, the description of the effects of the in
struction must be associated with a code generator action to 
emit the properly instantiated instruction according to a speci
fied instruction format. TCOL-3838 is also used for describing 
these code generation actions. 

A Retargetable Vector Code Generator 661 

VECTOR CODE GENERATION 

The code generation phase is essentially a three-step oper
ation: 

1. A pattern matching step searches a target machine de
scription table for instruction templates to match against 
the program tree. The goal of this step is to find an 
instruction template which matches the program tree 
structurally and semantically. 

2. A pattern instantiation step fills in the "holes" of the 
instruction template with values obtained from the pro
gram tree. These "holes" in the instruction template 
correspond to the memory addresses, the register num
bers, and the literal values of the instruction's operands. 

3. An action sequence executes the code generation direc
tives specified by the instruction template. These direc
tives may call for: 
a. The recursive invocation of the code generator to 

generate code for a program subtree or to instantiate 
an operand of a vector instruction 

b. The writing out of a fully instantiated instruction into 
the output object file 

c. The creation of a statement label 
d. The return of the instantiated values of a vector oper

and's base, count, and stride 

The code generation algorithm, as implemented in our 
compiler back-end, is essentially Cattell's maximal munch 
method. 11 Published applications of maximal munch seem to 
have been directed exclusively to scalar code generation.6

, 11, 14 

We did not have to extend Cattell's maximal munch method 
in order to use it for vector code generation. The threel.step 
pattern-matchinglinstantiationlaction-sequence model is 
equally applicable to both scalar and vector code generation. 

We did extend the TCOL intermediate representation 
(TCOL-3838) to reflect the vector operand addressing modes 
and instructions available on our target machine and to repre
sent the four kinds of code generation directives in the action
sequence step. Correspondingly, our target machine descrip
tion table has two new sections devoted to vector instruction 
templates and to vector operand access mode templates re
spectively. The code generator was also extended to interpret 
the new code generation directives specified by these tem
plates. 

Just like other maximal munchers,9, 11, 14 our code generator 
knows about partial matches which can be transfoqned into 
complete matches by fetch or store decomposition. When the 
offending operand is a vector source operand, vector fetch 
decomposition obtains a vector temporary and conceptually 
creates a new program subtree to move the offending source 
operand into the required vector operand storage and recur
sively invokes the code generator on this new subtree. Having 
fixed the offending source operand(s) in a partially matching 
template, the code generator can then execute the template's 
code generation directives and fix any offending destination 
operand(s) by store decomposition. In a simple one-pass code 
generation scheme such as ours, the allocation and dealloca
tion of vector and scalar temporaries associated with vector 



662 National Computer Conference, 1987 

and scalar fetch, and store decomposition, is performed dur
ing the single code generation pass. In a multi-pass optimizing 
compiler, the binding of temporaries to program tree nodes is 
done in a separate pass. 

TARGET MACHINE DESCRIPTION TABLE 

We have not attempted to automate the creation of the target 
machine description table. Instead, we simply wrote the in
struction templates by hand. 

Organization of the Machine Description Table 

The target machine description table is organized for effi
cient access by the code generator. It consists of five major 
sections: 

1. Scalar arithmetic instruction templates 
2. Vector arithmetic instruction templates 
3. Vector operand class and access mode templates 
4. Control construct templates 
5. Conditional branching templates 

Within each section, templates whose pattern trees represent 
similar instructions (e.g., "add" and "add-immediate") are 
sorted by increasing cost per number of node. 

Completeness 

The completeness of the machine description table is an 
important issue in retargetable code generators. Code gener
ator blockage is usually a symptom of an incomplete or incor
rect machine description table. Tools for writing code 
generatorsll find their most important use in this area of assur
ing completeness in the machine description table. 

Due to our lack of such a tool and our rather specialized 
target machine, we could not completely cover all legal pro
gram constructs that can be generated by a Fortran-8X com
piler front-end. We had to restrict our source programs pre
cisely to those programs whose computations can profitably 
be off-loaded to our target machine. 

Exotic Instructions 

On our target machine, about half of the 40 algorithmic 
vector operations can be considered exotic instructions. Ex
amples include fast Fourier transforms, vector square root, 
and vector tangent. We did not write any templates for these 
exotic instructions because of their limited applicability to the 
translation of general-purpose Fortran-8X constructs. 

Despite their specialized nature, these exotic instructions 
can be used to implement the "high-level" operations they 
were designed for. Equally exotic TCOL-3838, and 
TCOL-8X, operators and structures can be defined to model 
the semantics of these fancy instructions. Adding templates 
using these exotic operators to our machine description table 
and extending our source language by predefining these fancy 

operations as intrinsic operations, would allow our compiler 
to provide the user all the native capabilities of our target 
machine. 

AN EVALUATION OF THE COMPILER BACK-END 

To establish a reference point for comparing the quality of the 
output code of our compiler back-end, we hand assembled 
and optimized some of the Livermore kernels into Vector 
Processing SubSystem CALLS. The output from the exe
cution of these two versions of the test routines were com
pared and found to be identical, giving us some confidence 
that our compiler back-end is generating correct code. 

A static analysis of the compiled code against the hand
crafted code yielded the results shown in Table 1. Our com
piler back-end generates only vector arithmetic instructions 
which are absolutely necessary. However, it also generates 
too many unnecessary scalar instructions. A large proportion 
of these redundant scalar instructions are loads and stores. 

A closer examination of the compiled code indicates that 
most of the redundant loads and stores arise from the alloca
tion and deallocation of vector, and scalar, temporaries dur
ing vector, and scalar, fetch decomposition. On-the-fly vec
tor, and scalar, temporary management is the main culprit. 
Some scaiar instructions are redundant because they consti
tute common subexpressions or invariant computations which 
can be eliminated or moved out of loops. Our design decision 
to exclude any optimization phases in our compiler back-end 
has come back to haunt us. 

To measure the execution efficiency of the compiled code 
against the hand-crafted code, we timed the execution of the 
compiled code and the hand-crafted code on an essentially 
unloaded IBM 3090 with a similarly unloaded 3838 attached 
processor. The benchmark code is Livermore kernel 8 which 
is a fragment of a P.D.E. integration routine. We performed 
two sets of timing runs for two different size settings of the 

TABLE I-Static analysis of compiled vs. hand-crafted VPSS code 

Number of VPSS Calls 

C H CfH 
Compiled Hand-Coded Ratio 

Setup 4 4 1.0 
Transfers ~ 13 ~ 
Housekeeping 24 17 1.4 

Scalar Arithmetic 281 33 8.5 
Scalar Moves 397 25 15.9 
Branches 4 2 2.0 
Scalar Operations 682 60 11.4 

Real Arithmetic ~ 36 1.0 
Vector Operations 36 36 1.0 

Total 742 113 6.6 



array operands._ For each set, we isolated data transfer times 
from actual target machine computation times. The results are 
shown in Table II. 

The run-time numbers are worse than those for code size 
because most of the redundant scalar instructions happen to 
be inside loops. The megaflop rates indicate that our target 
machine executes scalar and simple vector instructions with 
short operands very inefficiently compared to the exotic vec
tor instructions (over 20 megaflops for some fast Fourier 
transforms) . 

CONCLUSION 

Advantages of Teo L as an Intermediate Representation 

TCOL by itself does not assume any abstract machine 
model. It is sufficiently extensible to accurately model all of 
the instructions and operand access modes available on ma
chines with reasonable architectures. Accurately modeling 
the available target machine resources allows better exploita
tion of these resources. 

With adequate support tools, 14,15 the use of TCOL as an 
intermediate representation can significantly speed up and 
facilitate the construction of compilers, especially those with 
optimization goals. TCOL suits the multipass nature of an 
optimizing compiler. Since the program is internally repre
sented by pointers and nodes, traversing the whole program 
can be done very efficiently any number of times. It also 
facilitates the implementation of optimizing transformations 
by simple pointer manipulations. 

TABLE II-Dynamic analysis of compiled vs. hand-crafted code 

Minimum Execution Time 
(in milliseconds) 

Compiled Hand- Comp/ 
Array Size Code Coded Hand 

80x80 
Data Transfer + Computation 16935.9 1787.5 9.5 
Data Transfer Only 112.6 111.0 1.0 
Computation Only 16823.3 1676.5 10.0 

Floating-Point Operations 219024 219024 1.0 
Scalar Operations 47883 2139 22.4 
Megaflops 0.0130 0.1306 

40x40 
Data Transfer + Computation 8260.4 846.6 9.8 
Data Transfer Only 34.5 33.3 1.0 
Computation Only 8225.9 813.3 10.1 

Floating-Point Operations 51984 51984 1.0 
Scalar Operations 23363 1059 22.1 
Megaflops 0.0063 0.0639 

A Retargetable Vector Code Generator 663 

Disadvantages of Teo L as an Intermediate Representation 

Using TCOL as an intermediate representation requires the 
development of tools.9, 14, 15 In the absence of adequate tool 
support, the use of TCOL can complicate, rather than sim
plify, the implementation of a compiler and it may even intro
duce an unacceptable compilation overhead. 

Tree matching is not as well understood as string matching. 
Tree matching is often implemented by ad-hoc methods 
whereas string matching can be implemented by very well 
understood bottom-up parsing techniques. 

Retargetability 

We have designed retargetability into the structure of our 
compiler back-end. Although a large part of our design pro
vided for retargetability, our implementation did not. The 
proto typing nature of our project allowed us to make many 
machine-dependent shortcuts in our implementation work. 
Thus, about 5100 lines (43% ) of the total 12000 lines of Pascal 
code in our compiler back-end is target machine specific. The 
alert reader may have noticed that the storage-binding! 
expansion phase is heavily machine-dependent and should 
have been implemented as another table-driven maximal 
muncher. 

We believe that the amount of target-machine-dependent 
code in a vector compiler back-end can be dramatically re
duced in a more careful implementation. The only parts of the 
back -end code that may be inherently machine-dependent are 
the routines which implement the code generation directives. 

ACKNOWLEDGEMENTS 

I thank Rex L. Page for giving me the opportunity to work on 
this project, and for reviewing an earlier draft of this paper. 

REFERENCES 

1. Becker, E., "A Preprocessor for Version Control." Technical Symposium 
on Computing Environments and Software Tools, Amoco Production Re
search Center, Tulsa, Oklahoma (1985), pp. 37-46. 

2. American National Standards Institute, Inc., X313. American National 
Standard for Information Systems Programming Language Fortran 
S8(X3.9-198x), (Revision of X3.9-1978, Draft S8, Version 99.), 1986. 

3. Li, K.C. and H. Schwetman, "Implementation of the Vector C Language 
on the Cyber 205." Supercomputer Applications, Plenum Publishing Corp., 
1984, pp. 69-84. 

4. Perrott, R., D. Crookes, P. Milligan, and W. Purdy. "A Compiler for an 
Array and Vector Processing Language." IEEE Trans. on Software En
gineering, 11 (1985), 5, pp. 471-478. 

5. Budd, T. "An APL Compiler for a Vector Processor." TOPLAS, 6 (1984), 
3, pp. 297-313. 

6. Leverett, B., R. Cattell, S. Hobbs, J. Newcomer, A. Reiner, B. Schatz, and 
W. Wulf. "An Overview of the Production-Quality Compiler-Compiler 
Project." Computer, 13 (1980), 8, pp. 38-49. 

7. Glanville, R. A Machine Independent Algorithm for Code Generation and 
Its Use in Retargetable Compilers. UMI, Ann Arbor, Michigan, 1977. 

8. Johnson, S. "A Portable Compiler: Theory and Practice." Proceedings of 
the 5th ACM Symp. on Principles of Programming Languages. pp. 97-104, 
1978. 

9. Haradhvala, S., B. Knobe, and N. Rubin. "Expert Systems for High Qual-



664 National Computer Conference, 1987 

ity Code Generation." IEEE 1984 Proceedings of the First Conference on 
Al Applications. pp. 310-313. 

10. Ganapathi, M. and C. Fischer. "Affix Grammar Driven Code Gener
ation." TOPLAS. 7 (1985), 4, pp. 560-599. 

11. Cattell, R. Formalization and Automatic Derivation of Code Generators. 
UMI Research Press, Ann Arbor, Michigan, 1978. 

12. IBM. OSIVS1 and OSIVS2 MVS Vector Processing Subsystem Pro
grammer's Guide (2nd ed.), 1978. 

13. IBM. IBM 3838 Array Processor Functional Characteristics (3rd ed.), 1982. 
14. Avakian, A., S. Haradhvala, J. Horn, and B. Knobe. "The Design of an 

Integrated Support Software System." Sigplan Notices. 17 (1982), 6, pp. 
308-317. 

15. Marshall, H. "The Linear Graph Package, A Compiler Building Environ
ment." Sigplan Notices. 17 (1982), 6, pp. 294-300. 



Incremental generation of high-quality target code 

by MARY P. BIVENS and MARY LOU SOFFA 
University of Pittsburgh 
Pittsburgh, Pennsylvania 

ABSTRACT 

Although conventional compilers frequently apply optimization techniques in the 
generation of target code, some current incremental compilers do not support 
commonly used optimizations. This work extends the concept of incremental com
pilation to fine-grained, high-quality target code generation. The proposed incre
mental code generator changes only the affected target code and register allocations 
in response to a source program edit. In this paper, we first discuss some issues and 
analyze the actions and information needed for developing incremental code gener
ators. From the analysis, incremental techniques for allocating registers and gen
erating target code are developed. Both local and global register allocation are 
considered, using graph coloring as the allocation scheme. To evaluate the per
formance of the incremental system, both incremental and non-incremental systems 
are implemented on a VAX, and their performance is compared in terms of the 
quality of the target code and the savings (40% to 80% ) in time for making changes 
incrementally rather than completely regenerating the target code. 

665 





INTRODUCTION 

In the evolution of compiler technology, the production of 
high quality code has been an overriding concern, especially 
for embedded and reai-time systems. Thus, numerous tech
niques to improve the quality of code through the application 
of machine independent transformations, effective register 
allocation schemes, and machine dependent optimizations 
have been developed. Major advances in these optimization 
techniques have increased their effectiveness. in reducing the 
time and space requirements of target code. 1 

Recently, the growing recognition of the importance of 
programming environments in software development has led 
to an interest in incremental compilers.2

,3,4,5,6 While a tra
ditional compiler uses the entire program as its compilation 
unit, an incremental compiler decreases the size of the com
pilation unit and recompiles only the affected parts. Fine
grained incremental systems use a source or intermediate 
code statement as the incremental unit and recompile only 
those statements directly changed by the programmer or in
directly affected when a program is edited. Thus, compilation 
time is reduced and response time improved, especially for 
small changes in large programs. 

Although traditional compilers frequently apply optimiza
tions including sophisticated register heuristics to reduce time 
and space requirements of target code, work in incremental 
compilers has mainly focused on the front end of compilation. 
Thus, current incremental compilers either do not support 
the traditional compiler techniques for machine dependent 
and independent optimizations, code generation and register 
allocation, or they limit the applicability of the techniques to 
the changed incremental unit. For example, the incremental 
programming environment of Feiler and Medina-Mora2 re
generates target code for an entire procedure in response to 
a change, while Fritzson3 regenerates code only for the source 
code statement that is changed. In both cases, all register 
allocation and optimizations are restricted to the concerned 
incremental unit. This restriction severely affects the quality 
of target code produced, especially when using a statement as 
the incremental unit, for the capability of allocating registers 
or performing optimizations across statements is prohibited. 
Although the quality of code improves on increasing the size 
of the incremental unit to a procedure, it is reported that if a 
procedure rather than a source code statement is recompiled 
in response to a change, recompilation costs are greater by a 
factor of ten. 3 Other restrictions sometimes placed on existing 
incremental compilers include the assumption that all refer
ences to a particular variable are always mapped into a single, 
unchanging location. Thus, these restrictions on current in
cremental compilers negatively affect the quality of code pro
duced and the performance of the compiler itself. 

Incremental Generation of High-quality Target Code 667 

The problem of incrementally compiling intermediate code 
that has been optimized through machine independent trans
formations was recently undertaken.7

,8,9 In addition to identi
fying important aspects of incremental optimizations, tech
niques for incrementally compiling both local and global 
machine independent optimizations were developed, demon
strating the feasibility of extending the concept of incremental 
compilation to include these types of optimizations. 

Incrementally generating optimized target code compli
cates the incremental process in that the forms of the inter
mediate and target code, the code generation algorithm, and 
the register heuristics must all be considered. An analysis 
must be performed to determine the effect on the target code 
of changing a source code statement, and this analysis is com
plex for high-quality code. Introducing a change in a source 
statement causes both direct and indirect changes in the inter
mediate code and target code. If a variable in the intermediate 
code resides in a register in the target code, inserting and 
deleting uses and definitions of that variable can result in 
changes to register allocations as well as changes to the target 
code instructions that load and store values between memory 
and registers. A number of allocations and deallocations of 
registers during incremental code generation may result in 
register fragmentation, which could lead to less efficient code 
than that produced in a non-incremental environment .. 

This work addresses the problem of incrementally gener
ating high quality target code by further extending fine
grained incremental compilation, using techniques that are 
compatible with traditional compilers. 10 To be widely applica
ble, this work concentrates on local and global register alloca
tion, the machine independent phases of target code gener
ation. The machine dependent task of instruction selection is 
handled by pattern matching on a set of templates. A goal of 
the work is that the incrementally generated code be similar 
in quality to that produced by non-incremental compilers. 

In order to help meet the goal of high quality code, the 
incremental unit chosen is the three-address intermediate 
statement, thus supporting commonly used register heuristics 
and machine independent optimizations. The intermediate 
representation of the source program is the standard control 
flow graph with nodes that are basic blocks. 11 A change in 
the source program is represented by a set of changes to 
intermediate code statements. We assume the target code is 
2-operand register-based assembly code that has not been 
peephole optimized. The available general purpose registers 
are assumed to be partitioned into two sets, one set for local 
allocation and the other for global allocation. A local register 
is allocated for use within a basic block; a global register is 
allocated for use across several basic blocks. In keeping with 
the goal of high quality code, the value of a variable is kept in 
a register until it has no more uses or until a register is needed 
and there are none available. 



668 National Computer Conference, 1987 

OVERVIEW 

This paper describes the overall design and implementation 
of an incremental code generator of optimized target code. 
The first step in this work is to analyze how various changes 
to intermediate code statements affect the target code and, in 
particular, the register allocation. Both changes that affect 
statements within the basic block and those that affect the 
control flow graph structure are considered. One use of this 
analysis is to determine the information that should be 
gathered and maintained to permit incrementally changing 
instructions and register allocations. To make incremental 
changes, a record of register usage is necessary, so a model 
that represents the mapping of variables into physical registers 
is developed. And lastly, techniques are developed to incre
mentally update target code instructions, the model of register 
usage, and register allocations. This produces either target 
code or attributes the intermediate code with information 
about the target code that can be used to generate target code 
when execution is demanded. 

ANALYSIS OF EFFECTS OF PROGRAM EDITS 

When a source code statement is edited, the incremental com
piler front end performs incremental syntactic and semantic 
analyses and creates a list of intermediate code statement 
insertions and deletions and a list of flow graph changes for 
the incremental code generator. To determine the effect that 
a change has on target code and incrementally incorporate the 
change, we make the distinction between a variable and the 
value of a variable, termed a name. A span of a name in a 
basic block consists of all its occurrences in the block. A name 
in a program can either have global extent or local extent, 
based on its usage. A name has local extent if all uses of the 
name are confined to the defining basic block; otherwise it has 
global extent. 

Each name span in a basic block is mapped into a local or 
global physical register. For efficiency, if a name X with local 
extent gives up its register at its last use in the basic block to 
the result Yof an operation, then both X and Y would be 
mapped into the same register. A name with global extent has 
a name span in each block that has an occurrence of the name. 
This sequence of name spans forms a global span, which is the 
unit for global register allocation. 

The mapping of names into the available local and global 
registers is performed using a register allocation heuristic. All 
names with local extent have local allocation, although 'the 
span of a local name may have to give up its register because 
of competition for registers. If insufficient global registers are 
available, a variable with global extent may have local alloca
tion rather than global allocation, necessitating a "spill" from 
a register to memory. Spill code stores definitions of a spilled 
variable and then loads the value of the spilled variable into 
a register at its next use. 

We examine the direct effects which include modifying the 
target code and register allocations for the changed statement 
and then consider the indirect effects which are moC;ifications 
to other target code and register allocations, not marked as 
being changed by the edit. When a program edit causes the 

deletion of an intermediate code statement, the direct effect 
is the deletion of the corresponding target code instructions. 
In a system that does not keep values in registers across source 
code statements and does not include target code optimiza
tions, this would be the extent of the target code changes. 
Similarly, the insertion of an intermediate code statement 
would result in the generation and insertion of the appropriate 
target code. In neither case would any other ~arget code be 
affected. However, when the code generation scheme in
cludes efficient use of registers and target code optimizations, 
intermediate code changes also cause indirect effects. 

Changes That Affect One Basic Block 

We first consider changes whose direct and indirect effects 
are local to the basic block that contains the change and thus 
have no effect on target code or register allocation in other 
blocks. Since values are kept in registers between source code 
statements, if a variable in a changed intermediate code state
ment is at the beginning or at the end of a span of uses of that 
variable, then the change can affect the register allocation by 
extending or reducing the span. These modifications can also 
result in creating or removing spills and in reassigning a phys
ical register for that span of uses. 

The indirect effects for locally allocated variables generally 
involve the target code for the intermediate code statements 
that correspond to the last and next occurrences in the basic 
block of the variables in the altered intermediate code state
ment. These changes consist of inserting or deleting target in
structions that move variables between memory and registers. 

Since the code generation scheme being considered in
cludes the efficiency of storing only the last definition of a 
variable in a basic block, we must be able to mark each inter
mediate code statement that stores its result and update this 
information in response to a change. When a statement is 
marked for deletion and contains the last definition of a vari
able X in the basic block, then the previous definition of X 
must be marked as a store and a store instruction added to its 
target code. If the statement is an insertion, then the store 
status of the previous definition of X must be changed and the 
target code that stored it to memory deleted. 

If a changed statement contains the first occurrence in the 
basic block of a variable X, then it must be determined if 
changes, such as the insertion or deletion of an instruction that 
loads a register, must be made to the target code for the next 
use of this variable. For example, if the statement containing 
X is to be deleted and X has a next use, then target code must 
be inserted at the next use to load X from memory to a 
register. 

If the insertion or deletion of an intermediate code state
ment that contains a variable X results in a change in the local 
liveness (a value of X is locally live if it has a further use in the 
basic block) of the last occurrence of X, then target code may 
be changed at the statement that contains the last occurrence 
of X. Given the intermediate code statement Z : = X + Y, if X 
is not locally live, then the result Z can be generated in the 
register that contains X. However, if X is live, then the value 
of X should be copied to a new register and the result Z 
computed in the new register. Thus, a change in the liveness 



of a variable that is a first operand can result in changes in the 
number of registers necessary to compute the statement, in 
the span of uses for the variable and possibly in the physical 
register allocations. 

The effects of changes on the name spans and register 
allocation are illustrated by an example. In Figure 1, we 
examine the effects of increasing the length of a name span. 
Figure 1a represents a basic block with each circle denoting 
an occurrence of a variable. The spans A, B, C, and D are 
assigned local registers LR 1, LR2, LR 1, and LR2, respec
tively, which is an optimal register assignment for this block. 
However, when the span B is lengthened, so that Band D 
overlap, these spans cannot both be assigned LR2. If a third 
register LR3 is available, then the assignment in Figure l(b) 
can be made and the register number in the target code is 
altered. When a third register is not available, span B is 
spilled, so that a register is freed, as in Figure l(c), and spill 
code is inserted. 

Changes That Affect Several Basic Blocks 

In a scheme that includes global register allocation, a 
change to an intermediate code statement can affect the target 
code in a number of blocks. A change affecting a control 
statement can produce a change in the flow graph such as the 
insertion or deletion of an edge or a node, or the merging or 
splitting of a node. This may result in altering the extent of 
variables and the size of name spans, as well as reallocation 
of global and local registers. 

Program changes can alter the span of occurrences of a 
name in the following ways: 

1. create a new name 
2. delete a name 
3. change the length of the span of occurrences of a name 

such that 
a. the extent remains unchanged 
b. the extent changes from local to global or global to 

local 
4. change the priority of a name for global allocation 

A name with global extent and allocation is assigned a 
global register for the basic blocks in its global span. The 
effects of changing the length of a global span are similar to 
the local example in Figure 1. The results of changing the 
extent of a name from global to local are shown in Figure 2. 
The names X and Yare defined respectively at statements Si 
and Sj in block B 1, and the only uses of these definitions 
outside B1 are in B2. Although both X and Y have global 

A 
LR1-

B 
LR2 

LR1 

LR2 

Ca) 

C 

D 

A 
LR1-

B 
LR3 

LR1 

LR2 

C 

D 

A 
LR1-

B 
LR2 -- LR1· 

LR1 

LR2 

CC) 

C 

D 

Figure I-Name spans and register assignments 

Incremental Generation of High-quality Target Code 669 

extent, X has global allocation and resides in register GR 1, Y 
has local allocation and is assigned registers LR 1 in Bland 
LR 2 in B 2 (see Figure 2( a». The deletion of the only use of 
X at Sk in B2 changes the extent of X from global to local, 
which frees the register G R 1 in Bland B 2 and requires that 
a local register be found for X in B 1. Since X no longer has 
global extent, its span is deleted from the set of global spans, 
which allows Y to be globally allocated and assigned register 
GR 1. The spill code for Yin Bland B2 is removed. 

The changes to the name spans for block Blare the de
letion of a span with local allocation for Y and insertion of a 
span with local extent and allocation for X. The change to the 
name spans in B 2 is the deletion of the span for Y. In both 
blocks, these changes may cause creation or removal of spills 
and changes in register allocation. The changed register as
signments are shown in Figure 2(b). 

From this analysis of changes to variables with local and 
global allocation, it is evident that a solution to the incre
mental code generation problem requires the gathering of 
pertinent information, the development of models to repre
sent this information, and the creation of techniques to update 
the models in response to a change. The models and algo
rithms must be able to perform these functions: 

1. maintain a mapping between the intermediate code and 
the target code instructions 

2. determine name spans and whether the name has local 
or global extent 

3. determine allocation and physical register assignment of 
name spans 

4. detect register spills 

INFORMATION STRUCTURES AND MODELS 

Based on the characteristics of the system and on the analyses 
of the direct and indirect effects of a change in an intermediate 
code statement, the allocation of registers through a coloring 
scheme was found to be particularly suitable in an incremental 
setting. Coloring in this work is applied to local register alloca
tion as well as global allocation, 12,13 although the techniques 
for incremental allocation of global registers using coloring 
are valid without local coloring. Thus, the following models 

Si D GR1 Si n LR1 

B1 B1 

Sj Y:= LR1 Sj GR1 

F Sk := X GR1 Sk 

B2 := y LR2 B2 GR1 

I I 

before c hangeo after changes 
(a) (b) 

Figure 2-Effects of changing the extent of a span from global to local 



670 National Computer Conference, 1987 

and information structures are developed for use in the in
cremental code generator. 

The information needed about the intermediate code, 
structured as a linear list or a directed acyclic graph, includes: 

1. a mapping between the intermediate code and the target 
code 

2. for each variable in an intermediate code statement-the 
last occurrence, next occurrence, localliveness and the 
register usage 

Since register allocation can be changed by the incremental 
code generator, it is necessary to keep a record of register 
usage. For each basic block, the register usage is represented 
by a list of virtual register spans, each composed of one or 
more name spans. Each virtual register span comprises the 
following information: 

1. the list of name spans that forms this span 
2. a bit to indicate the type of extent of the span 
3. a bit to indicate the class of allocation, i.e. local or global 
4. the physical register assigned to the span 
5. two bits to indicate the spill status of a span 

The extent represents the ideal class of register for a virtual 
register span and the allocation is the actual class of register 
that is assigned to the span. A name with global extent has a 
global span. The global span consists of virtual register spans 
in each block that has an occurrence of the name. Data flow 
information is used to determine the extent of a name. 

Spilling and physical register assignment for virtual register 
spans with either local or global extent are done by building 
interference graphs. The nodes in an interference graph are 
either virtual register spans or global spans, and there is an 
edge between two nodes if the regions of the two spans over
lap. The nodes in a local interference graph are a subset of the 
virtual register spans in that block and contain all those with 
local allocation. The local interference graphs are interval 
graphs and, unlike general graphs, can be optimally colored in 
time linear in the number of edges. 14 

The global interference graph is similar, with a node repre
senting all the virtual register spans in the global span. In 
general, two global spans interfere if a virtual register span of 
one interferes with a virtual span of the other. The global 
interference graph is not an interval graph, so a heuristic is 
used to obtain a good, but not necessarily optimal, coloring. 

INITIAL CODE GENERATION 

When target code is initially generated non-incrementally, 
intermediate code information structures, virtual register 
spans, global spans, and interference graphs are constructed. 
The virtual register spans in the basic blocks are first con
structed. From the traditional data flow information, the ex
tent of the names are determined and the global spans are 
constructed. 

The global spans are sorted according to a priority that 
weights the number of occurrences of the variables in the 

global span by the depth of nesting of the blocks and by the 
number of blocks in the global span. The global interference 
graph, represented as an adjacency matrix, consists of nodes 
that are global spans and edges that represent interferences. 
Two global spans interfere if they have a basic block in com
mon. If there are k global registers, then any node with fewer 
than k interferences can always be colored, since its neighbors 
will use at most k - 1 registers. Such nodes are called un
constrained nodes; nodes with k or more interferences are 
constrained. The interference graph is colored by assigning 
registers to the constrained nodes with highest priority until 
all the nodes are colored or until no more nodes can be 
colored. Constrained nodes that are not colored are locally 
allocated and will compete for local registers in each basic 
block of their global span. Finally the unconstrained nodes are 
colored. 

After the global spans have been allocated, the local inter
ference graph, represented as an adjacency matrix, is built for 
each basic block. In the construction of the graph, if adding 
a node causes that number of interferences to exceed k, the 
number of local registers, then one of the registers must be 
spilled. Common heuristics for local register allocation in
clude spilling the span least recently used, the span least re
cently loaded, the span with fewest remaining uses or the span 
with next use furthest in the future. Regardless of the heuristic 
used to determine which span should be spilled, spilling in
volves splitting a virtual register span into two virtual spans 
and inserting spill code in the target code. When spilling is 
done, the second part of the spilled virtual register span be
comes a new node. Spilling ensures that the interference 
graph can be colored with k colors; that is, that the virtual 
register spans can be mapped into k physical local registers. 

After a k-colorable graph is constructed, it is colored by 
assigning a local register to each node, in the order that each 
was added to the graph. The graph can be colored in 0 ( I E I ) 
time since each edge is represented only once in the graph and 
each edge is only considered once. After coloring, the target 
code for the basic block is generated, using the physical reg
ister assignments obtained from both global and local graph 
coloring. 

Figures 3 and 4 illustrate the data structures for a basic 
block in which all the variables have local register allocation. 
Figure 3 is the intermediate and target code for a basic block. 
In Figure 4, virtual register spans and the adjacency matrix 

I.\TER.\J EDIA TE CODE 

1. A: B - C 

2. C:= C - A 

3. A:= B - C 

4. X:~ A - Z 

TARGET CODE 

\10VEB Rl 
\10VE C R2 
'dOVE Rl R3 
ADD R2 H3 

ADD R3 R2 
\10VE R2 C 

ADD R2 RI 
\lO\"E HI A 

\10VE Z R2 
ADD R2 Rl 
\clOVE RI X 

Figure 3-Intermediate code and target code for a basic block 
before changes 



Virtual span 1 

Virtual span 2 

Yirtual span 3 

Virtual span 4 

B 

C 

~ 
A 

C>------{) 

oZ 

Intermediate Code Statement 

:'\ode 1 2 3 4 I Register 

I Rl 
I R2 

I 

R3 
R2 

1 
o 0 

Figure 4---Virtual register spans, local interference graph and physical 
registers before changes 

are shown. The matrix indicates that nodes one and two over
lap, that node three interferes with nodes one and two, and 
that node four overlaps node one. Without spilling, this graph 
can be colored with three registers; the physical register as
signments are indicated. 

INCREMENTAL TECHNIQUES 

Using the analyses and the models described above, algo
rithms have been developed to incrementally generate target 
code for a group of changes to intermediate code statements. 
In the incremental process, the values of the affected inter
mediate code attributes are changed, target code is inserted 
and deleted, and virtual register spans, global spans, and 
physical register allocations are changed. These algorithms 
produce code that is of similar quality to that produced in a 
non-incremental environment, since they detect the destruc
tion and creation of opportunities to use registers efficiently. 
The algorithm for the incremental process is outlined below. 

ALGORITHM: GLOBALPROCESS_CHANGES. 

This algorithm processes a list of changes in a procedure P. 
The changes are insertions and deletions of statements in a 
basic block B and changes in the flow graph. 

BEGIN {GLOBALYROCESS_CHANGES} 

For each basic block B with intermediate code changes DO 
BEGIN 

FOR each quad q that is marked 'delete' or 'insert' DO 
Update_Quad_Information(q); 

FOR each quad q that is changed DO 
IF (q is marked 'delete') THEN 
Update_ VirtuaLReg...l)elete( q) 
ELSE Update_ VirtuaLRegJnsert(q); 

END; 

FOR each change C in the flow graph DO 
ProcessYlow_GraplLChanges( C); 

Update_GlobaLAdj.-Matrix; 
ReColoLGlobaLAdj.-Matrix; 

Incremental Generation of High-quality Target Code 671 

FOR each basic block B marked as changed DO BEGIN 
Update~ocaLAdj.-Matrix(B); 

ReColor~ocaLAdj~atrix(B) ; 
Update_ TargeLCode(B); 

END; 
END.{GLOBALYROCESS_CHANGES} 

Changes to Locally Allocated Variables 

The incremental process for variables with local register 
allocation is illustrated by inserting an intermediate code 

-statement in the example described in Figures 3 and 4, and 
incrementally updating the information structure, the virtual 
register spans, the local adjacency matrix and the target code. 
We assume that three physical registers are available for local 
'allocation. 

To insert the statement Z : = B + A before statement 1 in 
Figure 3, the following is done. Since the inserted statement 
becomes the first statement in the basic block, none of its 
variables has a last occurrence. Statement 0 is marked to store 
its result as this is the only definition of Z in the block. 

The next occurrence of A is a definition at statement 1, so 
A is not locally live and a new virtual span is created for it. The 
variable B is locally live since it has a next use at statement 1, 
and it will become part of the virtual span that includes B at 
statement 1. As an indirect effect, the target code for state
ment 1 is marked to remove the instruction that loads B from 
memory. The result Z has a next use at statement 4, so Z is 
locally live and will become part of the virtual span that is a 
use of Z at statement 4. The target code for statement 4 is 
marked to remove the instruction that loads Z from memory. 

Figure 5 shows the updated virtual spans and the updated 
adjacency matrix. When span 3 is added to the matrix, it 
overlaps three other nodes so four physical registers are 
needed. Since only three registers are available, one virtual 
span must be spilled. Virtual spans 1 and 2 are used at the start 
of span 3, so only span 4 can be spilled. 

Span 4 is broken into span 4A with range [0,0] and span 4B 
with range [4,4]. The adjacency matrix after spilling is also 
shown in Figure 5. Z is spilled, and statement 1 is checked to 

Virtual span 1 

Virtual span 2 

Virtual span 3 

Virtual span 4 

Virtual span 5 

C 

~ 
~ 

Z 
0- - - - - - - - - - - - --0 

oA 

Intermediate Code Statement 

:'<lode 11 4 5 2 3 

I , 
4 I I 
5 : I 
2 I o 
3 I o I 

Before spills 

:\ode I I 4A 5 2 3 4B I Register 

I 
4A 
5 
2 
3 

4B 

I 

RI 
R3 
R2 
R2 

6 0 I ~~ 
After spills 

Figure 5-Virtual register spans, interference graph and physical registers 
after changes 



672 National Computer Conference, 1987 

see if the value of Z in memory is current. Statement 4 is 
marked to insert an instruction to load Z from memory. The 
updated adjacency matrix is incrementally colored by examin
ing the changed nodes and keeping their old colors if possible. 
The intermediate code, the old target code and the updated 
target code are shown in Figure 6. 

Incremental Global Coloring 

When a change involves variables with global extent, the 
incremental process may include creating, deleting, merging, 
and splitting global spans, and updating and recoloring the 
global adjacency matrix. Although similar to local changes, 
the algorithms for incorporating these changes are more com
plex since one change can affect several basic blocks. In addi
tion, the global interference graph is not an interval graph, 
since two virtual spans may represent parallel regions in the 
control flow graph and cannot be ordered. To give a flavor of 
the technique, we briefly describe the incremental coloring 
algorithm. 

The incremental global update algorithm processes 
changed nodes in order of their priority. Changes to nodes in 
the graph include deletion, insertion, change in the length of 
a span, increase in priority and decrease in priority. The dele
tion of a node Ni that has global allocation causes each of its 
neighbors with lower priority and local allocation to be 
marked for recoloring since the global register assigned to Ni 
is available to another span. The deletion will also reduce the 
number of interferences for each neighbor and may change 
some constrained nodes to unconstrained. When the priority 
of a node with local allocation is increased, or the priority of 
a node with global allocation is decreased, the node is marked 
for recoloring. Similar changes are made when a node is in
serted and when the size of the span of a node is changed. 
After all changed nodes have been processed, nodes with local 
allocation that are now unconstrained have their allocation 
changed to global and are marked for recoloring. 

Recoloring is done in order of decreasing priority. A con
strained node Ni, marked for recoloring, is globally allocated 

INTERMEDIATE CODE OLD TARGET CODE SEW TARGET CODE 

O. Z:= B - A 

I. A:= B - C 

2. C:= C - A 

3. A:= B ~ C 

4. X:= A - Z 

\IOVERRI 
\10VE C R2 
MOVE RI R3 
ADD R2 R3 

ADD R3 R2 
\IOVE R2 C 

ADD R2 Rl 
\10\"E RI A 

\10VE Z R2 
ADD R2 RI 
\10VE RI X 

MOVE B RI 
:'IIOVE A R3 
\10VE R3 R2 
ADD R3 R2 
\10\"E R2 Z 

\10\"E C R2 
\lOVE RI R3 
ADD R2 R3 

ADD R3 R2 
\10VE R2 C 

ADD R2 RI 
\10VE RI A 

\IO\'E Z R2 
ADD R2 RI 
\lOVE RI X 

Figure 6-Intermediate code and target code after changes 

if there is a color that is not used by its higher priority neigh
bors, or else it will be locally allocated. When a color is 
available for a node, the colors of its neighbors with lower 
priority are checked to see if the color is being used. If the 
color is in use by a neighbor, this neighbor is marked for 
recoloring. Since nodes are recolored in order of their priority 
and a neighbor with higher priority is never disturbed, in
cremental recoloring can be done in one pass. 

PERFORMANCE AND IMPLEMENTATION 

To experimentally evaluate the performance of the incremen
tal code generator, a prototype of the system has been imple
mented for the V AXl780 as well as a non-incremental code 
generator that uses the same register allocation heuristics. 
The performance of the incremental syst~m is evaluated by: 

1. comparing the quality of the target code that is produced 
by the incremental system versus that produced non
incrementally 

2. measuring the savings in compilation time when a 
change is incorporated incrementally rather than regen
erating the target code 

The implementation uses the front end of an ADA compiler 
to generate 3-address intermediate code. A data flow analyzer 
then creates data and control flow information for the inter
mediate code, and the non-incremental target code generator 
creates the virtual registers, global spans and target code for 
the program. 

The incremental code generator takes as input the struc
tures built by the non-incremental code genei"ator and a list of 
program changes and incrementally incorporates the local and 
global changes. Although the code produced by the two sys
tems may not be identical, when it differs, it is only in the 
physical register assignments. 

Experimental studies done so far indicate savings of from 
40% to 80% when approximately 4% of the intermediate 
code is changed. Edits that involve only local changes and 
those that include both local and global changes were both 
tested. The results for both types of changes are in the same 
range. The variance in the results is based on the perturbation 
caused by the changes. If a change is local and involves a 
virtual register span that is at the beginning of the basic block, 
it is more likely to disrupt the register allocation for that basic 
block than is a change that occurs at the end of the block. 
Likewise, a change in a high-priority global span that has 
many interferences will disrupt its neighbors more than a 
change in a low-priority span that has few interferences. Work 
is currently underway on categorizing the changes that are 
well-suited for incremental target code generation. 

ACKNOWLEDGMENTS 

This work was partially supported by NSF under Grant DCR 
811934. 



REFERENCES 

1. Harrison, W.H. "Position Paper on Optimizing Compilers." Conference 
Record of the Eighth Annual ACM Symposium on POPL, (1981), pp. 
88-89. 

2. Feiler, P.H. and R. Medina-Mora. "An Incremental Programming Envi
ronment." 5th International Conference on Software Engineering, (1981), 
pp.44-53. 

3. Fritzson, P. "Preliminary Experience from the DICE System-A Distrib
uted Incremental Compiling Environment." Symposium on Practical Soft
ware Development Environments, (1984), pp. 113-123. 

4. Ford, R. and D. Sawamiphakdi. "A Greedy Concurrent Approach to Incre
mental Code Generation." Conference Record of the Twelfth Annual ACM 
Symposium on POPL, (1985), pp. 165-178. 

5. Schwartz, M.D., N.M. Delisle and V.S. Begwami. "Incremental Compila
tion in Magpie." Proceedings of SIGPLAN '84 Symposium on Compiler 
Construction, (1984), pp. 122-131. 

6. Reiss, S.P. "An Approach to Incremental Compilation." Proceedings of 
SIGPLAN '84 Symposium on Compiler Construction, (1984), pp. 144-151. 

7. Pollock, L.L. and M.L. Soffa. "Incremental Compilation of Locally Opti
mized Code." Conference Record of the Twelfth Annual ACM Symposium 
on POPL, (1985), pp. 152-164. 

Incremental Generation of High-quality Target Code 673 

8. Pollock, L.L. and M.L. Soffa. "INCROMINT-An Incremental Optimizer 
for Machine-Independent Transformations." Proceedings of SOFTFAIR 
II-A Second Conference on Software Development Tools, Techniques, and 
Alternatives, 1985. 

9. Pollock, L.L. "An Approach to Incremental Compilation of Optimized 
Code." Ph.D. Dissertation, Department of Computer Science, University 
of Pittsburgh, 1986. 

10. Bivens, M.P. "Incremental Generation of High-Quality Target Code." 
Ph.D. Dissertation, Department of Computer Science, University of 
Pittsburgh, 1987. 

11. Aho, A.V., R. Sethi, and J.D. Ullman. Compilers Principles, Techniques, 
and Tools. Reading, MA: Addison-Wesley Publishing Company, 1986. 

12. Chow, F. and J. Hennessy. "Register Allocation by Priority-based Color
ing." Proceedings of SIGPLAN '84 Symposium on Compiler Construction, 
(1984), pp. 222-232. 

13. Chaitin, G.J. "Register Allocation and Spilling Via Graph Coloring." Pro
ceedings of SIGPLAN '82 Symposium on Compiler Construction, (1982), 
pp.98-105. 

14. Even, S. Graph Algorithms. Rockville, MD: Computer Science Press, 
1979. 





Ripple effect analysis based on semantic information 

byJAMESS.COLLOFELLO 
Arizona State University 
Tempe, Arizona 
and 
D.A. VENNERGRUND 
TRW Federal Systems Group 
Fairfax, Virginia 

ABSTRACT 

Maintenance of large-scale software systems is a complex and expensive process. 
This process is often unreliable due to the ripple effect of modifications in one 
component of the system adversely affecting other components. Although syntactic 
techniques exist for tracing ripple effect, their results are often crude and require 
considerable interpretation by maintenance personnel. In this paper, a prototype 
ripple effect analysis tool based on both syntactic and semantic information will be 
described. This tool enables maintenance expertise to be captured in the form of 
semantic conditions which can then be linked to· syntactic components. The ripple 
effect tool can then guide the maintenance personnel in tracing ripple effect as a 
consequence of a program modification. The functional capabilities of this tool are 
presented in this paper as well as an overview of the tool's architecture. Some 
experience with the tool as well as suggestions for future research are noted. 

675 





Ripple Effect Analysis Based on Semantic Information 677 

BACKGROUND 

The development and maintenance of large software systems 
is a difficult and complex task, compounded by both technical 
and management factors including the size and complexity 
of the software system and the teams developing it. Today's 
larger systems contain thousands of software and hardware 
components developed by large teams with varying levels of 
experience. Development may take years with maintenance of 
many systems spanning decades. Ensuring a working system 
over long development and maintenance life spans is a diffi-
cult task. . ---

A major software engineering concern is that software 
maintenance accounts for such a large percentage of the 
total cost of software systems. J. Martin, C. McClure, and 
B. Patkau11, 15 estimate that from 40% to 80% of a system's 
cost is maintenance, costs incurred after the initial release. 
The goal of several software engineering techniques and re
search methods3, 11,20 is to lower this cost. 

Software maintenance, in this context, encompasses the 
correction of incorrect software, the adaptation of software to 
a new or changing environment, the perfection of software, 
and the addition of new software. In short, software mainte
nance can be defined to be any change made to an existing 
software system. With this definition, a model of software 
maintenance can be described. 

The software maintenance model proposed in "Ripple 
Effect Analysis of Software Maintenance,,25 provides a useful 
basis for describing the software maintenance process. The 
model presents four phases followed to make a change: under
stand the software, propose a solution, account for ripple 
effect, and test the solution in the system. Each of these tasks 
is difficult and requires a great deal of knowledge about the 
system under maintenance. Unfortunately most of this knowl
edge is experiential, unformalized, and thus unavailable to the 
novice maintainer. 

The software maintenance tasks are difficult to begin with; 
compound this with out-of-date and incomplete info~ation, 
high turnover rates of experienced designers, inexpenenced 
designers assigned to maintenance, and a cumbersome meth
odology, and the tasks become very costly. 

Improvements to the difficult task of software maintenance 
can be made by providing formalization in the form of auto
mated assistance. Tools are needed for each of the software 
maintenance tasks including: creating, managing, and storing 
maintenance information, suggesting solutions, verifying 
changes, and enforcing methodologies. With such tools and 
information, a body of knowledge useful for software mainte
nance can be built and maintained for future generations of 
maintainers. 

Few such tools exist to date. Most maintenance activity is 
accomplished with the aid of a minimal toolset containing a 
text editor and a compiler. More advanced maintenance envi
ronments may contain syntax-directed editors, diagnostic 
compilers, change tracking data basesy design languages, on
line documentation relating to requirements, design and test
ing information, and various metric and syntax analysis tools. 
Such tools might include data and control flow mappers, 
symbol cross-references, data dictionaries, ripple effect ana
lyzers, code auditors, and complexity analyzers. Fewenviron
ments provide a coherent integration of these tools and fewer 
still capture and provide experiential knowledge of the sys
tem under maintenance. Semantic information is desperately 
needed to perform effective software maintenance. 

The remainder of this paper focuses on the providing some 
experiential information to the novice in one task, ripple 
effect analysis, the process of examining system software for 
impacts that may result from changes. A tool which ties se
mantic information to syntax information based on today's 
systems is described. 

CURRENT RIPPLE EFFECT ANALYSIS 
TECHNIQUES AND TOOLS 

Analyzing the effects of change on software is a difficult task, 
complicated by program size, complexity, and information 
hiding. Complicating factors external to the program include: 
multiple representations of information, out-of-date docu
mentation, undocumented previous changes, and difficulty in 
tracing code to the design and requirements. Several ripple 
effect analysis tools and techniques are known, and two dis
tinct categories of these tools can be identified. 

The first, syntax-based ripple effect analysis techniques, 
work on source code representations alone. These techniques 
determine the effects of changes by examining syntax infor
mation like control and data flow. The second, semantic
based ripple effect analysis techniques, work on higher-level 
information not derivable from the source. This semantic in
formation reflects the intent of a program and represents 
knowledge of the basic assumptions which must be true for 
the correct operation of the system. 

There are many differences between these two strategies; 
syntactic information is easily derived from the source code, 
semantic information is difficult to derive, and difficult to 
verify. Analysis based solely on syntactic information is worst 
case, and may implicate many sections of code not truly af
fected, whereas semantic analysis can pinpoint effects more 
precisely at the cost of being incomplete. Semantic informa-



678 National Computer Conference, 1987 

tion is informal and manually-derived, thus any analysis based 
on it is incomplete at best. 

Syntax Methods 

The most basic ripple effect analysis method, manual in
spection, is performed with no tools except perhaps a text 
editor. This method is the most labor-intensive and incom
plete yet it is widely practiced in industry. Automatically de
rived control and data flow information8

, 14,24 help the manual 
inspection method by providing details on the possible propo
gation of the change. Program data bases2

, 17 are useful change 
impact tools since they provide a consistent representation of 
program information which can be queried. Data dictionaries 
and symbol cross-references are basic program data bases. 
Tools like DAVE, 13 FASTS and ISUS9 detect certain ripple 
effect errors in a data base query fashion. 

Typestate19 and Assertion statemeneo methods are also use
ful in detecting ripple effect at compile and run-time. Both 
methods detect nonsensical errors, many caused by ripple 
effect. The highest level of syntax analysis is embodied in 
logical ripple effect analysis tools22

, 23, 25 which are focused on 
determining the worst case extent of change effects. The 
weakness of this method is that in large systems it produces 
far too much information. The need to reason about change 
is apparent. 

Semantic Methods 

Semantic methods attempt to reason about the meaning 
of changes. Many approaches have been taken to meet this 
task. 1

,6, 7, to, 12 Each recognizes the need to represent and use 
knowledge of the application domain as well as the program
ming language. Formalizing this kind of knowledge is a diffi
cult task, as represented by the many varied approaches. Each 
of these approaches require the following: 

1. Formal representations for requirements, design and re-
lated documentation 

2. Formal representations of programming constructs 
3. Methods for manipulating all representations 
4. Methods for relating all representations 
5. Methods for acquiring the representations 

The trend in ripple effect analysis, as well as software en
gineering, is toward representing and using higher level con
cepts. The conceptual leap from assembler to high-level lan
guages opened a new world of programming opportunities. A 
similar jump to another level of languages has been predicted 
and anticipated for years. Studies in artificial intelligence, 
data base technology, conceptual modeling and cognitive sci
ences all attempt to answer the basic questions which will 
open the door to higher-level language programming: How to 
represent knowledge, and how to reason with knowledge. 

Recent success and popularity in the expert system subfield 
of artificial intelligence has sparked a new euphoria. The 
appiication of expert system technology is appropriate for 
limited domains of knowledge, problems already solvable by 

a set of best guesses, or heuristics. Unfortunately, most of the 
problems associated with reasoning about computer programs 
remain unsolved, or contain far too much knowledge to be 
represented. 

In the ripple effect problem, many interesting pieces may 
be solved with expert system technology. The derivation of 
interesting, subtle or confusing dependencies can be based on 
knowledge of programming constructs and application intent. 
Such dependencies could be partially derived from source 
comments and design documents. Smart documentation assis
tants, as described in the Intelligent Program Editor18 and the 
Programmer's Apprentice16

,21 are essential to the organiza
tion and derivation of such dependency information. 

Change propagation libraries may also be amenable to 
expert system technology. Such libraries would contain a 
pattern-matchable description of all manner of ripple effects, 
both logical and performance. Thus when a certain change is 
made, the change propagation knowledge base can pinpoint 
with best guesses all effected components. 

Unlikely expert system applications include the derivation 
of semantic impact from a syntax change. To understand the 
effects of a change, a semantic representation of the change 
must also be made. No method for inferring the meaning of 
a change, based on syntax alone is possible. 

Other approaches to semantic representation are found in 
the integration of software engineering environments. Based 
on data base techniques, this approach can model any rela
tionship and enforce any constraint. Thus semantic informa
tion is able to be represented and manipulated. Conceptually, 
then, the knowledge-based approach and integrated environ
ment are equivalent. Clearly, in order to reason about mean
ing we need to represent meaning. 

A PROPOSED SEMANTIC INFORMATION TOOL 

Introduction 

The existing software base is a significant asset, and little of 
it contains any semantic information. Reasoning about this 
software is a difficult and mostly manual task. Providing auto
mated assistance to the maintenance of such programs is the 
goal of today's tools. Semantic annotations of syntactic rela
tionships is a first step towards incorporating information use
ful in formalizing the meaning of syntax. Later steps will build 
on this information until a new development paradigm1

,7 

evolves. This incremental development of support tools, that 
transform today's meaningless programs into tomorrow's 
meaningful programs, is a viable approach. 

A tool which can provide the maintainer with up-to-date 
semantic information tied directly to source code and express 
the meaning of the source is necessary for the efficient and 
effective analysis of ripple effect. The many approaches to this 
need were discussed in the previous section. Yet most of the 
approaches cannot be applied to today's software base, be
cause they are designed for symbolic languages and specially 
created programs. Examples include the formally verified 
programs built by the Designer/Verifier's Assistane2 and the 
Programmer's Assistant. 21 



Ripple Effect Analysis Based on Semantic Information 679 

A tool that captures and presents semantic information 
directly related to program dependencies is now described. 
The tool, Semantic Information Tool (SEMIT), is targeted for 
the majority of today's software systems written in imperative, 
high-level programming languages. 

Imperative programming languages achieve their primary 
effect by changing the state of variables with assignment state
ments. Since ripple effect is propogated through the path of 
variable assignments, a documentation of critical assignment 
statements will aid ripple effect analysis. 

SEMIT addresses programs with these characteristics by 
assuming an imperative-based syntax analysis, creating a syn
tax and semantic data base, and directly linking the semantic 
information to the program syntax. The combination of se
mantic information and program source present a model of 
the program that can grow with software maintenance. 

SEMIT Overview 

SEMIT provides the ability to link semantic information 
to source code by representing the syntax in a relational for
mat which captures data flow dependencies and any useful 
descriptions of the dependency in the form of semantic con
ditions. Semantic conditions are assumptions or assertions 
about data item properties or program states. Examples in
clude, "the array is sorted," and "the input value is non
negative. " 

The conceptual model of SEMIT is based on the Semantic 
NET.lO A network records all syntax relations. Logical rela
tions describe key information derived from procedures and 
data. Figure 1 shows a simple network for a procedure 
FIND_TOP_SALESPERSON. Procedures and data items 
are represented by boxes, relations between them with arcs. 
Note how the relationships between the procedure and other 
program components are represented with relations. Modi
fied data, used data, called procedures, and passed parame
ters are easily represented. These relations are strong enough 
to describe all possible logical ripple effect paths for inter
procedure cases. 

The syntax in Figure 1 represents the fact that "the proce
dure PRETTY_PRINT is called by the procedure FIND_ 
TOP_SALESPERSON with the parameter TOP _SALES
PERSON which has been modified by the procedure 
FIND_TOP_SALESPERSON." Stated in a set of logical re
lations: 

1. modifies (FIND_TOP_SALESPERSON, 
TOP_SALESPERSON) 

2. calls (FIND_TOP_SALESPERSON, 
PRETTY_PRINT) 

3. calleeL witlLparm (PRETTY_PRINT, 
TOP_SALESPERSON) 

A simplification of this relationship is noted by the exis
tence of a modifies-uses chain between the modification of 
TOP_SALESPERSON by the procedure FIND_TOP_ 
SALESPERSON and the usage of TOP_SALESPERSON by 
the called procedure PRETTY YRINT. There exists a de-

1 Fil't'D JOP _SALESPERSON 1 calls·1 PRETfY]RINT 1 
I I _ , I mcxlifies, I I ",""'-w'!h-_~ 
~ TOP_SALESPERSON ~ 

~------------~ 

Figure 1-8emantic network 

pendency between these two procedures, since a change in the 
procedure FIND_TOP _SALESPERSON in the modification 
of TOP_SALESPERSON may affect the correct operation of 
the procedure PRETTYYRINT. This dependency may be 
stated with the pair of logical relations: 

1. modifies(FIND_TOP_SALESPERSON, 
TOP_SALESPERSON) 

2. uses(PRETTY YRINT , TOP_SALESPERSON) 

Semantic conditions can be used to describe the depen
dency between the modifies and uses relations. A semantic 
condition, for example, may describe the condition estab
lished by the procedure FIND_TOP_SALESPERSON and 
used by the procedure PRETTY_PRINT. Examples include: 
TOP_SALESPERSON must not be the TOP _SALESPER
SON from the previous month, or TOP_SALESPERSON is 
a record containing first and last names. Only the more inter
esting, subtle, or confusing relations need be described. Typi
cal semantic conditions include the assumptions on program 
control, whether an action has been performed or not, and 
constraints on data item values, especially input and output 
parameters. 

If component A establishes a condition and component B 
uses that condition to execute correctly, then component B 
is said to be semantically dependent on the condition estab
lished by component A. Figure 2 illustrates a simple semantic 
condition between a procedure A and procedure B. Proce
dure B depends on procedure A properly sorting the array Y. 
With semantic conditions linked to syntax, the effects of a 
change to syntax can be traced to semantically dependent 
components. In this manner, knowledge of semantic depen
dencies effectively reduces the very large set of possible ripple 
effects to a much smaller set of probable ripple effects. 

The construction of such a base of semantic knowledge 
linked to syntax information will limit ripple effect analysis to 

Semantic 
Component Relation Component Condition 

procedure A modifies data-item Y "Array Yis 
sorted" 

procedure B uses data-item Y "Assumes Array 
Y is sorted" 

procedure B depends-on procedure A "Array Yis 
sorted" 

Figure 2-Semantic dependency 



680 National Computer Conference, 1987 

simple network transversal. When a syntax change affects 
modifies-uses relations, the linked semantic condition is im
plicated. If the maintainer determines the semantic condition 
is still valid, no further analysis occurs. Otherwise a display 
of all the components dependent on the semantic condition is 
presented. The semantic data base will serve as "corporate 
memory," a structured repository for information typically 
embedded and forgotten in comments and supporting docu
mentation. 

Capabilities 

SEMIT provides capabilities to the software maintainer in 
performing the following tasks: linking semantic descriptions 
to syntactic dependencies, using the semantic information in 
ripple effect analysis, and linking semantic conditions to ex
ternal documents. 

Syntax and semantics linked in a semantic data base 

SEMIT creates a semantic data base by deriving default 
syntax relations from the source code, grouping the relations 
into possible dependencies based on modifies-uses paths, and 
then prompts the maintainer to describe the dependent com
ponents with semantic conditions. This keeps semantic and 
syntax information in-step and consistent. 

Semantic ripple effect analysis 

SEMIT provides semantic ripple effect analysis by pre
senting the semantic information in the semantic data base to 
the maintainer. This allows the maintainer to determine the 
effects of change based on both syntax and semantic informa
tion. If a procedure which establishes a semantic condition is 
changed in such a manner as to affect that condition, then all 
other components which depend on that condition are possi
bly impacted. In doing so, the analysis ignores the numerous 
syntactic ripple effects as derived by data and control flow 
analysis and thus focuses the analysis to more probable paths 
as defined by the expert maintainer. 

External documentation mapped to semantic conditions 

Semantic conditions are also useful for describing depen
dencies to system documentation external to the source code. 
These dependencies provide the traceability necessary for 
up-to-date and consistent documentation. The addition of 
one-directional dependencies is an ad-hoc procedure, based 
on the existence and format of existing documentation. The 
maintainer must explicitly describe the dependency, no syn
tactic defaults are derivable. 

Architecture 

The architecture of SEMIT is composed of two basic com
ponents, the Semantic Data Base and the SEMIT system. 
External components include the Source Code and the Syntax 

Analysis module which builds the default Semantic Data 
Base. 

Figure 3 represents the architecture of SEMIT. Note the bi
directional flow of information from the user to the Semantic 
Data Base via the SEMIT Control. This represents the two 
modes of SEMIT usage, adding information and using infor
mation. 

Syntax Analysis 

The Syntax Analysis program builds the initial Semantic 
Data Base based on program control flow and data flow. For 
each procedure in a program, all external data used and modi
fied by the procedure are represented in the network. All data 
item and control flow relations are represented with the fol
lowing relations: 

1. uses (procedure-fiame,data-fiame) 
2. modifies (procedure~ame,dat~name) 
3. calls (procedure~ame ,procedure_name) 

SEMIT Control 

SEMIT Control performs three different functions. It as
sists the annotation of default dependencies with semantic 
conditions, maps syntax changes to semantic conditions, and 
lists the dependent components of changed semantic condi
tions. 

Annotating default dependencies to create semantic condi
tions is the primary knowledge acquisition function of 
SEMIT. The maintainer documents the more interesting syn
tactic or performance dependencies internal to the source, 
and dependencies to external documentation. As the descrip
tion is made, a consistency check is made to insure at most one 
establisher and at least one user of the semantic condition 
exists. 

The Change Analysis function is an interactive tool to aid 
the user in the process of making a change. It maps a syntax 
change to existing semantic conditions if directly linked. The 
impacted conditions are a list of all the semantic conditions 
established by the procedure which may now be inconsistent. 
The user examines the list and filters out those that are still 
valid, then performs dependency analysis on the changed 
conditions. 

The Dependency Analysis function examines the Semantic 
Data Base for all components reliant on the impacted seman
tic condition. It lists those components while prompting the 
maintainer for verification of correctness. SEMIT cannot rea
son about the consistency, and must rely on the maintainer's 

Source 
SYNTAX 

ANALYSIS 
SEMANTIC 
DATABASE 

Figure ~EMIT architecture 

~ 
~ 

* USER 



Ripple Effect Analysis Based on Semantic Information 681 

skill and judgment. Dependency chains may then be followed 
by the maintainer if a change ripples through more than one 
set of dependencies. 

Prototyping Experiences 

SEMIT was proto typed to show the feasibility of the con
cept and model the user interface. A series of adjustments to 
the tool were identified based on the prototype. The first 
observation involved the nature of ripple effect error flow 
and the types of semantic conditions typically entered into 
SEMIT. Examples tended to emphasize modifies and uses 
pairings. Thus a simplification of all syntax relations summa
rized by a modifies-uses pairing seems possible. Annotation of 
these syntax pairs is a simple and useful solution. 

Further understanding of the difficulty of performing se
mantic ripple effect was also discovered in the prototype by 
the attempt to map syntax changes to semantic conditions. 
The prototype only considered the simplest class of syntax 
changes; a modification of an existing source line. SEMIT 
then checked for all the semantic conditions which referred to 
that source line, and considered them impacted. Deleted 
lines, too, were merely mapped to any semantic condition 
which used it. All semantic conditions that were linked to 
source lines after the deletion were implicated. 

A more interesting situation becomes apparent when the 
addition of source lines is considered. In the event of a main
tenance operation which added syntax lines, the prototype 
initially assumed no impact on existing semantic conditions. 
In practice, the adjacent semantic conditions, the conditions 
linked to source before and after the added lines are often 
affected. 

User interface issues were also identified by the prototype 
experience. Menus were useful in coordinating the user activ
ities. A fully interactive interface, however, would provide 
more benefits. Stereotyped action patterns (schemes) which 
lead the user through maintenance actions should be devel
oped. For example, a common scheme involves making a 
syntax change, mapping its impacts to semantic conditions, 
pursuing a breadth-first examination of all primary and sec
ondary dependent components, followed by the iterative ex
amination of all dependent components. Primary dependent 
components are those components directly dependent on a 
particular semantic condition, secondary dependent compo
nents are those components indirectly dependent on a partic
ular semantic condition via dependency on a primary depen
dent component. Other schemes might enforce a particular 
methodology, requesting reports, creation of documentation, 
and communication of impacts to other maintainers. 

In following semantic ripple effects, it quickly became ap
parent that many screens (or windows) are necessary to fully 
understand the current situation. A single screen was used 
with a small work list tracking actions taken and actions to 
take. This list was useful. A more appealing solution would 
utilize multiple windows: displaying source code, the change, 
semantic conditions, users of conditions, and a network of 
related components. Especially important is the need to use 
such a tool from within an editor, thus allowing maintenance 
and analysis in parallel. With such a wide-band of informa-

tion, maintenance would be easier to relate back to the origi
nal change, rather than through a long string of dependent 
impacts. 

Finally, feasibility was shown in the sense that semantic 
information can be stored and used for an approximation to 
semantic ripple effect analysis. The power of the information 
used to reason is only as useful as the information originally 
entered. 

FUTURE RESEARCH 

In the course of prototyping, many ideas toward integrating 
and extending SEMIT surfaced. User interface concerns and 
functional extensions were noted. Considering SEMIT pri
marily as a semantic data base representation of a program's 
dependency information, the following capabilities would 
extend SEMIT into a more useful maintenance tool. 

Incorporate Schema-Driven Assistance. A Software Mainte
nance assistant, similar to the DesignerNerifiers Assistane2 

or the Programmer's Apprentice,21 could lead maintainers 
through the basic tasks of creating and using semantic condi
tions in a mixed-initiative interaction. Schema-driven assis
tance is based on the knowledge of a stereotypical interaction. 
The assistant would lead and follow the maintainer based on 
the type of actions being performed. Such an assistant would 
eventually be knowledgeable of all system documentation and 
helpful in its presentation. 4 

Improve User Interface. A multi-window based approach 
is required to present the wealth of information necessary. 
Work on multiple tasks in the same ripple analysis needs to be 
supported. 

Incorporate Semantic Data Base in A Relational DBMS. 
The prototype of SEMIT does not represent the semantic 
information in a relational manner. However, the semantic 
dependencies are relations between objects, perfectly suited 
for a relatonal data base representation. 

Develop a Relationship Library. The prototype SEMIT cre
ates default dependencies based on syntax analysis alone. The 
relations "modifies," "uses" and "calls" are system defaults. 
Any relation can be represented. A library of the most com
mon and useful relations could be developed. Examples in
clude the performance relationships described in "Ripple 
Effect Analysis of Software Maintenance,,,25 and relation
ships to related documentation external to the source. Auto
matic derivation of some of these relations is possible during 
the syntax analysis stage. 

Integrate Syntax-Directed Editor. A link between an exist
ing semantic data base and a syntax-based editor would pro
vide intelligent editing. Any syntax change made that affected 
a semantic condition could be examined and processed in the 
background unbeknownst to the maintainer. Special consid
erations would be necessary when reasoning about the effects 
of partial changes, and the addition and deletion of source 
lines. 

Provide Analysis Control. Finally, the analysis performed 
by SEMIT should be controllable by the maintainer. Extent 
options might include program, sub-program, or module level 
analysis. Summary information options would limit deep anal
ysis, producing various summary lists of possible impacts. 



682 National Computer Conference, 1987 

REFERENCES 

1. Balzer, R., T. Cheatham and C. Green. "Software technology in the 1990's: 
Using a new paradigm." IEEE Computer, November, 1983. 

2. Blaylock, J. A Syntactic Analyzer for a Maintenance Engineering Environ
ment, Computer Science Department, Arizona State University, 1983. 

3. Boehm, B. Software Engineering Economics, Englewood Cliffs, N.J.: 
Prentice-Hall, Inc., 1981. 

4. Bortman, S. Display of Maintenance Information, Computer Science 
Department, Arizona State University, 1984. 

5. Browne, J. and D. Johnson. "FAST: A second generation program analysis 
system." Proceedings Third International Conference on Software Engi
neering, May, 1978. 

6. Colofello, J. and S. Woodfield. "A proposed software maintenance envi
ronment." Proceedings Software Maintenance Workshop, December, 1983. 

7. Green, C., D. Luckham, R. Balzer, T. Cheatham and C. Rich. "Report 
on a knowledge-based software assistant." Kestrel Institute, RADC-TR-
83-195, August 1983. 

8. Hecht, M. Flow Analysis of Computer Programs, New York: North
Holland, 1977. 

9. Hirschberg, M., W. Frickel, W. Miller. "A semantic update system for 
software maintenance." Proceedings COMPCON, (1979). 

10. !nce, D. "A program design language maintenance tool based on semantic 
nets." Proceedings Software Maintenance Workshop, December, 1983. 

11. Martin, J. and C. McOure. Software Maintenance: The Problem and Its 
Solutions, London: Prentice-Hall, 1983. 

12. Moriconi, M. "A designer/verifier's assistant." IEEE Transactions on Soft
ware Engineering, July, 1979. 

13. Osterweil, L. and L. Fosdick, "DAVE-A validation error detection and 

documentation system for FORTRAN programs." Software Practice and 
Experience, September, 1976. 

14. Oviedo, E. "Control flow, data flow and program complexity." Pro
ceedings IEEE COMPSAC, 1980. 

15. Patkau, B. A Foundation for Software Maintenance, Department of Com
puter Science, University of Toronto, 1983. 

16. Rich, C. and H. Shrobe. "Initial report on a LISP programmer's appren
tice." IEEE Transactions on Software Engineering, November 1978. 

17. Rudmik, A. and D. Vines. "Modeling the static and dynamic properties of 
software engineering projects." GTE Communication Systems, Phoenix, 
Arizona, 1985. 

18. Shapiro, D., J. Dean and B. McCune. "A knowledge base for supporting 
an intelligent program editor." Proceedings IEEE International Conference 
on Software Engineering, March, 1984. 

19. Strom, R. and S. Yemini. "Typestate: A programming language concept 
for enhancing software reliability." IEEE Transactions on Software Engi
neering, January, 1986. 

20. Stucki, L. "New directions in automated tools for improving software qual
ity." Current Trends in Programming Methodology, London: Prentice-Hall, 
1977. 

21. Waters, R. "The programmer's apprentice: Knowledge-based program 
editing." IEEE Transactions on Software Engineering, January, 1982. 

22. Yau, S. "Methodology for Software Maintenance." Northwestern Univer
sity, RADC-TR-83-262, 1984. 

23. Yau, S. and S. Chang. "Estimating logical stability in software mainte
nance." Proceedings IEEE COMPSAC, 1984. 

24. Yau, S. and P. Grabow. "A model for representing the control flow and 
data flow of program modules." Proceedings IEEE COMPSAC, 1980. 

25. Yau, S., J. Collofello, and T. MacGregor. "Ripple effect analysis of soft
ware maintenance." Proceedings IEEE COMPSAC, 1978. 



Computer information system development 
methodologies-a comparative analysis 

by DANIEL T. LEE 
Pan American University 
Edinburg, Texas 

ABSTRACT 

A computer information system is one of the main constructs through which a 
business firm gains a competitive edge over its competitors. Unfortunately, after 
four decades of effort by computer scientists and management specialists, ideal 
methodologies of CIS development are still lacking. The purpose of this paper is to 
conduct a comparative analysis of CIS development methodologies, trace their 
historical evolution, and develop integrated methodologies which can be used for 
logical system design and physical implementation. During the past four decades, 
CIS development methodologies concentrated on structured methods which are 
efficient for small systems, but they will soon be overwhelmed by complex and large 
systems. Only recently, fourth generation languages and automatic design tech
niques have begun to emerge as driving forces in CIS development. This paper tries 
to integrate these new technologies into a unified whole for CIS development. It will 
not only be used for transactional processing, but also for office automation and 
decision support.1 

683 





Computer Information System Development Methodologies 685 

PREFACE 

Computer information system development methodologies 
have evolved through several stages. The information system 
development life cycle (ISDLC) method is one of the most 
widely known methodologies.2 According to Ahituv, the tra
ditional ISDLC has always been a troublesome, complex, 
costly, and time-consuming process. This inadequacy is pri
marily caused by the rigidity of its development process and 
there is no match between its logical design and physical 
implementation. 

In the early days of system analysis and programming, ac
cording to Martin,3 there were few rules other than those of 
the programming language itself. The" methods used In CIS 
development were often inefficient and caused many prob
lems. The structured techniques represented a search for bet
ter methods in system analysis, design, and programming. 
They did improve the quality of programs and system develop
ment but were not building applications fast enough and were 
bogged down by maintenance problems. This led to the devel
opment of new languages, report generators, application gen
erators, database systems, decision support tools, mini-macro 
computers, operating systems, data communication and net
works, multifunctional work stations, automated techniques, 
expert systems, and integrated systems. 

Under automated methodologies computers are used as 
design workbenches for creating, editing, expanding, and 
changing structured diagrams. They can also be used to auto
mate data modeling from system specifications, extract sub
sets of data models for individual applications, check the de
sign being created, and automate the generation of code. 
Automated designs are based on mathematical axioms so that 
the overall design can be mathematically verified. This is an 
extension of structured design; computers can rigorously 
check the entire design, eliminate all misuse of the constructs, 
and automate codes which are bug-free and can be used in 
applications. 

Many tools are involved in the automated methodologies. 
Thes~ tools cannot stand alone for effective function. They 
have to be integrated for combined efforts. The integrated 
methodologies are therefore the last, but not the least, CIS 
development techniques with which strong CIS can be built. 

This paper first discusses traditional ISDLC and follows 
with a discussion of various structured methodologies. Auto
mated design methodologies, iterative design methodologies 
and integrated methodologies are also described. 

TRADITIONAL METHODOLOGIES 

The ISDLC techniques were introduced to the academic com
munity in the 1950s and 60s. According to Awad,4 system 

development revolves around a life cycle that begins with the 
recognition of users' needs. Following a feasibility study, the 
key stages are the evaluation of the present system, informa
tion gathering, costibenefit analysis, detailed design, and 
implementation of the candidate system. Kanter5 illustrates 
the application, development, and implementation cycle as 
being composed of three general phases: analysis, synthesis, 
and implementation. Analysis is defined as the analysis of 
company operation and the division of the total operation into 
logical and workable units for measurement and evaluation. 
Synthesis, the opposite of analysis, begins to combine and 
build the parts or elements into a whole. The implementation 
phase is the "proof of the pudding." The phases of analysis, 
synthesis, and implementation are never-ending cycles. 
Prince6 divides the CIS analysis and design into five phases: 
(1) the planning phase, (2) the organization review and ad
ministrative study phase, (3) the conceptual system design 
phase, (4) the equipment selection and program design phase, 
and (5) the implementation phase. Unfortunately, this method 
almost stops at phase 3, the conceptual system design. The 
descriptions of the methodology are quite clear, but physical 
implementation is lacking. 

Murray7 views the maturation of a system as going through 
the stages of analysis, design, implementation, and operation. 
He conceives of the cycle as beginning with a feasibility study 
that precedes a formal systems analysis. The systems design 
and implementation are followed by operation of the new (or 
revised) system. This cycle may repeat. Ahituv8 summarized 
that the traditional ISDLC typically contains four major 
phases such as definition phase, construction phase, 
implementation phase, and operation phase. Each phase in 
tum consists of several steps. 

Ahituv finished this work in 1982. In 1984 even he admitted 
that, primarily because of the nature of the systems that must 
be built with it, this traditio.nal ISDLC has always been a 
troublesome, complex, costly, and time-consuming process. 

Actually there are hundreds of information systems devel
opment methodologies which follow this established pattern. 
The big flaw of this traditional method is that though the 
phases or steps relating to system analysis and design seem to 
be clear, there is no practical way to bridge the gaps among 
analysis, design, and implementation. Most of the traditional 
design methodologies concentrate on logical system design; it 
is very difficult, if not impossible, to follow up with physical 
implementation. Information technology personnel have 
been trying hard for three decades to find ways out of this 
inadequacy. They found out that the structured techniques 
represent an advancement in information development re
search; it clarifies the many uncertainties embodied in the 
traditional ISDLC and largely bridges the gaps among system 
analysis, design, and implementation. The detailed mech-



686 National Computer Conference, 1987 

anism of the structured techniques is the topic in the following 
section. 

STRUCTURED TECHNIQUES 

Structured techniques evolved from a coding methodology 
(structured programming) into techniques consisting of analy
sis, design, test, project management, and documentation 
tools. According to Martin,3 structured techniques were in
tended to be a step toward changing software-building meth
ods from a manual craft to an engineering discipline. In a 
sense, it is more an attitude than a particular methodology. 

Structured Techniques 

This has evolved into a set of technologies encompassing 
the whole software life cycle. It consists of both technical and 
management issues, ranging from programming to problem 
solving procedures such as structured programming, struc
tured analysis, structured design, automated techniques, and 
computer-aided system analysis. 

Structured programming 

Structured programming focuses on the program itself. It 
involves structured coding, top-down programming, and step
wise refinement. 

Structured analysis 

This is the process of defining the information requirements 
for operation, including system constraints and performance 
requirements. The functions to be performed are precisely 
defined, but how these functions work together is not defined. 
The main output of the analysis is a statement of the function 
specification and information requirements. This statement 
bridges between the system analysis and design because the 
requirements of the system to be built, including functional 
specifications and constraints, are used as input to the design 
process. 

There are two similar versions of structured analysis: Gane 
and Sarson,9 and De Marcolo and Yourdon. ll Both are based 
on structured disciplines such as top-down, bottom-up, 
divide-and-conquer, graphic presentation, and functional de
composition. 

The structured specification is composed of data flow dia
gram (DFD) , processing logic, data store, data dictionary, 
and data immediate access diagram (DIAD). 

A DFD is a network representation of the process (func
tions or procedures) and the data used in this process. It shows 
what a system does, but not how it is done. It is the central 
modeling tool of structured analysis and is used to partition 
the system into a process hierarchy. DFD can be used in a 
top-down design and can be exploded to lower level of details. 

DFD only provides an informal description of the system. 
The data dictionary is used to add rigor to the specification. 
It is a set of formal definitions of all data including data 
elements and data relationships. 

A process specification describes what happens inside a 
process box in a DFD. It follows the input-process-output 
specification which is also used for the construction of data
bases. The DIAD is designed for identifying the data ele
ments or record types (relations) needed in on-line processing 
or immediate access. 

De Marco defines the structured analysis as a seven-step 
process; Gane and Sarson define a similar process, but in five 
steps. Both approaches are informal applications of the func
tional decomposition method to divide the problem into its 
component parts. But neither methodology offers sufficient 
guidelines to provide the rigor necessary for defining a pre
cise, computable specification. Gane and Sarson's book,9 im
proves upon their 1977 edition and adds more rigorous 
specifications. 

The greatest improvement in structured analysis is a change 
in the system specification from a large, unreadable tome to 
a user-friendly graphic model. A higher-level DFD can be 
drawn quickly to show the general picture of the system. 
Perhaps the most impressive improvement in Gane and 
Sarson's structured system analysis is that the data stores and 
data dictionaries are directly related to relational database 
systems. 

However, there is no checking mechanism in DFD. It em
phasizes process components; data analysis receives only sec
ondary attention. Structured analysis techniques should only 
be used for small systems and simple problems with formal 
data modeling. For complex systems, DFD can be used to 
sketch a high-level view of the system. But beyond this point, 
more rigorous analysis and specification methods should be 
used to develop a precise and computable specification. The 
higher-order software methodology is better for this. It is the 
topic in the next few sections. 

Structured analysis and design 

Structured analysis and design emphasize a higher-level 
view of the system which is then applied to the lower-level 
process. The concept of modulization was implemented by 
standardizing the structure of program modules and re
stricting the interfaces between modules. 

System design 

System design is defined as finding ways to satisfy the infor
mation requirements identified in the system analysis phase. 
It is the process of planning how the system will be built, by 
determining the procedural and data components, and plan
ning how these components will be organized to produce the 
information needed. Functional specifications, information 
requirements, and constraints defined in the analysis phase 
are used as the input to the design process. 

Structured Design Methodologies 

Functional decomposition, top-down, and bottom-up are 
the main techniques used in system design, but the most 
widely used structured design methodologies are top-down 



Computer Information System Development Methodologies 687 

d0sign, Yourdon's structured design, Jackson design meth
odology, and Warnier-Orr design methodology. 

Top-down design 

The top-down design begins with the most general function 
and breaks it down into subfunctions which may follow with 
a bottom-up approach for detailed design of the 'Subfunctions. 
The step-wise refinement process is the key technique. Input, 
function, and output should be specified for each module. 
Details should not be delayed until late in the design process. 

Structured design methodology 

The structured design methodology (SDM) defined by Ste
ven, Myers, and Constantine,12 and Yourdon,13 is a composite 
of techniques for system design. Actually, it is a refinement of 
the top-down design method and consists of four steps. 

First, a data flow diagram (DFD) composed of processes 
that operate on the data is drawn to represent the system. 
These processes and data link together as the basis for defi
ning the programming components. The DFD is built from 
four basic components: the data flow, the process, the data 
store, and the terminator. The DFD shows how data flow 
through a logical system and a procedure for processing 
applications. For details on drawing the DFD, De Marco10 

and Martin3 completely describe the techniques. 
Second, a structure chart is drawn to represent the program 

design. It is a hierarchy of functional components. The struc
ture chart is derived from the data flow diagram produced in 
the first step. There are two design strategies for guiding the 
transformation of a DFD into a structure chart: transform 
analysis and transaction analysis. Page-Jones14 has a detailed 
description of the two strategies. 

Third, the design is evaluated by using transform analysis 
and transaction analysis and is also measured by the tech
niques of coupling and cohesion of modules. 

Fourth, the design is prepared for implementation. This is 
called packaging design and is the process of dividing the 
logical program design into physical implementation units; 
these units are called load units. Each load unit is brought into 
memory and executed as one unit by the operating system. 
The purpose of packaging is to make sure that the components 
of the physical system can be executed in an actual computer 
environment. The packages should be functionally related 
with high cohesion but loose coupling. At the end of analysis 
the system is packaged into jobs and job steps. A job is a 
sequence of job steps. A job step is composed of a main 
program and its subprogram. The data flow diagram is pack
aged at this point by establishing three boundaries: hardware 
boundaries, batchlon-line/real-time boundaries, and 
operating-cycle boundaries. Each job step is defined in terms 
of a structured chart which is packaged into executable pro
grams and load units. The smallest possible load unit is one 
module. Yourdon's structured design13 has a complete de
scription of procedure and techniques. 

The drawback of the structured design is that the rules 
guiding the transform analysis, transaction analysis, and fac
toring techniques are very vague. They offer no real im-

provement over the simple functional decomposition method 
of top-down design. The introduction of such new termi
nology as afferent streams, efferent streams, and central 
transforms confuses rather than enhances the top-down de
sign process. The biggest problem of the structured design is 
that the design process will break down when used for the 
design of complex and large systems with many input, output, 
and transform processing streams. The combined strategy of 
using transaction analysis to divide the system into more man
ageable pieces and using transform analysis to design each 
piece can be difficult to apply in practice. No guidelines are 
offered for accomplishing the top level division. Besides, 
there is a lack in data design which constitutes a serious omis
sion in the structure design methodology. The role of data
bases or data dictionaries in program design is not discussed. 
This limits the usefulness of the structured design meth
odology to designing small and simple programs with simple 
file systems. For these simple problems, the top-down design 
methodology is easier to use. 

The Jackson design 

The Jackson design methodology is also a refinement of the 
top-down design method and separates the implementation 
phase from the design phase. The main difference between 
the Jackson design and structured design is that the former is 
based on analysis of data flow. The former is data-oriented 
and the latter is process-oriented. The Jackson method advo
cates a static view of structure while the structured design 
focuses on a dynamic view of data flow. The Jackson method 
derives the program structure from data structure. It assumes 
that the problem has been fully specified and that the program 
will be implemented in a procedural language. Thus, system 
analysis and program implementation concerns lie outside the 
design process. The design process first defines the data struc
ture and then orders the procedural logic or operations to fit 
the data structures. There are four steps in the design process. 
First, each input and output data stream is described as a 
hierarchical structure. Second, all the data structures are com
bined into one hierarchical program structure. Third, a list of 
executable operations required to produce the program out
put from the input is prepared. Then each operation on the list 
is allocated as a component in the program structure. Fourth, 
the ordered operations are written in the form of structure 
text, a formal version of pseudocode. 

The major strength of the Jackson design methodology is 
that it emphasizes data structure design. It produces a hier
archical program structure from hierarchical data structures. 
The major weakness of the Jackson design is that it is very 
difficult to apply directly to real world problems. The design 
process assumes the existence of a complete and correct prob
lem specification. This is rarely possible for most application 
situations. Another weak joint is that it is limited to simple 
programs. Third, it is batch-processing-oriented, which is not 
an effective design technique for on-line systems or database 
systems. In simple program applications it is an overkill; in 
complex situations it provides very few guidelines for manag
ing the problems. 

It is fair to say that the Jackson design methodology is more 
difficult to use than other structured design methodologies; 



688 National Computer Conference, 1987 

the steps are tedious to apply. It is only helpful for a certain 
class of problems such as serial file systems. It breaks down 
completely when applied to database systems. For simple 
problems with simple data structures, the extra effort is not 
worthwhile. The simpler-top-down method may be the 
choice. 15,16,17 

The Warnier-Orr design 

The Warnier-Orr design methodology is a hybrid form of 
LCP and SPD. LCP stands for logical construction of pro
grams while SPD represents structured program design. The 
Warnier-Orr design uses set theory from mathematics to de
scribe program design. A set is an ordered collection of ob
jects. It also adopts a top-down design method and functional 
composition to derive program design. There are six steps in 
its design procedure: 18, 19 First, the program output is defined 
as a hierarchical data structure. Second, the logical database 
is defined. It consists of all the data needed to produce the 
program output. Third, event analysis is performed to define 
all the events that can affect the data elements in the logical 
database. Fourth, the physical database is developed, which is 
composed of the primary data items in the logical database. 
Fifth, the logical process that is needed to produce the desired 
output from the input is designed. Sixth, the physical process 
is designed to complete the program design. 

The Warnier-Orr design methodology is similar to the Jack
son design because both are data-driven and derive the pro
gram structure from the data structure. They both work with 
hierarchical data structure only and stress that logical design 
should be separate from physical design. The main difference 
between the two is that the Jackson design merges old input 
and output data structures to form a single program structure 
while the Warnier-Orr design derives the program structure 
and the input data structures from the output data structures. 
Therefore, in the Warnier-Orr design, the program output 
completely determines the data structure which, in turn, de
termines the program structure. It is, therefore, an output
oriented analysis in addition to being a data-driven approach. 

The Warnier-Orr design methodology limits the design to a 
strict hierarchical model for data and processes. Network-like 
data structures cannot be described. The fact is that not all 
databases are hierarchical. It also does not address the design 
of database systems or the role of data dictionaries. This is a 
serious omission from what is claimed to be a general-purpose 
design methodology. Warnier claims that the control logic is 
not part of the logical design, and therefore provides no guide
lines for control logic design. 

In general, the Warnier-Orr design methodology is suitable 
for small problems with simple, report-oriented systems. For 
these problems the methodology provides an easy-to-follow 
design method, but for such small and simple report designs, 
the methodology is too tedious to follow in detail. 

AUTOMATED DESIGN METHODOLOGIES 

Structured techniques for system design suffer common weak
nesses in that they are only fit for small systems and not fit for 
complex problems. The human brain is limited and has diffi-

culty handling complex details with preCISIOn. Structured 
techniques often make mistakes so higher-level automation is 
the predominant trend. The system analyst will create his 
designs at a work station in a computer-aided fashion. The 
work station may use mini-microcomputers to help create and 
edit data models or diagrams. These diagrams may become a 
language themselves, and from this language executable code 
will be automatically generated. 

USE. IT is a completely general specification language that 
can be applied to any type of system. It is mathematically 
based so that it completely checks the internal consistency of 
specifications and generates bug-free codes. USE.IT would 
not rate high on a scale of user friendliness, but it is clearly 
shown that mathematically-based rigor applied to tools can be 
built into user-friendly constructs for system specification. 
USE. IT has an automatic documentation generator for gener
ating documentation in U.S. Department of Defense format. 
Design and documentation of systems are closely linked. 20

,21 

Data modeling is vital for database design. The task is too 
tedious and error-prone to be done by hand. It should be 
designed and maintained with computers. For example, the 
canonical synthesis is very tedious to apply to large installa
tions unless it is automated. Once computerized, it auto
matically produces fully normalized data models. A data 
model shows the functional dependencies and associations 
among data items. Data redundancy in different areas can be 
avoided. 22,23 

DDIs data designer is one of the data modeling tools. 24 The 
user's view and functional dependencies can be input to the 
data designer, which synthesizes them into a non-redundant 
data model, plots the result, and produces various reports for 
data administrators. If the input functional dependencies are 
correct, the output is in third normal form. 

The future of computing lies with computer-aided design in 
which the analyst builds applications at a workstation screen 
and the machine generates executable code. Much computing 
will be decision support operations done by individuals at 
workstations. Personal, departmental, and central computing 
will be tightly interlinked. Most end users' computing will not 
involve programming, but will employ report generators, 
spreadsheet facilities, decision support tools, personal data
bases, and many other packages. 

The data models are kept in a computerized form, and the 
users at work stations use computerized tools to build applica
tions that use data. These tools are selected or designed to aid 
and automate system analysis and design, and application 
development. 

ITERATIVE DESIGN METHODOLOGIES 

Iterative design methodology (IDM) is an interim method 
between structured design methodologies and integrated sys
tem design techniques. As indicated earlier, the traditional 
information system development life cycle methodologies are 
troublesome, costly, complex, and time consuming. There 
are no rigorous rules which the system analyst can follow to 
develop computer information systems. There is almost no 
database arrangement with the traditional ISDLC. The devel
opment of structured design techniques in the 1970s rep-



Computer Information System Development Methodologies 689 

resents an advancement in the search for better methods. 
Unfortunately, structured design methodologies are only fit 
for small systems and simple programs. For large systems and 
complex programs, the structured methodologies are com
pletely overwhelmed. Also, there are no rigorous rules which 
can be used for guiding the system design process. The struc
tured methods try to change the system design methodologies 
from an art to a science. This effort has only been partially 
successful. When faced with a very complex situation like 
decision making, rigid methods such as structured techniques 
are totally inappropriate to the ever-changing environment. 

Practitioners and academicians alike are diligently search
ing for alternative methods to meet the needs of the execu
tives because the tasks they face are basically unstructured. 
Both the traditional ISDLC and the structured design meth
odologies are inadequate for decision support system develop
ment. An alternative, iterative design methodology, is advo
cated by Sprague and Carson.25 This is an interim design 
methodology which can be used until an effective integrated 
design methodology can be developed for developing decision 
support systems. 

The iterative design method is based upon the premise that 
the environment of decision making is volatile. It is difficult, 
if not impossible, to completely identify the information re
quirements before system design begins. Under such circum
stances, the best way is to identify an important subproblem, 
develop a small but usable system first, then gradually refine 
it, and finally expand this usable subsystem to other areas. 
After all the subsystems are developed, efforts will be directed 
toward integrating these workable subsystems into a unified 
whole. So far there is still no perfect solution to system inte
grations. Tremendous progress has been made recently in 
individual areas. Eventually integrated methodologies may be 
developed. 

The iterative design methodology also adopts the divide
and-conquer tactic. It first defines the requirements of DSS, 
then defines what capabilities the DSS can provide. This 
methodology was developed by Sprague and Carson and 
named the ROMC approach; it will be discussed in the next 
section. 

There are six objectives which include three types of tasks 
and three types of support needed in DSS: 

The three types of tasks are: (1) to support all types of 
structures-structured, semistructured, and unstructured,26 
(2) to support all levels of management-strategic planning, 
management control, and operational control,27 and (3) to 
support the communication between all levels of decision 
makers-independent, sequential, and pooled.28 

Three types of support are needed: (1) it needs to support 
all phases of decision making-intelligence, design, and 
choice,29 (2) it needs to support a variety of decision-making 
processes but not be dependent on anyone type since each 
person's cognitive organization and style are different, (3) it 
should be easy to use and modify in response to changes in the 
user, the task, or the environment. 1, 5 

Gory and Monon26 combined Anthony's levels of manage
ment and Simon's types of decisions into a paradigm which 
can be used for identifying to which categories applications 
belong. 

In a design DSS for poorly-specified environments, 
Sprague and Carson suggested an approach called ROMC 
(representation, operation, memory aids, and control mech
anisms). The ROMC is intended to identify requirements in 
each of three capabilities of DSS: databases, analytical mod
els, and query interface. This approach is based on a set of 
four user-oriented entities: R, 0, M, and C. The capabilities 
of DSS from a user's point of view are that it provides 
representations to help users conceptualize and communicate 
the problem or decision situation; to operate, analyze, and 
manipulate those representations; to provide memory aids for 
the users in linking the representations and operations; and to 
control the entire system. Through this approach, the gap 
between the requirements and the capabilities of DSS can be 
reduced. 

The iterative design of a specific DSS consists of an iterative 
addition or deletion of Rs, Os, Ms, and Cs. These combina
tions of R, 0, M, and C are carried out by the three capabil
ities: databases, analytical models, and query dialogue. The 
ROMC approach is a framework for identifying the end user's 
requirements and the capabilities of DSS which will support 
these requirements. It is a process-independent approach. 
One set of representations and operations may support a vari
ety of decision-making processes. The differences among the 
decision-making processes are more or less in the sequencing 
of operations and in the decision makers' interpretation of 
representation rather than in the set of representations or 
operatio_ns to be used in the process. 

The major drawback of the iterative design methodology is 
that there are no rigorous rules which can be followed by the 
system designer. When one specific DSS is developed, it may 
not fit the second application and another one may have to be 
developed. It is, of course, costly and time consuming. With 
the automated design tools, the cost and time needed for 
system development may be reduced, but the effectiveness of 
this approach may still be a problem. The solution may be to 
have integrated rules which can be followed for system inte
gration. The integrated design methodology is the topic of the 
following section.25,30,31,32 

SYSTEM INTEGRATION METHODOLOGIES 

The Present State of the Art 

So far four major information system design methodologies 
have been discussed. There is not one among them that is 
completely fit for designing complex systems. Perhaps there 
will never be one that is perfectly fit. It may also be true that 
for some tasks it is more appropriate than for others. For. 
example, structured design methodologies are more appropri
ate than the traditional ISDLC if it is applied to structured 
tasks and environments. For volatile and unstructured tasks 
and environments, iterative design methodologies are more 
useful than both the traditional ISDLC and SDM. Automated 
design methodologies (ADM) are in the infant stage but are 
progressing rapidly. If ADM can be integrated with other 
design methodologies and tools, a new design methodology 
will emerge. Actually, this new methodology has popped up 
and is called systems integration methodology (SIM). 



690 National Computer Conference, 1987 

The ISDM integrates many design techniques: the top
down and bottom-up are the two most important techniques 
in the design tool kits. The top-down design is a macro system 
design beginning with the general function or the root of a 
hierarchical tree and working down to the lower level leaves 
of the tree. It is usually based on information planning which 
lays down the information development guidelines in the sys
tem analysis phase. These guidelines are used in the system 
design phase as input. Under such high-point guiding prin
ciples, a bottom-up micro system design can be carried out for 
detailed program development. 

Another important characteristic of the SIM is that infor
mation system development usually involves two groups of 
people. One group is business oriented, and the other is tech
nically oriented. During the system analysis phase, the main 
duty of the system development team is to define the informa
tion needs. The business-oriented people are in a better posi
tion to define the information requirements of the organiza
tion. When the problem and the information requirements are 
defined, the technical people take over and identify the tech
nologies which can be used to meet the requirements. This is 
usually carried out in the system design phase. Actually, there 
is no clear-cut separation of the two phases. There is some 
overlap between the two, and sometimes they are iterative. 
For more information on unified design methodology, please 
refer to Lee. 32 

Conceptual Models for Integration 

In office automation there is another effort working toward 
integrated methodologies. Bracchi34 classifies the conceptual 
office models into four types: data-based models, process
based models, agent-based models, and mixed models. Most 
of the recent office models belong to the mixed category. This 
is actually an integrated method for office information devel
opment. Office information systems are one of the main com
ponents in the overall information construct. 

The mixed models consist of more than one type of element 
as the basis for system specification, and define relationships 
among these elements. The semantic office system (SOS) is an 
example of a mixed model. SOS classifies office elements into 
three different submodels: the static, the dynamic, and the 
evolution submodels. The static submodel contains the 
specification of data-related elements such as documents, dos
siers, and agents. The dynamic sub model contains the 
specification of operations and activities performed in the 
office. The evolution submodel specifies, through two sets of 
rules, both the normal evolution of office work and the possi
ble structural modifications of office tasks. Some of the rules 
support office activities with information for performing nor
mal operations or for decision making; other rules may be 
used for triggering the automatic execution of operation. 
These mixed specifications and operations actually work in an 
integrated fashion. This new mixed technique turns many 
original models into mixed models. For example, the 
OFFICETALK-D35 is transformed from OFFICETALK
ZER036 (a data based modei) and information controi nets37 

(a process-based model). 

Integrated Models 

Lyngrack and McLeod developed an integrated design 
methodology which can be applied to distributed environ
ments. It does not employ anyone of the traditional high
level database models. For example, SDD-1,38 distributed 
INGRES,39 R*,40 and the system for managing structured 
messages41 are more or less related to the relational data 
model. 42 The simple object-oriented database model (ODM) 
was defined, and now this model has been extended to work 
in distributed environments and is called distributed object
oriented database model (DODM). It concentrates on distrib
uted information management at object-level. Both ODM 
and DODM provide end users with the basic primitives for 
object definition, manipulation, and retrieval. The DODM 
supports object sharing, location transparency, and access 
control, and allows relationships to be established among ob
jects in the databases. The best feature of the DODM is that 
the location transparency can be supported without having to 
have a central data structure. 

The DODM can be incorporated for use with multi
functional workstations. Each workstation has a unique 
name. Several workstations can be grouped together at a sin
gle mode in the computer network. All the workstations have 
the same interface for communication, but they do not have 
to establish the same data model. The DODM models the 
distributed environment as a logical network of many 
workstations. Each workstation contains information such as 
databases. The distributed workstations can be thought of as 
a logical network of distributed databases. 

The ODM and DODM are both modeled as a collection of 
objects and relationships. The relationships between objects 
are modeled as structural objects. Each object in the database 
corresponds to a relation in the set of all database objects. 

Implementation of ODM can be straightforward by using 
existing database technology. A prototype has been built by 
using the INGRES relational database management system43 

running UNIX operating system. The object heap is imple
mented as a direct access file. 

DODM is a very simple database model for specification of 
objects and relationships in a logical network of databases. 
Mechanisms are provided to allow relationships to be estab
lished across database boundaries, objects are allowed to be 
copied and moved from database to database, and access 
control and object sharing among databases are accommo
dated. 

Neither ODM nor DODM is a high-level system for inex
perienced database users. Both lack semantic expressiveness, 
mechanisms for integrity control, and high-level operations 
for database integration. The contributions were made in defi
ning a small set of fundamental concepts and constructs that 
can be used as building blocks for integrated systems. 

Efforts are being made at the University of Southern Cali
fornia to design and develop a personal information system 
and experimental prototype called INFOBASE, which is 
intended to provide information management facilities to 
support a wide spectrum of transactional, professional, man
ageriai, and clericai processing. Based on the above modeling 
concepts and facilities recently developed, integrated systems 



Computer Information System Development Methodologies 691 

can doubtlessly be achieved. These integrated systems are 
capable of supporting multi-functional workstations, database 
processing, and personal computing. INFOBASE is not only 
an example of integrated systems but is also intended to pro
vide a basis of information management in engineering 
applications including software engineering and CADNLSI 
design. 40,47 

System Integration Recapitulated 

After four decades of effort by both computer scientists and 
management experts, a legitimate model that can be used for 
system integration is still missing. Though complete inte
grated models are still in short supply, there are plenty of 
quasi models which can be combined for unifying the various 
components of an integrated system. The various models and 
components relating to system integration have been illus
trated and examined, but further efforts are needed to inte
grate them into a unified whole. 

Before integration, the question must be asked, "What is 
the integration for?" The answer might be, "for transaction 
processing, decision making, and/or office automation." Ac
cording to the definition of an integration system, it may be 
designed to provide anyone, or all, of those functions. For 
transaction processing, the system design is easier; for deci
sion making it is harder; for both transaction processing and 
decision making it is difficult. For transaction processing, 
decision making, and office automation, it is even more diffi
cult because the current technologies are more appropriate 
for structured tasks, and the tasks a decision maker faces are 
largely unstructured. 

In addition to the structure of tasks, the current trend is 
toward distributed processing. Theoretically, distributed pro
cessing involving concurrent control, security, and recovery is 
not a problem, but actually integrated systems in a distributed 
environment are still in an infant stage. Though system inte
gration has a long way to go, the basic technologies required 
for system integration do exist. What is needed now is to try 
patiently using the integrated methodologies introduced in 
the previous sections. 

So far the structured techniques, structured design meth
odologies, automated design methodologies, iterative design 
methodologies, and system integration methodologies have 
been discussed. Before putting them in an appropriate for
mat, we should keep in mind the basic ingredients needed in 
an integrated system. In order to solve problems, task analysis 
is vital for identifying information requirements. These re
quirements are the basis for preparing a system specification 
which, in tum, is used for system design. 

During the system design stage, the basic job is to identify 
the alternate ways to meet the information requirements iden
tified in the system analysis stage. In the system design stage, 
data and process analysis are necessary. Data and process 
analysis involve data modeling, database systems, and pro
cessing logic. All the structured techniques and meth
odologies can be used. In addition to the above-mentioned 
techniques, data communication and networking, expert sys
tems, fourth generation languages, computer-aided design 

techniques, and system automation methodologies should be 
used and integrated into the overall construct of the integrated 
systems. 

Integrated Systems 

After comparing 12 commercial systems in 1983, MacFarlane 
classified them into three kinds of systems: software-only, 
hardware/software, and time-shared. 

In the software-only systems, the organizations buy the 
software and run it on their new or existing hardware. Though 
these are not total systems, they can perform professional and 
managerial tasks and can be tied into broader hardware and 
databases.34 

The hardware/software systems are total turnkey systems. 
All provide local and remote area networking capabilities 
serving as integrated systems. 

In the time-shared systems, the organization only needs to 
install work stations. All the software and processing power 
can be obtained through these work stations. This is a cost
effective method for obtaining the services of integrated sys
tems. 

There are many more disciplines and methodologies work
ing toward integrated systems development. It is beyond the 
scope of this paper to go into detailed discussion of these 
efforts. Interested readers may refer to Lee,33,44,45,24 Mar
tin,22,23,3,46 Lyngback,47 and Bracchi.34 

CONCLUSION 

This paper has intensively investigated the various CIS devel
opment techniques: the traditional ISDLC methodology is 
loosely defined, and there are no rigorous rules which can be 
followed for effective CIS development. The various struc
tured design methodologies are only fit for small systems and 
simple programs. There are also no rigorous rules for the 
system analysts and designers to follow for checking the con
sistency of the system being designed. When facing complex 
situations, they will be quickly overwhelmed. The automated 
techniques and system integration methodologies are still in 
their infant stage. Remarkable advancement in automated 
techniques has been reported recently. There is no doubt that 
integrated systems will be within reach in the near future. 
Some prototypes of integrated systems have already been 
built. Though they are still in the primitive stage and not for 
user-friendly use, it can be expected that near perfect inte
grated systems are imminent due to the rapid growth in tech
nology. 

REFERENCES 

1. Alter, Steven L. Decision Support Systems. Reading, Massachusetts: 
Addison-Wesley, 1980. 

2. Ahituv, Niv and Seev Neumann. "A Flexible Approach to Information 
System Development." MIS Quarterly, 8 (1984) 2. 

3. Martin, James, and Carma McOure. Structured Techniques for Computing, 
Englewood Cliffs, New Jersey: Prentice-Hall, 1985. 

4. Awad, Elias M. Systems Analysis and Design, 2nd ed. Richard D. Irwin, 
1985. 



692 National Computer Conference, 1987 

5. Kanter, Jerome. Management-Oriented Management Information Systems, 
2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1985. 

6. Prince, Thomas R. Information Systems for Management Planning and 
Control, third ed., Irwin, 1975. 

7. Murray, Thomas J. Computer Based Information Systems, Richard D. Ir
win, 1985. 

8. Ahituv, N. and S. Neumann. Principles of Information Systems for Manage
ment, William C. Brown, 1982. 

9. Gane, C. and T. Sarson. Structured Systems Analysis: Tools and Tech
niques, Englewood Cliffs, New Jersey: Prentice-Hall, 1979. 

10. De Marco, T. Structured Analysis and System Specification, New York: 
Yourdon, 1978. 

11. Yourdon, E. "The Emergence of Structured Analysis." Computer Deci
sions, 8 (1976) 4. 

12. Stevens, W., G. Myers, and L. Constantine. "Structured Design." IBM 
Systems Journal, 13 (1974) 2. 

13. Yourdon, E. and L. Constantive. Structured Design, Englewood Cliffs, 
New Jersey: Prentice-Hall, 1979. 

14. Page-Jones, M. The Practical Guide to Structural System Design, New York: 
Yourdon, 1980. 

15. Jackson, M.A. "Constructive Methods of Program Design." In Pro
ceedings, First Conference of the European Conference in Informatics, 1976. 

16. Bergland, G.D. "A Guided Tour of Program Design Methodologies." 
Computer, October 1981. 

17. Adrion, R., B. Branstand, and J. Cherniavsky. "Validation, Verification 
and Testing of Computer Software." Computing Surveys, 14 (1982) 2. 

18. Higgins, D. Program Design and Construction. Englewood Cliffs, New 
Jersey: Prentice-Hall, 1979. 

19. Orr, K. Structured Systems Development, New York: Yourdon, 1977. 
20. Razdow, A., N. Albertson, Jr., andD. Rose. Design Systems by Document

ing Them With USEIT, Cambridge, Massachusetts: Higher Order Soft
ware, Inc., 1979. 

21. USE. IT Reference Manual, Cambridge, Massachusetts: Higher Order Soft
ware, Inc., 1982. 

22. Martin, James. Managing the Data Base Environment, Englewood Cliffs, 
New Jersey: Prentice-Hall, 1983. 

23. Martin, James. System Design from Probably Correct Constructs, En
glewood Cliffs, New Jersey: Prentice-Hall, 1985. 

24. Lee, Daniel T. "Decision Support in a Distributed Environment." AFIPS, 
Proceedings of the National Computer Conference (Vol. 53) 1984. 

25. Sprague, H. Ralph and Eric D. Carson. Building Effective Decision Support 
Systems, Englewood Cliffs, New Jersey: Prentice-Hall, 1982. 

26. Gory, G.A. and M.S. Scott Morton. "A Framework for Management In
formation Systems," Sloan Management Review, 13, Fall 1971. 

27. Anthony, R.N. "Planning and Control Systems: A Framework for Analy
sis." Harvard University Graduate School of Business Administration, 
Studies in Management Control, Cambridge, Massachusetts, 1985. 

28. Hackathorn, R. and P. G. W. Keen. "Organizational Strategies for Personal 
Computing in Decision Support Systems." MIS Quarterly, 5 (1981) 3. 

29. Simon, H.A. The New Science of Management Decisions, New York: 
Harper & Row, 1960. 

30. Zmud, Robert W. "Design Alternatives For Organizing Information Sys
tems Activities." MIS Quarterly, 8 (1984) 2. 

31. Bonczek, H., Clyd Holsapple, and Andrew Whinston. Foundations of Deci
sion Support Systems. New York: Academic Press, 1981. 

32. Keen, Peter and Michael Morton. Decision Support Systems, Reading, 
Massachusetts: Addison-Wesley, 1978. 

33. Lee, Daniel T. "A Unified Method for Information System Development 
and Database Application." International Journal on Policy and Informa
tion, 8 (1984) 2. 

34. Bracchi, G. and B. Dernici. "The Design Requirements of Office Sys
tems." ACM Transactions on Office Information Systems, 2 April (1984) 2. 

35. Ellis, C. and M. Bernal. "OFFICETALK-D: An Experimental Office In
formation System." In Proceedings ACM SIGOA Conference on Office 
Systems, Philadelphia, 1982. 

36. Ellis, C. and G. Nutt. "Office Information Systems and Computer Sci
ence." ACM Computing Surveys 12 (1980) 1. 

37. Cook, C. "Streamlining Office Procedures-An Analysis Using the Infor
mation Control Net Model." In AFIPS, Proceedings of the National Com
puter Conference (Vol. 49), 1980. 

38. Rothnie, J.B., P.A. Bernstein, S. Fox, N. Goodman, M. Hammer, T.A. 
Landers, C. Reeve, D. Shipman, and E. Wong. "Introduction To A System 
for Distributed Database (SDD-1)." ACM Transactions on Database Sys
tems, 5 (1980) 1. 

39. Stonebraker, M. and E. Neuhold. "A Distributed Data Version of 
INGRES." In Proceedings of Berkeley Workshop on Distributed Data Man
agement Systems, May 1977. 

40. William, R., D. Daniel, L. Haass, G. Lapis, B. Lindsay, P. Ng, R. Ober
marck, P. Selinger, A. Walker, P. Wilms, and R. Yost. "R*: An Overview 
of the Architecture." IBM Res. Rep. RJ3325, IBM Research Laboratory, 
San Jose, California, Feb. 1981. 

41. Tsichritzis, D.C., F.A. Rabitti, S. Gibbs, O. Nierstrasz, and J. Hogg. "A 
System for Managing Structured Messages." IEEE Transactions Commun. 
COM-30 (1982) June. 

42. Codd, E.F. "A Relational Model of Data for Large Sharyd Data Banks," 
Communications of the ACM 13 (1970) 6. ---

43. Stonebroker, M., G.D. Held, and P. Krep. "The Design and Implementa
tion of INGRES." ACM Transactions on Database Systems 1 (1976) 3. 

44. Lee, Daniel T. "A Unified Methodology of Combining Distributed Sys
tems and Distributed Databases for Decision Support." DSS-84 Trans
actions, 4th International Conference on Decision Support Systems, 1984. 

45. Lee, Daniel T. "Personal Computing for Decision Support." Oxford Sur
veys in Information Technology Journal, 2 (1985). 

46. Martin, James and Carma McOure., Fourth Generation Languages, 
Englewood Cliffs, New Jersey: Prentice-Hall, 1985. 

47. Lyngback, Peter and Dennis McLeod. "Object Management in Distributed 
Information Systems." ACM Transactions on Office Information Systems, 
2 (1984) 2. 



A model for monitoring software integration 

by MARY LOU LANCHBURY 
St. Edward's University 
Austin, Texas 

and 
DAVID A. GUSTAFSON and AUSTIN MELTON 
Kansas State University 
Manhattan, Kansas 

ABSTRACT 

When managing software development, it is difficult to assess progress. This paper 
describes a general method for modeling software development; in this method, the 
development is considered to be a sequence of documents. The new perspective 
provided by this method is that much can be learned by examining the changes in 
successive document versions. In particular in this paper, the connections between 
the changes and the progress in software integration are studied. It is shown that the 
changes present a "picture" of development. This picture can be understood by 
both technical and non-technical personnel; thus, this model allows for the develop
ment of methods which software managers can use to monitor progress during 
software integration. The example presented is based on empirical data collected 
from team projects written in C. 

693 





INTRODUCTION 

If one were to examine the sequence of documents written by 
an author in the development of a book, one would notice 
different types of changes being made at different stages in 
the book's development. In fact, after examining several se
quences of documents for several books, one could probably 
determine with much accuracy where in a book's development 
an author was by examining the changes made to a particular 
document. The general claim of this paper is that, in writing 
software even more than in writing a book, much about the 
development can be determined by examining the changes 
made to successive versions. In particular, the sequence of 
changes made to a program during integration provides a 
picture that describes the integration process. 

Managing software integration is a difficult task. It is made 
more difficult by the inability to accurately assess progress 
during this phase. A model of the integration phase that can 
be used to monitor the progress of the software integration 
would be very useful. It would be a first step toward a manage
ment tool to accurately assess the effectiveness of the integra
tion phase. 

This paper presents a model of successful code change pat
terns for the integration phase of the software development 
cycle. The model was empirically derived from data from 
successful projects; it is contrasted with failed project data to 
highlight those characteristics that empirically and intuitively 
should distinguish a successful development pattern from pos
sibly unsuccessful development patterns. This model should 
enable project personnel, including non-technical personnel, 
to visualize the progress of the integration phase of the proj
ect. It can be used for decision making about the extension of 
deadlines and/or the expansion of budgets. It is understand
able and provides visibility of progress in the form of patterns 
of changes to the data, that is, code. While using technical 
concepts and tools, the results of the model are non-technical 
enough to be understood and used by personnel who may not 
have a technical background. Thus, the model can be used by 
non-technical and technical personnel alike. Appendix A 
presents a checklist format of the model to aid managers in the 
use of the model. 

OTHER APPROACHES 

Most approaches to software management involve estimating 
the cost of a software project. I ,2,3,4,5,6, 7,8,9 These approaches 
involve determining characteristics of the project or of the 

A Model for Monitoring Software Integration 695 

environment and then predicting the cost, time, etcetera, 
based on past data. Only a small amount of the literature 
specifically addresses the issue of general management of the 
software development cycle. Most models and mathematical 
equations presented to aid in project management only sup
port cost estimation. Further, Thayer, Pyster and Woodlo in 
investigating the major problem areas in software project 
management, found that procedures, techniques, strategies 
and aids that provide visibility of progress to the project man
ager are not available. 

THE INTEGRATION PHASE 

The model presented in this paper addresses the integration 
phase of the software development cycle. Integration is the 
systematic technique of assembling software unit modules 
into an overall system while testing to uncover errors associ
ated with interfaces. Experience has shown that software in
tegration requires a large amount of time because of errors 
that arise in the transfer of information between modules. 
There are three common approaches to software integration: 
top-down integration, bottom-up integration, and sandwich 
integration. The top-down and the bottom-up integration 
strategies (which are well known) are combined in the sand
wich integration strategy. 11 It is predominately top-down, but 
bottom-up strategy techniques are also used. Sub-systems 
are built using the bottom-up integration strategy. Integration 
of the sub-system into the system in its entirety is done by 
using the top-down integration strategy. Thus individual mod
ules and sub-systems are tested prior to replacement of stubs. 
The advantages of the top-down integration strategy are 
retained while some of the problems are eased. 

DATA COLLECTION 

The data used for this research consists of modules and pro
grams written in the language C and implemented under 
UNIX. During the final days of the integration phase, "snap
shots" of the modules and programs were taken. For each 
module and program there exists a collection of versions of 
the code that depicts the integration activities. 

The modules and programs were developed and written by 
junior and senior computer science/information science stu
dents enrolled in CMPSC 341 Software Engineering Project 
II. This course is required in the undergraduate curriculum 
in the Computer Science Department at Kansas State Univer
sity, Manhattan, Kansas. There were seven teams for which 
data is available. 



696 National Computer Conference, 1987 

ANALYSIS METHODOLOGY 

Three change measures were chosen to be used in the analysis 
and definition of this model of progress for the integration 
phase. The measures are: 

1. Changes by statement type 
2. Changes within the software hierarchy or structure 
3. Changes in complexity 

CHANGES BY STATEMENT TYPE 

The initial measurement analyzes the types of statements 
being changed. This was a logical starting point since a similar 
analysis of changes during the maintenance phase proceeded 
and suggested this research. 12 To measure the changes in var
ious statement types, a tool was used that had been developed 
for analyzing changes during the maintenance phase. This tool 
compares two source code files for differences using the 
UNIX utility program "diff." A total count for occurrences of 
each statement type is determined, and the total number of 
each statement type that is changed is also determined; that is, 
100 "if' statements of which 8 were changed. The percentage 
of change for each statement type is then calculated (total 
changes of a statement type divided by total number of that 
same statement type). These figures show which types of 
statements were changed most frequently during the integra
tion phase. For a given statement type it can be stated that 
X % of this type of statement changed during the integration 
phase of the project. 

HIERARCHY CHANGES 

The location of changes within the software hierarchy or 
structure was also examined for the data sets. If a pattern in 
the location of the changes within the hierarchy could be 
found, it would be indicative of the technique of integration 
actually being used (the actual technique may be different 
from the intended integration technique). If no pattern could 
be found, this would reflect a serious disorganization of the 
integration phase and a need for corrective action. 

To evaluate the location of changes within the software 
hierarchy, the actual software hierarchy itself had to be iden
tified. Although hierarchy diagrams for each project existed, 
it was felt that a more valid hierarchy would be obtained from 
the source code itself-a case of what is said to be done versus 
what is actually done. A tool extracted the function calls from 
the source code, and the hierarchy diagrams for each snapshot 
were built by hand. 

A total percentage change for each module was found. 
Modules showing the most significant change were identified 
in the hierarchy diagrams. As the changes from one change 
period or delta to the next were recorded, the successive 
hierarchy diagrams were examined for integration patterns. 

A top-down integration pattern should be associated with 
top level modules having the higher percentages of change 
in the initial change period and these higher percentage 
positions appearing at subordinate levels as integration pro-

gressed. A downward growth of the hierarchy would be ex
pected as more modules replaced the stubs. 

A bottom-up pattern would show the lowest level modules 
exhibiting the higher percentages of change in the initial 
change periods with an upward progression in the later change 
periods. The hierarchy would also be expected to grow both 
horizontally and upwards as sub-systems were added and 
additional pieces were integrated. 

A sandwich integration would show a pattern that at first 
may appear to have little order. Lower modules would exhibit 
higher percentages of change in the early change periods. 
Horizontal and upward growth would also appear in early 
diagrams. At some point, the entire structure would be avail
able and the change percentages would go through a top-to
bottom progression as in the top-down integration pattern. 

COMPLEXITY MEASURES 

A measurement of the complexity of the programs and mod
ules was also used to look for patterns. For this research, 
complexity measures were chosen for data analysis to deter
mine patterns of change in code complexity and not to provide 
an understanding of a program's complexity. 

McCabe's cyclomatic complexity measure13 and Halstead's 
software science volume14 were used in the data analysis; they 
were chosen for several reasons. Both have been around long 
enough for people to be familiar with them. Also, automated 
tools were available to calculate their values, eliminating the 
necessity of calculations by hand. Finally, the two complexity 
measures have been shown to give complementary results. 15,16 

Part of the analysis of the complexity measures dealt with 
inter-module versus intra-module complexity or the complex
ity of the whole versus the complexity of the parts. The inter
module complexity or the complexity of the integrated system 
was evaluated for patterns in accordance with the integration 
technique (top-down, bottom-up, or sandwich) identified in 
the hierarchical change analysis. Both top-down and bottom
up would show a significant increase in overall complexity as 
integration progressed. The increase in complexity during a 
sandwich integration would not be as significant as the in
crease during top-down or bottom-up integration and would 
level out prior to the end of the integration phase when all 
modules were in place. 

Intra-module complexity would not be expected to fluctu
ate significantly throughout the integration phase. Individual 
modules should have been unit tested prior to the beginning 
of the integration phase and should be stable in complexity. 

The automated metric tools were run on the programs for 
each delta or change period. The results for each complexity 
measure were examined to note any increase or decrease in 
the complexity of the whole program and of the individual 
modules. Patterns of increase or decrease in complexity were 
identified. 

The three change measures were all evaluated for patterns 
(or lack of patterns) during the integration phase. These pat
terns were compared with a model for an idealized case which 
had been developed based on experience and intuition. From 
the patterns identified, a revised model for successful patterns 
during the integration phase of software development was 



built. Details of the idealized case and the revised model are 
described elsewhere. 17 

CASE STUDIES 

Although a large amount of data was available and was ana
lyzed during this research, there were two teams whose data 
were chosen for presentation as case studies. The first team, 
G3, was successful. It was able to finish its software develop
ment project on time while meeting the specifications. Its data 
exhibited identifiable patterns of progress during the integra
tion phase. The second team, G5, was unsuccessful. This team 
did not finish their project and did not seem to be making 
progress towards completion. Its data exhibited a randomness 
which was not identifiable with anything--especially progress. 

SUCCESSFUL CASE 

Team G3 completed its test coverage project on time meeting 
its defined requirements. The project had nine individual 
modules. Four versions were examined representing three 
change periods that occurred during G3's integration period. 

The statement type with the highest percentage of change 
during the integration phase for G3 was subroutine/system 
calls. Twenty-one percent of all subroutine/system calls were 
changed during integration. Assignment statements also ex
hibited a fairly significant amount of change with 18% of all 
assignment statements changing during integration. However, 
the percentage of change for assignment statements steadily 
decreased during the integration phase. Thirteen percent of 
"if' statements were also changed. All other types of state
ments showed less than 13% change. Percentages for overall 
changes in all statement types are presented in Table I. The 
raw data for types of statements changed are presented in 
Table II. 

Hierarchical analysis revealed some rather surprising re
sults in that a strict application of any of the three integration 
strategies was not used. Instead, all modules were put to
gether into one system similar to the starting point of the 
sandwich technique. However, from then on the bottom-up 
integration technique was utilized. At first, the lowest level 
modules exhibited the highest percentages of change. This 
was followed by an upward movement through the hierarchy 

TABLE I-Statement changes by change period-Team G3 

STATEMENT TYPE PERIOD 1 PERIOD 2 PERIOD 3 OVERALL 

Subroutine Calls 14.7% 32.9% 16.5% 21.2% 
Begin/End 11.1% 21.1% 5.0% 12.3% 
Assignment 33.3% 14.3% 10.9% 18.9% 
If 13.0% 20.0% 4.3% 12.7% 
Else 20.0% 13.3% 6.7% 11.1% 
Do 0.0% 20.0% 0.0% 7.1% 
Return 0.0% 0.0% 0.0% 0.0% 
While 18.2% 9.1% 9.1% 12.1% 
Declarations 15.2% 2.3% 4.1% 7.2% 
Include 0.0% 0.0% 0.0% 0.0% 
Comments 0.0% 33.3% 0.0% 6.5% 
Break 0.0% 0.0% 0.0% 0.0% 
Case 0.0% 0.0% 0.0% 0.0% 

A Model for Monitoring Software Integration 697 

TABLE II-Raw data for types of statements changed-Team G3 

type # changes total occurrences 

ASSignment 24 127 
Begin/End 14 114 
Subroutine Calls 48 226 
If 9 71 
Else 5 45 
Do 1 13 
Return 0 6 
While 4 33 
Declarations -1n 138 IV 

Include 0 6 
Comments 3 46 
Break 0 0 
Case 0 0 

of the higher percentages of change. This technique was called 
G3's big-bang strategy. Table III presents the percentages of 
change for each delta or change period. The hierarchy itself 
was stable during the integration phase. 

McCabe's cydomatic complexity measure (see Table IV) 
remained relatively stable for both inter-module complexity 
measures and intra-module complexity measures throughout 
the integration phase. The stability of the inter-module pat
tern is not unreasonable given the integration technique used. 

Halstead's software science measure (see Table IV) showed 
more change than the McCabe's complexity measure. At the 
intra-module level, change ranged from no change at all to a 
large change-in some cases doubling from one change period 
to the next. The inter-module figures showed an increase 
overall of about 40%. 

UNSUCCESSFUL CASE 

Team G5 did not complete its test coverage project and did 
not show any signs of progress towards integration. Eleven 
individual modules were in its project. As with team G3, four 
versions were examined which represented three change 
periods that occurred before team G5's project was aban
doned. 

TABLE III-Percent changes by module-Team G3 

Procedure Delta 1 Delta 2 Delta 3 

Main 18.6% 20.0% 11.1% 
Findword 89.5% 21.4% 0.0% 
8eginproc 11.7% 20.0% 16.2% 
Thenproc 15.8% 62.2% 41.9% 
Getword 52.6% 0.0% 0.0% 
Check 4.1% 9.2% 2.5% 
Skip 30.8% 0.0°1c 0.0% 
Declare 0.0% 0.0% 0.0% 
Initial 5.3% 0.0% 0.0% 



698 National Computer Conference, 1987 

TABLE IV-Complexity measures-Team G3 

McCabe's 

Procedure Name Period 1 Period 2 Period 3 Period 4 

Beginproc 8 8 8 8 
Check 11 12 12 12 
Declare 1 1 1 1 
Findword 3 3 3 3 
Getword 2 3 3 3 
Initial 2 2 2 2 
Main 5 5 5 5 
Skip 2 3 3 3 
Thenproc 5 6 3 9 
OVERALL 39 44 40 46 

Halstead's 

Procedure Name Period 1 Period 2 Period 3 Period 4 

Beginproc 137 159 178 160 
Check 179 193 192 195 
Declare 27 27 27 27 
Findword 41 49 39 39 
Getword 39 53 53 53 
Initial 35 35 35 35 
Main 36 36 55 61 
Skip 11 23 23 23 
Thenproc 72 93 59 117 
OVERALL 577 669 661 710 

Almost every type of statement was changed significantly 
during G5's integration phase (see Tables V and VI). Assign
ment statements, subroutine/system calls, declarations, 
breaks, and case statements all exhibited percentage changes 
of greater than 30%. "If' statements and "while" statements 
showed change percentages between 22% and 27%. All other 
statement types had less than a 14% change. The fact that 
almost 34% of all declaration statements were changed indi
cates some significant design deficiencies. Table V presents 
the percentage change for each statement type for G5's inte
gration phase. Table VI presents the raw data for the state
ment type changes. 

Team G5's statements exhibited a much higher precentage 
of change overall than did team G3. The types of statements 
being changed and their high percentage of change indicates 
significant design deficiencies and lack of progress towards 
project completion. 

Changes in the hierarchy also exhibited no pattern. Al
though the hierarchy itself was stable, the integration tech
nique, if one was used, escaped identification. Table VII pre
sents the module change data. 

TABLE V-Statement changes by change period-Team G5 

STATEMENT TYPE PERIOD 1 PERIOD 2 PERIOD 3 OVERALL 

Assignment 73.3% 9.1% 32.4% 36.0% 
Begin/End 0.0% 0.0% 18.1% 6.1% 
Subroutine Calls 29.8% 10.6% 76.6% 39.0% 
If 22.2% 11.1% 33.3% 22.2% 
Else 0.0% 0.0% 40.0% 13.3% 
Do 0.0% 0.0% 0.0% 0.0% 
Return 0.0% 0.0% 0.0% 0.0% 
While 80.0% 0.0% 0.0% 26.7% 
Declarations 33.3% 21.9% 45.5% 33.7% 
Include 0.0% 0.0% 0.0% 0.0% 
Comment 0.0% 1.2% 8.2% 3.2% 
Break 100.0% 0.0% 0.0% 33.3% 
Case 100.0% 0.0% 0.0% 33.3% 

. TABLE VI-Raw data for types of statements changed-Team G5 

statement type 

Assignment 
Begin/End 
Subroutine Calls 
If 
Else 
Do 
Return 
While 
Declarations 
I nclude/Defi ne 
Comments 
Break 
Case 

# changes 

66 
12 

118 
12 

4 
o 
o 
8 

52 
6 

14 
10 
10 

totaloccurrencs 

194 
250 
292 

54 
30 
18 
o 

30 
170 

20 
504 

30 
30 

McCabe's cyclomatic complexity measure (see Table VIII) 
shows virtually no change at either the inter-module or intra
module levels. Although this might seem to point to progress, 
it probably does not. Instead, it probably indicates that the 
same statements are being changed over and over with no 
progress being made towards integration. 

Halstead's software science measure (see Table VIII) ap
pears relatively stable at the inter-module level, but this can 
be explained by examining the intra-module level complexity 
figures. Fluctuations from one change period to the next can 
be seen with both increases and decreases occurring. These 
increases and decreases appear to offset each other and give 
the illusion of inter-module stability. 

A TOOL 

By combining several shell programs utilizing UNIX utility 
functions and two C programs, an automated tool was devel
oped that would extract the data necessary for a manager to 
take advantage of the decision structure in Appendix A. The 
shell programs find the percentage change for statement type 
and the percentage change per module. One C program calcu
lates the Halstead's and McCabe's complexity measures for 

TABLE VII-Percent changes by module-Team G5 

Procedure Delta 1 Delta 2 Delta 3 

Instcode 27.3% 0.0% 18.2% 
First_Pass 55.9% 0.0% 21.4% 
Second_Pass 13.0% 0.0% 13.0% 
Mes_Proc 12.5% 0.0% 25.0% 
Umes_Proc 28.0% 0.0% 11.5% 
Comment 5.0% 0.0% 25.0% 
Insert 13.6% 0.0% 27.3% 
Putsymbol 25.7% 0.0% 21.4% 
Stack 14.8% 25.9% 32.1% 
Push 25.0% 31.8% 66.7% 
POp 15.0% 9.1% 63.6% 



TABLE VIII-Complexity measures-Team G5 

McCabe's 

Procedure Name Period 1 Period 2 Period 3 Period 4 
Comment 2 2 2 2 
First_Pass 6 6 6 6 
Insert 2 2 2 2 
Instcode 1 1 1 1 
Mes_Proc 1 1 1 1 
Pop 2 2 2 1 
Push 2 2 2 1 
Putsymbol 1 1 1 1 
Second_Pass 3 3 3 3 
Stack 4 4 4 4 
Umes_Proc 5 5 5 5 
OVERALL 29 29 29 27 

Halstead's 

Procedure Name Period 1 Period 2 Period 3 Period 4 
Comment 29 24 24 30 
First_Pass 57 52 52 67 
Insert 39 40 40 52 
Instcode 13 13 13 15 
Mes_Proc 12 13 13 19 
Pop 28 35 35 9 
Push 28 35 39 9 
Putsymbol 15 14 14 17 
Second_Pass 41 37 37 40 
Stack 37 40 43 35 
Umes_Proc 116 124 124 133 
OVERALL 415 427 434 426 

programs written in C code. A second C program was written 
that takes its input from a shell program that gives information 
about calling modules and the modules called. It then pro
duces a hierarchical representation of the program structure. 
From this collection of data, the changes for one delta or 
change period could be collected. By combining change data 
for several deltas, patterns or pictures for the changes occur
ring during the integration phase would be visible if they 
existed. These patterns or lack of patterns could then be re
lated to the manager's decision structure in Appendix A for 
evaluation of visible program or lack of visible progress. 

CONCLUSIONS 

During integration, subroutine/system calls are the statement 
type expected to exhibit the most significant change. Further 
analysis may support inclusion of significant changes in assign
ment statements. Other statement types should exhibit rela
tively little or no change during integration. 

Declaration statements should be representative of data 
structures that were thought out and defined in earlier phases. 
These statement types should show very little or no change 
during integration. Likewise, decision structure statements 
such as case statements, if statements, returns, breaks, and 
else statements should show little or no change during integra
tion. These statement types represent the algorithmic struc
ture of the project which should have been defined in an 
earlier phase. 

A stable hierarchy should evolve during the integration 
phase. An identifiable integration technique should be found. 
However, which integration technique used will depend upon 
the situation and the project team members. Top-down inte
gration strategy, bottom-up integration strategy, sandwich in-

A Model for Monitoring Software Integration 699 

tegration strategy or G3's big bang integration strategy are 
examples of integration techniques that may be identifiable. 

The pattern of the complexity measures for the inter
module measures will be dependent upon the integration 
strategy. The top-down integration strategy and the bottom
up integration strategy would exhibit dramatic increases in 
inter-module complexity. Sandwich integration strategy 
would indicate a visible increase early, with a leveling off as 
integration progresses. G3's big bang integration strategy 
would exhibit inter-module stability throughout the integra
tion phase. Intra-module complexity should remain relatively 
stable throughout the integration phase regardless of the inte
gration strategy identified. 

Since none of the patterns in the proposed model require 
extensive technical analysis to show progress during integra
tion, the model can be used by non-technical project per
sonnel as well as members of management and technical 
personnel. Patterns are easily recognizable. Recognizing the 
patterns outlined for this model will enhance the visibility of 
progress during a project's integration phase and enable non
technical and technical project personnel to make rational, 
data-based decisions about software projects. Appendix A 
presents a checklist for the model to aid managers in its use. 

Future work to identify models of patterns for the other 
phases of the software development cycle is needed to build an 
overall model of patterns of progress for software develop
ment. A search for a theoretical/logical explanation for this 
percentage of change for assignment statements would also be 
valuable. Research is continuing in the analysis of change 
during the integration phase to lend credence to the proposed 
model or to refute it. Evaluation of additional change mea
sures could also expand the proposed model. 

REFERENCES 

1. Bailey, John W. and Victor R. Basili "A Meta-Model for Software Devel
opment Resource Expenditures." 5th InternationaL Conference on Software 
Engineering, 1981, pp. 107-116. 

2. Boehm, Barry. Software Engineering Economics, Englewood Cliffs, New 
Jersey: Prentice-Hall, 1981. 

3. Itakura, Minoru and Akio Takayanagi. "A Model for Estimating Program 
Size and Its Evaluation." 6th International Conference on Software Engi
neering, 1982, pp. 104-109. 

4. Putnam, Lawrence H. and Ray W. Wolverton. Quantitative Management: 
Software Cost Estimating, New York: IEEE, 1977. 

5. Putnam, Lawrence H. and Ann Fitzsimmons. "Estimating Software 
Costs." Datamation, September-November, 1979. 

6. Putnam, Lawrence H. Software Cost Estimating and Life-Cycle ControL, 
New York: IEEE, 1980. 

7. Putnam, Lawrence H. "The Real Metrics of Software Development," 
EASCON 80 Record, New York: IEEE, 1980, pp. 310-322. 

8. Shooman, Martin L. "Tutorial On Software Cost Models," Workshop on 
Quantitative Software Models, New York: IEEE, pp. 1-19. 

9. Warburton, R.D.H. "Managing and Predicting the Costs of Real-Time 
Software." IEEE Transactions on Software Engineering, 9 (1983) 5, pp. 
562-568. 

10. Thayer, Richard H., Arthur Pyster, and Roger C. Wood. "Validating 
Solutions to Major Problems in Software Engineering Management." Com
puter, August, 1982, pp. 65-77. 

11. Fairley, Richard. Software Engineering Concepts, New York: McGraw-Hill, 
1985. 

12. Gustafson, David A., Austin Melton, and Chyuan Samuel Hsieh. "An 
Analysis of Software Changes During Maintenance and Enhancement." 
Conference on Software Maintenance, Washington, D.C., November, 1985. 



700 National Computer Conference, 1987 

13. McCabe, Thomas. "A Complexity Measure." IEEE Transactions on Soft
ware Engineering, 2 (1976) 4, pp. 308-320. 

14. Halstead, Maurice. Elements of Software Science, New York: Elsevier, 
1977. 

15. Mata Toledo, Ramon. "A Factor Analysis of Software Complexity 
Metrics." PhD Thesis, Kansas State Univeristy, 1984. 

16. Mata Toledo, Ramon and David A. Gustafson. "A Factor Analysis of 
Software Complexity Measures." Submitted for publication. 

17. Lanchbury, Mary Lou. "A Model of Successful Patterns of Progress During 
the Integration of Software." Masters Thesis, Kansas State University, 
1986. 

APPENDIX A-MANAGER'S DECISION STRUCTURE 
FOR PROGRESS EVALUATON 

Step One-Statement Types 

Identify which statement types are being changed most 
frequently. 

If it is Declarations, If, While, Else, Begin/End, Case, Break 
then this indicates unsuccessful pattern for step one. 

stop-predict unsuccessful 
if it is Subroutine/System Calls, Assignment 

then it indicates successful pattern for step one. 
continue to step two-successful pattern 

if it is Comments, Include, Return, Do 
then it indicates no pattern established for this model. 

continue to step two-no pattern 

Step Two-Hierarchy Structure 

Identify pattern of integration which matches one of the 
following: 

if TOP-DOWN INTEGRATION 
Higher percentages of module change at top level 
modules. 
Downward movement of location of higher percentages. 
Downward growth of hierarchy structure. 
Hierarchy calls stable (if A calls B in early phase then A 
calls B throughout). 

then proceed to step three--complexity A. 
if BOTTOM-UP INTEGRATION 

Higher percentages of module change at lower level 
modules. 

Upward movement of location of higher percentages. 
Upward growth of hierarchy structure. 

then proceed to step three--complexity A. 
if SANDWICH INTEGRATION 

Higher percentages of module change at lower levels. 
Upward movement of location of higher percentages. 
Appearance of total hierarchy. 
Higher percentages of module change at top levels. 
Downward movement of location of higher percentages. 

then proceed to step three--complexity B. 
if BIG BANG INTEGRATION 

Hierarchy structure is complete and stable. 
Higher percentages of module change at lower levels. 
Upward movement of location of higher percentages. 

then proceed to step three--complexity C. 
if NO PATTERN 

Higher percentages of module change randomly 
distributed. 

Hierarchy structure may be stable or may be fluctuating 
rapidly. 

then no visible progress is being made-stop 

Step Three-Complexity Measure Evaluation 

if Complexity A and complexity matches one of the 
following: 
Inter-module complexity growing significantly 
or Intra-module complexity showing slight change but 
relatively stable 

then predict PROGRESS 
if Complexity B and complexity matches one of the 

following: 
Inter-module complexity growing significantly then 
leveling off 
or Intra-module complexity showing slight change but 
relatively stable 

then predict PROGRESS 
if Complexity C and complexity matches the following: 

Both intra-module and inter-module complexity showing 
slight change but relatively stable. 

then predict PROGRESS 
If neither McCabe's or Halstead's exhibits a pattern 
then predict NO PROGRESS 



Software risk assessment 

by SUSAN A. SHERER and ERIC K. CLEMONS 
The Wharton School, University of Pennsylvania 
Philadelphia, Pennsylvania 

ABSTRACT 

This paper presents a framework for software quality that is firmly grounded in the 
economic significance of software failure. We introduce the concepts of software 
exposure and software risk-the magnitude of the potential loss due to software 
failure, and the expected value of this loss, respectively. These, we feel, are far 
more meaningful measures of software quality than the more traditional expected 
number of residual errors or mean time between failure, which have been adapted 
from hardware reliability theory. Our measures can be used by management in 
software engineering; examples of such use include allocation of test time to mod
ules and the determination of optimal release time for systems. 

701 





INTRODUCfION 

The past decade has shown an increasing reliance by govern
ment, corporations and individuals on computer software. 
Evidence suggests that this reliance on software will increase 
even more rapidly in the future. Many functions previously 
performed manually are being computerized; few functions, 
once automated, lose computer support. The increasing 
computerization of society is creating more dependence on 
software, particularly for very critical functions such as air 
traffic control and nuclear power plant control. A growing 
number of systems are operating in real time, which decreases 
or eliminates the opportunity for human intervention, further 
contributing to our reliance on software. Corresponding to 
the increased dependence on computers has been the devel
opment of much more reliable hardware. This improvement 
in hardware has increased the significance of software as a 
source of failure. 

As reliance on software grows, the importance of devel
oping and ensuring high quality and, in particular, reliable 
software increases. This requires improved methods for evalu
ating and controlling quality and reliability in software devel
opment. Since software failures have different consequences, 
any measure of software reliability must include the mea
surement of the consequence of failure. A measure of soft
ware risk-the cost of failure weighted by the probability of 
failure-is necessary. 

Software risk measurement can be used in developing and 
maintaining high quality software in several ways. First, it may 
be used to guide software testing. Generally, it is not possible 
to test a software system until perfection is assured. Trade-offs 
must be made concerning allocation of test resources: al
though all portions will be tested, some may be tested more 
intensively than others. It is reasonable to consider allocating 
test resources based upon software risk since consequences of 
failures differ among modules. 

Risk measurement of software can be used to determine 
optimal release times for a software product. The risk of soft
ware failure can be weighed against the cost of additional test 
time to determine the most cost effective time to release the 
software. 

Since the consequences of software failure can be catas
trophic, it is reasonable for producers and, perhaps, users to 
want to have some insurance against their losses. If software 
risk were quantifiable, insurance could be offered on software 
products. Just as the insurance industry has grown to meet the 
demand to support risky ventures, it is reasonable to expect 
that it should consider encompassing the risk of software fail
ures as this risk becomes a significant part of organizations' 
and individuals' operations. A means of quantifying this risk 
is necessary to establish insurance requirements. 

Software Risk Assessment 703 

This paper begins with a background of the software re
liability research and an overview of testing methodologies. 
Neither traditional reliability measurement techniques nor 
traditional testing methodologies consider the fact that the 
implications of software failures vary. Software reliability 
measurement techniques have been adapted from hardware 
reliability, where a failure typically has a single consequence. 
However, since different software failures have different ex
pected consequences, traditional reliability measurement 
techniques are inappropriate for measuring the true economic 
risk associated with failure. Traditional testing methods do 
not consider expected consequences of errors and thus are of 
only limited use in allocating available resources to the por
tions of the system with the greatest risk. 

The paper introduces and discusses a methodology for as
sessing software risk that considers both the magnitude and 
likelihood of loss. Measurement of risk begins with an assess
ment of external exposure, that is, the magnitude of loss due 
to invalid actions. The external exposure is mapped onto the 
system to determine the magnitude of loss due to failures 
caused by faults in individual modules. Assessment of the 
likelihood of failure for each module is based upon character
istics of the code and the development process as well as 
results of test efforts. 

BACKGROUND 

Software Risk Versus Reliability 

Software risk is defined here as the cost of failure weighted 
by the probability of failure. This definition differs signifi
cantly from current definitions of software reliability. The 
major difference is its inclusion of a measure of the cost of 
failure. Software reliability models have not considered the 
cost of failure. They have been adapted from hardware re
liability assessment, which models failure as producing a sin
gle, known consequence, generally total system failure. How
ever, the consequences of software failure are more varied. 
Furthermore, the causes of failure differ: hardware may fail 
after use as components fatigue or wear out; software may fail 
as new use encounters old errors. We may therefore expect 
different. statistical properties for hardware and software fail
ures. Thus, software risk assessment differs from hardware 
reliability assessment, and it is not surprising that traditional 
software methods, grounded in the hardware tradition, should 
prove less than wholly satisfactory. 

There have been several definitions advanced for software 
reliability. The early software reliability models defined re
liability in terms of the number of residual errors in a pro
gram. 1

-
7 Other models have adapted the traditional hardware 



704 National Computer Conference, 1987 

definition of reliability, mean time to failure, in defining soft
ware reliability as mean time between software failures. 8

-
10 

Littlewood defines reliability as a strength of our belief in the 
operation of the software without failure for a given time 
period. 11-14 

The major problem with all of these definitions lies in the 
assumption that all errors or failures are the same. Whereas 
hardware failures typically have the same consequence (i.e., 
the system is not operational), a software error can have a 
variety of consequences. There are different types of software 
failures. A software failure can be a system crash or a misread 
number. If the latter, the consequence of this misread number 
can vary. In an air traffic control system, if the hardware fails, 
we typically lose sight of all aircraft. If the software fails, we 
might lose sight of all aircraft, or we might unknowingly lose 
sight of a single aircraft, or we could transpose a digit on the 
aircraft identification. The consequence of these different fail
ure modes are quite different. The point is that software er
rors and resulting failures have varying consequences, while 
hardware failures typically have a single consequence; this 
makes hardware models of software failure of limited use
fulness. 

There are other differences between software and hardware 
that distinguish software risk assessment from hardware re
liability measurement. Hardware failures are due to de
gradation of components as well as design errors. The former 
source of failure produces statistically measurable failure pat
terns. Software components, however, do not degrade as a 
result of environmental stress or fatigue. In fact, an older 
program is usually more reliable. Software failures are often 
due to design and implementation errors that occur as a result 
of unanticipated or untested inputs. The correction of soft
ware errors usually alters the software; it does not just replace 
it as in hardware. Finally, software can be copied, retaining 
the reliability, whereas hardware cannot. 

Software Testing 

Complete testing of a software system, conclusively demon
strating the absence of any errors, is usually impossible. 
Therefore, the key issue in software testing has been the selec
tion of the subset of all possible test cases that has the highest 
probability of detecting the most errors. 15 

Several methodologies are used for accomplishing this task. 
These can be classified as: 

White box testing 
Black box testing 
Random testing 

These methodologies are used in various phases of the testing 
process. We review the testing process to show that traditional 
methods have not adequately addressed the economic con
sequences of software failure. Since errors can produce 
consequences of different significance, testing ought to be 
concerned with the selection of test cases with the greatest 
expected loss. 

White box, or structural testing, uses the internal structure 
of the program to develop test cases. Coverage criteria include 

statement coverage, decision coverage, condition coverage, 
and combinations of these. 15

-
19 

Black box, or functional program testing, is largely data 
driven. The testing process involves partitioning the input 
space into equivalence classes. These are sets of input states 
that appear to be similar, so that a test of a representative 
value in a class should yield results equivalent to a test of any 
other value in that class. 15 Boundary values of these classes in 
particular are usually tested. 15, 16, 19 

Random input testing chooses test cases by randomly se
lecting inputs from the input space, using the same proba
bilities of selection of input states as occur during operation. 20 

In many cases, more efficient testing is accomplished if one 
recognizes that once an input state has been selected, it does 
not have to be repeated. In this case, the failure intensity* 
must be divided by a test compression factor, or ratio of 
execution time required in operation to execution time re
quired in test phase, to obtain the corresponding failure in
tensity to be expected in operation. 20 

Software testing is a major component of systems develop
ment, typically accounting for as much as one half of the 
development effort. 21-22 The testing process generally com
prises several phases: 

1. Module test 
2. Integration test 
3. Function test 
4. Systems test 
5. Acceptance test 

Module, integration, and function testing are typically per
formed by the systems development group. These phases ver
ify the code against the design and specification. They 
typically consume 45% of the total development effort.23 Sys
tems and acceptance testing are generally performed by an 
independent group, which verifies the system against the 
user's objectives. These phases typically consume only a small 
part of the total systems development effort. 23 

The purpose of module testing is to compare the code to the 
module specification. The objective is to show how the mod
ule contradicts the specification (i.e., to find faults in the 
code). Typically, module testing involves a combination of 
white box and black box tests. The test manager is faced with 
many decisions such as what modules to test, what test data 
are necessary, and how to allocate personnel. In many cases, 
test resources are constrained. Commonly, test time is lim
ited. Personnel may also be limited. Thus, the manager must 
decide how to allocate test effort to each module so as to 
locate as many errors as possible. Typically, this is done on an 
ad hoc basis based upon the logic in the code (white box 
testing) and the equivalence partitions (black box tests). 

During integration testing, the parts of the code are put 
together and the integrated code is compared to the program 
structure and systems design. White box and black box testing 
may be used. The integration strategy chosen and the testing 
sequence affect the form in which module test cases are writ-

* Failure intensity has been defined as failures per unit time.20 



ten, the types of test tools used, the cost of generating test 
cases and the cost of debugging errors. 15 

Function testing is the comparison of the system to the 
external specification, a description of the system from the 
user's point of view. Thus, the system is not tested against the 
design but against the user specifications. Function testing is 
typically a black box process. During this test phase, manage
ment must decide how to allocate test effort to different data 
categories so as to uncover as many errors as possible. Typi
cally, time and personnel constrain testing efforts. 

The function of the systems test is to compare the system or 
program to its requirements. 15 Its purpose is to assess the 
system against its original objectives, as opposed to the 
specifications. The objective of the systems test phase is to 
produce a reliable software product. During this phase, test
ing generally proceeds by randomly choosing inputs based 
upon the user objectives. Software is tested until the deadline 
for system release is reached or the test team feels that the 
software is reliable enough for release.23 Software reliability 
measurement techniques have been developed to determine 
when desired reliability levels are reached. 20 Since they do not 
consider the consequence of failure, costs and benefits cannot 
be addressed, and desired reliability cannot adequately be 
defined or measured. 

In all of these types of testing, prior theory never explicitly 
considers the fact that the errors that we are looking for vary 
in their consequence. This is a critical factor. Given the con
straints that exist during each testing phase, we should be 
considering the consequence of failure when allocating test 
efforts. During the module test phase, management should be 
allocating efforts not only based upon the structure of the 
code and the equivalence partitions but also considering the 
different consequences of failure in different modules. During 
function testing, we ought to be allocating efforts based upon 
the criticality of the function. During systems test, test effort 
should be allocated to requirements with the greatest con
sequences of failure. Optimal release times considering the 
cost of failure can then be determined. These points are ad
dressed in our research, which is introduced in the following 
section. 

ASSESSMENT OF SOFTWARE RISK 

Introduction 

We present in this section our extensions to software quality 
assessment, intended to capture the economic significance of 
software malfunction. 

We define software risk as the expected loss due to failure 
during a given time period. Risk is measured by the frequency 
or likelihood of loss (events reSUlting in loss per unit time) 
times the magnitude of loss or the level of exposure due to loss 
(consequences of events). ** 

In order to develop a measure of software risk that may be 
used to guide testing, we need to perform several functions. 

** This is analogous to the work of Henley & Kumamoto.24 

Software Risk Assessment 705 

These will be briefly described here and then will be discussed 
in more detail later in this paper: 

1. External exposure identification: What actions, external 
to the system, can result in losses and what are the 
consequences of these actions? 

2. Structural exposure analysis: What system failures can 
result in these actions? What is the potential magnitude 
of loss due to failures caused by faults in each module? 

3. Prior predictions of failure likelihood and risk: What is 
the a priori estimate of the likelihood of failure due to 
faults in each untested module? What is the resulting 
estimate of risk? 

4. Updating priors using test results: How do we use test 
results to update failure assessments? 

External Exposure Identification 

The first step in the measurement of software risk is exter
nal exposure identification. This involves an assessment of 
factors operating in the environment, external to the soft
ware, that can contribute to loss. First, we must identify po
tential actions that can result in loss. Then, we must assess 
their consequences, that is, the magnitude of loss due to these 
actions. 

Assessment of the external environment involves identifica
tion of sources of catastrophe, typically operator actions (or 
inactions) that can cause disaster by violating norms of behav
ior. For example, in an air traffic control system, the collision 
of two airplanes may be caused by an operator who does not 
take action to change headings when two planes are on a 
collision course. Our analysis of behavior linked to cata
strophic events may reveal items that may have inadvertently 
been left out of the system requirements. This may yield an 
additional benefit from this analysis giving us another tech
nique for validating the system design. 

The magnitude of loss that may result from inappropriate 
actions is a function of the environment and the context in 
which the system operates. The potential loss if an air traffic 
controller operates inappropriately in situations where planes 
are on potential collision courses will be much larger if the 
controller is working during rush hour in a large airport than 
if he were working on an off hour in a small airport that does 
not handle wide-bodied aircraft. Generally, there are a large 
number of environmental factors that must be considered. We 
will begin by using expected values for the magnitUde of loss. 

Structural Exposure Analysis 

In structural exposure analysis, we map invalid actions, 
identified in external exposure identification, back to system 
causes. We try to associate these system causes with potential 
faults in various modules; we can then identify the magnitude 
of loss due to faults in various portions of the system. 

The magnitude of loss due to system failure is defined as the 
exposure level. The exposure level is based upon the mag
nitude of loss due to actions that can result from this failure. 
Failures are due to faults, or defects, in the system. Our 



706 National Computer Conference, 1987 

objective is to assign an exposure level due to faults in the 
basic interconnected components of the system, the individual 
modules. 

Operator, or environmental, malfunction results from 
invalid system output. (Note: The absence of expected output 
may itself also be considered invalid output.) This invalid 
output is a result of a failure, due to one or more faults in the 
system. Thus, it is necessary first to relate invalid actions to 
system failures. For example, failure of an operator to re
spond to aircraft on a collision course may be due to the 
system's failing to display more than one aircraft with con
flicting headings. 

After identification of potential system failures, we attempt 
to determine which modules or paths in the system may have 
faults that can result in these failures. In the above example, 
we must determine which modules process data related to the 
display of aircraft heading. To do this, we need to determine 
how the output resulting from the system malfunction is pro
duced. Invalid output, triggering actions resulting in losses, is 
produced by invalid processing of data by the system. 

To assign exposure levels to modules, we will assume that 
the fault potential of a module is a function of the type of 
processing taking place in each module. The functions relating 
to data with the potential for producing invalid outputs caus
ing loss are identified. 

The module's function at any time, and the associated ex
posure level, may vary with the way the system is using it; this, 
in turn, is related to the way the system itself is being used. For 
example, response to an air traffic control display produced 
by a module can result in different actions, based upon the 
purpose of the display at the time of failure. Thus, it will be 
necessary to evaluate the complex relationship of module 
functions to system functions. 

In sum, the exposure level of a module is based upon the 
actions that can result from failures due to faults in the mod
ule. It depends upon what data is processed by the module 
and how that data relates to invalid output. It also depends 
upon how the module processes the data, itself a function of 
the nature of use of the module. 

Prior Prediction of Failure Likelihood and Risk 

The likelihood of a software failure depends upon the num
ber of faults or errors in a program and the probability that a 
fault or program defect will be encountered in operation, 
causing a failure. 

The number of faults is a function of the product as well as 
the development process. Most research has concentrated on 
studying the relationship between characteristics of the final 
product and the number of faults found. Many researchers 
have found that the size of a program, measured in terms of 
the number of executable source statements, has the most 
effect on the number of faults it contains. 20

,25 Research re
lating measures of program complexity to the number of faults 
has been inconclusive. 25

-
27 Characteristics of the development 

process also affect the number of faults. This includes such 
factors as skill level of the development team, communication 
among the team members, quality of reviews, and familiarity 

with application and techniques. However, it is difficult to 
develop objective measures of these characteristics. 

One means of relating the number of faults to both the 
product and the development process would be to gather his
torical information concerning the number of faults in mod
ules developed by individual programmers. We will assume 
that programmer performance, measured in terms of number 
of errors per line of code, remains fairly stable over time after 
an initial learning period. This assumption may be relaxed at 
a later date to account for experience and learning factors. By 
measuring the number of errors per line of code for each 
programmer, we gain useful historical information ~oncerning 
the development process; this information can be used to 
make prior assessments of the programming product. 

The probability that a fault produces a failure depends upon 
the number of ways in which the module can be used and the 
frequency with which the module is used. If a module has a 
large number of paths and input classes, the probability of a 
specific fault causing a failure on any given run is much less 
than if a module has only a single path and a single input class. 
Typically, in operation, certain sections of code are used more 
often than others, resulting in unequal per fault hazard rates. 
The operational profile, or set of all possible input states with 
their associated probabilities of occurrence, will determine 
which sections of the code will be used most frequently. If the 
fault is located on a main branch of the code or in a portion 
of code well traversed, it should have a higher probability of 
causing a failure than if it is located in a section of code rarely 
traversed. 

The risk for each module is equal to the probability of each 
type of failure times the cost of that failure. Since we do not 
know the probability of each type of failure, we will begin by 
estimating risk for each module as the product of the expected 
exposure level times the aggregate failure likelihood for that 
module. The expected exposure level will depend upon the 
expected use of the system during operation. Failure like
lihood depends upon the number of faults and the probability 
that faults will produce failures. 

Updating Priors Using Test Results 

As testing proceeds, we gain information concerning the 
software risk. This may change our initial perceptions, or 
prior assessments, of the magnitude and location of the risk. 
Before testing, we assessed the exposure level based upon our 
prior identification of the types of failures that could occur 
and of their consequences. We estimated the number of faults 
and the likelihood of failure based upon a priori perceptions 
of the development process and characteristics of the code. 
Examination of failure and debugging information will yield 
new knowledge about the system. 

The frequency and number of failures due to faults in each 
module may change our initial estimate of the failure like
lihood for each module. One means of doing this is to assume 
a statistical distribution for software reliability growth. As 
failure data become available, statistical inference procedures 
may be used to update the parameters of the distribu
tion. 8

, 10, 11,28 In most cases, these parameters are the number 



of faults and the probability that a fault will cause a failure. 
A second means of using failure data to update our prior 

estimates is based upon the observation in many systems that 
errors tend to cluster. As one example, this phenomenon was 
observed in IBM's S/370 operating systems. In one of these 
operating systems, 47% of the errors found by users were 
associated with only 4% of the modules within the system. 15 

In fact, one of Myers's testing principles is that "the proba
bility of the existence of more errors in a section of a program 
is proportional to the number of errors already found in that 
section. ,,15 Thus, the location of many faults in a single mod
ule may change our prior estimate of the number of faults still 
to be found in that module. 

Test results also give us new information about programmer 
performance that may be used to update our estimates of 
failure likelihood. Test data on several modules by the same 
programmer indicating many more faults than initially ex
pected in those modules would cause us to increase our 
expectations of faults in as yet untested modules by this pro
grammer. We can use this information to update prior esti
mates of number of faults and, thus, the probability of failure 
in modules by this programmer. 

CONCLUSIONS 

We have developed a new measure of software quality, soft
ware risk. Measures of software reliability should attempt to 
consider the varying significance of software failures. Once we 
can assess the variation in software risk between different 
portions of a system, we can more cost effectively test our 
systems. 

We have presented a framework for measuring software 
risk and using the measurement in testing. The next step is to 
develop the supporting mathematics representing our assump
tions about the failure likelihood. This will be needed to de
velop prior estimates of failure likelihood as well as to update 
these estimates with test information. Empirical results will 
then be needed to support the theory. 

REFERENCES 

1. Jelinski, Z. and P. Moranda. "Software Reliability Research." In W. Frie
berger (ed.) Statistical Computer Performance Evaluation. New York: Aca
demic Press, 1972, pp. 465-484. 

2. Shooman, M.L. "Probabilistic Models for Software Reliability Prediction." 
In W. Frieberger (ed.) Statistical Computer Performance Evaluation. New 
York: Academic Press, 1972, pp. 485-502. 

3. Shooman, M.L. "Operational Testing and Software Reliability Estimating 
During Program Development." IEEE 1973 Computer Software Reliability 
Conference, New York, pp. 51-57. 

4. Moranda, P.B. "An Error Detection Model for Application During Soft
ware Test Development." IEEE Transactions on Reliability R-30 (1981) 4, 
pp. 309-312. 

Software Risk Assessment 707 

5. Schneidewind, N.F. "Analysis of Error Processes in Computer Software." 
Proceedings International Conference on Reliable Software, April 1975, pp. 
337-346. 

6. Shooman, M.L. and A. Trivedi. "A Many State Markov Model for Com
puter Software Performance Parameters." IEEE Transactions on Reliability 
R-25 (1976) 2, pp. 66-68. 

7. Ohba, M. "Software Reliability Analysis Models." IBM Journal of Re
search Development, 28 (1984) 4, pp. 428-443. 

8. Musa, J.D. "Theory of Software Reliability and Its Application." IEEE 
Transactions on Software Engineering, SE-1 (1975) 3, pp. 312-327. 

9. Musa, J.D. and K. Okumoto. "A Logarithmic Poisson Execution Time 
Model for Software Reliability Measurement." Proceedings 7th Interna
tional Conference on Software Engineering, Orlando, Florida, 1984, pp. 
230-238. 

10. Goel, A. and K. Okumoto. "Time Dependent Error Detection Rate Model 
for Software Reliability and Other Performance Measures." IEEE Trans
actions on Reliability R-28 (1979) 3, pp. 206-211. 

11. Littlewood, B. and J. Verrall. "A Bayesian Reliability Growth Model for 
Computer Software." IEEE 1973 Computer Software Reliability Confer
ence, New York, pp. 70-77. 

12. Littlewood, B. "MTBF Is Meaningless in Software Reliability." IEEE 
Transactions on Reliability R-24 (1975) April, p. 82. 

13. Littlewood, B. "How to Measure Software Reliability and How Not To." 
IEEE Transactions on Reliability R-28 (1979) 2, pp. 103-110. 

14. Littlewood, B. "Theories of Software Reliability: How Good Are They and 
How Can They Be Improved." IEEE Transactions on Software Engineering 
SE-6 (1980) 5, pp. 489-500. 

15. Myers, G.J. The Art of Software Testing. New York: John Wiley, 1979. 

16. Howden, W.E. "Reliability of the Path Analysis Testing Strategy." IEEE 
Transactions on Software Engineering SE-2 (1976) 3, pp. 208-215. 

17. Huang, J.C. "Error Detection through Program Testing." In R.T. Yeh 
(ed.) Current Trends in Programming Methodology Vol. II Program Valida
tion. Englewood Cliffs, New Jersey: Prentice-Hall, 1977, pp. 16-43 

18. Goodenough, J.B. and S.L. Gerhart. "Toward a Theory of Testing: Data 
Selection Criteria." In R.T. Yeh (ed.) Cu"ent Trends in Programming 
Methodology Volume II Program Validation. Englewood Cliffs, New Jer
sey: Prentice-Hall, 1977, pp. 44-79. 

19. Redwine, Jr., S. "An Engineering Approach to Software Test Data De
sign." IEEE Transactions on Software Engineering SE-9 (1983) 2, 
pp. 191-200. 

20. Musa, J.D., A. Iannino, and K. Okumoto. Software Reliability: Mea
surement, Prediction, Application. Manuscript in progress, to be published 
by McGraw Hill, 1987. 

21. Yourdon, E. and L. Constantine. Structured Design: Fundamentals of a 
Discipline of Computer Program and Systems Design. Englewood Cliffs, 
New Jersey: Prentice-Hall, 1979. 

22. Zelkowitz, M.V. "Perspectives of Software Engineering." ACM Com
puting Surveys 10 (1978) June, pp. 197-216. 

23. Kubat, P. and H.S. Koch. "Managing Test-Procedures to Achieve Reliable 
Software." IEEE Transactions on Reliability R-32 (1983) 3, pp. 299-303. 

24. Henley, E. and H. Kumamoto. Reliability Engineering and Risk Assess
ment. Englewood Cliffs, New Jersey: Prentice-Hall, 1981. 

25. Feuer, A.R. and E.B. Fowlkes. "Some Results from an Empirical Study of 
Computer Software." Fourth International Conference on Software En
gineering, Munich, Germany, September 17-19, 1979, pp. 351-355. 

26. Basili, V.R. and B.T. Perricone. "Software Errors and Complexity: An 
Empirical Investigation." Communications of the ACM 27 (1984) 1, pp. 
42-52. 

27. Shen, V.Y., T. Yu, S. Thiebaut, and L. Paulsen. "Identifying Error-Prone 
Software-An Empirical Study." IEEE Transactions on Software En
gineering SE-ll (1985) 4, pp. 317-323. 

28. Kubat, P. and H.S. Koch. "On the Estimation of the Number of Errors and 
Reliability of Software Systems." Working Paper Series No. 8013, Gradu
ate School of Management, University of Rochester, New York, May 1980. 





WORKPLACE APPLICATIONS 
S. KRISHNA DRONAMRAJU 

AT &T Information Systems 
Naperville, Dlinois 

and 
JULIE M. HURD 

The University of Chicago 
Chicago, Dlinois 

and 
ROBERT K. CLARK 

Boeing Computer Services 
Seattle, Washington 

The various environments in the modern workplace encompass not only technical and busi
ness activities but also structural issues of the department, the company, and the ever 
changing larger society. In this track, some timely applications and associated problems are 
presented in detail, and their relationships to organizational and societal concerns are shown, 
in addition to their taxonomy and interrelationships. A featured session examining the 
general environment of workplace applications is arranged to introduce the professional 
and nonprofessional alike to this track. Following are some glimpses into the activities of 
the other sessions scheduled: 

A plethora of intelligent applications in the office of the future and the connected problems 
on the human side. 

A well-orchestrated battle to decide the winner among the page description languages. 
CIM, computer integrated manufacturing, which will be the panacea for the problems 

associated with the factory of the future and the different facets of these stages of integration. 
Effective data analysis and interpretation associated with the mechanical CAE, where 

various techniques are introduced to handle the specific problems. 
Industry's attempts to standardize the CAE systems for electrical design applications, thus 

aiming at improved productivity, data sharing among various diverse systems, and the current 
status in these efforts. 

The expert systems for reliability in complex designs with stringent requirement con
straints. 

The rapid pace of computing in the modern financial world, covering the spectrum from 
applied AI to technological advances in the marketing field. 

The advance of computers in medical research, pharmaceutical product management, and 
private practice. 





ABF: A system for automating document compilation 

by JAMES SPROWL, MARTHA EVENS, and MOHAMED RAGAIE SAYED OSMAN 
Illinois Institute of Technology 
Chicago, Illinois 

and 
HENRYHARR 
DePaul University 
Chicago, Illinois 

ABSTRACT 

The ABF system, named after the American Bar Foundation, its first sponsor, was 
designed to aid lawyers and paralegals in the compilation of legal documents. The 
ABF interpreter processes a skeleton document from a library of templates, and 
automatically generates questions about whatever client-specific information is 
needed to produce a client-customized document, ready to be formatted. The user 
can interrupt the processor at any point to change the document; the system will 
then reprocess the new document using answers to questions asked previously. The 
templates in the ABF System Library may contain conditional expressions, loops, 
and complicated arithmetic expressions, like those sometimes needed in tax 
computations. Other documents may be included by reference. The goal is to make 
model documents written by legal experts available to lawyers in small offices and 
to law students. 

711 





ABF: A System for Automating Document Compilation 713 

INTRODUCTION 

ABF is an expert system designed to assist attorneys in draft
ing legal documents. The system starts by extracting, from a 
library of legal forms, a skeleton template document that has 
embedded within it programming constructs such as condi
tionals, loops, references to other documents, and variables. 
The variables are later replaced by client-specific information 
in the course of an automated interview. Alternative and re
petitive passages are included, or excluded, dynamically as 
the interpreter encounters conditionals and loops. The system 
analyzes the document and if it discovers that information is 
missing, it first checks to see if it already has the value stored, 
then it checks to see whether the document designer gave it a 
rule to compute the value, or supplied a special question that 
is to be displayed to the user when the value is needed. If these 
measures fail, the system generates an English question 
asking the user for the missing data. The user can stop the 
interpreter at any time, edit the draft document, and reinitiate 
automatic processing. Since the answers to previous questions 
are saved, the system will never ask a question a second time. 
ABF was implemented in Pascal on an IBM PC in a joint 
venture with IBM. 

The facilities that ABF offers to automate the assembly 
of legal documents will, we feel, make it just as useful in 
other applications, such as marketing, insurance, and hospital 
recordkeeping. We are currently using ABF in an experiment 
in the automatic generation of hospital discharge summaries. 

HOW THE ABF SYSTEM WORKS 

The ABF system library contains a number of document tem
plates designed to help the law student learn how to frame 
simple documents of the kind that must be handled constantly 
in ordinary practice. One of those model documents is a sim
ple will that begins: 

I, [the name of the testator], do give my entire estate to my 
[the testator's spouse, a husband or wife] [the name of the 
testator's spouse], if my [the testator's spouse, a husband or 
wife] survives me by at least 30 days. If my [the testator's 
spouse, a husband or wife] [the name of the testator's 
spouse] predeceases me, then I give my entire estate to my 
children .... 

Suppose the problem is to draft a will for a client named 
John Smith with a wife named Mary Smith and three children. 
To start this assignment, the user types into the system: 

PROCESS Will OF John Smith 

The words "PROCESS" and "OF" are typed in capitals, so 
that the system interpreter will recognize them as system com
mand words 

On receiving this command, the ABF processor pulls out 
the model will and starts to process it. When it comes to the 
first set of square brackets, the processor stops and looks to 
see if it already knows the name of the testator. Since the 
processor does not know the name in this instance, the system 
displays the following question on the screen: 

What is the name of the testator? 

The user types in the answer: 

John Smith 

and the system displays on the screen: 

I, John Smith, do give my entire estate to my 

followed by a question about the next item of information it 
needs: 

What is the testator's spouse, a husband or wife? 

The user answers: 

wife 

The system now asks: 

What is the name of the testator's spouse? 

and the user answers: 

Mary Smith 

The system now displays: 

I, John Smith, do give my entire estate to my wife Mary 
Smith, if my wife survives me by at least 30 days. If my wife 
Mary Smith predeceases me, then I give my entire estate to 
my children. 

Since the processor saves the answers to the questions it asks, 
it does not need to ask for the same information again. Indeed 
the processor is asking for just the information the user would 
need to elicit in a client interview in order to draw up a will 
manually. 

The version of the document produced by the system in 
asking questions and filling in the answers is called the 

DRAFT Will OF John Smith 



714 National Computer Conference, 1987 

To see what the document will look like in finished form the 
user can issue the command 

DISPLAY DRAFf Will OF John Smith 

and the system will display the draft on the screen. The user 
can make further changes by editing this draft using the 
command 

EDIT DRAFf Will OF John Smith 

Once the document is in satisfactory shape, the user calls the 
formatter with the command 

FINISH DRAFf Will OF John Smith 

This will cause the will to be printed out in a nicely formatted 
fashion. 

Variable Names 

The strings in square brackets are variable names. Because 
the variable names used in the questions generated by the 
system need to be self-explanatory, they are often long and 
cumbersome. To make the task of the document designer 
easier and to avoid misspellings, which confuse the system, 
the ABF system allows short names (abbreviations) to be 
associated with variable names. The association is declared by 
including both the short name and the long name in the square 
brackets, separated by a colon. Short names may not contain 
colons. For example, the document designer decides to use 
the abbreviation "testname" for the name of the testator, and 
"spname" for the name of the spouse, and "horw" for "the 
testator's spouse, a husband or wife." Our model document 
then becomes much shorter: 

I, [testname: the name of the testator], do give my entire 
estate to my [horw: the testator's spouse, a husband or wife] 
[spname: the name of the testator's spouse], if my [horw] 
survives me by at least 30 days. If my [horw], [spname], 
predeceases me, then I give my entire estate to my children. 

The system stores both short and long variable names. It also 
stores the answers to questions as the values associated with 
the variable names. The long name is always used in asking 
questions, however. 

VarioUS' Ways to Answer Questions 

Most of the time the user will type in an answer and the 
system will accept that answer and insert it in the correct spot 
in the document. But occasionally the system receives an 
answer it does not understand. In that case, it will explain 
what kind of answer is appropriate and ask the same question 
again. For example, if the system expects a number and gets 
text instead, it will explain that a number is needed and then 
give the user another chance to answer the question. 

If the system asks a question that the user is not ready to 

answer, the user types a question mark. Suppose the system 
asks for the address of the residuary legatee and the user does 
not know it yet. If the user types a question mark, the system 
will continue to process the will, without asking that question 
again. When the will is printed out, it will look perfectly 
normal except that where the address should be there will 
appear instead "[the address of the residuary legatee]." This 
address can easily be filled in using the editor as soon as the 
address is known, or the document may be reprocessed. 

Help is also available. F1 brings up help with the editor, and 
F2 brings up help with the document processor. If a question 
is not clear, then the user presses the F2 function key. The 
system will display an assistance document at this point if it 
has one, that is, if the document designer realized that users 
might get confused at this point. Shift F1 and shift F2 bring up, 
respectively, the editor and the system help documentation in 
outline form. 

Alternative Passages 

The last sentence in our model will is not really appropriate 
if the testator is childless. This is one of many situations in the 
law when different circumstances call for alternative passages. 
To make our model more sophisticated, we can rewrite the 
last sentence to include: 

IF the testator HAS any children 
INSERT I give my entire estate to my children. 

END IF 

When the system arrives at the variable named "the testator 
HAS any children," it displays the question: 

Has the testator any children? 

If the user answers this with a "yes," this passage will be 
inserted. 

In a situation like this where the name of the variable is 
preceded and followed by a capitalized command word, it is 
unnecessary to enclose it in square brackets. We could have 
written this section without the brackets: 

IF the testator HAS any children 
INSERT I give my estate to my children. 

END IF 

This variable is different from those we saw earlier in an
other way. Most variables have many possible values, but this 
has only two: true or false. Such variables are called proposi
tions. The kind of "What is ... " questions that the system 
generates for other variables would sound very strange with 
propositions. If there is a capitalized word in the proposition, 
like the "HAS" in our example, it is moved to the front when 
the question is formed. If there is no capitalized word, the 
system asks the question: "Is it true that ... ?" 

At some time we may want to insert one passage in one 
situation, but a different one in another situation. In our 
sample we will need to insert one passage if there is to be a 
single executor and a slightly different passage if there is to be 



ABF: A System for Automating Document Compilation 715 

an executor and an alternate. ABF gives us a very simple way 
to express what we want to do here: 

IF you DO wish to name only one executor, 
rather than an executor and an alternate 

INSERT 
I name as my executor [exnam: the executor's name] who 
shall not be required to post security upon [exposs: his or 
her, the possessive pronoun for the executor] bond. 

OTHERWISE INSERT 
I name [exnam] to be my executor, but if [expers: he or 
she, the personal pronoun for the executor] is unable or 
unwilling to serve, I name [exalt: the alternate executor's 
name] as executor. My executor shall not be required to 
post security upon his bond. 

ENDIF 

The ABF interpreter will ask the question: 

Do you wish to name only one executor, rather than an 
executor and an alternate? 

If the answer is "yes" the first passage will be inserted; if the 
answer is "no," the second passage will be inserted. 

At some time we may want to insert an already existing 
document in the middle of another document. For example, 
one or the other, or both, the alternative passages in the IF 
statement may be an already prepared document. To incorpo
rate such a document by reference, simply place its name, 
enclosed in brackets, in the other document. 

IF [the testator HAS any children] 
INSERT [the gifts to minors passage] 
OTHERWISE INSERT [the unborn child passage] 

END IF 

Document names are thus a kind of variable name. 

Rules and Replacement Questions 

The user of ABF will see the system mainly as a collection 
of nagging questions, so it is important to cut down the num
ber of questions wherever possible and to make the remaining 
questions both clear and crisp. 

The document designer may notice that the value of a vari
able can be computed by the system once the values of other 
variables are known. For example, if the system knows the 
value of [sex: the testator IS a man], then it should be able to 
compute the values of [spperspron: the personal pronoun of 
the testator's spouse, he or she] and [spposspron: the posses
sive pronoun of the testator's spouse, his or her]. The docu
ment designer writes a special rule to tell the ABF system how 
to perform the computation. The first step is to enter the 
command: 

EDIT RULE spperspron 

Then the designer enters the rule body: 

IF [sex: the testator IS a man] 
LET spperspron = (she) 
LET spposspron = (her) 

OTHERWISE 
LET spperspron = (he) 
LET spposspron = (his) 

END IF 

When the system needs the value of spperspron or spposs
pron, it will activate the rule instead of asking a question. 

Sometimes a question cannot be avoided, but it can always 
be rephrased. The system-generated question may sound very 
awkward. From the variable "chnam: the names of my chil
dren" the ABF system will form the question: 

What is the names of my children? 

The document designer who looks at this question will doubt
less decide to change it immediately by entering the command 

EDIT QUESTION chnam 

and then type in a substitute, perhaps: 

List the names of the testator's children. 

Client Data Files 

As a document is processed, the system automatically 
writes a record of the values obtained for variables in a file. As 
John Smith's will is processed, the system produces a file 
called DATA OF John Smith. It will begin: 

LET the name of the testator = (John Smith) 
LET the testator's spouse, a husband or wife 

= (wife) 
LET the name of the testator's spouse 

= (Mary Smith) 

As you can see, this file takes the form of a rule. If it is 
necessary to stop in the middle of an interview, the client data 
file will be saved. When the system starts to reprocess the 
draft, the rule contained in John Smith's data file will be 
executed first and the values will be assigned to the variables. 
This means that the questions asked in the previous interview 
will not be asked again. The processor will start from the point 
where the previous interview finished. 

The client data file also gives the user a way to correct 
earlier mistakes. If the user discovers that a previous answer 
was wrong, it is easy to change the values by editing the client 
data file. This may be done in mid-interview. 

Constructing Lists and Repetitive Passages 

Our model will also include an optional paragraph contain
ing a list of special gifts of property. It uses a REPEAT clause 
to construct this list. 



716 National Computer Conference, 1987 

REPEAT Does the testator wish to give another gift of property to 
WHEN #the testator DOES NOT wish to give 

another gift of property to someone EXIT 
I give my [#the description of the gift] to my [#the rela
tionship of the recipient to the testator] [#the name of 
the recipient] 
IF #the recipient IS an individual 
INSERT if living 30 days after my death 
END IF. 

END REPEAT 

When this block is processed, the system begins by asking: 

Does the testator wish to give another gift of property to 
someone? 

If the answer is no, the proposition in the WHEN clause is 
true and the system exits from the REPEAT block immedi
ately. If the answer is yes, the system starts to process the rest 
of the block. Let's suppose that John Smith wants to give his 
golf clubs to his nephew Russell Walton. Then the following 
interview results: 

What is the description of the gift? 
golf clubs 

What is the relation of the recipient to the testator? 
nephew 

What is the name of the recipient? 
Russell Walton 

Is the recipient an individual? 
yes 

When the processor reaches the END REPEAT, it jumps 
back to the beginning of the repeat block and again asks: 

Does the testator wish to give another gift of property to 
someone? 

Suppose that John Smith also wants to give his coin collection 
to his cousin Peter Ames. This question will be answered 
yes and the processor will proceed as before through the 
REPEAT block. 

What is the description of the gift? 
coin collection 

What is the relationship of the recipient to the testator? 
cousin 

What is the name of the recipient? 
Peter Ames 

Is the recipient an individual? 
yes 

Again the processor reaches the end of the REPEAT block 
and jumps back to the beginning. We have come to the end of 
Mr, Smith's gifts of property. The question generated by the 
WHEN clause: 

someone? 

is now answered no and the processor exits from the REPEAT 
block. 

The result of processing the REPEAT block is the addition 
of the following two sentences to the draft of John Smith's 
will: 

I give my golf clubs to my nephew Russell Walton if living 
30 days after my death. I give my coin collection to my 
cousin Peter Ames if living 30 days after my death. 

The variables in the REPEAT block look distinctly differ
ent from those we have seen before; they are prefixed with a 
number sign. The function of the number sign is to indicate 
that we do not need one, but a number of copies of each 
variable in the REPEAT block. In fact, the system gives us a 
new copy of each variable every time it jumps back to the 
beginning of the block. In technical terms, a variable prefixed 
with a number sign is an array variable. 

Why is this necessary? Consider what would happen if we 
had only one copy of the first variable [the testator DOES 
NOT wish to give another gift to someone]. Suppose we an
swered the question "Does the testator wish to give another 
gift to someone?" with a yes on our first trip through the 
REPEAT block. Then the second time through the block the 
system would look the variable up in its tables, discover that 
it already had a value, and start to process the rest of the 
block without asking the question again. It would do the 
same thing the third time, the fourth time, and so on. The pro
cessor would never escape from that block; it would go on 
asking about gifts until the user gives up in disgust and walks 
away. 

If the number sign were omitted from another variable, the 
name of the recipient, for example, the system would be con
vinced after the first time through the block that it knew who 
the recipient was and would not ask that question again. All 
gifts would go to the same recipient. 

A look at John Smith's client data file at this point would 
show that the processing of the REPEAT block added a lot of 
information: 

ASSERT #1 the testator DOES wish to give another gift of 
property to someone 

LET #1 the description of the gift = (golf clubs) 
LET #1 the relationship of the recipient to the testator = 

(nephew) 
LET #1 the name of the recipient = (Russell Walton) 
ASSERT #1 the recipient IS an individual 
ASSERT #2 the testator DOES wish to give another gift of 

property to someone 
LET #2 the description of the gift = (coin collection) 
LET #2 the relationship of the recipient to the testator = 

(cousin) 
LET #2 the name of the recipient = (Peter Ames) 
ASSERT #2 the recipient IS an individual 
ASSERT #3 the testator DOES NOT wish to give another 

gift of property to someone 



ABF: A System for Automating Document Compilation 717 

Proposed Extensions 

Experience with earlier versions of ABF has already led to 
a number of design changes, particularly the integration of 
the editor with the system. 1

,2 Our work during the last two 
years3

,4,5 has suggested a number of additions to ABF. We 
want to add the ability to SELECT a passage from several 
alternatives, or even to RANDOMLY SELECT one, to facil
itate CAl applications. We would also like to add the concepts 
MAY, MUST, SHALL, and SHOULD to the ABF language 
to increase our ability to model legal reasoning. We also feel 
that it is time to experiment with these same techniques in 
other applications. 

OTHER APPLICATIONS OF ABF 

The ABF system will prove useful in any situation where the 
user needs to write a series of customized documents, as in 
marketing or insurance. Imagine a marketing application in 
which the user is the owner of a computer store called PC 
World. An invoice document template is used to draw up 
invoices automatically, as it asks the client a series of ques
tions about the configuration being purchased. This process 
will establish a client data file that can then be used to produce 
customized follow-up letters. A very simple invoice template 
might look like this: 

[customer's name] 
[customer's address] 
IF pc:the customer DOES want a pc 

INSERT P C [modelno] [pcprice] 
OR IF at:the customer DOES want an at 

INSERT A T [modelno] [at price] 
END IF 
IF the customer DOES want more memory 

[date] 

INSERT additional memory [addon: the additional 
memory desired /64000 * $49] 

END IF 
IF hard:the customer DOES want a hard drive 

INSERT hard drive [hard price] 
OR IF [double:the customer DOES want two floppies] 

INSERT double floppy [double price] 
OTHERWISE 

INSERT one floppy [single price] 
END IF 
IF mono: the customer DOES want a monochrome monitor 

INSERT monochrome [monoprice] 
OTHERWISE 

INSERT color monitor [colorprice] 
END IF 

While the invoice is being processed, a client data file will be 
set up for this customer and kept in the library. This will allow 

us to process a customized follow-up letter without asking for 
further data at a later date. 

IF [mono] 
INSERT [customer's name] 

[customer's address] 
Dear [customer's name]: 

On [date] you purchased 
IF [pc] 

INSERT a P C 
OR IF [at] 

INSERT an AT 
END IF 
with a monochrome monitor. Here at P C World we are 
running a special on color monitors at a one time price of 
[special price]. 

END IF 
IF memsize < 257 
INSERT if you want to extend your memory size from your 
initial [memsize] to 640K, a special added discount price of 
20% will be available to purchasers of color monitors. 
END IF 

This is just a simple illustration of the possibilities. 

SUMMARY 

The ABF environment permits one to design arbitrarily 
complex interviewing and document assembly systems for 
use in any application where standardized text is routinely 
assembled into customized drafts, in accordance with pre
defined rules. While this technology was originally developed 
to serve the specialized needs of the legal profession, it ap
pears promising for applications in insurance and marketing. 
We are working on automating the construction of medical 
discharge summaries in using ABF also. 

The ABF approach makes all the constructs of structured 
programming available to word processing specialists in a very 
supportive environment. 

REFERENCES 

1. Sprowl, J.A. "Automating the Legal Reasoning Process: A Computer That 
Uses Regulations and Statutes to Draft Legal Documents." American Bar 
Foundation Research Journal, (1979), pp. 1-8. 

2. Sprowl, J.A., and R.W. Staudt. "Computerizing Client Services in the 
Law School Teaching Clinic: An Experiment in Law Office Automation." 
American Bar Foundation Research Journal, (1981), pp. 699-751. 

3. Saxon, C.S. "Computer-Aided Drafting of Legal Documents." American 
Bar Foundation Research Journal, (1982) pp. 685-754. 

4. Sprowl, J.A., P. Balasubramanian, T. Chinwalla, M. Evens, and H. 
Klawans. "An Expert System for Drafting Legal Documents." AFIPS Pro
ceedings of the National Computer Conference, (Vol. 53), 1984, pp. 667-673. 

5. Sprowl, J.A., K. Applegate, M. Evens, H. Harr, and R. Rueb. "Human 
Interfaces in a Legal Expert System." AFIPS Proceedings of the National 
Computer Conference, (Vol. 55), 1986, pp. 135-142. 





AI/expert system applications for the automated office 

by JANET PALMER 
Western Kentucky University 
Bowling Green, Kentucky 

ABSTRACT 

AI/expert systems enable machines to emulate human thinking. Originally, AI 
technology was directed toward scientific applications, but now office applications 
are available for all computer configurations. AI/expert systems can enhance the 
quality of human thinking by decision makers in an organization and increase 
productivity. Organizations can develop expert· systems following a customized, 
semi-customized, or off-the-shelf software approach. Expert systems "clone" the 
best thinking of company gurus and distribute that knowledge wherever and when
ever required. Programs currently available for office applications include decision 
making, training, word processing, and retrieval systems. The problems solved by 
AI/expert systems can be large or small but should be of a nature to justify the time 
and expense involved in developing such systems. Just as the acquisition of office 
automation was once deemed critical to company survival, so too will be the devel
opment of expert systems, the newest competitive edge. 

719 





AIlExpert System Applications for the Automated Office 721 

INTRODUCTION 

Office automation is about to take a quantum leap forward 
because of rapid advancements in artificial intelligence (AI). 
AI is the field of study linking computer science and cognitive 
psychology. Its goal is the development of machines that em
ulate human thinking. These processes involve hypothesizing, 
reasoning, guessing, perceiving, associating, speculating, con
cluding, and learning. Originally, the capabilities of AI tech
nology were directed toward scientific applications, such as 
medicine and geology, but now computer programs called 
expert systems are being generated for office applications. 1 

Office automation experts agree that AI/expert systems will 
play an important role in the integration of office systems in 
the future. Truly user friendly systems are expected to be the 
result. These expert systems will be so transparent, users will 
not even be aware of their existence. 2 

EXPERT SYSTEMS 

Expert systems are composed of two parts: a knowledge 
base and an inference engine. A knowledge base consists of a 
collection of facts, assertions, inferences, observations, hy
potheses, rules, and procedures required to solve a particular 
class of problems. An inference engine is the control structure 
of the expert system which manipulates and applies the infor
mation stored in the knowledge base. Artificial intelligence 
combined with office automation produces powerful expert 
systems capable of the following functions: interpretation, 
prediction, diagnosis, instruction, control, design, planning, 
monitoring, debugging, and repair.l However, just as office. 
automation needs to be designed carefully in order to achieve 
its benefits, so too must expert systems. 

EXPERT SYSTEM DEVELOPMENT 

Ostensibly, the chief benefit of AI applied to the automated 
office will be increased productivity. Ultimately, the greatest 
contribution of AI to the office environment will be its subtle 
alteration of the way people function in an office; their rela
tionship to their colleagues, their mastery and creative use of 
the tools before them. 3 

Organizations desiring the benefits of expert systems have 
three options. The first approach is the most expensive and 
time consuming. This method involves the custom develop
ment of an expert system. An AI specialist called a knowledge 
engineer "mines" the expertise of individuals in order to cre
ate a knowledge base. Then a highly skilled programmer de
signs the inference engine. The second approach involves the 

semi-customized development of an expert system. With this 
approach, a commercially available package is used which 
contains a "shell." A shell is a development tool which frees 
the knowledge engineer from creating the raw code for the 
expert system. With the services of a programmer, such pack
ages can be developed to build the knowledge base around 
the shell. The third approach involves the use of an off-the
shelf, pre-written software package which can be slightly 
modified to suit a particular user. Many of these commercial 
packages are designed to be so user friendly that even a non
programmer can enter information into their shells. 

Expert system development packages are available in a 
price range from $50 to $50,000 and can be configured for 
specialized AI workstations or standardized mainframe, mini, 
and microcomputer systems. Some top-selling expert system 
development packages include The Knowledge Engineering 
Environment from Intellicorp, The Automated Reasoning 
Tool from Inference Corporation, and Micro-Expert from 
McGraw-Hill. 4 

Organizations develop their own expert systems in order to 
"clone" the expertise of their best thinkers and distribute 
their thinking to remote locations. Expert systems provide 
organizations with "distributed knowledge" to accompany the 
popular trend of "distributed systems." Capturing and storing 
for future use the wisdom of company gurus will help protect 
an organization from sudden loss of such expertise by death, 
retirement, or resignation. Not all organizations, however, 
will need to develop their own expert systems. Software for 
office applications is now being developed which incorporates 
AI technology. 

EXPERT SYSTEM OFFICE APPLICATIONS 

The market for expert system software is just beginning. An 
estimated three thousand such packages have been sold. How
ever, software industry experts predict that by 1988 all new 
software will have AI embedded in it. 5 Programs currently 
available for office applications include decision making (deci
sion support, spreadsheets, and databases), training, word 
processing, and retrieval systems. 

Decision Making 

Executives and managers in the office already use decision 
support systems (DSS) software to query databases as an aid 
in problem solving. AI technology, however, has produced a 
new class of software called expert support systems (ESS). 
Whereas DSS software is designed to handle deterministic 
problems, ESS software is designed to deal with probalistic 



722 National Computer Conference, 1987 

problems. Deterministic problems can be codified, calcu
lated, and solved according to well-defined rules of logic. 
Probalistic problems resist easy coding, are often referred to 
as "fuzzy," are best expressed in words, and are solved with 
rules-of -thumb (heuristic knowledge). 6 While deterministic 
problems are well suited for solving with spreadsheets or tra
ditional data processing programs, probalistic problems are 
ideal candidates for expert systems. In practice, the user pro
vides input to the expert system which then refers to its knowl
edge base to develop a solution to the inquiry. The answer 
given represents a determination of the probability of some
thing occurring. This process is much the same as that of a 
human expert offering hislher "best guess" for a particular 
problem. An example of a best-selling computer program 
combining artificial intelligence with a database is Symantec's 
Q and A. AI technology eventually will allow users to query 
databases using natural language processing (conversational 
English). However, not all executive and managerial decision 
making is appropriate for use with expert systems. For exam
ple, extremely complex, single-time tasks requiring high de
grees of social interaction might not be appropriate. 7 

Many decisions made in an office are on a small scale, 
repetitive, and solved by following standardized procedures. 
Such decision making generally is handled by support staff 
members, often secretaries and clerks. Slight deviations in 
such problems usually result in the staff members seeking 
assistance from their office supervisors. Cases of such indeci
sion result in work interruptions and loss of office productiv
ity. Expert systems can remedy such situations. 

The expertise of office supervisors can be incorporated into 
a knowledge base for the benefit of inexperienced or un
trained office workers. These individuals can then acquire the 
answers needed to complete their tasks quickly with a mini
mum of work disruption. Application of expert systems for 
this type of decision making is known by various names, such 
as small expert systems, knowledge systems, or intelligent job 
aids. Such systems provide an interactive, computerized data
base, which can be conveniently updated to accommodate 
changes in office procedures. Decision making can become 
more efficient and effective with such small expert systems 
rather than reliance on employee memorization of procedures 
or printed office manuals. 8 Another application of AI which 
will be of direct benefit to office employees is in the area of 
training. 

'{raining 

Lack of training among office employees is often cited as 
the chief reason for failure of the automated office to achieve 
increased productivity. Office employees often do not under
stand all of their equipments' features and thus are unable to 
use the equipment to its best advantage. 8 AI technology is 
now being combined with computer-assisted instruction 
(CAl) resulting in intelligent computer-assisted instruction 
(lCAI). Training experts predict that such programs will revo
lutionize training. 9 

What distinguishes ICAI from CAl is its greater degree 
of flexibility in assessing the learning difficulties of trainees. 
Traditional CAl presents information to trainees, permits in-

teraction between trainees and the instructional program, 
provides evaluation to trainees, and tracks the progress of the 
trainees. When a particular instructional approach fails to 
produce effective learning, the ICAI program can provide 
more instructional options to trainees. The traditional CAl 
program can only assess the trainees' lack of performance 
according to test scores, which are the result of matching the 
trainees' responses against predefined, anticipated answers. 

The ICAI program makes use of its inferencing capability 
to analyze trainees' difficulties. Also, ICAI programs can pro
vide to trainees the reason why a particular instructional strat
egy was selected. lO An example of an ICAI program is the 
Technology Based Training Series from HyperGraphics Cor
poration in Denton, Texas. This program provides users wth 
an authoring system to create intelligent training programs 
featuring graphics, animation, and eventually voice. Intelli
gent software can also be used advantageously for training in 
word processing. 

Word Processing 

IBM is developing an intelligent word processing software 
package called Critique. This program uses AI technology to 
assist authors of business correspondence. The program will 
not only correct grammatical errors but also generate original 
documents. 11 Another custom-designed expert system has 
been developed to diagnose operators' difficulties with a word 
processing program and/or procedures. Such diagnosis by the 
program aids word processing supervisors. Operators who 
need additional training can be identified and operators' diffi
culties remedied. In addition, an expert system word process
ing program can constantly update the users' files. 12 Retrieval 
systems are yet another area in which AI technology can be 
applied. 

Retrieval Systems 

Expert systems can be used to link diverse office automa
tion tools under one interface on a multiuser system. 13 One 
example would be a retrieval system which integrates All 
expert system technology with databases. Such retrieval sys
tems can provide file access to users in a multivendor com
puter environment including main, mini, and micro com
puters. These programs called network file systems allow all 
users to share files, even when systems are linked by more 
than one network. The development of a network file system 
frees users from worrying about different operating systems 
or different file structures, enabling users to access files in 
remote systems. What makes a network file system different 
from a local area network is that a network file system 
accesses files without copying them, thus protecting the integ
rity of the files resident on remote computers. An example of 
such a program is manufactured by Sun Microsystem. 14 

CONCLUSION 

From all indications, Allexpert systems appear ready to be
come a dominant force in the automated office for the 1990s 



AIlExpert System Applications for the Automated Office 723 

and beyond. 1 According to a study by Electronic Trend 
Publications, the expert systems market will reach $1.2 billion 
by 1990.5 The total AI hardware and software market has 
been predicted to reach $4 billion by 1990.3 

Although rapid advancements are being made in AI/expert 
systems, such systems will not imminently replace human 
thinking. Professor Edward A. Feigenbaum of the Computer 
Science Department and Knowledge Systems Laboratory at 
Stanford University predicted that AI general computer sys
tems able to cover the full range of human knowledge are at 
least 50 to 100 years in the future. 15 At least for the time being, 
then, human thinking will remain more flexible and creative, 
while machine thinking will be aimed at solving a specific class 
of problems. Expert systems, however, complement human 
thinking and are expected to become routinely incorporated 
into office hardware and software. 

Currently, about half of the companies in the Fortune 500 
are actively pursuing the development of expert systems. 
Companies such as Lockheed, Digital Equipment Cor
poration (DEC), Boeing Computer Services, General Elec
tric, and General Motors hope that by so doing they will gain 
a competitive edge. Just as the acquisition of office auto
mation was seen as critical to company survival, so too is 
the development of expert systems. AI/expert systems are 
expected to infiltrate organizations gradually, department by 
department, just as PCs once did. Organizations striving to 
stay abreast of technological developments need to assess 
their organizations' needs for the development of appropriate 
AI/expert systems applications.4 Perhaps as humans become 
more computer literate, fairness dictates that computers be
come more human literate.6 

ACKNOWLEDGEMENT 

The author acknowledges the assistance in the preparation of 
this paper from Jennifer Backer, a graduate assistant in the 

Department of Administrative Office Systems at Western 
Kentucky University. 

REFERENCES 

1. Canter, J. "Expert Systems." In Proceedings of the Fourth Annual Re
search Conference, Office Systems Research Association, Atlanta, 1985, 
pp. 371-394. 

2. Fiderio, J. "Voice, Image Processing, AI Likely Additions to OA Sys
tems." Computerworld, June 30, 1986, p. 38. 

3. Johnson, D. "Making Computers Work 'Smarter.'" Administrative Man
agement, October, 1986, pp. 28-33. 

4. Newquist, III, H.P. "Expert Systems: The Promise of a Smart Machine." 
Computerworld, January 13, 1986, pp. 43-57. 

5. Myers, E. "Making Micros Experts." Datamation, September 1, 1985, 
pp.51-54. 

6. Becker, H.B. "Information Management and Artificial Intelligence." In 
Proceedings of the Fourth Annual Research Conference, Office Systems 
Research Association, Atlanta, 1985, pp. 1-14. 

7. Wohl, A "Artificial Intelligence: Myth vs. Reality." Computerworld, 
October 7, 1985, p. 17. 

8. Harmon, P. "Intelligent Job Aids: The Use of Small Expert Systems in 
Office Automation." In Proceedings of the Fifth Annual Research Con
ference, Office Systems Research Association, Houston, 1986, pp.184-209. 

9. Hickingbottom-Brown, B. "Increasing Your Artificial Intelligence Quo
tient." Training and Development Journal, January, 1984, p. 69. 

10. Crews, P. "tbt EXPERT: A case study in integrating Expert System tech
nology with computer-assisted instruction." Unpublished study, 1986. 
HyperGraphics Corp., Denton, Texas, pp. 1-14. 

11. Harder, L. "An Artificial Intelligence Approach to Document Prepara
tion." AFIPS Proceedings of the National Computer Conference (Vol. 55) 
1986, p. 149. 

12. Rushinek A and S. Rushinek. "The Effects of Word Processing Software 
on User Satisfaction: An Empirical Study of Micro, Mini, and Mainframe 
Computers Using An Interactive Artificial Intelligence Expert System." 
Office Systems Research Journal, 3, Fall, 1984, pp. 1-16. 

13. Wright, B. "AI and Integrated Office Systems: Intelligent Workgroup 
Assistants." ComputerData, 10, Canada: September 1985, p. 21. 

14. Harmon, P., ed. "Close-up on Sun Microsystem's Network File System." 
Expert Systems Strategies Newsletter, March, 1986, pp. 10-11. 

15. Nofel, P. "There's Notlling Artificial About AI." Modem Office Tech
nology, February, 1986, pp. 40-44. 





WE: A writing environment for professionals 

by JOHN B. SMITH, STEPHEN F. WEISS, GORDON J. FERGUSON, 
JAY D. BOLTER, MARCY LANSMAN, and DAVID V. BEARD 
University of North Carolina 
Chapel Hill, North Carolina 

ABSTRACT 

We have developed a visually-oriented environment for writing and thinking, de
signed for professionals using workstations linked by a communications network. 
Users represent ideas as labelled nodes, move them into spatial clusters, link them 
into an associative network (directed graph), and transform the network into a tree. 
The content for each node can be expanded with either a text- or a graphic-editor. 
Editing the structure of the tree changes the structure of the corresponding docu
ment. We are also using the system to support a series of experiments to map users' 
cognitive strategies. Protocols are collected automatically by the system and then 
parsed with a cognitive grammar. The results are used to refine both the system and 
the cognitive model on which it is based. 

725 





INTRODUCTION 

Technical and scientific professionals are writers. Regardless 
of title or job description, they write. Most spend 25% to 75% 
of their time doing something related to writing; gathering 
and organizing information, writing per se, revising, talking 
with others about something they have written, giving oral 
presentations accompanied by documents, etc. They write 
many different forms: letters, reports, specifications, plans of 
various sorts, proposals, justifications, articles, oral presenta
tions, to name some of the more prevalent forms. These doc
uments are important. They form the skeleton of the writer's 
organization. While that skeleton must be fleshed out by 
other activities, the collection of written documents is the 
core. If new tools can lead to more effective documents and 
can help skilled professionals work more efficiently, the pay
offs will be substantial. 

Current tools for writing and producing documents fall into 
four major groups: editors, formatters, checkers, and orga
nizers. The first two are well-established and need no addi
tional comment. Checkers are less universal, but still wide
spread. The most common are the spelling-checkers, but 
style-checkers are also beginning to appear. While those that 
use table lookup and limited pattern matching are of question
able value, checkers that will eventually include full parsers 
may have more impact, when they appear. The final group, 
the organizers, include structure editors and outline proces
sors. The former tend to be mainframe-oriented and are often 
experimental or demonstration systems; Nelson's hypertexe 
and Engelbart's NLS2 are early examples. More recently, the 
microcomputer outline processor has become widespread, but 
the jury is still out on its value. 

Current tools for writing were not designed for profes
sionals. Most were designed for technical writers concerned 
with layout and physical production, or for microcomputer 
hobbyists. What is needed are tools designed specifically for 
the sophisticated professionals who use workstations within 
distributed environments. 

We are developing a comprehensive Writing Environment 
(WE) for this application. Parts of this work are supported by 
IBM, NSF, and the Army Research Institute. In describing 
this system, we will emphasize five key concepts: 

1. The system is based on a cognitive model for written 
communication. 

2. The system is highly visual. 
3. The system was prototyped in Smalltalk and then ported 

to Objective C. 
4. The system will be used in a series of cognitive experi

ments. 
5. The system can be extended to other applications. 

WE: A Writing Environment for Professionals 727 

The emphasis placed on cognitive aspects in this description 
probably needs more explanation. WE is one instance of an 
increasingly important kind of software that provides users 
with an environment in which to think, or with functions that 
supplement human cognitive skills. To be successful, these 
intelligence augmenting systems must reflect the cognitive 
processes of the people using them. We suggest that a modi
fied development cycle is needed that begins with an explicit 
cognitive model of the user interacting with the system to 
perform specific high-level tasks, includes formal testing of 
the model as well as the software, and ends (the first cycle) 
with systematic refinement of both. Therefore, our discussion 
of WE will include not just a description of the system but also 
its underlying rationale and the methods we used to develop 
and test it. 

COGNITIVE MODEL FOR WRITTEN 
COMMUNICATION 

WE is based on a cognitive model of written communication. 
The model was derived from a review and synthesis of the 
literature in cognitive psychology, composition theory, 
human/computer studies, as well as our own experience. 
However, it is put forth more as a question than as an asser
tion. We are testing the model in a series of cognitive experi
ments and will revise it accordingly. It stresses the structure of 
information, particularly the transformations writers and 
readers produce as they write and read documents, and views 
writing and reading as symmetrical processes in several im
portant respects (see Figure 1). In this section, we describe the 
model, briefly, and then explain how we have used it in de
signing WE. 

Whether readers read a document from beginning to end or 
jump from one place to another, when they "settle down" to 
read a passage they do so linearly. That is, they decode a 
linear sequence of words. However, they do not comprehend 
linearly. Rather, they comprehend by relating bits and pieces 
of information to one another hierarchically. They see that 

Cognitive 
Process 

Information 
Structure 

Figure l-Cognitive model for written communication 



728 National Computer Conference, 1987 

several points do, indeed, add up to the conclusion the writer 
has drawn, or that a general point is supported by the evidence 
or examples cited. As the process continues, readers relate 
what they are reading to what they already know. This process 
is particularly active as new information is integrated into the 
network of associations that underlies long-term memory. 
Thus, readers read, comprehend, and remember what they 
read by transforming information in one structural form into 
another: from linear sequence, to hierarchy, to network. 

The key to the reading process, however, is the hierarchical 
step. If a document signals its hierarchical structure through 
features included in it, such as a system of headings, over
views, topic sentences in paragraphs, readers use these clues 
to advantage. That is, they read and comprehend the docu
ment more quickly, and the structure they infer for the docu
ment will match more closely that intended by the writer. 3 If 
such features are omitted from the document, no headings or 
inconsistent headings, flat narrative, few topic sentences, to 
the extent readers understand what they are reading, they will 
construct their own hierarchy for the document. However, the 
hierarchy they construct mayor may not resemble that in
tended by the writer. Consequently, organizing expository 
information into a hierarchical structure and then signaling 
that structure is a particularly effective strategy for writers to 
follow. 

Writing involves a similar series of transformations, but in 
reverse order. Writers normally begin with a need to write. 
The content is likely to be scattered through the writer's long 
term memory or through various external sources, such as 
books, databases, or other people's heads. The "structure" of 
that information is likely to be a very loose associative net
work, derived as the information is brought to consciousness. 
A key step for the writer, then, is to gather information and 
to organize it. Most writers do so by constructing a hierarchy, 
in the form of an outline or a tree. Once the hierarchy has 
been constructed, the task of writing becomes a traversal of 
the hierarchy during which the writer encodes the concepts 
into prose, graphics, or other forms. Thus, writing involves a 
similar but opposite sequence of transformations: network, to 
hierarchy, to linear sequence. 

Several conclusions can be drawn. First, writing involves 
both networks (directed graphs) and hierarchical structures 
but at different stages of the process. All earlier structure 
editors with which we are familiar have adopted one principle 
or the other, but not both. The hypertext family of editors, 
such as Nelson's hypertext system, l its Brown University de
rivatives,4 and ZOG,s support directed graphs. A similar 
group support hierarchical structures such as Engelbart's 
NLS,2 Thinktank6 and the other outline processors, and 
XS-2.7 While users can construct a hierarchy within a directed 
graph environment, they may find the environment more sup
portive when they can voluntarily relinquish some function 
during certain stages of the process in exchange for greater 
discipline. Consequently, we have constructed an environ
ment that includes both, permitting writers to develop graphs 
and hierarchies separately but also to transfer conceptual 
structures from one mode to the other, 

Another key conclusion is that writing requires a number of 
different cognitive skills, not just linguistic encoding skills. 

Writers think associatively, hierarchically on a small scale 
(individual inferences and deductions), hierarchically on a 
large scale (constructing a single large hierarchy), and ana
lytically (as they revise). For many writers, particularly those 
in scientific and technical fields, these stages also include vis
ual and spatial reasoning. This is particularly true during early 
exploratory thinking and during the organizational stage. 
Consequently, we have built our environment around the no
tion of an abstract space in which users can represent and 
manipulate concepts visually. 

A third, and related, implication is that writing includes 
both bottom-up and top-down thinking. During early ex
ploration, writers often think bottom-up as they trace paths of 
associations, gather information, and explore various re
lations. While an entire document can be organized hier
archically by continuing a bottom-up strategy, it cannot be 
"aimed" easily or reliably using this approach. To focus a 
document and to ensure that it achieves a clearly recognized 
goal, experienced writers often begin with a single large ob
jective and derive the hierarchical structure from that point. 
Thus, writers also need tools that let them work top-down. 
The point is not that one form of thinking or the other is best; 
both are needed but at different stages of the process. Con
sequently, the environment we are developing is strongly mul
timodal. 

While cognitive psychology has had a strong impact on 
human factors studies and the design of computer interfaces, 
it has had less impact on the underlying architecture and 
function of systems. In WE, the cognitive model has influ
enced not just the interface; it is central to the entire design 
and is a concept that will be evaluated experimentally. Thus, 
the system itself and the thoretical basis on which it is built 
emerge as a question: How do users write and think while 
working within this particular computing environment? A 
substantial part of our effort is directed at answering this 
question, as we explain below in the section on Cognitive 
Experiments. 

Description of WE 

Three aspects of WE distinguish it from other writing sup
port systems: the visual interface, its multimodal architecture, 
and an underlying relational database. 

Visual interface 

The interface for WE is based on three major factors de
rived from the cognitive model: 

1. Writers use a number of different cognitive skills in 
writing. 

2. Writing involves a series of transformations in which 
information in one structural form is changed into 
another. 

3. Structures can be more easily comprehended, construc
ted, and manipulated when they are represented visually 
(e.g., in a tree) than when they are represented linguis
tically (e.g., in an outline, as in 1.3.2.4). 



Consequently, the user interface is distinctly visual and graph
ical, as opposed to language-oriented. 

The default layout for the screen shows five tiled windows 
(see Figure 2). The two largest are a graph window and a 
hierarchical window. The first supports operations that con
form to the rules of a directed graph embedded in a Euclidean 
space. The second obeys the rules of hierarchies. A smaller 
window is available for either a text or a graphic editor used 
to write or draw the content of the document, associated as 
blocks of data with individual nodes. The fourth window is 
used to search the relational database for other structures or 
nodes that might be inserted into the current document. The 
last window is a control panel for managing the environment. 
Each window is described in more detail below in relation to 
its corresponding mode. 

Users can easily change the default configuration by re
sizing and moving the various windows. Thus, the entire 
screen can be used for the directed graph window during, say, 

and professionals ani writers. 
RegardlQss of title or job description, they write ... ' ... 

WE: A Writing Environment for Professionals 729 

the early brainstorming stage of writing. Or the entire screen 
can be used to show a tree in hierarchical mode during organi
zation. Another option is to split the screen between a di
rected graph and a hierarchical window so that small hier
archical substructures can be copied from one mode to the 
other (see Figures 2-8). 

Modes 

A second key architectural feature of WE is its multimodal 
structure. Although the tide of opinion is currently running 
against such designs, separating the function of the system 
into separate domains is desirable for this particular applica
tion. Since writing involves several different kinds of thinking, 
WE supports each with functions specific to that cognitive 
mode. An hypothesis we will test experimentally is that users 
will prefer to "drop into" different modes of thinking for 

Figure 2-WE default screen 



730 National Computer Conference, 1987 

different activities, gaining flexibility in some cases, giving it 
up in others, in exchange for greater rigor and consistency. 

We expect most writers to begin a project by working in a 
directed graph window. This mode is particularly well suited 
for bottom-up thinking. Using a mouse, users can open a 
window to cover the entire screen. They can then create nodes 
at any spot in the windows simply by pointing with the mouse, 
clicking for a menu, and selecting the "create node" option. 
(Since the last option selected on a particular menu is retained 
as the default, subsequent clicks produce additional nodes 
without further selection.) They can label each with a word or 
phrase, either when the node is created or later as an editing 
operation. Users can also move nodes into clusters of related 
concepts (see Figure 4) and can join pairs of nodes with di
rected links to denote specific associations (see Figure 5). 

A second mode/window provides functions that conform to 
the rules for hierarchies (see Figure 6). Users begin in this 
window by creating a root node and labeling it, as in graph 
mode. They can then create child nodes under the root, indi-

cating the major divisions of the document. The process of 
division can be continued until the nodes represent sections 
that can easily be written, usually a few paragraphs, or repre
sented in a single graphic. A number of structure editing 
functions are also provided. These permit users to move nodes 
or branches around in the hierarchy, add and delete both leaf 
and interior nodes, etc. Users may also import nodes or struc
tures from graph mode into tree mode. That is, they can go 
back to a directed graph window created earlier and select a 
node that is a root for a small hierarchical relation; when they 
return to the hierarchical window, they can point to the place 
where the branch should be placed and the system will insert 
the subtree into the tree at that point. 

The system provides four different visual representations 
for hierarchies. The first is a conventional horizontal tree in 
which parent/sibling relations are indicated by left to right 
relations (see Figure 6). The second is a vertical tree that 
extends from top to bottom (see Figure 7). Zoom and roam 
functions are provided for each. In fact, since users can open 

Figure 3--WE spatial graph mode 



several different windows on the same structure, they can 
show a small schematic view of the whole tree in one, an 
enlarged view of a section in a second, and a still larger image 
of the particular branch being worked on in a third. This is 
particularly useful for large structures, for team development 
efforts, or other projects where managing technical complex
ity is an issue. A third view presents a Chinese box representa
tion of the hierarchy in which child nodes are shown as small 
boxes inside the larger box representing the parent node (see 
Figure 8). Since the system shows only three levels of depth 
with this view, it provides a form of information hiding. The 
last view is a standard outline view. 

At any point, in either graph or hierarchical mode, the user 
can open a node and insert content. This is done by invoking 
either a conventional text or graphic editor. Typically, users 
write a paragraph or several paragraphs or create a single 
visual image. In this mode, the function provided is that of the 
particular editor. When users finish with a content unit, they 
close the node and the content is saved in a file system. There-

WE: A Writing Environment for Professionals 731 

after, whenever a node is moved using any of the structure 
editor functions, the associated content is also moved along 
with it. Since a node is a typed object bound to a particular 
editor/display program, the kinds of data that can be associ
ated with a node can be extended simply by extending the set 
of types and associated editor/display programs. We describe 
several planned extensions in the section on Future Work. 

A fourth mode helps users search the relational database in 
which nodes, links, and structures are stored. We explain its 
purpose and function in the following section. Here, we 
merely call attention to its existence. 

All four modes-graph, hierarchy, content, and search
are "held together" by a control panel. The control panel 
includes two major fields: mode tree and a pair of stacks. The 
mode tree represents the different modes, as first-level chil
dren, and the specific named instances of each (i.e., win
dows), as second-level children. It provides a variety of man
agement functions. For example, to move a buried window to 
the forefront, users merely point to it in the mode tree and 

Figure 4-WE spatial graph mode, conceptual clusters 



732 National Computer Conference, 1987 

select the appropriate operation. Thus, users can quickly get 
an overview of the entire "screen space" they have created, 
including windows covered by other windows. The stacks re
ceive the nodes and structures created by the yank operation. 
They permit users to make copies of several different nodes or 
structures while working in one mode/window and then selec
tively move them at their leisure into the structure being cre
ated in another. 

Database 

A third major innovation in WE is the use of a relational 
database system as the store for all structural information. 
The database holds three kinds of entities: structures, nodes, 
and links. Structures are typed, named sets of links and, by 
implication, associated nodes. The type indicates whether the 
structure is a graph, hierarchy, or path; this information is 
used by the system to determine the operations that can be 

performed on the particular structure. Each node is also 
viewed as a typed object. Associated with it are various attri
butes that identify the type of content "within" that node and, 
thus, bind it to an editor/display program; its spatial dimen
sions in graph-mode space; and both its associative and hier
archicallinks. Links are attributed pairs of node identifiers. 
The node identifiers define the directed arc; and the attributes 
indicate the kind of link (e.g., graph), the structure of which 
the link is a part, and other system information. 

Users can search the database for a structure, node, or link 
by its identifying label or by its attributes. This is done 
through the search window/mode, mentioned in the preceding 
section. In the current system, the database is confined to a 
single project, but we will extend its definition to permit teams 
and departments to store collections of documents and other 
kinds of data. Thus, future users will be able to search the 
database for information relevant to the current project. Once 
a usable node or structure is found, it can be imported into the 
environment and included in the structure currently being 

Figure 5-WE spatial graph mode, conceptual clusters with associative links 



developed. A longer term goal is to merge another system we 
are developing, MICROARRAS,8 an advanced full-text re
trieval and analysis system, with WE to support content-based 
searches as well. 

IMPLEMENTATION 

We have followed an unusual path in implementing WE. First, 
we designed and implemented a prototype system in Smalltalk 
running on a SUN-3 workstation. Smalltalk provides an 
object-oriented environment that encourages information 
hiding and hierarchical modular design in which each level of 
the system is implemented in terms of the tools defined at 
lower levels. It also provides a complete development envi
ronment including a sophisticated system browser, extensive 
graphic tools, and access to the full Small talk source. Since 
SmaHtalk is an interpreter, changes can be made and tested 
quickly and easily. The prototype system, shown in Figures 

and professlona's anll writers. 
Regardless of titlle or job description, they write ...... 

WE: A Writing Environment for Professionals 733 

2-8, provides full functional capability and can support docu
ments up to about fifty nodes. Using it, we were able to test 
our original design by actually using the system to see how 
various features worked in conjunction with one another. 
However, since Smalltalk is not suited for large, high per
formance applications, we planned from the beginning to port 
the system to other software and hardware environments. 

To facilitate this move, we developed device-independent 
toolkits for drawing and for managing user interaction with 
the system. Both toolkits were designed as Smalltalk classes. 
In Smalltalk, they were implemented directly, using methods 
provided by the system. To port them to other environments, 
we are writing drivers that use the graphics and window man
agement facilities provided by the target system. We have 
completed the porting of both toolkits to Microsoft Windows 
for the IBM PC/AT, and we are currently moving them to X 
Windows for the SUN workstation. 

Finally, we are porting the entire system from Small talk to 
Objective C, a synthesis of Small talk and C developed and 

Figure 6-WE hierarchy mode horizontal tree 



734 National Computer Conference, 1987 

marketed by Productivity Products International, Inc. Objec
tive C provides a large-grain structure of classes, methods, 
and inheritance characteristics nearly identical to Small talk. 
But, it also provides the small-grain capability to replace sys
tem primitives with C functions for greater speed and proces
sing efficiency. While we can foresee the possibility of trans
lating Smalltalk classes into Objective C automatically, for the 
present we must still rewrite the syntax manually. This is 
largely a direct, line-for-line translation that requires virtually 
no changes to overall system architecture. 

COGNITIVE EXPERIMENTS 

As we noted earlier, WE was designed in accord with a cog
nitive model of the writing process. We are using the system 
as an observational instrument in a series of formal experi
ments to evaluate that model as well as other cognitive 
hypotheses, and to test specific system features and 

representation schemes. In this section, we will not describe 
these experiments in detail, but rather the technical features 
of the system that support them. 

A built-in tracking facility permits us to record the actions 
of users at a functional or operational level. Thus, we can 
observe the sequence of operations employed to create nodes, 
move them into spatial clusters, and link them into associative 
relations. Each operation is recorded along with the time it 
was performed and its associated parameters, and stored in 
the same relational database as the document. These data 
constitute a high-level concurrent protocol of the session, col
lected unobtrusively and in a machine-readable form ready 
for analysis. 

Traditional approaches to concurrent protocols have em
ployed video recordings of users interacting with a system, 
"thinking aloud" protocols in which users attempt to narrate 
the thinking processes they are using, and keystroke records. 
All three result in enormous volumes of data. Both video tape 
and thinking aloud protocols also require extensive encoding 

Figure 7-WE hierarchy mode vertical tree 



to produce machine-readable data that can be analyzed. 
Thinking aloud protocols present further theoretical problems 
for situations where verbalization is not an integral part of the 
task being performed, such as tasks in which users manipulate 
spatial forms. 9 This is exactly the situation presented by our 
system. Writers, particularly during the exploratory and 
organizational phases of writing, often think spatially and 
abstractly, rather than verbally. For these reasons, we believe 
the relatively large-grained record produced by the tracker, 
representing the operational history of a session will provide 
more usable and reliable data for our purposes than more 
traditional protocols. 

The cognitive model on which the system was built is ex
pressed as a grammar. While it superficially resembles the 
GOMS model of Card, Moran, and Newell,lO it goes beyond 
their framework. One distinction is the extension to a quasi 
context sensitive grammar. Context free productions are not 
powerful enough to handle user operations for this applica
tion. More importantly, the grammar can be used to develop 

00 
o 
DD 
DD 

WE: A Writing Environment for Professionals 735 

a parser to analyze the protocols generated by the tracker. 
The trees that result from parsing the sequence of operations 
performed by a user during a session constitute a formal 
representation of that user's strategy for the session. Thus, we 
have a concrete way of comparing the strategies of different 
groups of users, such as those of experts and novices. Addi
tional display and statistical analysis techniques will permit us 
to play back a user's session, graph distributions of specific 
operations over time, look for "cognitive rhythms," and note 
combinations of functions frequently used together. 

On the basis of this information, we will revise the cognitive 
model, as appropriate, and then refine the system. Thus, we 
hope to set-up a development loop in which the system is 
designed in accord with a well-defined model of the user's 
interaction with the system at a cognitive level, implemented 
in a fast prototype environment for initial testing, ported to an 
actual-use configuration for more extensive experimentation, 
and then systematically revised in accord with empirical re
sults. 

DD 
o 
DD 
DD 

Figure 8--WE hierarchy mode vertical box 



736 National Computer Conference, 1987 

FUTURE WORK 

While the system we have described is intended as an aid for 
professionals who write, it can be extended to other applica
tions. Basically, the system provides a general visual interface 
for creating, editing, and displaying directed graphs of ab
stract nodes that can be associated with typed data. A number 
of other applications can be modeled in these terms. We plan 
to extend our work into three other areas. 

First, we want to extend the system from a single user 
system to a multiple user system for distributed environments. 
The central database underlying the system can facilitate team 
development of a structure and collaborative efforts. We also 
want to add a simultaneous teleconferencing facility in which 
several team members can view the same display on their 
respective workstations while they work on the same under
lying data structure. This will be done in an environment in 
which switchable voice and video can be added to permit them 
to discuss their work and to see one another. We will also try 
to extend the cognitive model to characterize the cognitive/ 
communication acts of a team of individuals working together 
to construct a single, integrated conceptual structure and then 
test that model, analogously. 

Second, we will extend the system to include other forms of 
data. Since a node is an abstract, typed entity, other forms of 
content can be included by extending the set of node types and 
by providing the necessary display and edit functions. The 
system can, thus, include sound and video sequences from 
conventional video disks as well as emerging cd/roms by in
cluding in the nodes the instructions necessary for the bound 
function to display that data. 

A third application will extend the system to form a verti
cally integrated environment for software development. The 
primary extension necessary is to make the graph multi
dimensional. In this way, one two-dimensional plane can be 
assigned to functional specifications, a second to source code, 
a third to executable modules, a fourth to test results, and so 
on. While each level represents a large field of research, we 
will limit our work to a small subset of tools in each, such as 
Objective C and C in the source level, so that we can concen
trate on issues of interaction between levels. 

ACKNOWLEDGEMENTS 

A number of people have contributed their ideas and their 
labors to this project. We wish to thank the following graduate 
students: John Walker, Valerie Kierulf, Greg Berg, Paulette 
Bush, Yin-Ping Shan, and Katie Clapp. Many of the ideas on 
which WE is based were refined in discussions with Catherine 
F. Smith. We also wish to thank Myra Reaves for her help in 
preparing the manuscript. 

REFERENCES 

1. Nelson, T.H. "Getting it out of our system." In Schecter, G. (Ed.), Infor
mation Retrieval: A Critical View, Washington, D.C.: Thompson Book, 
1967. 

2. Engelbart, D., and W. English. "A research center for augmenting human 
intellect." Proceedings of 1968 FlCC, 33, Part I, Montvale, N.J.: AFIPS 
Press, 1968, pp. 395-410. 

3. Meyer, B.J.F., D.M. Brandt, and G.J. Bluth. "Use of top-level structure 
in text: key for reading comprehension of ninth grade students." Reading 
Research Quarterly, 1, 1980, pp. 72-103. Kieras, D.E. "Initial mention as 
a signal to thematic content in technical passages." Memory and Cognition, 
8 (1980) 4, pp. 345-353. Williams, J.P., M.B. Taylor, and S. Ganger. "Text 
variations at the level of the individual sentence and the comprehension of 
simple expository paragraphs." Journal of Education Psychology, 73 (1981) 
6, pp. 851-865. 

4. Feiner, S., S. Nagy, and A. vanDam. "An experimental system for creating 
and reporting interactive graphical documents." ACM Transactions on 
Graphics, 1 (1982) 1, pp. 59-77. 

5. Akscyn, R.M. and D.L. McKracken. "The ZOG approach to database 
management." Tech. Rep. #CMU-CS-84-128, Pittsburgh: The Carnegie
Mellon Computer Science Department, 1984. 

6. "Thinktank." Palo Alto, CA: Living Videotext, Inc., 1984. 
7. Stelovsky, J. "XS-2: The user interface of an interactive system." Ph.D. 

Dissertation, Zurich: Swiss Federal Institute of Technology, 1984. 
8. Smith, J.B., S.F. Weiss, and G.J. Ferguson. "MICROARRAS: An Over

view." Technical Report #86-017, Chapel Hill, NC: UNC Department of 
Computer Science, 1986. 

9. Nisbett, R.E. and T.D. Wilson. "Telling more than we can know: Verbal 
reports on mental processes." Psychological Review, 84 (1987), pp. 
231-259. Ericsson, K.A and AS. Simon. "Verbal reports as data." Psy
chology Review, 83 (1980) 3, pp. 215-251. 

10. Card, S., T. Moran, and A Newell. "The Psychology of Human-Computer 
Interaction." Hillsdale, NJ: Erlbaum Associates, 1983. 



Managing data and design process 
in engineering development 

by WILLIAM S. JOHNSON 
Sherpa Corporation 
San Jose, California 

ABSTRACT 

A software system model is described which provides effective management of 
documentation development. The system is particularly well suited for a variety of 
computer-aided engineering development environments. The system combines for 
the first time the management of the data files and the development process which 
creates the files. 

737 





Managing Data and Design Process in Engineering Development 739 

INTRODUCTION 

Writing is the principal way we have to store and organize 
information which we want to share with other people. We 
live increasingly with written documents. Our world overflows 
with them. They are the essence of modern civilization. 

Paper has long been the most efficient medium in which to 
store documents, but its limits have been exceeded. Paper 
documents are: 

1. Difficult to change 
2. Hard to store in large quantities 
3. Difficult to deliver quickly 
4. Tedious to produce repetitive parts within 
5. Not usable by automated tools 

These shortcomings are easily overcome with computers. 
Computer stored data is more compact than paper. It can be 
easily edited. Repetitive parts need only be produced once, 
and can then be placed where needed. Single electronic copies 
can be updated centrally and made widely available to multi
ple users. And automated tools can both use and produce 
them. 

Some shortcomings of paper documents have not been 
commonly overcome with computer equivalents. Paper docu
ments: 

1. Can only be filed in one order 
2. Cannot be located by query on contents 
3. Cannot have updates apply automatically to duplicates 
4. Require manual handling to: organize, store, control 

access, retrieve, copy, distribute, and track status 

DOCUMENTATION IN ENGINEERING 

Of course, the trend to word processing for text documents 
hardly needs elaboration, but prime examples of the broad 
application of computer generated documents are also evident 
in engineering development. The product of development is, 
after all, just documentation; documentation which tells the 
manufacturing organization how to build a product. Out
standing examples of computerized documentation in en
gineering include: drafting in mechanical design, drafting in 
integrated circuit layout, drafting in printed circuit board lay
out, and schematic entry in electronic design. 

These are graphics documents. The advantages of elec
tronic documentation for graphics is particularly persuasive 
because graphics documents contain extraordinary amounts 
of data which is often repetitive and requires frequent editing. 
Furthermore, electronic graphics documents offer the capa-

bility of providing direct input to software development tools 
like simulators, place and route programs, and automatic 
checking software. Direct input not only avoids the extra 
labor of special data entry for these tools, it also guarantees 
correctness between the document and the input data. 

Despite the advantages, organizations still have many prob
lems with electronic documents. The advances of the last 
few years have focused on improved hardware and document 
entry and editing. On the hardware side, graphics work
stations and personal computers have provided vastly better 
functionality at greatly improved cost. Drafting software, 
schematic editors, and improved word processors have com
plemented these tools on the software side. The result has 
been to transfer more and more document production to 
computer. The efficiency of engineering design has been im
proved for the individual engineer. 

Now, new problems are becoming apparent. Overall effi
ciency of a development project does not depend solely on 
the productivity of an individual. For example, if a design is 
partitioned among several people and the results of one per
son's efforts become the starting point for another, the whole 
is more than the sum of the parts. Bottlenecks may no longer 
result from the throughput of an individual; they may now 
occur at coordination and control points of information 
shared by a group. 

The problems now being recognized include: 

1. Ensuring all development steps are completed 
2. Reporting the state of completion 
3. Keeping track of versions 
4. Ensuring correct versions are used 
5. Coordinating changes among cooperating users 
6. Ensuring compatibility within document sets 
7. Facilitating retrieval of documents 
8. Preventing unauthorized access 
9. Maintaining an audit trail 

OVERVIEW OF THE DMS 

Sherpa Data Management System ™ (DMS) is a software 
model which provides management services for documenta
tion development and control. The significance of the model 
is that it integrates in one system heterogeneous design tools 
and documentation control with total management control. 

Here, documentation is meant in the broadest sense. It 
includes any form of data from text to graphics to machine 
code, manually generated to machine generated. Thus, the 
documentation of an engineering project includes the speci
fications, the mechanical drawings, the schematics, the simu
lation and checking results, and even the software tools. 



740 National Computer Conference, 1987 

By controlling the documentation, the DMS controls the 
deliverables and hence the development project. This is proj
ect management in its truest sense. 

Unlike traditional project planning and scheduling soft
ware, which can only store information about the deliver
ables, the DMS controls the deliverables themselves. Without 
this link, the status of a project must be fed separately into the 
project planning software. Not only is this extra work but, 
more importantly, it cannot be guaranteed that the planning 
system is accurate and up to date at any point in time. DMS 
does not suffer from this deficiency because it automatically 
records key management data whenever a document is 
accessed. 

In addition, DMS can control the actual access to data. It 
prevents access by unauthorized people. It automatically di
rects access to the appropriate version for the intended use. It 
even automatically adjusts access privileges depending on the 
completion status of a document. 

In examining the D MS, we divide its functionality along two 
lines: data and process. The data includes the documents. 
DMS provides many functions for storing, cataloging, pro
tecting and retrieving documents. The process includes the 
actions and methodology for developing documents. DMS 
provides many additional functions for managing the develop
ment process. For example, it can store and administer an 
organization's rules for developing and releasing deliverables. 

LIBRARY ANALOGY 

Table I compares various terms used with DMS to their com
mon equivalents in a library. The files DMS stores are like the 
books in the library. A library stores books securely in the 
stacks, and DMS stores files in a secured directory. Just as the 
library keeps a record of information about each book on a 
card in the card catalog, DMS keeps a record for each file in 
the database. 

Books are located in a library through a card catalog, re
moved from the stacks, and signed out. Only persons who are 
library members are allowed to check out books. With the 
DMS, a file is located through its record and copied to a user's 
directory. Only users with the proper privilege can obtain 
files. Making a copy of a file is an advantage the library cannot 
afford. With the DMS, the original is always safely secured; it 
cannot be lost. The library relies on users to return each book. 

The cards in a library card catalog are organized alphabet
ically for easy retrieval. There are several cards for each book: 

TABLE I-Comparison of a reference library and the DMS terms 

Reference Library Terms DMS Terms 

book file 
stacks secure directory 

card catalog database 
card record 
subject divider group record 

librarian database administrator 

one filed by title, one filed by author, and one or more filed 
by subject. This is convenient for users, but requires extra 
maintenance to coordinate the update of all the cards when a 
change is made. The DMS allows flexible retrieval and elimi
nates the duplicate update problem. Only one record is stored 
for each file, and it can be located by a query on any part of 
its contents. 

Like a library, DMS does not alter the contents of the files 
it controls. It only catalogs them, secures them, and manages 
access to them. 

DOCUMENT SETS 

A key feature of Sherpa DMS is the ability to track and 
control document sets. For example, the mechanical assembly 
document set in Figure 1 consists of the original specification, 
a mechanical drawing, a parts list, a group of manufacturing 
tests, and the user's manual. As each document is developed 
it is revised several times; it is essential to keep corresponding 
versions of each deliverable matched. 

The DMS permits defining a record to represent a set of 
documents (e.g., the documents for the mechanical assembly 
in Figure 1). Such a record is called a group record because it 
serves to group other records; the records referenced are 
called component records. The group record is, however, 
completely identical to any other record. In fact, it too can 
have a file attached. Since the records it points to might also 
be group records, a hierarchical set of relationships can be 
constructed to any nesting depth. In addition, a record can be 
a component of as many group records as desired. This can be 
useful in many ways. For example, as shown in Figure 2, a set 
of drawings of standard parts might all belong to a group 
record representing a "library" of parts. Each part record 
might also be referenced by a group record representing 
any assembly in which it is used. This would give excellent 

MECHANICAL 
ftSSEMBLY 
(Product) 

U 
Figure I-Design document set for mechanical part 



Managing Data and Design Process in Engineering Development 741 

PARTS LIBRARY 

(Parts 1, 2, & 3) 

Figure 2-Components library and using assemblies 

traceability of where parts are used. An equally useful appli
cation would be to track application-specific integrated circuit 
(ASIC) cell libraries. 

This capability is indispensable for retrieval purposes. In 
the example, the query can be made: "What parts were used 
in Assembly A?" This, in fact, can become a dynamic parts 
listing facility which is updated automatically and therefore 
is always current. Moreover, the inverse query is also sup
ported: "What assemblies use Part 2?" The ability to query by 
part can be particularly important when a problem is found 
with a part. All assemblies in jeopardy can quickly and accu
rately be located. In Figure 2, if a problem is found in the 
design of Part 3, a quick query of the DMS system would 
reveal that Assemblies #A and #C must be reviewed to cor
rect the problem. There is no limit to the size of the parts 
library, nor to the number of higher level references to a parts 
library. As can be seen from the discussion, group and com
ponent records give Sherpa DMS the capability of defining 
deliverables more complex than a single document. In the 
following sections, the term deliverable is used in this more 
general sense: a single document, a group of documents, or 
even a group of other deliverables, each with its own arbitrary 
hierarchical definition. 

GENEALOGY 

Group references are useful beyond defining matched sets of 
deliverables. One use is recording the genealogy of a deliver
able. For example, after a design is checked by an automated 
tool, a reference to the tool can be inserted in the design 
record, presuming that the tool is also represented by a record 
'in the DMS. Similarly, simulation results for an electrical 
design might be linked to the drawing they represent as well 
as to the simulator and the models used. 

In the Figure 3 file genealogy, the electrical schematic is 
verified by the simulation results. The simulation results were 
produced by executing the simulation program using the net
list as input. The netlist is derived from the component list 
contained within the electrical schematic. The DMS keeps 
track of these relationships as both the component and sche
matic fil':s move through the design process. There is no limit 
to the size of a defined file genealogy. 

The existence of this reference serves to verify that the 
check was made, and to save an audit trail determining which 
version of the tool was used. As another example, in software 
development, an object code module can reference the source 
code module from which it was derived, as well as the com
piler that was used. 

When coupled with an environmental shell which sets up 
such references automatically whenever a tool is run, gene
alogy tracking can become a very powerful audit trail mech
anism capable of reproducing the entire development history 
of a product. All of this can be accomplished invisibly to users. 

PROCESS CONTROL 

The D MS provides a substantial set of functions for managing 
the process of developing documents. In these functions DMS 
departs' frqm the concept of a library. 

A process is an activity which transforms data from one 
form to a useful new form. The first data in a development 
may be a creative idea that is transformed by a process into the 
specification; the specification is processed to produce a draw
ing; the drawing is processed to check the specification and 
produce a list of errors, and so on. The entire development 
project can be modeled as a chain: 

data ~ process ~ data ~ process ~ data 

The key object in the DMS's tool kit for process control is 
the release procedure. The release procedure is similar to a 
standard policy in an organization; it stores the rules for 

ELECTRICAL 
SCHEMATIC 

I Denve 

Netlist 

Simulation 
Results 

Execute 

Circuit 
Simulation 
Program 

Figure 3--Design file genealogy for electrical product 



742 National Computer Conference, 1987 

completing a deliverable. The rules can describe required re
lationships within the database as well as external signature 
approvals. 

Release procedures are entirely defined by users. As many 
release procedures as required can be defined and applied to 
different records. Normally, records are grouped by type with 
a single release procedure applying to all records of a given 
type. As shown in Figure 4, each release procedure defines a 
set of promotion levels representing different stages of com
pletion. In this case, the release procedure is defined for the 
electrical schematic design process illustrated in Figure 3. 

To control the passage of a deliverable from one level to the 
next, a set of rules, or checks, is defined for each such transi
tion. Rules can define, for example, required component ref
erences. It might be required that an ASIC cell be checked by 
a certain design rule check (D RC) program before release. 
Using the genealogy relationships described, the release pro
cedure might check to see that the required references are 
present before allowing promotion. 

In addition, electronic signature approvals are supported. 
The checks in a release procedure for a given level might 
require that the "owners" of the deliverable approve their 
own work, or that the project manager approve it. To signify 
approval, the designated person need only issue a simple com
mand from his or her computer account. DMS checks the user 
identification of the approver and logs the approval in the 
record for the deliverable. 

Thus, the basic components of a release procedure are pro
motion levels and checks. Figure 4 illustrates a four-level re
lease procedure for the electrical schematic of Figure 3. In 
this procedure, design completion checks and management 
approvals must be completed to allow the design to be pro
moted. For the design to move from Level 0 to Levell, ALL 
of the following conditions must be met: The design must be 
approved by the design originator engineer using an electronic 

ENu 

Level "3 Des,a" Re eas;,:: 
Ready For USe 

4- INTERNAL CH!:C" 
None 

4- APPROVAL CHECK 
Engineering Manager 

Promotion ------•• 
Levels ~ r--L-eV-el-"2-D-eS-,g-n-APP-'roved 

Ready For Release Approval 

4- INTERNAL CHECK 
Simuiaiion AI Level DeSign Comp'e'e A'Je 

Neilisl AI Level Deslg" Complele 

4- APPROVAL CHECK 

START 

Level liD DeSign Sian 
Ready For SubmlsSlor, 

Level 111 DeSign Complete 
Rea:ly For Approval Revoe .... 

4- INTERNAL CHECK 

=Ie:t!'"!.:a~ E";I;:ee~ t.,~~-:: 

ManufaClu"ng Engineer 

Schemallc AI Level DeSign Complete 

4- APPROVAL CHECK 
By DeSign Engineer or Owner 

Figure 4-Release procedure components 

password signoff, AND DMS must perform an internal check 
that the schematic does exist and is at Level 1 Design Com
plete. All of the levels and checks in a release procedure are 
user-defined and there is no limit to the number of steps or the 
number of approvals between levels. 

Access privileges for difffering types of user classes may be 
defined for each level. DMS allows classes of users to be de
fined, and allows those privileges to change as the promotion 
level of a design using the release procedure changes. A typ
ical example is to allow a design engineer full access privilege 
prior to design review, but to limit the engineer's privileges to 
read-only after the design is submitted for review. 

ACCESS MANAGEMENT 

At each level of a release procedure a set of access privileges 
for all users is defined. When a deliverable reaches a new 
level, access privileges are automatically adjusted to those 
prescribed at that level. In another example considering an 
ASIC cell library , access at lower levels might be confined to 
the developing engineers but at a higher level, for example at 
a level called "released," access might be opened up to the 
community at large for execution, but not for update. 

Part of the power of release procedures is the ability to 
define them once and apply them over and over again to 
records of the same type. This implies that release procedures 
are defined before a project is started, before individuals have 
been assigned to the project. To support this notion but still 
allow access privileges to be defined within the release proce
dure, Sherpa DMS supports the notion of user classes. 

A user class is a generic group of people with similar job 
functions. User classes are completely defined by the user 
organization. They would commonly be job titles within the 
organization like engineer, draftsperson, and project man
ager. Any number of user classes can be defined. Within a re
lease procedure, access privileges are assigned to user classes. 

In the release procedure introduced in Figure 4, the access 
privileges could be defined, for example, for the design orig
inator or design engineer, an electronic engineer, a manufac
turing engineer, and the engineering manager. The access 
privileges for each person can change as the promotion level 
of the design changes. For example, once the design orig
inator submits a design for review, his or her access privilege 
changes. In "Level 0 Design Start," the design originator may 
list, modify, update, delete, export, and promote the design. 
However, once the design has been submitted and promoted 
to "Levell Design Complete," the design originator's privi
lege is changed to list and export only. 

User classes are associated with the personnel on a design 
project. Sherpa DMS understands the notion of a project in 
essentially the same sense it is used in most development 
organizations. As defined by the DMS, a project is a group of 
people collectively working on common data. When a project 
is formed, individuals are assigned to user classes for that 
project. If a record requires approval by the project manager, 
DMS checks to which project the record belongs, and then 
requires that oniy the project manager of that project ap
prove. Further, the DMS accommodates different job respon-



Managing Data and Design Process in Engineering Development 743 

sibilities on different projects. The project leader on one job 
may be a design reviewer on a second job, and the design 
originator of a third. 

ALERT FACILITY 

Often the completion of a deliverable requires commence
ment of activity by someone else. Efficient communication of 
completed tasks is essential to keeping a project rolling. The 
DMS provides a mechanism for automatic communication of 
messages based on activity in the database. This is called the 
alert facility. 

An alert has a trigger and an executable. The trigger is a 
description combining a list of records with a list of com
mands. When one of the commands is executed against one of 
the records, the alert is triggered. To trigger an alert means 
to execute the command procedure associated with it. Com
monly the procedure would send a mail message to a pre
defined distribution list, but actually it can process any legal 
commands. It could even cause further activity within the 
DMS itself. 

Alerts may be tailored from almost any definable DMS 
event. (See Figure 5.) An alert has a trigger and an exe
cutable. The trigger is a description of what DMS event must 
occur in order for the alert to execute. The executable defines 
what the trigger will do and to whom it will be distributed. In 
Figure 5, the trigger event occurs when any design within the 
release procedure reaches Level #1 Design Complete. The 
alert executable triggers the electronic mail utility to send a 
message to the electronic and mechanical engineers and to the 
engineering manager. The triggered action will distribute the 
message: "New Design Submitted on 09/30/86 At Level #1 
Design Complete. Ready For Approval Review." 

THE DMS SUMMARY 

As summarized in Figure 6, the DMS manages the computer 
files containing documentation and it manages the process of 
development as well. Running in the DEC VAXlVMS envi
ronment, the DMS is able to create an exact model of the 
design engineering organization as well as its release policies 
and procedures. 

The key element is the ability to create a release procedure 
that defines the design process at all management levels. Us
ing dynamic access privileges and internal checks, the DMS 
makes sure that the design process follows exactly the proce
dure specified by the engineering organization's management 
and simultaneously automatically creates audit and status in
formation about the progress of the design. 

Any type of computer file may be managed by the DMS, 
including data files, software applications, utilities, and tools. 
In addition, the DMS will manage off line data in the form of 
archive files or specifications. It provides full security and 
audit trail functionality to provide total management account
ability for design validity and verification. Management status 
reporting is provided through both formalized alert reporting 
and ad-hoc queries. 

By creating a model of the engineering organization, the 

START 

leye l ~o DesIgn Stan 
Ready For SubmisSiOn 

LeIJa! '2 Design Apptove~ 
Ready For Release Approva' 

ENG 

L"ve~ _3 Des'9l'1 AQleasec 
Ready For Use 

Figure 5-Alert creating electronic mail message 

DMS provides design process control that matches exactly 
with the wayan organization has always wanted to manage the 
design process. 

Thus, the DMS enhances productivity of designers, engi
neers, and management for a number of computer-aided de
sign applications, including VLSI, electronics, mechanical, 
and software. It can integrate all parts of the design process 
while controlling the release procedures and access privileges 
to all engineering data. When a project is promoted up 
through its various levels, the DMS ensures that those access 
privileges are automatically updated and the release proce
dures enforced. Any design file can be managed by the DMS, 
including schematic diagrams, parts lists, design drawings, 

System 
Users 

Management 
Organizational Model 

QQQ9D 
Design Process 

Model 

Access 

, ...... 
Management 

Engineering 
Design Data Files 

Data Archive 
And Restore 
Management 

~/p 
Design Process Design Release Alert And 

Audit Trail Management Communlca:io~ 

EJ EJ sol1ware Model 
SoMware System 

Appl,eat'oo EJ Tools EJ 
UtilitieS wser"s 

Files 

Sherpa DMS Design 1v1anagement System 

~use~s 
UFileS 

~APPlocahon U SoftNare 
~SYSlem 
UUllh11es 

DEC VAX.'VMS Syslem Enwnoment 

Figure 6-The DMS functional summary 

~ Sollware U TOOlS 



744 National Computer Conference, 1987 

manuals, specifications, as well as archived versions of any of 
these. The DMS keeps track of the relationship of each file to 
various projects so that engineers can share common data. 

CONCLUSION 

We have described a new software system, the DMS, for 
managing documentation and documentation development. It 
is particularly applicable to engineering development. The 
principal benefits to the end user organization are: 

1. Shorter development cycles 
2. Reduced errors and blunders in managing CAD/CAM! 

CAE data 

3. Greater confidence in design integrity 
4. Faster reaction time to new market opportunities 
5. More engineering time to design, rather than just man

aging the data 
6. More accurate status reporting to all levels of an organi

zation 
7. Improved engineering communications 
8. A complete record of engineering and management 

actions 

Presently the DMS is being applied in mechanical, elec
tronic, and software engineering applications. Its principal 
strength is that it is equally applicable to many applications, 
and therefore can be efficiently applied to complex projects 
with components in several engineering disciplines. 



Possible productivity improvements using PPES 

by LARRY O'CONNELL 
Sandia National Laboratories 
Albuquerque, New Mexico 

ABSTRACT 

Product Data Exchange Specification (PDES) is being developed to package prod
uct model data for communication among disparate computer-aided systems. Early 
hopes were that data transfer would be less costly than manual reentry of the design. 
However, transferring a design to a different computer-aided system can also in
volve costly manual intervention. PDES concerns the augmented packaging of data 
so that the data can be "understood" by systems that receive it. PD ES uses a 
3-schema methodology. The two normal views for describing data are the internal 
storage schema and the external application view. The third schema interposes a 
way of organizing the information to provide a more stable reference for each of 
the other two views. Application data modeling is also used in the development of 
this conceptual schema. Important public-domain research on product-design infor
mation exchange is being conducted for PDES. Because it is the first systematic 
investigation of product-design information transfer, it may represent the best 
chance for realizing the goal of improved productivity through CAE Systems Inter
face Standards. 

745 





BACKGROUND 

The Product Data Exchange Specification (PDES) is a project 
which intends to develop a better way to package product 
model data. The aim is to communicate meaning as well as 
facts among disparate computer-aided systems. It is one of 
the four current projects of the Initial Graphics Exchange 
Specification (IGES) Organization. 1 The National Bureau of 
Standards sponsors the organization and is currently provid
ing the following personnel: (1) Chairman, Bradford Smith, 
(2) Coordinator, Gaylen R. Rinaudot, and (3) two committee 
chairmen. Other officers and members are from private in
dustry, other government agencies, universities, and small 
partnerships. The opinions expressed in this paper, however, 
remain those of the author alone; they do not necessarily 
reflect those of Sandia National Laboratories or the IGES 
organization. 

The IGES organization has developed an exchange format 
for transferring design information between disparate CAD 
systems. This format is the IGES Version 3.02 and is upwardly 
compatible with IGES Versions l.cr and 2.0.4 However, 
PDES is being developed to provide new capabilities which 
will not be compatible with the IGES file format. A one-way 
translator will be furnished and will convert IGES files to 
PDES files. IGES files frequently need additional human 
interpretation; this need will be minimized with PDES files. 

Data transfer is productive whenever the time and effort 
expended is less than that required to manually reenter a 
design into the target system. However, transferring designs 
to a different, computer-aided system often involves some 
costly manual intervention. Packaging the data to enable the 
receiving system to "understand" it is the problem the PDES 
addresses. PDES, unlike most other data exchange formats, 
seems to be unique in the use of information modeling to
gether with a 3-schema methodology. This methodology in
terposes a third way of organizing the data between the inter
nal storage schema and the external application view(s). This 
provides a more stable reference for the other two views. It 
also reduces the trauma caused by changes to internal storage 
methods, or to application data formats. 

The goal of PDES is to make a product-design model, cre
ated on one computer-aided tool, that is readily communi
cable to other computer-aided systems. 

PRODUCTIVITY IMPROVEMENTS 

Improvements within Islands of Automation 

One of the primary benefits of Computer-aided engineering 
(CAE) is the increased productivity realized by the enhanced 

Possible Productivity Improvements Using PDES 747 

automation at each workstation. Many vendors and users ap
pear to be working hard to enhance productivity in this way. 
Unfortunately, many naive users have assumed it would be 
easy to transfer finished designs to computer-aided manu
facturing systems. However, Thomas R. SmithS writes: "An 
integrated design and manufacturing process composed of an 
ever-changing set of independently developed and rapidly 
evolving tools, configured by different organizations, places 
severe demands on the design of the structures and transfer 
mechanisms used to 'glue' the process together." 

Minimization of Repackaging and Rekeying 

Another way to enhance productivity would be to reduce 
the human involvement needed on receipt of a file from an
other workstation. It often happens that the file received has 
useful data that must be reformatted or that must be associ
ated with a meaningful feature of the receiving system. For 
example, one user may have developed some utilities to ex
tract printed wiring board outline data from Level 12, If the 
sender had stored that type of information in Level 34, the 
recipient might have to discover this was done and then adjust 
for it. If the meaning of the data had been attached to the data 
in a way that made sense to the machine, the rearrangement 
could be automated or eliminated. Examples of netlist re
formatting are also available. Another duplication of effort is 
frequently encountered when information, available at the 
source, gets lost in the exchange process and must be rekeyed 
by the recipient. 

The area of enhancing productivity seems amenable to 
standardization, and is being addressed by many groups. 
Among the U.S. groups working on exchange formats or de
sign languages for Electrical or Electronic products are: ANSI 
Y14, IEEE, VHSIC, ATLAS, EDIF, IPC, ICAM, CAM-I, 
EIA, and NEMA. Others, mentioned in an unpublished 
paper by A. J. Gibbons,6 include ISO TC 184, ESPRIT, ISO 
TC 97, DIN, AFNOR, MAP, TOP, ASTM, and IEC. The 
scope and methodology of only one of these groups, Working 
Group 1 of Subcommittee 4 of ISO TC 184, is of interest here. 
This group (ISO TC184/SC4IWG 1) includes many members 
of the IGES organization working on PDES. 

At present, those working with the PDES project are con
centrating their efforts on communicating a complete product 
model; this model must contain sufficient information so it is 
readily interpreted by numerous receiving systems. The in
tended receiving systems include computer-aided systems to 
do generative process planning and directed inspection plus 
generation and verification of numerically controlled cutter 
paths. The methodology being used borrows from lessons 
learned in database design. In particular, the 3-schema ap-



748 National Computer Conference, 1987 

proach described by the ANSIIX3/SP ARC Database Task 
Group in 19757 has been adopted. Even though an exchange 
file is not exactly equivalent to a data-base, it is subject to 
some of the same pitfalls. Use of the 3-schema approach 
should help avoid these pitfalls. The PDES methodology8,9 

consists of 3-layer architecture, reference models and formal 
languages. 

PDES seems unique in the breadth of applications which 
can be addressed and in functions which can be supported. It 
also seems to be among the first exchange standardization 
efforts to apply an information modeling methodology to de
velop a conceptual schema. 

BREADTH OF APPLICATIONS AND FUNCTIONS 

Application disciplines include mechanical, electrical, archi
tectural, and finite-element modeling. Reference . models are 
also being developed for support functions which include solid 
geometry, curves and surfaces, presentation, drafting, manu
facturing, tolerances, and technical publications. 

Mechanial Products 

The mechanical products for which reference models are 
being developed are: piece parts (flat plates, turned parts, 
bent plates, complex surface parts, and extruded parts); per
manent groupings of parts (like welded assemblies); and tem
porary groupings of parts (like bolted assemblies). 

Electronics 

The electrical/electronic products for which reference mod
els are being developed are: integrated circuits and standard 
cells, hybrid microcircuits, printed wiring boards and assem
blies, cables, and 3-dimensional wiring harnesses. 

Architecture 

The Architectural Engineering and Construction Commit
tee has begun work on reference models for distribution sys
tems, plantibuilding/sites, structures, geographic information, 
buildings, and power-generating plants. 

Finite Element Modeling 

The Finite Element Modeling Committee has begun work
ing on reference models for local coordinate systems, geomet
ric properties, material properties, post processing, analysis, 
and results. 

Support Functions 

No less important than the above application areas, are the 
reference models for support functions, such as, solid geome
try, curves and surfaces, tolerances, presentation, drafting, 
manufacturing, and technical publications. PDES is being 

developed to provide support throughout the life cycle of the 
modeled products. 

METHODOLOGY APPLIED IN PDES 

Need for 3-schema Methodology 

Even though a standardized exchange format for use among 
different computer-aided systems is not identical to a data
base, some similarities exist. Finding certain kinds of informa
tion in either the database or the exchange file depends not 
only on the information having been included, but on a format 
that enables retrieval of that information. For example, a 
database of address labels needs a separate field for ZIP codes 
if one ever intends to sort data by ZIP code. If the ZIP code 
is simply the last 5 or 10 characters in the city-state-ZIP line 
of the address, it will usually be impractical to ask the data
base to give you any information on ZIP codes. 

The same assertions apply to a file of address labels you 
wish to send to a colleague. If the file structure does not 
isolate and identify ZIP codes, the recipient will be hard 
pressed to have his software find them quickly. Note that the 
receiving system might easily throwaway the carefully crafted 
distinction if the target database was not designed to use it. 
Furthermore, asking for the street address of "Mike Hall" 
might not give the desired result if the database or the ex
change file has more than one "Mike Hall." 

The 3-schema methodology was developed to circumvent 
such difficulties in the design of databases. The three sche
mas7 are: (1) the internal view of the data as seen by the 
system, (2) the external view of the data as seen by the appli
cation programmer, and (3) the conceptual schema (the 
enterprise's description of the information as modeled in the 
database). Tsichritzis and King7 write: "Without the assis
tance of the indirection provided by the conceptual schema it 
becomes awkward to write applications that can survive the 
inevitable variations in the characteristics of the stored data." 

Importance of the Conceptual Schema 

The ANSIIX3/SPARC DBMS Framework Repore empha
sizes the importance of the conceptual schema: 

"The conceptual schema contains the definitions of entities and 
their properties and relationships. No entities or properties may 
be referenced in the database unless they are defined in this 
schema ... it is likely to remain more stable than either the inter
nal or external schemas; hence, internal and external schemas 
are prepared and mapped against the relatively stable conceptual 
schema rather than against each other, in order to insulate one 
from the other." 

Information Modeling of Applications 

Information modeling is also being used in PDES to help 
define a small, integrated, and clearly labeled set of data 
packages which will efficiently provide all the data needed in 
each application or function. In the PDES methodology, the 



various external schemas are being developed by different 
groups at the same time. The group most knowledgeable in 
each application or subject area has been developing an infor
mation reference model for that particular application. Each 
model is equivalent to an external schema. Where necessary, 
the groups have been considering many application views at 
the same time and have been incorporating all the data needs 
into one model. 

The Electrical Application Committee faced an unusual 
situation. Because the background of the people in the Com
mittee did not cover the full range (integrated circuits, stan
dard cells, hybrid microcircuits, printed wiring boards and 
assemblies, cables, and 3-dimensional \\'iring harnesses) of 
applications to be addressed, help was obtained from the 
Design Automation Standards Subcommittee (DASS) of the 
IEEE Computer Society. At this writing, the models are be
ing developed by the Cal Poly Task Team in Pomona, Califor
nia under the sponsorship of the IEEE DASS. The host for 
this activity is the Department of Electrical and Computer 
Engineering at the California Polytechnic University. 

Integration at the Logical Layer 

Those models judged to be ready are also now being inte
grated by the Logical Layer Committee. (The PDES term, 
"Logical Layer," corresponds to the conceptual schema used 
by ANSIIX3/SP ARC.) As deemed necessary, this Committee 
will consult with designated developers of the reference mod
els being reviewed to make sure nothing significant gets lost 
in the integration process. 

The integration task involves minimizing the kinds of enti
ties needed. In this context, entities are roughly equivalent 
to labeled data receptacles. This minimization is done while 
concurrently assuring that the conceptual schema has every
thing needed to support both the physical layer (the internal 
schema) and all the reference models which constitute the 
external schema. The resulting logical layer will be described 
in a formal computer-readable language known as EXPRESS. 
The reference models will also be described in EXPRESS and 
will be made available to application programmers. 

The application modeling and integration of models must 
be done well, or redundant data may be filed and transmitted 
needlessly. Worse, needed data may be retrieved or received 
too slowly, too expensively, or not at all. 

To ensure the widest possible coverage and to ease conver
sion from a national standard to an international standard, 
the work is partly being done and is being reviewed by mem
bers of the ISO TC 184/SC41WG 1. This is in addition to 
those workers/reviewers who reside in the United States. 
Our liaison reports: "The work to be accomplished under ISO 
TC 184/SC4 is the development of a new International Stan
dard (IS), currently called STEP, for the exchange of digital 
product data between computer application systems."l0 
Thus, it is our hope that PDES will not only be the principal 
contribution to, but that it will be identical to STEP (Standard 
for Exchange of Product Model Data). A resolution to that 
effect has been adopted by both the IGES Steering Commit
tee and the ISO TC 184/SC41WG 1.11 The identity of the two 

Possible Productivity Improvements Using PDES 749 

standards would conform with the General Agreement on 
Tariffs and Trade (GATT) Standards Code. According to 
John Rankine,12 the code "stipulates that governments should 
use international standards, where they exist, in national 
technical rules and regulations." 

CONCLUSIONS 

The aim of the efforts described in this paper is the exchange 
of product model data with no human intervention. This may 
be the first time that the 3-schema methodology will have 
been applied to an exchange format, rather than to a data
base. PDES is conducting important research on information 
exchange as it relates to product data. The lessons learned will 
be made available to all who are striving for Computer Inte
grated Manufacturing. Moreover, because it is the first sys
tematic investigation of product-design information transfer, 
it seems to offer the best hope for realization of the goal of 
improved productivity through CAE Systems Interface stan
dards. 

ACKNOWLEDGEMENTS 

The support of Bert Gibbons and Jack Jones is gratefully 
acknowledged. Jack reviewed drafts and helped clarify ideas; 
Bert assisted the author by suggesting references and by re
viewing drafts. 

REFERENCES 

1. Smith, B., and G. R. Rinaudot. "Welcome to Initial Graphics Exchange 
Specification." (Newcomer Material). National Bureau of Standards, 
January, 1987. 

2. Smith, B., and J. Wellington. "Initial Graphics Exchange Specification 
(IGES) , Version 3.0." NBSIR 86-3359, National Bureau of Standards, 
April, 1986. 

3. Nagel, R. N., W. N. Braithwaite, and P. R. Kennicott. "IGES Version 
1.0." NBSIR 80-1978 (R), National Bureau of Standards, January, 1980. 

4. Smith, B. M., K. M. Brauner, P. R. Kennicott, M. Liewald, and J. 
Wellington. "Initial Graphics Exchange Specification (IGES), Version 
2.0." NBSIR 82-2631 (AF) , National Bureau of Standards, February, 1983. 

5. Smith, T. R. "A Data Architecture for an Uncertain Design and Manu
facturing Environment." In Proceedings of the 22nd Design Automation 
Conference, Los Alamitos, California: IEEE Computer Society Press, 
1985. 

6. Gibbons, A. J. "Information about Standards Development for Support of 
Information Management, Data Sharing, and Data Exchange," 1986. A 
private communi~tion. 

7. Tsichritzis, D., and A. King, (eds). "The ANSI/X3/SPARC DBMS Frame
work. Report of the Study Group on Database Management Systems." 
Montvale, New Jersey: AFIPS Press, 1975. 

8. Brauner, K. "The Preliminary Report of the Ad Hoc Committee on the 
Content, Methodology, and Scheduling ofIGES Version 3." July 11, 1984. 

9. Brauner, K., and D. Briggs. "The Second Draft Report of the Ad Hoc 
Committee on the Content and Methodology of the IGES Version 3. (The 
Second PDES Report.)" November 12, 1984. 

10. Gibbons, A. J. "Evolving from CAD/CAMICAE/CAP/CAT to CIM: The 
role of Information Management and Industry Standards," 1986. An un
published article. 

11. ISO TC 184/SC4/WGI, D~cument Number N96. "Update to Document 
0.0, STEP Project Plan. Joint Development Agreement." January 6, 1987. 

12. Rankine, L. J. "Leadership and Responsibility in International Standardi
zation." ASTM Standardization News, December, 1984. 





A real world application of EDIF 

by MICHAEL A. WATERS 
Motorola SPS, Inc. 
Mesa, Arizona 

ABSTRACT 

This paper describes the first application within Motorola of the Electronic Design 
Interchange Format (EDIF), which is used to exchange Macrocell Array design 
information. The software based on this development is in regular use to support 
Motorola's Macrocell Array products in the marketplace. The paper examines some 
of the issues involved, including both the design library and the completed design 
portion of the problem, illustrating the solutions that EDIF provides. An actual 
example from one of Motorola's Macrocell Array libraries and a small design 
example using those libraries are used to show how the relevant information is 
expressed using ED IF. 

751 





INTRODUCTION 

This paper describes the first use within Motorola of the first 
release of the EDIF standard, version 1 00. 1 The application 
is oriented to a mainframe based Macrocell Array design sys
tem, which was in use when the project began. In each case, 
examples are derived from actual library or design data used 
in commercial designs although in some cases numeric infor
mation has been altered to protect proprietary information. 
Copies of the actual design databases and reference docu
ments may be obtained by contacting Motorola's ASIC cus
tomer engineering group. * 

Figure 1 shows the overall scheme used; EDIF is used as a 
bidirectional interface between Motorola and an external cus
tomer. In planning this interface, six distinct classes of data 
were identified-three types of library and three types of 
data-to describe the completed design. For convenience, this 
paper is organized along these same lines, describing first the 
three types of library data and then the three types of com
pleted design data. 

In many cases, cell names and other EDIF identifiers 
have been chosen to aid human understanding of the ED IF 
information. This information would not be used by a com
puter system other than as a unique identifier of some 
EDIF object. That is to say, if the library identifier 
"MOTOROL~CA2" was to be changed to some other 
unique character string, such as "FOO-'BAR", throughout 
the file, then the semantics of that file are unchanged. 

The examples used in this paper were drawn from Motorola 
Macrocell Array libraries for semicustom integrated circuit 
(IC) design, but the techniques presented apply equally well 
to any component library that EDIF can handle. This can 
include all types of electronic components, semicustom ICs, 
full-custom ICs, standard part ICs, passive components, 
board level parts, or complete modules. 

MACROCELL ARRAY COMPONENT LIBRARIES 

A component library typically reflects the product offering of 
a particular manufacturer. It must include enough informa
tion for a designer to successfully use the part in a design and 
to order the correct part from the manufacturer. 

For semicustom integrated circuits (ICs) such as Macrocell 
Arrays, this library becomes an integral part of the design and 
ordering process for the entire integrated circuit. Since the 
entire design must then be built by a single manufacturer, the 

*Motorola Semiconductor Products Inc., Application Specific Integrated Cir
cuit Division, Customer Engineering Support, Box 20912, Phoenix, Arizona 
85036 

A Real World Application of EDIF 753 

CUSTOMER 

E 

D 

F 

MOTOROLA 

MACRO 

Schematic 

Library 

Figure I-An overview of the EDIF based Macrocell interface 

library becomes the basis for the product specification as well. 
As a result, the accuracy and completeness of the library is a 
concern of both the manufacturer and the ultimate user of the 
CAE system. One of the earliest motivations for developing 
EDIF was to simplify and expedite this transfer of semicustom 
IC libraries from the manufacturer to the ultimate user. 

One of the useful features of EDIF is the tree-structured 
data organization, which allows an EDIF user to quickly iso
late the small portion of an EDIF file of interest for the 
task at hand, consisting of a LIBRARY, CELL, and VIEW 
organizational hierarchy. The power of this structure is that it 
reflects the natural divisions of design information by source 
and intended use. 

Note that the term VIEW implies there is some relationship 
between different VIEWs of the same cell (although ED IF 
does not force this), and that the actual object being described 
by each VIEW is the same object with different information 
being expressed in different VIEWs. Any number of VIEWs 
of a cell may be defined; the user selects only those VIEWs 
of interest for the particular application being addressed. 



754 National Computer Conference, 1987 

Motorola divides these libraries by EDIF VIEW as follows: 

SCHEMATIC view Schematic symbols of each macrocell. 
NETLIST view Macrocell internal interconnection of 

simulator primitives. 
BEHAVIOR view Basic models of simulator primitives. 
SYMBOLIC view Physical information needed to place 

and route a design. This view includes 
the appropriate base array informa
tion and data for each macrocell. 

Component Library Revision Control 

One of the concerns of a manufacturer that is maintaining 
libraries that are not under his direct control is to ensure that 
any design referencing these libraries uses current and valid 
information. If there is a problem, it is important to identify 
it as quickly and easily as possible so it can be corrected with 
minimum impact on schedules and budgets. 

As a result, one of the first steps in checking a design sent 
for manufacture must be to check the software revision, EDIF 
revision, and data revision. ED IF supplies EDIFVERSION 
and ACCOUNTING fields within the STATUS for this pur
pose. Motorola uses EDIFVERSION for problem tracing and 
ACCOUNTING as a preliminary validity check of a design on 
receipt to be sure that every cell used in the design is valid. 
This is accomplished simply by returning these status fields as 
part of the EDIF file, which specifies the completed design, 
and then comparing a revision code within them to a master 
list maintained by Motorola. 

Schematic Symbol Library 

The terms related to schematic drawings are often used 
loosely within industry. To understand a schematic symbol 
library, it is important to understand the difference between 
a "schematic symbol," a "schematic drawing," and a "netlist" 
for our purposes: 

netlist: connectivity data ONLY (which may 
be extracted from a "schematic draw
ing") 

schematic drawing: both graphics and connectivity data; 
references a number of "schematic 
symbols" 

schematic symbol: a cell with graphics and "connect 
points" which may, or, may not 
contain, a "schematic drawing" to de
scribe its contents 

The schematic level component library consists of sche
matic symbols for each macrocell. These symbols can be inter
connected to form a schematic drawing for the complete de
sign. Each port of the macrocell is defined as a connect point, 
both as a symbol, and by using a flag for the user's CAE 
system. Standardized graphics are defined to display the same 
symbol both on a workstation and on a drawing. Several prop
erty values are supplied for each port to define such items as 

IN 

IN 

IN 

IN ~----'r--9 OUT 

IN ....--,._---~ OUT 

IN 

IN '----11---9 OUT 

IN 

IN .... ----7 

3-2-2-2 OAIRHO 

Figure 2-Schematic symbol of the M212 macrocell as displayed 
by a workstation 

loading factors and port names. Similarly, some macrocell 
related properties, such as macro name and function, are 
supplied for each macrocell. 

Figure 2 shows the schematic symbol of a typical macrocell 
from Motorola"s bipolar macrocelllibrary as it would appear 
on a workstation. Figure 3 shows a sample of the correspond
ing ED IF file used to transfer this cell to the workstation. This 
particular macrocell is a 3-2-2-2 ORlAND function taken 
from the design manual for the M2500ECL Macrocell Array. 2 

The information in the ED IF file is an electronic form of the 
data found in the design manual, but it also includes such 
added information as explicit designation of pin functions. 

The basic structure of the file fragment starts at the CELL 
level, defining the CELL name, its STATUS, and the VIEW 
of interest. An INTERFACE section defines the external 
symbol to be used for the macrocell, while the internal sche
matic may also be defined in the CONTENTS giving as much 

(CELL M212 
(STATUS (EDIFVERSION 1 9 9)(EDIFLEVEL 9) 

(WRITTEN (TIMESTAMP 1986 6 6 16 37 (2) 
(ACCOUNTING PROGRAM "SYM2EDIF v2.99") 

(ACCOUNTING AUTHOR "Motorola ASIC Div."») 
(VIEW SCHEMATIC MACRO SCHEMATIC 

(INTERFACE -
(DEFINE INPUT PORT A) 
(PORTIMPLEMENTATION A (FIGUREGROUP SYMBOL PIN 

(DOT (POINT 8 28888») -
(DEFINE INPUT PORT B) 

(PORTIMPLEMENTATION B ... ») 
(BODY 

(FIGUREGROUP SCHEMATIC SYMBOL (FILLPATTERN 1 1 "9") 
(PATH (POINT 5998 158i9)(POINT 6758 15889» 
(PATH (POINT 5888 28888)(POINT 6758 28988» 
(PATH (POINT 5899 17598)(POINT 7588 17598» 
(SHAPE 

(ARC (POINT 8159 15158)(POINT 1598 11599) 
(POINT 6758 19258») ... ) 

(USERDATA BORDER MACRO BORDER 
(FIGUREGROUP BORDER (BORDERPATTERN 6 "881111") 

(RECTANGLE (POINT 2588 -2588) 
(POINT 25888 22588») ... ) 

Figure 3-EDIF SCHEMATIC view of the M212 library cell 



or as little data as required about the internal working of the 
macrocell. For this library, no CONTENTS were required: 
the INTERFACE provided all of the data required to use the 
cell in a semi-custom IC design. 

Within the INTERFACE, each port of the cell is specified 
with the DEFINE and PORTIMPLEMENTATION con
structs, which give direction, pin symbol, swap ability , and 
display information for the port. The graphical information is 
an important part of the symbol and is found in one or more 
FIGUREGROUPs, a construct EDIF uses to identify figures 
with commo~ attributes, such as layer or color. Finally, a 
DOT shape is used to define the actual location and shape of 
the port. ED IF uses similar mechanisms to specify graphical 
data, whenever needed. 

The BODY is used to supply information about the actual 
graphics of the symbol as seen on a workstation, once again 
using FIGUREGROUPs containing a number of EDIF 
SHAPE constructs. This time, a FILLPATTERN specifies 
that the SHAPE is left "white," or unfilled. A BORDER is 
defined for the symbol, with a dashed line (BORDER
PATTERN). 

Simulation Library 

The simulation library is divided into two parts, corre
sponding to usage within simulators. First, a library of cells 
containing simulator primitive data (BEHAVIOR view) pro
vides a model of each primitive modeled by Motorola's in
ternal simulator. Then, the main macrocell library defines 
the macro cell functional connections (NETLIST view), which 
connect the simulator primitives to make a particular macro
cell. 

Since ED IF V 1 00 does not support an adequate 
BEHAVIOR view for this purpose, the library contains only 
the NETLIST view, which interconnects primitives that must 
be defined outside the EDIF library. This is far from ideal but 
has proven workable as an interim step and has allowed gate 
level simulation libraries to be ported with minimal effort. 

Simulation example 

Figure 4 shows NETLIST view of the M212 library cell 
shown in Figures 2 and 3. The logic primitives may be found 
in the LOGCAP user guide;2 they essentially are Boolean 
gates with rise and fall delays for each input and output. 

The CELL, VIEW, and STATUS are given as before, but 
the INTERFACE is used merely to DEFINE the ports seen 
by the user. The CONTENTS is used to describe the inner 
workings of the cell. First, a LOGCAP primitive is referenced 
by INSTANCE, with PARAMETERs specifying rise and 
fall time. Next, the ports of this primitive cell are connected 
by JOINED statements, either to external cell ports or to 
other ports within the cell or to instances of primitives. The 
QUALIFY is used to specify that the named port is the port 
in a particular instance, rather than the port of the cell being 
defined. Thus, the complete internal connectivity of the cell is 
modeled using commonly known primitives. This description 
provides a highly accurate reference for the receiver, who may 

A Real World Application of EDIF 755 

(cell 11212 
(view netlist LOGCAP 

(STATUS (EDIFVERSION 1 9 8)(EDIFLEVEL 9) ... ) 
(interface 
(define input port (multiple ABC D E F G H J» 
(define output port (multiple YA YS YC YD») 

(contents 
(instance (qualify LOGCAP OR) netlist AA 
(parameter risetime 2 falltime 4» 
(joined AA (qualify AA output-port» 
(joined D (qualify AA input-ports_1» 
(joined E (qualify AA input-ports_2» 

(instance (qualify LOGCAP AND) netlist YYY 
(parameter risetime 8 falltime 8» 
(joined YYY (qualify YYY output-port» 
(Joined AA (qualify YYY input-ports_1» 
(joined AD (qualify YYY input-ports_2» 
(joined AC (qualify YYY input-ports_3» 
(joined AF (qualify YYY input-ports_4» 

(define local Signal 
(mult1ple Y~Y YY AF AC AE AS AD AA»») 

Figure 4---LOGCAP NETLIST view of the M212library cell (ACLOGLIB) 

then decide to generate more efficient models using his own 
system's native primitives. 

Physical Library 

Structurally, the physical level library is the most complex 
and the most specific to a given technology. For a Macrocell 
Array, the library consists of three parts: the base array, the 
macrocells and the packages available for that array. 

Defining the base array 

The base array consists of the preassigned components 
(e.g., transistors, resistors) which are prefabricated, ready for 
the customizing metal layers. In a Macrocell Array, these 
metallization patterns come from two sources: pre-designed 
cells or macrocells, which perform a specific function when 
placed at the appropriate location; and interconnect wiring, 
which connects the macrocells to make the design. The places 
where a macro cell may be used are called sites and have 
complex symmetry rules associated with them. 

The base array cell first defines the sites allowed for place
ment of the various classes of macrocells using a special sec
tion of EDIF called SOCKET definitions. This section defines 
such information as placement rules, symmetry of the sites, 
and the location of sites on the chip. 

Since the underlying array is quite complex, a hierarchical 
definition has been used, as shown in Figure 5, with the basic 
sites defined as cells (e.g., INTERNAL_SITE) containing the 
basic SOCKET definitions. These are then instantiated into 
quads offour sites (e.g., INTERNAL_QUAD_SITE). These, 
in turn, are instantiated into the base array, with a STEP to 
specify the placement of each array of quad sites on the under
lying array. This results in a pattern that can be flattened to 
show a simplistic representation of the placement sites, or 
maintained as a hierarchy for a sophisticated placement algo-



756 National Computer Conference, 1987 

(0,0) 

(-5, -10) 

+ 
Quad Site 

Complete Array 

t 
Two site macro 

(Cell S (View . . . 

(ArrayRelatedlnfo ArraySlte 

(Socket)))) 

(Instance S Physical S1) 

(Instance S Physical S2 (Transform MX» 

(Instance S Physical S3 (Transform R180» 

(Instance S Physical S4 (Transform MY» 

(Instance Q Physical Sites 

(Transform (Translate 

(Step 0 7 45) 

(Step 0 16 20)))) 

(Socket Set 

(Instance S Physical IS1) 

(Instance S Physical IS4 (Transform MY))) 

(SocketSet 

(Instance S Physical IS3 (Transform R180» 

(Instance S Physical IS2 (Transform MX))) 

Figure S-Definition of sites in a Macrocell Array 

rithm or perform complex group interchanges according to 
the natural structure of the base array to better utilize the 
available space. 

Routing barriers are defined in a similar hierarchical fash
ion, but using cells which contain only a BODY to define a 
protection frame consisting of shapes in the appropriate 
FIGUREGROUPs. Finally, various symbols may be defined, 
including text, to aid in the consistent display of the base array 
features on a workstation. This may include such objects as 
potential sites for macrocell placement, company logos, and 
boundaries to routing areas. 

Figure 6 shows part of an EDIF file that describes the base 
array for the M2500ECL from the design manual. In this case, 
the graphical information given reflects the drawing published 
in the M2500ECL design manual, rather than the actual array 
geometries. 

The individual macrocell 

The macrocell library includes the placement site require
ments for each macrocell, including any special restrictions 
(such as a macrocell which may occupy more than one site), 
and the orientation of the macro required to correctly occupy 
a site. This data uses a section of EDIF that is complementary 
to the SOCKET called a PLUG, and the relationships be
tween different PLUGs and SOCKETs define the often com-

(CELL BIPOLAR BASE ARRAY 
(VIEW SYMBOLIC PHYSICAL (INTERFACE 

(DEFINE INPUT PORT (MULTIPLE P992 P993 
P122 P123 P124 » 

(DEFINE INOUT PORT (MULTIPLE P919 
Ple4 PleS P186 P19T »» 

(VIEW SYMBOLIC SITE 
( INTERFACE 

(ARRAYRELATEDINFO BASEARRAY» 
(CONTENTS 

(INSTANCE CLOCK GENERATOR SITE SITE ID 
(TRANSFORM R8 (TRANSLATE-59 19») 

(INSTANCE INTERNAL QUAD SITE SITE IDl 
(TRANSFORM R8 - - . 

(TRANSLATE (STEP 19 19 19) (STEP 17 11 19»» ... 
(INSTANCE ARRAY ROUTING BARRIERS LEVEL 1 SITE IDS 

(TRANSFORM R9 - - --
(TRANSLATE (STEP 23 19 19) (STEP 17 11 19»» 

(INSTANCE ARRAY ROUTING BARRIERS LEVEL 2 SITE ID7 
(TRANSFORM Re - - --

(TRANSLATE (STEP 16 19 19) (STEP 17 11 19»» 
... ») 

(CELL INTERNAL QUAD SITE 
(VIEW SYMBOLIC SITE 

(INTERFACE (BODY 
(FIGUREGROUP ROUTING LEVEL 1 

(RECTANGLE (POINT' 9) (POINT S 6» 
(CONTENTS 

(INSTANCE INTERNAL SITE SITE 1St ) 
(INSTANCE INTERNAL-SITE SITE IS2 (TRANSFORM MI» 
(INSTANCE INTERNAL-SITE SITE IS3 

(TRANSFORM R188»-
(INSTANCE INTERNAL SITE SITE IS4 (TRANSFORM MY» 

(CELL INTERNAL SITE (COMMENT -INTERNAL ARRAY SITE-) 
(VIEW SYMBOLIC SITE 

(INTERFACE 
(ARRAYRELATEDINFO ARRAYSITE (SOCKET»») 

Figure 6-A Macrocell Array base array definition 

plex rules for correctly using a given macrocell in a given site. 
Also defined in the cell are any macrocell related routing 
barriers, physical port names, port locations, and relevant 
data about internal port to port connections, if any. Symbols 
may be defined for display of the macrocell on a workstation 
during the placement process. These symbols are distinct from 
those defined for the schematic drawing, and are used only for 
the PHYSICAL view of the design. 

Figure 7 shows the SYMBOLIC view of the M212 library 
cell from Figure 2. This view gives the information required to 
successfully place this macrocell on the base array and to route 
wiring to the appropriate pins. Note that the internal routing 
of the cell (CONTENTS) is not given since this is not needed 
to use the macrocell in the array. 

The INTERFACE defines a BORDER for display pur
poses similar to the one defined for the schematic symbol. As 
before, the physical appearance of each port is defined in a 
PORTIMPLEMENTATION. But in a PHYSICAL view, 
this specifies a routing target for a router, in this case a 
DOT. Some connectivity is specified, showing that port YD 
and SYD are equipotential and that a router may wish to 
use this as a feed-through connection. Finally, the ARRAY
RELATED INFO section defines the correct placement in
formation using SOCKETSETs to specify the required sites 
and the orientation of the cell if it uses the site. 



(CELL M212 
(VIEW SYMBOLIC PHYSICAL 

(STATUS ... ) 
(INTERFACE 

(BODY 
(USERDATA BORDER BORDER 

(FIGUREGROUP BODY_EXTENT 
(RECTANGLE (POINT -328 -488)(POINT 328 8»») 

(PORTIMPLEMENTATI0N YD 
(FIGUREGROUP R_LEV_2 (DOT (POINT 8 -58»» ... 

(JOINED YD SYD) 
(DEFINE INPUT PORT (MULTIPLE A F C G B E H D J» 
(DEFINE OUTPUT PORT (MULTIPLE YD SYD YA YC YB» 
(ARRAYRELATEDINFO ARRAYMACRO 

(PLUG 
(SOCKETSET (INSTANCE INT SITE IS1) 

(INSTANCE INT SITE IS2 (TRANSFORM MY» 
(TRANSFORM MY» 

(SOCKETSET 
(INSTANCE INT SITE IS3 (TRANSFORM R188» 
(INSTANCE INT SITE IS4 (TRANSFORM MX» 

(TRANSFORM MY»»») 
Figure 7-PHYSICAL (place and route) view of the M212 macrocell 

THE COMPLETED DESIGN 

The requirements and capability of Macrocell Array users 
varies widely-from a small customer that is a first time user 
of Macrocell Arrays to a large sophisticated customer that 
designs dozens of arrays a year. This disparity is reflected in 
the different levels of required interface to the manufacturer. 
The small customer needs to minimize the risk involved and 
will use its own equipment just to generate a schematic draw
ing of the part, extracting just a, netlist from which the rest 
of the design work is done. The large customer usually has 
installed equipment and procedures to do most, if not all, of 
the design in-house, sending a netlist, test patterns, and even 
physical or macrocell placement and interconnect routing 
information. 

The sections of this paper are organized to correspond to 
each of the types of information to be transferred by means 
of the EDIF description. These three information groups are: 

Netlist: Connectivity information normally derived 
from the schematic drawing, including the 
macro cells used for the design and their inter
connection. 

Test Pattern: Simulation input and output, in terms of sig
nals applied to, and expected from, each pin 
of the device. 

Physical: Defines macrocell placement in the array, 
routing of wiring and other manufacturing re
lated information. 

Three EDIF LIBRARY level sections are required regard
less of the information sent: DESIGN, EXTERNAL, and 
TECHNOLOGY. 

The DESIGN construct specifies the "root" or topmost 
cell in the design hierarchy, and is used as a starting point 
when extracting information about a design. The VIEW 
NETLIST within this cell contains the netlist data, the VIEW 

A Real World Application of EDIF 757 

BEHAVIOR contains the test pattern data, and the VIEW 
MASKLA YOUT contains the macrocell placement and inter
connect routing data. In each case, VIEWNAMEs for these 
three VIEWTYPEs have been chosen to help a human reader 
to understand their usage rather than to give some semantic 
understanding to a CAD system. 

The macrocelllibrary used for the design is specified using 
the EXTERNAL construct. For example, the EDIF state
ment (EXTERNAL M2500ECL) specifies that the Motorola 
M2500ECL Macrocell Array library was used. This allows 
reference to the library and its contents without requiring that 
the complete library be sent with each design. 

A TECHNOLOGY section must be present to give at least 
the technology identifier for a simple netlist, but may also 
be needed to add information such as the scale factor to be 
used for timing information. For example, (TECHNOLOGY 
MOTOROL~CA2) specifies that Motorola's MCA2 tech
nology is being used and that the technology specific scaling 
and definitions will be found in that library. In this example, 
the definition case refers to the TECHNOLOGY section in 
the M2500ECL library previously supplied by Motorola. 

Netlist Information 

A 4-bit binary counter is used as a design example to illus
trate the way data is expressed in EDIF. As in the library 
examples, only the basic information required is shown for 
clarity. The example is called "MOT02500," the schematic 
drawing is shown in Figure 8, and a partial EDIF file of the 
netlist is shown in Figure 9. 

Test Pattern Information 

A "Test Pattern" refers to a sequential set of logic states 
applied to or expected from each signal named in the ED IF 
file during the test sequence or simulation run. The data sup
plied consists of a series of logic states High (H, HIGH, T, or 
TRUE), Low (L, LOW, F, or FALSE), Ignore (X), or high 
impedance (Z). 

Referring to the MOT02500 example in Figure 8, a func
tional test is performed using the waveforms shown in Figure 
10. If inputs are driven to the states shown, then the outputs 
shown are to be expected. To transmit this information a new 

Figure 8-Schematic drawing of the MOT02500 example 



758 National Computer Conference, 1987 

(EDIF MOT02599 
(DESIGN MOT02599 (QUALIFY EXAMPLES MOT02599 CELL» 
(EXTERNAL M2599ECL) -
(LIBRARY EXAMPLES 

(STATUS ",) 
(TECHNOLOGY",) 
(CELL MOT02599_CELL 

(STATUS (EDIFlevel ... » 
(VIEW NETLIST LOGCAP 

(INTERFACE 
(DEFINE INPUT PORT (MULTIPLE RESET CLK CLKEN» 
(DEFINE OUTPUT PORT (MULTIPLE Q1 Q2 Q3 Q4») 

(CONTENTS 
(INSTANCE (QUALIFY M2599ECL M292) logcap RST) 
(JOINED RST (QUALIFY RST YA» 
(JOINED RESET (QUALIFY RST A» 
(INSTANCE (QUALIFY M2590ECL M291) logcap FF1) 
(JOINED RST (QUALIFY FF1 R» 
(JOINED CLOCK (QUALIFY FFl C» 
(JOINED (QUALIFY FF1 D) (QUALIFY FF1 QB) ... » 
Figure 9-EDIF Netlist for MOT02500, extracted from Figure 8 

view is added to the EDIF file, as shown in Figure 9, resulting 
in the file Figure 11. Note that a PORTMAP has been added 
to identify the name of each port in the two views. 

Physical Structure Information 

The physical implementation of this array requires that 
each macrocell be placed in a legal site in the correct orienta
tion and that interconnect wiring be routed to connect the 
ports of the macrocells. The rules for this process were sup
plied in the physical library description shown in Figure 6. 
Referring again to the MOT02500 example in Figure 8, yet 
another view is added to the EDIF file (as shown in Figure 
12), and gives a complete specification of the three types of 
information required to correctly build this design. 

CONCLUSIONS 

Both the software described and EDIF VI 00 have proven 
useful for exchange of actual designs. Because of the limi-

INPUTS: 

RESET ~~_--;"'-";"-;----O---;"'-i--~----i---'--i-;"""";'----i---'--i-i--,.; 
ClK 

ClKEN 

OUTPUTS:~ 

Q1 

Q2 ~ WJ 
Q3 ~ LJj 
04 ~~~:~~~~~~~~~~~~ 

Figure 10-Functional test patterns for the MOT02500 

(EDIF MOT0251l1J 
(DESIGN ... ) 
(LIBRARY EXAMPLES 

(STATUS ... ) 
(TECHNOLOGY M2599ECL) 
(CELL MOT02599 CELL 

(STATUS (EDIFlevel '" » 
(VIEWMAP 

(PORTMAP (QUALIFY LOGCAP RESET) 
(QUALIFY LOGIC RESET) ... » 

(VIEW NETLIST LOGCAP ... ) 
(VIEW BEHAVIOR LOGIC 

(INTERFACE 
(DEFINE INPUT PORT (MULTIPLE RESET CLK CLKEN» 
(DEFINE OUTPUT PORT (MULTIPLE Q1 Q2 Q3 Q4») 

(CONTENTS 
(SIMULATE MOT02589 FUNCTIONAL TEST 

(IGNOREVALUE X) -
(APPLY 25 1 

(LOGICINPUT RESET
(LOGICWAVEFORM L H L» 

(LOGICINPUT CLK 
(LOGICWAVEFORM H H L H L H L H L H ... » 

(LOGICINPUT CLKEN 
(LOGICWAVEFORM H H H H L» 

(LOGICOUTPUT Ql 
(LOGICWAVEFORM X L L L L H H L L H ..• » 

(LOGICOUTPUT Q2 
(LOGICWAVEFORM X L L L L L L H H H ... » 

(LOGICOUTPUT Q3 
(LOGICWAVEFORM X L L L L L L L L L .,.» 

(LOGICOUTPUT Q4 
(LOGICWAVEFORM X L L L L L L L L L ... »»»») 

Figure ll-EDIF file with test pattern information added 

tations of both the first version of this software and of 
EDIF VI 00, the software described will be replaced by 
ED IF V200 based production software in the near future. 
Since these two versions of EDIF are not upward compatible, 
a potential user of the EDIF interfaces described here 
should check with Motorola to be sure of the current status of 

(EDIF MOT02588 
(DESIGN ... ) 
(LIBRARY EXAMPLES 

(STATUS ... ) 
(TECHNOLOGY M2598ECL) 
(CELL MOT025eS CELL 

(STATUS (EDIFlevel ... » 
(VIEIMAP 

(PORTMAP (QUALIFY LOGCAP RESET) 
(QUALIFY LOGIC RESET) 
(QUALIFY PHYSICAL PSSI) ... » 

(VIEW NETLIST LOGCAP ... ) 
(VIEW BEHAVIOR LOGIC ... ) 
(VIEW NETLIST PHYSICAL 

(INTERFACE 
(DEFINE INPUT PORT (MULTIPLE P991 P993 P915» 
(DEFINE OUTPUT PORT (MULTIPLE P92S P982 P884 P9SS») 

(CONTENTS 
(INSTANCE (QUALIFY M2589ECL M291) phYSical Site_122 

(TRANSFORM R1Se (TRANSLATE 29 25») 
(FIGUREGROUP LEVEL 1 

(SIGNALGROUP RST -
(FIGURE 

(PATH 
(POINT 21 25) ... »»») 

Figure 12-The EDIF file now includes physical information 



Motorola's software before writing their interface software, 
and with the ED IF User Group for the latest information on 
EDIF.* 

*EDIF User Group, 2222 South Dobson Road, Building 5, Mesa, Arizona 
85202 

A Real World Application of EDIF 759 

REFERENCES 

1. EDIF Steering Committee. EDIF Specification, EDIF - Electronic Design 
Interchange Format Version 100, EDIF User Group, 1985 

2. MCA2500ECL Macrocell Array Design Manual. Motorola Inc., 1985, p. 38. 
3. LOGCAP Reference Manual, Phoenix Data Systems Inc., Albany, N.Y., 

1980. 





CitiExpert: Artificial intelligence applied to banking 

by KENAN E. SARIN 
Consultants for Management Decisions, Inc. and Massachusetts Institute of Technology 
Cambridge, Massachusetts 

and 
ROBERT K. SAWYER 
Consultants for Management Decisions, Inc. 
Cambridge, Massachusetts 

ABSTRACT 

This paper describes the CitiExpert system, an artificial intelligence system devel
oped for a commercial bank to increase the productivity and effectiveness of funds 
transfer telex request operations. These telexes were previously processed manu
ally. Data entry operators would read and analyze the telex and then type informa
tion at a standard ASCII terminal interface. CitiExpert applies a combination of 
natural language processing techniques and rule-based expert system techniques to 
automatically analyze the telex and to generate a formatted equivalent. CitiExpert 
also provides a sophisticated intelligent user interface which aids users by applying 
the system's domain knowledge to the interactive session. 

The paper discusses the previously existing technical and organizational environ
ment at the client bank, and the factors and technical solutions which made Citi
Expert a success. CitiExpert has been in production use since June of 1985. 

761 





INTRODUCTION 

The CitiExpert system was designed and implemented to in
crease the productivity of funds transfer telex processing, a 
labor-intensive area. English text telexes are read by bank 
professionals, and important data in the telex is typed into a 
data entry console. This data must be entered according to 
both general banking guidelines and strict formatting rules. 

Because of the bank's need to process English text input 
and to incorporate a significant amount of domain expertise, 
traditional programming techniques were inadequate. Arti
ficial intelligence (AI) technology was identified as the appro
priate solution. AI offers two groups of techniques which are 
used by CitiExpert: natural language processing techniques, 
and rule-based expert system techniques. 

CitiExpert was first implemented by Consultants for Man
agement Decisions (CMD) as a standalone prototype in the 
Summer of 1984. A prototype approach was selected to allow 
management to evaluate the potential of artificial intelligence 
in banking and to determine the potential success of a full 
production implementation. The prototype was standalone to 
allow the design team to concentrate on knowledge en
gineering. This standalone prototype was successful, and sys
tem integration became the major development issue. Citi
Expert was integrated with the bank's system environment, 
and a production version was readied and installed in June 
1985. 

The development and management of the CitiExpert proj
ect provides a case study of the implementation of new tech
nology within traditional corporate data processing environ
ments. Several conclusions can be drawn from this experience 
which may benefit other applications of advanced technology 
in business environments. 

THE EXISTING CLIENT ENVIRONMENT 

The environment at the bank displayed a unique set of man
agement and technical characteristics. Careful management 
and coordination of both executive desires and technical re
ality was a key factor in the success of the development effort. 

Selection of the Application Domain 

Late in 1983, the management of the bank's international 
transaction processing area began to realize the importance 
of artificial intelligence technology for their business: large
volume transaction processing of international transaction 
requests. These requests include funds transfer requests, re
quests for issuance of trade financing instruments such as 

CitiExpert: Artificial Intelligence Applied to Banking 763 

letters of credit, and inquiries and investigation requests. 
These transaction requests arrive via several international 
electronic networks, such as TELEX, SWIFT, and CHIPS. 

The majority of the area's traffic was formatted according 
to banking conventions and was processed automatically by 
conventional computer systems. However, a significant per
centage of the processing costs were associated with the un
structured, or free format messages, which arrived as English 
text messages over the telex wire. 

The use of artificial intelligence technology was an attempt 
to leapfrog the existing, more gradual, upgrade and improve
ment of transaction processing systems. The risk of new tech
nology was balanced by the potential for a three- or four-year 
advance in transaction processing technology. 

The initial application chosen as a test area for a proto
typing effort was unstructured funds transfer telex processing. 
This application domain satisfied all of the accepted condi
tions for a successful AI project. A subset of the key con
ditions satisfied follows: 1,2 

1. The domain is characterized by the use of expert knowl
edge, judgement and experience. 

2. Conventional programming solutions are inadequate. 
3. There are recognized experts that solve the problem 

today. 
4. The completed system is expected to have a significant 

payoff for the corporation. 
5. The task requires the use of heuristics, or "rules of 

thumb." 
6. The task is neither too easy nor too difficult. 
7. The system can be phased into use gracefully. 

The Technical Environment 

The system for funds transfer processing at the bank is 
known as the Funds Transfer Network (FTN). After the suc
cess of the standalone prototype, integration with this system 
became the key issue. 

A moving target 

The FTN was built in the late 1970s using several PDP-lls 
and many different serial line network protocols. In 1984, as 
we were completing our prototype, an effort was initiated to 
upgrade the entire FTN to VAX Cluster architecture. This 
was a three-year effort, involving all of the machines and 
network connections. 

The authors were involved with the internal system group's 
planning process, in an effort to integrate CitiExpert with the 
PDP-ll and schedule the transition to the new VAX as pain-



764 National Computer Conference, 1987 

lessly as possible. Corporate MIS systems are rarely static, 
and the need to coordinate to "hit a moving target" is even 
more critical with integration of a strategic technology such as 
artificial intelligence. Strong management desire for rapid 
implementation of the technology resulted in a reworking of 
the entire three-year development plan, to bring CitiExpert 
online at the earliest possible date. 

Networking 

The CitiExpert prototype was developed in LISP on the 
LISP Machine. In 1984, the LISP Machine did not provide an 
interface to the PDP-l1. The implementation dates set by 
management did not allow time to develop a port to another 
language or machine. 

A solution was provided by the availability of a UNIX 
processor for the LISP Machine. Citibank made available a 
C-language based protocol for UNIX which would communi
cate with one of their PDP-l1 routing nodes. CMD substan
tially revised and enhanced the protocol to increase its robust
ness to a production quality. 

Communication with the new VAX-based FIN, over 
DECnet, was pursued via several paths. First, a vendor was 
engaged to develop a custom DECnet for the Lambda UNIX 
processor. Second, a port to the Symbolics LISP machine was 
completed soon after Symbolics announced DECnet, in 
November of 1985. Third, a port to Common LISP on the 
VAX itself was completed early in 1986. 

Careful attention to network integration issues was the 
primary factor affecting the project's success. Performance of 
the knowledge engineering components could be excellent 
from a technical perspective, but the system could not be 
cost-effective without an appropriate system integration. 

The client's technical staff 

A further complicating issue was the unavailability of the 
bank's technical staff for CitiExpert. This staff was fully uti
lized developing the VAX-based FIN, which was critical to 
the bank's operations, and they could not be spared to aid 
with the networking issues. Thus it became even more im
perative that we provide this expertise as well as artificial 
intelligence knowledge. Insisting that we were "knowledge 
engineers" and above such work was not an option in this 
environment, and we suspect such is the case in most other 
business environments as well. 

Performance requirements 

Because funds transfer is a transaction processing environ
ment with large volumes and strict time constraints, we were 
required to design from the beginning with speed efficiency in 
mind. We could not afford the luxuries of powerful, overly 
general formalisms for processing. This required us to pursue 
a custom development approach. 

The initial prototype processed each telex in 70 seconds on 
the LISP Machine. The current microVAX II Common LISP 

version processes each telex in under 30 seconds. This speed 
improvement was necessary to make the system cost-effective. 

FACTORS CONTRIBUTING TO SUCCESS 

The complex management demands and the difficult combi
nation of technical factors resulting from application of new 
technology to a traditional DP environment required a unique 
combination of solutions to bring CitiExpert to successful 
completion. Decisions too numerous to itemize were each 
responsible in some way for the success; the most critical 
factors are described in this section. 

Support of Top Management 

Key executives at Citibank were our contact point. These 
executives had the vision to identify the potential of com
bining AI technology with this application. In addition to the 
backing of these executives, the manager directly responsible 
for system development and operations became a strong pro
ponent of the technology, and the entire management team 
worked together to implement the initial vision. This strong 
management backing was critical to the project's success for 
several reasons. 

Knowledge acquisition was necessary from several sources. 
To develop an effective system, we interviewed Citibank staff 
in systems development and operations as well as the end
users and managers. Without the strong backing of top man
agement, organizational dynamics might have jeopardized 
our access to one of these groups. In particular, had our initial 
contact been within the systems group itself, contacts with 
end-users and with higher-level management would have been 
difficult to establish. 

Management demonstrated their commitment to the sys
tem by producing a professional quality videotape of Citi
Expert. The first version of this videotape was prepared im
mediately after the prototype, making a strong statement 
early in the project about management's commitment to the 
technology. This videotape was used both as a marketing tool 
for overseas clients and as an internal tool for the dissemina
tion of the technology. 

Because of the success of CitiExpert, follow-up applications 
were requested which leveraged the initial effort. Several re
lated applications are currently past the prototype stage and 
are being prepared for production implementations. Manage
ment's continued commitment to CitiExpert, in the form of 
both the videotape and the follow-up applications, indicates 
the success of the project. 

Strong management backing also allowed us to proceed 
with a unique, important development relationship described 
in the following section. 

The Client-consultant Relationship 

The typical paradigm for managing consultants involves 
viewing them as extensions to the in-house development 
team. The client's existing project management structure is 
used, and the consulting firm provides programming talent. 



CitiExpert: Artificial Intelligence Applied to Banking 765 

This paradigm may not work when applied to advanced 
technology such as artificial intelligence. With such a different 
technology, new management techniques are often required 
to correspond to the difference in development styles and 
issues. We insisted on providing the project management ex
pertise as well as the technical expertise. Thus we delivered a 
custom turnkey system, rather than simply providing various 
code modules and routines according to a client-specified 
schedule. 

This arrangement at times resulted in strained relations 
with the systems development staff, as they were not used 
to relegating management control of consultant-developed 
projects. Once again, the strong backing of top management 
allowed us to proceed. 

CitiExpert also benefited from the knowledge engineers' 
concurrent involvement with other, more traditional decision 
support efforts at Citibank. These concurrent efforts proved 
synergistic. Together the efforts increased the trust relation
ship between the development team and the bank. The larger 
number of projects resulted in more frequent access to the key 
managers. These more traditional projects provided CMD 
with a better understanding of the bank systems and staff. 

Broad Expertise of Development Team 

A research-oriented knowledge of artificial intelligence is 
far from adequate when approaching a real-world production 
application. We found that much more important is the 
breadth of experience within the project staff. In addition to 
abilities as knowledge engineers, the development team was 
required to aid in scheduling a three-year development effort; 
to optimize rules and formalisms, at times even in assembler; 
and to debug and optimize a serial network protocol for inte
gration with the PDP-11. 

Our experience was that knowledge engineers must be will
ing and able to immerse themselves in all aspects of a project's 
development, and that this versatility is more critical than the 
arcane knowledge associated with advanced research. 

Porting the System to the VAX 

Continued success of CitiExpert has been dependent on the 
evolution of the code to run on different computers. The LISP 
Machine was not feasible for the new FIN since no acceptable 
network protocols were available. To retain cost effectiveness 
and achieve network integration, it became necessary to port 
the application to the VAX. This was a major effort, porting 
from ZetaLISP to Common LISP. After the port was com
pleted, we decreased the time performance by more than an 
order of magnitude. 

All of these efforts were undertaken to retain the cost
effectiveness of CitiExpert. Cost-effectiveness is the key issue 
for implementations of new technology which move from the 
laboratory into a production enviornment. A cost justification 
must be demonstrable at the onset of development, and 
cost -effectiveness must be achieved during the course of the 
project, especially with a "showcase" project for new tech
nology such as artificial intelligence. 

FROM: BANK OF MASSACHUSETTS, CAMBRIDGE, MA 
7/13/84 
CAMBRIDGE MASS 
TO NEW YORK BANK 
1/5642 

13/7 /84 

VALUE 16TH JULY 
DEBIT OUR ACCOUNT AND PAY USDLRS 7,406.94 TO YOURSELVES 
IN NEW YORK N Y FOR 
CREDIT ACCOUNT OUR TOKYO BRANCH 

BEING REIMBURSEMENT OF AMOUNT 
EXPENDED ON BEHALF OF THE OFFICE OF THE PRESIDENT FOR 
PERIOD 24TH MAY 1983 TO 17TH MAY 1984 BY ORDER JOHN SMITH, 
VP ACCOUNTING 
RESERVE 
CAMBRIDGE 

Figure I-A typical funds transfer telex. (Bank names are fictitious.) 

THE TECHNICAL SOLUTION 

Technical Requirements 

The knowledge domain for CitiExpert is the reading and 
translating of English text messages into a structured format. 
The messages are sent to the bank electronically via the telex 
network. Each funds transfer request is from 80 to 200 words 
long. A typical telex, with fictitious bank names, is shown in 
Figure 1. The subset of English used in these telexes is highly 
terse and abbreviated. The people typing in the telex mes
sages are under time pressures, so abbreviations and typo
graphical mistakes are common. Many of the telexes are en
tered by people for whom English is a second language. Often 
information which is necessary for the bank, but not required 
of the sender, will be omitted to reduce the sender's message 
entry time. For example, the name of a bank is often specified 
without the corresponding account number. In many telexes, 
information is supplied which is not needed by the bank; this 
information is ignored. 

The domain is such that a direct mapping from individual 
phrases to structured values is not possible (see Figures 2 
and 3). The structured values depend on the context of the 
entire message. Some structured values depend on several 
different phrases in combination. Some values may depend on 
a particular combination of yet other structured values. The 
possible combinations of situations resulting in a given value 
are thus very large. Application domains in which combina
torial effects become significant usually do not submit to a cost 
effective, traditional programming solution. These complex-

FRO M THE BANK OF ALLBANKS 
DATED 11/23/86 
REF EH-2323 
PLEASE DEBIT OUR TUSCALOOSA BRANCH 
CREDIT THE BANK OF CAMBRIDGEVILLE 
FOR USDOLLARS 1000,000.--
PAYMENT TO THEIR GENEVA BRANCH 
THEIR REF. LOAN NO. 25563 
REGARDS, 
FT DEPT. 
Figure 2-A telex where two phrases together (in bold) indicate the exact 

branch to debit. Also note that the credited bank branch is indicated 
in two distinct phrases. 



766 National Computer Conference, 1987 

Dollar Amounts 
15,904:00 
60,352.72 
64,500.-
1405.03 
25110.00 
1,000.00 
825.95 
650,000.00 
1565.00 
1.200.000,--
1.338,75 

Value Dates 
VALUE 840509 
VALUE MAY 11,1984 
VALUE TODAY 
VAL. MAY 8/84 

387.50 
26.643,--
100,000/= 
200.000,--, 
50.000,--
86,875.00. 
1'142'546.72 

1000 US-DOLLAR-
ONEZERONINEONE CENTS 13 

167.702 US DOLLARS 48 CENTS 
2.014.833 US DOLLARS 33 CENTS 
1.747 DECIMAL 50 
18.000,--

VALUE MAY/16/84 
VALUE 10.5. 

VALUE 9TH MAY 1984+++ 
VALUE 9.5.84 

VALUE DATE MAY 9, 1984 
VALUE TODAY, 5/9/84 
VAL. 05/10, 
VAL. 9.5.84 

VALUE 11/5/84 
VALUE 10/5/84 
VALUE 10/05/84 
VALUE MAY 9, 
VALUE DATE: 10.5.84 
VALUE 10.05.84 

VALUE 11. MAY 1984 
VAL 9TH PAY 
VALUE THIS MAY NINTH 1984 
VALUE MAY ELEVENTH 1984 
VAL. 10.05. 
VAL. 10TH MAY 1094 

Figure 3-Samples of the variations in two CitiExpert domain phrase types. 

ities are an indication that artificial intelligence techniques 
may be appropriate. These techniques are designed to man
age such combinatorics by representing the basic structure of 
the knowledge. In addition to these domain requirements, the 
production environment required that each telex be processed 
in under sixty seconds. 

System Design 

The particularly abbreviated version of English found in 
these telexes led to the use of a flexible parser approach. 3 We 
combined elements of case frame grammars 4 and semantic 
grammars 5 to arrive at the final linguistic formalism. The 
characteristics of our formalism satisfied the domain require
ments: 

1. The formalism was capable of identifying single phrases 
and incomplete sentence fragments. 

2. The formalism was able to identify useful information 
and ignore irrelevant information. 

3. The formalism provided for the identification of abbrevi
ations and misspellings. 

4. The formalism was capable of identifying information 
even when incorrect grammar was used. 

5. The individual parsers could be compiled to provide a 
significant decrease in processing time. 

The basic formalism was designed using a variation of the 
Augmented Transition Network6 to build semantic units. 
Each semantic unit is responsible for the identification of one 
key piece of information from the telex. As information is 
identified, it is stored within the semantic unit. 

In addition to the linguistic formalism, we employed a rule
based expert system to incorporate domain knowledge. The 
expert system receives input from the semantic unit values 
(see Figure 4). The expert system was used to make decisions 
based on overall message content, to infer values using com
binations of phrases, and to implement constraints among 
different structured values. This expert system was also cus
tomized to achieve production level speed performance. In 
the current production version, the rules have been rewritten 
directly in LISP code, resulting in a ten fold performance 
increase. 

A successful technical design was achieved through two 
primary emphases. First, no single technique was identified as 
the best, or preferred technique. The design team was en
couraged to blend the most appropriate elements of several 
formalisms, a hybrid approach, which resulted in a system 
highly optimized for performance in this domain. Second, 
speed performance was a design consideration from the onset. 
The formalisms were designed to provide powerful knowledge 
engineering capabilities, while providing for ease of optimiza
tion in the implementation phase. 

Original 
Telex 
Text 

Semantic Unit Module 

Several of the semantic units for funds transfer are: 

-- Dollar Amount 
-- Effective Date 
-- Paying Bank 
-- Reference Numbers 

Rule-Based Expert System Module 

" I' Structured 
Message 

May be any format: 
-- SWIFT 
-- Bank Internal 

Format 

Figure 4-CitiRxpert internal architecture, with a representative set of 
semantic units shown. 



CitiExpert: Artificial Intelligence Applied to Banking 767 

THE INTELLIGENT USER INTERFACE 

CitiExpert was designed to process a telex fully, then to pass 
the telex and the corresponding structured information to a 
user edit interface. CitiExpert identifies an average of over 
80% of the structured information. An operator must com
plete the remaining structured information, usually one or 
two values. 

The existing FIN data entry stations could not support 
display of both a telex and a structured equivalent. These 
interfaces were designed to be used with a printed copy of the 
telex, and provided for structured value entry only. Designing 
CitiExpert to print out the telex for these operators would 
have reduced the cost effectiveness of the process consid
erably. Instead, we implemented an "intelligent assistant" 
interface within CitiExpert. This interface was conceptualized 
as a low-level assistant to a human operator which would 
provide much of the processing expertise, freeing the operator 
to perform higher level conceptual activities. 7 Similar func
tionality was implemented on both the LISP Machine and the 
V AXstation. 

This interface employs mouse cursor control, multiple win
dows, and pop-up menus and windows to improve operator 
productivity. Two primary windows are displayed: one con~ 
taining the original telex message, and the other containing 
the structured values identified automatically (see Figure 5). 
The mouse can be used to mat;k \ a region of text in the telex 
window and move that text into one of the structured values. 

Incomplete or ambiguous values identified by CitiExpert 
are made available to the user through pop-up windows. One 
such window is for English-text notifications of problems en
countered during processing. A second window contains sug
gested values which are each mouse-selectable. For example, 
if several branches are found in the CitiExpert bank database 
for the name "CREDIT SUISSE," the notification window 
would say "Several branches found for CREDIT SUISSE," 
and the suggested values menu would display each of the 
branches, with the corresponding city and account numbers 
(see Figure 6). This mechanism allows the user to benefit even 
when CitiExpert cannot uniquely identify a value. 

Telex Window 

FROM DOW JON ClANK 

TO MIDWEST TRUST 

TRANSFER USD 5000. 

IN REIMBURSEMENT OF REF. NO. 

5555-RR 

THANKS 

FT DEPT. 

SIGN OFF I REQL"ELE 

Structure Window 

SNDR REF: 5555-RR 

BEN REF: 

CUR: USD 

AMNT: 5000, 

ORD BANK: 

REIMB P7: DOWJON BANK 

BEN BNK: 

BENE: MIDWEST TRUST 

DETAILS: 

RElECf I APPROVE 

Figure 5-The CitiExpert interface. "Mouse" selection of all screen items is 
supported to aid the editing session. 

Telex Window 

FROM DOW JON BANK 

TO MIDWEST TRUST 

TRANSFER USD 5000. 

IN RE IMBURSEMENT OF REF. NO. 

5555-RR 

THANKS 

FT DEPT. 

SIGN OFF REQLEUE 

Structure Window 

SNDR REF: 5555-RR 

BEN REF: 

CUR: USD 

AMNT: 5000, 

ORD BANK: 

REIMB PT: DOWJON BA."<K 

BEN BNK: 

BENE: MIDWEST TRUST 

DETAILS: 

RElMB PT: 

Problems: 

Multiple branches found. 

Suggestions: 

DOWJON BANK, DALLAS TEXAS /87654 
DOWJON BANK, TOKYO, JAPAN /43300 

RElECf APPROVE 

Figure 6-The CitiExpert interface, with suggestions and problems displayed 
for the "REIMB PT" field. 

The linguistic and domain knowledge used in the automatic 
processing is also available to the user. For example, when a 
region of text is moved to a structured value using the mouse, 
the user can request intelligent processing for that text. The 
parsers and domain rules are then invoked to process the text. 
A correctly processed value will be entered by the interface. 
In addition, other values which may have been affected by this 
change will be flagged with a notification for the user. 

The intelligent user interface is a critical component of 
CitiExpert. The power of this "intelligent assistant" concept, 
employing mouse cursor control, multiple windows, and pop
up menus, significantly increases the productivity of the users. 
Providing a broad interface between the user and the intelli
gence in the system results in maximum value for the knowl
edge engineering effort. 

SUMMARY 

The CitiExpert system provides a case study of technological 
innovation within a traditional data processing environment. 
A number of conclusions, both organizational and technical, 
can be drawn from this experience. 

Management Conclusions 

The most significant organizational lesson is that the key 
executives must be personally involved in the project. The 
organizational dynamics can become quite complex, espe
cially when new technology is involved. Managers below the 
key decision-making level do not have the authority to man
age these conflicts. Also, because new technology requires a 
new management approach, the involvement of key execu
tives is necessary to smooth the transition to a new manage
ment style. We observed that the vision of these executives is 
often more important than technical expertise. Executives can 
often achieve success with new technology by pursuing a firm 
vision while not allowing themselves to be dissuaded by a lack 
of technical knowledge. 



768 National Computer Conference, 1987 

A second management lesson is that traditional imple
mentation issues are magnified when a new technology is 
used. The languages and machines used are likely to be differ
ent from the existing DP systems. Network protocols may not 
exist for these machines. These issues must be considered at 
the onset of development, and a path, from prototype to 
production, must be available. This requirement may result in 
the selection of a less optimal machine or language for devel
opment. An alternative is the "two track" approach of using 
separate machines for development and delivery. The Citi
Expert solution of the LISP machine development environ
ment with the V AXstation delivery system is one example of 
this approach. 

A third lesson is that new technology often requires new 
management techniques. Managing development of a new 
technology, such as artificial intelligence from a traditional 
DP orientation, can be problematic. In some cases, the ability 
of the project team to adapt to the new management tech
niques may have more effect on project success than the 
team's technical expertise. 

A fourth lesson is the importance of a custom design 
orientation. In a production environment, producing cost
effective results for new technology requires this orientation. 

CitiExpert also benefited from CMD's concurrent in
volvement with other, more traditional decision support 
efforts at the bank. These concurrent efforts proved to be 
synergistic, providing the development group with a broader 
understanding of the client's needs and establishing a stronger 
trust relationship. 

Technical Conclusions 

Several technical recommendations can be drawn from the 
CitiExpert experience. The key lesson is that theoretical dog
matism or purity hinders a production implementation. In 
most cases, a hybrid of several techniques and formalisms 
will result in the best solution. At points throughout develop
ment, new variations in the formalism may be suggested which 
would never arise in a research environment. These variations 
should be welcomed, rather than rejected as theoretically un
sound. 

A second lesson for artificial intelligence system designers 
is that partial results should be made available to the users. 
If this information on partial results is lost, a significant por-

tion of the system's capabilities is being wasted. When cost
effectiveness is the key management issue, designers cannot 
afford to keep this information from the users. 

Third, for maximum cost-effectiveness, the system's intel-
" ligence should be made available to the user through an in

telligent interface. With the typical expert system consultation 
model, this is standard; however, in a transaction processing 
environment, an intelligent interface is not required. Partially 
processed messages can be routed through the existing sys
tems, removing the need for a special interface; this tempta
tion should be avoided. 

A fourth lesson is the importance of speed performance. 
Designers should anticipate the need for speed optimization 
and design accordingly. Options such as assembler rewrites of 
speed critical code should be available on the delivery ma
chine. Formalisms should be carefully tailored to the needs 
of the application, rather than generalized for a large class of 
applications; a generalized formalism will usually result in 
reduced performance. 

The fifth lesson is the importance of system integration 
issues. The system may contain superb knowledge engineer
ing, but will be useless without a clear implementation path. 
The system must blend in with the existing system environ
ment. Initial implementation must be supported by the de
velopment team, and follow-on releases should address user 
comments during this period. The system is successfully com
pleted when the development team can "cut the umbilical 
cord" so that users can take over the system as their own. 

REFERENCES 

1. Davis, R. "Expert Systems: Where Are We? and Where Do We Go From 
Here?", MIT AI Memo No. 665, 1982. 

2. Prerau, D.S. "Selection of an Appropriate Domain for an Expert System." 
AI Magazine, 6 (1985), 2, pp. 26-30. 

3. Hayes, I.H. and G.V. Mouradian. "Flexible Parsing." American Journal of 
Computational Linguistics, 7 (1981), 4, pp. 232-242. 

4. Fillmore, C. "The Case for Case." In E. Bach and R. Harms (eds.) Univer
sals in Linguistic Theory. New York: Holt, Rinehart, and Winston, 1968. 

5. Hendrix, G.G. "The LIFER Manual: A Guide to Building Practical Natural 
Language Interfaces," Technical Note 138, SRI International, 1977. 

6. Woods, W.A. "Transition Network Grammars for Natural Language Analy
sis." Communications of the ACM, 13 (1970), pp. 591-606. 

7. Rich, c., and R.c. Waters. "Abstraction, Inspection and Debugging in 
Programming," MIT AI Memo No. 634, 1981. 



Use of expert systems in medical research 
data analysis: The POSCH AI project 

by JOHN M. LONG, JAMES R. SLAGLE, MICHAEL WICK, ERACH IRANI, 
JOHN MATIS and the POSCH GROUP* 
University of Minnesota 
Minneapolis, Minnesota 

ABSTRACT 

Artificial Intelligence (AI), especially expert systems technology, has very promis
ing possibilities for more fully automating the analysis of medical research data. The 
Program on the Surgical Control of the Hyperlipidemias (POSCH), a national 
multi-centered clinical trial has been experimenting with using AI in its data analy
ses for several years. Three projects are described in this paper. 

The first experiment, designed to automate the clinical judgment used to evaluate 
the data from serial graded electrocardiograms has been a success. Early efforts to 
automate one step of the evaluation of serial coronary arteriography data has also 
been successful, but major difficulties must be overcome to extend the work. 

The initial motivation for the POSCH AI Project was to build an expert system 
that can search for interesting relationships among, and between, the POSCH 
variables. The problems encountered are different from those of other investigators 
who are attempting similar projects. Efforts to segment and/or collapse the problem 
into smaller units are explained. Issues related to the data structure and query 
languages have been identified. Statistical and other logically based reasoning meth
ods, fundamental to the entire project, are discussed in conjunction with the heuris
tic methods used by expert systems. 

* The work of J.R. Slagel, M.R. Wick, and Erach Irani is partially supported by NSF Grant DCR8512857 and by the 
Microelectronics and Information Sciences Center of the University of Minnesota. 

769 





INTRODUCTION 

Artificial Intelligence (AI), primarily expert systems tech
nology, is being widely explored in medicine. 1 There are 
several large, multi-centered clinical studies that accumulate 
extensive files of data on a large number of patients. 2, 3,4 AI 
has promising possibilities for them. As an example, the 
Program on the Surgical Control of the Hyperlipidemias 
(POSCH) has been experimenting with using expert systems 
to automate more fully the analyses of its large database of 
clinical trial research data. In our first two projects, we are 
using expert systems to automate the element of clinical 
judgement required for some analyses. 5 Ultimately we hope 
to use AI to automate the search for interesting relationships 
between, and among, the variables that are collected annually 
on POSCH patients. 

The POSCH database comes from a randomized controlled 
clinical trial that uses a standard patient visit protocol and 
records all data on standard data forms.2 The timing and 
frequency of patient visits are also standard. POSCH has 
some missing data and a few missed visits, but the frequency 
is quite low. This allows us to focus our efforts on the inter
esting aspects of building a system to search for medical 
knowledge that may now be hidden in the database. In other 
words, the POSCH database is ideal in many ways for 
experimentation in the use of AI for data analysis. 

POSCH AI PROJECT 

The long range objectives of the POSCH AI Project are to use 
this new technology to: 

1. Develop an automated system that will assist our staff of 
analysts in a comprehensive examination of all of the 
POSCH data. 

2. Identify and test relationships that exist over time be
tween and among the variables. 

3. Identify an optimal subset of variables that can predict 
the outcome of the POSCH study endpoints (for exam
ple, a heart attack or atherosclerotic death). 

4. Compare the AI based automated system's results with 
the results accomplished in a more conventional manner 
and thus provide an evaluation of the AI methods. 

Basis For the Study 

The POSCH study is a national, multi-clinic, clinical trial 
designed to test the lipid-atherosclerosis hypothesis in a pop-

Expert Systems in Medical Research Data An.,l"~:5 771 

ulation where all have had a heart attack. It is k..?J.own that 
higher rates of heart attacks and atherosclerotic deaths occur 
in people with higher levels of cholesterol. The lipid
atherosclerosis hypotheses, yet to be fully proven, says that 
lowering cholesterol will also lower the rates of heart attacks 
and atherosclerotic deaths. In order to test this hypotheses, 
POSCH lowered the cholesterol in half of its patients, the 
intervention group, using the other half as a control group. 
POSCH is now collecting a large amount of data on each of 
the POSCH patients over a 7 to 14 year period. 

POSCH's data collection, editing, storage, retrieval, and 
analyses problems are typical of a number of other large med
ical research projects. 6, 7 The focus of this paper is on the uses 
of AI in data analyses. A variety of manual and automated 
methods are used by POSCH, and other large clinical trials, 
to analyze the medical research data. The analysis of certain 
complex tests, especially for changes in the patient's per
formance over time, requires clinical judgement. This re
quirement is especially difficult because it has traditionally 
required manual processing by human experts, usually busy 
and expensive medical specialists. 

POSCH has an additional problem. The designers of 
POSCH chose to collect about 1400 data items at each annual 
visit, 600 of which are placed in our computerized database. 
Even the 600 variables stored in our database are more than 
our staff can examine in a comprehensive way. At the present 
time, the POSCH analysis staff examines in detail about 100 
of the 600 variables. These so called major variables are 
known to be related to the lipid-atherosclerosis hypothesis, 
the focus of our study, and/or the partial ileal bypass surgery, 
the intervention modality used to lower cholesterol. We are 
especially concerned with the potential effects of changes in 
these variables on the POSCH patients, either beneficial or 
not beneficial. The other 500 so called minor computerized 
variables are collected because there is some possibility that 
they could be related to our study focus. They are examined 
in much less detail. The remaining 800 items that are not 
entered into the computer are useful at the time of data col
lection but are judged to have little long term value. They 
consist primarily of series of questions asked by the physician 
in order to determine the patient's health status in a certain 
area. The relevant health status is entered into the automated 
portion of the patient's record. 

POSCH is attempting to resolve the problem of analyzing 
so many variables by finding supplemental and automated 
methods for searching for relationships between, and among, 
all of the computerized variables; especially the ones that 



772 National Computer Conference, 1987 

cannot receive the special attention our staff has devoted to 
the 100 or so major variables. 

There is a potential trap in such a detailed examination of 
the POSCH data, such as finding spurious or irrelevant rela
tionships. Statistically significant differences that are clinically 
unimportant are apt to be found when one examines such a 
large database in so much detail. The analyses must be per
formed in an intelligent way. We expect to avoid such pitfalls 
by designing the expert system rules to do the same thing that 
a human would do to avoid such errors. Direct human inter
vention will be used as a last resort. That is to say, we accept 
the possibility that we may not be able to fully automate the 
process. Even partial success, which we have already 
achieved, makes this work very practical. 

The project has been under development for several years 
and this paper presents the current status. At this stage a basic 
plan has been formulated, the necessary resources have been 
assembled, and two prototype expert systems have been de
veloped. 

The Resources 

1. The POSCH Database. The database is an hierarchically 
organized database that includes about 600 computer
ized variables collected on 838 patients upon entry into 
the study (that is, the baseline data) and at annual visits 
for a minimum of seven, and up to 14, subsequent 
annual visits. At present the database is about 75% of its 
ultimate size and includes a total of about 200 million 
characters broken down into about 160 million in 
MEDDB, the main data storage area, and 40 million in 
STATFILEILOCATOR, an on-line administrative type 
database that includes the status and location of all pa
tient visits, data forms and documents. 

2. Catalog of Variables. The catalog classifies and or
ganizes, into clinically logical groupings, all data items 
collected by POSCH. We may use the classification sys
tem as a basis for simplifying and directing the discovery 
phases of the project. 

3. Human Resources. The POSCH Group has the neces
sary statistical and medical expertise. POSCH has clin
ical expertise related to the lipids, electrocardiographic 
stress testing, coronary arteriography, surgery, and 
other areas. The project is a joint effort with the AI 
group within the Department of Computer Sciences at 
the University of Minnesota. They have many years of 
experience in AI including the design, development, and 
implementation of many expert systems. The Project is 
using an expert system development tool built by mem
bers of our AI team called AGNESS (a generalized 
network-based expert system shell).8 

4. Computer Hardware and Software. Existing mini
computer facilities in the POSCH data center have been 
supplemented with an IBM PC AT workstation and with 
SUN AI workstations in Computer Sciences. Virtually 
any computer type or size is available for our use at the 
University, including the largest supercomputers in exis
tence and parallel computers. We anticipate the need for 
one or both of these in future phases. 

AN EXPERT SYSTEM FOR ANALYSES OF SERIAL 
GRADED ECG TESTS 

Our first expert system was designed to compare the data 
from a pair of graded exercise electrocardiogram (ECG) tests 
taken several years apart in order to determine whether the 
patient's performance was better, unchanged, or worse over 
time. This system can approximate the decision reached by a 
cardiologist evaluating the same data. We will only briefly 
describe this system because it has been reported pre
viously. 5,9 

The expert system rules for the ECG system were devel
oped using an iterative process in which the knowledge en
gineer and expert met to discuss and analyze sample cases. 
The set of cases were carefully selected so as to present a 
variety of typical situations and to stimulate explanations by 
the clinician as to what he was doing to solve the case. The 
clinical expert explained the factual knowledge he used from 
scientific literature, often citing results of research performed 
by himself and others. He also used and explained the "rules 
of thumb" or heuristics that he found helpful. These are based 
on his experience, rather than on book knowledge, and their 
incorporation into the system is one of the unique reasons 
expert systems work. As these sessions progressed, the knowl
edge engineer formulated, modified, discarded, replaced, and 
expanded the rules used by the domain expert, either stated 
or implied. The computer version of most of the rules is of the 
"IF ... THEN" type. The IF part, called the antecedent, or 
premise, contains the pattern or attributes that must be 
matched for the rules to be used. The THEN part, called the 
consequent, contains the action to be taken, or the assertion 
to be made when the antecedent is satisfied. 

The resulting expert system was tested on 100 cases that 
were used to validate the system. Each case consisted of a pair 
of tests taken by a POSCH patient two years apart. The cases 
were selected to be representative of a variety of situations. 

The cases were also evaluated individually by two different 
members of a panel of five expert cardiologists. Each one 
evaluated 40 cases. The 100 pairs were evaluated in such a way 
that each reader's cases were equally distributed among the 
other four readers for the other reading. Table I illustrates 
how this was done. We then compared the conclusions made 
by the expert system with the individual cardiologist's evalua
tions. 

TABLE I-ECG Panel reading pattern 

P-P P-N N-P N-N Total 
Reader A 16 4 4 16 40 

Overlap of 
B with A 4 4 10 
C with A 4 4 10 
D with A 4 4 10 
E with A 4 4 10 

Typical pattern of overlap of each reader with the other readers for 
the set of 100 pairs of exercise ECG tests evaluated by them. 

P = Postiive Test N = Negative Test 



Since a more conventional way to automate this situation 
would be to use a statistical approach, we also developed a set 
of multiple linear regression equations as a third method of 
evaluation. We briefly digress here to mention that, although 
the equations worked, several variables used in the multiple 
regression equations had obscure clinical meanings, a matter 
of concern to POSCH clinicians. 

All three methods used a seven category scale to describe 
their conclusions. When a given pair of tests was evaluated by 
either of the two cardiologists, or the expert system, or the 
multiple regression equations, they concluded whether or not 
a patient's result was better or worse from the first to the 
second test using the seven category scale shown below: 

---------- I ---------- I ---------- I ---------- I ---------- I ---------- I ----------
much worse slightly no slightly better much 
worse worse change better better 

Because of the strong element of subjective clinical judge
ment in these evaluations, the three methods for evaluating 
the test data were not necessarily expected to draw the same 
conclusions. For this reason the evaluation methods were 
compared in two ways as to how well they agreed. "Exact" 
agreement means that the same category on the seven cate
gory scale was selected as the conclusion for both of the evalu
ations being compared. Agreement "within one category" 
means that the two evaluations selected the same or immedi
ately adjacent categories of the seven category scale. The 
comparisons were made based on the percentage of agree
ment. 

Table II summarizes the results. For "exact" agreement the 
expert system agreed with the cardiologists about as well as 
the cardiologists agreed among themselves and did better than 
the multiple regression equations. For agreement "within one 
category," the expert system performed best and the multiple 
regression equations' evaluations did better than the cardiol
ogists among themselves. 

After allowances for normal variation, it can be seen that 
even a very basic expert system can evaluate serial graded 
exercise ECG test data about as well as either an individual 
cardiologist or the multiple regression equations. 

AN EXPERT SYSTEM FOR ANALYSIS OF SERIAL 
CORONARY ARTERIOGRAMS 

The next system we are attempting to build is one to evaluate 
serial coronary arteriograms. The general concept is the same 
as for the ECG system but the medical aspects are far more 

TABLE II-Average agreement of cardiologists' readings with 
themselves, the equations and the expert system (ES) 

Card. Card. Card. 
vs vs vs 

Card. Eq. ES 

Exact 42.0% 34.0% 41.7% 
Within one Category 76.0% 81.5% 83.5% 

Expert Systems in Medical Research Data Analysis 773 

complex. A brief background on the medical nature of the 
problem is needed in order to explain this. Narrowing of 
coronary vessels by lipid based deposits (stenosis) can cause 
decreased blood circulation to the heart muscles. In extreme 
cases the blood flow can be restricted enough to cause severe 
chest pain (angina pectoris) and can cause the death of those 
parts of heart muscle (myocardial infarction) whose blood 
supply depends on the blocked artery. Arteriography (a pro
cedure that photographs the pattern of blood flow in the coro
nary arteries) yields useful information about the condition of 
the coronary vessels. The technique involves injecting a con
trast medium sensitive to x-ray film into the heart vessels 
followed by a series of 35mm x-rays taken in rapid succession. 
A cine film strip is thus produced that shows how the blood 
fills the arteries of the heart. By repeating this procedure from 
several angles, a cardiologist can examine the films and tell 
which vessels have stenosis as well as the nature and extent of 
stenosis. Narrowing of the blood vessels by either a lipid de
posit stenosis or a blood clot (thrombus) shows up on the 
arteriogram as dark regions within the artery. 

Cases from the POSCH study are used to build and test the 
experimental system. Coronary arteriograms of participants 
in POSCH are taken at the time they enter the study and at 
3, 5, and either 7 or 10 years later. An arteriography review 
panel of cardiologists and radiologists has been formed by 
POSCH to clinically evaluate pairs of these serial coronary 
angiograms taken three to ten years apart. The methods they 
use to evaluate these clinical data are subtle and require a 
considerable amount of clinical judgement. The current 
method of assessment is for a subpanel of two members from 
among the eight doctors on the arteriography review panel to 
take turns meeting for two days, about once a month, to 
review about 30 to 40 pairs of arteriograms. This is an ex
tremely tedious task for the doctors on the panel and logisti
cally complex. The panel members live all across the United 
States. 

Here are some of the details of the assessment process. The 
subpanel review is conducted in a double-blinded fashion. 
The members know neither the identities of the participants 
nor the temporal sequence of the arteriograms. The film pairs 
are identified simply as Film A and Film B. Film A is evalu
ated and all stenoses found are recorded. Film B is then 
evaluated for change from Film A. In the final step of their 
evaluations, the subpanel carefully reviews all of their findings 
and provides a global assessment of change using a scale sim
ilar to the one used for the ECG system. The total process 
requires about 20 minutes of the subpanel's time to review one 
pair of films with the global assessment taking only a few 
minutes at the end. The findings of the subpanel are recorded 
on a standard form and the information is entered into the 
computerized database. 

The coronary vessels in the arteriogram appear in a tree
like branching structure wrapped around the heart myo
cardium (muscle). What is visible in one frame ofthe cine may 
be obscured in another. Stenoses near the branching point of 
arteries are especially difficult to estimate. A factor affecting 
visualization is the presence of collateral arteries. When the 
normal blood flow in one branch of the system is blocked, 
collateral arteries (arteries at the ends of an adjacent branch 



774 National Computer Conference, 1987 

of the system) will sometimes open up and extend their per
fusion field (provide a blood supply) to the affected muscle 
tissue. This amazing ability of the heart to adjust can compli
cate the task of determining stenoses. For example, if the 
blockage of the normal flow decreases, the collateral flow may 
also decrease and can disappear altogether. Another factor 
that must be assessed by experts is whether the blockage is 
caused by a thrombus or stenosis. 

Assessing the change in stenoses is further complicated by 
the fact that vessels tend to develop stenosis more quickly 
after coronary bypass grafts have been placed on them. Med
ical procedures such as recanalizations (opening up the vessel 
by angioplasty) are also fairly common and complicate the 
evaluation. 

These are examples of the many complex and interactive 
factors that make assessing the percentage change in stenosis 
difficult. For these reasons we chose to build only one part of 
the evaluation process in our first phase, As the first phase of 
this system, we chose to approximate just the global assess
ment process. 

The initial knowledge base was built to perform this one 
task. Data elements from the consensus report (all previous 
steps) of the experts are used as the expert system's input and 
they form the leaf (entry) nodes of the network. The top-node 
represents the systems global assessment of the overall disease 
change. The interactions between the tree-like structure of 
arteries are not required at this point because the heart, as a 
pumping organ, is not to be evaluated. Thus, each artery can 
be treated independently. The change in each artery is assess
ed and the individual changes combined to obtain the overall 
change. The inference network therefore consists of a sub
network that is evaluated 22 times; once for each of the 22 
arterial segments under study by POSCH; and a top-level 
network that merges the information passed up by the sub
networks. 

Table III gives the results obtained by the global assessment 
expert system when applied to 56 test cases. Terminology and 
comparison methods are similar to those used for the ECG 
system. 

The POSCH quality surveillance program has shown that 
two different panel evaluations will agree "exactly" on a seven 
category scale 55% of the time and agree "within one cate
gory" (select the same or adjacent categories on the scale) 
91 % of the time. The expert system's assessments of the set 
of 56 test cases agreed "exactly" with the panel 50% of the 
time, and agreed "within one category" of the panel assess
ments in 96% of the cases. The system's performance is 

TABLE III-Average agreement rate of subpanel (SP) 
compared to expert system (ES) 

SP SP 
vs. vs. 
SP ES 

Exact 50% 55% 
Within one Category 96% 91% 

roughly comparable to that of the panel for the global 
assessments. 

The current, early version of the system does not consider 
many of the factors used by the subpanel. For this reason, the 
results obtained by this system are somewhat surprising and 
should be reviewed with caution. Further tests are needed. It 
is doubtful that the final version of the expert system for 
evaluating serial coronary arteriograms can perform this well, 
because the system does not include many of the facets of 
subjective clinical judgment that are used by the human ex
perts for these evaluations. For example, the current version 
of the expert system does not translate many of the subtle 
things observed on the film by the arteriographers. Further
more, we do not know how to interpret and record many of 
these data. Nonetheless, our success encourages us to hope 
that we can build a system that can closely approximate the 
results of these subpanels using a single simplified reading of 
each film by trained technicians. 

AN EXPERT SYSTEM TO AUTOMATE THE SEARCH 
FOR NEW MEDICAL KNOWLEDGE 

The initial motivation for the POSCH AI Project was to build 
an expert system that can identify relationships that exists 
between, and among, the POSCH variables. This entails 
building an expert system that can automate what bio
statisticians do when faced with the analysis of a large data
base like that in POSCH. The idea for this was inspired by the 
early work of Robert L. Blum in his RX discovery project, 
now renamed RADIX. 10, 11 His effort to build an expert sys
tem to discover and confirm causal relationships in a medical 
record database appears to be the first attempt to use this 
approach in medicine. The system obtained its initial hypothe
sis by selectively combing through a database using a discov
ery module. It combed through a selected subset of 50 patient 
records to produce an hypothesis such as A causes B. What it 
actually did was to determine that A precedes B and is cor
related to B. A study module then designed a comprehensive 
study of the most promising hypotheses as determined by the 
human researcher. A statistical module was then used to test 
the hypothesis on the entire database. Newly discovered data 
were added to the knowledge base and then used in future 
phases of the study. In the more recent work of the RADIX 
project, he and his co-workers have a more advanced system 
using more sophisticated statistical methods. 11 

TABLE IV-Comparison of POSCH study to RX project 

RX (RADIX) POSCH 

Number of Patients Large 838 
Number of Variables Non-Standard 1400 
Number of Visits Variable (up to 50) 8 to 15 
Protocol Nonrandomized Randomized 
Time of Visits Variable 12 Months 
Data Elements Variable Standard 
Total Size Very Large Very Large 
Setting Clinical Clinical Trial 



Much of the work required in the development of the orig
inal RX system had to deal with the fact that the data were 
nonrandomized and included many missing data elements. 
The frequency and timing of patient data were also variable. 
POSCH does not have these problems. Instead, it must deal 
with a much larger number of variables and other issues. 
Table IV summarizes the differences. 

As we attempt to put substance to our efforts, we have 
identified several things that must be done before we can 
begin to build the expert system designed to search for knowl
edge now hidden in the POSCH database. 

Unifying Concepts 

Some unifying concept must be used to pull together into 
fewer units the diverse variables in POSCH's database. We 
have been examining several classification schemes to accom
plish this. Logically formed clinical groupings already exist 
within our Catalog of Variables. We can use either a statistical 
clustering method or clinical knowledge or some combination 
of them to produce a dozen or so groups into which all 
POSCH variables are placed. By using a single entity as a 
representative of each group, we will reduce the initial com
plexity of the problem. 

Role of Statistics and Reasoning Systems 

Standard statistical methods provide the basis for exam
ining the database and for describing and explaining the rela
tionships that exist between and among the variables. These 
methods are based in probability theory. However, the key to 
the success of the system is its ability to imitate what a bio
statistician does in the discovery phases of his work. 

It may seem to be a contradiction for us to attempt to use 
expert systems in data analysis because most successful expert 
systems use heuristics. These expert defined heuristics or 
"rules of thumb" are usually necessary in order for the system 
to work at the level of an expert. The heuristics often have no 
conventionally based scientific foundation and rely solely on 
the expert's experience. They represent that "knowledge" of 
an expert that goes beyond book knowledge and this "knowl
edge" is what makes the expert an expert. He may not always 
realize that a part of his expertise lies in those intuitive things 
he relies on when selecting, using, and interpreting the "tools 
of his profession." It appears that heuristics will be especially 
important in the search and discovery phases of our system 
and it may not be possible to accurately place them into any 
conventional system of logic because we are trying to auto
mate the creative phases of data analysis. Once the search and 
discovery phases are done, confirmation can be provided us
ing the more routine stalistical processes. 

Database Issues 

Another issue to be resolved has to do with finding the most 
efficient database structure to use in order to facilitate the 
needed logical manipulations of the data. Once identified, we 

Expert Systems in Medical Research Data Analysis 775 

must rebuild the database into that structure. This seems to 
mean that we should convert to some form of a relational 
database. We also need to obtain or build a reasonably effi
cient query language that will allow our searching module to 
run efficiently. 

The computing capacity requirements of our system are apt 
to be enormous. We may need a supercomputer, but pre
liminary investigations indicates that a parallel processing ar
chitecture is suitable for the expert systems processing. 

SUMMARY AND CONCLUSIONS 

We have briefly described the POSCH AI Project. In this 
project we are attempting to automate many aspects of clin
ical research data analysis previously requiring manual pro
cessing; usually because clinical and statistical judgment are 
necessary components of the analysis. We are meeting with 
success in automating the evaluation of serially administered 
tests that require such clinical judgment in their evaluations. 
Our efforts to automate the search for medical knowledge in 
the POSCH database are now focused on preliminary prob
lems that need to be resolved. This involves some means of 
simplifying the problem by use of unifying concepts, identi
fying the role of statistical reasoning, and of other reasoning 
systems, and developing an efficient database structure and 
query language. 

ACKNOWLEDGEMENTS 

The Program on the Surgical Control of the Hyperlipidemias 
(POSCH) is funded by NHLBI Grant HL15265. 

REFERENCES 

1. Waterman, D.A. A Guide to Expert Systems. Boston: Addison Wesley, 
1986, pp. 319-328. 

2. Buchwald, H., RB. Moore, J.P. Matts, J.M. Long, R.L. Varco, G.S. 
Campbell, M.G. Pearce, A.E. Yellin, D.H. Blankenhorn, W.H. Holmes, 
RD. Smink, H.S. Sawin, and the POSCH Group. "The Program on the 
Surgical Control of the Hyperlipidemias: A Status Report." Surgery, 92 
(1982), pp. 654-662. 

3. Multiple Risk Factor Research Group: Multiple Risk Factor Intervention 
Trial. "Risk Factor Changes and Mortality Results." Journal of the Ameri
can Medical Association, 248 (1982), pp. 1465-1477. 

4. Lipid Research Clinics Program: The Lipid Reserch Clinics Coronary Pri
mary Prevention Trial Result. "1. Reduction in Incidence of Coronary 
Heart Disease," 251 (1984), pp. 351-364. 

5. Long, J.M., J.R. Slagle, A.S. Leon, M.W. Wick, J.P. Matts, J.N. Kar
negis, J.K. Bissett, H.S. Sawin, and J.P. Stevenson. "An Example of 
Expert Systems Applied to Clinical Trials: Analysis of Serial Graded Exer
cise ECG Test Data." Controlled Clinical Trials, (accepted for publication). 

6. Long, J.M., J.R. Brashear, J.P. Matts, J.E. Bearman, and the POSCH 
Group. "The POSCH Information Management System: Experience with 
Alternative Approaches." Journal of Medical Systems, 4 (1981), pp. 
355-356. 

7. Long, J.M. "The POSCH Data Processing Experience: The Problem of 
Metadata." Journal of Medical Systems, 10 (1986), 173-183. 

8. Slagle, J.R, M.W. Wick, M.O. Paliac. "AGNESS: A Generalized Net
work Based Expert System Shell." Proceedings of the Fifth National Con
ference on Artificial Intelligence, (Vol. 1), 1986. 

9. Slagle, J.R., J.M. Long, M.R Wick, J.P. Matts, A.S. Leon. "The Eta 
Project: A Case Study of Expert Systems for Analysis of Serial Clinical Trial 
Data." Proceeedings of MEDINFO '86, (Vol. 1), 1986, pp. 155-159. 



776 National Computer Conference, 1987 

10. Blum, R.A. "Discovery, Confirmation and Incorporation of Causal Rela
tionships from a Large Time-Oriented Clinical Database: The RX Project." 
Com put Biomed Res, 15 (1982), pp. 164-187. 

11. Walker, W.G., and R.L. Blum. "Towards Automated Discovery from Clin-

ical Databases: The RADIX Project." Proceedings on MEDINFO '86, 
(Vol. 1) 1986, pp. 32-35. 

12. Holland, P.W. "Statistics and Causal Inference." Journal of the American 
Statistical Association, 81 (1986), pp. 945-960. 



PIONEER DAY 
GEORGE RYCKMAN 

General Motors, Retired 
Grosse Pointe, Michigan 

The challenge was seemingly never-ending. Six months of hand calculation could be carried 
out in fifteen minutes on one of these stored program machines, and the resulting time and 
cost advantages rapidly made these machines a scarce resource. A few of us dedicated 
ourselves to devising methods of using this resource more efficiently, and one result was a 
set of programs called an operating system. This is the story of those efforts and the theme 
of the 1987 NCC Pioneer Day: "Early Operating Systems." 

The first session of the Pioneer Day program describes a period of time in the 1950s when 
the ideas for operating systems were germinating. Pre-operating system days are described 
when a programmer entered a room full of computer equipment, card deck in hand, and bent 
every effort to get the most out of a scheduled fifteen-minute time period. The experiences 
of the people at MIT with Whirlwind and at North American Aviation with the IBM 701 
computer are related. Out of this background several organizations worked on methods of 
improving efficient use of both programmers and machines. In the words of George Mealy 
"There was no single line of development ... [so] ... I have chosen to examine a number of 
threads in the tapestry, for it is far from clear how to describe the tapestry as a whole." Some 
groups were working toward increased efficiency by providing libraries of programs such as 
assemblers, decimal to binary conversion, and debugging aids. Others concentrated on 
reducing computer idle time through automatic sequencing of a number of jobs in a batch. 
Both are part of the modern operating system. 

The second session explores a number of systems that were implemented in the mid to late 
1950s. An operating system developed jointly by General Motors and North American 
Aviation is described. Both automatic job sequencing and libraries of programs were features 
of this system which began operation in 1956 on an IBM 704 computer. The Bell Telephone 
Laboratories followed with BESYS in late 1957, also running on an IBM 704. The story of 
BESYS takes us through a series of versions culminating in a powerful system with file 
handling capabilities, buffered I/O, and many other features found in modern systems. The 

, program continues with a paper on the FORTRAN Monitor System developed by IBM in 
the late 1950s. A number of organizations had installed FORTRAN on their own systems 
and, through SHARE, were urging IBM to provide and maintain a system for FORTRAN. 
The author describes the IBM interactions with SHARE and the development of IBM's 
first operating system (FMS). IBM's follow-on work with IBSYS and IBJOB in the 1960s is 
also recounted. Concurrent with the FMS effort, SHARE was also working with IBM on the 
development of the SHARE Operating System (SOS). The final paper in the afternoon 
session describes this last major effort undertaken in the 1950s. Many of the features 
revealed in this paper, such as job management, data management, and run-time facilities, 
are direct ancestors of today's IBM operating system. 

The 1950s were exciting times, and the papers in the Pioneer Day sessions reflect that 
excitement. Young and old conferees will share in the experiences of thirty years ago, not 
only to iearn why and how operating systems came about, but also to learn how to build 
better systems in the future. 





Some threads in the development of early operating systems 

by GEORGE H. MEALY 
Scituate, Massachusetts 

ABSTRACT 

This paper discusses many of the important themes in design of the early operating 
systems and their libraries. Historically, the library preceded the development of 
the early batch system but many of its utility functions gradually migrated to the 
system proper. Important ideas concerning system structure which were further 
elaborated in the sixties are briefly discussed. 

779 





Some Threads in the Development of Early Operating Systems 781 

INTRODUCTION 

The broadest definition of an operating system (OS) is an 
environment for developing and running programs. The 
motivation for invention of the earliest batch systems was 

. economic: computers were a scarce resource, thus it was 
important to minimize idle time and make running time as 
productive as possible. The early designs concentrated on the 
process of sequencing jobs and keeping the machine running. 

The Times 

During the early fifties, the field was still small enough for 
most of us to become personally acquainted. Few meetings 
required parallel sessions, and attendees were more or less 
conversant with both hardware and software. As the decade 
wore on, specialization necessarily increased. 

By 1960, programmers were rapidly becoming a scarce re
source; a typical installation was spending roughly the same 
amount of money for software development as for hardware. 
Programming, and especially system programming, was then 
coming to be regarded as a professional activity. In the early 
fifties, by contrast, few of us viewed ourselves as being pro
grammers first and foremost. Typically, we had taken up pro
gramming in order to get our primary job done; many of us 
never entirely returned to our previous discipline. 

The rapid advances in hardware technology and architec
ture forced programmers to become more and more inven
tive. In 1950, we must remember, the first commercially de
veloped computers had yet to be delivered. At Bell Telephone 
Laboratories Inc. (BTL), the main computing resources in 
1950 were the Bell Model 5 relay calculator and the GPAC 
analog computer. Within the decade, BTL went from these to 
the IBM Card Programmed Calculator, the IBM 650, rental 
of time on the IBM 701, and finally the IBM 704. Each change 
of hardware caused an upheaval in our way of doing business. 
By the end of the decade, large open shops had developed. 
FORTRAN was in widespread use, but machine language 
programming had far from disappeared. 

Installations were dissimilar, even within the airframe in
dustry. North American Aviation used an operating system 
quite early. The RAND Corporation did not use an operating 
system until 1960. Only one RAND closed-shop programmer 
then used FORTRAN, and the open-shop programmers were 
forced to use JOHNNIAC rather than the IBM 704. (The 
theory, I was told, was that the open-shop programmers might 
waste precious machine time.) 

Design of the early systems was profoundly influenced by 
the fact that main storage was miniscule by today's standards. 
The IBM 704, for instance, at first had only 8192 36 bit words 

of core storage and at most 16384 words of drum storage. 
Cards were the primary input medium. While tape reliability 
was a major concern throughout the fifties, after the intro
duction of magnetic core storage main storage reliability had 
come more or less under control. 

Scope 

This report cannot pretend to be a comprehensive treat
ment of operating systems or of their libraries. To a great 
extent it reflects the author's personal involvement with the 
field. (I do not know, for instance, whether systems were 
developed for UNIVAC I, the RA YDAC, or the early 1100 
series machines. Again, Holt and Turanski are said to have 
made important early contributions to the organization of the 
library, but I did not know them during that period.) A dis
passionate historian would attempt to write a very different 
paper. But, since few of the systems of the fifties were de
scribed in the literature, such an historian would have great 
difficulty in researching the subject. There was no single line 
of development, even among systems designed for the IBM 
binary computers, and the wheel was probably reinvented 
many times over. Description of even a single system is a 
complex task, especially since the ideas of many people are 
involved; I have chosen to examine a number of threads in the 
tapestry, for it is far from clear how to describe the tapestry 
as a whole. 

The gradual development of the online system library is in 
many ways a more interesting story than that of the batch 
system. Many functions now classed as OS functions were first 
embodied as utility subroutines and programs. The early as
semblers, interpreters, and compilers (classed here as utility 
programs) were developmed entirely outside of any OS con
text and in the almost complete absence of any theoretical 
guidance. Today, the library is an integral part of the OS-to 
the extent, for instance, that many programmers identify the 
UNIX system with its library rather than with its nucleus and 
shells. 

During the fifties, a number of systems were developed 
which had no recognizable relation (we thought) to batch 
systems or to each other; in hindsight, I have little hesitation 
in calling them operating systems. Examples are the SAGE 
system (the first multiple-access computer?) and the BTL 
electronic switching systems (ESS.) There was a strong family 
resemblance, on the other hand, between the batch systems of 
the fifties and their structure was quite simple. 

Most of the organizational ideas which became important in 
the following decade were present in rudimentary form during 
the fifties. This report ends by briefly tracing their roots in the 
fifties. 



782 National Computer Conference, 1987 

THE SHARE ORGANIZATION 

SHARE, the first computer user group, was formed about the 
time of announcement of the IBM 704 in 1955. "SHARE" 
was not an acronym, but was aptly rendered as the "Society 
to Help Avoid Redundancy of Effort." Its founders were 
among the organizations then using the IBM 701 and in des
perate need of additional computing power. Their most im
mediate problem in conversion from the 701 to the 704, which 
was not upward compatible, was the development of basic 
math routines, utility subroutines, and utility programs. Only 
a few then existed, such as the assembler developed by IBM 
(NY AP1) which was shortly abandoned by SHARE in favor 
of that developed by Roy Nutt of United Aircraft (UA SAP). 

A crucial event was IBM's acceptance of the idea that it 
should reproduce and distribute at no charge routines and 
programs submitted to the SHARE Library. This was not 
unalloyed benevolence, for existence of the library became an 
important sales tool for IBM. 

Cooperative development of operating systems started im
mediately, in the form of the General Motors and North 
American system for the 704, really a side effect of the for
mation of SHARE although not an official SHARE effort. 
(As late as 1959, barely half of the SHARE installations be
lieved that an operating system was a good thing.) During the 
first three SHARE meetings in 1956, there had been discus
sion of possible improvements to the design of the 704. This 
resulted in announcement of the IBM 709 and in the forma
tion of the 709 System Committee at SHARE IV in January, 
1957. The system in question was SOS. 

An important function of SHARE (and later user groups) 
has been informal education. This has taken place during 
committee meetings, formal presentations, the informal eve
ning sessions in the SHARE Suite (which was well stocked), 
and in the SHARE Secretary Distribution-mailings to the 
member installations. 

THE ONLINE LIBRARY 

In 1955, the library was a set of file cabinets containing card 
decks. The decks were, variously, math and utility sub
routines and utility programs. Typically, the programmer 
wanting to make a computer run submitted a card tray or one 
or more drawers of cards, any data tapes required, and a 
detailed set of operator instructions. To assemble and test a 
program, for instance, the card deck started with the binary 
form of the first pass of the assembler followed by the source 
deck followed by the assembler's second pass. There followed 
a separator (which could not be swallowed by the card reader) 
and test data cards. The operator was directed to load and 
ready the card reader, mount a scratch tape, and push the 
Load Cards button. At the conclusion of the assembly, he 
then took the object deck out of the card punch, substituted 
it for the separator, and let the machine continue with the test. 
Given a scratch tape, it was possible to write the assembled 
binary output to the tape and then load from it directly, 
punching the binary deck on the side. 

The early OS used a library tape only to hold the system 
code and its utility programs. User programs and data were 
submitted much as described above. Roy Nutt found a way to 

obtain the benefits of an OS without requiring resident code. 
His system consisted of the library tape, a one card library call 
program which identified the library program to be loaded, 
and a set of installation standards for use of the system. The 
cardinal rule was that each program would conclude by issuing 
a load-card sequence to the card reader. As with any system 
of the era, the machine operator was required to intervene in 
case of disaster. 

A few compilers had been developed for UNIVAC I by 
both Grace Hopper's group and by Holt and Turanski. IBM 
704 FORTRAN, delivered in 1957, was a stand-alone com
piler which did not allow separate compilation of subroutines. 
It was; with some difficulty (only octal dumps of the compiler 
were available), integrated by users into systems at Bell Tele
phone Labs (BESYS), General Motors (the F system), North 
American (the FORTRAN monitor or FMS), and very pos
sibly elsewhere. 

The concept of PUBLIC and EXTERNAL symbols was 
introduced in compiler modifications made by Monte Minami 
and Kei Shimizu of North American. This allowed the FOR
TRAN object decks to contain references to library routines 
(which had been written in assembler language), avoiding the 
necessity of punching them out as part of the compiler output. 
It became the job of the loader to combine library routines 
with the object program-a process called "linkage loading." 
FORTRAN II later allowed separate compilation of sub
routines. 

Since the FORTRAN relocatable object format followed 
the SHARE standard, VA SAP could be used to assemble 
routines to be loaded with compiled routines. More important 
was the fact that this allowed compiled programs to communi
cate with OS common data and routines. So, although the 
early versions of FORTRAN did their best (we thought) to 
defeat any integration into an OS, it was possible to amelio
rate the effects of FORTRAN's inexperience. 

LANGUAGE PROCESSORS 

The earliest language processors were interpreters. The de
sign of the IBM Card Programmed Calculator precluded any 
other approach: the interpreter consisted of the hardware and 
suitable plugboard wiring-in effect, it was micropro
grammed. At that time, interpreters were often, as on the 
IBM 650 before development of the SOAP assembler, written 
in decimal machine code. 

While it was generally recognized that interpreters did not 
make for efficient use of the machine (by a factor of roughly 
100 or worse), compilation was in its infancy, and many of us 
believed that compilers could not, even in principle, match the 
efficiency of good assembled code. But, interpreters were 
ubiquitous during the early fifties, and many if them survived 
through the early sixties, having been moved from one ma
chine to another in the meantime, principally to avoid repro
gramming applications. 

A quite different activity on the language front was t 
invention of the list processing languages IPL (Newell, Shaw, 
and Simon of Carnegie Tech and the RAND Corporation) 
and LISP (McCarthy's group at MIT). The ideas of pointer 
data and the pushdown stack introduced by list processing 
swiftly became indispensable tools in compiler and OS design. 



Some Threads in the Development of Early Operating Systems 783 

Of the advances in assembler design, the invention of macro 
substitution was the most important. I do not know where and 
when it originated, but the idea was a component of the devel
opment of SOS, and a macro preprocessor for UA SAP was 
developed by Irwin Greenwald of RAND about 1957. In 
1958-59, macros were developed much further by Eastwood 
and McIlroy at BTL and implemented in BE SAP, descended 
from UA SAP. Many of their ideas survive in current assem
blers. (During the sixties, a number of unreconstructed ma
chine language programmers seriously proposed discarding 
compilers in favor of macro-assemblers!) 

The one theoretical advance of the fifties which had any 
immediate effect was the invention of Backus-Naur form, 
based on the work of the logician E. L. Post during the mid
thirties. Finite-state automata, discovered in the early fifties 
and based on the work of A. M. Turing, became important in 
the design of compilers only in the sixties. Chomsky's discov
ery of phrase-structured grammars about 1955 was also based 
on Post's ideas, but again did not influence compiler design 
until much later. While some of us felt intuitively that the 
grammar must be the guide to compilation of a syntactically 
correct program, the first syntax-directed compiler was not 
developed until about 1960 by Ned Irons. 

COMMAND LANGUAGES 

The idea of an OS command language developed rather 
slowly. The earliest systems used control cards in a fixed field 
format, and the processing pattern within a batch job was 
pretty much restricted to variations of that described earlier. 
Later, the assembler source format was adopted, the oper
ation code field being used to call the assembler or compiler 
from the library, load a user program, specify breakpoint 
dumps, and the like. Despite the Byznatine semantics of the 
later OS/360 job control language, its syntax remained that of 
the assembler. 

The MIT Compatible Timesharing System (CTSS) first al
lowed the operation field to be the filename of an arbitrary 
program, a development which preceded the widespread use 
of mass storage and thus online storage of user programs and 
data files. At this stage of OS evolution, the command pro
cessor became (or should have become) just another pro
gram. The way was now clear for development of command 
processors which used different linguistic styles but could co
exist on the same OS. The Bourne and Berkeley shells for 
UNIX are examples. 

SYMBOLIC MODIFICATION 

Deplorable as it was, the practice of patching object programs 
was widespread. That there was a net saving in machine time 
is doubtful. Many programs ended up being such a welter of 
patches that it was difficult, if not impossible, to update the 
sources correctly. The original FORTRAN compiler and its 
runtime input-output library are cases in point: In order to 
embed the runtime routines into BESYS, I was forced many 
times to iterate the process of using Arthur Samuels's disas
sembler on the relocatable decks, commenting the resulting 
source code, and reassembling. The effort was worthwhile 
quite apart from what I learned while trying to understand 

Roy Nutt's code, for it was then easy to include new features 
in FORMAT statements and even to allow FORMAT state
ments to be read at runtime, 

At the first meeting of the SHARE 709 System Committee 
in 1957, Chuck Baker of RAND presented a proposal which 
he called the "Alpha System." His idea was that the source 
program should be encoded into a form which allowed rapid 
loading but also retained the information necessary to recon
struct the source program. The loading process would collate 
in modifications written in the source language. If desired, an 
updated compressed (SQUOZE) deck and listing could be 
obtained. The symbol table was then to be used to aid in 
formatting dump output. 

I can attest to the fact that the difference this made in the 
life of a machine (or assembler) language programmer was 
extraordinary. Unfortunately, this did not help the FOR
TRAN programmer. A version of the assembly pass of 709 
FORTRAN which would produce a SQUOZE deck was 
coded, but never debugged. The basic problem here was that 
the idea of linkage loading did not come early enough to have 
any impact on the design of SOS. In the event, while we 
eventually got FORTRAN working within SOS, it was used in 
conjunction with the assembler written by Dave Ferguson of 
UCLA. 

DEBUGGING TOOLS 

Machine designs often incorporate features intended to assist 
in diagnosing machine and program bugs. The SAGE system, 
for instance, had an extremely elaborate diagnostic console. 
The Lincoln Laboratories utility control program (UCP) was 
designed to simulate the actions of an operator using that 
console and was directed by control cards; UCP was the im
mediate ancestor of BESYS. But, debugging through use of 
the machine console was very expensive and thus of limited 
utility. Post-mortem dumps were often uninformative, and a 
program trace usually unsurveyable. 

The idea of the breakpoint, rather than post mortem, dump 
was to get a picture of the console state and selected portions 
of storage at points specified by the user. While one could 
insert code at these points to output information, two severe 
difficulties existed in practice: The breakpoint code was fre
quently buggy, and the cost of reassembly was high. In SOS, 
breakpoints were specified by inserting debugging macros, 
thus effectively eliminating these difficulties. 

The notion of a breakpoint dump was not new at the time, 
but combining it with the idea of symbolic modification and 
macros was. Marty Belsky and his group at the IBM service 
bureau in New York City invented a different approach, de
scribed next, that was implemented on the IBM 704 in a 
matter of a few months. 

The design of the 704 had included a feature designed to 
facilitate program tracing. When the trapping mode was en- . 
abled, any successful jump instruction sent control to location 
1, depositing the address of the trapped instruction at location 
O. A special instruction, trap transfer, would never be 
trapped. As far as I know, the trapping mode was never used 
for its intended purpose, but it could be used for obscure 
forms of subroutine and coroutine linkage. 

In the case of NY SNAP, a table containing one four word 



784 National Computer Conference, 1987 

entry per breakpoint was built and an instruction in each entry 
was swapped with the instruction in the program at the break
point. Dumps were written in binary to a scratch tape and 
converted following the end of the program test. This scheme 
is still in use, although dump output conversion is now done 
on the spot. 

Roy Nutt used the trapping mode for communication be
tween FORTRAN compiled code and his runtime routines 
which interpreted [sic] FORMAT statements. 

THE SIXTIES 

The early batch systems considered only one job at a time, 
and the order of execution of the jobs was fixed once a batch 
started. Job scheduling could not become a system function 
until the advent of plentiful random access storage, nor could 
a system designer contemplate switching control between 
members of a set of partially executed jobs. The latter, given 
a suitable adjustment of terminology (read "job" as "unit of 
processing," "task," or "process") was the typical processing 
pattern in the real-time systems and became that of the oper
ating systems of the sixties and later. 

Apart from the presence of mass storage, this development 
benefited from a number of earlier hardware and program
ming advances. These are summarized below. 

Multiple Access 

SAGE, under development in the fifties, had a number of 
consoles of different types. The most numerous displayed 
radar plots and other data related to missile tracks. The con
sole operator gave direction to his part of the enterprise by 
keying in data. The SAGE program was responsible for moni
toring all system inputs (radar, communications lines, and 
consoles) by polling each class of inputs on a regular basis and 
yielding control to an appropriate subprogram whenever it 
noted a change of status. The ESS program was not unlike the 
SAGE program in that its overall control was based on polling 
inputs. Batch systems, by contrast, had only one input source 
(apart from switches on the operator's console) to worry 
about. 

Hardware Interrupts, Multiprogramming, 
and Multiprocessing 

The practice of polling elevated what should ideally have 
been a low level concern-noting the presence of new input 
data and other status changes-to a high level concern in 
system design. The introduction of hardware interrupt sys
tems by STRETCH corrected this situation and, in principle 
at least, reduced system overhead and response time. 

Input-output channels allowed input-output operations to 
overlap central processing unit (CPU) operation. On the out
put side, this was relatively easy to accommodate in OS de
sign, even when the interrupts were not used. On the input 
side "anticipatory buffering," as the practice came to be 
called, was a more complex proposition. The design of the 
SOS buffering subsystem was predicated on the presence of 
these hardware facilities. Ironically, the official version of 
SOS was never run with the interrupts enabled. 

The term multiprogramming derived from the view that a 
computer runs programs and an interrupt diverts its attention 
from one program to another. Multiprocessing referred to a 
computer configuration with multiple CPUs, whether or not 
they shared main storage. Both terms are more suggestive 
than exact and have meant different things to different peo
ple. Regarding the former term, the principal focus in de
signing a real-time system has been the data rather than the 
program; use of the term multiprogramming would be inap
propriate, quite apart from the use by the early systems of 
polling rather than hardware interrupts. Regarding the latter 
term, CPUs have been joined within single hardware systems 
by other types of processors, such as array processors, nu
meric processors, and input-output channels; by only a slight 
abuse of terminology one could call STRETCH, the IBM 709, 
and their suite, multiprocessing systems. The GAMMA 60 
was, to use Doug McIlroy's word, multi-everything. 

By late 1963 it was clear that scheduling and dispatching of 
whatever units of processing was already an important system 
function. Whatever one called the unit of processing in any 
context, it must be accompanied by a sort of a job ticket which 
identified among other things the program, the data, and the 
type of processor to be used. Scheduling and dispatching then 
arranged these in queues and from time to time assigned each 
processor to a given unit of processing. The terms task (OS/ 
360) and process (MULTICS) were neutral with respect to 
program and data. Hence my coined term multitasking. Mul
titasking was not a new invention but a revisionist view of the 
early system organizations. 

Dynamic Relocation and Paging 

Linkage loading of relocatable object programs had made 
it unnecessary for programs to directly reference absolute 
locations in storage or to be assembled at absolute origins. 
However, once the program was loaded, it was bound to 
absolute storage addresses and could not be moved. Even 
before the advent of timesharing, there were situations in 
which it was desire able to write a partially executed program 
out to a backing store and then read it later into a different 
location in main storage. Further, a buggy program had to be 
prevented from destroying its near or distant neighbors. 

The solution to these problems embodied in the STRETCH 
hardware, and later built into the augmented 704 on which 
CTSS was first implemented, was to provide machine registers 
to dynamically relocate addresses in the program and to 
bound the range of allowable memory references, on the pain 
of a memory protection interrupt. A quite different and more 
elegant solution was provided by the British ATLAS comput
er's paging hardware. An additional benefit of the ATLAS 
design was provision of a much larger (virtual) memory than 
that implied by the width of the machine's memory address 
registers. 

ACKNOWLEDGEMENTS 

Bernie Galler, Doug McIlroy, Owen Mock, George Ryckman, 
and Kei Shimizu have jogged my memory and suggested 
changes of emphasis, for which I thank them. 



A batch-processing operating system 
for the Whirlwind I computer 

by CHARLES W. ADAMS 
Hudson, New Hampshire 

ABSTRACT 

The Whirlwind I computer was developed at M.I. T. in the late 1940s and early 1950s 
primarily for use in real-time applications, most notably in early development of the 
U. S. continental air defense system. It was the fastest first-generation machine and 
the first to use magnetic core memory. Under sponsorship of the Office of Naval 
Research, time on Whirlwind was made available for general-purpose use by M.I.T. 
students and researchers on a program-it-yourself basis, their use coordinated and 
supported by the small so-called Scientific and Engineering Computation Group. 
During 1951 through 1955, this group developed a variety of coding techniques and 
aids for using Whirlwind, including a batch-processing operating system incorpo
rating many of the logical capabilities which appear in today's systems. The hard
ware available, the operational philosophy, and the accomplishments of the group 
are briefly described. 

785 





A Batch-processing Operating System for the Whirlwind I Computer 787 

THE WHIRLWIND I COMPUTER 

The development of operating systems for the Whirlwind I 
computer was an evolutionary process which extended over 
the ep.tire decade from its early operation in 1950 until its 
retirement in 1959, with the greatest effort concentrated in the 
early half of the decade. It also extended over Whirlwind's 
two distinct areas of intended application as: (1) a real-time 
control system, and (2) a general-purpose computational tool. 
I can only report on the latter application area. Before I 
attempt to describe some of the operational thinking and 
accomplishments of the 1951-1955 period, let me outline the 
evolving hardware context which led up to and through that 
time period. 

History 

I joined Project Whirlwind in the Servomechanisms Labo
ratory at the Massachusetts Institute of Technology on a part
time basis in December 1947, while I was still an under
graduate. The project had been in existence for three years 
under the sponsorship of the Special Devices Section of the 
Navy's Bureau of Aeronautics before being transferred to the 
new Office of Naval Research (ONR).l Its original purpose 
had been to develop an aircraft flight simulator incorporating 
a real-time stability and control analyzer, for which its young 
project leader, Jay W. Forrester, had first thought in terms of 
analog computation. After visiting the University of Pennsyl
vania in the Fall of 1945, he decided instead to build a 
general-purpose digital computer which would be called 
Whirlwind 1. 

Logical Design 

Whirlwind's intended real-time applications required high 
speed and high reliability but not particularly high precision. 
The logical design which Robert R. Everett completed in 1947 
called for a 16-binary-digit parallel machine with instructions 
comprising a 5-bit operation code and a single ll-bit address 
capable of addressing an internal storage of 2048 words. In 
today's terms, this would be a 4K-byte RAM, although the 
use of pure binary numbers made each word capable of 
storing a sign and about 4.5 decimal digits. 

Whirlwind's instruction code, like many other first-genera
tion machines, bore considerable similarity to von Neumann's 
lAS computer (which was to store 1024 4O-bit words with two 
instructions per word). Operating in parallel at a one mega
hertz cycle rate with eight cycles per instruction exclusive of 
memory access (specified at 8 microseconds, a speed achieved 
with magnetic cores in 1953 though not with the original elec-

trostatic storage tubes) and built-in multiply and divide (at 
about 16 and 32 microseconds), Whirlwind performed some 
17,000, and after 1953, some 40,000 operations per second, by 
far the fastest first-generation machine. 

Early Programming 

I completed my graduate work in the Mathematics Depart
ment (my thesis included a Whirlwind program which was 
never run) and joined Project Whirlwind in February 1949 as 
a full-time, about-to-be programmer. Programming was a 
relatively untrodden field at the time since no stored-program 
computer had yet gone into operation anywhere in the world. 
(Wilkes's serial, mercury-delay-line-storage EDSAC at Cam
bridge University became the first on May 5, 1949.) My job 
was to develop programs intended to aid future scientific and 
engineering users in making use of a portion of the time 
available on Whirlwind for research projects of their own. 
This allocation was to continue despite the high priority of the 
intended real-time control applications which, over the next 
three years, evolved from flight analysis through air traffic 
control to continental air defense (and, ultimately, the SAGE 
system). By 1951, hardware development was under Air 
Force sponsorship, though ONR retained an interest in the 
use of Whirlwind for general-purpose computation, and 
Project Whirlwind had become the M.LT. Digital Computer 
Laboratory. 

Initially, these user aids were envisioned as pre
programmed sub-routines to handle such things as decimal
to-binary and binary-to-decimal conversions for input and 
output, the computation of roots, trigonometric and other 
mathematical functions, the solution of algebraic and differ
ential equations, and the processing of complex variables, 
matrices and the like. But practical experience, hard and 
slowly learned, suggested that these facilities, though im
portant, were not the crux of the problem. 

Test Storage 

By 1950, the central processor was in operation, but due to 
difficulties with the specially-designed electrostatic storage 
tubes which were to provide the main memory, our only 
hands-on experience with Whirlwind for many months in
volved the use of a so-called test storage comprising 32 words 
of what is today called programmable read-only memory or 
PROM, with each bit represented by a toggle switch, and five 
words of flip-flops (vacuum-tube circuits storing one bit each) 
that could be substituted for any five of the PROM registers. 
Each flip-flop register could be preset to a value set in front
panel toggle switches and its contents were continuously indi-



788 National Computer Conference, 1987 

cated on the front panel. In addition to its extensive use to test 
hardware and to demonstrate the early Whirlwind, this test 
storage served permanently as Whirlwind's "bootstrap" 
loader. 

Early Peripheral Devices 

The early input equipment was limited to, besides the quite 
useful toggle switches mentioned above, a slow punched
paper tape reader. Output, in addition to the indicator lights 
on the flip-flop and internal registers, and the audio out
put mentioned below, comprised a ten-character-per-second 
printer and, more importantly, a device unique to Whirlwind 
among early machines and crucial to its air defense applica
tions-a cathode-ray-tube (CRT), the beam of which could be 
deflected to arbitrary x and y coordinates by output instruc
tions. Probably the most widely seen demonstration of Whirl
wind, before electrostatic storage become operational, used 
the CRT to display the solution to the differential equation, 
describing a ball bouncing on a horizontal axis, repeated at 
successively-increased horizontal speeds until it hit a hole in 
the floor and fell through. 

After electrostatic storage made possible more elaborately 
scaled and calibrated graphics, and computer-generated dot
matrix decimal and alphanumeric displays of a thousand or 
more characters per frame at about 200 characters per second, 
an automatic camera was attached to a second CRT so that 
graphs and, more importantly, memory dumps and other aids 
to program debugging, could be recorded for future refer
ence. Another off-beat but useful output, incorporated after 
we noted the sound of unintentional audio crosstalk on inter
com wires strung around the 25OO-square-foot computer area 
to permit maintenance engineers to talk to operators, con
sisted of intercom stations connected to selected flip-flops 
in the accumulator, program counter or elsewhere, so an 
operator could hear how things were progressing and know 
when a bug had put the program into an endless loop. This 
also led inevitably to programs to make the computer play 
recognizable tunes. 

Full-scale Storage 

When reasonably reliable operation of the early 16 x 16 bit 
electrostatic storage tubes began late in 1950, the availability 
of 256 additional words of storage opened whole new vistas 
after months of cramming things into 32 words. Reasonably 
reliable operation was unfortunately preceded by some 
months of reasonably unreliable operation-I can still feel the 
pain of watching on a monitor while a small black cloud would 
slowly overspread the pattern of bits in a defective tube and 
my program would sputter and die, with an audio accom
paniment not unlike the sound of an encephalogram of a 
patient dying on TV today. By late 1951, a second bank of 
tubes, each capable of storing a 32 x 32 array, expanded the 
memory to 1280 words, not counting test storage and the 100 
or so unconsecutively numbered locations we sometimes 
used, that lay inside the circumference but outside the 16 x 16 
square array in the first bank of tubes. Almost 3K bytes; this 
was heaven indeed. 

By that time, work on a coincident-current magnetic core 
memory conceived by Forrester in the Spring of 1949 had 
progressed to the point at which it appeared more promising 
than the electrostatic tubes, both in speed and in reliability, 
but the electrostatic memory continued in use until it could be 
replaced in August and September 1953 by 2048 words of 8 
microsecond-access cores in two 16-high stacks of 32 x 32 core 
arrays. This form of memory quickly became the standard of 
the computer industry and remained so for roughly the next 
15 years. 
Later Peripheral Devices 

The 1951 to 1953 period also saw the addition of: a magnetic 
drum system with a 64K-byte capacity and 64K-byte-per
second transfer rate; four magnetic tape drives each with 
250K-byte capacity and about 800-byte-per-second transfer 
rate in whic~ the tapes were for all practical purposes not 
removable; a 2oo-character-per-second photoelectric paper 
tape recorder which to our great joy could stop and start 
between individual characters rather than requiring an inch or 
two of blank tape for stopping as an earlier, slower unit had; 
a real-time clock useful in logging; a 1200-digit-per-second 
character generator for the CRT; and a joystick and later a 
light gun for use with the CRT (facilities important for air 
defense applications and for demonstrations but not used in 
the general-purpose system). In a 1954 description of the 
system,z I described the core, drum, and tape capabilities as 
"a storage hierarchy of ample sizes, speeds, and versatility," 
something I would hardly say today. 

THE GENERAL-PURPOSE OPERATING SYSTEM 

As mentioned, the intent of Whirlwind's so-called Scientific 
and Engineering Computation (S&EC) Group which I headed 
under ONR sponsorship was to make the computer available 
to qualified users with the proviso that they do their own 
programming, and to provide support for training offered to 
graduate and undergraduate students, and (through special 
one and two week full-time summer session courses) to inter
ested people from business and industry. Wearing a second 
hat as Assistant Professor of Digital Computation in the Elec
trical Engineering Department, I had the pleasure of pre
paring and teaching both the regular and the summer pro
grams at M.LT. during that period. During 1953 and 1954, 
Whirlwind was used by 10 staff members of the S&EC 
Group, by some 35 graduates and four undergraduates in 
connection with their theses, and by about 25 undergraduates, 
40 graduates, and 100 summer students in connection with 
M.I.T. courses. 

Batch Processing 

With so many users sharing the 40 or so hours per week of 
Whirlwind time available to this activity, much of it scheduled 
in the middle of the night and on weekends, hands-off batch 
processing was the order of the day. Whirlwind's file storage 
capabilities may have been "ample" for one user at a time, but 
would have been grossly inadequate for online multi-task 



A Batch-processing Operating System for the Whirlwind I Computer 789 

moment-by-moment time sharing developed a few years later 
by another group on another computer at M.LT. 

It is perhaps interesting to note that the lUxury of time
shared access to supercomputers and of full-time access to 
powerful personal computers are enjoyed by today's users at 
monthly costs approximating their own salaries for a single 
day. In the early 1950s, the daily salary of a Whirlwind user, 
if indeed he had one, would not normally have covered the 
cost of half a minute of machine time. 

Assemblers and Interpreters 

Ooerating as it did on short fixed-point pure-binary words, 
Whi~lwind ~learly required input and outPut conversion rou
tines and some way of extending the effective word length for 
computational purposes. It took only a little exposure to the 
problems of assigning absolute memory locations to variables 
and instructions to suggest that the task should be handled 
along with decimal-to-binary conversion by the computer 
itself, through the actual implementation of assembly pro
grams with symbolic (we called them "floating") addresses 
extended over several years. 

Double-precision arithmetic seemed best accomplished by 
an interpretive routine, a program which treated the instruc
tions specified by a user as data to be interpreted and then 
executed one at a time. Given a double-precision interpreter, 
a floating-point capability could be included at little extra cost 
in machine time. Furthermore, an interpreter could greatly 
facilitate the debugging of a program by pre-checking for 
some kinds of mistakes and by storing a trail (a "trace") of the 
logical path followed and of intermediate results to the extent 
desired by the user. 

There was also no great additional time required to inter
pret instructions written in a form unrelated to the single
address instruction logic built into Whirlwind. This led to the 
development of fairly powerful and more easily debugged (but 
still machine-like) languages such as the Summer Session and 
the TAC and SAC languages used in the 1953 and 1954 sum
mer courses. An interpreter was also used to implement an 
Algebraic Language developed by two users of Whirlwind, J. 
H. Laning and N. Zierler, which was an early precursor to the 
FORTRAN language later implemented with a compiler. 

The "Comprehensive System" 

Most users, other than students in M.LT. courses, used the 
so-called Comprehensive System. They wrote their own pro
grams as machine-language instructions in assembly-language 
form with numerical computation to be executed by an in
terpreter in double-precision floating point (signed 24-bit 
numbers with signed 6-bit scale factors, roughly equivalent to 
7-decimal-digit precision with magnitudes ranging from 
10-10 to 1010) while logical computation was executed in 
Whirlwind's internal format (signed integers from -32767 
to 32767). 

Operational Procedures 

Whether written in the Comprehensive System, the Sum
mer Session or other languages, programs were keyed and 

verified on six-hole paper tape by trained personnel in Whirl
wind's tape preparation room, each tape identified by job, 
user, program and revision number. Listings were returned to 
the users and tapes filed in the room. When a user wished a 
test or production run, he or she filled out a brief performance 
request form specifying the paper tape or tapes to be run and 
any special instructions, though for the most part the entire 
specification was expected to be included in the tape(s) being 
run. Information needed for the analysis of program per
formance, beyond that generated by the program itself or 
routinely provided by the operator and the system, was speci
fied on a "post-mortem request" tape to be run at the termi
nation of failed program. By 1955, performance requests were 
often specified on a "director" tape which controlled the 
processing of a series of individual runs. 

Thus, the files of user programs, data, and results were kept 
on paper tape and in printed or plotted form, produced by 
professional operators and filed manually by clerks. Assem
blers, interpreters, utility programs, and post-mortems were 
kept on a single magnetic tape. They amounted to about 24K 
bytes for the entire Comprehensive System and 16K bytes for 
the Summer Session system. From tape, they were auto
matically copied to core or drum as required. Programs were 
assembled prior to each run using two other tapes for auxiliary 
storage in a two-pass system. 

CONCLUSION 

While the users of Whirlwind would certainly have been 
happy to have had today's facilities available to them, they 
would also surely recognize many of the logical capabilities of 
today's operating system in the system they used in 1955 and 
before. 

ACKNOWLEDGEMENTS 

The development of the Comprehensive System at M.LT. 
paralleled that of other systems at the time and drew a consid
erable part of its inspiration from them, most notably from 
the Cambridge University group. Several of its leading lights, 
M. V. Wilkes, D. J. Wheeler, S. Gill and E. Mutch, par
ticipated in one or more Summer Sessions and shared many 
ideas with us. Those at Whirlwind who contributed ideas and 
working programs to the system included, in alphabetical 
order, D. N. Arden, S. Best, D. Combelic, M. S. Demurjian, 
H. H. Denman, J. T. Gilmore, J. M. Frankovich, 1. Hazel, F. 
C. Helwig, E. S. Kopley and J. D. Porter (who took over 
direction of the group as I phased out of it). 

REFERENCES 

1. Redmond, Kent C., and Thomas M. Smith. Project Whirlwind-The History 
of a Pioneer Computer Bedford, Massachusetts: Digital Press, 1980. 

2. Adams, Charles W. "Report R-233-The M.I.T. System of Automatic 
Coding: Comprehensive, Summer Session, and Algebraic-a Talk Delivered 
at the Symposium on Automatic Programming for Digital Computers, May 
12, 1954," Cambridge, Massachusetts: Digital Computer Laboratory, 
M.I.T., 1954. 





The North American 701 Monitor 

by OWEN R. MOCK 
Palos Verdes Estates, California 

ABSTRACT 

Although constrained by history, schedule, and hardware to triviality when com
pared to modem operating systems, the North American 701 Monitor was arguably 
the first operating system to be in operation. Installed in December 1955, the North 
American 701 Monitor was developed as a prototype monitor to extract more 
utilization from overburdened IBM 701'8 and pilot test the operating system con
cept prior to introduction of the General MotorslNorth American 704 monitor 
which was to follow. A historic separation of programmers from computer hardware 
combined with inadequate computer resources to establish the motivation and 
climate for the projected more efficient use of computer resources via a "monitor 
system." This paper presents an overview of the then contemporary North Ameri
can Aviation operating philosophy, the IBM 701 hardware, the affected "system" 
software, and the resultant characteristics of the monitor system, and effect on the 
end user. 

791 





INTRODUCTION 

Trying to recall programs that were written approximately 32 
years ago is difficult enough. Trying to describe a system of 
programs whose hardware constraints, to say nothing of its 
goals and schedules, destine it to triviality by modem stan
dards in an interesting manner, becomes a formidable task. It 
is hoped to add some interest by (1) being perhaps first, and 
also an immediate prototype predecessor to the North 
American-General Motors Operating System and subsequent 
Share Operating System, and (2) adding some comments on 
its historical perspective and general comments on the inter
action between operating systems and hardware. 

First of all, several of those whom I saw as pioneers should 
be mentioned. Dr. Derrick H. Lehmer talked me into going 
to the Nation Bureau of Standards Institute for Numerical 
Analysis at UCLA in 1951 despite my belief that computers 
would never amount to much until everyone could have one. 
Dr. Everett Yowell, in tum, arranged my opportunity to join 
North American Aviation when the Institute for Numerical 
Analysis closed in the summer of 1953. 

But to me, those most immediately deserving of recognition 
were those people in management who created the early en
vironment that led among other things to the foundation of 
SHARE. Somehow, management saw fit to encourage coop
eration and experimentation at the time when it was most 
needed. With respect to what follows, credit belongs particu
larly to my immediate superiors Charlie Davis and Jack 
Strong, and to Frank Wagner of North American's en
gineering department. (The latter two were key figures among 
the founders of SHARE.) 

Exemplary of the freedom that was given was that I was 
allowed during this period, to develop such strange things as: 
(1) a program patcher, which performed direct inline exten
sion or shrinkage of code, (2) a loop generating subroutine 
which dynamically generated address modifying and limit 
testing code based on inline parameters, and (3) a multi
precision, variable length integer arithmetic interpretive sys
tem which could handle integers of up to 340 digits (divide 
never quite worked); all of which turned out to be dead ends. 

A BACKGROUND OF REGIMENTATION 

North American Aviation was rather unique in that computer 
operations grew up in the accounting department which was 
not as peculiar as it might seem. For most businesses, tabu
lating equipment was used almost exclusively for accounting. 
The first electronic calculators, the IBM 604 and subsequent 
Card Programmed Calculator (CPC, first delivered to North 
American in December, 1951), were basically punched card 

The North American 701 Monitor 793 

machines, and because of this reliance on cards it was felt 
desirable that their operation remain in Tabulating, a section 
of accounting. 

For better or for worse, separation of operations from users 
had some far-reaching effects. Among other things, it resuited 
in a philosophy that users should not touch the machine; in 
fact, they were not even supposed to touch their punched card 
decks. It also resulted in a philosophy of strict accountability; 
even utility programmers (now called system programmers) 
were required to account for their machine time. The end 
result was a user regimentation that, at first blush, would 
appear to run counter to the freedom mentioned in the intro
duction but which facilitated the introduction of operating 
system concepts. . 

For the first 701, delivered October 10, 1953, a utility pro
gramming team was recruited and added to the operations 
staff. This team wrote an assembler (Ed Law), the usual 
square root and set of transcendental functions, the proverbial 
one card loader, decimal to binary conversion routines and 
vice versa, some simple I/O handlers, and a memory dump. In 
addition, a floating point interpretive system called DUAL, 
generously provided by the University of California at Los 
Alamos, was modified to operate with the above routines. 
Finally IBM's SPEEDCODE was added as a completely sep
arate system. Again the philosophy was that the user was not 
to be bothered with any of these things so that he could 
concentrate on problem solving. In theory, he was only to 
provide key-punch forms and setup instructions, and every
thing else was to be done by operations. 

DUAL was chosen because it permitted intermingling ma
chine instructions with interpretive code. SPEEDCODE was 
chosen for its expected ease of use. Naturally, everything had 
to be renamed; DUAL was called DUET, SPEED CODE was 
called SPEEDCO, and the system of programs encompassing 
DUET was called SPEED EX although some preferred the 
terms "SLOWEX" and "SLOWCO" for the most likely of 
reasons. 

Given the hardware constraints and state of the art, prob
ably the key deficiency was the absence of a relocatable 
loader. The concept of a linking loader was yet to be devel
oped. This meant that if a routine was to be executed from 
more than one place, it had to be reassembled for each in
stance. From this came the practice of pre mapping the utility 
programs, placing part of them at the beginning of memory 
and part of them at the end, leaving the middle as user space 
that began and ended at various places, depending upon 
which utility programs were to be employed at execution time. 

Another important factor in the 701 environment was the 
rapid development of demand. Within 8 months from deliv
ery, the 701 had already gone to two shifts. (701's were only 
rented and extra shift usage meant extra rent.) Within 13 



794 National Computer Conference, 1987 

months the 701 was on three shifts, and within 15 months time 
was rented on a Douglas Aircraft machine across the street. 
This intense demand resulted in a tum-around time of several 
days for jobs which would take only a few minutes, placing 
computer time at an extraordinary premium. 

IBM 701 HARDWARE 

It is worth taking the space to describe some characteristics of 
the IBM hardware, not for its own interest, but as to how it 
shapes any development of an operating system. 

Original Hardware (October 1953) 

Williams Tube memory, 2048 36-bit words (9k byte equiv-
alent) 

Four type 726 tapes with steel leaders 
Four 2048 word drums 
150 card per minute reader 
150 line per minute printer 
100 card per minute punch 
No floating point arithmetic 
No index registers 
No memory protection 
No interrupt mechanism 
Machine cycle, 12 microseconds, with an add taking 5 cycles 
Neither the Williams Tubes nor the 726 tapes were reliable, 

and the mounting mechanism of the tapes discouraged their 
usage even further. As a consequence, punched cards were 
still considere~ to be the only permanent storage medium. 

Periquip Hardware (December 1955) 

Six online 727 tape drives substituted for 726 drives 
Offline 250 card per minute IBM 714 card to tape 
Offline 150 line per minute IBM 717 tape to printer 
It should be emphasized that the 714 and 717 were com

pletely independent, in another room with no electronic con
nection to the 701 whatsoever. 

SPEEDEX EXECUTION 

The basic concept of SPEEDEX execution was that a user 
program was to be loaded onto a background of previously 
loaded system routines. All code was absolute and hence the 
only available loaders were absolute. The background rou
tines were kept on a dedicated library tape. The first 256 
words of main storage were dedicated to an execution control 
routine, including drum and tape handlers and a binary card 
loader. Beyond this, in various locations would be found: 

A four-field decimal data card read routine 
An 8-digit integer print routine 
Fixed point elementary functions including square root 
Duet, standard version 
Duet, version A 
Duet, version D 

Duet was quite large and contained its own card read and 
print routines. Further routines existed at the end of main 
store. Since only absolute loading was possible, each routine 
had a different version for each address at which it was to 
execute. Library routines were accessed by record number so 
that library maintenance became quite complicated, trying 
to take into account both minimum tape travel and mini
mum disruption of pre-existing callers by changes of record 
numbers. 

THE PERIQUIP DECISION 

In the latter half of 1955, several events converged which led 
to the Periquip system. IBM announced the availability of 727 
tapes on the IBM 701, as well as the 704, and of the 714 
Card-to-Tape and 717 Tape-to-Printer. As it turned out, this 
equipment was welcome fallout from the IBM 702, the IBM 
business machine as opposed to scientific machine of the time 
that preceded the IBM 705. In addition, SHARE was born. 

As a consequence of the formation of SHARE, General 
Motors approached North American about the possibility of 
jointly developing a monitor system for the IBM 704 that was 
scheduled for delivery in the summer of 1956. This system 
became the General Motors-North American Monitor that is 
the subject of another paper. At the same time, North Ameri
can decided to develop a prototype monitor system for its 
second 701 that would have new 727 tapes and peripheral 
equipment. The purpose of this monitor system was two-fold: 
to mitigate the 701 demand crunch and to gain experience 
with the as yet untried concept of a monitor system. It was also 
decided to christen this system "Periquip." 

PERIQUIP SYSTEM CHARACTERISTICS 

The Periquip system was about the simplest possible batch 
processing system. Multiple jobs were placed on a single 727 
tape that became a batch whose target duration was one hour. 
There was a small in core resident monitor and a single system 
library and control program tape that also acted as backup for 
the resident monitor. Output was stacked on an output tape 
that could be removed and replaced if necessary. Upon the 
completion of a batch, the input and remaining output tape 
were removed and replaced with the next batch, and the out
put tape was taken to the 717 to be printed. Note here that in 
contrast to most large modem systems, the term "batch" did 
indeed mean job batching. 

Each job card contained, in addition to the programmer's 
name and accounting information, an estimate of maximum 
execution time and a hard maximum output line count. Fol
lowing the job card normally would be a set of library call 
cards that would specify routines to be loaded from the system 
library tape. Then came a set of absolute octal cards that 
represented the program to be executed, and finally any data 
cards for the program. The program had to be loaded in octal 
because at that time the 714 card to tape was not capable of 
reading binary cards. (The inability to handle binary is stili 
with us in some communication protocols.) 



A job could be ended by the user program jumping to a 
specific entry point in the resident monitor, by an error in a 
standard subroutine, by a job exceeding its output line count, 
or by operator intervention. Operator intervention would 
occur if the program halted or if, in the operator's opinion, the 
program was caught in a loop or had substantially exceeded 
the programmer's estimated time. With luck, if intervention 
was necessary, the operator would first record the location 
counter and other relevant information and then would key in 
a jump to a particular address; this was the same entry point 
in the resident monitor as was used by programmers to take 
a memory dump and then transfer control to the next job. If 
this failed, he would load a three card program from the card 
reader, which would cause a dump and reload of the resident 
monitor. 

Everything continued to have to be referenced by its abso
lute address. A library routine was referenced by the record 
number of its first record on the library tape. Actual entry to 
a library subroutine was performed by jumping to the abso
lute address of the routine although a transfer vector was 
employed to keep things from getting completely out of hand 
when the subroutine had to be reassembled. 

SYSTEM INTRODUCTION 

Considering that we are dealing with conversion from a man
ual operating system, the actual testing and conversion went 
rather smoothly. The new decimal conversion routines and 
the corresponding octal routines became both simpler and 
shorter than' the routines they replaced. They so easily fit in 
the same space as their predecessors, and most importantly, 
their interfaces remained constant. Most of the other system 
functions had already been introduced, at least partially, in 
order to simplify and speed manual operation. The task was 
by no means trivial because one of the constraints was that 
user routines could not be moved, which led to a fair amount 
of nook and cranny programming. The author remembers one 
subsequent six-instruction routine, whose purpose now eludes 
him, that took six weeks to check out. 

What was involved in conversion can best be illustrated by 
quoting from notes by Florence Anderson for a contemporary 
class in Engineering Computing: 

"III. Program Considerations 
A. Must conform to: 

1. All instructions on octonary cards 
2. No sense switches 

4. Must end on: 
a. End of file condition for octonary or decimal card 
read 
b. Transfer to location 10210 to start next job 

5. No programmed stops-transfer to debug routine 
or memory print 
6. do not use tapes 4,5,6 

The North American 701 Monitor 795 

D. P. E. routines 
1. .. There are no binary card reading routines. The 
octonary card read routine is available in 4 different 
locations. 

3. Speedex and Duet print routines are available with 
a few changes. Errors cause transfer to 10110 (memory 
print). Estimate of pages printed is checked; if ex
ceeded memory print. 
4. No stops in program 

d. Programmer may change the instruction at 10110 
to transfer to his own debug routine. Always transfer 
to 10210 afterwards." 

IT WASN'T ALL THAT EASY! 

First of all, SPEEDCODE renamed SPEED CO , continued to 
be used outside of the system and there was always a user or 
two whose project was so important that they were above the 
system. Because of the demand crunch, a computerized prior
ity system was instituted which may be of some interest. Each 
priority job was assigned a factor to be interpreted as a multi
plier for that job's share of the computer. This was punched 
up on a schedule card together with the estimated maximum 
execution time and the time of job submission. The deck of 
active scheduled jobs was then run hourly, and an ordered 
priority schedule printed out (on line) which consisted of: 

Priority = PriorityFactor*CurrentWaitTime/ExecutionTime 

and the next batch of jobs was written to tape on the basis of 
this printout. This worked pretty well except for VIP (Very 
Important Project) jobs, which were invariably assigned a 
priority factor of 99. 

Manual intervention was indeed a stumbling block; but this. 
would not be surmounted in operating systems until there was 
an adequate hardware interrupt mechanism and adequate 
protection several hardware generations in the future. One 
nice by-product was that there was no such thing as a "system 
crash"; one could always blame the user, maintaining that he 
destroyed the monitor by either a wild store or a wild jump. 
Yes, there were system bugs, but the recovery from them was 
no different than from user bugs since they were indistinguish
able to the operator. 

PARTICIPANTS 

For so small a system, the number of participants was rather 
large. This was because management endorsement, machine 
operation, and user cooperation played as big a role as the 
system itself. Participating in a variety of ways were Penny 
Barbe, Ray Berman, Don Breheim, Dale Hanks, Irwin 
Marshall, Kei Shimizu, Jack Strong, and Frank Wagner. 





General Motors/North American Monitor 
for the IBM 704 computer 

by ROBERT L. PATRICK 
Rosamond, California 

ABSTRACT 

Pioneer Day papers are an attempt by the NCC Committee to document work of 
significance for the historical record. In that spirit, this paper relates some software 
work of 30 years ago. 

Earlier work using an IBM 701 led to the pursuit of performance and thruput. 
Within that framework the concept of the tape-to-tape mode of operating an IBM 
704 was developed. The progeny of this batch system are well known: SOS, IBSYS, 
and with the substitution of disk for tape, OS/360. 

797 





General MotorslNorth American Monitor for the IBM 704 Computer 799 

The roots of the General MotorslNorth American Aviation 
effort go back to 1954. At that time I was working for an 
aircraft foundry in Ft. Worth, Texas. Picture a bunch of mis
cellaneous college graduates (computer science hadn't been 
invented yet) trying to understand the physics of aircraft de
sign, formulate mathematical design models, and program 
these solutions for a giant brain. Only 19 IBM 701s were 
manufactured. The Ft. Worth machine was serial #7. The 
17th machine, which I will discuss later, was installed at 
General Motors in Detroit. The 701 was a .15 MIPS machine. 
It rented for about $23,750 a month, and filled a 40 foot by 40 
foot room. 

Architecturally, it was a single sequencing machine and 
could do only one thing at a time (cycle stealing channels 
hadn't been invented yet). Thus when a 701 addressed an 
input/output device, that's all it could do until the data trans
fer was completed. It was a batch machine and a typical con
figuration consisted of a 150 card-per-minute reader, a 100 
card-per-minute punch, a 150 line-per-minute printer (48 
characters), and an internal memory of 2,000 36-bit words. It 
also had four magnetic tapes whose transfer rate was 7.5 thou
sand characters-per-second, and a magnetic drum which held 
2,000 words. The mean time to failure was about 30 minutes 
if you were lucky (see Figure 1). 

The typical mode of operating was programmer present and 
at the operating console. When a programmer got ready for 
a test shot, he or she signed up on a FIFO list, much like the 
list at a crowded restaurant. The programmer then checked 
progress frequently to estimate when he would reach the 
top. When his time got close, he stood by with card deck in 
hand. When the previous person finished, ran out of allotted 
time or abruptly crashed, the next programmer rushed in, 
checked that the proper board was installed in the card 
reader, checked that the proper board was installed in the 
printer, checked that the proper board was installed on the 
punch, hung a magnetic tape (if he was going to use a master 
tape), punched in on a mechanical time clock, addressed the 
console, set some switches, loaded his punched card deck in 
the card reader, prayed the first card would not jam, and 
pressed the load button to invoke the bootstrap sequence. 

If all went well, you could load a typical deck of about 
300 cards and begin the execution of your first instruction 
about 5 minutes after entering the machine room. If only one 
person did all this set up and got going in five minutes, he 
bustled around the machine room like a whirling dervish (see 
Figure 2). 

Not always did things go smoothly. If a programmer was 
fumble-fingered, cards jammed, magnetic tapes would not 
read due to defective splices, printer boards or switches were 
incorrectly set up, and it took 10 minutes to get going; or 
worse-you lost your opportunity and the next guy took the 

Figure I-IBM 701 

1---------- 5 Minutes ----------1 

1. Check printer board.J II 
2. Check punch board ~J 
3. Check reader board 
4. Hang mag tape (optional) 

5. Punch time in-.J 
6. Set console switches 
7. Load card deck--
8. Bootstrap------J 

Figure 2-Typical 701 setup time phasing 

machine when your time ran out. Usually the machine spent 
more time idle than computing. We programmers weren't 
paid very much and although the machine was fairly costly, its 
capacity was even a more precious commodity since there 
were only 17 in the whole world and only one in the entire 
state of Texas. 

Now I had never heard of Henry Laurence Gantt, the father 
of industrial engineering, but if I had, this story would be a lot 
shorter. Seeing idle time on a precious resource caused several 
of us in various locations around the country to start a drive 
for efficiency that is still with us today. Informally we pro
grammers started operating in teams so each programmer 
would have an assistant to help him get set up and going 



800 National Computer Conference, 1987 

faster. That helped the fumble-fingered the most. We also 
gradually standardized on plug boards for the reader, printer, 
and punch to eliminate some of the board changing. We did 
some preventive maintenance on our card decks to reduce 
card jams and we tried to get programmer-operators better 
organized so they weren't so befuddled at the console (not 
entirely successful). All of this reduced the worst case idle 
time between runs, but the average productive use of the 
machine was still poor. 

About this time, I was an obnoxious young hot shot and 
found a way to get my test shots in the idle time between other 
programmer's scheduled runs. I ran only with standard plug 
boards so I never changed any boards. I bootstrapped my 
programs from an unused magnetic tape instead of punched 
cards and this reduced my program loading time from about 
three minutes to ten seconds. Further, each input record 
loaded to a unique address so I could store the program on 
tape and overload patches through the card reader. I could get 
a full test shot in three minutes or less if my output did not 
exceed 150 lines of printing, (see Figure 3). 

Now this may not sound like much in 1987, but I got a shot 
whenever I wanted just by squeezing in on the schedule. I was 
getting four and five shots a day when the others were lucky 
to get two. Furthermore, my total machine time was only 25 
percent of what everyone else used. 

Programming in the early 1950s could best be described as 
organized chaos. The typical programmer used assembly lan
guage, chose his favorite binary-to-decimal conversion rou
tines from a library, figured out how to assemble and debug 
his programs as best he could from the primitive tools avail
able, and at long last got a program checked out which may 
have been a work of art, but was always later than when the 
customer wanted results. 

I was a premier user of an interpretive programming pack
age, developed by John Backus and his colleagues at IBM, 
that was called the IBM 701 Speedcoding System. Speedcode 
was an integrated set of programs and provided packaged 110, 
and a simplified three-address language with floating-point 
operands for programming. The purist programmers treated 

t------- 3 Minutes ----I 

I 
-7l I -rr-----S---l 9 f 

--~.~-!-~.ll.J 
~::~-- I! ~ 

7. Check printer boo~lll 'I

i 

8. Run test ~ 
9. Print results -- _I 

10. Rewrite mag tape 
II. Remove mag tape ----

l. I ' 

2. I 
3. Load card deck-
4. Punch time in--J 5. Set console switches I 
6. Bootstrap-------J· 

Figure 3-Speedcode debug time phasing 

Speedcode with disdain, but I got a lot of work done and 
learned several lessons about machine room operation. 
Specifically: 

1. Get the programmer off the console and out of the 
machine room. 

2. Standardize on machine setups to eliminate setup steps. 
3. Avoid reloading your whole job each time, maintain a 

magnetic tape copy, and update storage with a change 
deck. 

4. The use of an integrated package of programs produced 
results much faster than with 100 percent custom pro
gramming and worked satisfactorily for all but the 
biggest compute-bound jobs. 

In 1954, I got tired of defense applications and moved to 
General Motors Research in Detroit. They were just installing 
701 serial # 17, and I took Speedcode and my mode of 
operation with me. The results were much the same, even 
though my engineering applications then dealt with auto
mobiles and automotive gas turbines. 

In mid-1955, General Motors had an IBM 704 on order; 
George Ryckman was assigned to lead the team to plan for its 
installation and operation. I was on that team and played a 
role which today we would call architect. About that same 
time, the IBM user's group, SHARE, was being formed to 
allow the member installations to exchange programs and 
ideas for their mutual benefit. The third meeting of SHARE 
was held in Boston on November 10 and 11, 1955. 

Prior to that meeting, General Motors published a descrip
tion of an operating system for the IBM 704. There was a 
competing proposal from North American Aviation. After 
reviewing the system sketched by General Motors, the North 
American representatives decided to join with us, convinced 
us to make some modifications, and as a result we both got our 
operating systems for about 50 percent of the price, less than 
50 percent of the elapsed time, and with much higher quality 
because of the talent available in the combined team. 

The resulting operating system built upon my experience 
with the 701 and exploited the 704 hardware. The General 
MotorslNorth American Aviation effort was eventually used 
in about 20 of the IBM 704 installations. There were people 
associated with the system as developers or as users and im
provers, who moved on to be participants in SOS, IBSYS, the 
Direct Couple for the 7094, OS/360, IMS/360, and JES. 

Before proceeding with a discussion of the operating system 
we produced, let me momentarily digress and describe the 
IBM 704. The 704 was a grown up 701. It was faster, and 
the storage tube memories on the 701 had been discarded in 
favor of coincident-core memories on the 704. That simple 
expedient, coupled with the next generation of electronic 
technology, increased the mean-free error time to about 
eight hours. 

The 704 instruction set was enhanced with some logic in
structions and a set of binary floating-point arithmetic in
structions. It had no built-in decimal capabilities. Internally 
the 704 was more than twice the speed of a 701. 

In January 1957, the 704 installed at General Motors in 
Detroit had 8KW of core, four drums of 2KW each, eight mag 



General MotorslNorth American Monitor for the IBM 704 Computer SOl 

tape units, and the same slow card reader, printer, and punch 
as had adorned the IBM 701. The base rent was $35,550 a 
month. Thus the available memory was greater ~ the speed was 
up, but the primary I/O equipment was the same. Further, the 
mainframe was still single sequencing (cycle-stealing channels 
didn't come along until the IBM 709), so one devoted 100 
percent of the CPU to any input/output operation undertaken 
(see Figure 4). We recognized we had to change our mode of 
operation to achieve full benefit of the 704 over the 701. 

IBM had realized that some large commercial accounts 
would have a lot of cards to read and had many checks to 

'print. So they offered, as an extra cost option, three separate 
stand-alone devices to convert card images to magnetic tape 
images, to take tape images and print them, and to take tape 
images and punch cards. Since these were stand-alone, they 
were in some ways better than cycle-stealing channels as there 
was absolutely no interference to the processing being 
performed by the mainframe in the next room. 

The following highlights of the operating system we devel
oped were extracted from the 1955 SHARE proposal (re
ferred to earlier) and a programmer's manual we found that 
was dated January 31, 1957. Thus fourteen months after the 
proposal, we put together a team, polished the design, imple
mented the system, and documented it. The following list 
contains the highlights of the joint General MotorslNorth 
American effort: 

1. All input and all output were processed on the off-line 
card-to-tape equipment. These produced and received tapes 
containing files now known as SYSIN and SYSOUT. The 
mode of operation was then known as tape-to-tape since the 
reader-printer-punch attached to the mainframe were used 
only as extensions to the operator's console and for 
maintenance. They were not used for any production input 
or output. 

2. The SYSIN tape contained a batch of independent jobs, 
and each job was identified by control cards whose functions 
are now provided by JCL. The sequence started with a job 
card which contained accounting information and the 
programmer's name. Each pack of cards that followed the job 
card contained header information which controlled its 
conversion from decimal to binary, and then its subsequent 
processing. 

3. Although IBM provided plugboards in every reader, 
printer, and punch, we set up installation standards and fig-

Figure 4-IBM 704 

uratively welded them into the machine. Thus all the data 
reorganization was done by programming and not by board 
wiring. This standardized the setup and reduced the 
unproductive inter-job time from minutes to milliseconds. 

4. We threw the programmers out of the machine room, 
hired professional computer operators, and standardized the 
communication between the programmer and the operator. 
The programmers caught on to the new mode of operation 
rather quickly since we instructed the operator to proceed to 
the next job when there was confusion or something didn't 
work out. 

5. We gained programming efficiency through the use of 
standard decimal-to-binarylbinary-to-decimal conversion rou
tines and standard (built-in and integrated) debug tools. This 
reduced the programmer's effort since it did not require un
derstanding the library routines. He merely had to write some 
job control statements to use them. 

This had another important benefit to the programmer. The 
memories on these machines were relatively small, only SKW. 
By providing all of the decimal-binary translation outside the 
programmer's domain, we provided an execution time en
vironment that had binary input, computed in binary, and 
produced output in binary. This gave more usable space to the 
application than would have been possible for any but the 
most experienced programmers handling their own input and 
output, in customized fashion. 

6. We augmented the IBM hardware with a custom de
signed, locally produced, binary time-of-day clock. Further, 
the system was programmed, just as modern operating sys
tems are, to sample the clock whenever a job card was read for 
a new job, and to record the resources used during the run so 
proper accounting records could be maintained. Today we call 
these SMF records. 

We even went a step further because we placed an advisory 
invoice on the trailing page of each printout so the pro
grammer was aware of the resources used and the cost of those 
resources each time a run was made. We found the resulting 
self-discipline of great benefit since programmers naturally do 
more desk checking when a wasted shot at the machine costs 
more than a day's wages. 

7. With the primitive control language we had on the 
SYSIN file, it was possible to assemble a program, load it into 
memory, present it with a data deck, and record the results of 
the assembly and the execution in a single pass on the ma
chine. It was well into the 1960s before this "load-and-go 
philosophy" became generally popular. 

S. Further, we designed the system, within limits, to be 
extensible so it was possible to add other language translators 
to the menu of input conversion routines. After I left the 
project, the other members of the system's team at General 
Motors added Fortran as an input translator so it was possible 
to compile and execute, in a single pass, canned library 
routines, assembly code, and Fortran programs. 

The implementation of this system was largely dictated by 
the small core memory available and the speed of the I/O 
devices. As discussed earlier, the peripheral card reading 
equipment produced card images on tape. The data on these 
tapes was still decimal as no conversion had taken place. 
Further, the printer and the punch required decimal tape 



802 National Computer Conference, 1987 

images as they too lacked any ability to convert. The 704 
mainframe only had an 8KW core memory. Due to the small 
size of this memory and due to the large size of a general 
purpose decimal-to-binarylbinary-to-decimal conversion rou
tine, the system was conceived and implemented in three 
distinct processing phases (see Figure 5). 

In the first phase, the binary coded decimal card images 
were read from tape, control cards were interpreted, and a 
binary file was created. Logically the binary file was the direct 
analog of the BCD image tape that had been created on the 
peripheral card reader. However, it was more compact and 
was in the native language (e.g., binary) ofthe CPU. A binary 
read program took only about 50 instructions. A decimal-to
binary conversion program took almost 2,000. 

Similarly, each job during execution wrote a binary output 
file. Control statements, just like JCL, were imbedded in the 
output stream. These control statements caused the output 
translator to convert and format the binary stream properly, 
and subsequently, to include parameters on the decimal out
put file to control printer spacing, skips to the head of form, 
and insert separator cards between decks of punched card 
output. Again, to conserve memory and gain speed, the out
put translator was given the whole machine and conversion 
was optimized. 

The resulting operating system had an input-translation 
phase which converted data from decimal to binary, and pro
grams from source to object language (symbolic assembly 
language was initially available, soon after we added the 
then-new Fortran); an execution phase which was almost ex
clusively under the programmer's direct control; and an out
put translation phase which processed line printer output, 

1. Load input translator~ ': 9. S""'le CIOC~ ~ \ 
2. Translate input botch I 10. Load Job 3 ! 
3. Somple clock ~ II. Execute Job ~ ! 
4. Load Job I 12. Somple clock f 
5. Execute Job I 13. Load Job 4 
6. Somple clock ~ 14. Execute Job 4 
7. Load Job 2 ------- 15. Sample clock J 
8. Execute Job 2 16. Load output translator 

17 I Trans late output batch---' 

Figure 5---GMRlNAA Monitor time phasing 

punched card output (both decimal and binary), and account
ing records. 

To recap, the advantages of the three-phase design were: 

1. It provided the maximum amount of unencumbered 
memory to the application programmer during exe
cution. 

2. It was efficient since the conversion routines were bigger 
than the sub-files for individual jobs. The big conversion 
programs were loaded into memory only once per batch, 
and all of the little data files were passed by them, result
ing in a smaller number of total cycles than if the large 
translator routines were fetched and executed at the 
beginning and end of each job. 

3. By giving the translators the full machine during the 
conversion process, the translators could be made as 
large as is necessary to gain efficiency in execution and 
hence were optimized to be faster for the conversion 
tasks they had to do. 

When the resulting code was written, 90 percent of the work 
was devoted to the input and the output translators, and only 
about 10 percent of the effort was devoted to supporting 
programmers during the execution phase. 

When North American Aviation and General Motors Re
search decided in the Winter of 1955 to jointly develop the 
system, we split it right down the middle. North American 
developed the integrated programs that became the input
translation phase, and GM developed the output translator. 
In the Spring of 1956 GM extended the North American input 
translator to call Roy Nutt's symbolic assembly program 
(SAP) as an imbedded conversion subroutine during phase 1 
input translation. 

There was an intellectual disagreement concerning the ser
vices the operating system should provide to the programmers 
during phase 2 execution. At this point the software installed 
at North American and at General Motors was dissimilar. The 
software for phases 1 and 3 was identical at both locations, but 
we each had our own separate execution time facilities. 

When we first started planning this system, we were con
cerned about protecting the execution-time facilities. The 704 
had no limit registers or any other way to partition off and 
protect the operating system from the application pro
grammers. These didn't come in the IBM world until the 
advent of Systeml360. Furthermore, we had only one class of 
instructions and every programmer had access to all of them. 
(The concept of privileged instructions for IBM computers 
also came about in 1964 with the Systeml360.) As it turned 
out, we needn't have worried on either count. Our application 
programmers were company-loyal and not mischievous. Most 
of them were delighted to have someone else worry about 
conversion translators and modes of operation. While we had 
a few application programs that ran away during execution 
and destroyed the operating system in low core, this was a 
relatively infrequent occurrence. I cannot remember a single 
instance where a programmer maliciously tampered with the 
operating system. 

We were aiso worried about programmer acceptance of 
operating system standards. During the 701 days, pro-



General MotorslNorth American Monitor for the IBM 704 Computer 803 

grammers had unfettered access to all of the 701 's hardware 
features. Some questioned whether programmers would fight 
the system since it denied them access to certain machine 
features (the operating system claimed a tape as a SYSRES 
device and the first 300 words of core during the execution 
phase). Perhaps it was because we installed the operating 
system when we installed the hardware and had no legacies to 
deal with, but in Detroit we had no serious attempts by head
strong programmers to read cards on-line, demand all of the 
tapes for their own personal use, or otherwise contravene the 
standard configuration we set up. This may have been par
tially due to our willingness to allow any programmer to vio
late the system constraints, but he was advised that if he did, 
his jobs would only run programmer present and only in the 
wee hours of the morning. 

Of the direct contributors to this pioneering effort there 
were several. In the past 30 years many of us have moved 
several times. Recently some of the team has retired, others 

TABLE I-Contributors to the GMRlNAA Monitor 

Individual 1955 Affiliation 

Penny Barbe NAA 
Robert Christiansen GMR 
Jim Fishman GMR 
Dale Hanks NAA 
Don Harroff GMR 
Don Hart GMR 
Owen Mock NAA 
Bob Patrick GMR 
George Ryckman GMR 
Kei Shimizu NAA 
Frank Wagner NAA 

of us are still plugging away. Table I lists all of the original 
players with their original affiliations. 





BESYS revisited 

by R. E. DRUMMOND 
AT&T Bell Laboratories 
Holmdel, New Jersey 

ABSTRACT 

The origins and development of the BESYS family of operating systems are traced. 
Developed at AT&T Bell Laboratories in the late fifties, the system was used for 
over ten years to control and facilitate the use of the IBM 704-709X series of. 
computers. Some of the novel operating system techniques created for the system 
and the people who produced them are chronicled. 

805 





INTRODUCTION 

In the operating system sphere, Bell Labs is best known for 
lJNLX. TM * But before there was a UNIX operating system, 
there was an operating system called BESYS. ** For over ten 
years BESYS was a mainstay for computing at the Labs and 
altogether served our users from late 1957 to early 1971. 

The UNIX operating system has merited much attention in 
the literature. In contrast, BESYS is all but forgotten. A 
search of the available literature turned up a single one para
graph entry in Encyclopedia of Computer Science and Tech
nology that mentioned BESYS.l Even the internal Bell Labs 
literature is scant when it comes to recording BESYS 
contributions. Once-common documents that described the 
system and how to use it have all but disappeared, having 
somehow escaped the document archives. 

This paper rectifies that oversight and attempts to set the 
record straight about the development of BESYS. 

THE PRE-BESYS PERIOD 

Bell Labs has been involved with computers since the early 
1930s. The computing establishment that gave rise to BESYS, 
however, consisted of a half dozen members of Bell Labs' 
Mathematics Research Center. In 1952, they acquired their 
first commercial computer: a small IBM Card Programmed 
Ca1culator.2

,3 This group included V. M. Wolontis and R. W. 
Hamming who, when IBM 650s were installed starting in 
1955, developed the once popular problem oriented lan
guages, L1 and L2.4

,5 

L1 and L2 extended the 650's capabilities by interpretively 
providing floating-point arithmetic, simplifying memory 
access, and supplying useful diagnostic information; thus en
abling users to straightforwardly program the underlying 
machine. This encouraged users to program their own 
applications, allowing them to realize the right results faster 
and to benefit from the feedback provided by the pro
gramming experience. The essence of this "open shop" ap
proach to computing was captured in a well known Hamming 
motto: "The purpose of computing is insight, not numbers." 

The operation of the equipment itself, however, was 
"closed shop." Since 650 operations were not complex, users 

*UNIX is a trademark of AT&T. 
**The name BESYS has reportedly stood for BEll SYStem which although 
appropriate, is perhaps too grand. It actually is derived from a running together 
of BE and SYS. BE was the SHARE assigned installation code for Bell Tele
phone Laboratories, Murray Hill, NJ and SYS stood for system, which was 
indicative of the programming classification for BESYS. This was consistent 
with SHARE naming conventions for programs it distributes. 

BESYS Revisited 807 

could set up their jobs to be run by professional operators. 
This permitted the machines to be run efficiently on an 
around-the-clock basis. 

By mid-1957, to handle the growing computing workload 
and increasing complexity of applications, an IBM 704 was 
ordered to replace the 650s, and preparations for the new 
machine began that were in keeping with the philosophies that 
had evolved. 

EARLY 704 ERA 

The 704 had been announced in mid-1954, and the first one 
was in the field by the end of 1955.6 So by mid-1957, many 
programming tools existed to facilitate its use, By then the 
SHARE 704 users group was two years old and was already an 
important source of programs developed by its members. 
Through SHARE, users built programming tool kits, I/O, and 
mathematics libraries enabling them to write, debug, and exe
cute their own application programs using stable facilities. In 
addition, FORTRAN was about to make its debut. 

Some of the more useful programs available through 
SHARE are shown in Table I. At that time, programs were 
written in S~P or FORTRAN. They were translated to binary 
machine level usually as card decks. These decks could be 
combined with those of previously translated I/O or mathe
matics routines and loaded into the computer using a tool like 
NY-RBL. 

Execution, sometimes with a debugging tool like NY-SNAP, 
produced print or punch output. For large amounts of input or 
output, magnetic tapes usually came into play employing off
line tape drives, printers, card readers, and punches where 
appropriate. 

Characteristically, most tools were oriented to stand-alone 
use and only worked together through manual intervention by 
the user or a trained operator. Few operating systems existed 
or were in use at that time. 

A definite mismatch was widely recognized between the 
704's internal speed, the sluggishness of its on-line unit-record 
equipment, and the inherent slowness of manual operations 
associated with stand-alone use. Clearly a new mode of oper
ation was required for the 704 if it was to be used in an 
effective and efficient way. 

EMERGENCE OF BESYS 

Soon after Bell Labs placed its first 704 order, G. H. Mealy 
and Gwen J. Hansen addressed the problem of using the 
machine by developing one of the earliest operating systems. 
Their solution was a system that provided: 



808 National Computer Conference, 1987 

1. Flexible operator control of the hardware normally in a 
non-stop mode of operation 

2. Efficient batch job processing usually in a tape-to-tape 
operating mode through use of off-line unit-record 
equipment 

3. Effective user access to system facilities using control 
cards to minimize user-operator interaction 

4. User program access to centralized 110, system control, 
and elementary mathematical functions 

TABLE I-Some SHARE programming tools. The installation 
codes shown in this table served to identify the tools' contributors. 
Thus, UA stood for United Aircraft; PK, IBM Poughkeepsie; NY, 
IBM New York; and so on. 

I SHAnE Programming Tools 

Installation Program Functional 

Code ID DescrIption 

UA SAP Symbolic Assembly Program 

PK CSB4 ca.rd to Storage BInary (Loader) 

NY RBLI Reloca.table BInary Loader 

UA CSH2 C3.rd to Storage Hollerith 

UA SPH3 Storage to PrInter HollerIth 

UA DOC I Dech]lal to BInary Conversion 

UA BDCI BInary to Decimal ConversIon 

NY SNAP SNAPshot dumper 

NY SNAQ Snapshot OUtput Converter 

UA TAD I Tape And Drum utmty 

UA 'IPH2 Tape to PrInter H:Jlleritb 

CE I 650W 
650 \tV1re Plugboard SImulator 

CE 
1

6505 650 Simulator 
I 

UA S'IE 1 System Tape Editor 

TT JA 
, n TIt "l".-nor"nn" ....... 

5. Snapshot and post-mortem dump debugging facilities 
6. Compatibility with the 650s by simulating the L1IL2 

interpreters 

The initial system, BESYS-1, was in use by October 16, 
1957.7 It was designed for a 704 with drums, 8K 36-bit words 
of core memory,. a full complement of tapes, and on-line/ 
off-line unit-record equipment. The system was developed 
using facilities at the Esso Research Center. Ironically, it 
would never be used at Bell Labs because our original order 
changed before delivery to a drumless 704 with 32K words of 
memory. This change gave rise to BESYS-2.8

,9 

Both systems were essentially identical. They usurped the 
lowest 64 and highest 4K words of memory, a subset of the 
tape drives and the sense switches. In addition, BESYS-1 
swapped a portion of the upper 4K memory to drum storage 
making it available for user program variable storage. The 
lowest 64 locations were reserved as a hardware communica
tion area; the upper 4K locations were used for the core 
resident portion of the system. The complete system resided 
on tape and consisted of FORTRAN and most of the tools in 
Table I adapted to work in the BESYS environment as sub
systems or integrated into the core resident portion of the 
system itself. 

One specific aim of these changes was the removal of pro
gram stops .when error conditions were detected. The stops 
were replaced by messages describing the condition and a 
standard recovery taken when possible. If operator action was 
required, the messages appeared on the on-line printer and a 
standard system stop occurred. This helped the operator dis
tinguish random program stops from planned stops and con
tributed to the non-stop mode of operation. 

BESYS OPERATIONS 

Although much effort was devoted to reducing the involve
ment of operators in the processing of jobs, the operator still 
played a key role in the use of the machine. At the meta
system level, the operator was responsible for: 

1. Starting the system 
2. Batching jobs for system input 
3. Assigning tape drives and mounting tapes 
4. Responding to system error messages 
5. Batching output for peripheral processing 
6. Terminating jobs that stopped, looped, or exceeded job 

limits 
7. Recovering from system failures or corruption 

The heart of the system was the core resident portion. It 
contained the following: 

1. System control program 
2. Centralized 110 facilities 
3. Comprehensive mathematical functions 
4. Tables and buffers 

The system control program functioned at several levels: (1) 
operator, (2) user, (3) program, and (4) hardware. 



Operator Level 

At the operator level, BESYS used the sense switches and 
the on-line printer as an interface to process a sequence of 
jobs. Jobs were presented to the system by the operator a 
"batch" at a time through the standard input stream. Nor
mally, the medium was tape, and the system would sequence 
through the jobs in rapid succession. Each job was logged on 
the printer as it was encountered, permitting the operator to 
monitor the system's progress. The system also logged de
tected error conditions on the printer, sometimes soliciting an 
operator response. The printer could also be used by the 
operator to monitor the standard output stream. The operator 
used the sense switches to: 

1. Select the standard input source: tape or on-line card 
reader 

2. Alter normal sequencing of jobs in the standard input 
3. Provide a go/no-go response to error conditions 
4. Monitor output 

User Level 

At the user level, BESYS implemented a process that read 
user-provided control cards from the standard input and inter
preted their contents to determine the system functions to 
exercise. The control cards looked just like SAP statements 
and consisted of an optional location field followed by an 
operation field and possibly a variable number of operands. 
The operation field specified the system function. The loca
tion and operand fields were passed to that function for fur
ther interpretation. 

On initial entry, the control card processor searched the 
standard input for a JOB card. Once found, the system initial
ized itself to process the incoming job. It then read the next 
control card and performed the specified function. These 
functions included: 

1. Invoking sub-systems like SAP and FORTRAN 
2. Loading object programs 
3. Patching loaded programs 
4. Accumulating snapshot dump requests 
5. Communicating to the operator via the printer 

Control card processing would continue until a TRA card 
was encountered. The TRA function would complete any 
unfinished business associated with program loading, plant 
any accumulated snapshot dump requests and TRAnsfer con
trol of the machine to the user's program. 

Following is an example of a job that would have caused 
BESYS to do a FORTRAN compilation with test. 

JOB account-number, programmer-name 
FOR 

(FORTRAN source program statements) 
LOD4 
TRA 

(Data cards for program test) 

BESYS Revisited 809 

The JOB card signified the start of the job and identified the 
user in terms of an account number and programmer name. 
The FOR card invoked the FORTRAN compiler which would 
have processed the following source program leaving the re
SUlting object program on tape 4. The LOD card loaded the 
object program from tape 4 into memory. Finally, the TRA 
card started the loaded program's execution. 

Program Level 

At the program level, BESYS provided many services. Pri
marily, they consisted of: I/O routines, snapshot dump rou
tines, system control routines, and, initially, the common 
elementary mathematics routines. Nearly all the facilities nor
mally available to the FORTRAN programmer were present 
in the core-resident portion of the system. The rationale for 
this was that the SAP programmer could also make use of 
them, and, since most programs would use them, the memory 
they occupied was not wasted. Also, the time saved by not 
having to load them repeatedly, contributed to over-all system 
efficiency. 

Eventually, introduction of FORTRAN II and developme~t 
of a program linking capability for the loader weakened t~IS 
argument, making it reasonable to purge the mathe~atIcs 
routines from the resident portion of the system. ThIS also 
proved to be a necessity because, as BESYS matured, free 
space within the system's 4K region became a critical resource. 

Once control transferred to the user's program, overall con
trol became tenuous. There was no hardware facility that 
enabled the system to constrain the user's program; their 
relation to one another was peer-to-peer. Hence, the system 
was at the user's mercy. Only honor and social pressure bound 
the user to conventions established by the system, and only 
the operator's sensitivity to how the system was beha~ng 
remained as the effective means to limit damage when thmgs 
went awry. 

Although the peer-to-peer relationship represented a po
tentially critical integrity exposure, in practice it did not prove 
to be a devastating factor. Because jobs were processed one 
at a time, the user that violated the system usually stood to 
suffer the most. Nevertheless, it was a weakness that forced a 
greater dependence on the operator than desired. 

At least two facilities were provided for programs to return 
control to the system. The first, RETURN, simply returned 
control to the control card processor initiating a search for the 
next valid control card and resumption of control card process
ing. This facility made multi-step jobs possible. The second, 
ENDJOB initiated end-of-job processing. Any post-mortem 
dump req~ests were taken, the snapshot converter was in
voked, miscellaneous end-of-job housekeeping performed, 
and, finally, the control card processor was reentered to 
search for the next valid JOB card. 

Hardware Level 

At the hardware level, BESYS had to deal only with 
floating-point traps. Facilities were provided that exami~ed 
the floating-point "spills" and either produced appropnate 



810 National Computer Conference, 1987 

diagnostic messages or honored alternative actions specified 
by the user through use of ALT control cards. 

SYSTEM ACCOUNTING 

The 704 had neither a time of day clock nor a timer to simulate 
one; hence, usage accounting was crude. A time card accom
panied each job submitted to the system. It served to: 

1. Identify the user who submitted the job 
2. Provide job run time limits and output estimates 
3. Specify special handling requirements such as tape IDs 

and their logical tape drive assignment or paper and card 
stock to use for peripheral equipment 

The card or the information it contained was also used by 
operations to: (1) schedule jobs, (2) fetch and set up tapes, 
(3) set up peripheral equipment, (4) feedback written remarks 
from operators, and (5) log time on and off the system using 
a manual time-clock. 

Eventually, usage accounting was improved through use of 
an electro-mechanical time-of-day clock tied to the on-line 
printer. Accounting information was then punched on-line 
into cards as part of the ENDJOB housekeeping function. 

BESYS DISTRIBUTION 

True to its origins, BESYS 1 and 2 were submitted to SHARE 
for distribution and were also made available to several ex
ternal installations directly. Reportedly BESYS was used by 
many installations,tO but no records remain on which ones 
they were. Only faint recollections suggest they included The 
Esso Research Center, Mobile Oil Corporation, and The 
Shell Oil Company. 

THE BESYS-2 SUCCESSORS 

G. H. Mealy left Bell Labs for the Rand Corporation in 1959 
just as plans were being formulated to develop BESYS-3, the 
first of a series of successors to BESYS-2. G. J. Hansen and 
the author continued this effort. 

BESYS-3 

BESYS-3 was a port of BESYS-2 to the IBM 7090. The major 
efforts involved revamping system I/O facilities, replacing 
SAP with FAP and upgrading FORTRAN from the 704 to the 
709X version. It was placed into service in July, 1960. 

In the process of porting, BESYS received a general face 
lifting. New control functions were added; others were 
dropped because their function had become obsolete or was 
done in some other way. Some control cards felt the effects of 
human engineering. The LOD controi card for invoking the 
loader, for example, became the LOAD control card. The 

so-called Yum-Yum cards*** of NY-SNAP vintage were 
renamed and reformatted and came out as SNAP and 
COREPM. 

Upgrading FORTRAN was no trivial task but in general it 
was straightforward. Replacing SAP by FAP, on the other 
hand, was more complex. By 1959, what started out as 
UA-SAP under BESYS had been significantly extended, and 
although FAP shared the same ancestry, it lacked these exten
sions. The most important extension was a conditional and 
recursive macro facility developed by D. E. Eastwood and M. 
D. McIlroy.1t 

Since FAP addressed the new facilities provided by the 
709X hardware and was already in use on that hardware, our 
SAP extensions were ported to FAP; in effect, merging the 
best of both assemblers. The result became widely known as 
BE-Macro-FAP and eventually became the basis for IBM's 
IBSYS assembler: MAP. 

Although the 704 BESYS environment encouraged using 
centralized I/O facilities, the peer-to-peer relationship of sys
tem and user programs enabled sophisticated users to start 
their own 1/0 directly and exploit the CPU-centered I/O copy
logic to process data on the fly as it was transmitted to tape, 
the CPU, and core. The architecture of the 709X machines 
however, separated the data transmission function from th~ 
CPU by using independent channels. This provided the poten
tial for a high level of concurrency if programmed properly. In 
addition, the channels could signal the occurrence of major 
I/O events by interrupting the normal sequential processing of 
the CPU. 

Fully realizing the concurrency potential required the devel
opment of a sophisticated set of interrupt driven I/O routines. 
Even though only a simple buffering strategy was employed 
initially using such an approach, **** the implementation 
technique virtually precluded coexistence with user written 
I/O routines. Thus, users were forced to use the system's 
centralized I/O facilities. 

This had two effects: (1) the user level I/O facilities had to 
be beefed up and (2) the amount of memory required by the 
resident system increased sharply. This led to the contro
versial decision to double the system area of memory from 4K 
to 8K, even though the maximum memory of 32K remained 
the same for the 709X machines. 

Some arguments proposed, not unreasonably, that the 4K 
limit on system area size be preserved by purging from the 
resident system all the higher level FORTRAN based I/O 

***So called because the handwritten words "Yum-Yum Cards" were scrawled 
across the top of a SHARE program write-up of NY-SNAP, presumably by G. 
J. Mealy, that was circulated within Bell Labs during the early 704 days. All the 
NY-SNAP cards were of the form Y- - where '-' stood for some condition 
imposed on the dump request. For instance, YUN--dump UNconditionally, 
YPL--dump if the accumulator was PLus, YPM-provide a Post-Mortem 
dump, etc. They were presumably good to feed to the system when debugging, 
whence Yum-Yum! 
**** Apparently BESYS-3 was an early user of interrupt driven 110. This was 
based on our testing experience at several different 709 sites. Each time we 
tested at a new site we had to have jumpers changed in the Data Synchronizers 
to activate their Data Channel Trap feature. 
*****Except for the type information, the blocking scheme was equivalent to 
what is currently called "Variable Block Span Format" in IBM's OS/370. 



routines just as the elementary mathematics routines had 
been purged under BESYS-2. From a public relations point of 
view this would have looked good for the system, but from the 
user's perspective it was really a trade-off-user space for 
system space. Thus, although it would have been a challenge 
to live within the original 4K size, as an expedient the addi
tional memory was taken for system use. Time would show 
that as the system continued to develop there would be no 
problem in using all that additional space. 

A new and important dimension to computer output was 
introduced with BESYS-3 when C. F. Pease developed a basic 
software package to generate tapes that could drive a 
Stromberg-Carlson 4020 microfilm printer. This device was 
capable of producing high quality graphics. It enabled users to 
visualize their data, providing them with new insight. Soon 
after its introduction, it was even used to produce computer
generated movies. 

One continuing goal of BESYS was to improve the quality 
of feedback to users about their programs. Along these lines, 
V. A. Vyssotsky in 1961 conceived and implemented a pre
processor to FORTRAN that analyzed source programs look
ing for use of variables before their initialization and sections 
of code that could not be reached. Typically, these problems 
went undetected by the compiler, yet frequently produced 
subtle and sometimes mysterious results at execution time. 
This improvement to FORTRAN was welcomed by our users 
but was treated with indifference when offered to IBM. 

BESYS-4 

Once the conversion to BESYS-3 was completed, thoughts 
turned to how the system could be made more efficient, how 
the operator interface could be improved, and how the system 
could be made more robust. 12 

Buffered and Blocked I/O 

System efficiency was given a boost by moving from the 
simple buffered I/O strategy to one that was completely gen
eral, permitting read-aheads and write-behinds to an arbitrary 
depth. There was also a move away from unit record process
ing to a generalized blocking scheme employing logical 
records of arbitrary length and containing indications about 
the type of information being handled. ***** Blocking effec
tively increased tape capacity and significantly improved data 
transfer rates. 

The blocking format was designed with IBM's 1401 in mind 
so that the 1401s could process tapes used for the standard I/O 
streams. The logical record type enabled both print and 
punched output to be merged into the same stream along with 
job accounting information reducing the number of dedicated 
on-line tapes and eliminating the need for an on-line punch. 
User data tapes could also be dumped when necessary using 
the 1401s. 

Unless the user took some deliberate action, all I/O was 
automatically blocked and buffered in a transparent fashion. 
Even the unused area of user programming space was auto-

BESYS Revisited 811 

matically used for buffers. From the user's perspective, all I/O 
was done on a logical record basis without regard to detailed 
questions of hardware efficiency; that was deemed to be the 
system's job. 

Hardware Extensions 

To attack some of the major problems of operating the 
equipment and controlling the flow of work to and from the 
system as well as provide a high-speed data connection to the 
system, G. L. Baldwin and H. S. McDonald collaborated to 
build equipment that interfaced to the 709X systems using the 
Direct Data Feature. This equipment provided the following 
facilities: 

1. Interval timer 
2. Time-of-day clock 
3. Day-of-year calendar 
4. Operator's display panel 
5. Tape control system 
6. High speed data link 

Interval timer 

The interval timer eliminated the need for the operator to 
monitor the running time of jobs streaming through the sys
tem. The user now entered the estimated maximum run time 
to the nearest one hundredth of an hour on the JOB card and 
the operating system automatically cut the job if it was ex
ceeded. A visual analog display of the amount of execution 
time remaining for the job on the system was provided to 
assist the operator with scheduling. 

Clock and calendar 

The clock and calendar were useful in providing accurate 
information for accounting and other time stamping applica
tions. The clock provided user programs with the ability to 
measure time with full millisecond accuracy. 

Operator's display panel 

The operator's display panel consisted of five system status 
indicators, two with integrated push buttons and a program
mable speaker. Four of the indicators reflected major system 
states: FAP, FOR, RUN, and SYS. The fifth indicator re
flected the HOLD/RELEASE state of the interval timer. The 
RUN indicator was also a button. When lit, depressing it reset 
the interval timer and thereby normally terminated the job in 
progress. Using the button associated with the HOLD/ 
RELEASE indicator, the operator could exercise a manual 
override of the interval timer. The speaker was driven by a 
flip-flop and was normally used by the system to produce an 
audible tone alerting the operator when some condition 
required manual intervention. 



812 National Computer Conference, 1987 

Tape control system 

The tape control system provided BESYS with almost the 
same capabilities as the operator to control tape drives within 
the computing center. Each tape drive was provided with a 
control panel that displayed the unit's status and which the 
operator used to enter reel numbers, select unit addresses, 
switch drives on- or off-line, and set special status informa
tion. Except for entering reel numbers, the operator could 
also perform the same operations from a centralized console. 
Any change made by the operator using these facilities caused 
a manual entry latch to be set. This, in turn, caused the system 
to update its internal tape-drive-state table. 

The operator still had to mount (taking into account a user 
specified channel), identify, and unmount tapes for the sys
tem, but from that point on the system did the rest, namely: 

1. Read tape reel numbers entered by the operator 
2. Switch the drives on- or off-line 
3. Assign or sense unit addresses on drives 
4. Ready or unready drives 
5. Sense status indicators set by the operator 

Drives mounted with private tapes were always placed in a 
reserve state. This distinguished them from drives that could 
be used for system or scratch purposes. The reserve state was 
also used with batched output tapes as an operator request for 
the system to close out the tape and queue it for peripheral 
processing. The next tape would then be automatically se
lected, switched on-line, and readied for use by subsequent 
jobs-all in a matter of seconds. Similarly, at the end of a 
batched input tape, the system would switch to a new one. The 
selection criteria were based on a unit address convention 
followed by the operator. The operator would be prompted 
only when a suitable successor couldn't be found. 

The user conveyed non-system tape requirements for a job 
using MYTAPE control cards. For a given logical unit, they 
specified the tapes to use by reel number (multi-reel tapes 
were accommodated) and whether the tapes would be used 
for input, output, or scratch. Input tapes were file-protected 
and marked read-only to the system 110 routines. The tape 
control system proved to be an effective tool and significantly 
improved tape handling and the flow of work. 

High-speed data link 

The high-speed data link connected BESYS to a Packard 
Bell 250 computer located in a remote laboratory. Users 
within that laboratory could request the interjection of a job 
into the current job stream to process data transmitted 
through the data link. 

Other monitor aides 

Several RPQs were added to the 709X hardware to improve 
system robustness. One was a trap on halt instructions. An
other was a crude form of memory protection that was used to 
protect BESYS from vagrant stores and, under the right con
ditions, was also used to protect buffer pools set up in user 

areas. Both improvements enhanced the system's control and 
reduced the monitoring role of the operator but did not alter 
the peer-to-peer relationship enjoyed by the knowledgeable 
user. 

BESYS-4 went into operation in April, 1962. 

BESYS-5 

Like most of its predecessors, the production of BESYS-5 was 
motivated by hardware changes. On the surface, support was 
introduced for the CPU extensions associated with the IBM 
7094 and for the IBM 1301 Disk Storage Facility. Internally, 
however, the changes called for major revisions of the sys
tem's I/O routines to cope with the BOIs and for wide spread 
changes to handle the new instructions that were present on 
the 7094.13 

Support for the BOIs produced the biggest changes to the 
system. These changes had some good aspects and at least one 
unavoidable one. The good ones included moving from a tape 
resident system to one that resided on disk and, for users, 
sequential and random access to temporary files on disk. The 
unavoidable was that the changes required more space than 
was available in the 8K system area. This forced us to restruc
ture that area and to use a storage overlay technique. This was 
palatable only because the system was now disk-resident. 

Up to this point, system maintenance was done by the sys
tem itself, using a modified version of the system tape editor 
UA-STE. As an expedient, maintenance was done by switch
ing to the IBSYS Editor. This was accomplished by incorpo
rating a slightly modified IBSYS as a special purpose sub
system under BESYS. 

The user was provided with 110 facilities at the FORTRAN 
and FAP levels to randomly access records within a file. Also, 
all the 110 facilities formerly used to access tapes were now 
made capable of sequentially accessing files on disk. This was 
a prelude to accessing user files stored on disk that would 
eventually be added to the system. 

Facilities were introduced to make timer-cuts and floating
point traps more flexible. Exits could be set up to user code 
when these events occurred. For timer-cuts, if a timer exit was 
requested, a lO-second time extension would be granted and 
a one shot exit invoked. The exit procedure could wrap up 
processing and then go to ENDJOB. If for some reason the 
extension also expired, the job would simply be cut. For 
floating-point traps, any user-provided exit would simply 
override normal system handling. In addition, the user could 
request dumps conditioned on floating-point traps. 

BESYS-5 was installed in May 1963. After the normal 
shakedown period, development work resumed aimed at ful
filling disk support as well as providing additional facilities of 
an innovative nature. However, as a result of the trauma of 
running out of space in the system area of memory and 
resorting to the overlay scheme, the development effort split 
in two. One effort, unofficially dubbed BESYS-6, since it 
was going to be the "next" system, set out to replace the 
fixed overlay scheme with a dynamic relocatable approach. 
The other effort, eventually called BESYS-7, continued 
the BESYS-5 approach concentrating on completing the 
promised disk support. 



BESYS-6 

The intent of the so-called BESYS-6 system was to organize 
the 8K system area of memory so that it consisted of a static 
nucleus of minimal size and a dynamic area into which relo
catable portions of the system would be dynamically loaded as 
dictated by a job's processing. There was never any doubt that 
this was an ambitious approach that had a certain aesthetic 
appeal. That the associated effort would ever produce a 
production quality system, however, was in doubt. 

Several practical factors were working against this ap
proach. Foremost was performance. BESYS-5 had set a de 
facto performance level that would be difficult to beat. The 
overlay scheme was reasonably thought out and was designed 
to be optimal with respect to the way jobs normally used the 
system. The dynamic approach inherently had a higher over
head having to deal with module relocation and core 
fragmentation. 

There would be no pending hardware upgrades to boost 
performance that could be traded for the increased overhead, 
and there was no hardware assist that could be used to reduce 
the overhead. The handwriting was on the wall for the 709X 
machines; attention had already shifted to the next generation 
of machines. 

Finally, the promised upgrades for the disk support were 
ready and in demand. They would be offered in an edition of 
BESYS called BESYS-7. 

BESYS-7 

BESYS-7 was put into service in May, 1964. It delivered the 
promised additional disk storage support, support for private 
libraries, a user facility for input source switching, and some 
rudimentary terminal support. 

User Disk Storage 

When BESYS-5 was introduced, disk storage space was 
divided into three categories: permanent, semi-permanent, 
and temporary. The permanent space was used for system 
residence, and the temporary space was available for use by 
users for scratch files. With BESYS-7, provision was made to 
allocate semi-permanent space to users. Space from the semi
permanent category, called a key area, was allocated to a user 
on application to the computer center, and a name, called a 
key, was assigned to access it. 

A facility called REVISE enabled users to manage their key 
areas and to dynamically create, name, and allocate the space 
to files. Such files could be opened using their key and file 
names and accessed using any system I/O routine. 

As rudimentary as this file system was, it proved to be 
immensely popular. And surprisingly for a random access 
facility, it was primarily used to store many modest-sized se
quential files. Development groups that used specialized sets 
of tools found the file system particularly effective because it 
permitted the tools to be centralized, made readily available 
to their users, and easy to maintain. 

BESYS . Revisited 813 

Source Switching and Private Libraries 

Two system facilities added to the effectiveness of the disk 
file system. The first was a standard source switching capabil
ity, and the second was the ability to maintain and use private 
libraries of relocatable subroutines. Source switching could be 
performed at the control card or program level. It enabled 
users to redirect the system's standard input to any file. Al
most overnight, drawers of job decks quietly slipped into the 
file system and suddenly cards took a step towards obsoles
cence. Private libraries that could be searched by the system's 
loader abetted this shift and made the life of developers of 
specialized tools even easier. 

Experimental Terminals 

In 1964, an experimental PB-250-based intelligent graphics 
terminal, developed by E. N. Pinson, and several typewriter
like terminals with local buffer storage were linked to the 
709X systems and made to "interact" with the system at the 
job level. Although they showed that users could interact 
directly with the system, the job processing nature of the 
system precluded the type of interaction taken for granted 
today. 

The End of The Line 

BESYS-7 was the last of the systems we produced for the 
709X machines. With the next generation hardware waiting in 
the wings, the pace of system development dwindled. Atten
tion turned to the development of Multics and developments 
in the TSS/360 and OS/360 world. Optimistically, it was be
lieved that one or the other of these systems would assume the 
work load being handled by BESYS. 

By 1967, this optimism faded as it became clear that such a 
step would not be cost-effective. The investment in existing 
software was too great, and the conversion costs were too high 
for a flash cut to work. Instead a proposal by the author to 
emulate BESYS-7 on the Systeml360 as a means of smoothing 
the transition to the next generation machines and spreading 
out the conversion costs, gained favor. 14 

BE90 EMULATOR FOR BESYS-7 

In 1967, the proposal to emulate BESYS-7 turned to action. 
A team led by the author and including F. T. Grampp and 
eventually G. J. Hansen was formed to act on it. 

IBM had already produced an emulator for the 709X 
machines, called EM90. However, it did not support disk 
storage devices and, therefore, was not suitable for BESYS-7 
emulation. Our approach was to develop an emulator, called 
BE90, by combining EM90's CPU emulation modules with 
new routines designed to meet BESYS-Ts I/O requirements. 
In addition, direct interfaces to BESYS-7 and ASP were de
veloped so that a mixture of BESYS and OS jobs could be 
processed within the same OS/360-ASP environment. 

BESYS-7 itself was streamlined slightly, dropping most of 
the code supporting the Tape Control System in favor of set 



814 National Computer Conference, 1987 

up information supplied by ASP. All other BESYS functions 
were supported and no user job needed modification. 

BE90 was put into service in March, 1968, and within a 
month the plug was pulled on two 7094s. The last of the 709X 
machines would be retired from Bell Labs in March, 1969, and 
BESYS would continue to be used under emulation until 
February, 1971. 

THE LAST CURTAIN CALL 

One of the last programs that BESYS would ever run involved 
a humanitarian effort to help a boy being treated for Hodg
kin's disease. K. Knowlton, a Bell Labs pioneer in computer 
graphics, had helped develop a technique for generating 
movies visualizing the treatment of deep body cancer by radi
ation. Since the computer programs for that purpose only ran 
under BESYS at the time, the system was fired up one more 
time under BE90 to process the patient's data. The results 
produced would determine the proper radiation doses and 
what vital organs and other parts of the body should get the 
radiation. 15 

One couldn't have asked for a more fitting end to BESYS's 
long and distinguished record of service. 

CONCLUDING REMARKS 

BESYS contributions are hard to quantify. Certainly it helped 
thousands of scientists and engineers gain more insight into 
their work as well as provide them the means to obtain the 
results they required. The author is pleased to have been a 
principal contributor to the development of BESYS-3 through 
BESYS-7. 

Unlike IBM's IBSYS and OS, it didn't attempt to be all 
things to all people. Instead, it took a series of machines that 
had potential but were complex and difficult to use and pro
vided a system that transformed them into efficient and effec
tive tools. 

Some like to say that BESYS influenced UNIX; but in 
practice, no more than L1 and L2 influenced BESYS. For 
their time, they are all good systems that marched off at right 
angles to one another sharing only the common bond and 
spirit of the people that work in the environment established 
by Bell Labs. 

REFERENCES 

1. Encyclopedia of Computer Science and Technology, Vol. 3, New York: 
Marcel Dekker, p. 210. 

2. Holbrook, Bernard D. and W. Stanley Brown. "A History of Computing 
Research at Bell Laboratories (1937-1975)." Computing Science Technical 
Report No. 99, Bell Laboratories, 1982, p. 15. 

3. Wolontis, V. M. Bell Laboratories Record, 52 (1974) 1, p. 18. 
4. Wolontis, V. M. "A Complete Floating-Decimal Interpretive System for 

the IBM 650 Magnetic Drum Calculator." IBM Technical Newsletter, No. 
11, March 1956. 

5. Hamming, R. W. and R. A. Weiss, "General Purpose System." unpub
lished internal memorandum, Bell Laboratories, September 14, 1956. 

6. McLaughlin, Richard A. "The IBM 704: 36-Bit FLoating-Point Money 
Maker." Datamation, 21 (1975) 8, p. 45. 

7. Mealy, G. H. "704 Input-Output System: BE SYS 1." unpublished internal 
memorandum, Bell Laboratories, October 16, 1957. 

8. Mealy, G. H. "704 Input-Output System-BE SYS 1 and 2." unpublished 
internal memorandum, Bell Laboratories, February 13, 1958. 

9. Hansen, G. J., W. L. Mammel, and G. H. Mealy. "704 Input-Output and 
Monitor system-BE SYS 2." unpublished internal memorandum, Bell 
Laboratories, May 22, 1959. 

10. Holbrook, B. D. and W. S. Brown. "Bell Laboratories and the Computer 
from the Late 30's to the Middle 60's." unpublished internal memorandum, 
Bell Laboratories, June 25, 1975, p. 54. 

11. Eastwood, D. E. and M. D. McIlroy. "Macro Compiler Modification of 
SAP." unpublished internal memorandum, Bell Laboratories, September, 
1959. 

12. Drummond, R. E. and G. J. Hansen. "BE-SYS-4 Release Description." 
unpublished internal information bulletin, Bell Laboratories, February, 
1962. 

13. Cutler, M. R. "General Description of BESYS5." unpublished internal 
memorandum, Bell Laboratories, February 18, 1964. 

14. Drummond, R. E. "Emulation of BESYS-7 on The SYSTEMJ360, Model 
65." unpublished internal memorandum, Bell Laboratories, April 3, 1967. 

15. "Movies Help Radiation Treatment." Bell Labs News. May 21,1971. 



FMS: The IBM FORTRAN Monitor System 

by RAY A. LARNER 
IBM Corporation 
Boulder, Colorado 

ABSTRACT 

This paper is a short history of the IBM FORTRAN Monitor System (FMS) and its 
follow-ons, which provided a popular early "work horse" operating system for the 
IBM 704/9/90 computer systems FORTRAN users beginning at the end of 1959. 

The events and environment leading up to this sytem are explored. This system 
was developed through an ad hoc cooperative effort by members of the user group 
SHARE, and the IBM FORTRAN compiler group, as an interim operating system 
solution pending a more general planned and funded system. While there was 
controversy about the wisdom of distributing the system, it became widely used, and 
contributed to an evolutionary set of operating environments. 

Fueled by dramatic growth in the popularity of FORTRAN, and some useful 
features of FORTRAN inter-program linkage, the system, and descendants of it, 
became standard for most IBM 704/9/90 series accounts throughout the 1960s. 

815 





BACKGROUND ... 1956-1959 

The Introduction of FORTRAN 

In 1957, IBM's John Backus and his small FORTRAN 
group made available the first FORTRAN compiler, for the 
IBM 704 computer system. They had devised both the lan
guage and the compiler, and the reception by the user commu
nity was extremely positive. For the first time, there was a 
capability for "non programmers" to program these machines 
in a practical way. The language's emphasis was on engi
neering and scientific usage, and much sophistication had 
been put into producing object programs that were efficient 
for these applications. 

In 1958, the same group produced FORTRAN II, which 
extended the original system's capabilities by allowing sepa
rately compiled FORTRAN programs to be linked together 
at load time, with symbolic linkage and data sharing. This 
extension was, in the author's opinion, a cornerstone to the 
practical acceptance of FORTRAN, and led to the expansion 
of the FORTRAN system into an early operating system. 

FORTRAN Operation 

At this time, there was no generally available operating 
system for FORTRAN users. It was the norm for a specific 
job to have uncontested control of the computer system, 
starting from a machine reset state, and ending with a pro
gram halt. The FORTRAN compiler behaved in this fashion, 
as did a FORTRAN object program. A FORTRAN object 
program could be composed of mUltiple program segments, 
each the result of an independent compilation. To run a 
FORTRAN object program job, a special loader (the BSS 
loader, for Binary Symbolic Segment loader) furnished with 
the FORTRAN system, was boot-strapped into the computer. 
The BSS loader loaded multiple relocatable segments into 
computer memory, assigning locations as it did so, both for 
programs and data. Hence, the BSS loader was acting as a 
main memory manager for that job. After loading the pro
grams, it passed control to one of them (called the Main 
Program). When the program completed, the machine came 
to a halt, and the machine operator would reset the machine 
to run whatever the next job happened to be. 

SHARE/IBM Operating System Strategy 

Within SHARE (the user group for this line of computers) 
there was a cooperative effort among several of the more 
experienced members, and IBM, to define and implement a 
standard operating system called SOS (SHARE Operating 

FMS: The IBM FORTRAN Monitor System 817 

System). SOS was meant to provide a machine control system 
to automatically sequence jobs without operator intervention, 
and to provide comprehensive development and debugging 
tools. This effort, however, was begun in parallel with the 
development and acceptance of FORTRAN, and there were 
some incompatibilities, both in concept and in detail, between 
SOS and FORTRAN. 

Increasing Customer Usage of FORTRAN 

Meanwhile, FORTRAN usage by many SHARE users be
gan to increase dramatically. This was especially true with 
companies that were new users of these computers, and had 
little or no invested inventory of application software. It was 
claimed that development of engineering simulation and data 
reduction applications could be completed an order of mag
nitude faster than with conventional machine language (or 
symbolic machine language) approaches. FORTRAN con
tributed to the emergence of the "open shop," wherein en
gineers from outside the computer shop were allowed to write 
their own FORTRAN programs to solve their own engineer
ing problems. Typically, these programmers were not trained 
in machine language programming, which was restricted to 
"closed shop" personnel. 

Some of these heavy FORTRAN users began to devise 
machine room procedures around FORTRAN, and some 
revised the FORTRAN system provided by IBM to provide 
more efficient job-to-job transitions. Jobs were "stacked" 
onto an input tape using off-line peripheral equipment, and by 
local rules, the data written as output by jobs was written 
sequentially onto preassigned output tapes for subsequent off 
line printing and card punching. Some wrote "monitors," that 
provided transition from job to job without machine halts. 
These were, of course, practical solutions designed around the 
FORTRAN system, usually without regard to the concepts 
under development for SOS. 

The North American 709 FORTRAN Load and Go System 

One of these users was North American Aviation. Their 
Rocketdyne division computer center had devised such a 
monitor system known as the North American Load and Go 
system. This system allowed a single job to consist of one or 
more compilations, followed by immediate execution of the 
compiled job, and then automatic sequencing to the next job. 
Any or all of the job could have been compiled earlier, in 
which case the object program (in BSS form) was included 
with the input. North American Rocketdyne had made a 
number of revisions to the compiler and to the BSS loader to 
make this system. 



818 National Computer Conference, 1987 

In addition, they added a loading and execution time con
cept that was not in FORTRAN. This was a concept of "chain 
links." Multiple FORTRAN programs, each of which was a 
full memory load, could be successively executed, in any or
der, with the programs sharing data in memory. When one 
chain link completed, it invoked another chain link. The mon
itor would load the next chain link into memory (overlaying 
the previous one, except for common data variables) and pass 
control to it. Any chain link could be invoked an arbitrary 
number of times. This was an important function, because in 
those days main memory was very limited (a maximum of 32K 
words), and many engineering applications required much 
more than was available. Chain links were a much more effi
cient way to overcome this problem than dividing the applica
tion into multiple independent jobs. 

The SHARE Subcommittee Report 

In March of 1959, a special subcommittee of the SHARE 
FORTRAN Standards and Evaluation Committee met in 
New York with members of the IBM FORTRAN group. The 
subcommittee was chaired by James Fishman of General Mo
tors Research Laboratories. Charles (Chuck) Bortek repre
sented North American, who had proposed to the committee 
in February to make the North American 709 FORTRAN 
Load and Go System available to SHARE, assuming IBM 
would generalize, distribute, and maintain the system. The 
purpose of the subcommittee was to evaluate that system, and 
to make recommendations to the parent committee "concern
ing whether IBM should be directed to distribute and main
tain this system for all 709 FORTRAN users." 

The subcommittee, in a report to the SHARE FORTRAN 
Committee dated April 10, 1959, published the following con
clusions: 

"1) There is an immediate need and a future need for a 
709 Fortran operating system 

2) This immediate need may be met by the distribution 
and maintenance of the North American Load and 
Go System, * NA 308.9, but containing the modifica
tions listed in the addendum to this report, as a part 
of 709 Fortran 

3) The question of operating Fortran within the SOS 
System should be reviewed by Share and IBM. 

* This name is North American's, and not that of the 
subcommittee. " 

The addendum listed 12 areas for which there were to 
be modifications made by IBM. These were not detailed 
specifications, but rather suggested an "approach that will 
insure no additional difficulty for installations whose prior 
experience or new plans makes use of the North American 
System without modification unacceptable, and should allow 
future expansion in the direction of a single overall operator." 
(The term "operator" was used to mean operating system, or 
monitor; that is, a computer program taking over some of the 
traditional tasks of the computer operator.) 

The report went on to express puzzlement over "the 

proper place of SOS in relation to Fortran," and concern over 
whether "SOS will be efficient for Fortran users, since much 
of the design philosophy of SOS was based upon need for 
the correcting of coding errors, which Fortran does not pro
duce .... " Additional concerns about SOS/FORTRAN con
vergence were expressed, and a requirement was given for an 
assembler to produce relocatable output, "since relocatable 
information is implicitly a present adjunct to the operation 
of Fortran II." This was a reference to the ability, with 
FORTRAN, to independently compile relocatable sub
routines that could subsequently be included in different 
FORTRAN program executions, by means of the BSS loader. 

The author's records are somewhat blurred with respect to 
official SHARE acceptance, or lack thereof, of this recom
mendation. They do include a few long and thoughtful letters, 
pro and con. On the con side, some thought that each instal
lation had its own unique requirements, and that standard
izing would be counterproductive, and would divert IBM's 
FORTRAN system programming resources from other im
portant requirements. Of course, the fact that this system 
would be parochial to FORTRAN, and not usable for other 
application, was a major concern. SOS boosters, of course, 
wanted FORTRAN to run as a part of SOS. 

For IBM's part, they expressed willingness to proceed with 
the work, but on a very limited basis. IBM did have, after all, 
a department developing SOS, which was still the recognized 
SHARE operating system, and it was not considered the 
mission of the FORTRAN group to develop operating sys
tems. In fact, the assignment to accomplish this was given 
to the author, as a short-term, part-time task. The "IBM 709 
FORTRAN Monitor System" was distributed to SHARE 
members around Christmas, 1959. 

FMS HISTORY ... 1960-1962 

The IBM 709 FORTRAN Monitor System initially distrib
uted to SHARE members was extended beyond the North 
American system, in that an assembler, called FAP (for 
FORTRAN Assembly Program) was included with the sys
tem. This assembler was provided to IBM for this purpose by 
the Western Data Processing Center (University of California 
in Los Angeles), along with an excellent manual. This FAP 
was based, to the author's recollection, on an assembler de
veloped earlier by Bell Laboratories, as a part of their own 
monitor, BESYS. FAP produced relocatable output in BSS 
format, so FAP program segments (subroutines) could be 
easily mixed and matched with those produced by the FOR
TRAN compiler. 

In addition, modifications that North American had made 
to the compiler itself were removed, and the necessary mon
itor functions were isolated in monitor modules themselves, 
so that the compiler could be used in a conventional mode 
(non monitored) by customers who desired to do so. Monitor 
functions were isolated and documented with a view toward 
installation customizing, or incorporation into their own mon
itor. Areas were made available in monitor modules for instal
lations to install their own extensions, primarily for account-



ing purposes. Various enhancements in usability and flex
ibility, as requested in the subcommittee report, were made. 
Apart from the inclusion of FAP, however, the major func
tions were essentially those of the North American System. 

Monitor Operation 

Because main memory was so limited, the monitor modules 
were not present during compilations, assemblies, and object 
program execution. (An exception was that certain monitor 
linkage functions were packaged as optional library sub
routines loaded with object programs.) The compiler and 
assembler were essentially "unaware" of the presence of the 
monitor. At the completion of a compilation or assembly, the 
compiler or assembler simply passed control to the next pro
gram (record) on the system tape. This was done in the same 
manner that control was passed between phases within com
pilation or assembly-via a tiny program in lower memory 
called "1 to CS." This program was only a few instructions 
long; it simply loaded the system program at the current 
system tape position into memory and passed control to it. In 
addition, a few words of memory with "1 to CS" were re
served by the monitor for job status, and for use by individual 
installations for accounting information. 

Thus, the monitor modules were strategically placed on the 
system tape, to be brought in only on transition between job 
steps. 

Job definition was controlled by control card images on the 
input tape. At the beginning of each job there was a "sign-on" 
card. Installations could customize the information on the sign 
on card, and could add logic to the monitor module that 
processed it, to perform accounting functions (e.g., billing by 
department for machine usage). 

After the sign-on card were all the input data for the job, 
separated by appropriate control cards interpreted by the 
monitor. This could include FORTRAN source programs, 
FAP source programs, object programs (in BSS relocatable 
format), and input data for the execution phase of the object 
program. Execution phases were optional; that is, the job 
could consist of all compilations and assemblies. Similarly, the 
job could be execution only, or could be a mixture of com
pilations and/or assemblies followed by an execution phase. 

When all compilations and assemblies (if any) for a job 
were completed, the monitor would load the (relocatable) 
segments of the job, load all library routines required by the 
job, and pass control to the main program of the job. When 
the program completed, the monitor would regain control and 
process the next job. 

If the job was a "chain" job, the monitor would "load" each 
chain link, resolving all relocatable references, and write the 
"loaded" chain link to tape, with proper identification, and 
begin processing the next chain link within the job. Each chain 
link was like a "job" in itself, in that it could contain a mixture 
of compilations and/or assemblies and relocatable object code 
segments. 

During an execution phase, selective or complete dumping 
of program and/or data areas could be performed via monitor 
library routines. 

FMS: The IBM FORTRAN Monitor System 819 

Source Language Debugging 

In 1961, source language debugging capability was added to 
the monitor. This work was done by a select group of SHARE 
members, headed by Bill Heffner, then of General Electric, 
and integrated into the system by IBM. Source language de
bugging was a natural outgrowth of the BSS architecture. 
Adding symbol tables to BSS "decks" for internal variables, 
as well as already existing symbol tables for external names, 
was done in the compiler assembly phase, on option. This 
provided a platform for run-time monitor routines that 
performed snapshots of requested variables, (using source 
program symbols and indices). This feature had been long 
demanded by users and was a welcome addition. 

Acceptance by SHARE 

Up to the time the initial distribution of FMS was made, 
there was considerable reluctance within SHARE to formally 
endorse it (it was never officially endorsed, to the author's 
knowledge). At the February, 1960 SHARE meeting, it was 
duly noted that the distribution had occurred, but there had 
been such little experience with the system at that time that 
there was little discussion of it (or at least within the author's 
records). By the time of the next semiannual meeting, how
ever, correspondence and minutes indicate that FMS was a 
"taken for granted" standard part of the FORTRAN environ
ment, and polls indicated that FMS was almost universally in 
use. Lobbying for enhancements to the monitor became as 
commonplace as lobbying for compiler enhancements. 

In 1961, a resolution was passed to remove the capability 
for non-monitored operation. User questionnaires indicated 
that a vast majority of overall 709 and 7090 usage was in 
FORTRAN, and that 76 percent of the installations used the 
FORTRAN Monitor System distributed by IBM. A few of the 
more progressive installations had made the FORTRAN 
monitor system a subsystem under the control of a "master 
monitor ," that could also invoke other monitors for non
FORTRAN applications. 

Incremental performance and functional improvements 
were made to FMS, including its integration into "IBSYS" 
(an IBM "master monitor") in 1962. 

FMS INTEGRATION AND EVOLUTION ... 1962 ON 

IBSYS 

Once FMS was in wide usage, IBM realized that it must de
velop and generalize operating systems including FMS func
tions. In 1962, IBM introduced a "master monitor" (IBSYS) 
that included FMS as a subsystem, along with Commercial 
Translator (IBM's entry into Business Oriented Languages), 
a buffered Input/Output Control System (7090 IOCS), and 
additional applications, such as tape sort and report gener
ation. Additional subsystems were added over time. Provi
sions were made for optional FORTRAN usage of IOCS, to 
trade main memory for increased Input/Output performance. 



820 National Computer Conference, 1987 

IBSYS provided a number of services, including centralized 
110, dynamic device and channel allocation, centralized ac
counting, and uninterrupted flow between the various "sub
systems." In this environment, FMS still performed basically 
the same functions as before, but could coexist more easily 
with other software packages. In addition, by channeling 110 
through IBSYS, the support of disk storage (the IBM 1301) 
and new magnetic tape architecture was readily accomplished. 

[BlOB 

In 1963, IBM made FORTRAN IV (a new FORTRAN 
compiler) available. A new Monitor System, called IBJOB, 
was used with FORTRAN IV. In IBJOB, more software 
systems, including non-FORTAN languages and shared 
common run-time linkage and relocation architecture, and a 
more generalized program overlay structure, organized along 
tree structure concepts was available across this spectrum. 
IBJOB in tum ran under IBSYS, and so could coexist with the 
FORTRAN II FMS subsystem at that level, along with other 
subsystems. FORTRAN IV, and the IBJOB monitor, in ac
cordance with agreements between IBM and SHARE, sacri
ficed compatibility with FORTRAN II and FMS, in exchange 
for language and operational improvements. FORTRAN II 
FMS continued to be distributed and maintained, therefore, 
to support existing FORTRAN II and FMS applications. 
Many SHARE members who purchased IBM's S/360 systems 
in the late 1960s continued to run these new systems in 7000 
series emulation mode for several years, continuing to operate 
with FMS, IBJOB, IBSYS, and/or their own monitor systems 
and subsystems. 

RETROSPECT 

The FORTRAN Monitor System, together with its follow-on, 
IBJOB, and complementary system, IBSYS, served practical 
roles as "workhorse" systems for IBM's 704/9/90 series 
FORTRAN users throughout the 1960s decade. Their fea
tures (some of which were derived from FORTRAN II link
age concepts) laid foundations for the incorporation of similar 
features (now taken for granted) in subsequent operating sys
tems. For example: 

1. The Binary Symbolic Segment relocatable object pro
gram architecture concepts are still used in modern oper
ating systems, as are the source language debugging aids 
built on them; the IBJOB extensions to this for auto
matic overlays during execution (replacing the FMS 
chain link concept) were carried into IBM Systeml360 
operating systems until the advent of virtual memory 
hardware/software systems. 

2. The concatenation of batch job steps in FMS has been 
carried forward and refined in all major modem oper
ating systems. 

3. The concepts of 110 resource allocation and control in
troduced by IBSYS are still present in modem operating 
systems. 

These were important steps in the evolution of operating 
systems, and helped provide a productive application environ
ment for emerging large system computer users in this period. 
The major impetus in the growth of these systems came from 
the users, through the good communication of the SHARE 
organization. The author is glad to have been a part of this 
early segment of operating systems history. 



SMALL BUSINESS DAY 
SHELDON GOLDBERG 

S. Goldberg and Associates 
Morton Grove, Dlinois 

The Small Business Day sessions offer a complete automation seminar for small business 
owners or managers contemplating installation or upgrade of a computer system. Learn what 
a computer can do for your business and how to maximize return on investment for your 
computer system. You need to know about automation as a solution for your business 
problems if you want to stay in business. The Small Business seminar tells you why you should 
automate, helps you decide what to automate, and explains how to proceed so you can begin 
immediately. 

The first session features practical advice on how to find the resources you need as you 
define your automation needs. It also explains how to get financial assistance for funding 
computer hardware, software, and consulting services. Other sessions arm you with the facts 
you need to be an informed buyer. The sessions strip computer automation of its technical 
armor by describing it in practical small business user terms. Learn what steps to take and 
how to proceed in a manner that keeps you in control. 

The final session addresses specific needs for specific industries, focusing on requirements 
for real estate offices, medical and dental practices, restaurants, hotel/motel operations, 
distributors, and small manufacturers. The session provides advice on how to get the com
petitive edge in your industry and how to avoid the pitfalls that have left many small business 
owners wondering where they went wrong. The complete four-session seminar provides 
scores of practical tips for getting the most from your automation plans, streamlining your 
computerization, and reducing your automation costs. 





1987 NATIONAL COMPUTER CONFERENCE 
COMMITTEES 

Chair 
Margaret K. Butler 
Argonne National Laboratory 
Argonne,IL 

Vice Chair 
Alan Hirsch 
Amoco Corporation 
Chicago,IL 

Administrative Assistant 
Joan Murphy 
Cass Junior High School 
Darien,IL 

Robert L. Ashenhurst 
The University of Chicago 
Chicago,IL 

Martin L. Bariff 
Illinois Institute of Technology 
Chicago,IL 

Richard Barnier 
Digital Equipment Corporation 
Rolling Meadows, IL 

Judy Bennett 
IBM Corporation 
Chicago,IL 

Hal Berghel 
University of Arkansas 
Fayetteville, AR 

Barbara Campbell 
Governor's Commission on Science 

and Technology 
Chicago,IL 

Carl K. Chang 
University of Illinois at Chicago 
Chicago,IL 

PROGRAM COMMITIEE 

Robert Clark 
Boeing Computer Services 
Seattle, WA 

Joseph E. Collins 
Data Processing Management 

Association 
Park Ridge, IL 

Charles Curran 
Allan-Bradley 
Milwaukee, WI 

Jack Dongarra 
Argonne National Laboratory 
Argonne,IL 

S. Krishna Dronamraju 
AT&T Information Systems 
Naperville, IL 

Martha Evens 
Illinois Institute of Technology 
Chicago,IL 

David Foster 
LaSalle National Bank 
Chicago,IL 

Sheldon Goldberg 
S. Goldberg & Associates 
Morton Grove, IL 

Scott Humphrey 
Britton Lee, Inc. 
Los Gatos, CA 

Julie Hurd 
The University of Chicago 
Chicago,IL 

Jie-Yong Juang 
Northwestern University 
Evanston, IL 

823 

Evelyn Marsh 
Sears 
Chicago,IL 

Jorge Nocedal 
Northwestern University 
Evanston,IL 

Eugene Norris 
George Mason University 
Fairfax, VA 

Sandra Reed 
Northern Illinois University 
DeKalb,IL 

George Ryckman 
General Motors, Retired 
Grosse Pointe, MI 

Alan Sobel 
Lucitron, Inc. 
Northbrook, IL 

Sandra Taylor 
Britton Lee, Inc. 
Los Gatos, CA 

George B. Trubow 
John Marshall Law School 
Chicago,IL 

Robert Vonderohe 
The University of Chicago 
Chicago,IL 

David Weber 
Argonne National Laboratory 
Argonne,IL 

Conrad Weisert 
Information Disciplines 
Chicago,IL 



1987 NATIONAL COMPUTER CONFERENCE STEERING COMMITTEE 

General Chair 
John Brown 
AT&T Information Systems 
Naperville, IL 

Vice Chair 
Richard B. Wise 
Sargent & Lundy Engineers 
Chicago,IL 

Program Chair 
Margaret K. Butler 
Argonne National Laboratory 
Argonne,IL 

Professional Development Seminars 
Chair 

C. Robert Carlson 
Illinois Institute of Technology 
Chicago,IL 

Pioneer Day Chair 
George Ryckman 
General Motors, Retired 
Grosse Pointe, MI 

Promotions Chair 
Roger Halligan 
Halligan & Associates, Inc. 
Chicago,IL 

Finance Chair 
Marjorie Benson 
University of Chicago 
Chicago,IL 

Operations Chair 
Mary W. Owen 
SPSS Inc. 
Chicago,IL 

Human Services 
Shirley A. Baird 
Milestone Systems, Inc. 
Downers Grove, IL 

Special Activities 
M. Mildred Wyatt 
Wyatt Communications 
Chicago,IL 

Secretary 
David Jacobsohn 
Chicago,IL 

Advisor 
Rolland B. Arndt 
Lakeland, MN 

Advisor 
Albert K. Hawkes 
Sargent & Lundy Engineers 
Chicago,IL 

Micro Mouse Chair 
Susan Rosenbaum 
Strategic Planning and 

Mechanization Specialist 
Plainfield, NJ 

NATIONAL COMPUTER CONFERENCE BOARD/AFIPS CONFERENCE BOARD 

Chairman and DPMA 
Representative 

Carroll Lewis 
Commercial Data Corporation 
Memphis, TN 

Treasurer and AFIPS Representative 
Seymour Wolfson 
Wayne State University 
Detroit, MI 

Secretary and AFIPS Representative 
Robert E. Blue 
E COMP-COMM 
Indialantic, FL 

AFIPS Representative 
Rolland B. Arndt 
Lakeland, MN 

AFIPS Representative 
Jack Moshman 
Moshman Associates, Inc. 
Bethesda, MD 

ACM Representative 
Bertram Herzog 
Boulder, CO 

IEEE-CS Representative 
Stanley Winkler 
Bethesda, MD 

SCS Representative 
Carl W. Malstrom 
North Carolina State University 
Raleigh, NC 

Ex Officio Members 

ACM President 
Paul W. Abrahams 
Deerfield, MA 

DPMA President 
Robert A. Hoadley 
City of Raleigh 
Raleigh, NC 

824 

IEEE-CS President 
Roy Russo 
IBM Corporation 
Yorktown Heights, NY 

SCS President 
Ralph Huntsinger 
California State University 
Chico, CA 

AFIPS Executive Director 
John Gilbert 
AFIPS 
Reston, VA 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

President 
Jack Moshman 
Moshman Associates, Inc. 
Bethesda, MD 

AFIPS Immediate Past President 
Stephen S. Yau 
Northwestern University 
Evanston, IL 

Association of Computational 
Linguistics (ACL) 

Norman K. Sondheimer 
USC Information Sciences Institute 
Marina del Rey, CA 

Association for Computing 
Machinery (ACM) 

Paul W. Abrahams 
Deerfield, MA 

David R. Kniefel 
Deloitte, Haskins & Sells 
Princeton, NJ 

Robert Aiken 
Temple University 
Philadelphia, P A 

Association for Educational Data 
Systems (AEDS) 

Sylvia Charp 
Upper Darby, PA 

OFFICERS 

Vice President 
Rolland B. Arndt 
Lakeland, MN 

Treasurer 
Seymour Wolfson 
Wayne State University 
Detroit, MI 

BOARD OF DIRECTORS 

American Statistical Association 
(ASA) 

James E. Gentle 
IMSL, Inc. 
Houston, TX 

American Society for Information 
Science (ASIS) 

James M. Crestos 
Merrell Dow Pharmaceuticals, Inc. 
Cincinnati,OH 

Data Processing Management 
Association (DPMA) 

Eddie M. Ashmore 
Southern Baptist Theological 

Seminary 
Louisville, KY 

J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

Carroll Lewis 
Commercial Data Corporation 
Memphis, TN 

IEEE Computer Society 
Edward A. Parrish, Jr. 
Vanderbilt University 
Nashville, TN 

825 

Secretary 
Arthur C. Lumb 
The Procter & Gamble Company 
Cincinnati, OH 

Executive Director 
John Gilbert 
AFIPS 
Reston, VA 

Dick B. Simmons 
Texas A&M University 
College Station, TX 

Stanley Winkler 
Bethesda, MD 

Instrument Society of America (ISA) 
Robert E. Blue 
ECOMP-COMM 
Indialantic, FL 

Society for Computer Simulation 
(SCS) 

Walter J. Karplus 
University of California 
Los Angeles, CA 

Society for Industrial and Applied 
Mathematics (SIAM) 

Shmuel Winograd 
IBM Research Center 
Yorktown Heights, NY 

Society for Information Display 
(SID) 

Howard L. Funk 
IBM Corporation 
Thornwood, NY 



Adams, Charles W., 785 
Amer, Paul D., 437 
Amori, Richard D., 19 
Annaratone, Marco, 133, 149 
Aoyama, Mikio, 477 
Arnould, E., 133 
Arrathoon, Raymond, 245 
Ashenhurst, Robert L., 167 

Bal, Henri, 499 
Bariff, Martin L., 285 
Barnier, Richard, 285, 381 
Bauer, Michael, 359 
Beard, David V., 725 
Berghel, Hal, 1, 27, 315, 329 
Bernstein, Jared, 37 
Bitz, Francois, 149 
Bivens, Mary P., 665 
Blanning, Robert W., 13 
Bolter, Jay D., 725 
Boswell, Sandra, 205 
Bourbakis, N.G., 247 
Bowyer, John, 3 
Brooks, Gary D., 205 
Brown, John M., iii 
Bruegge, B., 141 
Butler, Margaret K., v 

Carter, Jr., James A., 341 
Cashion, Richard, 453 
Chang, C.H., 141 
Chang, Carl K., 457, 477 
Chang, Shi-Kuo, 77 
Chapin, Ned, 517 
Charp, Sylvia, 169 
Cheng, Daniel, 87 
Chiang, John e., 475 
Chu, Man B., 253 
Clark, Robert K., 709 
Clement, John, 451 
Clemons, Eric K., 701 
Cohn, R., 133, 141 
Collins, Joseph E., 449 
Collofello, James S., 539, 675 
Connell, John, 523 
Cook, Peter, 49 
Couger, J. Daniel, 293 
Cousins, Larry, 539 
Czejdo, Bogdan, 615 

DeBusschere, Daniel G., 397 
Desai, Bipin e., 49, 53 
Deutch, Jeff, 149 
Diaz-Herrera, Jorge L., 67 
Don Carlos, Barbara J., 423 
Dongarra, Jack, 107, 235 

AUTHOR INDEX 
Dronamraju, S. Krishna, 709 
Drummond, R.E., 805 

Edmead, Mark T., 281 
Eichmann, George, 237 
Ellis, Clarence A., 49 
Elmasri, Ramez, 615 
Embley, David W., 615 
Evens, Martha, 1, 711 

Ferguson, Gordon J., 725 
Foster, David, 285 
Fotakis, D.K., 247 
Frasson, Claude, 49 

Gallanis, Peter, 283 
Ghalwash, A.Z., 257 
Gjertsen, Bruce, 317 
Goerner, Alan A., 109 
Goldberg, Sheldon, 821 
Grim, Daniel, 437 
Gross, T., 133, 141 
Gunn, Howard J., 383 
Gustafson, David A., 693 

Hagamen, W.D., 97 
Harney, Leonard, 149 
Harr, Henry, 711 
Hawthorn, Paula, 507 
Hecht-Nielsen, Robert, 239 
Henshaw, John, 359 
Hill, Howard, 7, 199 
Hoffmann, R.F., 399 
Hogan, Douglas L., 43 
Hokuf, Bronson, 437 
Hurd, Julie, 709 
Hursin, Ali R., 119 

Irani, Erach, 769 
Ivey, Elmo, 563 

Jakobson, Gabriel, 611 
Jiang, Tsang Ming, 477 
Johnson, William S., 737 
Juang, Jie-Yong, 87, 107 

Karat, John, 183 
Kelsch, Robert, 401 
Ko, Dave J., 591 
Koffler, Richard P., 175 
Kumar, Vijay, 485 
Kung, H.T., 133, 149 
Kushner, Doreen L., 179 

La.."Il, M., 133, 141 
Lanchbury, Mary Lou, 693 

826 

Landy, L.D., 385 
Lansman, Marcy, 725 
Larner, Ray A., 815 
Larsen, Mark G., 417 
Latoza, Kenneth e., 511 
Lee, Daniel T., 683 
Lefkon, Richard G., 473 
Leiss, Ernst L., 591 
Li, Eldon Y., 531 
Lieu, P., 141 
Ligomenides, P.A., 257 
Liu, Sying-Syang, 553 
Long, John M., 769 
Lu, Hongjun, 583 
Lu, Huizhu, 645 

Maginnis, P. Tobin, 321 
Markowitz, Judith, 3 
Marsh, Evelyn, 381 
Maryanski, Fred, 367 
Matts, John, 769 
Maulik, P.e., 149 
McClure, Carma L., 459 
McManus, John, 53 
McNamara, Donald M., 467 
Meads, Jon, 233 
Mealy, George H., 779 
Melton, Austin, 693 
Menzilcioglu, 0., 133 
Mikkilineni, Krishna, 583 
Miller, Donald F., 321 
Miller, L.L., 637 
Mitchell, Richard F., 287 
Mock, Owen R., 791 
Modell, Martin, 655 
Morgan, Michael L., 301 
Morita, Shuzo, 469 
Motzkin, Dalia, 563 
Mylopoulos, John, 49 

Naffah, Najah, 49 
Neuman, Michael, 215 
Newcomb, R.W., 257 
Newell, J.A., 385 
Noaman, A., 141 
Nocedal, Jorge, 107, 235 
Norris, Eugene, 107, 235 
Nussbaum, M., 265 

O'Connell, Larry, 745 
Osman, Mohamed Gagaie Sayed, 

711 
Owrang, Mehdi, 637 

Paller, Allan, 311 
Palmer, Janet, 719 



Palvia, Prashant, 573 
Pan, Shuhshen, 625 
Patrick, Robert L., 797 
Peterson, Cornelius, 431 
Pick, Richard, 471 
Place, Jerry P., 109 
POSCH Group, The, 769 
Pretty, Cecil, 317 

Qadah, G.Z., 265 

Ramanathan, Jayashree, 545 
Rankin, Richard, 27 
Reed, Sandra, 315 
Reyes, Tom C., 657 
Rickert, Joseph B., 403 
Rine, David c., 59 
Rothbard, Robert, 193 
Ruhland, Michael, 349 
Rusinkiewicz, Marek, 615 
Ryckman, George, 777 

Sahin, Kenan E., 761 
Salton, Gerald, 613 
Sarocky, K., 133 
Sawyer, Robert., 761 
Schaefer, David H., 253 
Schonbach, Avi, 359 
Schultz, Alan c., 73 

'Senko, J., 133 
Shafer, Linda, 523 
Sharma, Ravi Sha..'1kar, 601 
Sherer, Susan A., 701 
Sherwood, . Betty, 185 
Shirazi, Behrooz, 119 
Slagle, James R., 769 
Slonim, Jacob, 359 
Smith, F.J., 375 
Smith, John B., 725 
Smith, Stephen, 159 
Soffa, Mary Lou, 665 
Spiro, Bruce E., 455 
Sprowl, James, 711 
Stanfill, Craig, 159 
Stefanek, George, 77 
Stock, Darrell, 367 
Stork, Carl., 279 
Straka, Ray, 653 
Sullivan, Sarah L., 199 

Tanenbaum, Andrew S., 499 
Taylor, Sandra, 1, 457 
Thau, Robert, 159 
Thuraisingham, Bhavani, 583 
Toliver, David E., 609 
Trubow, George, 449 
Tseng, P.S., 149 

827 

van Renesse, Robbert, 499 
Vennergrund, D.A., 675 
Venugopal, Vasudevan, 545 
Verma, Vinit, 645 
Vincent, Philip J., 53 
Vonderohe, Robert, 381 

Waltz, David, 159 
Waters, Michael A., 751 
Webb, Jon A., 133, 149 
Weber, John C., 97 
Weisert, Conrad, 457 
Weiss, Bonnie M., 409 
Weiss, Stephen F., 725 
Wells, Connie E., 309 
Wholeben, Brent Edward, 205, 223 
Wick, Michael, 769 
Wohl, Amy D., 289 
Wolf, Gail D., 301 
Won, Hee, 127 

Yam, D., 141 
Yang, Sheausong, 553 
Yau, Stephen S., 553 
Yusko, Jay, 3 

Zawacki, Robert A., 173 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826
	827

